Short Course LID, Prague, 19-23 September 2005

Modeling of Localized Inelastic Deformation

Milan Jirásek

General outline:
A. Introduction
B. Elastoplasticity
C. Damage mechanics
D. Strain localization
E. Regularized continuum models
F. Strong discontinuity models

Short Course LID, Prague, 19-23 September 2005

F. Strong discontinuity models

F. 1 Introduction
F. 2 Embedded discontinuities (EED-EAS)
F. 3 Extended finite elements (XFEM-PUM)
F. 4 Comparative evaluation
F. 5 Regularized continua with strong discont.

F. 1

Introduction

Classification of models: kinematic aspects

```
Strong discontinuity
```


Weak discontinuity

C-

Regularized
localization zone

Classification of models: kinematic aspects

Strong
discontinuity

Weak discontinuity

Regularized
localization zone

Classification of models: material laws

Traction-separation laws

1) Formulated directly in the traction-separation space a) with nonzero elastic compliance (elasto-plastic, ...) b) with zero elastic compliance (rigid-plastic, ...)

For general applications, we need a link between the separation vector (displacement jump vector) and the traction vector:

Traction-separation laws

2) "Derived" from a stress-strain law (softening continuum) using the strong discontinuity approach

Finite element representation of strong discontinuities

1) Discontinuities at element interfaces:
a) Remeshing
b) Interspersed potential discontinuities

Finite element representation of strong discontinuities

2) Arbitrary discontinuities across elements:
a) Elements with embedded discontinuities using the enhanced assumed strain formulation (EED-EAS)
b) Extended finite elements based on the partition-of-unity concept (XFEM-PUM)

Embedded discontinuity (enhanced assumed strain)

Embedded discontinuity (enhanced assumed strain)

Approximation on two overlapping meshes (XFEM)

Approximation on two overlapping meshes (XFEM)

Enrichment of interpolation functions in one dimension

EED-EAS

Enrichment of interpolation functions in one dimension

EED-EAS

XFEM-PUM

Enrichment of interpolation functions in one dimension

EED-EAS

XFEM-PUM

XFEM-PUM

F. 2

Elements with Embedded

 Discontinuities (EAS)
Elements with embedded discontinuities

$$
\begin{aligned}
& \underbrace{\mathbf{d}}_{\boldsymbol{\varepsilon}} \boldsymbol{\varepsilon}=\mathbf{B} \mathbf{d} \\
& \int_{\dot{\boldsymbol{\varepsilon}}}^{\boldsymbol{\sigma}=\tilde{\boldsymbol{\sigma}}(\boldsymbol{\varepsilon}, \ldots)} \\
& \int_{\mathbf{f}_{\text {int }}}^{\mathbf{f}_{\mathrm{int}}}=\int_{V} \mathbf{B}^{T} \boldsymbol{\sigma} \mathrm{~d} V
\end{aligned}
$$

Elements with embedded discontinuities

d

C ... new degrees of freedom characterizing separation (displacement jump)
σ
t ... traction
$\mathbf{f}_{\text {int }}$

Elements with embedded discontinuities

Elements with embedded discontinuities

d

kinematics

Three types of formulations:

- KOS ... kinematically optimal symmetric
- SOS ... statically optimal symmetric
- SKON ... kinematically and statically optimal nonsymmetric

Elements with embedded discontinuities

Elements with embedded discontinuities

Elements with embedded discontinuities

Elements with embedded discontinuities

Smeared crack

$$
\overline{(G)}
$$

Smeared crack

- Misalignment between crack and element
- Distorted principal directions
- Stress locking

Embedded crack (EAS approach)

EED-EAS approach: discontinuous interpolation

EED- EAS approach: discontinuous interpolation

EED- EAS approach: discontinuous interpolation

EED- EAS approach: discontinuous interpolation

$$
\text { F. } 3
$$

Extended Finite Elements (XFEM)

 Based on Partition of Unity
Partition of Unity Method

Standard finite element approximation:

$$
\mathbf{u}(\mathbf{x})=\sum_{I=1}^{\text {Nnod }} N_{I}(\mathbf{x}) \mathbf{d}_{I}
$$

The shape functions are a partition of unity:

$$
\sum_{I=1}^{\text {Nnod }} N_{I}(\mathbf{x})=1
$$

Partition of Unity Method

Standard finite element approximation:

$$
\mathbf{u}(\mathbf{x})=\sum_{I=1}^{\text {Nnod }} N_{I}(\mathbf{x}) \mathbf{d}_{I}
$$

The shape functions are a partition of unity:

$$
\sum_{I=1}^{\text {Nnod }} N_{I}(\mathbf{x})=1
$$

Enriched approximation:

$$
\mathbf{u}(\mathbf{x})=\sum_{I=1}^{\text {Nnod }} N_{I}(\mathbf{x})\left[\mathbf{d}_{I}+\sum_{i \in L_{I}} G_{i}(\mathbf{x}) \mathbf{e}_{i I}\right]
$$

selected enrichment functions

Partition of Unity Method - eXtended Finite Elements

Enrichment by Heaviside function:

$$
H_{\Gamma}(\mathbf{x})= \begin{cases}1 & \text { for } x \in \Omega^{+} \\ 0 & \text { for } x \in \Omega^{-}\end{cases}
$$

$$
\begin{aligned}
\mathbf{u}(\mathbf{x}) & =\sum_{I=1}^{\text {Nnod }} N_{I}(\mathbf{x})\left[\mathbf{d}_{I}+H_{\Gamma}(\mathbf{x}) \mathbf{e}_{I}\right]= \\
& =\sum_{I=1}^{\text {Nnod }} N_{I}(\mathbf{x}) \mathbf{d}_{I}+\sum_{I=1}^{\text {Nnod }} N_{I}(\mathbf{x}) H_{\Gamma}(\mathbf{x}) \mathbf{e}_{I}
\end{aligned}
$$

Partition of Unity Method - eXtended Finite Elements

If the support of N_{I} is contained in Ω^{+}, then $N_{I} H_{\Gamma}=N_{I}$

If the support of N_{I} is contained in Ω^{-}, then $N_{I} H_{\Gamma}=0$
Only if the support of N_{I} is cut by Γ, then the function $N_{I} H_{\Gamma}$ really enriches the basis.

$$
\mathbf{u}(\mathbf{x})=\sum_{I=1}^{\text {Nnod }^{2}} N_{I}(\mathbf{x}) \mathbf{d}_{I}+\sum_{I \in S_{H}} N_{I}(\mathbf{x}) H_{\Gamma}(\mathbf{x}) \mathbf{e}_{I}
$$

set of nodes with Heaviside enrichment

Partition of Unity Method - eXtended Finite Elements

Partition of Unity Method - eXtended Finite Elements

nodes with Heaviside enrichment

Partition of Unity Method - eXtended Finite Elements

The enriched approximation can be rearranged to give better physical meaning to the degrees of freedom:

XFEM-PUM

XFEM-PUM

XFEM - enrichment by step function

XFEM - enrichment by step function

XFEM - enrichment by step function

XFEM - tip enrichment

Additional enrichment improving the approximation around the crack tip:

Functions that appear in the analytical near-tip solution:

$$
\begin{array}{ll}
B_{1}(r, \theta)=\sqrt{r} \sin \frac{\theta}{2} & B_{3}(r, \theta)=\sqrt{r} \sin \frac{\theta}{2} \sin \theta \\
B_{2}(r, \theta)=\sqrt{r} \cos \frac{\theta}{2} & B_{4}(r, \theta)=\sqrt{r} \cos \frac{\theta}{2} \sin \theta
\end{array}
$$

XFEM - tip enrichment

Additional enrichment improving the approximation around the crack tip:

$$
\begin{aligned}
\mathbf{u}(\mathbf{x}) & =\sum_{I=1}^{\text {Nnod }} N_{I}(\mathbf{x}) \mathbf{d}_{I}+\sum_{I \in S_{H}} N_{I}(\mathbf{x}) H_{\Gamma}(\mathbf{x}) \mathbf{e}_{0 I}+ \\
& +\sum_{I \in S_{B}} \sum_{i=1}^{4} N_{I}(\mathbf{x}) B_{i}(r(\mathbf{x}), \theta(\mathbf{x})) \mathbf{e}_{i I}
\end{aligned}
$$

Functions that appear in the analytical near-tip solution:

$$
\begin{array}{ll}
B_{1}(r, \theta)=\sqrt{r} \sin \frac{\theta}{2} & B_{3}(r, \theta)=\sqrt{r} \sin \frac{\theta}{2} \sin \theta \\
B_{2}(r, \theta)=\sqrt{r} \cos \frac{\theta}{2} & B_{4}(r, \theta)=\sqrt{r} \cos \frac{\theta}{2} \sin \theta
\end{array}
$$

XFEM - tip enrichment

XFEM - tip enrichment

nodes with enrichment by near-tip functions

XFEM - tip enrichment

nodes with Heaviside enrichment
nodes with enrichment by near-tip functions

XFEM - tip enrichment

nodes with Heaviside enrichment
nodes with enrichment by near-tip functions

XFEM - tip enrichment

nodes with Heaviside enrichment
nodes with enrichment by near-tip functions

XFEM - tip enrichment

But if the crack is curved, we cannot define functions B_{i} in terms of the standard polar coordinates because B_{1} would not be discontinuous across the crack but across the dotted line.

XFEM - level set functions

Remedy:
Construct curvilinear coordinates φ and ψ such that the crack is characterized by $\varphi=0$ and $\psi \leq 0$

XFEM - level set functions

Remedy:
Construct curvilinear coordinates φ and ψ such that the crack is characterized by $\varphi=0$ and $\psi \leq 0$

and define B_{i} in terms of the pseudo-polar coordinates

$$
\begin{aligned}
& r(\psi, \varphi)=\sqrt{\psi^{2}+\varphi^{2}} \\
& \theta(\psi, \varphi)=\operatorname{sgn}(\varphi) \arccos \frac{\psi}{\sqrt{\psi^{2}+\varphi^{2}}}
\end{aligned}
$$

XFEM - level set functions

Functions φ and ψ are the so-called level set functions.

They are defined by their values at nodes around the crack and interpolated using the standard shape functions:

$$
\varphi(\mathbf{x})=\sum_{I} N_{I}(\mathbf{x}) \varphi_{I}, \quad \psi(\mathbf{x})=\sum_{I} N_{I}(\mathbf{x}) \psi_{I}
$$

XFEM - level set functions

For an existing crack, function φ can be constructed as the signed distance function:

$$
\varphi(\mathbf{x})=\left\|\mathbf{x}-P_{\Gamma}(\mathbf{x})\right\| \operatorname{sgn}\left[\left(\mathbf{x}-P_{\Gamma}(\mathbf{x})\right) \cdot \mathbf{n}\left(P_{\Gamma}(\mathbf{x})\right)\right]
$$

F. 4

Comparison:

EED-EAS versus XFEM-PUM

Comparison of EED-EAS and XFEM-PUM

Embedded discontinuity

Extended finite elements

Comparison of EED-EAS and XFEM-PUM

	Embedded discontinuity	Extended finite elements
DOF's added	locally	globally
and related to	elements	nodes

Comparison of EED-EAS and XFEM-PUM

	Embedded discontinuity	Extended finite elements
DOF's added and related to elements globally Approximation of crack opening discontinuous nodes Enrichment incompatible continuous .		

Separation test

Separation test

physical smeared EED-EAS XFEM-PUM

Separation test

physical smeared EED-EAS XFEM-PUM

EED-EAS approach: partial coupling

EED- EAS approach: partial coupling

EED- EAS approach: partial coupling

XFEM-PUM approach: complete decoupling

Comparison of EED-EAS and XFEM-PUM

Embedded discontinuity

Extended finite elements

Comparison of EED-EAS and XFEM-PUM

	Embedded discontinuity	Extended finite elements
DOF's added and related to	elements	globally
Approximation of crack opening	discontinuous	nodes
Enrichment	incompatible	continuous
Separated parts	partially coupled	fully decoupled

Uniqueness of the element response (EED-EAS)

Uniqueness of the element response

Uniqueness of the element response

Uniqueness of the element response

Uniqueness of the element response

The solution is unique for infinitesimal displacement increments of an arbitrary direction if

$$
\lambda_{\min }\left(\mathbf{Q}_{s y m}\right)+H>0
$$

where $\mathbf{Q}_{\text {sym }}$ is the symmetric part of $\mathbf{Q}=\mathbf{P}^{T} \mathbf{D}_{e} \mathbf{B H}$
and $H<0$ is the discrete softening modulus.

Physical meaning of \mathbf{Q}

Uniqueness of the element response

Uniqueness of the element response

Uniqueness of the element response

Uniqueness of the element response

$$
\lambda_{\text {min }}\left(\mathbf{Q}_{s y m}\right)>-H_{\text {min }}
$$

$\mathbf{Q}=\mathbf{P}^{T} \mathbf{D}_{e} \mathbf{B H} \quad \begin{aligned} & \text { is proportional to the elastic modulus } \\ & \text { and inversely proportional to the element size }\end{aligned}$

Uniqueness of the element response

$$
\lambda_{\min }\left(\mathbf{Q}_{s y m}\right)>-H_{\min }
$$

$\mathbf{Q}=\mathbf{P}^{T} \mathbf{D}_{e} \mathbf{B H}$ is proportional to the elastic modulus and inversely proportional to the element size
$\mathbf{e}^{T} \mathbf{Q}_{s y m} \mathbf{e}=\mathbf{e}^{T} \mathbf{Q} \mathbf{e}=\mathbf{e}^{T} \mathbf{t}^{e}<0 \quad$ can happen

Uniqueness of the element response

Uniqueness of the element response

discontinuity segments placed at element centers

Uniqueness of the element response

discontinuity segments placed at element centers

maximum deviation α between element side and discontinuity is limited (e.g., 30 degrees for an equilateral triangle)

Uniqueness of the element response

discontinuity segments form a continuous path

Uniqueness of the element response

discontinuity segments form a continuous path

maximum deviation α between element side and discontinuity is given by the largest angle of the triangle (e.g., 60 degrees for an equilateral triangle)

Uniqueness of the element response

Condition under which uniqueness can be guaranteed if the element is sufficiently small:
plane stress $\ldots \cos \alpha>\frac{1+v}{3-v}$
true only if $v<1 / 3$ and the element is close to equilateral

Uniqueness of the element response

Condition under which uniqueness can be guaranteed if the element is sufficiently small:
plane stress $\ldots \cos \alpha>\frac{1+v}{3-v}$
true only if $v<1 / 3$ and the element is close to equilateral
plane strain $\ldots \cos \alpha>\frac{1}{3-4 v}$
true only if $v<1 / 4$ and the element is close to equilateral

Uniqueness of the element response

Condition under which uniqueness can be guaranteed if the element is sufficiently small:
plane stress $\ldots \cos \alpha>\frac{1+v}{3-v}$
true only if $v<1 / 3$ and the element is close to equilateral
plane strain $\ldots \quad \cos \alpha>\frac{1}{3-4 v}$
true only if $v<1 / 4$ and the element is close to equilateral
three dimensions $\ldots \cos \alpha>\frac{1}{3-4 \nu}$
violated even if the tetrahedral element is regular

Comparison of EED-EAS and XFEM-PUM

Embedded discontinuity

Extended finite elements

Comparison of EED-EAS and XFEM-PUM

	Embedded discontinuity	Extended finite elements
DOF's added	locally	globally
and related to	elements	nodes
Approximation of crack opening	discontinuous	continuous
Enrichment	incompatible	compatible
Separated parts	partially interacting	independent
Numerical behavior	rather fragile	more robust

Comparison of EED-EAS and XFEM-PUM

	Embedded discontinuity	Extended finite elements
Stiffness matrix	always nonsymmetric	can be symmetric
Integration scheme for continuous part	remains standard	must be modified
Global degrees of freedom	do not change	added during simulation
Implementation effort	smaller	

