# Modeling of Localized Inelastic Deformation

# Milan Jirásek

#### **General outline:**

- A. Introduction
- B. Elastoplasticity
- C. Damage mechanics
- D. Strain localization
- E. Regularized continuum models
- F. Strong discontinuity models

- **F. Strong discontinuity models**
- F.1 Fundamentals of fracture mechanics
- F.2 Finite elements with discontinuities introduction
- F.3 Embedded discontinuities (EED-EAS)
- F.4 Extended finite elements (XFEM-PUM)
- F.5 Comparative evaluation
- F.6 Regularized continua with strong discontinuities

# Failure of Liberty (and other) ships during WW II



reason: brittle fracture

# 19 ships broke in half without warning

# panel weakened by a spherical hole



### panel weakened by an eliptical hole







exact approximation near the tip  

$$\sigma_{y}(x,0) = \frac{\hat{\sigma} \cdot x}{\sqrt{x^{2} - a^{2}}} = \frac{\hat{\sigma} \cdot (a+r)}{\sqrt{(a+r)^{2} - a^{2}}} \approx \frac{\hat{\sigma} \cdot a}{\sqrt{2ar}} = \hat{\sigma} \sqrt{\frac{a}{2}} \cdot \frac{1}{\sqrt{r}}$$
where  $\frac{y}{a+r}$  at distances  $r \ll a$  stress is inversely proportional to the square root of distance from the crack tip





general expression for the singular part of stress field that dominates near the crack tip









crack loaded in a mixed mode (combination of modes I and II):

$$\sigma_{y}(r,\theta) \approx \frac{K_{I}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 + \sin \frac{\theta}{2} \sin \frac{3\theta}{2}\right) - \frac{K_{II}}{\sqrt{2\pi r}} \sin \frac{\theta}{2} \left(2 + \cos \frac{\theta}{2} \cos \frac{3\theta}{2}\right)$$
$$\sigma_{x}(r,\theta) \approx \frac{K_{I}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2}\right) + \frac{K_{II}}{\sqrt{2\pi r}} \sin \frac{\theta}{2} \cos \frac{\theta}{2} \cos \frac{3\theta}{2}$$
$$\tau_{xy}(r,\theta) \approx \frac{K_{I}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \sin \frac{\theta}{2} \cos \frac{3\theta}{2} + \frac{K_{II}}{\sqrt{2\pi r}} \cos \frac{\theta}{2} \left(1 - \sin \frac{\theta}{2} \sin \frac{3\theta}{2}\right)$$

A crack loaded in mode I propagates

if the stress intensity factor at its tip attains a critical value:

 $K_I = K$ 

stress intensity factor (depends on loading, shape and dimensions of the body and on the crack size)

fracture toughness (material property)

 $Nm^{-3/2}$ 

A crack loaded in mode I propagates

if its propagation releases a critical amount of energy:

energy release rate (depends on loading, shape and dimensions of the body and on the crack size)

fracture energy (material property)  $\begin{bmatrix} \mathbf{r} \\ \mathbf{r} \end{bmatrix}$ 

$$J/m^2 \equiv N/m$$

crack propagates if

$$K_I = K_c$$

$$\mathcal{G} = G_{\rm f}$$

local (Irwin) criterion

global (Griffith) criterion

for plane stress and mode I loading it can be shown that

$$\boldsymbol{\mathcal{G}} = \frac{K_I^2}{E}$$

the above criteria are then equivalent and the fracture tougness and fracture energy are linked by  $G_{\rm f}=\frac{K_{\rm c}^2}{E}\qquad K_{\rm c}=1$ 

# **Direction of crack propagation**

for mode I loading, the crack can be expected to propagate straight ahead, but for general mixed-mode loading we need a criterion for the crack direction



the direction of propagation is given by the angle  $\theta_c$  for which

maximum circumferential stress criterion (maximum hoop stress criterion):

crack propagates in the direction perpendicular to the maximum circumferential stress (evaluated on a circle of a small diameter centered at the tip)

$$\sigma_{\theta}(r,\theta_{c}) = \max_{-\pi < \theta < \pi} \sigma_{\theta}(r,\theta)$$

# **F.2**

# Finite elements with discontinuities: Introduction

### **Classification of models: kinematic aspects**



### **Classification of models: kinematic aspects**



### **Classification of models: material laws**



Stress-strain law

Stress-strain law (pre-localization part)



Stress-strain law



Traction-separation law

Stress-strain law (post-localization part)



Enrichment acting as localization limiter:

- nonlocal
- gradient
- Cosserat
- viscosity

- 1) Formulated directly in the traction-separation space
  - a) with nonzero elastic compliance (elasto-plastic, ...)
  - b) with zero elastic compliance (rigid-plastic, ...)



For general applications, we need a link between the separation **vector** (displacement jump vector) and the traction **vector**:



2) "Derived" from a stress-strain law (softening continuum) using the strong discontinuity approach



# Finite element representation of strong discontinuities



- 1) Discontinuities at element interfaces:
  - a) Remeshing
  - b) Interspersed potential discontinuities

# Finite element representation of strong discontinuities



- 2) Arbitrary discontinuities across elements:
  - a) Elements with embedded discontinuities using the enhanced assumed strain formulation (EED-EAS) aka EFEM, SDA, GSDA, ...
  - b) Extended finite elements based on the partition-of-unity concept (XFEM-PUM) aka GFEM, ...

## **Embedded discontinuity (enhanced assumed strain)**



### **Embedded discontinuity (enhanced assumed strain)**



# Approximation on two overlapping meshes (XFEM)



# Approximation on two overlapping meshes (XFEM)



### **Enrichment of interpolation functions in one dimension**



### **Enrichment of interpolation functions in one dimension**

X



### **Enrichment of interpolation functions in one dimension**



# **F.3**

# Elements with Embedded Discontinuities (EAS)
$$\mathbf{d} \mid \mathbf{\varepsilon} = \mathbf{B}\mathbf{d}$$

$$\mathbf{\varepsilon} = \mathbf{B}\mathbf{d}$$

$$\mathbf{\sigma} = \mathbf{\sigma}(\mathbf{\varepsilon},...)$$

$$\mathbf{\sigma} \quad \mathbf{f}_{int} = \mathbf{\sigma}(\mathbf{\varepsilon},...)$$

$$\mathbf{f}_{int} = \int_{V} \mathbf{B}^{T}\mathbf{\sigma} \, \mathrm{d}V$$

$$\mathbf{f}_{int} = \int_{V} \mathbf{B}^{T}\mathbf{\sigma} \, \mathrm{d}V$$









# d

? kinematics ?

 $\begin{array}{ccc} \mathbf{E} & \mathbf{e} \\ & \\ \mathbf{f} & \\ \mathbf{\sigma} & \mathbf{t} \end{array}$ 

? equilibrium ?

**f**<sub>int</sub>



Three types of formulations:

- KOS ... kinematically optimal symmetric
- SOS ... statically optimal symmetric
- SKON ... kinematically and statically optimal nonsymmetric

























- Misalignment between crack and element
- Distorted principal directions
- Stress locking



















# **F.4**

# Extended Finite Elements (XFEM) Based on Partition of Unity

Standard finite element approximation:

$$\mathbf{u}(\mathbf{x}) = \sum_{I=1}^{Nnod} N_I(\mathbf{x}) \mathbf{d}_I$$

The shape functions are a partition of unity:

$$\sum_{I=1}^{Nnod} N_I(\mathbf{x}) = 1$$

Standard finite element approximation:

$$\mathbf{u}(\mathbf{x}) = \sum_{I=1}^{Nnod} N_I(\mathbf{x}) \mathbf{d}_I$$

The shape functions are a partition of unity:

$$\sum_{I=1}^{Nnod} N_I(\mathbf{x}) = 1$$

Enriched approximation:

$$\mathbf{u}(\mathbf{x}) = \sum_{I=1}^{Nnod} N_I(\mathbf{x}) \left[ \mathbf{d}_I + \sum_{i \in L_I} G_i(\mathbf{x}) \mathbf{e}_{iI} \right]$$

selected enrichment functions

Enrichment by Heaviside function:



$$H_{\Gamma}(\mathbf{x}) = \begin{cases} 1 & \text{for } x \in \Omega^+ \\ 0 & \text{for } x \in \Omega^- \end{cases}$$

Enrichment by Heaviside function:



$$\mathbf{u}(\mathbf{x}) = \sum_{I=1}^{Nnod} N_I(\mathbf{x}) [\mathbf{d}_I + H_{\Gamma}(\mathbf{x})\mathbf{e}_I] =$$
$$= \sum_{I=1}^{Nnod} N_I(\mathbf{x}) \mathbf{d}_I + \sum_{I=1}^{Nnod} N_I(\mathbf{x}) H_{\Gamma}(\mathbf{x}) \mathbf{e}_I$$



If the support of  $N_I$  is contained in  $\Omega^-$ , then  $N_I H_{\Gamma} = 0$ 

If the support of  $N_I$  is contained in  $\Omega^+$ , then  $N_I H_{\Gamma} = N_I$ 

If the support of  $N_I$  is contained in  $\Omega^-$ , then  $N_I H_{\Gamma} = 0$ Only if the support of  $N_I$  is cut by  $\Gamma$ , then the function  $N_I H_{\Gamma}$  really enriches the basis.

$$\mathbf{u}(\mathbf{x}) = \sum_{I=1}^{Nnod} N_I(\mathbf{x}) \mathbf{d}_I + \sum_{I \in S_H} N_I(\mathbf{x}) H_{\Gamma}(\mathbf{x}) \mathbf{e}_I$$
  
set of nodes with Heaviside enrichment





nodes with Heaviside enrichment

The enriched approximation can be rearranged to give better physical meaning to the degrees of freedom:


#### **XFEM** – enrichment by step function



## **XFEM** – enrichment by step function



#### **XFEM** – enrichment by step function



Additional enrichment improving the approximation around the crack tip:



Functions that appear in the analytical near-tip solution:

$$B_{1}(r,\theta) = \sqrt{r} \sin \frac{\theta}{2} \qquad B_{3}(r,\theta) = \sqrt{r} \sin \frac{\theta}{2} \sin \theta$$
$$B_{2}(r,\theta) = \sqrt{r} \cos \frac{\theta}{2} \qquad B_{4}(r,\theta) = \sqrt{r} \cos \frac{\theta}{2} \sin \theta$$

Additional enrichment improving the approximation around the crack tip:

$$\mathbf{u}(\mathbf{x}) = \sum_{I=1}^{Nnod} N_I(\mathbf{x}) \mathbf{d}_I + \sum_{I \in S_H} N_I(\mathbf{x}) H_{\Gamma}(\mathbf{x}) \mathbf{e}_{0I} + \sum_{I \in S_B} \sum_{i=1}^{4} N_I(\mathbf{x}) \frac{B_i(r(\mathbf{x}), \theta(\mathbf{x}))}{B_i(r(\mathbf{x}), \theta(\mathbf{x}))} \mathbf{e}_{iI}$$

Functions that appear in the analytical near-tip solution:

$$B_{1}(r,\theta) = \sqrt{r} \sin \frac{\theta}{2} \qquad B_{3}(r,\theta) = \sqrt{r} \sin \frac{\theta}{2} \sin \theta$$
$$B_{2}(r,\theta) = \sqrt{r} \cos \frac{\theta}{2} \qquad B_{4}(r,\theta) = \sqrt{r} \cos \frac{\theta}{2} \sin \theta$$











nodes with Heaviside enrichment



But if the crack is curved, we cannot define functions  $B_i$  in terms of the standard polar coordinates because  $B_1$  would not be discontinuous across the crack but across the dotted line.

Remedy:

Construct curvilinear coordinates  $\varphi$  and  $\psi$  such that the crack is characterized by  $\varphi = 0$  and  $\psi \leq 0$ 



Remedy:

Construct curvilinear coordinates  $\varphi$  and  $\psi$  such that the crack is characterized by  $\varphi = 0$  and  $\psi \leq 0$ 



and define  $B_i$  in terms of the pseudo-polar coordinates

$$r(\psi,\varphi) = \sqrt{\psi^2 + \varphi^2}$$

$$\theta(\psi, \varphi) = \operatorname{sgn}(\varphi) \operatorname{arccos} \frac{\psi}{\sqrt{\psi^2 + \varphi^2}}$$

Functions  $\varphi$  and  $\psi$  are the so-called **level set functions.** 



They are defined by their values at nodes around the crack and interpolated using the standard shape functions:

$$\varphi(\mathbf{x}) = \sum_{I} N_{I}(\mathbf{x}) \varphi_{I}, \quad \psi(\mathbf{x}) = \sum_{I} N_{I}(\mathbf{x}) \psi_{I}$$

For an existing crack, function  $\varphi$  can be constructed as the signed distance function:



$$\varphi(\mathbf{x}) = \|\mathbf{x} - P_{\Gamma}(\mathbf{x})\| \operatorname{sgn}[(\mathbf{x} - P_{\Gamma}(\mathbf{x})) \cdot \mathbf{n}(P_{\Gamma}(\mathbf{x}))]$$

**Criteria for Direction of Crack Propagation** 



















Crack direction = normal to the maximum principal stress direction







Crack direction = normal to the direction of maximum principal **nonlocal** stress (or strain)





Stress state around the tip of a cohesive crack is very close to equibiaxial tension







Stress distribution at constant distance from the tip of a stress-free crack







#### Crack direction = normal to the direction of maximum circumferential stress





Crack direction = normal to the direction of maximum circumferential stress





Crack direction = normal to the direction of maximum circumferential stress




# F.5 Comparison: EED-EAS versus XFEM-PUM

#### Embedded discontinuity

#### Extended finite elements



|                | Embedded<br>discontinuity | Extended<br>finite elements |
|----------------|---------------------------|-----------------------------|
| DOF's added    | locally                   | globally                    |
| and related to | elements                  | nodes                       |
|                |                           |                             |
|                |                           |                             |
|                |                           |                             |
|                |                           |                             |
|                |                           |                             |
|                |                           |                             |

|                                   | Embedded<br>discontinuity | Extended<br>finite elements |
|-----------------------------------|---------------------------|-----------------------------|
| DOF's added                       | locally                   | globally                    |
| and related to                    | elements                  | nodes                       |
| Approximation<br>of crack opening | discontinuous             | continuous                  |
| Enrichment                        | incompatible              | compatible                  |
|                                   |                           |                             |
|                                   |                           |                             |
|                                   |                           |                             |







# **EED-EAS** approach: partial coupling



# **EED- EAS approach: partial coupling**



# **EED- EAS approach: partial coupling**











#### Embedded discontinuity

#### Extended finite elements



|                                   | Embedded<br>discontinuity | Extended<br>finite elements |
|-----------------------------------|---------------------------|-----------------------------|
| DOF's added                       | locally                   | globally                    |
| and related to                    | elements                  | nodes                       |
| Approximation<br>of crack opening | discontinuous             | continuous                  |
| Enrichment                        | incompatible              | compatible                  |
| Separated parts                   | partially coupled         | fully decoupled             |

# Journal bearing: Physical process



# Journal bearing: Physical process



#### Journal bearing: Mesh respecting material boundaries



# Journal bearing: Structured mesh with enrichment



#### Journal bearing: Structured mesh with enrichment



#### One element crossed by pre-existing discontinuity



# **One element: Physical process**



# **One element: Physical process**



# **One element: EED-EAS**



# **One element: EED-EAS**



#### **One element: XFEM-PUM**



#### **One element: XFEM-PUM**



#### One element crossed by pre-existing discontinuity



#### **Uniqueness of the element response (EED-EAS)**









The solution is unique for infinitesimal displacement increments of an arbitrary direction if

$$\lambda_{\min}(\mathbf{Q}_{sym}) + H > 0$$

where  $\mathbf{Q}_{sym}$  is the symmetric part of  $\mathbf{Q} = \mathbf{P}^T \mathbf{D}_e \mathbf{B} \mathbf{H}$ 

and H < 0 is the discrete softening modulus.

Physical meaning of **Q** ...






 $\lambda_{\min}(\mathbf{Q}_{sym}) > -H_{\min}$ 

# $\mathbf{Q} = \mathbf{P}^T \mathbf{D}_e \mathbf{B} \mathbf{H}$ is proportional to the elastic modulus and inversely proportional to the element size

$$\lambda_{\min}(\mathbf{Q}_{sym}) > -H_{\min}$$

 $\mathbf{Q} = \mathbf{P}^T \mathbf{D}_e \mathbf{B} \mathbf{H}$  is proportional to the elastic modulus and inversely proportional to the element size

$$\mathbf{e}^T \mathbf{Q}_{sym} \, \mathbf{e} = \mathbf{e}^T \mathbf{Q} \, \mathbf{e} = \mathbf{e}^T \mathbf{t}^e < 0$$
 can happen











discontinuity segments placed at element centers



discontinuity segments placed at element centers



maximum deviation  $\alpha$  between element side and discontinuity is limited (e.g., 30 degrees for an equilateral triangle)

discontinuity segments form a continuous path



discontinuity segments form a continuous path



maximum deviation  $\alpha$  between element side and discontinuity is given by the largest angle of the triangle (e.g., 60 degrees for an equilateral triangle) Condition under which uniqueness can be guaranteed if the element is sufficiently small:

plane stress ...  $\cos \alpha > \frac{1+\nu}{3-\nu}$ 

true only if  $\nu < 1/3$  and the element is close to equilateral

Condition under which uniqueness can be guaranteed if the element is sufficiently small:

plane stress ... 
$$\cos \alpha > \frac{1+\nu}{3-\nu}$$

true only if  $\nu < 1/3$  and the element is close to equilateral

plane strain ... 
$$\cos \alpha > \frac{1}{3 - 4\nu}$$

true only if  $\nu < 1/4$  and the element is close to equilateral

Condition under which uniqueness can be guaranteed if the element is sufficiently small:

1

plane stress ... 
$$\cos \alpha > \frac{1+\nu}{3-\nu}$$

true only if  $\nu < 1/3$  and the element is close to equilateral

plane strain ... 
$$\cos \alpha > \frac{1}{3 - 4\nu}$$

true only if  $\nu < 1/4$  and the element is close to equilateral

three dimensions ... 
$$\cos \alpha > \frac{1}{3 - 4\nu}$$

#### violated even if the tetrahedral element is regular

### Embedded discontinuity

### Extended finite elements



|                                                 | Embedded<br>discontinuity     | Extended<br>finite elements |
|-------------------------------------------------|-------------------------------|-----------------------------|
| DOF's added                                     | locally                       | globally                    |
| and related to                                  | elements                      | nodes                       |
| Approximation<br>of crack opening<br>Enrichment | discontinuous<br>incompatible | continuous<br>compatible    |
| Separated parts                                 | partially interacting         | independent                 |
| Numerical behavior                              | rather fragile                | more robust                 |

|                                        | Embedded<br>discontinuity | Extended<br>finite elements |
|----------------------------------------|---------------------------|-----------------------------|
| Stiffness matrix                       | always nonsymmetric       | can be symmetric            |
| Integration scheme for continuous part | remains standard          | must be modified            |
| Global degrees<br>of freedom           | do not change             | added during simulation     |
| Implementation<br>effort               | smaller                   | larger                      |

|                                        | Embedded<br>discontinuity | Extended<br>finite elements       |
|----------------------------------------|---------------------------|-----------------------------------|
| Stiffness matrix                       | always nonsymmetric       | can be symmetric                  |
| Integration scheme for continuous part | remains standard          | must be modified                  |
| Global degrees<br>of freedom           | do not change             | added during simulation           |
| Implementation<br>effort               | smaller                   | larger<br><b> but it pays off</b> |

# THE END

# **F.6**

# Regularized Continua with Strong Discontinuities

F.6.1 Strong Discontinuities versus Regularized Continuum Models









nonlocal damage model



nonlocal damage model

# **One-dimensional localization test**



evolution of strain profile

# **One-dimensional localization test**



# Problem with definition of fracture energy



traction-separation law

# **Process zone replaced by cohesive crack**



# **Process zone replaced by cohesive crack**



÷ ----->

# Diffuse damage zone replaced by cohesive cracks



# Diffuse damage zone replaced by cohesive cracks





F.6.2 Nonlocal Model with Transition to Strong Discontinuities

# From diffuse damage to discrete cracking


#### From diffuse damage to discrete cracking



#### From diffuse damage to discrete cracking



#### From diffuse damage to discrete cracking



### **Transition from diffuse to localized failure pattern**



#### **One-dimensional localization test**



| 1 1 |  |  |  |
|-----|--|--|--|
| 1 1 |  |  |  |
| 1 1 |  |  |  |
| 1 1 |  |  |  |
| 1 1 |  |  |  |
| 1 1 |  |  |  |

|--|--|--|--|--|--|--|--|--|--|--|

uniform strain distribution

|  |  |  |  | ] |
|--|--|--|--|---|
|  |  |  |  | - |

uniform strain distribution



localized strain distribution, continuous



#### localized strain distribution, discontinuous





F.6.4 Influence of Crack on Nonlocal Strain

Observation (Simone et al.):

maximum value of nonlocal strain is not attained at the crack tip



Observation (Simone et al.): with standard averaging, maximum value of nonlocal strain **is not** attained at the crack tip



maximum value of nonlocal strain is not attained at the crack tip ??



maximum value of nonlocal strain is not attained at the crack tip !!



line crack

thin layer of damaged material



Contribution of crack opening to nonlocal equivalent strain



Contribution of crack opening to nonlocal equivalent strain



after correction, maximum value of nonlocal strain is attained at the crack tip



variation of nonlocal strain at constant distance from the crack tip



variation of nonlocal strain at constant distance from the crack tip



variation of nonlocal strain at constant distance from the crack tip



without crack influence and improper energy balance





with crack influence and proper energy balance




























































#### Notched three-point bending test

