LID Short Course, Prague, 15-19 September 2014

Modeling of Localized

Inelastic Deformation

Milan Jirasek

General outline:

F. Stronqg discontinuity models




LID Short Course, Prague, 15-19 September 2014

F. Strong discontinuity models

-1 Fundamentals of fracture mechanics

.2 Finite elements with discontinuities - introduction
~.3 Embedded discontinuities (EED-EAS)

F.4 Extended finite elements (XFEM-PUM)

F.5 Comparative evaluation

F.6




Failure of Liberty (and other) ships during WW I

reason;:
brittle fracture

19 ships broke in half without warning



Stress concentration near defects

panel weakened by a spherical hole
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Stress concentration near defects

panel weakened by an eliptical hole
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Stress concentration near defects
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panel weakened by a crack
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Stress concentration near defects
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exact normal stress distribution
(for an infinite panel)
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Singular stress field near the crack tip

exact approximation near the tip
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at distances I' < d stress is inversely
proportional to the
sguare root of
: distance from the
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Singular stress field near the crack tip
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Singular stress field near the crack tip

2a =20 mm
o =10 MPa

near-tip stress
approximation
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same value of this factor
—> Same stress concentration near the tip
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2a =30 mm
t=5mm
F =1.9238 kN



Singular stress field near the crack tip

general expression for the singular part of stress field
that dominates near the crack tip

K, 1 .
(x O) K, ... stress intensity factor
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Singular stress field near the crack tip
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K, = =1,772-10°Nm™"?
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same stress intensity factor
——> Same stress concentration near the tip



Singular stress field near the crack tip

o, [MPa] a, =10 mm, 6 =10 MPa
1% G-(a, +r)
” - \/(a1+r)2—a12
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asymptotic
40 K _
| stress field
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Singular stress field near the crack tip

o,(r,0)= 5 cosg(1+singsin3—‘9j
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Basic fracture modes

mode |
(opening)
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mode Il
(sliding)
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mode Il
(tearing)

yz



Near-tip asymptotic fields

crack loaded in a mixed mode (combination of modes | and Il):
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Crack propagation — Irwin (local) criterion

A crack loaded in mode | propagates
If the stress intensity factor at its tip attains a critical value:

PN

stress intensity factor fracture toughness
(depends on loading, (material property)
shape and dimensions _

P [ Nm 3/2}
of the body

and on the crack size)



Crack propagation — Griffith (global) criterion

A crack loaded in mode | propagates
If its propagation releases a critical amount of energy:

SN

energy release rate fracture energy
(depends on loading, (material property)
shape and dimensions

g [J/m2 =N/ m]
of the body

and on the crack size)



Crack propagation criteria

crack propagates if

K, =K, ¢ =G
local (Irwin) global (Griffith)
criterion criterion

for plane stress and mode | loading it can be shown that

2
g="1
E
the above criteria are then equivalent and the fractzure tougness
and fracture energy are linked by K
G, = — K, =/EG,

E



Direction of crack propagation

for mode | loading, the crack can be expected to propagate straight ahead,
but for general mixed-mode loading we need a criterion for the crack direction

the direction of propagation
IS given by the angle Hcfor which

maximum circumferential stress criterion
(maximum hoop stress criterion):

crack propagates in the direction
perpendicular to the

maximum circumferential stress
(evaluated on a circle of a small diameter
centered at the tip)

o,(r,0,)= max o,(r,0)

—<0<r



F.2
Finite elements with discontinuities:

Introduction



Classification of models: kinematic aspects

Strong Weak Regularized
discontinuity discontinuity localization zone
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Classification of models: kinematic aspects

Strong Weak Regularized
discontinuity discontinuity localization zone
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Classification of models: material laws

Stress-strain law Stress-strain law Stress-strain law
(pre-localization part)
8 8 8
€ €. e
Traction-separation law  Stress-strain law Enrichment acting
(post-localization part) as localization limiter:
G c * nonlocal
« gradient
» Cosserat
* Viscosity

[Tull & = [[ul]/h



Traction-separation laws

1) Formulated directly in the traction-separation space
a) with nonzero elastic compliance (elasto-plastic, ...)
b) with zero elastic compliance (rigid-plastic, ...)
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[u] [u]

For general applications, we need a link between the separation vector
(displacement jump vector) and the traction vector:

lu]] A




Traction-separation laws

2) “Derived* from a stress-strain law (softening continuum)
using the strong discontinuity approach

lu]] t=n-o

\

s == ([[u]]®n)




Finite element representation of strong discontinuities

1) Discontinuities at element interfaces:

a) Remeshing
b) Interspersed potential discontinuities



Finite element representation of strong discontinuities

2) Arbitrary discontinuities across elements:

a) Elements with embedded discontinuities using the
enhanced assumed strain formulation (EED-EAS)

aka EFEM, SDA, GSDA, ...

b) Extended finite elements based on the
partition-of-unity concept (XFEM-PUM) aka GFEM, ...



Embedded discontinuity (enhanced assumed strain)




Embedded discontinuity (enhanced assumed strain)
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Approximation on two overlapping meshes (XFEM)
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Approximation on two overlapping meshes (XFEM)




Enrichment of interpolation functions in one dimension

EED-EAS

Q_ Iy Q4




Enrichment of interpolation functions in one dimension

EED-EAS XFEM-PUM

Q_ Iy Q4

Q Iy Q4




Enrichment of interpolation functions in one dimension

EED-EAS XFEM-PUM XFEM-PUM

Q_ Iy Q4

Q Iy Q4 Q. Iy Q




F.3
Elements with Embedded
Discontinuities (EAS)



Elements with embedded discontinuities
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Elements with embedded discontinuities

< € ... new degrees of freedom
characterizing separation (displacement jump)

o t ... traction

int



Elements with embedded discontinuities

€ €

J material J
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Elements with embedded discontinuities

d

? kinematics ?

€ e
J material J
o) T

? equilibrium ?

f.

Int



Elements with embedded discontinuities

d

Kinematics
& €
J material J
(6} t Three types of formulations:
equilibrium * KOS ... kinematically optimal symmetric
fint * SOS ... statically optimal symmetric

 SKON ... kinematically and statically
optimal nonsymmetric



Elements with embedded discontinuities




Elements with embedded discontinuities




Elements with embedded discontinuities




Elements with embedded discontinuities



Smeared crack




Smeared crack




Smeared crack




Smeared crack




Smeared crack




Smeared crack




Smeared crack




Smeared crack

« Misalignment between crack and element
« Distorted principal directions
« Stress locking



Embedded crack (EAS approach)




Embedded crack (EAS approach)




Embedded crack (EAS approach)




Embedded crack (EAS approach)




Embedded crack (EAS approach)




EED-EAS approach: discontinuous interpolation




EED- EAS approach: discontinuous interpolation




EED- EAS approach: discontinuous interpolation




EED- EAS approach: discontinuous interpolation




F.4
Extended Finite Elements (XFEM)

Based on Partition of Unity



Partition of Unity Method

Standard finite element approximation:
Nnod

()= 3N, 64

The shape functions are a partition of unity:
Nnod

IZ:;N,(X):l



Partition of Unity Method

Standard finite element approximation:
Nnod

= IZ:;N,(x)d

The shape functions are a partition of unity:
Nnod

;NI(X):

Enriched approximation'
Nnod

ZN x)td +>G x)eII

el

selected enrichment functions



Partition of Unity Method — eXtended Finite Elements

Enrichment by Heaviside function:

1 forxeQ'
0 forxeQ)

.

H.(x)=+




Partition of Unity Method — eXtended Finite Elements

Enrichment by Heaviside function:

H ()= ;1 for x e QO
0 forxeQ)"
Nnod
U(X): ZNI (X)[dl T HF(X)eI ]:
o



Partition of Unity Method — eXtended Finite Elements

If the support of N, is contained in QQ", then N H. =N,

If the support of N, is containedin Q~,then N,H.=0



Partition of Unity Method — eXtended Finite Elements

If the support of N, is contained in QQ", then N H. =N,

If the support of N, is containedin Q~,then N,H.=0

Only if the support of N, iscutby I,
then the function N, H - really enriches the basis.

Nnod

= Y N, (x)d, + > N, (x)H(x)e,

IESH

/
set of nodes with Heaviside enrichment



Partition of Unity Method — eXtended Finite Elements




Partition of Unity Method — eXtended Finite Elements

nodes with Heaviside enrichment



Partition of Unity Method — eXtended Finite Elements

| XFEM-PUM XFEM-PUM
The enriched

approximation can be
rearranged A SN N N N N
to give better physical

meaning to the degrees A‘ NS
of freedom: g  — -
i

Q Iy Q4 Q. Iy Q




XFEM - enrichment by step function




XFEM - enrichment by step function




XFEM - enrichment by step function
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XFEM — tip enrichment

Additional enrichment improving the approximation

around the crack tip: y

.
o

Functions that appear in the analytical near-tip solution:

Bl(r,H)zﬁsing Bg(r,e)zﬁsingsiné’

Bz(r,H)zﬁcosg B4(r,9):ﬁcos§sin9



XFEM — tip enrichment

Additional enrichment improving the approximation

around the crack tip:
Nnod

U(X): IZ:;,Nl(X)dl T ZNl(X)Hr(X)em T

IESH

TSN, (0B (r(). 6k,

Functions that appear in the analytical near-tip solution:

Bl(r,H)zﬁsing Bg(r,e)zﬁsingsine

Bz(r,H)zﬁcosg B4(r,9):ﬁcos§sin6’



XFEM — tip enrichment




XFEM — tip enrichment
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nodes with enrichment by near-tip functions



XFEM - tip enrichment

4|

:

nodes with Heaviside enrichment
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nodes with enrichment by near-tip functions



XFEM - tip enrichment

4

nodes with Heaviside enrichment

j7dr4
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nodes with enrichment by near-tip functions



XFEM — tip enrichment

nodes with Heaviside enrichment

nodes with enrichment by near-tip functions



XFEM — tip enrichment

But if the crack is curved, we cannot define functions B,
in terms of the standard polar coordinates because B, would
not be discontinuous across the crack but across the dotted line.



XFEM - level set functions

Remedy:
Construct curvilinear coordinates @ and ¥ such that
the crack is characterized by @ =0and i <0

\

crack tip

crack




XFEM - level set functions

Remedy:
Construct curvilinear coordinates @ and ¥ such that

the crack is characterized by ¢ =0and i <0

. crack tip

crack

and define Bi In terms of the pseudo-polar coordinates
2 2
f(y.0)=y’ +o

8(v, p)=sgn(e)arccos

W
VWi + ¢




XFEM - level set functions

Functions ¢ andly¥ are the so-called level set functions.

. crack tip

crack

They are defined by their values at nodes around the crack
and interpolated using the standard shape functions:

ZN §0|1 W(X):ZI:Nl(X)W



XFEM - level set functions

For an existing crack, function ¢ can be constructed
as the signed distance function:




Criteria for Direction
of Crack Propagation



Tracking of a propagating crack




Tracking of a propagating crack




Tracking of a propagating crack




Tracking of a propagating crack




Tracking of a propagating crack




Tracking of a propagating crack




Tracking of a propagating crack
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Tracking of a propagating crack

R




Tracking of a propagating crack




Tracking of a propagating crack

Crack direction = normal to the maximum principal stress direction




Tracking of a propagating crack
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Tracking of a propagating crack




Tracking of a propagating crack

Crack direction = normal to the direction of
maximum principal nonlocal stress (or strain)




Tracking of a propagating crack

Stress state around the tip of a cohesive crack
IS very close to equibiaxial tension




Tracking of a propagating crack

Stress distribution at constant distance from the tip of a stress-free crack

9\\ 2.5

. principal stress

circumferencial stress -
. energy density -
- equivalent strain

angle theta






Tracking of a propagating crack
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Tracking of a propagating crack

Crack direction = normal to the direction of
maximum circumferential stress




Tracking of a propagating crack

Crack direction = normal to the direction of
maximum circumferential stress

| 208 | 287 ||| =97 | 203 |
T T LI T 1

B1 Bl




Tracking of a propagating crack

Crack direction = normal to the direction of
maximum circumferential stress

| 208 | 287 ||| =97 | 203 |
T T LI T 1

B1 Bl




F.5
Comparison:

EED-EAS versus XFEM-PUM



Comparison of EED-EAS and XFEM-PUM

Embedded discontinuity Extended finite elements
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Comparison of EED-EAS and XFEM-PUM

Embedded Extended
discontinuity finite elements
DOF's added locally globally
and related to elements nodes




Comparison of EED-EAS and XFEM-PUM

Embedded
discontinuity

Extended
finite elements

DOF‘s added

and related to

Approximation
of crack opening

Enrichment

locally

elements

discontinuous

Incompatible

globally

nodes

continuous

compatible



Separation test

physical smeared EED-EAS XFEM-PUM




Separation test

physical smeared EED-EAS XFEM-PUM
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Separation test

physical smeared EED-EAS XFEM-PUM
® ® ® ° (@ @
° ° ° (@ @
o ¢ o T * .@‘..‘..‘.T“T:.‘..‘@'
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EED-EAS approach: partial coupling




EED- EAS approach: partial coupling




EED- EAS approach: partial coupling




XFEM-PUM approach: complete decoupling
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XFEM-PUM approach: complete decoupling




XFEM-PUM approach: complete decoupling




XFEM-PUM approach: complete decoupling




Comparison of EED-EAS and XFEM-PUM

Embedded discontinuity Extended finite elements
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Comparison of EED-EAS and XFEM-PUM

Embedded
discontinuity

Extended
finite elements

DOF‘s added

and related to

Approximation
of crack opening

Enrichment

Separated parts

locally

elements

discontinuous

Incompatible

partially coupled

globally

nodes

continuous

compatible

fully decoupled



Journal bearing: Physical process
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Journal bearing: Physical process
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Journal bearing: Mesh respecting material boundaries
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Journal bearing: Structured mesh with enrichment
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Journal bearing: Structured mesh with enrichment
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One element crossed by pre-existing discontinuity




One element: Physical process




One element: Physical process




One element: EED-EAS




One element: EED-EAS




One element: XFEM-PUM




One element: XFEM-PUM




One element crossed by pre-existing discontinuity




Unigueness of the element response (EED-EAS)



Unigueness of the element response

For given increments
of nodal displacements ...



Unigueness of the element response

... find components
of displacement jump ...




Unigueness of the element response

... such that tractions are
in equilibrium with stresses.




Unigueness of the element response

The solution is unigue for infinitesimal displacement increments
of an arbitrary direction if

Jin Qg )+ H >0

where Qg is the symmetric part of Q = =1 D .BH

and H <0 is the discrete softening modulus.

Physical meaning of Q



Unigueness of the element response




Unigueness of the element response




Unigueness of the element response

d=He
e=Bd
c=D.¢

t*=P'c=P'D_BHe



Unigueness of the element response

ﬂmin (stm ) >—H min

Q — PT D B H IS proportional to the elastic modulus
€ and inversely proportional to the element size



Unigueness of the element response

ﬂmin (stm ) >—H min

Q — PT D B H IS proportional to the elastic modulus
€ and inversely proportional to the element size

eT stm e = eTQe = eTte <0 canhappen



Unigueness of the element response




Unigueness of the element response

Sh

y=¢e,/h
=0y

t, =0
t.=7=0Ge,/h




Unigueness of the element response




Unigueness of the element response

. =¢6./h

Unn — Dlzgss

t =0, =D, /h
t —_




Unigueness of the element response

e.<0

e >0

e, <0

t, =D, /h<0
t.=Ge,/h>0
e't® <0



Unigueness of the element response

discontinuity segments placed at element centers

0




Unigueness of the element response

discontinuity segments placed at element centers

maximum deviation & between element side and discontinuity
Is limited (e.g., 30 degrees for an equilateral triangle)



Unigueness of the element response

discontinuity segments form a continuous path

5%




Unigueness of the element response

discontinuity segments form a continuous path

maximum deviation & between element side and discontinuity
IS given by the largest angle of the triangle
(e.g., 60 degrees for an equilateral triangle)



Unigueness of the element response

Condition under which uniqueness can be guaranteed
If the element is sufficiently small:

1+v

plane stress ... COS« >
3—v

true only if v <1/3 and the element is close to equilateral



Unigueness of the element response

Condition under which uniqueness can be guaranteed
If the element is sufficiently small:

1+v
plane stress ... COS« >
3—v
true only if v <1/3 and the element is close to equilateral
I trai COSo > 1
plane strain ...
3—4v

true only if v <1/4 and the element is close to equilateral



Unigueness of the element response

Condition under which uniqueness can be guaranteed
If the element is sufficiently small:

1+v
plane stress ... COS« >

3—v
true only if v <1/3 and the element is close to equilateral

1
3—4vy

plane strain ... COS« >

true only if v <1/4 and the element is close to equilateral

1
3—4y

three dimensions ... COSo >

violated even if the tetrahedral element is regular



Comparison of EED-EAS and XFEM-PUM

Embedded discontinuity Extended finite elements
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Comparison of EED-EAS and XFEM-PUM

Embedded
discontinuity

Extended
finite elements

DOF‘s added

and related to

Approximation
of crack opening

Enrichment

Separated parts

Numerical behavior

locally

elements

discontinuous

Incompatible

partially interacting

rather fragile

globally

nodes

continuous

compatible

independent

more robust



Comparison of EED-EAS and XFEM-PUM

Embedded
discontinuity

Extended
finite elements

Stiffness matrix

Integration scheme
for continuous part

Global degrees
of freedom

Implementation
effort

always nonsymmetric

remains standard

do not change

smaller

can be symmetric

must be modified

added during simulation

larger



Comparison of EED-EAS and XFEM-PUM

Embedded Extended

discontinuity finite elements
Stiffness matrix always nonsymmetric  can be symmetric
Integration scheme | remains standard must be modified
for continuous part
Global degrees _ _ _
of freedom do not change added during simulation
Implementation smaller larger
effort

... but it pays off
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F.6
Regularized Continua

with Strong Discontinuities



F.6.1
Strong Discontinuities
Versus
Regularized Continuum Models



Crack propagation in a gravity dam

.14 .6,

full reservoir
pressure

72




Crack propagation in a gravity dam

.14 .6,

pressure full reservoir
due to pressure

overflow 72
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Crack propagation in a gravity dam

nonlocal damage model



Crack propagation in a gravity dam
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nonlocal damage model



One-dimensional localization test

35 )
evolution of

| strain profile

25
20 F

15 |

local strain

10 + N

10



One-dimensional localization test

damage parameter

08
07t
06 |

0.3

D4 |
03
D2t
01

10

evolution of
damage profile



Problem with definition of fracture energy

[lul]

traction-separation law



Process zone replaced by cohesive crack




Process zone replaced by cohesive crack




Diffuse damage zone replaced by cohesive cracks




Diffuse damage zone replaced by cohesive cracks




F.6.2
Nonlocal Model with Transition

to Strong Discontinuities



From diffuse damage to discrete cracking




From diffuse damage to discrete cracking
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From diffuse damage to discrete cracking
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From diffuse damage to discrete cracking




Transition from diffuse to localized failure pattern




One-dimensional localization test

local stress-strain diagram
with softening

¥



Continuum damage combined with a discontinuity




Continuum damage combined with a discontinuity

uniform strain distribution



Continuum damage combined with a discontinuity

uniform strain distribution




Continuum damage combined with a discontinuity

localized strain distribution, continuous



Continuum damage combined with a discontinuity

localized strain distribution, discontinuous



Continuum damage combined with a discontinuity

O A
B
smeared Gt"
cracking e C
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(embedded)



Continuum damage combined with a discontinuity
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F.6.4
Influence of Crack
on Nonlocal Strain



Influence of crack on nonlocal strain

Observation (Simone et al.):
maximum value of nonlocal strain is not attained at the crack tip

.




Influence of crack on nonlocal strain

Observation (Simone et al.): with standard averaging,
maximum value of nonlocal strain is not attained at the crack tip

—

Possible consequence:
crack propagation in jumps




Influence of crack on nonlocal strain

maximum value of nonlocal strain is not attained at the crack tip ??

4 v v v
local equivalent strain
r.* 35} nonlocal equivalent strain
””””””” i 3 3
2.5
2 F
15 F \.
17 !
0.5
0 1 1 1 1
0 0.2 0.4 0.6 0.8

distance from tip



Influence of crack on nonlocal strain

maximum value of nonlocal strain is not attained at the crack tip !!

1.9

1.85 |
18|
1.75 |
1.7 |
1.65 |
16 |

1.55 |

1.5

local equivalent strain
nonlocal equivalent strain

0.1

0.2 0.3 0.4

0.5



Influence of crack on nonlocal strain

line crack thin layer of damaged material




Influence of crack on nonlocal strain

Contribution of crack opening to nonlocal equivalent strain

Wn
Wn —> gn:T
Ws
Ws — 7/ns_r




Influence of crack on nonlocal strain

Contribution of crack opening to nonlocal equivalent strain




Influence of crack on nonlocal strain

after correction, maximum value of nonlocal strain is attained at the crack tip

4 . . .
local equivalent strain
35 nonlocal equivalent strain
\ ' n.e.s. with crack influence -
r.* |
9 25
2 F
1.5 F
1F
0.5
0 'l 'l 'l 'l
0 0.2 0.4 0.6 0.8 1

distance from tip

£(x)=], al(x.8) £(E) dV(e)+ [ _alx.5) W(g) dr(3)



Influence of crack on nonlocal strain

variation of nonlocal strain at constant distance from the crack tip

2.5 v . .
local equivalent strain
nonlocal equivalent strain
2 I :
r.*
/9\: 15}
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0 2 2 M 2 2
-3 -2 -1 0 1 2

angle theta




Influence of crack on nonlocal strain

variation of nonlocal strain at constant distance from the crack tip

4
35 }
r /// ’
S 25

local equivalent strain —
nonlocal equivalent strain -
n.e.s. with crack influence -

.
D
0

0 1 2
angle theta

J, xx.8) £@E) aV(E)+ [ alx.&) W(z) dr()



Influence of crack on nonlocal strain

variation of nonlocal strain at constant distance from the crack tip

4 ¥ T T
local equivalent strain
L nonlocal equivalent strain -
3.5 . .
n.e.s. with crack influence -
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Influence of crack on nonlocal strain

without crack influence with crack influence
and improper energy balance and proper energy balance




Influence of crack on nonlocal strain
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F.6.5
Examples



Compact tension test
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Compact tension test




Compact tension test




Compact tension test




Compact tension test
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Compact tension test




Compact tension test




Compact tension test




Compact tension test




Compact tension test




Compact tension test




Compact tension test
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Compact tension test
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Compact tension test
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Crack propagation in gravity dam




Crack propagation in gravity dam




Crack propagation in gravity dam




Crack propagation in gravity dam




Crack propagation in gravity dam




Crack propagation in gravity dam




Notched three-point bending test




