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F. Strong discontinuity models 
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19 ships broke in half without warning 

reason:  

brittle fracture  

Failure of Liberty (and other) ships during WW II 
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 stress is inversely 

proportional to the 

square root of 

distance from the 

crack tip 

  

at distances r a

 exact  approximation near the tip 

Singular stress field near the crack tip 
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Singular stress field near the crack tip 
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Singular stress field near the crack tip 



general expression for the singular part of stress field 

that dominates near the crack tip 
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Singular stress field near the crack tip 
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mode II 

(sliding) 

mode III 

(tearing) 
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(opening) 

Basic fracture modes 



crack loaded in a mixed mode (combination of modes I and II): 
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A crack loaded in mode I propagates  

if the stress intensity factor at its tip attains a critical value: 

cIK K

stress intensity factor 

(depends on loading, 

shape and dimensions 

of the body  

and on the crack size) 

fracture toughness 

(material property) 

3/ 2Nm  

Crack propagation – Irwin (local) criterion 



fGG
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A crack loaded in mode I propagates  

if its propagation releases a critical amount of energy: 

energy release rate  

(depends on loading, 

shape and dimensions 

of the body  

and on the crack size) 

fracture energy 

(material property) 

Crack propagation – Griffith (global) criterion 
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cIK K

for plane stress and mode I loading it can be shown that 

the above criteria are then equivalent and the fracture tougness 

and fracture energy are linked by 
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

for mode I loading, the crack can be expected to propagate straight ahead, 

but for general mixed-mode loading we need a criterion for the crack direction 

maximum circumferential stress criterion 

(maximum hoop stress criterion): 

crack propagates in the direction  

perpendicular to the  

maximum circumferential stress 

(evaluated on a circle of a small diameter 

 centered at the tip) 

c
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Finite elements with discontinuities:  
 

Introduction 
 



Classification of models: kinematic aspects 

Strong  

discontinuity 

Weak  

discontinuity 

Regularized  

localization zone 



Classification of models: kinematic aspects 

Strong  

discontinuity 

Weak  

discontinuity 

Regularized  

localization zone 



Classification of models: material laws 

Stress-strain law Stress-strain law 

(pre-localization part) 

Stress-strain law 

Traction-separation law Stress-strain law 

(post-localization part) 

Enrichment acting  

as localization limiter: 
 

• nonlocal 

• gradient 

• Cosserat 

• viscosity 



Traction-separation laws 
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1) Formulated directly in the traction-separation space 

a) with nonzero elastic compliance (elasto-plastic, …) 

b) with zero elastic compliance (rigid-plastic, …) 
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For general applications, we need a link between the separation vector 

(displacement jump vector) and the traction vector: 



Traction-separation laws 

2) “Derived“ from a stress-strain law (softening continuum) 

using the strong discontinuity approach 
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Finite element representation of strong discontinuities 

1) Discontinuities at element interfaces: 
 

a) Remeshing 

b) Interspersed potential discontinuities 



Finite element representation of strong discontinuities 

2) Arbitrary discontinuities across elements: 
 

 

a) Elements with embedded discontinuities using the 

      enhanced assumed strain formulation (EED-EAS) 

 

b) Extended finite elements based on the 

 partition-of-unity concept (XFEM-PUM) 
 

aka EFEM, SDA, GSDA, … 

aka GFEM, … 



Embedded discontinuity (enhanced assumed strain) 



Embedded discontinuity (enhanced assumed strain) 



Approximation on two overlapping meshes (XFEM) 



Approximation on two overlapping meshes (XFEM) 



Enrichment of interpolation functions in one dimension 

EED-EAS 



Enrichment of interpolation functions in one dimension 

EED-EAS XFEM-PUM 



Enrichment of interpolation functions in one dimension 

EED-EAS XFEM-PUM XFEM-PUM 



F.3 
 

Elements with Embedded 
 

Discontinuities (EAS) 
 



Elements with embedded discontinuities 
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Elements with embedded discontinuities 

d

eε
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… new degrees of freedom 

     characterizing separation (displacement jump) 

… traction 
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Elements with embedded discontinuities 
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material 
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Elements with embedded discontinuities 

d

eε

σ t

material 

? kinematics ? 

? equilibrium ? 

intf



Elements with embedded discontinuities 

d

eε

σ t

material 

kinematics 

equilibrium 

Three types of formulations: 

 

• KOS … kinematically optimal symmetric 

 

• SOS … statically optimal symmetric 

 

• SKON … kinematically and statically 

optimal nonsymmetric 

intf



Elements with embedded discontinuities 



Elements with embedded discontinuities 



Elements with embedded discontinuities 



Elements with embedded discontinuities 
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Smeared crack 



Smeared crack 



Smeared crack 



Smeared crack 



Smeared crack 



Smeared crack 



Smeared crack 



Smeared crack 

• Misalignment between crack and element 

• Distorted principal directions 

• Stress locking 



Embedded crack (EAS approach) 



Embedded crack (EAS approach) 



Embedded crack (EAS approach) 



Embedded crack (EAS approach) 



Embedded crack (EAS approach) 



EED-EAS approach: discontinuous interpolation 



EED- EAS approach: discontinuous interpolation 



EED- EAS approach: discontinuous interpolation 



EED- EAS approach: discontinuous interpolation 
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Extended Finite Elements (XFEM) 
 

Based on Partition of Unity 
 



Partition of Unity Method 

Standard finite element approximation: 
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Partition of Unity Method 

Standard finite element approximation: 

selected enrichment functions 
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Partition of Unity Method – eXtended Finite Elements 

Enrichment by Heaviside function: 
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Partition of Unity Method – eXtended Finite Elements 

Enrichment by Heaviside function: 
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Partition of Unity Method – eXtended Finite Elements 

If the support of        is contained in        , then   IN  II NHN 

If the support of        is contained in        , then   IN  0HN I



Only if the support of        is cut by      ,  

then the function             really enriches the basis.  

Partition of Unity Method – eXtended Finite Elements 

If the support of        is contained in        , then   
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set of nodes with Heaviside enrichment 



Partition of Unity Method – eXtended Finite Elements 



Partition of Unity Method – eXtended Finite Elements 

nodes with Heaviside enrichment 



Partition of Unity Method – eXtended Finite Elements 

XFEM-PUM XFEM-PUM 
The enriched 

approximation can be 

rearranged 

to give better physical 

meaning to the degrees 

of freedom: 



XFEM – enrichment by step function 



XFEM – enrichment by step function 



XFEM – enrichment by step function 



XFEM – tip enrichment 

Additional enrichment improving the approximation 

around the crack tip: 
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Functions that appear in the analytical near-tip solution: 



XFEM – tip enrichment 

Additional enrichment improving the approximation 

around the crack tip: 

Functions that appear in the analytical near-tip solution: 
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XFEM – tip enrichment 



XFEM – tip enrichment 

nodes with enrichment by near-tip functions 



XFEM – tip enrichment 

nodes with Heaviside enrichment 

nodes with enrichment by near-tip functions 



XFEM – tip enrichment 

nodes with Heaviside enrichment 

nodes with enrichment by near-tip functions 



XFEM – tip enrichment 

nodes with Heaviside enrichment 

nodes with enrichment by near-tip functions 



XFEM – tip enrichment 

But if the crack is curved, we cannot define functions  

in terms of the standard polar coordinates because      would 

not be discontinuous across the crack but across the dotted line. 

iB

1B



XFEM – level set functions 

Remedy: 

Construct curvilinear coordinates      and       such that 

the crack is characterized by      

 
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and define       in terms of the pseudo-polar coordinates    

XFEM – level set functions 

Remedy: 

Construct curvilinear coordinates      and       such that 

the crack is characterized by      
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XFEM – level set functions 

Functions        and      are the so-called level set functions.  

They are defined by their values at nodes around the crack 

and interpolated using the standard shape functions: 
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XFEM – level set functions 

For an existing crack, function      can be constructed 

as the signed distance function: 


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Criteria for Direction 

of Crack Propagation 



Tracking of a propagating crack 



Tracking of a propagating crack 



Tracking of a propagating crack 



Tracking of a propagating crack 



Tracking of a propagating crack 



Tracking of a propagating crack 



Tracking of a propagating crack 



Tracking of a propagating crack 

1
2



Tracking of a propagating crack 



Tracking of a propagating crack 

Crack direction = normal to the maximum principal stress direction 



Tracking of a propagating crack 



Tracking of a propagating crack 



Tracking of a propagating crack 

Crack direction = normal to the direction of  

   maximum principal nonlocal stress (or strain) 



Tracking of a propagating crack 

Stress state around the tip of a cohesive crack 

is very close to equibiaxial tension 

y
x



Tracking of a propagating crack 

Stress distribution at constant distance from the tip of a stress-free crack 

 



Tracking of a propagating crack 



Tracking of a propagating crack 



Tracking of a propagating crack 

Crack direction = normal to the direction of  

   maximum circumferential stress 



Tracking of a propagating crack 

Crack direction = normal to the direction of  

   maximum circumferential stress 



Tracking of a propagating crack 

Crack direction = normal to the direction of  

   maximum circumferential stress 
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Comparison: 
 

EED-EAS versus XFEM-PUM 
 



Comparison of EED-EAS and XFEM-PUM 

Embedded discontinuity Extended finite elements 



Comparison of EED-EAS and XFEM-PUM 

Extended  

finite elements 

DOF‘s added 

and related to 

locally globally 

elements nodes 

Embedded  

discontinuity 



Comparison of EED-EAS and XFEM-PUM 

Extended  

finite elements 

DOF‘s added 

Approximation  

of crack opening 

Enrichment 

and related to 

locally globally 

elements nodes 

discontinuous continuous 

incompatible compatible 

Embedded  

discontinuity 



Separation test 

physical smeared EED-EAS XFEM-PUM 



Separation test 

physical smeared EED-EAS XFEM-PUM 



Separation test 

physical smeared EED-EAS XFEM-PUM 



EED-EAS approach: partial coupling 



EED- EAS approach: partial coupling 



EED- EAS approach: partial coupling 



XFEM-PUM approach: complete decoupling 



XFEM-PUM approach: complete decoupling 



XFEM-PUM approach: complete decoupling 



XFEM-PUM approach: complete decoupling 



Comparison of EED-EAS and XFEM-PUM 

Embedded discontinuity Extended finite elements 



Comparison of EED-EAS and XFEM-PUM 

Extended  

finite elements 

DOF‘s added 

Approximation  

of crack opening 

Enrichment 

Separated parts 

and related to 

locally globally 

elements nodes 

discontinuous continuous 

incompatible compatible 

Embedded  

discontinuity 

partially coupled fully decoupled 



Journal bearing: Physical process 



Journal bearing: Physical process 



Journal bearing: Mesh respecting material boundaries 



Journal bearing: Structured mesh with enrichment 



Journal bearing: Structured mesh with enrichment 



One element crossed by pre-existing discontinuity 



One element: Physical process 



One element: Physical process 



One element: EED-EAS 



One element: EED-EAS 



One element: XFEM-PUM 



One element: XFEM-PUM 



One element crossed by pre-existing discontinuity 



Uniqueness of the element response (EED-EAS) 



Uniqueness of the element response 

For given increments 

of nodal displacements … 



Uniqueness of the element response 

… find components 

of displacement jump … 
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Uniqueness of the element response 

… such that tractions are 

in equilibrium with stresses. 

se

ne



Uniqueness of the element response 

  0min HsymQ

HBDPQ e
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The solution is unique for infinitesimal displacement increments 

of an arbitrary direction if   

symQwhere           is the symmetric part of 

Physical meaning of            … Q

and                 is the discrete softening modulus. 0H



Uniqueness of the element response 



Uniqueness of the element response 
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Uniqueness of the element response 
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Uniqueness of the element response 

  minmin Hsym Q

HBDPQ e

T is proportional to the elastic modulus 

and inversely proportional to the element size 



Uniqueness of the element response 

  minmin Hsym Q

HBDPQ e

T is proportional to the elastic modulus 

and inversely proportional to the element size 

0 eTT
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Uniqueness of the element response 
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Uniqueness of the element response 
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Uniqueness of the element response 

n 

s 



Uniqueness of the element response 
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Uniqueness of the element response 
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Uniqueness of the element response 

discontinuity segments placed at element centers 



Uniqueness of the element response 

discontinuity segments placed at element centers 

maximum deviation      between element side and discontinuity 

 is limited (e.g., 30 degrees for an equilateral triangle) 





Uniqueness of the element response 

discontinuity segments form a continuous path 



Uniqueness of the element response 

maximum deviation      between element side and discontinuity 

 is given by the largest angle of the triangle 

 (e.g., 60 degrees for an equilateral triangle) 

discontinuity segments form a continuous path 





Uniqueness of the element response 

plane stress … 
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Condition under which uniqueness can be guaranteed 

if the element is sufficiently small: 

true only if                and the element is close to equilateral 3/1



Uniqueness of the element response 

plane stress … 
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cos

Condition under which uniqueness can be guaranteed 

if the element is sufficiently small: 

true only if                and the element is close to equilateral 3/1

plane strain … 
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true only if                and the element is close to equilateral 4/1



Uniqueness of the element response 

plane stress … 










3

1
cos

Condition under which uniqueness can be guaranteed 

if the element is sufficiently small: 

plane strain … 



43

1
cos




three dimensions … 



43

1
cos




violated even if the tetrahedral element is regular 

true only if                and the element is close to equilateral 3/1

true only if                and the element is close to equilateral 4/1



Comparison of EED-EAS and XFEM-PUM 

Embedded discontinuity Extended finite elements 



Comparison of EED-EAS and XFEM-PUM 

Extended  

finite elements 

DOF‘s added 

Approximation  

of crack opening 

Enrichment 

Separated parts 

and related to 

locally globally 

elements nodes 

discontinuous continuous 

incompatible compatible 

Embedded  

discontinuity 

partially interacting independent 

rather fragile more robust Numerical behavior 



Comparison of EED-EAS and XFEM-PUM 

Extended  

finite elements 

Integration scheme 

for continuous part 

Global degrees 

of freedom 

Implementation 

effort 

remains standard  must be modified 

do not change added during simulation 

smaller larger 

Embedded  

discontinuity 

Stiffness matrix always nonsymmetric can be symmetric 



Comparison of EED-EAS and XFEM-PUM 

Extended  

finite elements 

Integration scheme 

for continuous part 

Global degrees 

of freedom 

Implementation 

effort 

remains standard  must be modified 

do not change added during simulation 

smaller larger 

 

... but it pays off 

Embedded  

discontinuity 

Stiffness matrix always nonsymmetric can be symmetric 



THE END 
 
 
 



F.6 
 

Regularized Continua 
 

with Strong Discontinuities 
 



F.6.1 

Strong Discontinuities 

versus 

Regularized Continuum Models 



Crack propagation in a gravity dam 



Crack propagation in a gravity dam 



Crack propagation in a gravity dam 



Crack propagation in a gravity dam 

nonlocal damage model 



Crack propagation in a gravity dam 

nonlocal damage model 



One-dimensional localization test 

evolution of 

strain profile 



One-dimensional localization test 

evolution of 

damage profile 



Problem with definition of fracture energy 

traction-separation law 



Process zone replaced by cohesive crack 



Process zone replaced by cohesive crack 



Diffuse damage zone replaced by cohesive cracks 



Diffuse damage zone replaced by cohesive cracks 



F.6.2 

Nonlocal Model with Transition 
 

to Strong Discontinuities 



From diffuse damage to discrete cracking 



From diffuse damage to discrete cracking 



From diffuse damage to discrete cracking 



From diffuse damage to discrete cracking 



Transition from diffuse to localized failure pattern 



One-dimensional localization test 

s



s

local stress-strain diagram 

with softening 



Continuum damage combined with a discontinuity 



Continuum damage combined with a discontinuity 

uniform strain distribution 



Continuum damage combined with a discontinuity 

uniform strain distribution 



Continuum damage combined with a discontinuity 

localized strain distribution, continuous 



Continuum damage combined with a discontinuity 

localized strain distribution, discontinuous 



Continuum damage combined with a discontinuity 

t if



Continuum damage combined with a discontinuity 



F.6.4 

Influence of Crack 

on Nonlocal Strain 



Influence of crack on nonlocal strain 

Observation (Simone et al.): 

maximum value of nonlocal strain is not attained at the crack tip 



Influence of crack on nonlocal strain 

Observation (Simone et al.): with standard averaging, 

maximum value of nonlocal strain is not attained at the crack tip 

Possible consequence: 

crack propagation in jumps 



Influence of crack on nonlocal strain 

maximum value of nonlocal strain is not attained at the crack tip ?? 



Influence of crack on nonlocal strain 

maximum value of nonlocal strain is not attained at the crack tip !! 



Influence of crack on nonlocal strain 

line crack thin layer of damaged material 



Influence of crack on nonlocal strain 

Contribution of crack opening to nonlocal equivalent strain 
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Influence of crack on nonlocal strain 

Contribution of crack opening to nonlocal equivalent strain 
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Influence of crack on nonlocal strain 

after correction, maximum value of nonlocal strain is attained at the crack tip 
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Influence of crack on nonlocal strain 

variation of nonlocal strain at constant distance from the crack tip 

      ξξξxx d~,   V



Influence of crack on nonlocal strain 
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variation of nonlocal strain at constant distance from the crack tip 



Influence of crack on nonlocal strain 

variation of nonlocal strain at constant distance from the crack tip 
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Influence of crack on nonlocal strain 

without crack influence 

and improper energy balance 

with crack influence 

and proper energy balance 



Influence of crack on nonlocal strain 



F.6.5 

Examples 



Compact tension test 



Compact tension test 



Compact tension test 



Compact tension test 



Compact tension test 



Compact tension test 



Compact tension test 



Compact tension test 



Compact tension test 



Compact tension test 



Compact tension test 



Compact tension test 



Compact tension test 



Compact tension test 



Compact tension test 



Compact tension test 



Compact tension test 



Crack propagation in gravity dam 



Crack propagation in gravity dam 



Crack propagation in gravity dam 



Crack propagation in gravity dam 



Crack propagation in gravity dam 



Crack propagation in gravity dam 



Notched three-point bending test 


