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Classification of models: material laws

Stress-strain law Stress-strain law
(pre-localization part)

Stress-strain law

Traction-separation law Stress-strain law
(post-localization part)

Enrichment acting 
as localization limiter:

• nonlocal
• gradient
• Cosserat
• viscosity



Traction-separation laws
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1) Formulated directly in the traction-separation space
a) with nonzero elastic compliance (elasto-plastic, …)
b) with zero elastic compliance (rigid-plastic, …)
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For general applications, we need a link between the separation vector
(displacement jump vector) and the traction vector:



Traction-separation laws

2) “Derived“ from a stress-strain law (softening continuum) 
using the strong discontinuity approach
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Finite element representation of strong discontinuities

1) Discontinuities at element interfaces:

a) Remeshing
b) Interspersed potential discontinuities



Finite element representation of strong discontinuities

2) Arbitrary discontinuities across elements:

a) Elements with embedded discontinuities using the
enhanced assumed strain formulation (EED-EAS)

b) Extended finite elements based on the
partition-of-unity concept (XFEM-PUM)



Embedded discontinuity (enhanced assumed strain)



Embedded discontinuity (enhanced assumed strain)



Approximation on two overlapping meshes (XFEM)



Approximation on two overlapping meshes (XFEM)



Enrichment of interpolation functions in one dimension

EED-EAS



Enrichment of interpolation functions in one dimension

EED-EAS XFEM-PUM



Enrichment of interpolation functions in one dimension

EED-EAS XFEM-PUM XFEM-PUM



F.2

Elements with Embedded

Discontinuities (EAS)



Elements with embedded discontinuities
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Elements with embedded discontinuities
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… new degrees of freedom
characterizing separation (displacement jump)

… traction
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Elements with embedded discontinuities
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? equilibrium ?
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Elements with embedded discontinuities
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kinematics

equilibrium

Three types of formulations:

• KOS … kinematically optimal symmetric

• SOS … statically optimal symmetric

• SKON … kinematically and statically
optimal nonsymmetric

intf



Elements with embedded discontinuities



Elements with embedded discontinuities



Elements with embedded discontinuities



Elements with embedded discontinuities
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Smeared crack



Smeared crack



Smeared crack



Smeared crack



Smeared crack



Smeared crack



Smeared crack



Smeared crack

• Misalignment between crack and element
• Distorted principal directions
• Stress locking



Embedded crack (EAS approach)



Embedded crack (EAS approach)



Embedded crack (EAS approach)



Embedded crack (EAS approach)



Embedded crack (EAS approach)



EED-EAS approach: discontinuous interpolation



EED- EAS approach: discontinuous interpolation



EED- EAS approach: discontinuous interpolation



EED- EAS approach: discontinuous interpolation



F.3

Extended Finite Elements (XFEM)

Based on Partition of Unity



Partition of Unity Method

Standard finite element approximation:
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Partition of Unity Method

Standard finite element approximation:

selected enrichment functions
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Enriched approximation:

The shape functions are a partition of unity:
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Partition of Unity Method – eXtended Finite Elements

Enrichment by Heaviside function:
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Only if the support of        is cut by , 
then the function really enriches the basis. 

Partition of Unity Method – eXtended Finite Elements

If the support of        is contained in        , then
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set of nodes with Heaviside enrichment



Partition of Unity Method – eXtended Finite Elements



Partition of Unity Method – eXtended Finite Elements

nodes with Heaviside enrichment



Partition of Unity Method – eXtended Finite Elements

XFEM-PUM XFEM-PUM
The enriched
approximation can be
rearranged
to give better physical
meaning to the degrees
of freedom:



XFEM – enrichment by step function



XFEM – enrichment by step function



XFEM – enrichment by step function



XFEM – tip enrichment

Additional enrichment improving the approximation
around the crack tip:
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Functions that appear in the analytical near-tip solution:
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XFEM – tip enrichment

Additional enrichment improving the approximation
around the crack tip:

Functions that appear in the analytical near-tip solution:
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XFEM – tip enrichment



XFEM – tip enrichment

nodes with enrichment by near-tip functions



XFEM – tip enrichment

nodes with Heaviside enrichment

nodes with enrichment by near-tip functions



XFEM – tip enrichment

nodes with Heaviside enrichment

nodes with enrichment by near-tip functions



XFEM – tip enrichment

nodes with Heaviside enrichment

nodes with enrichment by near-tip functions



XFEM – tip enrichment

But if the crack is curved, we cannot define functions
in terms of the standard polar coordinates because would
not be discontinuous across the crack but across the dotted line.
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XFEM – level set functions

Remedy:
Construct curvilinear coordinates and       such that
the crack is characterized by

ϕ ψ
0and0 ≤= ψϕ

ψ=0

ψ<0

ψ>0φ=0

crack tip

crack



and define in terms of the pseudo-polar coordinates

XFEM – level set functions

Remedy:
Construct curvilinear coordinates and       such that
the crack is characterized by
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XFEM – level set functions

Functions and      are the so-called level set functions.ϕ ψ

ψ=0

ψ<0

ψ>0φ=0

crack tip

crack

They are defined by their values at nodes around the crack
and interpolated using the standard shape functions:
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XFEM – level set functions

For an existing crack, function can be constructed
as the signed distance function:
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F.4

Comparison:

EED-EAS versus XFEM-PUM



Comparison of EED-EAS and XFEM-PUM

Embedded discontinuity Extended finite elements



Comparison of EED-EAS and XFEM-PUM

Extended
finite elements

DOF‘s added
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Comparison of EED-EAS and XFEM-PUM

Extended
finite elements

DOF‘s added

Approximation 
of crack opening

Enrichment

and related to

locally globally

elements nodes

discontinuous continuous

incompatible compatible

Embedded
discontinuity



Separation test

physical smeared EED-EAS XFEM-PUM



Separation test

physical smeared EED-EAS XFEM-PUM



Separation test

physical smeared EED-EAS XFEM-PUM



EED-EAS approach: partial coupling



EED- EAS approach: partial coupling



EED- EAS approach: partial coupling



XFEM-PUM approach: complete decoupling



XFEM-PUM approach: complete decoupling



XFEM-PUM approach: complete decoupling



XFEM-PUM approach: complete decoupling



Comparison of EED-EAS and XFEM-PUM

Embedded discontinuity Extended finite elements



Comparison of EED-EAS and XFEM-PUM

Extended
finite elements

DOF‘s added

Approximation 
of crack opening

Enrichment

Separated parts

and related to

locally globally

elements nodes

discontinuous continuous

incompatible compatible

Embedded
discontinuity

partially coupled fully decoupled



Uniqueness of the element response (EED-EAS)



Uniqueness of the element response

For given increments
of nodal displacements …



Uniqueness of the element response

… find components
of displacement jump …
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Uniqueness of the element response

… such that tractions are
in equilibrium with stresses.
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Uniqueness of the element response

( ) 0min >+ HsymQλ

HBDPQ e
T=

The solution is unique for infinitesimal displacement increments
of an arbitrary direction if  

symQwhere           is the symmetric part of

Physical meaning of            …Q

and                 is the discrete softening modulus.0<H



Uniqueness of the element response



Uniqueness of the element response
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Uniqueness of the element response
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Uniqueness of the element response

( ) minmin Hsym −>Qλ

HBDPQ e
T= is proportional to the elastic modulus

and inversely proportional to the element size



Uniqueness of the element response

( ) minmin Hsym −>Qλ

HBDPQ e
T= is proportional to the elastic modulus

and inversely proportional to the element size
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Uniqueness of the element response
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Uniqueness of the element response
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Uniqueness of the element response

n
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Uniqueness of the element response
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Uniqueness of the element response
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Uniqueness of the element response

discontinuity segments placed at element centers



Uniqueness of the element response

discontinuity segments placed at element centers

maximum deviation      between element side and discontinuity
is limited (e.g., 30 degrees for an equilateral triangle)

α



Uniqueness of the element response

discontinuity segments form a continuous path



Uniqueness of the element response

maximum deviation      between element side and discontinuity
is given by the largest angle of the triangle
(e.g., 60 degrees for an equilateral triangle)

discontinuity segments form a continuous path

α



Uniqueness of the element response

plane stress …
ν
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Condition under which uniqueness can be guaranteed
if the element is sufficiently small:

true only if                and the element is close to equilateral3/1<ν



Uniqueness of the element response
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true only if                and the element is close to equilateral3/1<ν
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true only if                and the element is close to equilateral4/1<ν



Uniqueness of the element response

plane stress …
ν
να
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Condition under which uniqueness can be guaranteed
if the element is sufficiently small:

plane strain …
ν

α
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three dimensions …
ν

α
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1
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violated even if the tetrahedral element is regular

true only if                and the element is close to equilateral3/1<ν

true only if                and the element is close to equilateral4/1<ν



Comparison of EED-EAS and XFEM-PUM

Embedded discontinuity Extended finite elements



Comparison of EED-EAS and XFEM-PUM

Extended
finite elements

DOF‘s added

Approximation 
of crack opening

Enrichment

Separated parts

and related to

locally globally

elements nodes

discontinuous continuous

incompatible compatible

Embedded
discontinuity

partially interacting independent

rather fragile more robustNumerical behavior



Comparison of EED-EAS and XFEM-PUM

Extended
finite elements

Integration scheme
for continuous part

Global degrees
of freedom

Implementation
effort

remains standard must be modified

do not change added during simulation

smaller larger

Embedded
discontinuity

Stiffness matrix always nonsymmetric can be symmetric


