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Prediction of effective elastic and strength parameters of both regular and irregular masonry walls from
homogenization is presented. To that end, the widely accepted first order homogenization method is
adopted to provide the homogenized elastic stiffnesses or compliances as well as macroscopic parame-
ters of the selected nonlinear constitutive models. These include the tensile and compressive strength
and fracture energies of a generally orthotropic material extracted from the computationally derived
macroscopic stress strain curves. In this regard, two types of boundary/loading conditions resulting from
the strain-based and mix type formulation of the homogenization problem are examined. The response
provided by an orthotropic damage model, expected to describe the behavior of the homogenized struc-
ture on macroscale, is compared to that derived via a classical isotropic scalar damage model. It reveals
that strong constraints of the orthotropic damage model offer results inapplicable for estimating the
macroscopic fracture properties thus promoting the application of a simple isotropic damage model
when solving the homogenization problem. The results also show that the mixed boundary conditions,
allowing us to represent a pure tension/compression loading mode while being capable of tracking the
softening branch of the stress–strain curve, deliver the response comparable to that of a purely strain-
based formulation.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Numerical homogenization is adopted here to address the
macroscopic response of a regular as well as an irregular masonry.
The literature offers a voluminous list of contributions devoted to
this subject spreading from a complex fully coupled multiscale
analysis [1–4] to more engineering friendly approaches decoupling
the meso and macro analyses. Therein, the macroscopic analysis
builds upon the application of effective properties derived from
an independent computational homogenization step performed
on a suitable representative volume element (RVE) on mesoscale
[5–7]. This latter cathegory of modeling strategies includes also
an important group of works utilizing the concept of limit state
analysis [8–11], which, when combined with computational
homogenization at an RVE level, allows us to estime the macro-
scopic strength enevelopes [12–16] playing the role of initial fail-
ure surfaces on macroscale. The present contribution proceeds
along the same lines. To get a broader insight into various model-
ing strategies of masonry structures the interested reader may con-
sult a comprehensive review of this subject given in [17].

Proceeding in the footsteps of [5] we wish to address a potential
applicability of homogenization to feed a suitable macroscopic
constitutive model capable of reflecting the intrinsic material ani-
sotropy. To that end, a simple modification to an anisotropic dam-
age model originally introduced in [18] is proposed. Derivation of
the required model parameters from homogenization is, therefore,
the primary focus. Given the model formulation, we limit our
attention to tensile failure of a masonry panel subjected to inplane
loading. Such an analysis has typically been confined to a standard
strain-based formulation. To advance from a uniaxial strain
response to that of a uniaxial stress yet being able to follow the
softening branch of the stress–strain curve, the mixed loading/
boundary conditions are adopted. In preparation for a full scale
analysis of large masonry structures, the predictions provided by
the anisotropic damage model, here exploited in its original for-
mat, are compared to that of a simple isotropic scalar damage
model promoted, e.g., in [5].

The issue of general applicability of the mentioned computa-
tional framework is tested on two examples of masonry
mesostructures. The first example represents a family of regular
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Nomenclature

x Scalar damage parameter, [–]
Dt
a Damage parameter in tension in principal direction

a; �½ �
Dc
a Damage parameter in compression in principal direc-

tion a; �½ �
f t Tensile strength, Pa½ �
f c Compressive strength, Pa½ �
wcr Crack opening displacement, m½ �
wcr0 Parameter controlling slope of softening branch m½ �
lch Element characteristic length, m½ �
j Mazars’ equivaent strain, [–]
r Stress vector, Pa½ �
e Strain vector, [–]
L Elastic stiffness matrix, Pa½ �
M Elastic compliance matrix, Pa�1

h i
L Instantaneous (secant) stiffness matrix, Pa½ �
Ei Young’s modulus in material orthotropy direction i; Pa½ �
Gij Shear modulus, Pa½ �
mij Poisson’s number, [–]
Xhom Homogenized quantity

R Macrocscopic stress vector, Pa½ �
E Macroscopic strain vector, [–]
e� Fluctuation strain, [–]
X Periodic unit cell domain, m3

� �
cr Volume fraction of phase r; �½ �
L RVE length, m½ �
H RVE height, m½ �
Lcr Total length of traction free surfaces, m½ �
Acr Area of fracture surface, m2

� �
a Notch size, m½ �
Gf Average fracture energy, Nm�1

h i
GF Size independent fracture energy, Nm�1

h i

Abbreviations
RVE Representative volume element
PUC Periodic unit cell
ODM Orthotropic damage model
SDM Isotropic scalar damage model
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masonry with a periodic arrangement of bricks, while the second
example shifts attention towards an irregular or random masonry
typical of historical structures.

To demonstrate the behavior of a regular masonry panel we
ground on our initiative study on Placa masonry presented in
[19,20]. Although the origin of Placa buildings dates back to the
period of 1930–1960 [21], they represent more than 30% of the
Portuguese housing stock [22]. These buildings are often located
in the areas with a moderate to high seismic risk. This explains a
considerable interest in the determination of their bearing capacity
as they show high vulnerability to damage when subjected to seis-
mic loads mainly because of insufficient strength and deformation
capacity of masonry walls. This can be put in the context with the
fact that no impact of earthquake has been considered in their
design, see Fig. 1(c), as the first Portuguese seismic design regula-
tion appeared not until 1958. The figure shows a variety of
masonry arrangements ranging from a quarry masonry in exterior
walls and foundation to a regular masonry used for interior walls,
the latter being the subject of our investigation.

To examine the class of an irregular masonry we turn our atten-
tion to the group of historical churches located in the Broumov
region in the Czech Republic. For illustration, we present in Fig. 2
(c) the Church of All Saints built in the period of 1722–1723 in
accordance with the project of Kilian Ignaz Dientzenhofer.

The Broumov territory often experiences unpleasant climatic
conditions with heavy rains and cold weather, which, together
with the lack of knowledge of the quality of subsoil at the time
of construction, led to the design unable to prevent a differential
settlement and consequently the evolution of progressive damage.
See, e.g., [23] for invitation to this subject. The need for introducing
some rehabilitation measures goes hand in hand with the predic-
tion of the current state of damage and its cause.

Herein, we enter this subject by estimating the pre- and post-
peak behavior of several masonry panels similar to those plotted
in Figs. 2(a,b). Because deriving a single representative volume ele-
ment reflecting a random nature of the masonry over a large vol-
ume of the church goes beyond the present scope, we consider
several test windows of variable size just to demonstrate the
importance of the concept of so called statistically equivalent peri-
odic unit cell if we wish to address random microstructures prop-
2

erly, see [24,6,25,12, to name a few]. Another simplification
accepted in numerical simulations concerns the material variabil-
ity evident in Fig. 2. Although mostly sandstones appear in the
outer-leaf of the masonry wall, their material properties may vary
considerably given their different geological origin. However, in
the present study, a two-phase material system is considered
adopting the material properties pertinent to that of the highest
volume fraction. While this may influence the predicted homoge-
nized elastic properties, it will have only a minor impact on the
observed failure mechanism governed merely by mesostructural
details and material properties of the mortar phase.

The paper is organized as follows. Following this introductory
part, we proceed in Section 2 with a brief review of the two consti-
tutive models. The basic principles of first-order homogenization,
covering also the difference between the strain-based formulation
and mixed type of loading/boundary conditions, are summarized
next in Section 3. The core of the paper devoted to individual sim-
ulation scenarios is described in Section 4. The essential findings
are presented in Section 5.
2. Constitutive model and material properties

Given its composition, masonry is generally quantified as a
quasi-brittle material. It is strong in compression, relatively week
in tension, and exhibits a strong strain-softening when exceeding
the strength limits. Evolution of tensile cracks makes this material
discontinuous. The failure process is typically accompanied by
elastic stiffness degradation manifested by evolution of plastic
strains.

Such a complex behavior is difficult to simulate numerically
leading to simplifying assumptions. Expecting the dominant failure
mode be the tensile cracking we rely on standard damage models
in describing the masonry response. Although observed experi-
mentally, e.g., in the case of cyclic loading, we do not attempt to
address the evolution of permanent strains by coupling damage
with plasticity [26,27]. Instead, we focus on comparing the predic-
tion of macroscopic response by simple isotropic scalar damage
model [28] and more advanced orthotropic damage model [18],
which appears as a suitable candidate for the modeling of homog-
enized masonry on the structural scale. Although well known, we



Fig. 1. (a)-(c) Examples of Placa buildings, (c) Scheme of Placa building typology with various types of masonry walls.

Fig. 2. (a)-(b) Examples of irregular masonry panels, (d) Church of All Saints, Heřmánkovice, Broumov.
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present a short exposition to both models for the sake of complete-
ness. Both models were implemented into an in-house finite ele-
ment program SIFEL [29] used in all presented simulations.

2.1. Isotropic scalar damage model

In the most simple case of a scalar isotropic damage model, the
damage evolution is governed by a dimensionless damage param-
eter x written for a one-dimensional case as

x ¼ Ad

A
; ð1Þ

where Ad is the part of the cross section with evolved defects, i.e.
with the material in a damaged state, and A is the total cross section
area. The corresponding stress–strain relation reads

r ¼ 1�xð ÞLe ¼ Le; ð2Þ
where r and e are the stress and strain vectors, L is the elastic stiff-
ness matrix, and L is the instantaneous (secant) stiffness matrix. The
scalar damage parameter x 2 0;1½ � characterizes the material state.
The transition states from virgin state x ¼ 0 to the state of fully
evolved defects x ¼ 1 are described by the damage evolution law.

We adopt one-dimensional traction separation law given by
[28]

r ¼ f t exp � wcr

wcr0

� �
; ð3Þ

where f t is the tensile strength, wcr is the crack opening and wcr0 is
the parameter controlling the slope of the softening branch, see
Fig. 3. The one-dimensional format of Eq. (2) reads

r ¼ 1�xð ÞEe ¼ E e�xeð Þ ¼ E e� edð Þ; ð4Þ
where E is the Young’s modulus of the corresponding isotropic
material and ed ¼ xe is the strain component attributed to the
attained damage. To partially avoid mesh dependency of the results
typical of materials with softening the crack opening is smeared
over the element as [28]

ed ¼ xe ¼ wcr

lch
; ð5Þ

where lch is the element characteristic length. For complex multidi-
mensional stress/strain states, the strain e may be substituted by
the Mazars equivalent strain j provided by [30]

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
a¼1

eai2þ;
Dvuut ð6Þ

where �iþ
�

stands for the positive component. Combining Eq. (4)
with Eqs. (5) and (3) and replacing the strain e with the maximum
equivalent strain in the loading history �j yields the resulting non-
linear equation
Fig. 3. One-dimensional traction separation law.
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1�xð ÞE�j ¼ f t exp �xlch�j
wcr0

� �
; ð7Þ

to be solved for the damage parametr x for states where �j exceeds
the elastic threshold e0 ¼ f t=E.

2.2. Orthotropic damage model

While the scalar isotropic damage model can be used success-
fully for the description of 1D stress states, e.g., 1D tension or
bending, it may become impractical for multi-dimensional stress
states and generally anisotropic materials, because it reduces all
components of L to zero even in cases when damage evolves in
one direction only, recall Eq. (2). A suitable modification was pro-
posed in [18] leading to an anisotropic damage model.

The authors still assume an isotropic material but allow for an
independent evolution of damage in three-perpendicular direc-
tions in strain-space. By introducing two independent damage
parameters Dt

a and Dc
a for tension and compression, respectively,

they provide an equivalent format of Eq. (7) in the form [32]

1� Db
a

� 	
Ejebaj ¼ f b exp �Db

alchjebaj
wb

cr0

 !
; ð8Þ

where b 2 t; c½ � identifies either tensile or compressive failure, a rep-
resents the principal strain direction, and eba is the maximum prin-
cipal strain in the loading history, equivalent to j in Eq. (7). Further
details regarding practical applications of both models can be found
in [31,32].

The present formulation can be advanced beyond material iso-
tropy at the structural level through the following adjustments.
First write the stress–strain law in terms of principal stresses ra

and strains ea as

ra ¼ 1� H eað ÞD tð Þ
a � H �eað ÞD cð Þ

a

� 	
ra; r ¼ Lhome; ð9Þ

where H denotes the Heaviside function, ra stands for the effective
stress, and Lhom represents the homogenized elastic stiffness matrix,
see ahead Section 3. The traction separation law (10) is now written
as

1� D bð Þ
a

� 	
Lhomaa je bð Þ

a j ¼ f bð Þ
a exp �D bð Þ

a lchje bð Þ
a j

w bð Þ
cr0;a

 !
; ð10Þ

where Lhomaa are the diagonal components of Lhom. Applicability of Eq.
(10) is now tested by modeling the response of church in Fig. 2(c) to
differential settlement and annual change of temperature being the
principal sources of damage of the Broumov group of churches.

2.3. Material properties of masonry constituents

The basic material parameters needed in both damage models
are stored in Table 1. They were found from a series of laboratory
measurements performed on samples extracted from existing
structures.

The Placa masonry consists of clay bricks and mortar produced
from the cement, lime, and sand mixture in the proportions of 1:3.
To collect the required properties, the specimens extracted during
rehabilitation works from a building located in the center of Lisbon
were examined in the National Laboratory for Civil Engineering in
Portugal (LNEC). Further details on the actual experimental pro-
gram are available in [33–35].

Experimental investigation of the properties of stones used in
the construction of outer walls of Broumov churches combined
both nondestructive on site tests using the Schmidt hammer and
standard laboratory compression tests on cylindrical samples
drilled from various stones. The results are available in [36] with



Table 1
Material parameters of mortar, brick (Placa) and sandstone (Broumov).

Material Parameter Placa Broumov

Mortar E [GPa] 0.7 0.13
m [–] 0.2 0.17
f c [MPa] 1.3 1.5
f t [MPa] 0.1 0.1
wcr0 [m] 10�4 10�4

GF [N/m] 10 10

Brick E [GPa] 13.0 20
or m [–] 0.2 0.2

Sandstone f c [MPa] 40 45
f t [MPa] 2 2.25
wcr0 [m] 2.9 �10�5 2.9 �10�5

GF [N/m] 58 65.25
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the compressive strength f c of sandstone ranging from 40 to
50MPa. Because of a two-phase material system assumed in our
numerical analysis, the value of f c ¼ 45MPa was adopted. How-
ever, it will be seen that the fracture properties of stones play no
role owing to a weak mortar. The tensile strength f t was estimated
as 1/20 of f c . The fracture energy in tension was set to GF ¼ dft with
the ductility index d ¼ 0:029mm [37]. The material properties of
mortar were taken from [38]. For the adopted exponential soften-
ing law, we get wcr0 ¼ GF=f t , which follows from the definition of
fracture energy as the area under the traction separation diagram
in Fig. 3. The relations for GF and wcr0 were used also for the Placa
masonry.

3. Homogenization and effective elastic properties

Consider a two-phase material system loaded on its outer
boundary by the selected components of the prescribed surface
displacements and tractions that would generate macroscopic uni-
form strains E and stresses R in an equivalent homogeneous med-
ium. Such loading conditions allow us to invoke the Hill lemma
[39]

deT xð ÞDr xð Þ� 
 ¼ dETDR; ð11Þ
stating that the average of mesoscopic virtual internal work is equal
to the macroscopic work done by macroscopic uniform fields
E ¼ eh i and R ¼ rh i, where �h i stands for volume averaging. In light
of the expected nonlinear analysis, we present Eq. (11) and subse-
quent derivations in an incremental form.

Henceforth, the representative volume element will be thought
in terms of a periodic unit cell (PUC) X. A natural split of the local
displacements Dui ¼ DEijxj þ Du�

i into macroscopic (DEijxj) and fluc-
tuation (Du�

i ) parts provides the local strain increment as [40,7]

De xð Þ ¼ DE þ De� xð Þ; E ¼ e xð Þh i; e� xð Þh i ¼ 1
jXj

Z
X
e� xð ÞdX ¼ 0;

ð12Þ
where satisfying Eq. (12)3 calls for the periodicity of u�. The consti-
tutive equations of the phases and the corresponding macroscopic
relations are then given by

Dr xð Þ ¼ L xð Þ DE þ De� xð Þð Þ; DR ¼ LhomDE: ð13Þ
Substituting Eqs. (12)1 and (13)1 into Eq. (11) yields

dET L xð Þ DE þ De� xð Þð Þh i þ de�T xð ÞL xð Þ DE þ De� xð Þð Þ� 
 ¼ dETDR:

ð14Þ
Since the variations dE and de� xð Þ are independent, the preceding
equation can be split into two equalities
5

dET L xð Þh iDE þ L xð ÞDe� xð Þh ið Þ ¼ dETDR; ð15Þ
De�T xð ÞL xð Þ� 


DE þ De�T xð ÞL xð ÞDe� xð Þ� 
 ¼ 0:

Finally, standard finite element discretization

Du� xð Þ ¼ N xð ÞDr; De� xð Þ ¼ B xð ÞDr; ð16Þ
provides upon introducing Eq. (16) into Eq. (15) the resulting sys-
tem of algebraic equations in the formZ

X
L xð ÞdX

Z
X
L xð ÞB xð ÞdXZ

X
BT xð ÞL xð ÞdX

Z
X
BT xð ÞL xð ÞB xð ÞdX

2
664

3
775 DE

Dr

� �
¼ jXjDR

0

� �
;

ð17Þ
where N and B are standard interpolation and strain matrices,
respectively, and Dr is the increment of nodal fluctuation
displacements.

Point out that Eq. (17) represents the most general formulation
and allows for three specific loading scenarios:

� Stress-based formulation which assumes that the system is
loaded by the prescribed macroscopic stress DR. Such loading
conditions might be adopted if the interest is on the effective
elastic properties and macroscopic strength only as they do
not allow for moving down the descending part of the macro-
scopic stress–strain curve [20].

� To overpass the preceding obstacle the strain-based formula-
tion might be employed by prescribing the macroscopic strain
DE. Because dE ¼ 0, Eq. (17) simplifies as
Z

X
BT xð ÞL xð ÞB xð ÞdXDr ¼ �

Z
X
BT xð ÞL xð ÞdXDE: ð18Þ

On the contrary, this formulation provides no opportunity for
generating a one-dimensional macroscopic stress state typical
of laboratory conditions [19].

� Combining both approaches opens the way to mixed loading
conditions to drive the analysis in the displacement control
regime while keeping the one-dimensional format of the
macroscopic stress–strain law. For example, for the state of
plane stress the one dimensional macroscopic stress–strain
curve Rxx � Exx can be derived by setting Exx ¼ E;Ryy ¼ Rxy ¼ 0
in Eq. (17).

Both the strain-based formulation and mixed loading/boundary
conditions will be examined in the next section. But before pro-
ceeding with damage analysis in Section 4 we provide predictions
of the effective elastic properties of both types of masonry arrange-
ment, regular and irregular, to appreciate the corresponding degree
of anisotropy. Attention is limited to the state of plane stress.

3.1. Macroscopic elastic properties of Placa masonry

The regular periodic unit cell typical of Placa masonry including
the geometry and finite element mesh is plotted in Fig. 4. This rel-
atively fine mesh consisting of 60800 quadrilateral elements with a
bilinear approximation of the displacement field is also adopted
later in nonlinear simulations. The elastic moduli and Poisson
ratios of both the brick and mortar are taken from Table 1.

To derive the effective elastic properties, one may use either Eq.
(17) or (18) to get the effective compliance and stiffness matrices,
respectively. For illustration, the plane stress effective stiffness
matrix follows from system (18) by solving three successive elas-
ticity problems. To that end, the periodic unit cell is loaded, in turn,
by each component of E (ET ¼ Exx; Eyy;2Exy

 �
), while the other

components vanish. The volume stress averages normalized with



Fig. 4. Periodic unit cell for regular masonry: (a) Geometry, (b) Finite element mesh.

Table 2
Effective elastic properties of Placa masonry.

Ex Ey Gxy mxy myx
[GPa] [GPa] [GPa] [–] [–]

6.68 4.03 0.67 0.089 0.047
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respect to E then furnish individual columns of Lhom. Similarly, to
arrive at the effective compliances matrix Mhom one exploits Eq.
(17) while prescribing the macroscopic stress R.

The results appear in Table 2 clearly identifying the orthotropic
material symmetry of the Placa masonry. As for the Poisson ratio
mij, the notation is taken from [41], i.e., the off-diagonal compo-
nents of the compliance matrix M are M12 ¼ �mxy=Ey;M21 ¼
�myx=Ex, where Ex; Ey are the Young’s moduli in the x and y
directions, respectively. The shear modulus Gxy follows from
Gxy ¼ 1=M33.

3.2. Macroscopic elastic properties of irregular masonry

As already mentioned in the introductory part, the derivation of
statistically equivalent periodic unit cell goes beyond the present
scope. The results stored in Table 3 were obtained from simula-
tions carried out for five representative volume elements in
Fig. 5. These were constructed from randomly taken photographs
of the outer wall of the church in Fig. 2(c). One particular example
is seen in Fig. 5(a) for illustration.

All simulations were performed using constant strain triangular
elements evident in Fig. 5(b) the number of which being equal to
46000 on average. The elastic material properties of the mortar
and sandstone were adopted again from Table 1. The material
orthotropy evident from Table 3 complies well with the arrange-
ment of stones in the masonry wall. Although the analyzed
masonry could be classified as rubble rather than periodic or
quasi-periodic [14,15,42], more or less continuous bed joints could
be identified in all samples supporting the resulting material
orthotropy.

The differences in the resulting macroscopic moduli and Pois-
son ratios are merely attributed to mesostructural details of indi-
Table 3
Effective elastic properties of irregular masonry.

Test Ex Ey Gxy mxy myx Volume fractions

window [GPa] [GPa] [GPa] [–] [–] stones mortar

RVE 1 1.980 1.063 0.404 0.078 0.147 0.777 0.223
RVE 2 1.511 0.869 0.367 0.097 0.169 0.770 0.230
RVE 3 1.935 1.259 0.485 0.095 0.144 0.817 0.183
RVE 4 2.142 1.003 0.413 0.083 0.177 0.774 0.226
RVE 5 2.346 1.057 0.432 0.082 0.182 0.802 0.198
Mean 1.983 1.050 0.420 0.087 0.163 0.788 0.212
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vidual RVEs and small differences in the volume fractions of
stones available in Table 3. One may also point out the application
of periodic homogenization for non-periodic geometries suggest-
ing the homogeneous rather than periodic boundary conditions
to adopt for u�. However, discussing the impact of boundary condi-
tions on the resulting predictions is not the objective of this work
and the interested reader is referred to [43,44] for additional
details on this subject.

4. Nonlinear macroscopic stress–strain curves

Apart from effective elastic properties, the nonlinear finite ele-
ment simulation of masonry structures requires introduction of
macroscopic strength and fracture properties depending on the
type of macroscopic constitutive law. Given the material ortho-
tropy of masonry walls, the orthotropic damage model described
in Section 2 appears as a natural choice. Lacking the fracture prop-
erties of both the mortar and bricks/stones in compression, the
present section concentrates on the prediction of macroscopic ten-
sile strengths and fracture energies associated with principal mate-
rial directions. These quantities follow from the macroscopic
stress–strain curves.

While extracting the tensile strength is simple, calculating the
fracture energy deserves attention. In analogy with the smeared
crack model [45], recall also Eq. (5), it was shown in [6] that the
fracture energy can be calculated as the area under the stress–
strain curve multiplied by the PUC dimension parallel to the load-
ing direction, i.e., lch ¼ L;Hð Þ where L;H are the horizontal and ver-
tical dimensions of the periodic unit cell, respectively. For mixed
formulation considering the loading in the x direction
(Exx ¼ E;Ryy ¼ Rxy ¼ 0Þ, this is evident from

U ¼ Uel þWcr;x ¼ ExxL; Exx ¼ Rxx

Ehom
x

þ Ed;xx; Ed;xx ¼ Wcr;x

h
; ð19Þ

where, in accord with the concept of the first-order homogenization
outlined in Section 3, the macroscopic displacement U is assumed
linear over the representative volume element. The elastic part of

the macroscopic strain Eel
xx is written in terms of the homogenized

Young’s modulus Ehom
x and the macroscopic stress Rxx, and the

macroscopic damage strain Ed;xx is expressed as the macroscopic
crack opening Wcr;x smeared over a certain distance h. Comparing
Eqs. (19)1 and (19)3 readily provides h ¼ L so that

GF;x ¼
Z Wmax

cr;x

0
Rxx dWcr;x ¼

Z f t;x

0
Exx � Eel

xx

� 	
LdRxx ¼

¼ L
R Emax

xx
0 Rxx Exxð ÞdExx:

ð20Þ

The mixed loading/boundary conditions guarantee that the Rxx

stress component in Eq. (20) is the only non-zero stress component
for a given loading direction. An analogous expression is obtained
for the loading direction along the y-axis



Fig. 5. Examples of irregular masonry test window: (a) RVE 1 geometry, (b) RVE 1 finite element mesh, (c) RVE 2 geometry, (d) RVE 3 geometry, (e) RVE 4 geometry, (f) RVE 5
geometry.
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GF;y ¼ H
Z Emax

yy

0
Ryy Eyy
� �

dEyy: ð21Þ

It is also worth mentioning, given the first term on the right-hand
side of Eq. (20), that GF in both equations is assumed to be a mate-
rial property independent of size.
4.1. Placa masonry

The periodic unit cell in Fig. 4 was loaded in tension along the
directions x and y of material orthotropy in turn by the prescribed
macroscopic strain Exx and Eyy, respectively. Based on particular
formulation, the case of uniaxial strain, strain-based formulation
(strain), or uniaxial stress, stress-based formulation with mixed
loading/boundary conditions (mixed), arise.
7

The macroscopic stress–strain curves plotted in Fig. 6(a) for
loading in the x direction clearly identify the differences in the pre-
dictions provided by the two constitutive models. For illustration,
both the strain-based (strain) and mixed type of loading/boundary
conditions (mixed) are examined. The solid lines associate with the
orthotropic damage model (ODM). A significantly higher tensile
strength is attributed to the property of ODM, which keeps the
damage parameter for the direction perpendicular to the loading
direction essentially zero so there is no elastic stiffness degradation
contrary to the isotropic scalar damage model (SDM), the dashed
lines in Fig. 6(a). The evolution of damage parameter for ODM
along the loading direction appears more distributed compared
to that of SDM, which suggests localization of damage solely into
the head joints, Figs. 7(a,b).

The loading direction along the y-axis provides qualitatively
different results, which are, however, not surprising given the



Fig. 6. Macroscopic stress–strain curves for regular (Placa) masonry: (a) Strain Exx applied, (b) Strain Eyy applied (ODM - orthotropic damage model, SDM - isotropic scalar
damage model).

Fig. 7. Evolution of damage parameter for regular (Placa) masonry: (a) ODM, Exx , (b) SDM, Exx , (c) ODM, Eyy , (d) SDM, Eyy .
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geometrical arrangement. Because mortar is much weaker com-
pared to bricks, the bed joint is the weakest link, as evident from
Figs. 7(c,d). Thus even with ODM, the non-degrading elastic stiff-
ness along the x-axis provides no support resulting in a similar
behavior predicted by both models.

Unlike the macroscopic tensile strength, the evaluation of
homogenized fracture energies from the macroscopic stress–
strain curves is not that straightforward, given difficulty in con-
verging to the zero macroscopic stress. Therefore, for non-
converged simulations the stress–strain curves were ad hoc pro-
longed as indicated by straight thin lines in Fig. 6. As seen in
Fig. 6(a), such a simple remedy was not acceptable for ODM
Table 4
Macroscopic tensile strength and fracture energies from R� E diagrams (Placa
masonry).

Analysis Rxx � Exx Ryy � Eyy

type f t;x [kPa] GF;x [N/m] f t;y [kPa] GF;y [N/m]

SDM mixed 140.0 20.7 104.0 12.2
SDM strain 142.5 20.8 104.1 12.2
ODM mixed 329.7 107.6 103.5 16.9
ODM strain 368.6 – 103.7 16.5

8

combined with the strain-based formulation. Although not so
obvious for other scenarios, the formulation based on the mixed
loading/boundary conditions was employed to extract the
homogenized fracture properties. The macroscopic strengths
and fracture energies derived from Eqs. (20) and (21) are sum-
marized in Table 4.

4.2. Irregular masonry

Five representative volume elements in Fig. 5 were examined to
address the influence of constitutive model and formulation of the
homogenization problem. The same loading conditions as in the
Placa masonry were considered.

The evolution of macroscopic stress R as a function of the
applied macroscopic strain E is plotted for two selected RVEs in
Fig. 8. We first observe that the stone layout favoring weaker ‘‘bed”
joints results again in lower tensile strengths in the vertical direc-
tion, compare Figs. 8(a) and (b). This supports the results obtained
already by elastic homogenization in Section 3. It is also seen that
both homogenization formulations (strain and mixed) yield almost
identical prediction of the macroscopic response.

Contrary to Placa masonry, there is also no difference in the pre-
diction of macroscopic strength provided by the two constitutive
models (ODM and SDM). Nevertheless, in the post-peak regime,



Fig. 8. Macroscopic stress–strain curves for irregular masonry. Testing the influence of microstructure, formulation of homogenization problem, and choice of constitutive
model: (a) Strain Exx applied, (b) Strain Eyy applied (ODM - orthotropic damage model, SDM - isotropic scalar damage model).

Tomáš Krejčí, Tomáš Koudelka, V. Bernardo et al. Computers and Structures 254 (2021) 106580
the softening branch cannot be captured well by ODM owing to a
stress locking effect which appears for larger values of the damage
parameter and the corresponding crack opening [46]. This effect
leads to a spurious stress transfer produced by the finite element
interpolation. This was documented quite well on a regular
masonry when loading the periodic unit cell in Fig. 4 by Exx. We
observed a misalignment of principal strain directions with respect
to the element edges on the horizontal crack parts. Inevitable rota-
tions of the principal strain directions appear also in the vertical
parts where the crack propagation initiates at different layers of
the finite element mesh in the mortar phase due to rounding
errors. Contrary to that, no such effect was identified for the load-
ing along the y-axis by Eyy where the principal strain directions
were found well aligned with the element edges for the entire
loading process. As suggested in [47], this phenomenon might be
suppressed by employing higher-order interpolation elements or
by the transition to a scalar damage model for the large crack
openings. But this goes beyond the present scope and will be the
subject of further investigation. This is also why the scalar isotropic
damage model will be employed in all the remaining analyses.

It might be of some interest mentioning the computational bur-
den which was found similar to both damage models and for con-
verged solutions the analysis lasted around 6 h for all RVEs in Fig. 5
using 4� Intel(R) Xeon(R) CPU E5-2630 v3 2.40 GHz with 32 pro-
cessors and 128 GB RAM.

4.2.1. Fracture energy from wedge splitting test
Because lacking sufficient support for applying a periodic

homogenization in the absence of statistically equivalent periodic
unit cell, recall randomly chosen non-periodic mesostructures in
Fig. 5, we estimate the fracture energy from a numerical represen-
tation of a wedge splitting test, see Fig. 9(a), one would perform in
laboratory [48]. Two laboratory specimens being represented by
RVE 1 and RVE 3 are considered allowing us to partially address
the influence of both the specimen size and mesostructural details.
We proceed in the footsteps of [49] and define four wedge scenar-
ios as depicted in Figs. 9(c,d).

To begin with, we recall Eq. (20) and write the fracture energy
GF as

GF ¼
Z wmax

cr

0
r wð Þdw ¼ lch

Z emax
d

0
r wð Þde ¼ �DEint

BDlcr
; ð22Þ

where lch ¼ w=ed now represents the localization band, B is the
specimen thickness and �DEintð Þ is the loss of internal energy due
crack advance Dlcr . Following RILEM [50], we may now derive the
average fracture energy Gf by integrating Eq. (22) as
9

Z
dEint þ Gf B

Z
dlcr ¼ 0; ð23Þ

where Gf is assumed constant given by

Gf ¼ �Eint

Acr
¼ 1

Acr

Z CODmax

0
F uð Þdu; ð24Þ

where Acr ¼ BLcr is the fracture surface, Lcr is the total length of trac-
tion free surfaces, and CODmax represents the maximum crack open-
ing displacement COD attained at complete separation.

To obtain the force displacement curve F � COD, the test simu-
lation was carried out in the displacement control regime by pre-
scribing COD ¼ 2u, where u is the horizontal displacement
specified at two points indicated by the reaction force F in Fig. 9(a).

An example of the reaction force - displacement curve F � u for
the smallest notch size a ¼ H=6 is plotted in Fig. 9(b) to confirm the
symmetry of the analysis. To understand the difference in the
shape of the two curves, we should point out the different size of
RVE 1 and RVE 3 as well as significant differences in the local
arrangement of stones. The corresponding F � COD curves for the
assumed notch to depth ratios a=H ¼ 1=6;1=3;1=2;2=3 are shown
in Figs. 9(e,f). The selected damage patterns, compatible with
mesoscopic details, are seen in Fig. 10.

The resulting fracture energies Gf ;x derived from Eq. (24) are
stored in Table 5. The fracture surface Acr was estimated from the
plots of final damage pattern by setting Lcr the sum of all segments
for which x ¼ 1. The last column in Table 5 shows for illustration
the fracture energy G�

f ;x obtained by assuming the fracture surface
Acr ¼ H � að ÞB generally adopted for quasi-homogeneous and iso-
tropic materials such as concrete or mortar.

For such materials, it has been shown in [51] that Gf is a func-
tion of notch size and rapidly decreases to zero as a ! H as seen in
Fig. 11(a) showing also the proposed bilinear form of the local frac-
ture energy gf to estimate GF . Contrary to that, the masonry mate-
rial does not show such a strong notch size dependence. This is
evident from the plot of fracture energy Gf ;x as a function of the
notch size a in Fig. 11(b).

In fact, the damage in masonry localizes into the mortar joints
representing more or less a constant localization band, which does
not disappear even when approaching a free boundary. Thus the
fracture energy GF derived from Eq. (22) is indeed a constant inde-
pendent of the extent of damage and consequently Gf � GF provid-
ing the fracture surface Acr ¼ BLcr . Inadequacy of considering the
fracture surface Acr be proportional to the un-notched ligament
size H � a for highly heterogeneous materials is also evident from
Fig. 11(b).



Fig. 9. Wedge splitting test: (a) general scheme, (b) example of F � COD curve for a ¼ 1=6H, (c) wedge geometry - RVE 1, (d) wedge geometry - RVE 3. Evolution of the
reaction force F as a function of the applied COD: (e) RVE 1, f) RVE 3.

1 Note that in order to calculate the fracture energy, the stress–strain diagrams in
Fig. 12(b) were artificially prolonged and truncated at the maximum strain
Exx ¼ 0:002.
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4.2.2. Fracture energy from homogenization
Having at hand an estimate of fracture energy from the wedge

splitting test being around 22N/m we return back to Eq. (20) to
compare this value with the one predicted by homogenization.
The need for a sufficiently large RVE is addressed first by examin-
ing three medium-size RVEs randomly extracted from RVE 3. These
are denoted as M1, M2, and M3 in Fig. 12(a). To keep the uniaxial
stress state, the mixed formulation is employed to acquire the
macroscopic tensile stress–strain data.

This first experiment considers tension along the x-axis by pre-
scribing the macroscopic strain Exx while maintaining
Ryy ¼ Rxy ¼ 0. The resulting macroscopic stress–strain curves
appear in Fig. 12(b). Although the volume fraction of stones cs
listed in Table 6 does not very much and is quite close to that of
the large RVE 3 for which cs ¼ 0:817, recall Table 3, the macro-
10
scopic response is quite different. This is in agreement with the
final damage pattern plotted for individual RVEs in Figs. 12(c-e).
Clearly, the arrangement of stones in samples M1 and M3 can
hardly be considered as periodic and thus representative of the
large domain of masonry. In this regard, the sample M2
only could be deemed satisfactory resulting in fracture energy
GF;x ¼ 20:2 N/m1, the only value in Table 6 comparable with the
average value Gf ;x ¼ 21:7N/m provided by the wedge splitting test.
However, in terms of the effective elastic properties, even the M2
sample does not contain sufficient morphological details implying
a considerably stiffer elastic response compared to that provided



Fig. 10. Wedge splitting test - evolution of damage parameter x: (a) RVE 1 a ¼ 1=6H, (b) RVE 1 a ¼ 1=3H, (c) RVE 3 a ¼ 1=6H, (d) RVE 3 a ¼ 1=3H.

Table 5
Fracture energy from wedge splitting test (B ¼ 1m).

Test a Lcr
R
F du Gf ;x G�

f ;x

window [m] [m] [Nm] [N/m] [N/m]

RVE 1 0.67 0.750 14.47 24.5 43.6
0.133 0.745 11.75 19.9 44.0
0.200 0.380 7.95 20.9 39.8
0.267 0.320 7.38 21.7 55.5

RVE 3 0.108 0.694 15.56 22.4 28.7
0.217 1.005 20.40 20.3 47.1
0.325 0.502 11.68 23.3 35.9
0.433 0.378 7.68 20.3 35.4

Fig. 11. Estimate of size-independent fracture energy GF;x: (a) Bilinear form of local fracture energy gf proposed in [51], (b) Gf ;x from Eq. (24) plotted as a function of a.
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Fig. 13. Macroscopic stress–strain curves for irregular masonry with artificially prolonged softening part to attain zero macroscopic stress at complete failure: (a) Strain Exx

applied, (b) Strain Eyy applied.

Fig. 12. (a) Medium size RVEs M1, M2, M3, (b) Macroscopic stress–strain curves, (c)-(e) Damage patterns: (c) M1, (d) M2, (e) M3.

Table 6
Fracture energy from homogenization. Test windows (L ¼ 292 mm, H ¼ 315 mm, B ¼ 1 m) extracted from RVE 3.

Test cs Ex Ey L
R
Rxx dExx GF;x

window [–] [GPa] [GPa] [m] [N/m2] [N/m]

M1 0.844 2.87 2.22 0.292 137.6 40.2
M2 0.845 3.87 1.96 0.292 69.4 20.2
M3 0.810 2.47 1.74 0.292 46.2 13.7
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by RVE 3, compare the effective elastic moduli Ex; Ey in Tables 3 and
6, respectively.

In the light of these findings, we turn our attention back to large
RVEs in Fig. 5. Because representing sufficient diversibility in
mesostructural details, we accord our attention to RVE 1, RVE3,
and RVE 5 only. The macroscopic stress–strain curves for the two
loading directions (tension along x and y axes) are displayed in
Fig. 13. To obtain the macroscopic fracture energies given by Eqs.
(20) and (21), the non-converged solutions were again artificially
prolonged as indicated by the dashed lines.
12
The macroscopic fracture properties are stored in Tables 7 and
8. We observe some differences in the predicted values of the
macroscopic tensile strength. It is believed that this, together
with initial nonlinearity before tensile softening, is caused by
the evolution of isolated damage zones due to local tension,
which in turn depends on specific mesoscopic morphology of
individual RVEs. The material heterogeneity producing local stress
concentrations is an elementary argument to support a relatively
low macroscopic tensile strength not even exceeding the strength
of the mortar phase, particularly in the y direction normal to the



Table 7
Fracture energies from R� E diagrams.

Test L H
R
RxxExx

R
RyyEyy GF;x GF;y

window [m] [Pa] [N/m]

RVE 1 0.53 0.40 35.6 49.2 18.9 19.7
RVE 3 0.93 0.65 22.9 22.2 21.3 14.4
RVE 5 0.67 0.51 48.0 37.0 32.2 16.4

Table 8
Macroscopic tensile strength and critical crack opening displacement.

Test f t;x f t;y Wmax
cr;x Wmax

cr;y Wmax;�
cr;x Wmax;�

cr;y Wcr0;x Wcr0;y

window [kPa] [mm] [mm] [mm]

RVE 1 99.9 92.4 0.95 1.13 0.38 0.43 0.19 0.21
RVE 3 107.8 89.4 0.71 0.59 0.40 0.32 0.20 0.16
RVE 5 119.5 94.0 1.47 1.02 0.54 0.35 0.27 0.17

Fig. 14. Evolution of damage parameter x for irregular masonry: (a) RVE 1, Exx , (b) RVE 1, Eyy , (c) RVE 3, Exx , (d) RVE 3, Eyy , (e) RVE 5, Exx , (f) RVE 5, Eyy .
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Fig. 15. (a) Example of macroscopic stress–strain diagram Rxx � Exx for RVE 3, (b) Rxx �Wcr;x diagrams.

Table 9
Fracture energies from R� E and R�Wcr diagrams.

Test Ex Esx GF;x G�
F;x

window [GPa] [N/m]

RVE 1 1.98 1.08 18.9 17.9
RVE 3 1.94 1.01 21.3 19.3
RVE 5 2.36 1.03 32.2 30.1
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‘‘bed” joints. It is clear that the effect of local morphology must
also reflect in the prediction of tensile softening and consequently
the macroscopic fracture energy. This is evident in the examples
of damage pattern in Fig. 14 associated with the last converged
step. While the macroscopic stress–strain curves depend on the
size of the representative volume element, the corresponding
fracture energies are assumed to be a material property. This
statement is supported by consistency of the predicted values
seen in Table 7.

For the results to be potentially applicable with a commercial
software such as ABAQUS we also present in Table 8 estimates of
the critical crack opening. While the values of Wmax

cr;i were found

from Eq. (19)3 with h ¼ L;H for given values of Emax
d;ii ¼ Emax

ii

extracted from Fig. 13, the values of Wmax;�
cr;i ¼ 2Gf ;i=f t;i correspond

to the assumption of a linear softening law. Note, however, that
none of these values are directly applicable with the adopted expo-
nential softening law where the value of Wcr0;i ¼ Gf ;i=f t;i is needed
instead.

To check validity of Eq. (20) one may attempt to estimate the
fracture energy GF directly from the first term on the right-hand
side of this equation. The point of departure is Eq. (19)2. Because
Fig. 16. From laser scanning pho
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of nonlinear response prior to exceeding the macroscopic tensile
strength f t , we accepted some simplification by replacing the effec-

tive Young modulus Ehom in this equation by the secant modulus Es

displayed in Fig. 15(a), see also Table 9 to compare this value with
the homogenized elastic modulus taken from Table 3. Exploiting
Eq. (19)3 we then arrive at R�Wcr diagrams in Fig. 15(b) allowing
us to calculate the fracture energies G�

F (the lower bound estimate)
as the area under individual diagrams. The results are stored in
Table 9 together with the fracture energy derived from the applica-
tion of R� E diagrams in Fig. 13, recall Table 7. Both values are rea-
sonably close up to the error in G�

F caused by omitting the part of
energy associated with the evolution of isolated cracks prior to
the onset of softening.
5. Conclusions

The forgoing discussion was intended to review some of the
basic aspects of first-order homogenization when applied to
quasi-brittle materials. In expectation for solving complex
masonry structures we gave up the idea of a fully coupled multi-
scale analysis and focused on the derivation of basic fracture prop-
erties such as strength and fracture energies from computational
homogenization considering suitable representative elements.
These properties are expected to enter a suitable macroscopic con-
stitutive model exploited in an independent analysis at structural
level. In this regard, a simple isotropic scalar damage model and
a more advanced anisotropic (orthotropic) damage model were
examined and compared. This is also why we limited our attention
to pure tensile cracking with no attempt to describe evolution of
plastic strains due to, e.g., sliding or triaxial crushing, which in turn
would call for a considerably more advanced constitutive model.
togrammetry to 3D model.
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The principal findings are:

� Although not considerably different in providing the macro-
scopic response, the mixed type formulation is preferred to
the strain-based formulation allowing us to comply with the
uniaxial state of stress.

� Application of the orthotropic damage models appears inappro-
priate in the solution of the homogenization problem. Contrary
to that, a simple isotropic damage model is found to provide
meaningful results supported by comparing the results of
wedge splitting test and homogenization for irregular masonry.
It is reasonable to assume that a similar outcome would be
obtained for a regular masonry.

� Owing to a relatively weak anisotropy of historical masonry, the
present results also confirm applicability of the isotropic dam-
age model even on macroscale by using some average fracture
properties, e.g., GF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GF;xGF;y

p
. This opens the way to applica-

tion of various commercial codes such as ABAQUS by employing
constitutive models typically formulated for quasi-isotropic
materials such as concrete. Nevertheless, application of the
modified orthotropic model on macroscale is currently under
investigation with reference to a group of historical churches
in Broumov region in the Czech Republic. To this end, the
homogenized values in Table 3 will also be exploited. Apart
from constitutive modeling, attention is accorded to a detailed
representation of geometry employing laser scanning and aerial
‘‘drone” photogrammetry. An example of a colored point cloud
representation of the church in Fig. 2 transformed into a three-
dimensional model suitable for meshing and finite element
analysis is available in Fig. 16.
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