Contents

1 Notation

2

1.1
1.2

Data type, variableo
Class, attribute, member function, object

Definitions—Problem Description

2.1

2.2

2.3

24

2.5

Setting of general function oo
2.1.1 General description
2.1.2 Examples
2.1.2.1 Definition of constant function
2.1.2.2 Definition of relationship described by table
Setting of storage of matrices
2.2.1 General description Lo
222 Examples
2.2.2.1 Matrix stored in the skyline storage scheme
Setting of solver of linear algebraic equations
2.3.1 General description
2.3.2 Examples
2.3.2.1 LDL" factorization
2.3.2.2 LU factorization
2.3.2.3 Conjugate gradient method without preconditioner

2.3.2.4 Conjugate gradient method with preconditioner based on
incomplete factorization
Setting of solver of non-linear algebraic equations
2.4.1 General description
2.4.1.1 Arc-length method
2.4.1.2 Newton-Raphson method
2.4.2 Examples
2.4.2.1 Arc-length method, all DOFs are used
2.4.2.2 Arc-length method, selected DOF's are used
2.4.2.3 Newton-Rahpson method
Setting of time controller oo
2.5.1 General description Lo
2.5.2 Examples
2.5.2.1 Time controller with constant time step
2.5.2.2 Time controller with variable time step

1

11
11
11
12
12
12
13
13
13
13
14
14
14
14
15
15

CONTENTS

2.5.2.3 Time controller with adaptive time step 21
2.6 Setting of node renumberingo 23
2.6.1 General description Lo 23
2.6.2 Examples 23
2.6.2.1 No node renumberingo 23
2.7 Setting of strain computation o000 24
2.7.1 General description 24
2.7.2 Examples 24
2.7.2.1 Strains are not required 24
2.7.2.2 Strains are computed in nodes, average values are required 25
2.8 Setting of stress computation L. 26
2.8.1 General descriptiono 26
2.8.2 Examples 26
2.8.2.1 Stresses are not required L 26
2.8.2.2 Stresses are stored in nodes, average values are required . 26
2.9 Setting of computation of internal variables. 28
2.9.1 General description 28
2.9.2 Examples 28
2.9.2.1 Internal variables are not required 28

2.9.2.2 Internal variables are stored in nodes, average values are
required Lo 28
2.10 Setting of gradient computation 30
2.10.1 General description 30
2.10.2 Examples 30
2.10.2.1 Gradients are not required 30
2.10.2.2 Gradients are stored in nodes, average values are required 30
2.11 Setting of fluxes computation oo 32
2.11.1 General description 32
2.11.2 Exampleso 32
2.11.2.1 Fluxes are not required 32
2.11.2.2 Fluxes are stored in nodes, average values are required . . 32
Mesh—Nodes, Constraints, Elements 35
3.1 SIFEL mesh format, 35
3.1.1 Nodes, edges, surface on elements 35
3.1.1.1 Triangular element 35
3.1.1.2 Triangular element with mid-side nodes 38
3.1.1.3 Quadrilateral elements 39
3.1.1.4 Quadrilateral elements with mid-side nodes 40
3.1.1.5 Tetrahedral elements 41
3.1.1.6 Tetrahedral elements with mid-side nodes 42
3.1.1.7 Hexahedral elements 43
3.1.1.8 Hexahedral elements with mid-side nodes 44
3.2 Local coordinate system innode L. 46

3.21 Examples 46

CONTENTS

3.2.1.1 No local coordinate system
3.2.1.2 Local coordinate systemin 2D
3.2.1.3 Local coordinate systemin3D
3.3 Nodes
3.3.1 Examples
3.3.1.1 Mechanical analysis, nodes in 2D, 2 DOFs in each node,
no cross-section, no local coordinate system
3.3.1.2 Transport analysis, nodes in 2D, 2 DOFs in each node, no
cross-sectiono
3.3.1.3 Mechanical analysis, nodes in 2D, 2 DOF's in each node,
cross-section in nodes, no local coordinate system
3.3.1.4 Mechanical analysis, nodes in 2D, 3 DOFs in each node,
no cross-section, local coordinate system in node
3.3.1.5 Mechanical analysis, nodes in 3D, 3 DOFs in each node,
no cross-section, local coordinate system in node
3.4 Hanging Nodes
3.4.1 Examples
3.4.1.1 Mechanical analysis, nodes in 3D, 3 DOF's in each node,
no cross-section, local coordinate system in node, hanging
nodeonanedge
3.4.1.2 Mechanical analysis, nodes in 3D, 3 DOF's in each node,
no cross-section, local coordinate system in node, hanging
nodeon asurface
3.4.1.3 Mechanical analysis, nodes in 3D, 3 DOFs in each node,
no cross-section, local coordinate system in node, hanging
nodeinavolume, .

4 Materials

4.1 Tentative material parameters of selected materials
4.2 Materials for mechanical analyses
4.2.1 Linear elastic isotropic mechanical model
4.3 Materials for trasport analyseso
4.3.1 Linear isotropic transport model00

4.3.1.1 Stationary problem, linear isotropic transport model
4.3.1.2 Non-stationary problem, linear isotropic transport model .
4.3.2 Kiinzel model of coupled heat and moisture transport

5 Cross Section

5.1 Setting of cross section in node or on element
5.1.1 Examples

5.1.1.1 Nocrosssection

5.1.1.2 Cross section for 2D beams

5.2 Definition of cross sections
5.2.1 Examples

5.2.1.1 List of cross sections for linear statics

51
51
51
51
52
52
52
52
53

4 CONTENTS
6 Definitions—Output and Graphics 57
6.1 Classsel 57
6.1.1 Conjugated selection 58
6.1.2 Examples of input record for basic selection types 58
6.1.2.1 Definition of empty list 58
6.1.2.2 Definition of list of allids 59
6.1.2.3 Definition of id ranges 59
6.1.2.4 Definition of list of individual ids 59

6.1.3 Examples of input record for selections of periodic indeces and real
values 60
6.1.3.1 Integer periodic selection type 60
6.1.3.2 Selection of real ranges 60
6.1.3.3 Selection of real list 60
6.1.3.4 Periodic selection from real range 61
6.1.3.5 Periodic selection from real range 61
6.1.4 Examples of input record of selections used for GiD 62
6.1.4.1 Selection of tensorial quantity stored as vector 62

6.1.4.2 Selection of tensorial quantity stored as vector in larger
AITAY . o o o v v e e e e e e e e e e 62
6.1.4.3 Selection of vector quantity stored in larger array 62
6.1.5 Input record for conjugated selections 63
6.1.6 Example of ordinary conjugated selection 63
7 MEFEL Input Files 65
7.1 Description of Mechanical Analyses, 65
7.2 Linear Static Analysis 66
7.2.1 General description Lo 66
7.2.2 Examples 67
7.2.2.1 Linear statics 67
7.3 Eigenvibrationo 68
7.4 Non-linear Static Analysis 69
7.4.1 General description L 69
742 Examples 70
7.4.2.1 Non-linear statics, Newton-Raphson method 70
7.4.2.2 Non-linear statics, arc-lenght method 71
7.5 Outdriver section 72
7.5.1 Configuration of plain text output 73
7.5.1.1 Configuration of plain text output of nodal values 74

7.5.1.2 Configuration output values for elements in plain text format 75
7.5.1.3 Configuration output values for UDPs in plain text format 76
7.5.1.4 Example of conjugated selection for displacement compo-

nents at nodes 76
7.5.1.5 Example of conjugated selection for strains at nodes . . . 77
7.5.1.6 Example of conjugated selection for stresses at nodes . . . 77

7.5.1.7 Example of conjugated selection for plastic strains at nodes 78

CONTENTS 5

7.5.1.8 Example of conjugated selection for strains on elements . . 79

7.5.1.9 Example of conjugated selection for stresses on elements . 81
7.5.1.10 Example of conjugated selection for plastic strains on ele-

ments Lo 81

7.5.2 Configuration of graphical output 83

7.5.2.1 Configuration of nodal graphical output 85

7.5.2.2 Configuration of graphical output for elements 86
7.5.2.3 Example of conjugated selection for nodal force compo-

nents at nodes 87

7.5.2.4 Example of conjugated selection for strain tensor at nodes 87
7.5.2.5 Example of conjugated selection for stress tensor at nodes 88
7.5.2.6 Example of conjugated selection for plastic strain tensor
atnodes 89
7.5.2.7 Example of conjugated selection for strain tensor on elements 89
7.5.2.8 Example of conjugated selection for stress tensor on elements 91
7.5.2.9 Example of conjugated selection for plastic strain vector

onelements 92

7.5.3 Configuration of tabular output 93
7.5.3.1 Example of configuration for tabular output 96

7.5.4 Examples of outdriverm input section 99
7.5.4.1 Example of linear statics problem 99

7.5.4.2 FExample of nonlinear statics problem 102

7.5.5 Configuration of tabular output 106

8 TRFEL Input Files 107
8.1 Types of Transport Analyses, 107
8.2 Linear Stationary Analysis 109
8.2.1 General description Lo 109
8.2.2 Examples 110
8.2.2.1 Linear stationary analysis 110

8.3 Linear Non-stationary Analysis 111
8.3.1 General description 111
8.3.2 Examples 112

8.3.2.1 Linear non-stationary analysis 112

CONTENTS

List of Tables

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Attribute tfunco 11
Attribute itype 11
Attribute ts 13
Attribute tlinsol 14
Attribute pt 14
Attribute tnlinsol 16
Attribute stmat Lo 16
Attribute tet L 20
Attribute nodreno 23
Attribute straincomp 24
Attribute strainpos 24
Attribute strainaver 24
Attribute stresscomp L 26
Attribute stresspos 26
Attribute stressaver 26
Attribute othercompo 28
Attribute otherpos 28
Attribute otheraver 28
Attribute gradcomp Lo 30
Attribute gradpos 30
Attribute gradaver 30
Attribute fluxcomp 32
Attribute fluxpos 32
Attribute fluxaver 32
Type of entity used for domain description 35
Element types used in mesh generators 36
Ordering of edges for triangular element with 3 nodes. 37
Ordering of edges for triangular element with 6 nodes. 38
Ordering of edges for quadrilateral element with 4 nodes. 39
Ordering of edges for quadrilateral element with 8 nodes. 40
Ordering of surfaces for hexahedral element with 8 nodes. 43
Ordering of surfaces for hexahedral element with 20 nodes. 44
Attribute transf oL 46

5.1

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

LIST OF TABLES

Attribute crst L Lo 55
Attribute tprob 65
Attribute Mespro 65
Attribute reactcomp 66
Attribute adaptivityflago oo 66
Attribute stochasticcale00 66
Attribute homog 67
nodip enumeration type L. 94
prunk enumeration typeo 94
General outdiagm input record 95
outdiagm input record for praticular types of point 95
outdiagm input record for praticular type of uknowns 95
Attribute tprob 107
Attribute Mesprt 107
Attribute tmatt 108
Attribute mednam 0oL 108
Attribute tgravityo 108
Attribute adaptivityflago 109
Attribute stochasticcale o oo 109
Attribute homogt 110
Attribute tprt L. 110

Attribute diagcapo 111

Chapter 1

Notation

This chapter introduces the notation and terminology used in the manual.

1.1 Data type, variable

The C programming language contains several data types but only three of them are used
in the SIFEL code. The data types are long, double, char. Typical example is the following
one

long i;
long is the data type, i is a variable of the type long.

1.2 Class, attribute, member function, object

The C++4 enables to define additional data types. The SIFEL code uses the data type
class. Example of the class is the following

class matrix

{

long m, n;
double *a;
read (FILE *in);

I¥

matrix mat;

matrix is the data type of class, m, n, a are the attributes (data members, class attributes)
of the class matrix, the class matrix contains the member function (method) read(...), mat
is an object (instance) of the class matrix.

Another example

class probdesc

{

probtype tp;

10 CHAPTER 1. NOTATION

b
probdesc Mp;
Mp.tp = linear_statics;

probtype is an enumeration data type, tp is the attribute (data member, class attribute)
of the class probdesc, tp is of the type probtype, linear_statics is an enumerator (identifier)
from the enumeration probtype.

Chapter 2

Definitions—Problem Description

2.1 Setting of general function

2.1.1 General description

There are many variables which are described by a function or table. For such description,
the class gfunct is implemented. The type of the function is stored in the attribute
tfunc and the appropriate keyword is funct_type. The values of the attribute tfunc are
summarized in Table 2.1.

attribute | enumerator | description

tfunc = 0 | stat constant value

tfunc = 1 | pars parser

tfunc = 2 | tab the relationship is described by a table

Table 2.1: Attribute tfunc

If the constant value is selected, the value is stored in the attribute f with the keyword
const_val.

If the table is selected, the type of interpolation in the table is read and stored to
the attribute itype of the class tablefunct. The keyword for the type of interpolation is
approx_type. The values of the attribute itype are summarized in Table 2.2.

attribute | enumerator description

itype = 1 | piecewiselin piecewise linear interpolation
itype = 2 | piecewiseconst | piecewise constant interpolation
itype = 3 | lagrange Lagrange interpolation

Table 2.2: Attribute itype

The number of rows in the table is read and stored in the attribute asize with the
keyword ntab_items. After that, asize couples of table entries are read.

11

12 CHAPTER 2. DEFINITIONS-PROBLEM DESCRIPTION

2.1.2 Examples
2.1.2.1 Definition of constant function

Example without keywords

0 # the type of general function - the constant value
234.5 # the constant value

Example with keywords

funct_type stat # the type of general function - the constant value
const_val 234.5 # the constant value

2.1.2.2 Definition of relationship described by table

Example without keywords

2 # the type of general function - the table
1 # piecewise linear interpolation
3 # the number of rows in the table

0.0 234.5 # first row
10.0 456.32 # second row
200.0 213.56 # third row

Example with keywords

funct_type tab # the type of general function - the table
approx_type piecewiselin # piecewise linear interpolation
ntab_items 3 # the number of rows in the table

0.0 234.5 # first row

10.0 456.32 # second row

200.0 213.56 # third row

2.2. SETTING OF STORAGE OF MATRICES

2.2 Setting of storage of matrices

2.2.1 General description

13

Several types of matrix storage are available. The type of storage is located in the attribute
ts of the class gmatrix.

attribute | enumerator description

ts =0 without_matrix matrix is not stored

ts=1 dense_matrix all matrix entries are stored row-wise

ts = 2 skyline_matrix skyline format

ts =3 double_skyline double skyline format

ts = 10 compressed_rows | compressed rows

ts =11 | symm_comp_rows | symmetric compressed rows

ts = 40 | element_matrices | matrix is not stored, all element matrices are
stored consequently

ts = 140 | spdirect_stor_scr | storage for the sparse direct solver based on
symmetric compressed rows

ts = 141 | spdirect_stor_cr storage for the sparse direct solver based on
compressed rows

Table 2.3: Attribute ts

2.2.2 Examples

2.2.2.1 Matrix stored in the skyline storage scheme

’ 2 # the matrix is stored in the skyline storage scheme ‘

14 CHAPTER 2. DEFINITIONS-PROBLEM DESCRIPTION

2.3 Setting of solver of linear algebraic equations

2.3.1 General description

Type of solver of linear algebraic equations is read and stored in the class slesolv to the
attribute tlinsol. The values of the attribute tlinsol are summarized in Table 2.4. The key-
word for the type of solver is typelinsol. If a direct method is selected, no additional infor-

attribute enumerator | description

tlinsol = 1 gauss_elim | Gaussian elimination

tlinsol =2 | 1dl LDL" factorization

tlinsol = 3 lu LU factorization

tlinsol = 4 11 LL” factorization

tlinsol =20 | cg conjugate gradient method

tlinsol = 30 | bicg bi-conjugate gradient method

tlinsol = 140 | spdirldl sparse direct solver based on the LDL” factorization
tlinsol = 141 | spdirlu sparse direct solver based on the LU factorization

Table 2.4: Attribute tlinsol

mation is needed. If an iterative method is selected, the number of iterations ni (keyword
number_of _iterations) and the required norm of residual err (keyword error_of_computation)
are required.

The class slesolv contains an object prec of the class precond which is used for reading
and storage of data about preconditioners. If an iterative method is selected, the type
of preconditioner pt is read. The values of the attribute pt are summarized in Table
2.5. SSOR preconditioner requires parameter w stored in the attribute ssoromega and the

attribute | enumerator | description

pt =10 noprecond | no preconditioner

pt =1 diagprec diagonal (Jacobi) preconditioner

pt=>5 ssorprec SSOR preconditioner

pt = 10 | incomdec preconditioner based on incomplete factorization
pt = 101 | boss BOSS preconditioner

Table 2.5: Attribute pt

incompleted factorization requires the threshold for off-diagonal matrix entries rejection
which is stored in incompltresh.

2.3.2 Examples
2.3.2.1 LDL" factorization

Example without keywords

2.3. SETTING OF SOLVER OF LINEAR ALGEBRAIC EQUATIONS

’ 2 # LDL factorization ‘

Example with keywords
’ typelinsol 1dl # LDL factorization

2.3.2.2 LU factorization

Example without keywords
’ 3 # LU factorization ‘

Example with keywords

’ typelinsol lu # LU factorization ‘

2.3.2.3 Conjugate gradient method without preconditioner

Example without keywords

20 # the conjugate gradient method
400 # the maximum number of iterations
1.0e-6 # required norm of residual

0 # no preconditioner is required

Example with keywords

typelinsol cg # the conjugate gradient method
number _of_iterations 400 # the maximum number of iterations
error_of_computation 1.0e-6 # required norm of residual

0 # no preconditioner is required

15

2.3.2.4 Conjugate gradient method with preconditioner based on incomplete

factorization

Example without keywords

20 # the conjugate gradient method

400 # the maximum number of iterations

1.0e-6 # required norm of residual

10 # preconditioner based on incomplete factorization
1.0e-2 # threshold for off-diagonal entries rejection

16 CHAPTER 2. DEFINITIONS-PROBLEM DESCRIPTION

2.4 Setting of solver of non-linear algebraic equations

2.4.1 General description

Type of solver of non-linear algebraic equations is read and stored in the class nonlinman to
the attribute tnlinsol. The keyword for the type of solver of non-linear algebraic equations
is type_of_nonlin_solver. The values of the attribute tnlinsol are summarized in Table 2.6.

attribute enumerator | description
tnlinsol = 1 | arcl arc-length method
tnlinsol = 2 | newton the Newton-Raphson method

Table 2.6: Attribute tnlinsol

After the type of solver of non-linear algebraic equations, the type of the stiffness
matrix is read and stored into the attribute stmat described by the keyword stiffmat_type.
The attribute stmat has the values summarized in Table 2.7.

attribute | enumerator | description
stmat = 1 | initial_stiff the initial stiffness matrix

stmat = 2 | tangent_stiff | the tangent stiffness matrix

Table 2.7: Attribute stmat

2.4.1.1 Arc-length method

If the arc-length method is selected, the following parameters have to be defined:

keyword abbreviation | description

lambda_determination | dlam type of A determination

al_num_steps nial the number of increment

al_num_iter niilal the number of iterations within increment
al_error erral required norm of residual

al_init_length dlal the initial length of the arc

al_min_length dlminal the minimum lenght of arc

al_max_length dlmaxal the maximum lenght of arc

the parameter ¢
the type of displacement norm

al_psi psial
al_displ_contr_type displnorm

Determination of A described by the attribute has the following possibilities
attribute enumerator description
detlambda=0 | nodetermination | the determination is not defined
detlambda=1 | minvalue the minimum value is used
detlambda=2 | maxvalue the maximum value is used
detlambda=3 | minangle the minimum angle is used
detlambda=4 | linearizedmeth linearized arc-length method is used
detlambda=5 | fullmethod the full method is used

2.4. SETTING OF SOLVER OF NON-LINEAR ALGEBRAIC EQUATIONS

Displacement norm described by the attribute displnorm and by the keyword al_displ_contr_type

has the following possibilities

attribute enumerator description

displnorm=1 | alldofs all degrees of freedom are used

displnorm=2 | seldofs selected degrees of freedom are used
displnorm=3 | seldofscoord

displnorm=6 | selecnodes DOFs defined in selected nodes are used
displnorm=8 | nodesdistincr | norm of distance increment of selected nodes

If the selected degrees of freedom are selected, the number of selected DOFs has to
be stored in the attribute nsdofal described by the keyword num_sel_dofs. Then, a list of
selected node numbers and DOF's follows.

If the selected nodes are used, the number of nodes is stored in the attribute num_sel_nodes.
Then, a list of the selected node numbers follows.

2.4.1.2 Newton-Raphson method

If the Newton-Raphson method is selected, the following parameters have to be defined:

keyword enumerator | description

nr_num_steps | ninr the number of increments

nr_num- iter | niilnr the number of iterations within increments
nr_error errnr required norm of residual

nr_init_incr incrnr the intial increment

nr_minincr minincrnr the minimum increment

nr_maxincr maxincrnr | the maximum increment

2.4.2 Examples
2.4.2.1 Arc-length method, all DOFs are used

Example without keywords

1 # the arc-length method is used

1 # the initial stiffness matrix is used

1 # determination of lambda (the minimum values is used)
300 # the number of increments

30 # the number of iterations within increment

1.0e-04 # the required norm of residual

1.0e-01 # the initial lenght of arc

1.0e-08 # the minimum length of arc

1.0e4+03 # the maximum length of arc

0 # the parameter psi

1 # the type of displacement norm (all DOF's in this case)

Example with keywords

18 CHAPTER 2. DEFINITIONS-PROBLEM DESCRIPTION
type_of_nonlin_solver arcl # the arc-length method is used
stiffmat_type initial _stiff # the initial stiffness matrix is used
lambda_determination minvalue # the minimum value is used
al_num_steps 300 # the number of increments
al_num_iter 30 # the number of iterations within increment
al_error 1.0e-04 # the required norm of residual
al_init_length 1.0e-01 # the initial lenght of arc
al_min_length 1.0e-08 # the minimum length of arc
al_max_length 1.0e4-03 # the maximum length of arc
al_psi 0 # the parameter psi

al_displ_contr_type alldofs # the type of displacement norm

(all DOFs in this case)

2.4.2.2 Arc-length method, selected DOF's are used

Example without keywords

1
2
1
300

30
1.0e-04
1.0e-01
1.0e-08
1.0e+4-03
0

2

4

121
231

45 2

78 3

the arc-length method is used

the tangent stiffness matrix is used

determination of lambda (the minimum values is used)
the number of increments

the number of iterations within increment

the required norm of residual

the initial lenght of arc

the minimum length of arc

the maximum length of arc

the parameter psi

the type of displacement norm (selected DOFs in this case)
the number of selected DOF's

first DOF in the 12th node

first DOF in the 23rd node

second DOF in the 45th node

third DOF in the 78th node

Example with keywords

2.4. SETTING OF SOLVER OF NON-LINEAR ALGEBRAIC EQUATIONS

type_of_nonlin_solver arcl
stiffmat_type initial _stiff
lambda_determination minvalue
al_num_steps 300
al_num_iter 30

al_error 1.0e-04
al_init_length 1.0e-01
al_min_length 1.0e-08
al_max_length 1.0e4-03
al_psi 0
al_displ_contr_type seldofs
num_sel_dofs 4

121

23 1

45 2

78 3

the arc-length method is used

the initial stiffness matrix is used
the minimum value is used

the number of increments

the number of iterations within increment
the required norm of residual

the initial lenght of arc

the minimum length of arc

the maximum length of arc

the parameter psi

selected DOF's

the number of selected DOF's

first DOF in the 12th node

first DOF in the 23rd node

second DOF in the 45th node

third DOF in the 78th node

2.4.2.3 Newton-Rahpson method

Example without keywords

2 # the Newton-Raphson method is used

1 # the initial stiffness matrix is used

500 # the number of increments

40 # the number of iterations within increment

1.0e-04 # the required norm of residual
1.0e-01 # the initial increment

1.0e-08 # the minimum increment
1.0e+03 # the maximum increment

Example with keywords

tnlinsol newton # the Newton-Raphson method is used
stiffmat_type initial_stiff # the initial stiffness matrix is used
nr_num_steps 500 # the number of increments

nr_num_iter 40 # the number of iterations within increment
nr_error 1.0e-04 # the required norm of residual

nr_init_incr 1.0e-01 # the initial increment

nr_minincr 1.0e-08 # the minimum increment

nr_maxincr 1.0e+03 # the maximum increment

19

20 CHAPTER 2. DEFINITIONS-PROBLEM DESCRIPTION
2.5 Setting of time controller

2.5.1 General description

Type of time controller is read and stored in the class timecontr to the attribute tct. The
values of the attribute tct are summarized in Table 2.8. The keyword for the type of time
controller is time_contr_type.

attribute | enumerator | description

tct =0 fixed the time step is constant

tct =1 adaptive the time step is changed

tct = 2 adaptivemin | the time step is only reduced
tct =3 adaptivemax | the time step is only increased

Table 2.8: Attribute tct

Starting time is stored in the attribute start_time with the keyword start_time. End
time is stored in the attribute end_time with the keyword end_time. The important times
are time instants when the solver certainly computes the response without respect to the
time steps. The number of important times is stored in the attribute nit and the keyword
is num_imp_times.

The time step is governed by an instance timefun of the class gfunct. Setting of the
instances of the class gfunct are described in Section 2.1.

If the type of time controller is adaptive, the minimum time step stored in the attribute
dtmin with the keyword dtmin and the maximum time step stored in the attribute dtmax
with the keyword dtmax are required. If the type of time controller is adaptivemin, the
minimum time step stored in the attribute dtmin with the keyword dtmin is required. If
the type of time controller is adaptivemax, the maximum time step stored in the attribute
dtmax with the keyword dtmax is required.

2.5.2 Examples
2.5.2.1 Time controller with constant time step

Example without keywords

0 # the type of time controller - fixed

0.0 # the starting time

123.0 # the end time

0 # the number of important times

0 # the type of general function governing the time step
the constant value

2.5 # the time step

Example with keywords

2.5. SETTING OF TIME CONTROLLER

time_contr_type fixed # the type of time controller - fixed

0.0 # the starting time

123.0 # the end time

0 # the number of important times

funct_type stat # the type of general function - the constant value
const_val 2.5 # the time step

2.5.2.2 Time controller with variable time step

Example without keywords

0 # the type of time controller - fixed

0.0 # the starting time

123.0 # the end time

0 # the number of important times

2 # the type of general function governing the time step
the table

1 # piecewise linear interpolation

3 # the number of rows in the table

0.0 2.5 # first row

10.0 5.0 # second row

200.0 20.0 # third row

Example with keywords

time_contr_type fixed # the type of time controller - fixed
0.0 # the starting time

123.0 # the end time

0 # the number of important times
funct_type tab # the type of general function - the table
approx_type piecewiselin # piecewise linear interpolation
ntab_items 3 # the number of rows in the table
3 # the number of rows in the table
0.0 2.5 # first row

10.0 5.0 # second row

200.0 20.0 # third row

2.5.2.3 Time controller with adaptive time step

Example without keywords

21

22 CHAPTER 2. DEFINITIONS-PROBLEM DESCRIPTION

1 # the type of time controller - adaptive

0.0 # the starting time

123.0 # the end time

0 # the number of important times

0 # the type of general function governing the time step
the constant value

2.5 # the time step

1.0e-4 # the minimum time step

1.0e2 # the maximum time step

Example with keywords

time_contr_type adaptive # the type of time controller - adaptive

0.0 # the starting time

123.0 # the end time

0 # the number of important times

funct_type stat # the type of general function - the constant value
const_val 2.5 # the time step

dtmin 1.0e-4 # the minimum time step

dtmax 1.0e2 # the maximum time step

2.6. SETTING OF NODE RENUMBERING 23

2.6 Setting of node renumbering

2.6.1 General description

Type of node renumbering is read and stored in the class gtopology to the attribute nodren.
The values of the attribute nodren are summarized in Table 2.9. The keyword for the type
of node renumbering is noderenumber.

attribute enumerator description

nodren = 0 | no_renumbering | no renumbering

nodren = 1 | cuthill_ mckee Cuthill-McKey renumbering

nodren = 2 | rev_cuthill mckee | reverse Cuthill-McKey renumbering
nodren = 3 | sloan Sloan renumbering

Table 2.9: Attribute nodren

2.6.2 Examples
2.6.2.1 No node renumbering

Example without keywords

’ 0 4 nodes are not renumbered ‘

Example with keywords

’ noderenumber no_renumbering # nodes are not renumbered ‘

24 CHAPTER 2. DEFINITIONS-PROBLEM DESCRIPTION
2.7 Setting of strain computation

2.7.1 General description

There are three attributes devoted to the strain computation. The attribute straincomp
with the keyword straincomp indicates whether the strains are computed and stored. The
attribute strainpos with the keyword strainposdefines the position where the strains are
computed. The attribute strainaver with the keyword strainaver defines whether the strains
are averaged. The strains are averaged only in the case that they are required in nodes
where contributions from all adjacent finite elements are added. Values of all attributes
are summarized in Tables 2.10, 2.11 and 2.12.

attribute description
straincomp = 0 | strains are not computed and stored
straincomp = 1 | strains are computed and stored

Table 2.10: Attribute straincomp

attribute description

strainpos = 1 | strains are computed and stored in integration points
strainpos = 2 | strains are computed in integration points and stored in nodes
strainpos = 3 | strains are computed and stored in nodes

Table 2.11: Attribute strainpos

attribute description
strainaver = 0 | strains are not averaged
strainaver = 1 | strains are averaged in nodes

Table 2.12: Attribute strainaver

2.7.2 Examples
2.7.2.1 Strains are not required

Example without keywords

’ 0 # strains are not computed and stored ‘

Example with keywords

’ straincomp 0 # strains are not computed and stored ‘

2.7. SETTING OF STRAIN COMPUTATION 25

2.7.2.2 Strains are computed in nodes, average values are required

Example without keywords

1 # strains are computed and stored
3 # strains are computed in nodes
1 # the final strains are average values of strains from adjacent elements

26 CHAPTER 2. DEFINITIONS-PROBLEM DESCRIPTION
2.8 Setting of stress computation

2.8.1 General description

There are three attributes devoted to the stress computation. The attribute stresscomp
with the keyword stresscomp indicates whether the stresses are computed and stored. The
attribute stresspos with the keyword stresspos defines the position where the stresses are
required. Stresses can be computed only in integration points because of definition of
material models. The attribute stressaver with the keyword stressaver defines whether the
stresses are averaged. The stresses are averaged only in the case that they are required
in nodes where contributions from all adjacent finite elements are added. Values of all
attributes are summarized in Tables 2.13, 2.14 and 2.15.

attribute description
stresscomp = 0 | stresses are not computed and stored
stresscomp = 1 | stresses are computed and stored

Table 2.13: Attribute stresscomp

attribute description
stresspos = 1 | stresses are computed and stored in integration points
stresspos = 2 | stresses are computed in integration points and stored in nodes

Table 2.14: Attribute stresspos

attribute description
stressaver = () | stresses are not averaged
stressaver = 1 | stresses are averaged in nodes

Table 2.15: Attribute stressaver

2.8.2 Examples
2.8.2.1 Stresses are not required

Example without keywords

’ 0 # stresses are not computed and stored ‘

2.8.2.2 Stresses are stored in nodes, average values are required

Example without keywords

2.8. SETTING OF STRESS COMPUTATION

1 4 stresses are computed and stored
2 # stresses are computed in nodes
1 # the final stresses are average values of stresses from adjacent elements

27

28 CHAPTER 2. DEFINITIONS-PROBLEM DESCRIPTION

2.9 Setting of computation of internal variables

2.9.1 General description

There are three attributes devoted to the computation of internal variables. The attribute
othercomp with the keyword othercomp indicates whether the internal variables are com-
puted and stored. The attribute otherpos with the keyword otherpos defines the position
where the internal variables are required. The internal variables can be computed only in
integration points where the material models are defined. The attribute othernaver with
the keyword otheraver defines whether the internal variables are averaged. The internal
variables are averaged only in the case that they are required in nodes where contributions
from all adjacent finite elements are added. Values of all attributes are summarized in
Tables 2.16, 2.17 and 2.18.

attribute description
othercomp = 0 | internal variables are not computed and stored
othercomp = 1 | internal variables are computed and stored

Table 2.16: Attribute othercomp

attribute description
otherpos = 1 | internal variables are computed and stored in integration points
otherpos = 2 | internal variables computed in integration points and stored in nodes

Table 2.17: Attribute otherpos

attribute description
otheraver = 0 | internal variables are not averaged
otheraver = 1 | internal variables are averaged in nodes

Table 2.18: Attribute otheraver

2.9.2 Examples
2.9.2.1 Internal variables are not required

Example without keywords

’ 0 # internal variables are not computed and stored ‘

2.9.2.2 Internal variables are stored in nodes, average values are required

Example without keywords

2.9. SETTING OF COMPUTATION OF INTERNAL VARIABLES

1 # internal variables are computed and stored

2 # internal variables are computed in nodes

1 # the final internal variables are average values of
internal variables from adjacent elements

30 CHAPTER 2. DEFINITIONS-PROBLEM DESCRIPTION
2.10 Setting of gradient computation

2.10.1 General description

There are three attributes devoted to the gradient computation. The attribute gradcomp
with the keyword gradcomp indicates whether the gradients are computed and stored. The
attribute gradpos with the keyword gradpos defines the position where the gradients are
required. The attribute gradaver with the keyword gradaver defines whether the gradients
are averaged. The gradients are averaged only in the case that they are required in nodes
where contributions from all adjacent finite elements are added. Values of all attributes
are summarized in Tables 2.19, 2.20 and 2.21.

attribute description
gradcomp = 0 | gradients are not computed and stored
gradcomp = 1 | gradients are computed and stored

Table 2.19: Attribute gradcomp

attribute description

gradpos = 1 | gradients are computed and stored in integration points

gradpos = 2 | gradients are computed in integration points and stored in nodes
gradpos = 3 | gradients are computed and stored in nodes

Table 2.20: Attribute gradpos

attribute description
gradaver = (| gradients are not averaged
gradaver = 1 | gradients are averaged in nodes

Table 2.21: Attribute gradaver

2.10.2 Examples
2.10.2.1 Gradients are not required

Example without keywords

’ 0 # gradients are not computed and stored ‘

2.10.2.2 Gradients are stored in nodes, average values are required

Example without keywords

2.10. SETTING OF GRADIENT COMPUTATION

L4
2 #
1

gradients are computed and stored
gradients computed in nodes
the final gradients are average values of gradients from adjacent elements

31

32 CHAPTER 2. DEFINITIONS-PROBLEM DESCRIPTION
2.11 Setting of fluxes computation

2.11.1 General description

There are three attributes devoted to the flux computation. The attribute fluxcomp with
the keyword fluxcomp indicates whether the fluxes are computed and stored. The attribute
fluxpos with the keyword fluxpos defines the position where the fluxes are required. Fluxes
can be computed only in integration points because of definition of material models. The
attribute fluxaver with the keyword fluxaver defines whether the fluxes are averaged. The
fluxes are averaged only in the case that they are required in nodes where contributions
from all adjacent finite elements are added. Values of all attributes are summarized in
Tables 2.22, 2.23 and 2.24.

attribute description
fluxcomp = 0 | fluxes are not computed and stored
fluxcomp = 1 | fluxes are computed and stored

Table 2.22: Attribute fluxcomp

attribute description
fluxpos = 1 | fluxes are computed and stored in integration points
fluxpos = 2 | fluxes are computed in integration points and stored in nodes

Table 2.23: Attribute fluxpos

attribute description
fluxaver = 0 | fluxes are not averaged
fluxaver = 1 | fluxes are averaged in nodes

Table 2.24: Attribute fluxaver

2.11.2 Examples
2.11.2.1 Fluxes are not required

Example without keywords

’ 0 # fluxes are not computed and stored ‘

2.11.2.2 Fluxes are stored in nodes, average values are required

Example without keywords

2.11. SETTING OF FLUXES COMPUTATION

1 # fluxes are computed and stored
2 # fluxes are computed in nodes
1 # the final fluxes are average values of fluxes from adjacent elements

33

34

CHAPTER 2. DEFINITIONS-PROBLEM DESCRIPTION

Chapter 3

Mesh—Nodes, Constraints, Elements

3.1 SIFEL mesh format

For the purposes of the finite element method, the domains solved are described by enti-

ties and their “properties” (markers). The entities are vertices, edges, surfaces, regions,

patches and shells. The entities are denoted by integer numbers summarized in Table 3.1.
Finite element meshes obtained from mesh generators are summarized in Table 3.2.

3.1.1 Nodes, edges, surface on elements

3.1.1.1 Triangular element

entity | entity number
vertex 1

edge
surface
region
patch
shell

O UL = W N

Table 3.1: Type of entity used for domain description

35

36 CHAPTER 3. MESH-NODES, CONSTRAINTS, ELEMENTS
element | the number | the number | the number | element description
type of nodes of edges of surfaces
one-dimensional elements
1 2 1 0 line with linear shape functions
2 3 1 0 line with quadratic shape functions
(there is midside node)
two-dimensional elements
3 3 3 1 triangular element with linear shape
functions
4 6 3 1 triangular element with quadratic
shape functions (there are mid-edge
nodes)
) 4 4 1 quadrilateral element with linear shape
functions
6 8 4 1 quadrilateral element with quadratic
shape functions (there are mid-edge
nodes)
three-dimensional elements
7 4 6 4 tetrahedral element with linear shape
functions
8 10 6 4 tetrahedral element with quadratic
shape functions (there are mid-edge
nodes)
9 5) 8 5) pyramid element with linear shape
functions
10 13 8 5) pyramid element with quadratic shape
functions (there are mid-edge nodes)
11 6 9 5 triangular prism element with linear
shape functions
12 15 9 5 triangular prism element with
quadratic shape functions (there
are mid-edge nodes)
13 8 12 6 hexahedral elements with linear shape
functions
14 20 12 6 hexahedral elements with quadratic

shape functions (there are mid-edge
nodes)

Table 3.2: Element types used in mesh generators

3.1. SIFEL MESH FORMAT

i

1.0

node 2

edge 2 edge 1

node 1

=
node 3 edge 3 L.0

edge number | node numbers
1 1,2
2 2,3
3 3,1

Table 3.3: Ordering of edges for triangular element with 3 nodes.

38

3.1.1.2

1.0

node 5 W

edge 2

i

node 2

CHAPTER 3. MESH-NODES, CONSTRAINTS, ELEMENTS

Triangular element with mid-side nodes

node 4

edge 1

node 3

Table 3.4: Ordering of edges for triangular element with 6 nodes.

edge 3 node 6

1.0

edge number

node numbers

1

1,2 4

2

3

2,3, 5
3, 1,6

node 1

3.1. SIFEL MESH FORMAT

3.1.1.3 Quadrilateral elements

1
umlu 2 edge 1 :1c:f.1:* 1
1.0
edge 4
£
e o
edge 2 70
[|
e
node 3 edge 3 node 4
edge number | node numbers
1 1,2
2 2,3
3 3, 4
4 41

Table 3.5: Ordering of edges for quadrilateral element with 4 nodes.

40 CHAPTER 3. MESH-NODES, CONSTRAINTS, ELEMENTS

3.1.1.4 Quadrilateral elements with mid-side nodes

]
node 2 node 5| pdpe 1 node]
[| [] |
1.0
edge 2 edge 4
5
node G W])
1.0 node &
[1 3 L) |
q BOge =
node 3 & node 7 node 4

Table 3.6: Ordering of edges for quadrilateral element with 8 nodes.

edge number

node numbers

1

1,25

9 I

Y

2
3
4

= W N

3
4
1

)

ool 3| S

Y

3.1. SIFEL MESH FORMAT

3.1.1.5 Tetrahedral elements

(

node 3

edge 2

surtace 4
edge 5

surface 2 surface 1

node 4 edge 4

Ul

edge 3

node 2

surtace 3

edge 1

Friode 1

£y

41

42 CHAPTER 3. MESH-NODES, CONSTRAINTS, ELEMENTS

3.1.1.6 Tetrahedral elements with mid-side nodes

(

node 3

node 6
M node 10

node T

node 4 1]

node 2

node 9
|

node &
node 5

node 1

Sy

3.1. SIFEL MESH FORMAT 43
3.1.1.7 Hexahedral elements

node 3

node 2
surface 5 ((= 1)

(oA

node 4 node 1

surface 3 (£ =|—1)
surtee 4 (= 1]

Ve A
f i]

surfacg 1 (£ = 1]

surface 2 (n = 1)

node 7

node 6

7;&
surface G ({ = —1)

node & node 5

surface number | node numbers

| O = | W[DN —
O = | O N =
O DO WO N |
| W| | S| o] 00
CO| | CO| J| O| Ot

Table 3.7: Ordering of surfaces for hexahedral element with 8 nodes.

44

CHAPTER 3. MESH-NODES, CONSTRAINTS, ELEMENTS

3.1.1.8 Hexahedral elements with mid-side nodes

node 11

node 4

node 10

niid

node 16 W

nodf 18

node 15 &

node 1

oy

i
W node 13

node 18

node 8

node 5

node 17

L
surface 5 ({ = 1)

node 2

node 1

ace 3 (€ =.—1]|

,, surface 2 (n=1)

surfacg

A
i

node 2 node 3
2 0
node 4 -
B pode 14 !
surface 4 (= [1)
i
A
£
[]
node 7
node 6

surface 6 ({ = —1)

node 8 -

surface number | node numbers

1 1, 4,8, 5, 12, 16, 20, 13
2 2,1,5,6,9, 13, 17, 14

3 3,2,6,7 10, 14, 18, 15
4 4,3,7,8, 11, 15, 19, 16
5 1,2 3, 4,9, 10, 11, 12

6 5,6,7,8,17, 18, 19, 20

node 6

node 5

Table 3.8: Ordering of surfaces for hexahedral element with 20 nodes.

3.1. SIFEL MESH FORMAT 45

SIFEL mesh format

There are two blocks in the SIFEL mesh format. First contains nodes and second
contains elements. The block containing nodes starts with the number of nodes in the
mesh. A typical line of node block has the following structure
node id, x coordinate, y coordinate, z coordinate, the number of properties (np), np couples
of integer numbers, where the first number in every couple is entity type (see Table 3.1)
and the second integer denotes property
The block containing elements starts with the number of elements in the mesh. A typical
line of element block has the following structure
element id, type of element, element nodes, surface property, edge properties and volume
properties

Example of file with SIFEL mesh format

16

1 0.00000000000e+4-00 0.00000000000e+-00 0.0 d 13 22 23 31 41
2 0.00000000000e+00 3.33333333333e+00 0.0 4 10 22 31 41

3 0.00000000000e+00 6.66666666667e+00 0.0 4 10 22 31 41

4 0.00000000000e+-00 1.00000000000e+01 0.0 3 12 21 22 31 41
5 3.33333333333e+00 0.00000000000e+00 0.0 4 10 23 31 41

6 3.33333333333e+00 3.33333333333e+00 0.0 3 10 31 41

7 3.33333333333e+00 6.66666666667e+00 0.0 3 10 31 41

8 3.33333333333e+00 1.00000000000e+01 0.0 4 10 21 31 41

9 6.66666666667e+00 0.00000000000e+00 0.0 4 10 23 31 41

10 6.66666666667e+00 3.33333333333e+00 0.0 3 10 31 41

11 6.66666666667¢+00 6.66666666667¢+00 0.0 3 10 31 41

12 6.66666666667e+-00 1.00000000000e+-01 0.0 4 10 21 31 41

13 1.00000000000e+4-01 0.00000000000e+4-00 0.0 5 14 23 24 31 41
14 1.00000000000e+4-01 3.33333333333e+00 0.0 4 10 24 31 41

15 1.00000000000e+-01 6.66666666667e+00 0.0 4 10 24 31 41

16 1.00000000000e+-01 1.00000000000e+-01 0.0 3 11 21 24 31 41
9

1 5 1 5 6 2 1 3 0 0 2 1

2 5 2 6 7 3 1 0 00 2 1

3 5 3 7 8 4 10 01 2 1

4 5 5 9 10 6 1 3 0 0 01

5 O 6 10 11 7 10 0 0 0 1

6 5 7 11 12 8 10 01 01

7 95 9 13 14 10 1 3 4 0 0 1

8 5 10 14 15 11 1 0 4 0 0 1

9 5 11 15 16 12 1 041 01

46 CHAPTER 3. MESH-NODES, CONSTRAINTS, ELEMENTS
3.2 Local coordinate system in node

In mechanical analyses, a local coordinate system may be suitable. The presence of the
local coordinate system is indicated by the attribute transf of the class node. Values of
the attribute transf are summarized in Table 3.9.

attribute | description

transf = 0 | no local coordinate system

transf = 2 | 2D problem, two basis vectors are required
transf = 3 | 3D problem, three basis vectors are required

Table 3.9: Attribute transf

3.2.1 Examples

3.2.1.1 No local coordinate system

] 0 # no local coordinate system ‘

3.2.1.2 Local coordinate system in 2D

’ 2 0608 -0.80.6 % local coordinate system in 2D ‘

3.2.1.3 Local coordinate system in 3D

3 0.6080.0 -0.80.60.0 0.00.01.0 # local coordinate system in 3D

3.3 Nodes

Typical line of an input file describing a node is the following

id x y z NDOF crsec locsys

id is node number, x, y and z are coordinates, NDOF is the number of degrees of freedom
defined in the node, crsec is description of cross section and locsys describes a local
coordinate system in the node. Local coordinate system is used in mechanical problems
only, it is not used in transport processes. Definition of cross section is in Section 5.1.
Definition of local coordinate system is in Section 3.2.

3.3. NODES

47

3.3.1 Examples

3.3.1.1 Mechanical analysis, nodes in 2D, 2 DOF's in each node, no cross-
section, no local coordinate system

W N

0.0 0.0 0.0
2.01.00.0
4.02.00.0
6.0 3.0 0.0

the number of nodes in mesh
200
200
200
200

3.3.1.2

Transport analysis, nodes in 2D, 2 DOFs in each node, no cross-

section

=W N

0.0 0.0 0.0
2.01.00.0
4.0 2.0 0.0
6.0 3.0 0.0

the number of nodes in mesh
20
20
20
20

3.3.1.3 Mechanical analysis, nodes in 2D, 2 DOF's in each node, cross-section
in nodes, no local coordinate system

=W N

0.0 0.0 0.0
2.01.00.0
4.0 2.0 0.0
6.0 3.0 0.0

the number of nodes in mesh
2110
2110
2110
2110

3.3.1.4 Mechanical analysis, nodes in 2D, 3 DOFs in each node, no cross-
section, local coordinate system in node

=0 N

0.0 0.0 0.0
2.01.00.0
4.02.00.0
6.0 3.0 0.0

the number of nodes in mesh
300
3020.60.8-0.80.6
300
300

48 CHAPTER 3. MESH-NODES, CONSTRAINTS, ELEMENTS

3.3.1.5 Mechanical analysis, nodes in 3D, 3 DOF's in each node, no cross-
section, local coordinate system in node

the number of nodes in mesh
0.00.030 300
201.020 3030.60.80.0-0.80.60.00.00.01.0
402010 300
6.03.00.0 300

=W N

3.4 Hanging Nodes

Hanging nodes are nodes which are linearly dependent on other nodes in a mesh. The
nodes which the hanging nodes depend on are called tha master nodes. Degrees of freedom
of any hanging node are defined by the master nodes. The hanging nodes are therefore
indicated by negative value of the attribute ndofn of the class gnode which defines the
number of degrees of freedom of the node. The absolute value of the attribute ndofn is
equal to the number of master node.

3.4.1 Examples

3.4.1.1 Mechanical analysis, nodes in 3D, 3 DOF's in each node, no cross-
section, local coordinate system in node, hanging node on an edge

The 132nd node is a hanging node, it is connected to an edge, its master nodes are the
nodes 143 and 345, the natural coordinate on the edge is 0.4, 0.0 and 0.0. The edge is
indicated by the number 1 after the natural coordinates. The last two zeros indicate the
cross section and local coordinate system in the 132-nd node.

’ 132 142337 -2 143345 040.00.0 1 00 # hanging node ‘

3.4.1.2 Mechanical analysis, nodes in 3D, 3 DOFs in each node, no cross-
section, local coordinate system in node, hanging node on a surface

The 132nd node is a hanging node, it is connected to a surface, its master nodes are the
nodes 143, 345, 356 and 378, the natural coordinate on the surface are 0.3, 0.8 and 0.0.
The surface is indicated by the number 5.

(132 142337 -4 143345356378 0.3080.0 5 00 # hanging node |

3.4.1.3 Mechanical analysis, nodes in 3D, 3 DOF's in each node, no cross-
section, local coordinate system in node, hanging node in a volume

The 132nd node is a hanging node, it is connected to a volume, its master nodes are the
nodes 143, 345, 356, 378, 412, 456, 478 and 567 the natural coordinate in the volume are
0.5, 0.4 and 0.9.

3.4. HANGING NODES 49

(132 142337 -8 143345 356 378 412 456 478 567 0.50.40.9 13 00 # hanging node |

90

CHAPTER 3. MESH-NODES, CONSTRAINTS, ELEMENTS

Chapter 4

Materials

4.1 Tentative material parameters of selected mate-

rials
notation unit parameter
E Pa Young modulus of elasticity
G Pa shear modulus of elasticity
W - Poisson ratio
. . 0 kg/m® density
List of 1
st ob material parameters « K1 coefficient of thermal expansion (thermal extensibility
A J/m/s coefficient of heat conductivity
c J/kg/K heat capacity coefficient

4.2 Materials for mechanical analyses

4.2.1 Linear elastic isotropic mechanical model

Linear elastic isotropic model requires definition of two material parameters: the Young
modulus os elasticity £ (Pa) and the Poisson ratio u (-).

Example without keywords

1 # there is single type of material model

12 # first material model is linear elastic isotropic model and there are two instances of s
120.¢9 0.1 # first instance of the elastic model (Young modulus of elasticity, Poisson ratio)

2 30.0¢9 0.13 # second instance of the elastic model (Young modulus of elasticity, Poisson ratio)

51

52 CHAPTER 4. MATERIALS
material materidl E GPa G GPa v o kg/m* |a 107° K!
aluminium hlintk 66 - 68 26 - 28 0.33 2 650 - 2 800 20 - 24
asphalt asfalt 1 300
bricks cihly 8-12 1400 - 2 200 5
concrete beton 15 - 40 0.08 - 0.18 | 1 800 - 2 500 12
conc. cellular pérobeton 0.8-4 400 - 900 7-8
copper med 120 - 130 42 - 47 0.34 8 930 17
cork korek 200-350
glass sklo 70 2400 - 4 700 6-9
granite zula 27 - 51 2 600 - 2 900 7.89
ice led 917 50
iron zelezo 7 860 12
paper papir 700 - 1 100
polystyrene polystyrén 0.0028 - 0.015 - - 14 - 100 50 - 80
PVC PVC 25-3.6 1 360 - 1 400 80
rubber guma 1150 - 1 350
SNOwW snih 125 - 800
steel ocel 210 85 0.3 7 400 - 8 000 12
wood dfevo 10 - 15 0.3-0.6 - 400 - 1 000 3-32
wool (glass) vlna (skelnd) - - - 12 -

4.3 Materials for trasport analyses

4.3.1 Linear isotropic transport model

Linear isotropic transport model requires definition of the coefficient of heat conductivity
A (J/m/s). In the case on non-stationary transport, also the heat capacity ¢ (J/kg/K) is

required.

4.3.1.1 Stationary problem, linear isotropic transport model

Example without keywords

1 # there is single type of material model

100 2 # first material model is linear isotropic model and there are two instances of such type
first instance of the isotropic model (the coefficient of conductivity)

115

2 1.9 # second instance of the isotropic model (the coefficient of conductivity)

4.3.1.2 Non-stationary problem, linear isotropic transport model

Example without keywords

1 # there is single type of material model

100 2 # first material model is linear isotropic model and there are two instances of such type
11.5900.0 4 first instance of the isotropic model (the coefficient of conductivity, capacity coefficien
2 1.9 980.0 # second instance of the isotropic model (the coefficient of conductivity, capacity coeffic

4.3. MATERIALS FOR TRASPORT ANALYSES 53

4.3.2 Kiinzel model of coupled heat and moisture transport

2. the bulk density of the sample p (kg/m?), 3. porosity 4. water vapour diffusion
resistance factor u, 5. the moisture diffusivity x (m?/s), 9. specific heat capacity of the
building material ¢, (J/kg/K), 10. thermal conductivity A (W/m/K)

w is the volumetric moisture content (m3/m?), T is the temperature (K), x is the
moisture diffusivity (m?/s), § is the water vapour diffusion permeability (s), p, is the
density of water (kg/m?), p, is the partial pressure of water vapour (Pa), ¢ is the specific
heat capacity (J/kg/K), A is the thermal conductivity (W/m/K) and L, is the latent heat
of evaporation of water (J/kg).

list of material parameters used in the model: position CORD: 2 - density 3 - porosity
4 - water vapour diffusion resistance factor 5 - moisture diffusivity 6 - sorption isoterm 7
- saturated moisture 8 - none 9 - specific heat capacity 10 - thermal conductivity 11 - 13
- none 14 Dcoef 15 - binding isotherm 16 - cfmax 17 ws 18 - none 19 - kunzeltype

o4

CHAPTER 4. MATERIALS

Chapter 5

Cross Section

Cross section is notation for the width and height in the case of beams and for the thickness
in the case of walls, plates and shells. The cross section can be defined in a node or on
an element. The type of cross section is stored in the attribute crst of the class element
or in the class node. The attribute crst is of enumeration data type crsectype. Values of
the attribute crst are summarized in Table 5.1.

attribute | enumerator description

crst=0 nocrosssection | no cross section

crst=1 cshar2d cross section for bar element

crst=2 csheam2d cross section for 2D beams

crst=4 csbeam3d cross section for 3D beams

crst=10 | csplanestr cross section for plane strain and plane stress problems
crst=20 | cs3dprob cross section for three-dimensional problems

Table 5.1: Attribute crst

5.1 Setting of cross section in node or on element

If the cross section is not defined in connection with a quantity (node or element), 0 or
nocrosssection is put into appropriate position. On the other hand, if the cross section is
defined, two values are required. The first is the type of the cross section and the second
is the id of the appropriate instance of the cross section type.

5.1.1 Examples
5.1.1.1 No cross section

Example without keywords

’ 0 # the cross section is not defined on element or node ‘

55

56 CHAPTER 5. CROSS SECTION

5.1.1.2 Cross section for 2D beams

Example without keywords

2 # the cross section for 2D beam is defined
3 # third instance of all 2D beam cross sections is selected

5.2 Definition of cross sections

All cross sections are summarized in one list.

5.2.1 Examples
5.2.1.1 List of cross sections for linear statics

Example without keywords

2 # there are two types of cross sections

13 # first cross section type is for 2D bar elements and there are 3 instances of su
10.03 # first instance of the bar cross section

20.02 # second instance of the bar cross section

3 0.06 # third instance of the bar cross section

22 # second cross section type is for 2D beam elements and there are 2 instances

1 0.04 0.0005 0.8333 # first instance of the beam cross section
2 0.05 0.0004 0.8333 # second instance of the beam cross section

Chapter 6

Definitions—Output and Graphics

6.1 Class sel

The class is used in outdriverm and outdrivert classes (MEFEL, TRFEL) and it contains
the selection of variety items such as load cases, time steps, nodes, elements, particular
quantities defined at nodes or elements, etc. Depending on the selected items or quantities,
integer indeces or real numbers are used for the selection. Type of sel is given by the st
attribute whose values are defined by enumeration seltype (see galias.h) which is described

in the following table.

attribute | enumerator | description

st = sel_no nothing is selected

st = sel_all all values/indeces are selected

st = sel_range selection by ranges of indeces

st =3 sel_list selection by list of individual indeces

st = sel_period selection by constant period
(each n-th index is selected)

st =95 sel_realrange | selection by range of real values

st =6 sel_reallist | selection by list of real values

st=7 sel_mtx selection of all components of a tensorial
quantity for GiD

st =8 sel_range_mtx | selection of all components of a tensorial quantity
for GiD by range of indeces, the quantity
is stored in larger array (e.g. eqother)

st=9 sel_range_vec | selection of a vector quantity for GiD
by range of indeces - the quantity
is stored inside larger array (e.g. eqother)

st = 10 | sel_realperiod | option used for selection of time steps with
real period r

st = 11 | sel_impvalues | option used for selection of time steps
according to important times defined in
time controller (class timecontr)

57

o8 CHAPTER 6. DEFINITIONS-OUTPUT AND GRAPHICS

The class sel has also attribute n which represents the number of selected ranges or
items depending on the type of selection (st attribute).

st=0 |n=0

st = n=1

st = 2 | n = number of selected ranges

st = n = number of list items

st = n=1

st =5 | n = number of selected real ranges

st = 6 | n = number of real items in the list

st=7 |n=1

st = n=1

st=9 |n=1

st = 10 | n = number is calculated from the time
interval length and given period

st=11|n=1

6.1.1 Conjugated selection

The class sel was designed for the selection of output data and there is often required the
output of different quantities for given selection of elements or nodes. The typical case
represents output of selected internal variables stored in the eqother array on integration
points of elements. If the problem domain is heterogeneous and different material models
are used then the order of internal variables is not the same for all integration points and
consequently, the selection of required internal variables differs on particular elements.
This case can be solved by using of conjugated selections where the main selection is
connected with required elements/nodes and conjugated selection is connected with the
required internal variables. The number of conjugated selections is given by the number of
items in the main selection, i.e., attribute n of main selection is the number of conjugated
selections.

In the cases of stress or strain selection, the conjugated selection consists of main
selection of nodes/elements, conjugated selections of stress/strain components and con-
jugated flags for output of principal stresses/strains. Similarly, the number of conjugated
selections and conjugated flags is given by the number of items in the main selection
(attribute n).

6.1.2 Examples of input record for basic selection types

This section describes basic selections used for selection of list of integer identifiers or
indeces (ids), e.g. nodes, elements, load cases, strain components, time steps, etc.

6.1.2.1 Definition of empty list

Example without keywords

’ 0 # type of selection = no selection or empty list

6.1. CLASS SEL

Example with keywords

’ sel no # type of selection = no selection or empty list ‘

6.1.2.2 Definition of list of all ids

Example without keywords

’ 1 # type of selection = all ids are selected ‘

Example with keywords

’ sel_all # type of selection = all ids are selected ‘

6.1.2.3 Definition of id ranges

Example without keywords

2 # type of selection = integer ranges

2 # two ranges will be specified
first range <1, 5>

1 # initial id - range 1.

5 # number of selected ids - range 1.
second range <23, 24>

23 # initial id - range 2.

2 # number of selected ids - range 2.

Example with keywords

sel_range
num_ranges 2

1

23

type of selection = integer ranges
two ranges will be specified

first range <1, 5>

initial id - range 1.

number of selected ids - range 1.
second range <23, 24>

initial id - range 2.

number of selected ids - range 2.

6.1.2.4 Definition of list of individual ids

Example without keywords

3
4
81517 11

type of selection = integer list
number of selected ids
list of selected ids

Example with keywords

sel list

81517 11

type of selection = integer list

numlist_items 4 # number of selected ids

list of selected ids

99

60 CHAPTER 6. DEFINITIONS-OUTPUT AND GRAPHICS
6.1.3 Examples of input record for selections of periodic indeces
and real values

This section describes examples of input records of for periodic selection of indeces and
selection of real values. They are used only in the cases of time step selection.

6.1.3.1 Integer periodic selection type

Example without keywords

4 # type of selection = integer periodic
5 # period

Example with keywords

sel_period # type of selection = integer periodic
5 # period

6.1.3.2 Selection of real ranges

Example without keywords

5 # type of selection = real ranges
2 # number of ranges
range 1. = <1.0, 5.0>
1.0 # lower limit of range 1.
5.0 # upper limit of range 1.
range 2. = <50.0, 65.2>
50.0 # initial limit of range 2.
65.2 # end limit of range 2.

Example with keywords

sel_realrange # type of selection = real ranges
numranges 2 # number of ranges
range 1. = <1.0, 5.0>

1.0 # lower limit of range 1.
5.0 # upper limit of range 1.
range 2. = <50.0, 65.2>
50.0 # lower limit of range 2.
65.2 # upper limit of range 2.

6.1.3.3 Selection of real list

Example without keywords

6.1. CLASS SEL

6 # type of selection = list of real values
3 # number of selected values
5.8 7.5 12.4 # list of selected real values
1.0e-3 # required error of real lists;
selected time steps may be different
from the above ones about 1.0e-3

Example with keywords

sel_reallist # type of selection = list of real values
numlist_items 3 # number of selected values
5.8 7.512.4 # list of selected real values
1.0e-3 # required error of selected items;
selected time steps may be different
from the above ones about 1.0e-3

6.1.3.4 Periodic selection from real range

Example without keywords

time steps 3.0, 4.0 and 5.0 will be selected
10 # type of selection = real periodic selection
3.0 # lower limit of range
5.0 # upper limit of range
1.0 # period
1.0e-2 # required error of selected items

selected time steps may be different

from the above ones about 1.0e-2

Example with keywords

time steps 3.0, 4.0 and 5.0 will be selected
sel_realperiod # type of selection = real periodic selection
ini_time 3.0 # lower limit of range
fin_time 5.0 # upper limit of range
period 1.0 # period
err 1.0e-2 # required error of selected items

selected time steps may be different

from the above ones about 1.0e-2

6.1.3.5 Periodic selection from real range

Example without keywords

selects important time steps defined in time controler
11 # type of selection = sel_impvalues

Example with keywords

selects important time steps defined in time controler
sel_impvalues # type of selection = selection of important values

62 CHAPTER 6. DEFINITIONS-OUTPUT AND GRAPHICS

6.1.4 Examples of input record of selections used for GiD

This section describes examples of input records used for the selections of quantity com-
ponents that will be written to GiD post-processor file in the tensorial or vector formats.
6.1.4.1 Selection of tensorial quantity stored as vector

Example without keywords

select all component of the given quantity
write them in the GiD tensorial format
7 # type of selection = sel_mtx

Example with keywords

select all component of the given quantity
write them in the GiD tensorial format
sel mtx # type of selection = sel_mtx

6.1.4.2 Selection of tensorial quantity stored as vector in larger array

Example without keywords

select n component of the given quantity
write them in the GiD tensorial format
8 # type of selection = sel_range_mtx
3 # initial id of large array
4 # number of quantity components

Example with keywords

select n component of the given quantity

write them in the GiD tensorial format
sel_ range mtx # type of selection = sel range mtx
3 # initial id of the first component in large array
4 # number of quantity components

6.1.4.3 Selection of vector quantity stored in larger array

Example without keywords

select n component of the given quantity
write them in the GiD vector format

9 # type of selection = sel_range_vec

3 # initial id of large array

3 # number of vector components

Example with keywords

6.1. CLASS SEL 63

select n component of the given quantity

write them in the GiD tensorial format
sel_ range vec # type of selection = sel_mtx
3 # initial id of the first component in large array
3 # number of vector components

6.1.5 Input record for conjugated selections

The input record of conjugated selections contains input record of the main selection main-
sel according to section 6.1.2 followed by input records of conjugated selections consel;,
consels, ..., consel,, where n is given by the value specified for attribute n of mainsel. In-
put records of particular conjugated selections consel; have the same format as the main
selection mainsel. Formally, the format can be written as follows

mainsel (consel)xmainsel.n

In the case of conjugated selections for stress/strain output, the format reads

mainsel (consel)xmainsel.n (flag)xmainsel.n

6.1.6 Example of ordinary conjugated selection

In this example, an ordinary conjugated selection will be showed. The main selection is
connected for example with element ids 1-10 and 40-60 and the conjugated selection is
connected for example with the point/component ids 1,5,9. Should be noted that in the
case of specific conjugated selections such as selection of eqother components at nodes,
some additional keywords have to be specified but the example without keywords remains
the same. The more details about specific conjugated selections can be found in Section
7.5.

Example without keywords

64 CHAPTER 6. DEFINITIONS-OUTPUT AND GRAPHICS

SELECTION OF REQUIRED ELEMENTS

2 # type of selection = integer range
2 # two ranges will be specified

first range <1, 10>
1 # initial id - range 1.

10 # number of selected ids - range 1.
second range <40, 60>

40 # initial id - range 2.

20 # number of selected ids - range 2.

SELECTION OF CONJUGATED IDS

3 # type of conjugated selection for range 1. =
= integer list
3 # number of list items

159 # selected ids for range 1.

3 # type of conjugated selection for range 2. =
= integer list
3 # number of list items

159 # selected ids for range 2.

Example with keywords

SELECTION OF REQUIRED ELEMENTS

sel_range # type of selection = integer range

num_ranges 2 # two ranges will be specified
the first range <1, 10>

1 # initial id - range 1.

10 # number of selected ids - range 1.
the second range <40, 60>

40 # initial id - range 2.

20 # number of selected ids - range 2.

SELECTION OF CONJUGATED IDS
sel_list # type of conjugated selection for range 1. =
= integer list
numlist_items 3 # number of list items
159 # selected ids for range 1.

sel_list # type of conjugated selection for range 2. =
= integer list

numlist_items 3 # number of list items

159 # selected ids for range 2.

Chapter 7
MEFEL Input Files

7.1 Description of Mechanical Analyses

Type of mechanical analysis is stored in the attribute tprob of the class probdesc. The
appropriate keyword is problemtype. Values of the attribute tprob are summarized in Table
7.1.

attribute | enumerator description
tprob = 1 | linear_statics linear statics
tprob = 2 | eigen_dynamics eigenvibration
tprob = 3 | forced_dynamics forced dynamics
tprob = 5 | linear_stability linear stability
tprob = 10 | mat_nonlinear_statics static material non-linearity
tprob = 11 | geom _nonlinear_statics geometrically non-linear statics
tprob = 15 | mech_timedependent_prob | time dependent problems
with negligible inertial forces
tprob = 17 | growing _mech structure mechanical problem with
changing number of nodes and elements

Table 7.1: Attribute tprob

Array name contains name or description of problem solved. The name is defined by
user.

The attribute Mespr describes the detailness of the auxiliary prints on screen. The
appropriate keyword is mespr.

attribute | description
Mespr = 0 | no auxiliary print on screen
Mespr = 1 | auxiliary print on screen

Table 7.2: Attribute Mespr

65

66 CHAPTER 7. MEFEL INPUT FILES

The attribute reactcomp describes whether the reactions are computed. The appro-
priate keyword is reactcomp.

attribute description
reactcomp = 0 | reactions are not computed
reactcomp = 1 | reactions are computed

Table 7.3: Attribute reactcomp

The attribute adaptivityflag describes whether the adaptivity is applied. The appro-
priate keyword is adaptivity.

attribute description
adaptivityflag = 0 | adaptivity is not applied (default value)
adaptivityflag = 1 | adaptivity is applied (not described now)

Table 7.4: Attribute adaptivityflag

The attribute stochasticcalc describes the type of analysis with respect to deterministic
or non-deterministic feature. The appropriate keyword is stochasticcalc.

attribute description

stochasticcalc = 0 | deterministic approach/computation (default value)
stochasticcalc = 1 | stochastic/fuzzy computation, data are read all at once
stochasticcalc = 2 | stochastic/fuzzy computation, data are read sequentially
stochasticcalc = 3 | stochastic/fuzzy computation, data are generated in the code

Table 7.5: Attribute stochasticcalc

The attribute homog describes whether homogenization is applied. The appropriate
keyword is homogenization.

Storage of the stiffness matrix is located in the attribute tstorsm of the class probdesc.
The appropriate keyword is stiffmatstor. Storage of the mass matrix is located in the
attribute tstormm of the class probdesc. The appropriate keyword is massmatstor.

7.2 Linear Static Analysis

7.2.1 General description

Every linear static problem is described by the following scheme.

7.2. LINEAR STATIC ANALYSIS

attribute description

homog = 0 | homogenization is not applied (default value)
homog = 1 | homogenization is applied (not described now)

Table 7.6: Attribute homog

name of problem solved by user
message printing

tprob = linear_statics=1
strains computation

stresses computation

internal variables computation
computation of reactions
adaptivity

homogenization

node renumbering

storage of the stiffness matrix
solver of linear equations

deterministic/stochastic computation

Table 7.2
Table 7.1
described in Section 2.7
described in Section 2.8
described in Section 2.9
Table 7.3
Table 7.4
Table 7.5
Table 7.6
described in Section 2.6
described in Section 2.2
described in Section 2.3

7.2.2 Examples
7.2.2.1 Linear statics

Example without keywords

simply supported beam

detail output

linear statics

strains are not computed
stresses are not computed

reactions are computed

adaptivity is not used

deterministic computation

homogenization is not applied
nodes are not renumbered

NN OOODO OO O =

internal variables are not computed

the stiffness matrix is stored in skyline
system of linear algebraic equations is solved by LDL factorization

Example with keywords

67

68 CHAPTER 7. MEFEL INPUT FILES

simply supported beam

mespr 1 # detail output

problemtype linear_statics # linear statics

straincomp 0 # strains are not computed

stresscomp 0 # stresses are not computed

othercomp 0 # internal variables are not computed

reactcomp 1 # reactions are computed

adaptivity 0 # adaptivity is not used

stochasticcalc 0 # deterministic computation

homogenization 0 # homogenization is not applied

noderenumber no_renumbering # nodes are not renumbered

stiffmatstor skyline_matrix # the stiffness matrix is stored in skyline

typelinsol 1dl # system of linear algebraic equations is
solved by LDL factorization

7.3 Eigenvibration

Example without keywords

eigenvibration analysis

detail output

eigenvibration analysis

strains are computed

strains are computed in nodes

strains are averaged

stresses are computed

stresses are computed in nodes

stresses are averaged

other values are not computed

reactions are computed

adaptivity is not used

deterministic computation

homogenization is not applied

nodes are not renumbered

the stiffness matrix is stored in sparse storage scheme
140 # the mass matrix is stored in sparse storage scheme

) # type of eigensolver - subspace iteration with Gram-Schmidt ortonormalization
10 # the number of required eigenvectors

15 # the number of vectors used in computation

1000 # the maximum number of iterations

1.000000e-06 # the required residual

140 # type of solver of algebraic equations - sparse solver is selected

S OO OF NP DN DN

)
W
(e}

Example with keywords

7.4.

NON-LINEAR STATIC ANALYSIS 69

eigenvibration analysis

mespr 1

problemtype eigen_dynamics
straincomp 0

stresscomp 0

othercomp 0

reactcomp 1

adaptivity 0

stochasticcalc 0
homogenization 0
noderenumber no_renumbering
stiffmatstor skyline_matrix
massmatstor skyline_matrix
type_of_eig_solver subspace_it_gsortho
10

15

1000

1.000000e-06

typelinsol 1dl

detail output

eigenvibration analysis

strains are not computed

stresses are not computed

internal variables are not computed

reactions are computed

adaptivity is not used

deterministic computation

homogenization is not applied

nodes are not renumbered

the stiffness matrix is stored in skyline

the mass matrix is stored in skyline

type of eigensolver - subspace iteration with Gram-Schmidt
the number of required eigenvectors

the number of vectors used in computation
the maximum number of iterations

the required residual

system of linear algebraic equations is

solved by LDL factorization

7.4 Non-linear Static Analysis

7.4.1 General description

Every non-linear static problem is described by the following scheme.

name of problem solved by user
message printing

tprob = linear_statics=1
strains computation

stresses computation

internal variables computation
computation of reactions
adaptivity

homogenization

node renumbering

non-linear solver

back-up

storage of the stiffness matrix
solver of linear equations

deterministic/stochastic computation

Table 7.2
Table 7.1
described in Section 2.7
described in Section 2.8
described in Section 2.9
Table 7.3
Table 7.4
Table 7.5
Table 7.6
described in Section 2.6
described in Section 2.4

described in Section 2.2
described in Section 2.3

70 CHAPTER 7. MEFEL INPUT FILES

7.4.2 Examples

7.4.2.1 Non-linear statics, Newton-Raphson method

Example without keywords

simply supported beam

1 # detail output

non-linear statics

strains are computed

strains are computed in integration points
strains are not averaged

stresses are computed

stresses are computed in integration points
stresses are not averaged

internal variables are not computed

internal variables are computed in integration points
internal variables are not averaged

reactions are computed

adaptivity is not used

deterministic computation

homogenization is not applied

nodes are not renumbered

the Newton-Raphson method is used

the initial stiffness matrix is used

300 # the number of increments

30 # the number of iterations within increment
1.0e-02 # the required norm of residual

1.0e-01 # the initial increment

1.0e-08 # the minimum increment

1.0e+03 # the maximum increment

0 # no back-up is required (default value)

2 # the stiffness matrix is stored in skyline

2 # system of linear algebraic equations is solved by LDL factorization

—_
e}

R NOOOOHRORFR P OO -

Example with keywords

7.4. NON-LINEAR STATIC ANALYSIS 71

simply supported beam
mespr 1

problemtype mat_nonlinear_statics

straincomp 1

strainpos 1

strainaver 0

stresscomp 1

stresspos 1

stressaver 0

othercomp 1

otherpos 1

otheraver 0

reactcomp 1

adaptivity 0
stochasticcalc 0
homogenization 0
noderenumber no_renumbering
tnlinsol newton
stiffmat_type initial_stiff
nr_num steps 300
nr_num_iter 30

nr_error 1.0e-02
nr_init_incr 1.0e-01
nr_minincr 1.0e-08
nr_maxincr 1.0e+03
hdbackup nohdb
stiffmatstor skyline_matrix
typelinsol 1dl

detail output

non-linear statics

strains are computed

strains are computed in integration points
strains are not averaged

stresses are computed

stresses are computed in integration points
stresses are not averaged

internal variables are not computed

internal variables are computed in integration points
internal variables are not averaged

reactions are computed

adaptivity is not used

deterministic computation

homogenization is not applied

nodes are not renumbered

the Newton-Raphson method is used

the initial stiffness matrix is used

the number of increments

the number of iterations within increment
the required norm of residual

the initial increment

the minimum increment

the maximum increment

no back-up is required (default value)

the stiffness matrix is stored in skyline

system of linear algebraic equations is

solved by LDL factorization

7.4.2.2 Non-linear statics, arc-lenght method

Example without keywords

72 CHAPTER 7. MEFEL INPUT FILES

2D rectangular domain, rectangular elements, isotropic scalar damage model, arc-length
1 # message printing

non-linear statics

strains are computed

strains are computed in integration points

no averaging

stresses are computed

stresses are computed in integration points

no averaging

other values are computed

other values are computed in integration points

no averaging

reactions are computed

no adaptivity

deterministic computation

no homogenization

no renumbering

type of non-linear solver - ar-length

type of the stiffness matrix - initial stiffness is used
type of lambda determination - linearized method
50 # the number of increments

30 # the maximum number of iterations in one increment
1.0e-02 # required norm or the residual

3.5e-02 # the inital lengt of arc

3.5e-09 # the minimum length of arc

3.5e-01 # the maximum length of arc

—
]

B = = O OO0 O OO O

0.0 # the psi parameter

1 # displacement control

0 # no backup

2 # the stiffness matrix is stored in skyline

2 # the system of linear algebraic equations are solved by LDL factorization

7.5 Outdriver section

The output from the MEFEL module is controled by the setup stored in the class out-
driverm. There are three basic types of result output produced by outdriverm

e Plain text file with results at nodes, elements and user defined points.

e Result and mesh files in various format of graphical post-processors (GiD, FemCAD,
VTK, Open DX). Should be noted that only GiD format is the most developed and
it supports all features of result selection implemented in outdriverm.

e Plain text file with tabular output compatible with programs such as X-Grace, GNU-
Plot, MS-Excel or similar. This output is used for ceration of diagrams capturing
evolution of some quantity in dependence on the time or load steps and therefor the

7.5. OUTDRIVER SECTION 73

table output may be specified for the nonlinear statics or time dependent problems
only.

The plain text output is controlled by the attribute textout, graphical output is con-
trolled by the attribute gf and number of files with tabular output is stored in the attribute
ndiag.

The values of attribute textout are defined by enumeration flagsw (see galias.h) which
is described in the following table.

attribute enumerator | description
textout =0 off no text output will be performed
textout = 1 on plain text output will be performed

The values of attribute gf are defined by enumeration graphfmt (see alias.h) which is
described in the following table.

attribute | enumerator | description

gf =0 grfmt_no no text output will be performed

gf =1 grfmt_open_dx | result/mesh files in the OpenDX format are created
gf =2 grfmt_femcad | result/mesh files in the FemCAD format are created

gf =3 grfmt_gid one result file + mesh file in the GiD format are created

gf =4 grfmt_gid_sep | several result files with separated selected quantities
and mesh file in the GiD format are created

gf =5 grimt_vtk result/mesh files in the VTK format are created

If the number of required diagram files ndiag is nonzero then the additional configu-
rations have to be specified. These configurations are stored for each diagram file in the
attribute odiag. The attribute odiag is array of of instances of class outdiagm where each
array element stores configuration for one diagram file.

General scheme of the outdriverm input record is captured in the following table.

Attribute Additional configuration
value

textout =0 | -

textout > 0 | see Section 7.5.1

gf =0 -

gf >0 see Section 7.5.2

ndiag = 0 -

ndiag >0 see Section 7.5.5

7.5.1 Configuration of plain text output

After the value of the attribute textout=1, configuration of the output values for praticular
qunatities follows. The output can be configured separately for quantities stored at nodes,
integration points and user defined points. Configuration for nodal quantities is stored
in the attribute no which is instance of the class nodeoutm. Configuration of output

74 CHAPTER 7. MEFEL INPUT FILES

for quantities stored on the integration points of elements is stored in the attribute eo
which is instance of the class elemoutm. Finally, there is attribute po (instance of the class
pointoutm) intended for storage of output configuration for user defined points (UDPs) on
elements. Should be noted that the configuration can be specified but the implementation
of quantity recalculation to the user defined point is not yet finished. Each of classes
nodeoutm, elemoutm and pointoutm has attribute dstep type of sel which defines selection
of time steps in which the output will be performed. If the dstep is set to the value
sel_no then no selection of the quantities follows. Generally, the content of the section
configuring the text output can be summarized in the following table

Attribute Description or
value additional configuration

outfn Output file name (%s)
no.dstep =0 | -
no.dstep > 0 | see Section 7.5.1.1
eo.dstep =0 | -

eo.dstep > 0 | see Section 7.5.1.2
po.dstep =0 | -

po.dstep > 0 | see Section 7.5.1.3

In the above table, the name of the plain text output file (attribute outfn) can be arbitrary
file name which may involve path and suffix (usually, the .out is used). If the stochastic
calculation is performed then the suffix is changed automatically so that it precedes the
simulation number.

7.5.1.1 Configuration of plain text output of nodal values

Every configuration of nodal values output in the plain text format can be described by
the following table.

7.5. OUTDRIVER SECTION 75

Attribute Attribute | Selection of | Used types of selection
value quantities
no.dstep = 0 - -
1-6, 10, 11 | load case see Sect.6.1.2
(see displacements conjugated selection of nodal ids and
Sect.6.1.2 displacement component ids - see
and 6.1.3) Sect.6.1.1,6.1.5 and 7.5.1.4
strains conjugated selection of nodal ids,

strain component ids and strain
transformation flag (see Sect.6.1.1,
6.1.5 and 7.5.1.5)

stresses conjugated selection of nodal ids,
stress component ids and stress
transfromation flag (see Sect.6.1.1,
6.1.5 and 7.5.1.6)

eqother array conjugated selection of nodal ids and
eqother array component ids - see
Sect.6.1.1, 6.1.5 and 7.5.1.7
reactions 0 = no output of reactions 1 = print
all reactions

7.5.1.2 Configuration output values for elements in plain text format

The output configuration of element integration point values in the plain text format can
be described by the following table.

Attribute Attribute | Selection of | Used types of selection
value quantities
eo.dstep = 0 - -
1-6, 10, 11 | load case see Sect.6.1.2
(see
Sect.6.1.2 | strains conjugated selection of element ids,
and 6.1.3) strain component ids and strain

transformation flag (see Sect.6.1.1,
6.1.5 and 7.5.1.8))

stresses conjugated selection of element ids,
stress component ids and stress
transfromation flag (see Sect.6.1.1,
6.1.5 and 7.5.1.9)

eqother array conjugated selection of nodal ids and
eqother array component ids - see
Sect.6.1.1, 6.1.5 and 7.5.1.10

76

CHAPTER 7. MEFEL INPUT FILES

7.5.1.3 Configuration output values for UDPs in plain text format

Configuration of UDP output in the plain text format can be described by the following

table.

Attribute Attribute | Selection of | Used types of selection
value quantities

po.dstep = 0 - -
1-6, 10, | number of UDPs | %ld
11 (see | npnt
Sect.6.1.2
and 6.1.3)

natural coordi- | (%le %le %le)xnpnt

nates &, n and ¢

of UDPs

elements conjugated selection of element ids
and UDP ids - see Sect.6.1.1, 6.1.5
and 6.1.6

strains, strain | (selection of strain component ids -

transformation, | Sect.6.1.2, strain transfromation flag

stresses, stress | - {0—-1}, selection of stress com-

transformation, | ponent ids - Sect.6.1.2, stress trans-

eqother array

fromation flag - {0—-1}, selection
of eqother array component ids -
Sect.6.1.2) xnpnt

7.5.1.4 Example of conjugated selection for displacement components at nodes

In this example, the output of all displacement components will be specified for all nodes.

Example without keywords

SELECTION OF REQUIRED NODES
1 # type of selection = all nodes

SELECTION OF DISPLACEMENT COMPONENTS
1 # type of conjugated selection for all nodes =
= all displacement components selected

Example with keywords

displ_nodes
sel_all

sel_all

SELECTION OF REQUIRED NODES
type of selection = all nodes

noddispl comp # SELECTION OF DISPLACEMENT COMPONENTS
type of conjugated selection for all nodes =
= all displacement components selected

7.5. OUTDRIVER SECTION

7.5.1.5 Example of conjugated selection for strains at nodes

7

In this example, the output of all strain components will be specified for nodes 8 and 11.
No output of principal strains will be required.

Example without keywords

— 00 N W

0
0

SELECTION OF REQUIRED NODES
type of selection = integer list

two items of list will be specified

node 8 = item 1.

node 11 = item 2.

SELECTION OF REQUIRED STRAIN COMPONENTS
type of conjugated selection for item 1. =
= all components selected for node 8

type of conjugated selection for item 2. =
= all components selected for node 11

FLAGS FOR PRINCIPAL STRESSES
item 1. = node 8 -; no principal strain
item 2. = node 11 -/ no principal strain

Example with keywords

sel_list

8

11

sel_all

sel_all

0
0

nodstrain_comp

strain_nodes # SELECTION OF REQUIRED NODES

type of selection = integer list

numlist_items 2 # two items of list will be specified

node 8 = item 1.
node 11 = item 2.

type of conjugated selection for item 1. =
= all components selected for node 8

type of conjugated selection for item 2. =
= all components selected for node 11

nodstre_transfid # FLAGS FOR PRINCIPAL STRESSES

l.item = node 8 -; no principal strain
2.item = node 11 -; no principal strain

SELECTION OF REQUIRED STRAIN COMPONENTS

7.5.1.6 Example of conjugated selection for stresses at nodes

In this example, the output of stress components o, and o, will be specified for nodes 8
and 11. Output of principal stresses will be required at node 11.

78 CHAPTER 7. MEFEL INPUT FILES

Example without keywords

SELECTION OF REQUIRED NODES
type of selection = integer list
two items of list will be specified
node 8 = item 1.
1 # node 11 = item 2.

— 00 DN W

SELECTION OF REQUIRED STRESS COMPONENTS
3 # type of conjugated selection for item 1. = integer list
2 # number of selected stress components
1 3 # indeces of stress vector components

3 # type of conjugated selection for item 2. = integer list
2 # number of selected stress components
1 3 # indeces of stress vector components

FLAGS FOR PRINCIPAL STRESSES
0 # item 1. = node 8 -; no principal stresses
-1 # item 2. = node 11 -; print principal stresses

Example with keywords

stress_nodes # SELECTION OF REQUIRED NODES

sel_list # type of selection = integer list
numlist_items 2 # two items of list will be specified
8 # node 8 = 1. item

11 # node 11 = 2. item

nodstress_comp # SELECTION OF REQUIRED STRESS COMPONENTS

sel_list # type of conjugated selection for item 1.
numlist_items 2 # number of selected stress components
13 # ids of stress vector components

sel_list # type of conjugated selection for item 2.
numlist_items 2~ # number of selected stress components
13 # ids of stress vector components

nodstre_transfid # FLAGS FOR PRINCIPAL STRESSES
0 # l.item = node 8 -; no principal stresses
-1 # 2.item = node 11 -, print principal stresses

7.5.1.7 Example of conjugated selection for plastic strains at nodes

In this example, the output of plastic strain components €, e/ and £f, will be specified
for all nodes of the domain calculated.

7.5. OUTDRIVER SECTION 79

Example without keywords

SELECTION OF REQUIRED NODES
1 # type of selection = sel_all
all nodes will be specified

SELECTION OF PLASTIC STRAIN COMPONENTS

3 # type of conjugated selection for all nodes =
= integer list
3 # number of selected plastic strain components

123 # indeces of eqother array corresponding to
required pl. strain components eps " p_x and eps p_y

Example with keywords

other_nodes # SELECTION OF REQUIRED NODES
sel_all # type of selection = sel_all
all nodes will be specified

nodother_comp # SELECTION OF PLASTIC STRAIN COMPONENTS
sel_list # type of conjugated selection for all nodes =
= integer list
numlist_items 3 # number of selected plastic strain components
123 # indeces of eqother array corresponding to
required pl. strain components eps p_x and eps p_y

7.5.1.8 Example of conjugated selection for strains on elements

In this example, the output of all strain components will be specified for integration points
of elements 1 and 40-60. Output of principal strains will be required for element 1.

Example without keywords

80 CHAPTER 7. MEFEL INPUT FILES

SELECTION OF REQUIRED ELEMENTS
2 # type of selection = integer range
2 # two ranges will be specified
first range <1, 1>
1 # initial id - range 1.
1 # number of selected ids - range 1.
second range <40, 60>
40 # initial id - range 2.
20 # number of selected ids - range 2.

SELECTION OF REQUIRED STRAIN COMPONENTS
1 # type of conjugated selection for range 1. =
= all strain components

1 # type of conjugated selection for range 2. =
= all strain components

FLAGS FOR PRINCIPAL STRAINS
-1 # range 1. -; print principal strains
0 # range 2. -j no principal strains

Example with keywords

strain_elems # SELECTION OF REQUIRED ELEMENTS
sel_range # type of selection = integer range
num_ranges 2 # two ranges will be specified
first range <1, 1>
1 # initial id - range 1.
1 # number of selected ids - range 1.
second range <40, 60>
40 # initial id - range 2.
20 # number of selected ids - range 2.

elemstrain_.comp # SELECTION OF REQUIRED STRAIN COMPONENTS
sel_all # type of conjugated selection for range 1. =
= all strain components

sel_all # type of conjugated selection for range 2. =
= all strain components

elemstra_transfid # FLAGS FOR PRINCIPAL STRAINS
-1 # range 1. -; print principal strains
0 # range 2. -; no principal strains

7.5. OUTDRIVER SECTION 81

7.5.1.9 Example of conjugated selection for stresses on elements

In this example, the output of all stress components will be specified for integration points
of all elements. Output of principal stresses will be required for all elements.

Example without keywords

SELECTION OF REQUIRED ELEMENTS
1 # type of selection = all ids

SELECTION OF REQUIRED STRESS COMPONENTS
1 # type of conjugated selection for all elements =
= all stress components

FLAGS FOR PRINCIPAL STRAINS
-1 # print principal stresses for all elements

Example with keywords

stress_elems # SELECTION OF REQUIRED ELEMENTS
sel_all # type of selection = all ids

elemstress_comp # SELECTION OF REQUIRED STRESS COMPONENTS
sel_all # type of conjugated selection for all elements =
= all stress components

FLAGS FOR PRINCIPAL STRAINS
-1 # print principal stresses for all elements

7.5.1.10 Example of conjugated selection for plastic strains on elements

In this example, the output of plastic strain components £f and e} will be specified for
integration points of elements 1-25 and 36-40 .

Example without keywords

82 CHAPTER 7. MEFEL INPUT FILES

SELECTION OF REQUIRED ELEMENTS
2 # type of selection = integer ranges
2 # two ranges will be specified
first range <1, 25>
1 # initial id - range 1.
25 # number of selected ids - range 1.
second range <36, 40>
36 # initial id - range 2.
D # number of selected ids - range 2.

SELECTION OF PLASTIC STRAIN COMPONENTS
3 # type of conjugated selection for range 1.
2 # number of selected pl. strain components
12 # indeces of eqother array corresponding to

required pl. strain components eps p_x and eps p_y

3 # type of conjugated selection for range 2.
2 # number of selected pl. strain components
12 # indeces of eqother array corresponding to
required pl. strain components eps p_x and eps” p_y

Example with keywords

other_elems # SELECTION OF REQUIRED ELEMENTS
sel_range # type of selection = integer ranges
num _ranges 2 # two ranges will be specified
first range <1, 25>
1 # initial id - range 1.
25 # number of selected ids - range 1.
second range <36, 40>
36 # initial id - range 2.
5 # number of selected ids - range 2.

elemother_comp # SELECTION OF PLASTIC STRAIN COMPONENTS

sel_list # type of conjugated selection for range 1.
numlist_items 2~ # number of selected pl. strain components
12 # indeces of eqother array corresponding to

required pl. strain components epsp_x and epsp_y

sel_list # type of conjugated selection for range 2.
numlist_items 2 # number of selected pl. strain components
12 # indeces of eqother array corresponding to

required pl. strain components epsp_x and epsp_y

7.5. OUTDRIVER SECTION 83

7.5.2 Configuration of graphical output

After the value of the attribute gf={1,2,3,4} the configuration of the output values for
praticular qunatities follows. The graphical output can be configured separately for quan-
tities stored at nodes and integration points on elements. Configuration for nodal quanti-
ties is stored in the attribute nog which is instance of the class nodeoutgm. Configuration
of output for quantities connected with the integration points on elements is stored in
the attribute eog which is instance of the class elemoutgm. Both classes nodeoutgm and
elemoutm have attribute dstep type of sel which defines selection of time steps in which
the output will be performed. If the dstep is set to the value sel_no then no selection of the
quantities follows. Generally, the content of the section configuring the graphical output
can be summarized in the following table

Attribute Description or
value additional configuration

outgrfn Output file name (%s)
nog.dstep =0 | —
nog.dstep > 0 | see Section 7.5.2.1
eog.dstep =0 | -
eog.dstep > 0 | see Section 7.5.2.2

In the above table, the name of the graphical output file (attribute outgrfn) can be
arbitrary file name which may involve path. The suffix should be chosen with respect to
graphical format given by the outdriverm attribute gf. If the gf = 3 = grfmt_gid then the
default suffices .res and .msh are appended to the file name specified.

If the gf = 4 = grfmt_gid_sep then the for each quantity is generated separate file
name which starts with the given file name (outgrfn) followed by the quantity specifier
Additionally, the default suffix .res is appended to the generated file names. The mesh
file name is generated in the same way as for the single file format. The following table
describes file name generation for the nodal values in the GiD separated file format.

If the stochastic calculation is performed then the generated suffix precedes the sim-
ulation number.

84 CHAPTER 7. MEFEL INPUT FILES

Quantitity Quantity specifier and suffix
appended to the graphical output
file name

nodal displacement .displ.res

nodal strains .nodal_eps’%ld.res

(selected by components) | %1d = strain component id

nodal principal strains .nodal _peps%ld.res

(selected by components) | %1d = principal strain component id

nodal stress .nodal_sig¥ld.res

(selected by components) | %1d = stress component id

nodal principal stesses .nodal psiglld.res

(selected by components) | %1d = principal stress component id

nodal other values .nodal_otheryld.res

(selected by components) | %1d = eqother array component id

nodal strains .nodal _eps_v%1ld-%1ld_s%ld.res

(selected as vector) _v%1d = initial strain component id

-%1d = number of vector components

_s%1d = strain selection id

nodal stress .nodal sig v%1d-%1d_s%1ld.res

(selected as vector) _v}1d = initial stress component id

-%1d = number of vector components

_s%hld = stress selection id

nodal other values .nodal _other v%1d-%1d_s’%1ld.res

(selected as vector) _v%1d = initial eqother component component id
-%1d = number of vector components

_s%1ld = other value selection id

nodal strains .nodal _eps_m s¥%ld.res

(selected as tensor) _s%1d = strain selection id

nodal stress .nodal sig m s¥%ld.res

(selected as tensor) _s%1d = stress selection id

nodal other values .nodal other mj1d-%1d s%1ld.res

(selected as tensor) _m%1d = initial eqother component component id

-%1d = number of tensor components
_s%1ld = other value selection id
nodal forces .force.res

In the above table, the strain/stress/other selection id represents the order of the
conjugated selection of strain/stress/other components. For example, if the nodal stress
output configuration described in Section 7.5.2.4 was used for GiD separated format, then
the name of the output file for the node 8 would have the suffix .nodal_eps_m_sl.res and
for the node 11, the suffix would be .nodal_eps_m_s2.res.

The following table describes file name generation for the values on integration point
of elements in the GiD separated file format.

7.5. OUTDRIVER SECTION

Quantitity

Quantity specifier and suffix
appended to the graphical output
file name

element strains
(selected by components)

.elem_eps’ld.res
%1d = strain component id

element stresses
(selected by components)

.elem_sigjld.res
%1d = stress component id

element other values
(selected by components)

.elem_otherj,ld.res
%1d = eqother array component id

element strains
(selected as vector)

.elem_eps_v%1d-%1ld_s¥%ld.res

_v%1d = initial strain component id
-%1d = number of vector components
_s%1d = strain selection id

element stresses
(selected as vector)

.elem sig vJ1d-%1d s%ld.res

_v%1d = initial stress component id
-%1d = number of vector components
_s%hld = stress selection id

element other values
(selected as vector)

.elem other v%1d-%1d_s%1ld.res

_v%1d = initial eqother component component id
-%1d = number of vector components

_s%1d = other value selection id

element strains
(selected as tensor)

.elem eps m s¥%ld.res
_s%1d = strain selection id

element stresses
(selected as tensor)

.elem sig m s¥%1ld.res
_s%1d = stress selection id

element other values
(selected as tensor)

.elem_other_m}1d-%1d_s%1d.res

_m%1d = initial eqother component component id
-%1d = number of vector components

_s%1ld = other value selection id

85

In the above table, the strain/stress/other selection id represents the order of the
conjugated selection of strain/stress/other components. For example, if the output con-
figuration of element plastic strain described in Section 7.5.2.9 was used for GiD separated
format, then the name of the output file for the first range of elements 1-25 would have
the suffix .elem_other_v1-3_sl.res and for the second range of elements 36-40, the suffix

would be .elem_other_v1-3_s2.res.

7.5.2.1 Configuration of nodal graphical output

Every configuration of nodal values output in the graphical format can be described by

the following table.

86 CHAPTER 7. MEFEL INPUT FILES
Attribute Attribute | Selection of | Used types of selection
value quantities
nog.dstep = |0 - -
1-6, 10, 11 | load case see Sect.6.1.2
(see displacements conjugated selection of nodal ids and
Sect.6.1.2 displacement component ids - see
and 6.1.3) Sect.6.1.1,6.1.5 and 7.5.1.4
strains conjugated selection of nodal ids,
strain component ids and strain
transformation flag (see Sect.6.1.1,
6.1.5, 7.5.1.5, 7.5.2.4)
stresses conjugated selection of nodal ids,

stress component ids and stress
transfromation flag (see Sect.6.1.1,
6.1.5, 7.5.1.6 and 7.5.2.5)

eqother array

conjugated selection of nodal ids
and eqother array component ids -
see Sect.6.1.1, 6.1.5 and 7.5.1.7 or
7.5.2.6

nodal forces

conjugated selection of nodal ids
and nodal force component ids - see
Sect.6.1.1,6.1.5 and 7.5.2.3

7.5.2.2 Configuration of graphical output for elements

The output configuration of element integration point values in the graphical format can
be described by the following table.

Attribute Attribute | Selection of | Used types of selection
value quantities
eog.dstep = | 0 - -
1-6, 10, 11 | load case see Sect.6.1.2
(see
Sect.6.1.2 | strains conjugated selection of element ids,
and 6.1.3) strain component ids and strain
transformation flag (see Sect.6.1.1,
6.1.5, 7.5.1.8) and 7.5.2.7)
stresses conjugated selection of element ids,

stress component ids and stress
transfromation flag (see Sect.6.1.1,
6.1.5, 7.5.1.9 and 7.5.2.8)

eqother array

conjugated selection of nodal ids and
eqother array component ids - see
Sect.6.1.1, 6.1.5, 7.5.1.10 and 7.5.2.9

Should be noted that the output of principal strains and stresses on elements has not
been implemented yet and the transformation flags are ignored in this case.

7.5. OUTDRIVER SECTION

87

7.5.2.3 Example of conjugated selection for nodal force components at nodes

In this example, the output of all nodal force components will be specified for all nodes.

Example without keywords

SELECTION OF REQUIRED NODES
1 # type of selection = all nodes

SELECTION OF NODAL FORCE COMPONENTS
1 # type of conjugated selection for all nodes =
= all nodal force components selected

Example with keywords

force nodes # SELECTION OF REQUIRED NODES
sel_all # type of selection = all nodes

force.comp # SELECTION OF NODAL FORCE COMPONENTS
sel_all # type of conjugated selection for all nodes =

= all nodal force components selected

7.5.2.4 Example of conjugated selection for strain tensor at nodes

In this example, the output of all strain components to GiD in tensorial format will be
specified for nodes 8 and 11. No output of principal strains will be required.

Example without keywords

— 00 N W

SELECTION OF REQUIRED NODES
type of selection = integer list

two items of list will be specified

node 8 = item 1.

node 11 = item 2.

SELECTION OF REQUIRED STRAIN COMPONENTS
type of conjugated selection for item 1. =
= all components in tensorial format for node 8

type of conjugated selection for item 2. =
= all components in tensorial format for node 11

FLAGS FOR PRINCIPAL STRESSES
item 1. = node 8 -; no principal strain
item 2. = node 11 -; no principal strain

Example with keywords

88 CHAPTER 7. MEFEL INPUT FILES

strain_nodes # SELECTION OF REQUIRED NODES

sel _list # type of selection = integer list
numlist_items 2 # two items of list will be specified
8 # node 8 = item 1.

11 # node 11 = item 2.

nodstrain_comp # SELECTION OF REQUIRED STRAIN COMPONENTS
sel_mtx # type of conjugated selection for item 1. =
= all components in tensorial format for node 8

sel_mtx # type of conjugated selection for item 2. =
= all components in tensorial format for node 11

nodstre_transfid # FLAGS FOR PRINCIPAL STRESSES
0 # l.item = node 8 -; no principal strain
0 # 2.item = node 11 -; no principal strain

7.5.2.5 Example of conjugated selection for stress tensor at nodes

In this example, the output of all stress components in GiD tensorial format will be
specified for all nodes. Output of principal stresses will not be required.

Example without keywords

SELECTION OF REQUIRED NODES
1 # type of selection = all nodes

SELECTION OF REQUIRED STRESS COMPONENTS
7 # type of conjugated selection for all nodes =
= all components in GiD tensorial format

FLAGS FOR PRINCIPAL STRESSES
-1 # for all nodes -; print principal stresses

Example with keywords

stress_nodes # SELECTION OF REQUIRED NODES
sel_all # type of selection = all nodes

nodstress_comp # SELECTION OF REQUIRED STRESS COMPONENTS
sel_mtx # type of conjugated selection for all nodes =
= all components in GiD tensorial format

nodstre_transfid # FLAGS FOR PRINCIPAL STRESSES
-1 # for all nodes -; print principal stresses

7.5. OUTDRIVER SECTION 89

7.5.2.6 Example of conjugated selection for plastic strain tensor at nodes

In this example, the output of plastic strain components €%, b’ e, and € in GiD tensorial
format will be specified for all nodes. It is assumed the plain-stress state and therefor

only four nonzero components are store in the eqother array.

Example without keywords

SELECTION OF REQUIRED NODES
1 # type of selection = all nodes
all nodes will be specified

SELECTION OF PLASTIC STRAIN COMPONENTS
8 # type of conjugated selection for all nodes =
= tensorial components selected from large array
initial id in eqother array
4 4 number of indeces in eqother array corresponding
to the number of plastic strain components for
the plane-stress state

—_

Example with keywords

other_nodes # SELECTION OF REQUIRED NODES
sel_all # type of selection = all nodes
all nodes will be specified

nodother_comp # SELECTION OF PLASTIC STRAIN COMPONENTS
sel_ range mtx # type of conjugated selection for all nodes =

= tensorial components selected from large array
1 # initial id in eqother array

number of indeces in eqother array corresponding

to the number of plastic strain components for

the plane-stress state

7.5.2.7 Example of conjugated selection for strain tensor on elements

In this example, the output of all strain components in GiD tensorial format will be
specified for integration points of elements 40-60 and ¢, component will be specified for
integration point of elements 1-39. Output of principal strains will not be.

Example without keywords

90 CHAPTER 7. MEFEL INPUT FILES

SELECTION OF REQUIRED ELEMENTS
2 # type of selection = integer range
2 # two ranges will be specified
first range <1, 39>
1 # initial id - range 1.
39 # number of selected ids - range 1.
second range <40, 60>
40 # initial id - range 2.
20 # number of selected ids - range 2.

SELECTION OF REQUIRED STRAIN COMPONENTS
3 # type of conjugated selection for range 1. =

= integer list
1 # number of list items
1 # first component eps_x is selected

7 # type of conjugated selection for range 2. =
= all strain components in GiD tensorial format

FLAGS FOR PRINCIPAL STRAINS
-1 4 range 1. -; print principal strains
0 # range 2. -; no principal strains

Example with keywords

7.5. OUTDRIVER SECTION 91

strain_elems # SELECTION OF REQUIRED ELEMENTS
sel_range # type of selection = integer range
num_ranges 2 # two ranges will be specified
first range <1, 39>
1 # initial id - range 1.
39 # number of selected ids - range 1.
second range <40, 60>
40 # initial id - range 2.
20 # number of selected ids - range 2.

elemstrain_.comp # SELECTION OF REQUIRED STRAIN COMPONENTS
sel_list # type of conjugated selection for range 1. =
= integer list
numlist_items 1 # number of selected items
1 # the first strain component selected for range 1.

sel_mtx # type of conjugated selection for range 2. =
= all strain components in GiD tensorial format

elemstra_transfid # FLAGS FOR PRINCIPAL STRAINS
0 # range 1. -j no principal strains
0 # range 2. -; no principal strains

7.5.2.8 Example of conjugated selection for stress tensor on elements

In this example, the output of all stress components will be specified in GiD tensorial
format for integration points of all elements. Output of principal stresses will not be
required for all elements.

Example without keywords

SELECTION OF REQUIRED ELEMENTS
1 # type of selection = all ids

SELECTION OF REQUIRED STRESS COMPONENTS
7 # type of conjugated selection for all elements =
= all stress components in GiD tensorial format

FLAGS FOR PRINCIPAL STRAINS
0 # do not print principal stresses for all elements

Example with keywords

92 CHAPTER 7. MEFEL INPUT FILES

stress_elems # SELECTION OF REQUIRED ELEMENTS
sel_all # type of selection = all ids

elemstress_.comp # SELECTION OF REQUIRED STRESS COMPONENTS
sel_mtx # type of conjugated selection for all elements =
= all stress components in GiD tensorial format

FLAGS FOR PRINCIPAL STRAINS

0 # do not print principal stresses for all elements

7.5.2.9 Example of conjugated selection for plastic strain vector on elements

In this example, the output of plastic strain components £f, e and % will be specified
in GiD vector format for integration points of elements 1-25 and 36-40. The space stress
state is assumed in the following examples.

Example without keywords

SELECTION OF REQUIRED ELEMENTS
2 # type of selection = integer ranges
2 # two ranges will be specified
first range <1, 25>
1 # initial id - range 1.
25 # number of selected ids - range 1.
second range <36, 40>
36 # initial id - range 2.
5 # number of selected ids - range 2.

SELECTION OF PLASTIC STRAIN COMPONENTS
9 # type of conjugated selection for range 1.
1 # initial id of of eps”p_x in eqother array
3 # number of vector components

9 4 type of conjugated selection for range 2.
initial id of of eps”"p_x in eqother array
number of vector components

W =

Example with keywords

7.5. OUTDRIVER SECTION 93

other_elems # SELECTION OF REQUIRED ELEMENTS
sel_range # type of selection = integer ranges
num_ranges 2 # two ranges will be specified
first range <1, 25>
1 # initial id - range 1.
25 # number of selected ids - range 1.
second range <36, 40>
36 # initial id - range 2.
) # number of selected ids - range 2.

elemother_comp # SELECTION OF PLASTIC STRAIN COMPONENTS

sel_range_vec # type of conjugated selection for range 1.
1 # initial id of of eps”"p_x in eqother array
3 # number of vector components
sel_range_vec # type of conjugated selection for range 2.
1 # initial id of of eps”"p_x in eqother array
3 # number of vector components

7.5.3 Configuration of tabular output

The configuration of the tabular output is given by the file name and ndiag times repeated
configuration of the particular diagram files.

The file name may be arbitrary including path and suffix. If the number of diagram
files is greater than one then the user defined suffix precedes the diagram file number
generated automatically. If the stochastic calculation is performed then the user defined
suffix including eventual generated diagram file number precedes the simulation number
separated by a dot.

Generally, the configuration can be described by the following table.

Attribute Description or additional configuration
outdiagfn Output file name (%s)
odiagxndiag | See Table 7.9

The attribute odiag is type of class outdiagm which stores the configuration of the
diagram file. It contains attribute npun which represents the number of printed unknowns,
attribute nif which is array of enumeration nodip (see galias.h) and attribute pu which is
array of enumeration prunk (see alias.h). Elements of nif array represents type of points
(node/integration point) in which the required unknown will be printed out. Type of
points involved in the enumeration nodip are summarized in Table 7.7.

Elements of array pu represents types of printed unknown. Type of printed unknowns
involved in the enumeration prunk are described in Table 7.8.

94

CHAPTER 7. MEFEL INPUT FILES

attribute enumerator | description
nif[i] = 0 | no_point no point selected
nif[i] = 1 | atnode point is given by node id
nif[i] = 2 | atip point is given by integration point on element
nif[i] = 3 | atxyz point is given by coordinates,
the nearest node is selected
Table 7.7: nodip enumeration type

attribute | enumerator | description

pulil =1 | pr_displ print displacement component

pulil = 2 | pr_strains print strain component

puli] = 3 | pr_stresses | print stress component

pulil = 4 | pr_forces print nodal force vector component

pulil = 5 | pr_react print reaction

puli]l = 6 | pr_stepid print integer step id

puli] = 7 | pr.appload | print load coefficient /time of the actual step

puli] = 8 | pr_other print eqother array component

Table 7.8: prunk enumeration type

7.5. OUTDRIVER SECTION

95

Attribute
value

Description or
additional configuration

odiag.npun

number of printed unknowns (%1d)

odiag.dstep = 0
odiag.dstep >0

npun X (Table 7.10)

Table 7.9: General outdiagm input record

The record for one odiag instance is summarized in Table 7.9.

If the attribute dstep of outdiagm class is set to sel_no option then no additional
configuration is necessary otherwise the input record for one required unknown is repeated
npun times. Description of the input record for one unknown is captured in Table 7.10
and it depeneds on the point type specified. Depending on the point type, the different
types of unknowns can be specified - see Table 7.11.

Attribute

Attribute value
(see Table 7.7)

Selection of un-
known

Selected point record

odiag.nif [i]

0

odiag.nif[i] = |1 node id (%14d) See Table 7.11,
options 1-8
odiag.nif[i] = | 2 element id (%1d) See Table 7.11,
local int. point id (%14d) options 2,3,6-8
odiag.nif[i] = |3 x coordinate (%1le)

See Table 7.11,
options 1-8

y coordinate (%le)
z coordinate (%le)

Table 7.10: outdiagm input record for praticular types of point

Attribute Attribute value Selected unknown component id
(see Table 7.8)

odiag.puli] = |1 displacement component id (%1d)

odiag.puli]l = | 2 strain component id (%1d)

odiag.puli]l = |3 stress component id (%1d)

odiag.puli]l = |4 nodal force component id (%1d)

odiag.puli] = |5 reaction component id (%1d)

odiag.puli]l = | 6 -

odiag.pulil = | 7 -

odiag.puli]l = | 8 eqother array component id (%1d)

Table 7.11: outdiagm input record for praticular type of uknowns

96 CHAPTER 7. MEFEL INPUT FILES

7.5.3.1 Example of configuration for tabular output

In this example, the J2 flow plasticity material will be assumed. Two table output files
will be configured. The first file j2beam.l.dat will contain five columns with step id,
horizontal displacement, strain component €, stress component o, and reaction in vertical
direction. The second file j2beam.2.dat will contain two columns with the load coefficient
and consistency parameter v. Each row of the table will contain the value of the given
unknown in dependence on all performed time steps either for node 8 or the second
integration point of element 12 or the nearest node to point with coordinates [2.3, -5.1,

8.5].

Example without keywords

7.5. OUTDRIVER SECTION

2
j2beam.dat

3
2.3-5.18.5

N Ot GO

number of generated table output files

basic name of generated the files

the file number will be added automatically
#

CONFIGURATION OF THE FIRST FILE
number of printed unknowns

type of time step selection = all time steps
1. column

point type = node

point id = 8. node

unknown type = step id

2. column

point type = point with coordinates

X, vy, z coordinates of point,

the nearset node will be selecetd

unknown type = displacement

component id 1 = horizontal displacement
3. column

point type = integration point

point id = 12. element, 2. int. point

unknown type = strain

the second strain component = eps_y

4. column

point type = integration point

point id = 12. element, 2. int. point

unknown type = stress

the first stress component = sig_x

5. column

point type = node

point id = 8. node

uknown type = reaction

the second component = vertical reaction
#

CONFIGURATION OF THE SECOND FILE
number of printed unknowns

type of time step selection = all time steps
1. column

point type = integration point

point id = 12. element, 2. int. point

unknown type = load coefficient

2. column

point type = integration point

point id = 12. element, 2. int. point

unknown type = eqother array value

component id 5 = consistency parameter

97

Example with keywords

CHAPTER 7. MEFEL INPUT FILES

numdiag 2
j2beam.dat

numunknowns 5
sel_all

point atnode
node 8
quant_type step_id

point atxyz
x23y-51z85

quant_type pr_displ
compid 1

point atip

elem 12 ip 2
quant_type pr_strain
compid 2

point atip

elem 12 ip 2
quant_type pr_stress
compid 1

point atnode 1
node 8

quant_type pr_react
compid 2

numunknowns 2
sel_all

point atip
elem 12 ip 2

quant_type pr_appload

point atip

elem 12 ip 2
quant_type pr_other
compid 5

number of generated table output files

basic name of generated the files

the file number will be added automatically
#

CONFIGURATION OF THE FIRST FILE
number of printed unknowns

type of time step selection = all time steps
1. column

point type = node

point id = 8. node

unknown type = step id

2. column

point type = point with coordinates

x, y, z coordinates of point,

the nearset node will be selecetd

unknown type = displacement

component id 1 = horizontal displacement
3. column

point type = integration point

point id = 12. element, 2. int. point

unknown type = strain

the second strain component = eps_y

4. column

point type = integration point

point id = 12. element, 2. int. point

unknown type = stress

the first stress component = sig_x

5. column

point type = node

point id = 8. node

uknown type = reaction

the second component = vertical reaction

CONFIGURATION OF THE SECOND FILE

number of printed unknowns

type of time step selection = all time steps
1. column

point type = integration point

point id = 12. element, 2. int. point

unknown type = load coefficient

2. column

point type = integration point

point id = 12. element, 2. int. point

unknown type = eqother array value

component id 5 = consistency parameter

7.5. OUTDRIVER SECTION 99

7.5.4 Examples of outdriverm input section

In the following subsections, various types of outdriverm configurations are presented.
Their parts can be swapped mutually but the user should be carefull becuase of used
material modells and the problem solved. For example in the linear statics problem, the
outdiag can be specified but the diagram files are not reasonable in this case because there
is no dependence of unknowns on time or load coefficient. Also the output of internal
variables stored in the eqother array is not allowed because the linear elastic materials
have no internal variables. In such cases, the user should select no elements or nodes for
eqother output and zero number of diagram files.

If the output of eqother values such as plastic strains, damage parameters or creep
strains is required then the index of variable has to be specified. The order of the internal
variables stored in the eqother depeneds on the material model used and it can be found
and checked in the source files describing the given model. Usually, the header file should
contain description of the appropriate class for material model and the order of the internal
varibles should be involved. Definitely, the user can find the order of the internal variables
in the member function nlstresses of the given material model.

If the user decides for using of keywords in the outdriver section of the input file for
MEFEL then it is necessary to use switch -kwd=2 in the case of no keywords in probdesc
section or -kwd=3 in the case of keywords both in probdesc and outdriverm sections.

7.5.4.1 Example of linear statics problem

In this example, the output of all displacements, nodal strains, nodal stresses and reactions
will be set to the plain text file and all strains and stresses on elements in tensorial form
to the GiD result file. Additionally, nodal displacement will be printed to the GiD result
file.

Example without keywords

100 CHAPTER 7. MEFEL INPUT FILES

PLAIN TEXT OUTPUT
1 # plain text output is produced
linstat.out # file name for the plain text output
Output configuration of nodal values
nodal values in all time steps are printed
nodal values for all load cases are printed
displacements are printed at all nodes
all displacement components are printed
strains are printed at all nodes
all strain components are printed
no nodal strain transformation is performed
stresses are printed at all nodes
all stress components are printed
no nodal stress transformation is performed
no nodes selected =; no nodal other value output
all reactions are printed
Output configuration for elements
0 # no time step for elements is selected =,

no output on elements

OUTPUT IN GRAPHICAL FORMATS
3 # single GiD file with results is produced
linstat # file name for GiD output (without suffix)
Output configuration of nodal values
nodal values in all time steps are printed
nodal values for all load cases are printed
displacements are printed at all nodes
all displacement components are printed
no node selected =; no nodal strain output
no node selected =; no nodal stress output
no node selected =; no nodal other values output
no node selected =; no nodal forces output
Output configuration of element values
element values in all time steps are printed
element values for all load cases are printed
strains for all elements are printed
all strain components are printed as tensors
no strain transformation is performed
stresses for all elements are printed
all stress components are printed as tensors
no stress transformation is performed
no elements selected =; no other values output
OUTPUT OF TABULAR FILE
0 # zero number of tabular files =; no tabular output

— OO R K O F o

OO OO M ===

OO IR, O =

Example with keywords

7.5. OUTDRIVER SECTION

101

textout
linstat.out

sel_nodstep
sel_nodlc
displ_nodes
displ_comp
strain_nodes
nodstrain_comp
nodstra_transfid
stress_nodes
nodstress_comp
nodstre_transfid
other_nodes
reactions

sel_elemstep

outgr_format
linstat

sel_nodstep
sel_nodlc
displ_nodes
displ_comp
strain_nodes
stress_nodes
other_nodes
force_nodes

sel_elemstep
sel_elemlc
strain_elems
elemstrain_comp
elemstra_transfid
stress_elems
elemstress_comp
elemstre_transfid
other_elems

numdiag

on

sel_all
sel_all
sel_all
sel_all
sel_all
sel_all
0

sel_all
sel_all
0

sel_no
1

sel_no

grfmt_gid

sel_all
sel_all
sel_all
sel_all
sel_no
sel_no
sel_no
sel_no

sel_all
sel_all
sel_all
sel_mtx
0

sel_all
sel_mtx
0

0

PLAIN TEXT OUTPUT

plain text output is produced

file name for the plain text output

Output configuration of nodal values

nodal values in all time steps are printed

nodal values for all load cases are printed
displacements are printed at all nodes

all displacement components are printed

strains are printed at all nodes

all strain components are printed

no nodal strain transformation is performed
stresses are printed at all nodes

all stress components are printed

no nodal stress transformation is performed
no nodes selected =, no other value output
all reactions are printed

Output configuration for elements

no time step for elements is selected =,

no output on elements

OUTPUT IN GRAPHICAL FORMATS

single GiD file with results is produced

file name for GiD output (without suffix)
Output configuration of nodal values

nodal values in all time steps are printed

nodal values for all load cases are printed
displacements are printed at all nodes

all displacement components are printed

no node selected =; no nodal strain output
no node selected =; no nodal stress output
no node selected =; no other values output
no node selected =; no nodal forces output
Output configuration of element values

element values in all time steps are printed
element values for all load cases are printed
strains for all elements are printed

all strain components are printed as tensors
no strain transformation is performed

stresses for all elements are printed

all stress components are printed as tensors
no stress transformation is performed

no elements selected =,

no other values output

OUTPUT OF TABULAR FILE

zero number of tabular files =; no tabular output

102 CHAPTER 7. MEFEL INPUT FILES

7.5.4.2 Example of nonlinear statics problem

In this example, the output of all nodal displacements, element strains, element stresses
and element other values will be printed to the plain text file and all strains and stresses at
nodes in tensorial form to the GiD result file. Additionally, nodal displacement, damage
parameter w stored in the eqother array and all element stress components will be printed
to the GiD result file. The tabular output file will contain required values from the node
9, i.e., horizontal component of displacement in the first column, load coefficent in the
second column and the damage parameter w in the third column.

Example without keywords

7.5. OUTDRIVER SECTION

1
scdam.out

OO OO

— = O == O =

scdam

O WHE OO ==

OO = Rk O K

1

scdam.dat
>}

PLAIN TEXT OUTPUT

plain text output is produced

file name for the plain text output

Output configuration of nodal values

nodal values in all time steps are printed

nodal values for all load cases are printed

displacements are printed at all nodes

all displacement components are printed

no node is selected =; no strain output

no node is selected =; no stress output

no node is selected =; no other values output
no reactions are printed

Output configuration for elements

element values in all time steps are printed
element values for all load cases are printed
strains are printed at all elements

all strain components are printed

no element strain transformation is performed
stresses are printed at all elements

all stress components are printed

no element stress transformation is performed
other values are printed at all elements

all components of eqother array are printed
OUTPUT IN GRAPHICAL FORMATS

single GiD file with results is produced

file name for GiD output (without suffix)

Output configuration of nodal values

nodal values in all time steps are printed

nodal values for all load cases are printed

displacements are printed at all nodes

all displacement components are printed

no nodes selected =; no nodal strain output
no nodes selected =, no nodal stress output
all nodes selected for other values output

eqother components are selected by list

one component is specified in the list

damage parameter is the second in eqother array

no node selected =; no nodal forces output
Output configuration of element values

element values in all time steps are printed
element values for all load cases are printed
no elements selected =; no strain output
stresses for all elements are printed

all stress components are printed as scalars
no stress transformation is performed

no elements selected =; no other values output

OUTPUT OF TABULAR FILE
one tabular file is created
file name for tabular output

V7 R AR T I

103

104 CHAPTER 7. MEFEL INPUT FILES

Example with keywords

7.5. OUTDRIVER SECTION

105

textout
scdam.out

sel_ nodstep
sel_nodlc
displ_nodes
displ_comp
strain_nodes
stress_nodes
other_nodes
reactions

sel_elemstep
sel_elemlc
strain_elems
elemstrain_comp
elemstra_transfid
stress_elems
elemstress_comp
other_elems
elemoth_comp

outgr_format
scdam

sel_nodstep
sel_nodlc
displ_nodes
displ_comp
strain_nodes
stress_nodes
other_nodes
nodoth_comp
1

2
force_nodes

sel_elemstep
sel_elemlc
strain_elems
stress_elems
elemstress_comp
elemstre_transfid
other_elems

numdiag
scdam.dat
numunknowns

on

sel_all
sel_all
sel_all
sel_all
sel_no
sel_no
sel_no

sel_all
sel_all
sel_all
sel_all
0

sel_all
sel_all
sel_all
sel_all

grfmt_gid

sel_all
sel_all
sel_all
sel_all
sel_no
sel_no
sel_no
sel_list

sel_no

sel_all
sel_all
sel_no
sel_all
sel_all
0

0

PLAIN TEXT OUTPUT

plain text output is produced

file name for the plain text output

Output configuration of nodal values

nodal values in all time steps are printed

nodal values for all load cases are printed
displacements are printed at all nodes

all displacement components are printed

no nodes selected =, no strain output

no nodes selected =/ no stress output

no nodes selected =; no other value output
no reactions are printed

Output configuration for elements

element values in all time steps are printed
element values for all load cases are printed
strains for all elements are printed

all strain components are printed as tensors
no strain transformation is performed

stresses for all elements are printed

all stress components are printed

no elements are selected =; no other values output
all eqother components are printed

OUTPUT IN GRAPHICAL FORMATS

single GiD file with results is produced

file name for GiD output (without suffix)

Output configuration of nodal values

nodal values in all time steps are printed

nodal values for all load cases are printed
displacements are printed at all nodes

all displacement components are printed

no node selected =; no nodal strain output
no node selected =; no nodal stress output
all nodes selected for other values output

eqother components are selected by list of ids
one component is specified in the list

damage parameter is the second in eqother array
no node selected =;, no nodal forces output
Output configuration of element values

element values in all time steps are printed
element values for all load cases are printed
no element selected =; no strain output

stresses for all elements are printed

all stress components are printed as scalars
no stress transformation is performed

no elements are selected =; no other values output
OUTPUT OF TABULAR FILES

one tabular file is created

file name for tabular output

number of printed unknowns
V7 PR b B L B R

I Y T

106 CHAPTER 7. MEFEL INPUT FILES

7.5.5 Configuration of tabular output

Chapter 8
TRFEL Input Files

8.1 Types of Transport Analyses

Type of tansport analysis is stored in the attribute tprob of the class probdesct. The
appropriate keyword is problemtype. Values of the attribute tprob are summarized in
Table 8.1.

attribute enumerator description

tprob = 50 | stationary_problem linear stationary problem

tprob = 51 | nonlinear_stationary_problem non-linear stationary problem

tprob = 60 | nonstationary_problem non-stationary problem

tprob = 61 | nonlinear_nonstationary_problem | non-linear non-stationary problem
tprob = 62 | discont_nonstat_problem discontinuous non-stationary problem

tprob = 63 | discont_nonlin_nonstat_problem | discontinuous non-linear
non-stationary problem
tprob = 70 | growing_np_problem non-stationary problem with
changing number of nodes

Table 8.1: Attribute tprob

Array name contains name or description of problem solved. The name is defined by
user.

The attribute Mesprt describes the detailness of the auxiliary prints on screen. The
appropriate keyword is mesprt.

attribute description
Mesprt = 0 | no auxiliary print on screen
Mesprt = 1 | auxiliary print on screen

Table 8.2: Attribute Mesprt

The attribute tmatt describes the type of transport. The keyword is transmatter.
Values of the attribute tmatt are summarized in Table 8.3.

107

108 CHAPTER 8. TRFEL INPUT FILES

attribute enumerator description
tmatt =0 nomedium no transport
tmatt =1 onemedium transport of a single material/medium

tmatt = 10 twomediacoup coupled transport of two media
tmatt = 30 threemediacoup coupled transport of three media
tmatt = 40 fourmediacoup coupled transport of four media

Table 8.3: Attribute tmatt

The attribute mednam describes the type of transport. The keyword is mednames.
Values of the attribute mednam are summarized in Table 8.4.

attribute enumerator description
mednam = 1 heat heat transport
mednam = 2 moisture transport of moisture

mednam = 10 heat_moisture coupled heat and moisture transport
mednam = 20 moisture_salt coupled salt and moisture transport

Table 8.4: Attribute mednam

The attributes scalel, scale2, scale3 and scale4 with the keywords scalel, scale2, scale3
and scale4 are used for scaling of all quantities conected with the appropriate medium.
These attributes are usually equal to 1.

The attribute tgravity with the keyword gravityacceleration describes whether the grav-
ity acceleration is taken into account. The values of the attribute tgravity is summarized
in Table 8.5.

attribute enumerator description
tgravity = 0 grno the gravity acceleration is not taken into account
tgravity = 1 gr_yes the gravity acceleration is taken into account

Table 8.5: Attribute tgravity

The attribute adaptivityflag describes whether the adaptivity is applied. The appro-
priate keyword is adaptivity.

The attribute stochasticcalc describes the type of analysis with respect to deterministic
or non-deterministic feature. The appropriate keyword is stochasticcalc.

The attribute homogt describes whether homogenization is applied. The appropriate
keyword is homogenization.

Storage of the conductivity matrix is located in the attribute tstorkm of the class
probdesct. The appropriate keyword is conductmatstor. Storage of the capacity matrix
is located in the attribute tstorcm of the class probdesct. The appropriate keyword is
capacmatstor.

8.2. LINEAR STATIONARY ANALYSIS 109

attribute description
adaptivityflag = 0 | adaptivity is not applied (default value)
adaptivityflag = 1 | adaptivity is applied (not described now)

Table 8.6: Attribute adaptivityflag

attribute description

stochasticcalc = 0 | deterministic approach/computation (default value)
stochasticcalc = 1 | stochastic/fuzzy computation, data are read all at once
stochasticcalc = 2 | stochastic/fuzzy computation, data are read sequentially
stochasticcalc = 3 | stochastic/fuzzy computation, data are generated in the code

Table 8.7: Attribute stochasticcalc

The attribute tprt with the keyword timetypeprint describes time units used in output.

The attribute diagcap with the keyword diagonalization determines whether the capac-
ity matrix is diagonalized.
8.2 Linear Stationary Analysis

8.2.1 General description

Every linear stationary problem is described by the following scheme.

name of problem solved by user
message printing

tprob = stationary_problem = 50
type of transport

medium names

scales

gradients computation

fluxes computation

internal variables computation
internal variables computation
gravity acceleration

adaptivity
deterministic/stochastic computation
homogenization

node renumbering

storage of the conductivity matrix
solver of linear equations

Table 8.2

Table 7.1

Table 8.3

Table 8.4

default value i sl
described in Section 2.10
described in Section 2.11
described in Section 2.9
described in Section 2.9
Table 8.5

Table 8.6

Table 8.7

Table 8.8

described in Section 2.6
described in Section 2.2
described in Section 2.3

110 CHAPTER 8. TRFEL INPUT FILES

attribute description

homogt = 0 | homogenization is not applied (default value)
homogt = 1 | homogenization is applied on a single processor
homogt = 2 | homogenization is applied on a parallel computer

Table 8.8: Attribute homogt

attribute enumerator description

tprt =1 secondst output in seconds
tprt =2 minutest output in minutes
tprt =3 hourst output in hours
tprt =4 dayst output in days

Table 8.9: Attribute tprt

8.2.2 Examples
8.2.2.1 Linear stationary analysis

Example without keywords

heat transfer

1 # message printing

linear stationary problem

type of transport - one medium

name of the medium - heat

scale

gradients are computed and stored

gradients computed in nodes

the final gradients are average values of gradients from adjacent elements
fluxes are computed and stored

fluxes are computed in nodes

the final fluxes are average values of fluxes from adjacent elements
internal variables are not computed

internal variables are not computed

the gravity is not taken into account

adaptivity is not applied

deterministic computation

homogenization is not used

no node renumbering

the conductivity matrix is stored in skyline storage scheme

system of linear equations is solved by the LDL” factorization

[N
e}

o

DYoo OO OO O FNFRFNF

Example with keywords

8.3. LINEAR NON-STATIONARY ANALYSIS 111

attribute description

diagcap = 0 the capacity matrix is not diagonalized
diagcap = 1 the capacity matrix is diagonalized

Table 8.10: Attribute diagcap

heat transfer

mesprt 1

problemtype stationary_problem
transmatter nomedium
mednames heat

scalel 1.0

gradcomp 1

gradpos 2

gradaver 1

fluxcomp 1

fluxpos 2

fluxaver 1

othercomp 0

eqothercomp 0
gravityacceleration gr_no
adaptivity 0

stochasticcalc 0
homogenization 0
noderenumber no_renumbering
conductmatstor skyline_matrix
typelinsol 1dl

message printing

linear stationary problem

type of transport - one medium

name of the medium - heat

scale

gradients are computed and stored

gradients computed in nodes

the final gradients are average values of gradients from adjacent
fluxes are computed and stored

fluxes are computed in nodes

the final fluxes are average values of fluxes from adjacent elemer
internal variables are not computed

internal variables are not computed

the gravity is not taken into account

adaptivity is not applied

deterministic computation

homogenization is not used

no node renumbering

the conductivity matrix is stored in skyline storage scheme

system of linear equations is solved by the LDL” factorization

8.3 Linear Non-stationary Analysis

8.3.1 General description

Every linear non-stationary problem is described by the following scheme.

112

CHAPTER 8. TRFEL INPUT FILES

name of problem solved by user
message printing

tprob = nonstationary_problem = 60
type of transport

medium names

scales

gradients computation

fluxes computation

internal variables computation
internal variables computation
gravity acceleration

adaptivity

deterministic/stochastic computation
homogenization

node renumbering

time controller

time print

back-up

parameter of the generalized trapezoidal rule

storage of the conductivity matrix
storage of the capacity matrix

solver of linear equations
diagonalization of the capacity matrix

Table 8.2

Table 7.1

Table 8.3

Table 8.4

default value i sl
described in Section 2.10
described in Section 2.11
described in Section 2.9
described in Section 2.9
Table 8.5

Table 7.4

Table 7.5

Table 8.8

described in Section 2.6
described in Section 2.5
Table 8.9

described in Section 2.2
described in Section 2.2
described in Section 2.3
Table 8.10

8.3.2 Examples

8.3.2.1 Linear non-stationary analysis

Example without keywords

8.3. LINEAR NON-STATIONARY ANALYSIS

113

heat transfer

1 # message printing

linear non-stationary problem

type of transport - one medium

name of the medium - heat

scale

gradients are computed and stored

gradients computed in nodes

the final gradients are average values of gradients from adjacent elements
fluxes are computed and stored

fluxes are computed in nodes

the final fluxes are average values of fluxes from adjacent elements
internal variables are not computed

internal variables are not computed

the gravity is not taken into account

adaptivity is not applied

deterministic computation

homogenization is not used

no node renumbering

the type of time controller - fixed

the starting time

the end time

the number of important times

the type of general function governing the time step

the constant value

the time step

time units in output are seconds

no back-up (default value)

parameter alpha in the generalized trapezoidal method

the conductivity matrix is stored in skyline storage scheme
the capacity matrix is stored in skyline storage scheme

system of linear equations is solved by the LDL” factorization
the capacity matrix is not diagonalized

D
]

o

e}

COELOOOCOOOOO SN S
«w
o

ot

(S8

=E NN Ol Ul e i R

Example with keywords

114

CHAPTER 8. TRFEL INPUT FILES

heat transfer
mesprt 1

problemtype nonstationary_problem

transmatter onemedium
mednames heat

scalel 1.0

gradcomp 1

gradpos 2

gradaver 1

fluxcomp 1

fluxpos 2

fluxaver 1

othercomp 0

eqothercomp 0
gravityacceleration gr_no
adaptivity 0

stochasticcalc 0
homogenization 0
noderenumber no_renumbering
time_contr_type fixed

0.0

123.0

0

funct_type stat

const_val 2.5

timetypeprint secondst
hdbackup nohdb
alpha_integration 0.5
conductmatstor skyline_matrix
capacmatstor skyline_matrix
typelinsol 1dl

diagcap 0

message printing

linear non-stationary problem

type of transport - one medium

name of the medium - heat

scale

gradients are computed and stored

gradients computed in nodes

the final gradients are average values of gradients from adjac
fluxes are computed and stored

fluxes are computed in nodes

the final fluxes are average values of fluxes from adjacent ele
internal variables are not computed

internal variables are not computed

the gravity is not taken into account

adaptivity is not applied

deterministic computation

homogenization is not used

no node renumbering

the type of time controller - fixed

the starting time

the end time

the number of important times

the type of general function - the constant value

the time step

time units in output are seconds

no back-up (default value)

parameter alpha in the generalized trapezoidal method

the conductivity matrix is stored in skyline storage scheme
the capacity matrix is stored in skyline storage scheme

system of linear equations is solved by the LDL" factorizat:
the capacity matrix is not diagonalized

