
MECHPREP
User guide

Tomáš Koudelka

Department of Mechanics
Czech Technical University in Prague

Faculty of Civil Engineering

email: tomas.koudelka@fsv.cvut.cz

August 28, 2018

2

Contents

I MECHPREP - Description 9

1 Introduction 11

2 Notation used 13

3 Installation of MECHPREP 15
3.1 Source files . 15
3.2 Compilation . 16
3.3 Running of MECHPREP . 16

4 Formats of mesh input files 17
4.1 T3D format . 17
4.2 SIFEL format . 18

4.2.1 Section of nodes . 18
4.2.2 Section of elements . 19
4.2.3 Section of global node numbers . 21
4.2.4 Section with surface property numbers 21
4.2.5 Section with edge property numbers 21
4.2.6 Example of 2D mesh on rectangular domain 21

5 Format of a material input file 25
5.1 Material parameter set record . 26
5.2 Example of material input file without keywords 28
5.3 Example of material input file with keywords 29

6 Format of a cross section input file 31
6.1 Cross section parameter set record . 33
6.2 Example of cross section input file without keywords 33
6.3 Example of cross section input file with keywords 34

7 Format of general functions gfunct 37
7.1 Function type of stat . 38
7.2 Function type of pars . 38
7.3 Function type of tab . 39
7.4 Function type of pars_set . 40
7.5 Function type of itab . 41

3

4 CONTENTS

8 Format of a hanging node file 43

9 Format of a preprocessor input file 45
9.1 Section files . 46
9.2 Section probdesc . 48
9.3 Section loadcase . 48
9.4 Section mater . 51
9.5 Section crsec . 52
9.6 Section nodvertpr, nodedgpr, nodsurfpr, nodvolpr 52

9.6.1 ndofn command . 53
9.6.2 bocon command . 54
9.6.3 dof_coupl command . 56
9.6.4 nod_tfunc command . 56
9.6.5 nod_crsec command . 57
9.6.6 nod_spring command . 58
9.6.7 nod_lcs command . 61
9.6.8 nod_load command . 61
9.6.9 nod_tdload command . 62
9.6.10 nod_inicond command . 62
9.6.11 nod_temper command . 64

9.7 Section eledgpr, elsurfpr, elvolpr . 64
9.7.1 el_type command . 66
9.7.2 el_mat command . 66
9.7.3 el_crsec command . 71
9.7.4 el_load command . 72
9.7.5 edge_load command . 74
9.7.6 surf_load command . 76
9.7.7 volume_load command . 77
9.7.8 el_tdload command . 78
9.7.9 edge_tdload command . 82
9.7.10 surf_tdload command . 83
9.7.11 volume_tdload command . 84
9.7.12 el_eigstr command . 86
9.7.13 el_tfunc command . 87

9.8 Section outdrv . 88
9.9 Section gfunct . 88

II MECHPREP - Examples 91

10 Linear statics problem in 2D 95
10.1 Topology file . 96
10.2 Preprocessor file - section files . 96
10.3 Preprocessor file - section probdesc . 97
10.4 Preprocessor file - section loadcase . 98

CONTENTS 5

10.5 Preprocessor file - section mater . 98
10.6 Preprocessor file - section crsec . 99
10.7 Preprocessor file - number of nodal DOFs 99
10.8 Preprocessor file - Dirichlet’s boundary conditions 99
10.9 Preprocessor file - nodal forces . 100
10.10Preprocessor file - temperature load . 100
10.11Preprocessor file - element type, material model and cross section 101
10.12Preprocessor file - element load . 101
10.13Setup of the result output . 102
10.14Preprocessor file . 105

11 Linear statics problem in 3D 109
11.1 Topology file . 110
11.2 Preprocessor file - section files . 110
11.3 Preprocessor file - section probdesc . 111
11.4 Preprocessor file - section loadcase . 112
11.5 Preprocessor file - section mater . 113
11.6 Preprocessor file - section crsec . 113
11.7 Preprocessor file - number of nodal DOFs 114
11.8 Preprocessor file - Dirichlet’s boundary conditions 114
11.9 Preprocessor file - prescribed displacement 114
11.10Preprocessor file - temperature load . 115
11.11Preprocessor file - element type and material model 115
11.12Preprocessor file - element load . 115
11.13Setup of the result output . 116
11.14Preprocessor file . 119

12 Nonlinear statics problem - perfect plasticity 125
12.1 Topology file . 126
12.2 Preprocessor file - section files . 127
12.3 Preprocessor file - section probdesc . 128
12.4 Preprocessor file - section loadcase . 129
12.5 Preprocessor file - section mater . 130
12.6 Preprocessor file - section crsec . 131
12.7 Preprocessor file - number of nodal DOFs 131
12.8 Preprocessor file - Dirichlet’s boundary conditions 131
12.9 Preprocessor file - simulation of rigid plate 132
12.10Preprocessor file - proportional load . 132
12.11Preprocessor file - element type, material model, cross section 133
12.12Preprocessor file - constant load . 133
12.13Setup of the result output . 134
12.14Preprocessor file . 137

6 CONTENTS

13 Nonlinear statics problem - scalar damage model 141
13.1 Topology file . 142
13.2 Preprocessor file - section files . 144
13.3 Preprocessor file - section probdesc . 145
13.4 Preprocessor file - section loadcase . 147
13.5 Preprocessor file - section mater . 147
13.6 Preprocessor file - section crsec . 148
13.7 Preprocessor file - number of nodal DOFs 149
13.8 Preprocessor file - Dirichlet’s boundary conditions 149
13.9 Preprocessor file - simulation of rigid plate 149
13.10Preprocessor file - proportional load . 150
13.11Preprocessor file - element type, material model, cross section 150
13.12Preprocessor file - constant load . 151
13.13Setup of the result output . 151
13.14Preprocessor file . 154

14 Time dependent problem - visco-plastic model 159
14.1 Topology file . 160
14.2 Preprocessor file - section files . 161
14.3 Preprocessor file - section probdesc . 162
14.4 Preprocessor file - section loadcase . 164
14.5 Preprocessor file - section mater . 165
14.6 Preprocessor file - section crsec . 166
14.7 Preprocessor file - number of nodal DOFs 166
14.8 Preprocessor file - Dirichlet’s boundary conditions 167
14.9 Preprocessor file - nodal time dependent load 167
14.10Preprocessor file - element type, material model, cross section 168
14.11Preprocessor file - constant load . 169
14.12Setup of the result output . 169
14.13Preprocessor file . 173

List of Tables

4.1 Table of entity types . 19
4.2 Table of element types and their number of edges and surfaces 20

5.1 Table of material types, corresponding keywords and brief material descrip-
tion . 27

6.1 Table of cross section types, corresponding keywords, type of elements that
can be connected with the given cross section and brief description of cross
section parameters . 32

7.1 Table of general function types . 37

9.1 Table of element types, corresponding keywords and brief description . . . 67
9.2 Table of eigen qunatity types . 86

7

8 LIST OF TABLES

Part I

MECHPREP - Description

9

Chapter 1

Introduction

This guide describes MECHPREP command line tool which is intended for the support
of input file preparation for MEFEL. The MEFEL is part of SIFEL (SImple Finite ELe-
ments) system dealing with mechanical problems. It is supposed that user gives a correct
input file for MEFEL because it does not support keywords by default and the program
performs few checks of the input file validity rather. On the contrary, the preprocessor
input file supports and uses keywords in its input file and thus it allows for more thorough
checks of input commands. The user has to prepare two input files at least and optionally,
two additional files:

• file with FE mesh in SIFEL or T3D format (compulsory input file)

• file with preprocessor commands (compulsory input file)

• file with description of materials used (optional input file)

• file with description of cross sections used (optional input file)

All input files are plain text files that can be prepared in arbitrary text editor. Syntax
highlighting template for Emacs/XEmacs editors can be provided for the preprocessor file
format.

The guide organization is described in the following text. Installation of MECHPREP,
brief description of particular source files, compilation and running commands are topics
of chapter 3. Chapter 4 deals with two supported mesh formats and there is also involved
a selection mechanism of element and nodal groups within the mesh format. The following
two chapters 5 and 6 are dedicated to the description of optional material and cross section
files respectively but the principles and formats used in these files are also exploited in
the preprocessor input file. Chapter 7 deals with the format of general purpose functions
defined in class gfunct that are often used in commands of preprocessor file. The format
of preprocessor files is described in chapter 9 which describes the various commands
for assignment of materials, cross sections or boundary/initial conditions to groups of
elements and nodes defined in the mesh file. Chapter 8 deals specification of hanging
node file format which can be useful in case of analysis of reinforced concrete structures.
The second part of the manual contains several examples of the mechanical problems
whose analyses were prepared with the help of MECHPREP.

11

12 CHAPTER 1. INTRODUCTION

Chapter 2

Notation used

In the further text, the format of file or commands are described in the following notation:

• The C format specifiers denote the value type of the given record - %ld denotes
integer value and %le denotes real value.

• The list of alternative values for the given record are given in braces separated by
pipes, e.g. {1 | 5 | 8}. In such the case, the user has to specify only one selected
values from the list, e.g. optional value 5. Many optional values can be specified by
keywords as well as corresponding integer value. For example, the type of general
function can be given by the following options {stat | pars | tab | pars_set
| itab} or corresponding integers {0 | 1 | 2 | 3 | 20}. If the user wants to
specify constant function type then stat keyword could be used or 0 value.

• There can be also optional parts of format that should be used only on certain
conditions specified in the given description. These parts are enclosed in square
brackets, e.g. [slc_id slc] is an optional part of several preprocessor commands
(defines subloadcase identifier) which should be used in time dependent problems
only.

• In particular format records, the keywords used for the separation of particular
values are written by bold mono-space font, e.g. slc_id, while the value identifier
is written by normal mono-space font, e.g. slc.

13

14 CHAPTER 2. NOTATION USED

Chapter 3

Installation of MECHPREP

All source files of SIFEL software are maintained by SVN system located on [1] where
the list of versions can be found. The MECHPREP source files are involved in every
version of SIFEL and the version can be downloaded on [2]. Details about the version
downloading and unpacking can be found on SIFEL web pages [3] in sectionGetting started
- installation together with details about the folder structure of SIFEL. The source files of
MECHPREP are located in the MEFEL/PREP folder including appropriate Makefile.

3.1 Source files
This section contains a brief description of source files related with MECHPREP directly
(the program exploits also source files of MEFEL and GEFEL) and these information can
be useful for experienced users that want to extend or debug the MECHPREP code. The
program is written in C++ as a plain console application whose main function is placed
in file mechprep.cpp. Remaining source files are described in the the list below:

bocon.cpp - class with description of Dirichlet boundary conditions at nodes (see section
9.6)

dbcrs.cpp - class for input of cross section parameters (see chapter 6 or section 9.5)

dbmat.cpp - class for input of material parameters (see chapter 5 or section 9.4)

descrip.cpp - class that handles the input files to MECHPREP (see section 9.1)

entityload.cpp - class with description of continuous load on edges, surfaces and vol-
ume load (see sections 9.7 and 9.7)

entitytdload.cpp - class with description of time dependent continuous load on edges,
surfaces and volume load

hangnode.cpp - class for the definition of hanging nodes in the problem (see chapter 8)

input.cpp - contains functions called for corresponding preprocessor commands and
there is also function input that controls the whole reading of preprocessor input
file.

15

16 CHAPTER 3. INSTALLATION OF MECHPREP

output.cpp - contains functions that write individual parts of the resulting MEFEL
input file and there is also function output that controls the whole output phase and
creation of MEFEL input file.

pointset.cpp - class for set of user defined points on elements

tempload.cpp - class for temperature load (see section 9.6)

3.2 Compilation
In order to be able to compile MECHPREP, the user has to install and compile GEFEL
and MEFEL libraries too. They can be obtained from the source files in folders GEFEL
and MEFEL/SRC where corresponding Makefiles can be found. On Linux systems,
the compilation of these dependent libraries are driven automatically by invoking make
command in the MECHPREP folder MEFEL/PREP. For example, having user usr logged
on computer comp and SIFEL root folder installed in home folder, the compilation can be
run in terminal by:

usr@comp:~/SIFEL/MEFEL/PREP$ make

If compilation ran well, the mechprep executable file will be created and placed in two
folders - SIFEL/MEFEL and SIFEL/MEFEL/_DBG. The compilation process can be
adjusted by the specification of different targets in make command. More details about
this adjustment can be found in [3] in section Getting started - installation.

3.3 Running of MECHPREP
The program is built as a command line tool which requires two arguments to be specified
on the command line. The program can be run by the following command:

mechprep file.pr file.in

where file.pr is the preprocessor input file while the file.in is the name of the MECH-
PREP output, i.e. generated input file to MEFEL. Resulting file.in can be used for
the running of MEFEL analysis by the command:

mefel file.in

Chapter 4

Formats of mesh input files

The user have to prepare FE mesh of the problem solved in his preferred mesh generator.
SIFEL does not contain its own mesh generator for general 2D/3D problems. For the
testing purposes, there are several simple generators of structured FE meshes for rectan-
gular/prism domains where the dimensions of the domain and mesh density in particular
directions can be specified. Additionally, these generators denotes group of nodes on indi-
vidual domain edges/surfaces by unique numbers that are referenced as property numbers
in further text. There are several versions of these generators depending on the type of
FE element created. There is also semiautomatic mesh generator of structured mesh that
was intended for the discretization of girder bridge as 3D domain originally but it can be
exploited for general domains with some limitations. More details can be found on SIFEL
web page [3] in section Getting started - Preparation of input files. Should be noted that
all these generators creates mesh file in SIFEL format naturally.

Another possibility how to create FE mesh and import it to MECHPREP represents
GiD software [4]. The GiD preprocessing environment contains mesh generator for arbi-
trary 2D/3D domains. It produces mesh file in its own format but these files are supported
by MeshEditor tool where the required groups of nodes and elements can be associated
with unique property number and resulting mesh file can be saved in SIFEL mesh format.
For more details about this tool, see SIFEL web pages [3] in section Getting started -
Preparation of input files or download MeshEditor from [3] in section Tools.

4.1 T3D format

T3D is very robust and fast generator developed by D. Rypl. It can produce 2D or 3D
meshes for almost arbitrary geometry [5]. The geometry is described in plain input text
file according to the following format [6]. In this file, the domain geometry is described
with help of set of entities such as vertices, curves, patches, shells and regions. For every
entity, the unique property number can be specified which results to assignment of this
property number to group of nodes and elements generated on such entity. The output file
of T3D generator can be referenced directly from the preprocessor file having the proper
keyword specified in section files (see section 9.1)

17

18 CHAPTER 4. FORMATS OF MESH INPUT FILES

4.2 SIFEL format
This mesh format is the default one which is used in MECHPREP. This format is also
used in MeshEditor tool and simple generators mentioned at the beginning of this chapter.
Should be noted that in format description, the optional keyword entries are enclosed in
square brackets, e.g.

[opt_kwd]

By default, the preprocessor does not use keywords in the mesh files due to performance
in case of large meshes. Additionally, the # character is used for the commenting out of
all characters that follows until the end of line. The FE mesh can be represented by a
plain text file with the following format given below:
Section of nodes

[num_nodes] nn
[node_id] id_1 [x] x_1 [y] y_1 [z] z_1 [numprop] npr_1 [prop] et_1 prop_1 ... [prop] et_npr_1 prop_npr_1
.
.
.
[node_id] id_nn [x] x_nn [y] y_nn [z] z_nn [numprop] npr_nn [prop] et_1 prop_1 ... [prop] et_npr_nn prop_npr_nn

Section of elements
[num_elements] ne
[elem_id] 1 [eltype] type_l [enodes] n1 n2 ... ni [eprop] p [[[propedg] e1 e2 ... ej] [[propsurf] s1 s2 ... sk]]
.
.
.
[elem_id] ne [eltype] type_ne [enodes] n1 n2 ... ni [eprop] p [[[propedg] e1 e2 ... ej] [[propsurf] s1 s2 ... sk]]

Section of global node numbers (used only in parallel computations)
[node_id] 1 [glob_id] gnn_1
.
.
.
[node_id] nn [glob_id] gnn_nn

Optional section with surface property numbers (generated by MeshEditor)
faces nf
nfn_1 n_1 n_2 . . . n_nfn_1 prop_1
.
.
.
nfn_nf n_1 n_2 . . . n_nfn_nf prop_nf

Optional section with edge property numbers (generated by MeshEditor)
edges ned
n1_1 n2_1 prop_1
.
.
.
n1_ned n2_ned prop_ned

The format contains two compulsory sections, i.e. section of nodes and section of
elements. Then the section of global node numbers follows in case that the mesh file
represents subdomain for computations based on parallel algorithms such as domain de-
composition. Additionally, there are two sections for extended selection of element groups
belonging to certain surface or edge. They are added by MeshEditor tool normally in case
that the user select some surface or edge and assign them a property number but they
can be also provided manually by user.

4.2.1 Section of nodes
The section with description of nodes uses the following notation:

nn - total number of nodes in the mesh (%ld)

id_i - number of the i-th node (%ld)

4.2. SIFEL FORMAT 19

x_i - x coordinate of i-th node (%le)

y_i - y coordinate of i-th node (%le)

z_i - z coordinate of i-th node (%le)

npr_i - number of property identifiers assigned to i-th node (%ld)

et_i - type of entity of i-th property identifier of the given node ({1 | 2 | 3 | 4} see
Tab. 4.1)

prop_i - the property identifier assigned to given entity type and node (%ld)

Having the total number of nodes specified, the records of individual nodes follow.
Each record of node consists of node number id, three spatial coordinates x, y, z and
record of property identifiers assigned to the given node. This record starts with the
number of assigned property identifiers npr and npr pairs of values that describes type
of entity et,which is associated with the given node, and property identifier of the given
entity. Basically, this system of property identifiers selects group of nodes being part of
some entity such as surface, edge, etc. In a preprocessor input file, these identifiers can be
used in commands assigning for example boundary conditions to selected group of nodes
on the entity with the given property identifier.

Entity Entity
type id shape

1 vertex / point
2 curve / edge
3 2D region / patch
4 3D region / volume

Table 4.1: Table of entity types

4.2.2 Section of elements
The section with description of elements uses the following notation:

ne - total number of elements in the mesh (%ld)

id_i - number of the i-th element (%ld)

type_i - type of i-th element ({1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14} see Tab. 4.2)

n1...ni - node numbers defining the given element connectivity (%ld)

p - property identifier of region(volume) part of which the given element is being (%ld)

e1...ej - edge property identifiers for particular edges of the given element (%ld)

20 CHAPTER 4. FORMATS OF MESH INPUT FILES

Element Element Number of Number of Number of
type id shape nodes edges surfaces

1 bar 2 1 0
2 bar 3 1 0
3 triangular 3 3 1
4 triangular 6 3 1
5 quadrilateral 4 4 1
6 quadrilateral 8 4 1
7 tetrahedron 4 6 4
8 tetrahedron 10 6 4
9 pyramid 5 8 5
10 pyramid 13 8 5
11 wedge 6 9 5
12 wedge 15 9 5
13 hexahedron 8 12 6
14 hexahedron 20 12 6

Table 4.2: Table of element types and their number of edges and surfaces

s1...ek - surface property identifiers for particular surfaces of the given element (%ld)

Having the total number of elements specified, the records of particular elements follow.
Each element record consists of element id, element type, set of node identifiers defining
element connectivity (depending on element type) and record of property identifiers. Each
property identifier record contains region(volume) property identifier optionally followed
by property identifiers of element edges and surfaces. If the given element is not associated
with any region surface or edge then zeros can be specified. The identifier p associates
the given element to region(volume) with region of the same property identifier and thus
group of elements with the same region identifier can be selected. Group of selected
elements can be used consequently in the preprocessor input file and the same material
parameters can be assigned to them for example.

Similarly, the optional property identifiers of element edges and surfaces allow for the
selection of elements associated with edge or surface having the given property identifier.
If the edge or surface property identifiers are required to be given then they must be
given for all elements and on all edges and all surfaces of individual elements. If some
property identifier is not given to edge or surface then zero may be specified. The number
of edge or surface property identifiers is given by the number of edges or surfaces of the
corresponding element type (see [7]). Only one property identifier is allowed per each
element edge or surface and if more is required then the additional edge or surface and its
property identifier can be specified either by MeshEditor tool or manually in the optional
mesh file sections (see sections 4.2.5 and 4.2.4).

Similarly to region property id, edge identifiers e1...ej associate the given element
with the edge(curve) of the same property identifier and thus group of elements and
their edges with the same edge identifier can be selected. This selection can be used

4.2. SIFEL FORMAT 21

consequently in the preprocessor input file and the uniform load can be assigned to these
element edges for example.

The surface identifiers s1...sk associate the given element with the surface of the same
property identifier and thus group of elements and their surfaces with the same surface
identifier can be selected. This selection can be used consequently in the preprocessor
input file and the uniform load can be assigned to these element surfaces for example.

4.2.3 Section of global node numbers
This section is optional and it contains the global node numbers in case that the mesh
file represents subdomain for computations based on parallel algorithms such as domain
decomposition. For each node, the global node number must be specified and thus nn
pairs of integer numbers is the content of this section. The first number is the node
identifier related to the nodes given the mesh file and gnn_i is the corresponding global
node number related to the whole domain. More details can be found in [8]. This section
is created automatically by SIFEL simple parallel generators or can be obtained from the
mesh decomposer.

4.2.4 Section with surface property numbers
This optional section is created by MeshEditor by default but it can be also added man-
ually by the user. The section allows for the definition of arbitrary surface with given
property identifier by a list of nodes associated with that surface. The section is opened
by the keyword faces followed by number of records with nodes used for the definition of
surfaces. Each record consists of number of nodes nfn_i, node identifiers n_1...n_nfn_i
and the property identifier of the i-th surface property specifier prop_i.

4.2.5 Section with edge property numbers
This optional section is created by MeshEditor by default but it can be also added man-
ually by the user. The section allows for the definition of arbitrary curve with given
property identifier by a list of nodes associated with that curve. The section is opened by
the keyword edges followed by number of records with segments used for the definition
of edges. Record of the i-th segment consists of two nodes identifiers n1_i and n2_i and
the property identifier of the edge prop_i associated with the i-th segment.

4.2.6 Example of 2D mesh on rectangular domain
The mesh was generated by gensifquad generator which can be found in SIFEL package in
folder SIFEL/PREP/SEQMESHGEN. It creates structured mesh on rectangular domain
including automatic generation of edge property identifiers on elements. In this exam-
ple, a rectangular domain 5.0×3.0 m (length×height) was discretized by regular mesh of
quadrilateral four node elements. The mesh was generated in the xy plane such that the
length in x direction was divided by 5 elements and height in y direction was divide by 3
elements. The mesh can be generated by the following command:

22 CHAPTER 4. FORMATS OF MESH INPUT FILES

y

x

Edge prop. id. 1

Edge prop. id. 3

E
d
g
e

p
ro

p
.
id

.
4

E
d
g
e

p
ro

p
.
id

.
2

Vertex 2 Vertex 1

Vertex 4Vertex 3

5.0 m

3
.0

 m

Region prop. id. 1

Surface prop. id. 1

Figure 4.1: Property identifiers generated by gensifquad on the rectangular domain

gensifquad file.top 5.0 3.0 5 3 1

where the first argument represents the name of the output file with topology in SIFEL
format, the second and third arguments stand for dimension in x and y directions, the
fourth and fifth arguments represent mesh density in x and y directions and the last
argument switches on the generation of edge property identifiers. The resulting mesh has
the property identifiers generated as follows (see also Fig. 4.1):

• All nodes have assigned surface property identifier 1 and region property identifier
1 - see pairs of nodal property record 3 1 and 4 1 respectively.

• Ordinary inner nodes are denoted by vertex property identifier 0 - see pair 1 0 in
the nodal property record.

• Corner nodes are denoted by vertex property identifiers 1, 2, 3 and 4 - see pairs 1
1, 1 2, 1 3 and 1 4 in the nodal property record.

• Nodes lying on edges are marked by edge property identifiers 1, 2, 3 and 4 - see
pairs 2 1, 2 2, 2 3 and 2 4 in the nodal property record.

• All elements are denoted by region property identifier 1 and surface property iden-
tifier 1 - see the first and last value in the element property record.

• Edges of elements corresponding to domain edges are denoted by edge property
identifiers 1, 2, 3 and 4 - see nonzero values in the middle quaternion values of
element property record.

The content of generated file follows where the resulting mesh contains 15 elements
and 24 nodes:
24

1 0.00000000000e+00 0.00000000000e+00 0.0 5 1 3 2 2 2 3 3 1 4 1
2 0.00000000000e+00 1.00000000000e+00 0.0 4 1 0 2 2 3 1 4 1
3 0.00000000000e+00 2.00000000000e+00 0.0 4 1 0 2 2 3 1 4 1
4 0.00000000000e+00 3.00000000000e+00 0.0 5 1 2 2 1 2 2 3 1 4 1
5 1.00000000000e+00 0.00000000000e+00 0.0 4 1 0 2 3 3 1 4 1
6 1.00000000000e+00 1.00000000000e+00 0.0 3 1 0 3 1 4 1

4.2. SIFEL FORMAT 23

7 1.00000000000e+00 2.00000000000e+00 0.0 3 1 0 3 1 4 1
8 1.00000000000e+00 3.00000000000e+00 0.0 4 1 0 2 1 3 1 4 1
9 2.00000000000e+00 0.00000000000e+00 0.0 4 1 0 2 3 3 1 4 1

10 2.00000000000e+00 1.00000000000e+00 0.0 3 1 0 3 1 4 1
11 2.00000000000e+00 2.00000000000e+00 0.0 3 1 0 3 1 4 1
12 2.00000000000e+00 3.00000000000e+00 0.0 4 1 0 2 1 3 1 4 1
13 3.00000000000e+00 0.00000000000e+00 0.0 4 1 0 2 3 3 1 4 1
14 3.00000000000e+00 1.00000000000e+00 0.0 3 1 0 3 1 4 1
15 3.00000000000e+00 2.00000000000e+00 0.0 3 1 0 3 1 4 1
16 3.00000000000e+00 3.00000000000e+00 0.0 4 1 0 2 1 3 1 4 1
17 4.00000000000e+00 0.00000000000e+00 0.0 4 1 0 2 3 3 1 4 1
18 4.00000000000e+00 1.00000000000e+00 0.0 3 1 0 3 1 4 1
19 4.00000000000e+00 2.00000000000e+00 0.0 3 1 0 3 1 4 1
20 4.00000000000e+00 3.00000000000e+00 0.0 4 1 0 2 1 3 1 4 1
21 5.00000000000e+00 0.00000000000e+00 0.0 5 1 4 2 3 2 4 3 1 4 1
22 5.00000000000e+00 1.00000000000e+00 0.0 4 1 0 2 4 3 1 4 1
23 5.00000000000e+00 2.00000000000e+00 0.0 4 1 0 2 4 3 1 4 1
24 5.00000000000e+00 3.00000000000e+00 0.0 5 1 1 2 1 2 4 3 1 4 1

15
1 5 1 5 6 2 1 3 0 0 2 1
2 5 2 6 7 3 1 0 0 0 2 1
3 5 3 7 8 4 1 0 0 1 2 1
4 5 5 9 10 6 1 3 0 0 0 1
5 5 6 10 11 7 1 0 0 0 0 1
6 5 7 11 12 8 1 0 0 1 0 1
7 5 9 13 14 10 1 3 0 0 0 1
8 5 10 14 15 11 1 0 0 0 0 1
9 5 11 15 16 12 1 0 0 1 0 1

10 5 13 17 18 14 1 3 0 0 0 1
11 5 14 18 19 15 1 0 0 0 0 1
12 5 15 19 20 16 1 0 0 1 0 1
13 5 17 21 22 18 1 3 4 0 0 1
14 5 18 22 23 19 1 0 4 0 0 1
15 5 19 23 24 20 1 0 4 1 0 1

24 CHAPTER 4. FORMATS OF MESH INPUT FILES

Chapter 5

Format of a material input file

This chapter describes the format of a material input file which is optional but the same
format is used in the section of preprocessor input file which has to be given if no material
file has been prepared. The material input file is intended for users who prefer to manage
all their material parameters from one file which is reused in several preprocessor input
files.

By default in preprocessor, the keywords are used in the material files and the #
character can be used for the commenting out of all characters that follows until the end
of line. The material file may be prepared in arbitrary text editor as a plain text file
and the content of such file has the following format where the bold face font denotes
keywords used:

num_mat_types nmt # number of material types
mattype mt1 num_inst nmi1
1 mtrec_1_1
2 mtrec_1_2
.
.
nmi1 mtrec_1_nmi1

mattype mt2 num_inst nmi2
1 mtrec_2_1
2 mtrec_2_2
.
.
nmi2 mtrec_2_nmi2

.

.

.

mattype mtnmt num_inst nminmt
1 mtrec_nmt_1

25

26 CHAPTER 5. FORMAT OF A MATERIAL INPUT FILE

2 mtrec_nmt_2
.
.
nminmt mtrec_nmt_nminmt

The following notation is used in the above format:

nmt - the total number of different material types used(%ld)

mti - specification of i-th material type ({1 | 2 | 3 | 10 | 11 | 12 | 24 | 25 |
26 | 27 | 30 | 31 | 42 | 45 | 50 | 51 | 52 | 71 | 80 | 100 | 104 |
106 | 108 | 150 | 160 | 310 | 320 | 340 | 400 | 420 |
502 | 503 | 504 | 550 | 900 | 951 |
1000 | 1010 | 1030 | 1040 | 1050 | 1060}). The material type specification
can be given either by the mentioned integer values or by keywords - see Tab. 5.1
for the complete description.

nmii - the number of instances of material parameter sets of the given material type
(%ld)

mtrec_i_j - record of material parameter set for i-th material type and j-th instance of
parameters, see section 5.1.

The number of material types and instances of parameter set depends on the problem
solved. Should be noted that unused material types and their instances are simply ignored
in course of the preprocessing. Every finite element in the problem must have a material
assigned and pairs of material type and index of instance of material parameter set are
used in such assignment.

5.1 Material parameter set record
Record of a material parameter set depends on the given material type of course. Each
material type is implemented as a standalone class in MEFEL where the input of material
parameters from the file is controlled by the function mattype::read(XFILE *in). In this
function, the order of reading and types of material parameters are given by the calls of
xfscanf function which uses similar format string as standard C function fscanf with some
extensions described in [7] chapter Iotools. By default in material records, the keyword
reading is not permitted but it can be permitted by adding of appropriate switch in the
section files of the preprocessor input file - see 9.1.

There are two possibilities of the handling with material parameter set record. In the
case of default (older) handling, there is no additional processing of the record which is
simply copied as a string terminated by the newline character. The record length is limited
to 1000 characters by default and if the user requires longer or multi line string then @
character must be placed at the end of each line except of the last one. Of course, this
handling performs no additional check of material records. Another approach represents
the handling with the record in the same way as it is processed in MEFEL, i.e there
is direct call of appropriate material function read. In such the case, material record is

5.1. MATERIAL PARAMETER SET RECORD 27

Material Material Source Description
type id type keyword file in MEFEL/SRC

1 elisomat elastisomat.cpp elastic isotropic material
2 elgmat3d elastgmat3d.cpp elastic fully anisotropic material
3 elortomat elastortomat.cpp elastic orthotropic material
10 simplas1d splas1d.cpp simple plasticity for 1D
11 jflow j2flow.cpp J2 flow plasticity
24 mohrcoul mohrc.cpp Mohr-Coulomb plasticity
25 boermaterial boermat.cpp Boer’s plasticity
26 druckerprager drparg.cpp Drucker-Prager plasticity
27 doubledrprager doubdp.cpp Double Drucker-Prager plasticity
30 modcamclaymat camclay.cpp Cam-Clay plasticity
31 modcamclaycoupmat camclaycoup.cpp Barcelona Cam-Clay model

for coupling with
the moisture transport

42 chenplast chen.cpp Chen plasticity material
45 hissplasmat hissplas.cpp HISS plasticity model (Dessai)
50 microplaneM4 microM4.cpp Microplane model M4
51 microsimp microSIM.cpp simplified microplane model
52 microfibro microfiber.cpp
71 simvisc simviscous.cpp simple viscous model
80 layerplate layplate.cpp layered model for plates
100 scaldamage scaldam.cpp scalar isotropic damage
104 anisodamag anisodam.cpp anisotropic damage (Papa)
106 ortodamage ortodam.cpp orthotropic damage for concrete
108 fixortodamage fixortodam.cpp orthotropic damage with

given orthotropy directions
150 contmat contactmat.cpp simple plasticity model

for 2D interface elements
160 cebfipcontmat cebfipcontactmat.cpp CEB FIP model for

2D interface elements
310 nonlocplastmat nonlocplast.cpp nonlocal plasticity models
320 nonlocdamgmat nonlocdamg.cpp nonlocal damage models
340 nonlocalmicroM4 nonlocmicroM4.cpp nonlocal microplane M4
400 graphm graphmat.cpp prescribed working diagram (1D)
420 hypoplastmat hypoplast.cpp hypoplastic model (Mašín)
502 creepb3 creep_b3.cpp Bazant’s B3 creep
503 creepdpl creep_dpl.cpp double power law creep
504 creeprs creep_rspec.cpp B3 creep model with

continuous ret. spectrum
550 winklerpasternak winpast.cpp Winkler-Pasternak subsoil

model for plates or beams
900 therisodilat therisomat.cpp simple thermal isotropic

expansion model
951 relaxationeuro relaxeuroc.cpp EC model for tendon relaxation
1000 damage_plasticity damplast.cpp combination of damage-plasticity
1010 viscoplasticity visplast.cpp combination of viscous-plasticity
1030 creep_damage creepdam.cpp combination of creep and damage
1040 time_switchmat timeswmat.cpp change of material models in time
1050 effective_stress effstress.cpp effective stress concept
1060 shrinkagemat shrinkmat.cpp isotropic shrinkage for

coupling with moisture transport

Table 5.1: Table of material types, corresponding keywords and brief material description

28 CHAPTER 5. FORMAT OF A MATERIAL INPUT FILE

checked according to system implemented in the given material type but keywords are
not used by default. If the checking of the material records would be improved then the
keyword reading must be enabled in the section files of the preprocessor input file - see
9.1. In the MEFEL approach, the material parameters have to be written in the order
given in the function read but there is no limitation about the number of record lines.

5.2 Example of material input file without keywords
This section contains example of the material file without keywords which can be processed
either with help of default material record handling or by the MEFEL handling with
keyword reading switched off. There are defined four different material types in this
example:

elisomat - elastic isotropic material where three instances of the material parameter set
are given - the first one with the Young’s modulus 20 GPa and the Poisson’s ratio
0.2, the second one with the Young’s modulus 210 GPa and the Poisson’s ratio 0.3
and the third one with the Young’s modulus 8 MPa and the Poisson’s ratio 0.3.

jflow - material model of J2 plasticity with isotropic hardening where only single in-
stance of material parameter set is given with the yield stress fy=200 MPa and the
zero hardening modulus, the cutting plane algorithm is used for the stress return
(1), the number of iterations in the cutting plane algorithm is set to 50 and the
relative residuum of the yield function is 10−6. For more details about the model,
see j2flow.cpp source file in the MEFEL/SRC folder.

druckerprager - material model of plasticity with the Drucker-Prager yield criterion
where only single instance of material parameter set is given - friction angle ϕ=30◦

(0.523599 rad), cohesion c=5 kPa, dilation angle ψ=10◦ (0.174533 rad), hardening
parameter θ=0.35, limit cohesion clim=8 kPa, the cutting plane algorithm is used
for the stress return (1), the number of iterations in the cutting plan algorithm is
set to 50 and the relative residuum of the yield function is 10−6.For more details
about the model, see drprag.cpp source file in the MEFEL/SRC folder.

scaldamage - scalar isotropic damage model where only single instance of material pa-
rameter set is given - tensile strength ft=3.0 MPa, softening slope uf=2.55·10−5 m,
Mazars equivalent strain norm used (7), correction of dissipated energy is on (1),
general algorithm for correction of dissipated energy is used (10) which can perform
up to 50 iterations in the damage parameter calculation and the relative error of
residuum is set to 10−6. For more details about the model, see scaldam.cpp source
file in the MEFEL/SRC folder.

The corresponding material file is listed below and should be noted that the order of
individual material types does not matter.

num_mat_types 4 # number of material types
mattype elisomat num_inst 3

5.3. EXAMPLE OF MATERIAL INPUT FILE WITH KEYWORDS 29

1 20.0e9 0.20 # elasticity parameters for concrete
2 210.0e9 0.30 # elasticity parameters for steel
3 8.0e6 0.35 # elasticity parameters for soil
mattype jflow num_inst 1
perfect J2 plasticity parameters for steel
1 200.0e6 0.0 1 50 1.0e-6
mattype druckerprager num_inst 1
Drucker-Prager plasticity with isotropic hardening for soil
1 0.523599 5.0e3 0.174533 0.35 8.0e3 1 50 1.0e-6
mattype scaldamage num_inst 1
scalar isotropic damage model for concrete
1 3.0e6 2.55e-5 7 1 10 50 1.0e-6

5.3 Example of material input file with keywords
This section contains the same example of the material file as in the section 5.2 but the
keywords are used in this case. The file can be processed only with help of the MEFEL
approach and the keyword reading must be switched on. The corresponding material file
is listed below, the order of individual material types does not matter but the order of
keywords in the particular material records is compulsory with no limitation about the
number of record lines.

num_mat_types 4 # number of material types
mattype elisomat num_inst 3
1 e 20.0e9 nu 0.20 # elasticity parameters for concrete
2 e 210.0e9 nu 0.30 # elasticity parameters for steel
3 e 8.0e6 nu 0.35 # elasticity parameters for soil
mattype jflow num_inst 1
perfect J2 plasticity parameters for steel
1 fs 200.0e6 k 0.0 cp ni 50 err 1.0e-6
mattype druckerprager num_inst 1
Drucker-Prager plasticity with isotropic hardening for soil
1 phi 0.523599 coh 5.0e3 psi 0.174533

theta 0.35 clim 8.0e3 cp ni 50 err 1.0e-6
mattype scaldamage num_inst 1
scalar isotropic damage model for concrete
1 ft 3.0e6 uf 2.55e-5 normazar corr_on gsra ni 50 err 1.0e-6

30 CHAPTER 5. FORMAT OF A MATERIAL INPUT FILE

Chapter 6

Format of a cross section input file

This chapter describes the format of a cross section input file which is optional but the
same format is used in the section of preprocessor input file which has to be given if no
cross section file has been prepared. The file format and system of processing is almost
the same as for the material input file. The cross section input file is intended for users
who prefer to manage all their cross section parameters from one file which is reused in
several preprocessor input files.

By default in preprocessor, the keywords are used in the cross section files and the #
character can be used for the commenting out of all characters that follows until the end
of line. The cross section file may be prepared in arbitrary text editor as a plain text
file and the content of such file has the following format where the bold face font denotes
keywords used:

num_crsec_types ncst # number of cross section types
crstype cst1 num_inst ncsi1
1 cstrec_1_1
2 cstrec_1_2
.
.
ncsi1 cstrec_1_ncsi1

crstype cst2 num_inst ncsi2
1 cstrec_2_1
2 cstrec_2_2
.
.
ncsi2 cstrec_2_ncsi2

.

.

.

crstype cstncst num_inst ncsincst

31

32 CHAPTER 6. FORMAT OF A CROSS SECTION INPUT FILE

1 cstrec_ncst_1
2 cstrec_ncst_2
.
.
ncsincst cstrec_ncst_ncsincst

The following notation is used in the above format:

ncst - the total number of different cross section types used(%ld)

csti - specification of i-th cross section type ({0 | 1 | 2 | 4 | 10 | 20 | 40 | 50}).
The cross section type specification can be given either by the mentioned integer
values or by keywords - see Tab. 6.1 for the complete description.

ncsii - the number of instances of cross section parameter sets of the given cross section
type (%ld)

cstrec_i_j - record of cross section parameter set for i-th cross section type and j-th
instance of parameters, see section 6.1 and Tab. 6.1.

Cross Cross Type of Record of cross section parameter set
section section type elements
type id keyword

1 csbar2d 2D bar area (%le) [density (%le)]
2 csbeam2d 2D beams area (%le) moment_of_inertia_Iy (%le)

shear_coefficient (%le) [density (%le)]
4 csbeam3d 3D beams area (%le) moment_of_inertia_Ix (%le)

moment_of_inertia_Iy (%le)
moment_of_inertia_Iz (%le)
shear_coefficient_y (%le)
shear_coefficient_z (%le)
local_z_base_vector (%le %le %le)
[density (%le)]

10 csplanestr 2D plane thickness (%le)
elements [density (%le) concentrated_mass (%le)]

20 cs3dprob 3D space [density (%le)]
elements

40 csnodal Layered thickness (%le)
problems [concentrated_mass (%le)]

def. by nodes
50 cslayer Layered num_layers (%ld)

plates {layer_thickness (%le)}×num_layers

Table 6.1: Table of cross section types, corresponding keywords, type of elements that can
be connected with the given cross section and brief description of cross section parameters

6.1. CROSS SECTION PARAMETER SET RECORD 33

The number of cross section types and instances of parameter set depends on the
problem solved. Should be noted that unused cross section types and their instances are
simply ignored in course of the preprocessing. If a finite element or node in the problem
must have a cross section assigned then a pair of cross section type and index of instance
of cross section parameter set is used in such assignment. In Tab. 6.1, the last column
contains record of cross section parameter set where the optional parameters are given in
the square brackets and they are used only in the dynamics. The cross section type is set
to nocrosssection automatically always in the case of axisymmetric problems and 3D
space problems except of dynamics where the density parameter is required and cs3dprob
must be used.

6.1 Cross section parameter set record
Record of a cross section parameter set depends on the given cross section type and its
description is given in Tab. 6.1. By default in cross section records, the keyword reading
is not permitted but it can be enabled by adding of appropriate switch in the section
files of the preprocessor input file - see 9.1.

There are two possibilities of the handling with cross section parameter set record. In
the case of default (older) handling, there is no additional processing of the record which
is simply copied as a string terminated by the newline character. The record length is
limited to 1000 characters by default and if the user requires longer or multi line string
then @ character must be placed at the end of each line except of the last one. Of course,
this handling performs no additional check of the cross section records. Another approach
represents the handling with the record in the same way as it is processed in MEFEL,
i.e there is direct call of appropriate cross section function read. In such the case, cross
section record is checked according to system implemented in the given cross section
type but keywords are not used by default. If the checking of the cross section records
would be improved then the keyword reading must be enabled in the section files of the
preprocessor input file - see 9.1. In the MEFEL approach, the cross section parameters
have to be written in the order given in the function read but there is no limitation about
the number of record lines.

6.2 Example of cross section input file without key-
words

This section contains example of the cross section file without keywords which can be
processed either with help of default cross section record handling or by the MEFEL
handling with the keyword reading switched off. There are defined four different cross
section types in this example:

csbar2d - cross section type for 2D bar elements where two instances of the cross section
parameter set are given the first one with cross section area A=0.2 m2 and the second
one with the cross section area A=0.45 m2.

34 CHAPTER 6. FORMAT OF A CROSS SECTION INPUT FILE

csbeam3d - cross section type for 2D beam element where only single instance of cross
section parameter set is given - cross section area A=0.06 m2, moments of inertia
to particular local beam axes Ix=5.538·10−4 m4, Iy=4.5·10−4 m4 and Iz=2·10−4 m4;
shear coefficients are given as κy=κz=0.6667 and base vector of local z axis is given
as zl(0.0;-0.6;0.8).

csplanestr - cross section type for 2D plane elements where only single instance of cross
section parameter set is given - thickness t=0.15 m.

cs3dprob - cross section type for 3D space elements used in eigendynamics or forced
dynamics problems density is given as ρ=2500 kg/m3.

The corresponding cross section file is listed below and should be noted that the order of
individual cross section types does not matter.

num_crsec_types 4 # number of cross section types
crstype csbar2d num_inst 2
2D bar cross section parameters

1 0.2
2 0.45
crstype csbeam3d num_inst 1
3D beam cross section parameters for rectangle 0.2x0.3 m
1 0.06 5.538e-4 4.5e-4 2.0e-4 0.6667 0.6667 0.0 -0.6 0.8
crstype csplanestr num_inst 1
cross section of plane problem
1 0.15
crstype cs3dprob num_inst 1
cross section of 3D elements used in dynamics
1 2500.0

6.3 Example of cross section input file with keywords
This section contains the same example of the cross section file as in the section 6.2 but
the keywords are used in this case. The file can be processed only with help of the MEFEL
approach and the keyword reading must be switched on. The corresponding cross section
file is listed below, the order of individual cross section types does not matter but the
order of keywords in the particular cross section records is compulsory with no limitation
about the number of record lines.

num_crsec_types 4 # number of cross section types
crstype elisomat num_inst 2
2D bar cross section parameters

1 a 0.2
2 a 0.45

6.3. EXAMPLE OF CROSS SECTION INPUT FILE WITH KEYWORDS 35

crstype csbeam3d num_inst 1
3D beam cross section parameters for retangle 0.2x0.3 m
1 a 0.06 ix 5.538e-4 iy 4.5e-4 iz 2.0e-4

kappa_y 0.6667 kappa_z 0.6667 loc_z 0.0 -0.6 0.8
crstype csplanestr num_inst 1
cross section of plane problem
1 thickness 0.15
crstype cs3dprob num_inst 1
cross section of 3D elements used in dynamics
1 rho 2500.0

36 CHAPTER 6. FORMAT OF A CROSS SECTION INPUT FILE

Chapter 7

Format of general functions gfunct

This chapter describes format of general function record used in sections of the prepro-
cessor input file. General functions are used for various purposes such as definitions of
time dependent load, spatial dependent load, time step control, the element and nodal
switching on/off, etc. The record defines a scalar function of single or multiple arguments
which returns real or integer values depending on the setup. The general function record
has the following format:

funct_type ft frec

where the parameters have the following meaning:

ft - the function type specifier which can be one of the following options defined either by
keywords {stat | pars | tab | pars_set | itab} or by corresponding integers
{0 | 1 | 2 | 3 | 20}. The meaning of type specifier is given in Tab 7.1.

frec - record of function definition for the given function type.

Function Function Description
type type id

keyword
stat 0 Constant function
pars 1 Function is defined by string with math expression

which is processed by parser
tab 2 Function is defined by real values in table with various

interpolation on the intervals
pars_set 3 Function is defined by table of parsed expressions
itab 20 Function is defined by integer values in table

Table 7.1: Table of general function types

Format of frec for particular function types is described in the following sections.
Should noted that the general function is defined as class gfunct whose main source files
gfunct.h and gfunct.cpp are placed in GEFEL folder.

37

38 CHAPTER 7. FORMAT OF GENERAL FUNCTIONS GFUNCT

7.1 Function type of stat
General function of type stat returns a real constant value regardless of argument passed.
The function definition frec has the following format:

const_val val

where val represents the real value returned (%le). This type of general function can be
used whenever the general function record is required except of time functions for nodal
DOFs and elements where integer value is expected to be returned. Example of general
function which returns constant value 0.5 follows.

funct_type stat const_val 0.5

7.2 Function type of pars
General function of type pars defines function with help math expression written as string
of characters. The string is being parsed and the function definition may contain up to
four arguments. This type of function is used in the preprocessor commands for element
and nodal load especially. The function definition frec has the following format:

func_formula expr

where expr represents a string with math expression (%s). The expression may define
arguments of the function with help of identifiers t, x, y and z which will be evaluated
as actual time (t) or spatial coordinates (x, y, z). The string with expression must not
contain any whitespace characters (space, tabulator, newline, etc.) otherwise it will not
be read correctly. The math expression may contain:

• basic math operators +, -, *, / used in C++,

• power operator ˆ,

• parentheses (,),

• variables t, x, y and z,

• math functions of single argument sin, cos, tan, log, log10, exp, sec, cosec, cot,
arcsin, arccos, arctan, sinh, cosh, tanh, arsinh, arcosh, artanh and abs,

• Ludolf’s number defined by sequence pi.

Should noted that goniometric functions expect their arguments to be in radians. In the
following example, the function f(t) = sin(π4 t + 2.5) is being defined with help of parsed
math expression:

funct_type pars func_formula sin(0.25*pi*t+2.5)

Next example defines parabolic function with single argument of spatial coordinate x
f(x) = (x− 0.7)2 − 3.5:

funct_type pars func_formula (x-0.7)^2-3.5

7.3. FUNCTION TYPE OF TAB 39

7.3 Function type of tab
General function of type tab defines single argument function defined on several inter-
vals with help table of real values. The first table column contains values defining interval
bounds of the function argument and the second one defines values returned at the bound-
aries. Additionally, the type of interpolation between bound values must be specified in
the function definition record. This type of function can be used in the preprocessor com-
mands for the time dependent load or time step control especially. The function definition
frec has the following format:

approx_type itype ntab_items ni
{xi yi}×ni

where the parameters have the following meaning:

itype - the interpolation type used for interpolation of values on particular inter-
vals which can be one of the following options defined by keywords {linear |
piecewiseconst} or by corresponding integer values {1 | 2}. The approxima-
tion type linear should be used for the definition piecewise linear function while
the type piecewiseconst should be used for the definition of piecewise constant
function (see Fig. 7.1).

ni - the number of rows in the table, i.e. the number of bound values defined (%ld).

xi - bound value of the i-th interval (%le).

yi - function value returned for the argument equaled to xi (%le).

0 10 20 30 40 50
t [s]

0

5000

10000

15000

20000

25000

30000

35000

F
 [

N
]

(a)

0 10 20 30 40 50 60 70
t [s]

1

1,5

2

2,5

3

3,5

d
t

[s
]

(b)

Figure 7.1: General function defined by table with piecewise linear approximation (a) and
piecewise constant approximations (b)

In the following example, the general function is defined according to Fig. 7.1a where
a piecewise linear function is defined with help of three intervals. It is supposed that the
general function would be used for the time dependent load definition and therefore the

40 CHAPTER 7. FORMAT OF GENERAL FUNCTIONS GFUNCT

first column of the table would represent values of times where the slope of linear function
changes. The first interval is defined as [0.0, 2.0), the second one is [2.0, 10.0) and the
last one is [10.0, 50.0). The function values have to be defined for the lower bounds of
each interval and the upper bound of the last interval.

funct_type tab approx_type linear
ntab_items 4
0.0 0.0
2.0 15.0e3
10.0 30.0e3
50.0 30.0e3

In the second example, the general function is defined according to Fig. 7.1b where a
piecewise constant function is defined with help of three intervals. It is supposed that the
general function would be used for the control of time step length dt and therefore the
first column of the table would represent values of times where the step length changes.
The first interval is defined as [0.0, 15.0) and the time step length is 1.5 s. The second
interval is [15.0, 45.0) and the time step length is 3.0 s while the last one is [45.0, 65.0)
and the time step length is 2.0 s. The function values have to be defined for the lower
bounds of each interval and the upper bound of the last interval.

funct_type tab approx_type piecewiseconst
ntab_items 4
0.0 1.5
15.0 3.0
45.0 2.0
65.0 2.0

7.4 Function type of pars_set
General function of type pars_set defines single argument function defined on several
intervals with help parsed math expressions and returns real value. It is defined with
help of table where the first table column contains values defining interval bounds of the
function argument and the second one defines math expressions whose evaluation results
to the function value on the given interval. This type of function can be used in the
preprocessor commands for the time dependent load. The function definition frec has
the following format:

num_funct nf
{limval lvi func_formula expri}×nf

where the parameters have the following meaning:

nf - number of prescribed bounds (%ld).

lvi - upper bound of i-th interval (%le).

expri - string with math expression (%s) - see section 7.2 for the format of expri.

7.5. FUNCTION TYPE OF ITAB 41

-40 -20 0 20 40 60 80 100
t [s]

-75000

-50000

-25000

0

F
 [

N
]

Figure 7.2: General function defined by set of parsed expressions

In the following example, the general function is defined according to Fig. 7.2 where
a discontinuous piecewise linear function is defined with help of three intervals. It is
supposed that the general function would be used for the time dependent load definition
and therefore the first column of the table would represent values of times where the slope
and values of linear function changes. The first interval is defined as (-∞, 0.0] where zero
load would be applied. The second interval is (0.0 20.0] where the load increases rapidly
and the last interval is (20.0, ∞) where is a jump in the load intensity but it changes
slowly with respect to time than in the previous interval. For each interval, a separate
math expression with given linear function has to be given.

funct_type pars_set
num_funct 3
limval 0.0 func_formula 0.0
limval 20.0 func_formula -2.0e3*t-1.0e4
limval 100.0 func_formula -1.0e2*t-6.0e4

7.5 Function type of itab
This type of general function is accepted as a time functions that control nodal DOFs
and element addition and withdrawing in case of growing mechanical problems. It is
represented by a table containing times and corresponding integer values returned by
time function. The format of frec follows:

nitab_items nit
{ti vali}×nit

where the parameters have the following meaning:

nit - the number of intervals on which the time function will be defined (%ld).

ti - initial time of i-th interval (%le).

vali - the value returned by function for time ranging in the i-th interval (%ld).

42 CHAPTER 7. FORMAT OF GENERAL FUNCTIONS GFUNCT

Should be noted that i-th time interval is defined as half-closed [ti,ti+1) and on that
interval the function returns vali. If time argument is less than t1 then val1 is being
returned. If time argument is greater than tnit then valnit is being returned. This
approach corresponds to the general function of type tab except of the handling with
extrapolation out of bounds of the first and last interval.

In the following example, the time function is defined which withdraw elements from
the computation beginning until the time 3600 s when elements are switched on for the
remaining time of computation.

funct_type itab
nitab_items 2
0.0 0
3.6e3 1

Chapter 8

Format of a hanging node file

Hanging nodes can be defined as nodes that do not generate additional DOFs but the
unknown displacements at hanging nodes are calculated with help of adjacent nodes of
element to which the given node is connected, i.e. it hangs on the given element. This
approach is useful in case of the connection of two independent meshes where nodes on
mesh interfaces do not coincident. In such the case, nodes of one interface can be defined
as hanging nodes and connected to the interface elements of the second mesh. Another
example of typical hanging node usage represents the involving of reinforcement to con-
crete structure. The reinforcement is defined with help of bar elements while concrete
structures are modelled by 2D or 3D elements. In the first stage, reinforcement bar el-
ements can be defined independently on concrete elements and then intersections of bar
and concrete elements are calculated and bar elements are divided according to these in-
tersections. Basically, the intersections become nodes on the newly defined bar elements
and they should be defined as hanging nodes. Each hanging node is defined by its identi-
fier, spatial coordinates, number of nodes and their identifiers to which is connected and
natural coordinates of hanging node with respect to adjacent element.

The file with hanging nodes can be prepared either manually or with help of MIDAS
tool [11]. It contains a list of hanging nodes and their additional data that are added to
the mesh defined by topology file (see chapter 4). In the topology file, the hanging nodes
are defined as ordinary nodes with help of identifier, spatial coordinates and possible list
of property numbers. In the hanging node file, the remaining data must be specified
involving number of nodes and their identifiers to which is the hanging node connected
and natural coordinates of hanging node with respect to adjacent element. The format
of of the hanging node file is given below:

nhn
{idhni -nadni {idnij}×nadni ksii etai dzetai eti}×nhn

where the meaning of particular parameters is the following:

nhn - the total number of hanging nodes in the list (%ld),

idhni - identifier of the hanging node (%ld).

nadni - the number of adjacent nodes which is the given hanging node connected to
(%ld).

43

44 CHAPTER 8. FORMAT OF A HANGING NODE FILE

idnij - identifier of the j-th adjacent node of the i-th hanging node (%ld).

ksii, etai, dzetai - natural coordinates in the element defined by list of adjacent nodes
(%le).

eti - type of i-th element ({1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14} see Tab. 4.2).

Should b noted that in all cases, three natural coordinates ksii, etai, dzetai must
be given even though the element type eti requires lesser natural coordinate components.
In such the case, the redundant components are simply ignored and therefor arbitrary
values can be given instead of them.

Chapter 9

Format of a preprocessor input file

The preprocessor input file contains several sections denoted by keywords which control
generation of individual parts of the resulting MEFEL input file. The preprocessor input
file may be prepared in arbitrary text editor as a plain text file which contains the com-
pulsory sections in the arbitrary order and there are also some optional sections whose
order also does not matter. Each section begins with the keyword begsec_XXX where
XXX is the name of the section and similarly, the end of section XXX is marked with the
keyword endsec_XXX. The list of section names follows:

files - compulsory section which defines names of topology file, material file, cross
section file and there is also setup of format and the keyword handling in these files,
see 9.1.

probdesc - compulsory section with the description of problem solved, see 9.2

loadcase - compulsory section where the number of load cases and their types are given,
see 9.3

mater - optional section with the material parameters, see 9.4

crsec - optional section with the cross section parameters, see 9.5

nodvertpr - optional section where the user can place commands for assignment of nodal
properties or boundary/initial conditions related to nodal vertex property id, see
9.6

nodedgpr - optional section where the user can place commands for assignment of nodal
properties or boundary/initial conditions related to nodal edge property id, see 9.6

nodsurfpr - optional section where the user can place commands for assignment of nodal
properties or boundary/initial conditions related to nodal surface property id, see
9.6

nodvolpr - optional section where the user can place commands for assignment of nodal
properties or boundary/initial conditions related to nodal region/volume property
id, see 9.6

45

46 CHAPTER 9. FORMAT OF A PREPROCESSOR INPUT FILE

eledgpr - optional section where the user can place commands for assignment of element
properties or boundary/initial conditions related to element edge property id, see
9.7

elsurfpr - optional section where the user can place commands for assignment of element
properties or boundary/initial conditions related to element surface property id, see
9.7

elvolpr - optional section where the user can place commands for assignment of element
properties or boundary conditions related to element region/volume property id, see
9.7

outdrv - compulsory section with setup of the MEFEL output, see 9.8

gfunct - compulsory section for growing mechanical problems which contains time func-
tions of nodes or elements, see 9.9

Should be noted that each preprocessor input file must contain one optional section for
nodal commands and one optional section for element commands at least. The order of
sections in the file is arbitrary.

9.1 Section files
The section beginning is marked with the keyword begsec_files and the section is closed
by the keyword endsec_files. The section contains topology file name obligatorily and
material, cross section and hanging node file names optionally. There are also some mesh
format specifiers and options for the handling with material and cross section files/sec-
tions. The format of the section is listed below:

topology_file_name
[material_file_name]
[cross_section_file_name]
mesh_format meshfmt
edge_numbering redgn
[hanging_nodes_file hangnf]
[read_mat_strings matstr]
[read_mat_kwd matkwd]
[read_crs_strings crsstr]
[read_crs_kwd crskwd]

where the meaning of particular identifiers follows:

topology_file_name - a string with the name of topology input file. The initial whites-
paces are ignored while the internal spaces of the file name are not ignored. The
string is terminated by the new line character and its length can be up to 1024
characters. From these limitations follows that the topology file name cannot start
with whitespace characters while trailing whitespace characters are not ignored and
the file name string must be given on a single line.

9.1. SECTION FILES 47

material_file_name - string with the material file name must not be specified in case
that the preprocessor input file contains section mater whose materials are taken
in such the case. If the section mater is not detected in the preprocessor file then
the material file name must be given. The initial whitespaces are ignored while the
internal spaces of the file name are not ignored. The string is terminated by the new
line character and its length can be up to 1024 characters. From these limitations
follows that the topology file name cannot start with whitespace characters while
trailing whitespace characters are not ignored and the file name string must be given
on a single line.

cross_section_file_name - string with the cross section file name must not be specified
in case that the preprocessor input file contains section crsec whose cross sections
are taken in such the case. If the section crsec is not detected in the preproces-
sor file then the cross section file name must be given. The initial whitespaces are
ignored while the internal spaces of the file name are not ignored. The string is
terminated by the new line character and its length can be up to 1024 characters.
From these limitations follows that the topology file name cannot start with whites-
pace characters while trailing space characters are not ignored and the file name
string must be given on a single line.

meshfmt - mesh file format specifier with optional values {0 | 1} or corresponding key-
words {sifel | t3d}. See chapter 4 for more details about the format supported.

edge_numbering - specifier whether the edge and surface property identifiers on elements
are involved in the mesh file or not. The values may be given by {0 | 1} where
0 means that no edge or surface property identifiers are read on elements and the
1 represents the opposite case. In cases that the problem can be defined only with
help of boundary/initial conditions at nodes and element volume property identifiers
then the edge and surface property identifiers need not to be involved in the mesh
file (see corresponding command line options of mesh generators) and thus its size
is reduced.

hangnf - if the keyword hanging_nodes_file is detected then a string with the hanging
node file name must follow. The format of the hanging node file is given in the
chapter 8. The initial whitespaces of the string are ignored while the internal spaces
of the file name are not ignored. The string is terminated by the new line character
and its length can be up to 1024 characters. From these limitations follows that
the topology file name cannot start with whitespace characters while trailing space
characters are not ignored and the file name string must be given on a single line.

matstr - optional specifier for the handling with material parameter records. If the
keyword read_mat_strings is specified then the optional values {0 | 1} or corre-
sponding keywords {yes | no} must be given. If the keyword read_mat_strings
is not given then the default option yes is used and the material parameter records
are handled as a plain strings with no parameter checking. If no option is given then
the material parameter records are handled by read functions of MEFEL materials
and additional parameter checking may be performed.

48 CHAPTER 9. FORMAT OF A PREPROCESSOR INPUT FILE

matkwd - optional specifier controls the keyword usage in the material parameter records.
If the keyword read_mat_strings is specified then the keyword read_mat_kwdmust
be given followed by optional values {0 | 1} or corresponding keywords {yes |
no}. If the keyword read_mat_strings is not given then the material parameter
records are handled as plain strings and no keywords must be used in such the case.

crsstr - optional specifier for the handling with cross section parameter records. If the
keyword read_crs_strings is specified then the optional values {0 | 1} or corre-
sponding keywords {yes | no} must be given. If the keyword read_crs_strings
is not given then the default option yes is used and the cross section parameter
records are handled as a plain strings with no parameter checking. If no option
is given then the cross section parameter records are handled by read functions of
MEFEL cross section classes and additional parameter checking may be performed.

crskwd - optional specifier controls the keyword usage in the cross section param-
eter records. If the keyword read_crs_strings is specified then the keyword
read_crs_kwd must be given followed by optional values {0 | 1} or corresponding
keywords {yes | no}. If the keyword read_crs_strings is not given then the
cross section parameter records are handled as plain strings and no keywords must
be used in such the case.

It should be noted that the order of keywords in the section format is compulsory and
only optional values or optional keywords and their values can be omitted.

9.2 Section probdesc

The section beginning is marked with the keyword begsec_probdesc and the section
is closed by the keyword endsec_probdesc. It contains the description of the essential
details about the problem solved, e.g. problem type, solver type, time step control,
solution backup, type of storage of system matrices and many other similar options. All
these parameters of the problem are controlled by class probdesc in MEFEL. The class
contains function read which is being called for the processing of this section. Contrary
to MEFEL, the keywords usage is switched on in this case. The format of this section is
quite complex and it is described in details in [10].

9.3 Section loadcase

The section beginning is marked with the keyword begsec_loadcase and the section is
closed by the keyword endsec_loadcase. The section contains the number of load cases
and their general description. The section content strongly depends on the problem type
given in the section probdesc. The formats of the section for particular problem types
follows:

linear_statics problem type:

9.3. SECTION LOADCASE 49

num_loadcases nlc
{lc_id lcidi temp_load_type tlti}×nlc
[num_macro_stress_comp nmstrec {macro_stress_comp mcstrec}×nmstrec]
[num_macro_strain_comp nmstrac {macro_strain_comp mcstrac}×nmstrac]

mat_nonlinear_statics problem type:

num_loadcases nlc
lc_id lcidi temp_load_type tlti×nlc
[num_macro_stress_comp nmstrec {macro_stress_comp mcstrec}×nmstrec]
[num_macro_strain_comp nmstrac {macro_strain_comp mcstrac}×nmstrac]

eigen_dynamics problem type:

num_loadcases 0

forced_dynamics problem type - there are two alternatives:

num_loadcases nlc
dload_type timeindload
{lc_id lcidi num_sublc nslci}×nlc
{tfunc_lc_id lcidi tfunc_slc_id slcidj gfunctj}×tnslc
{tempr_type_lc_id lcidi tempr_type_slc_id slcidj
temp_load_type tltj}×tnslc

or

num_loadcases nlc
dload_type timedepload
{lc_id lcidi temp_load_type tlti}×nlc

mech_timedependent_prob problem type:

num_loadcases nlc
{lc_id lcid num_sublc nslci}×nlc
{tfunc_lc_id lcidi tfunc_slc_id slcidj gfunctj}×tnslc
{tempr_type_lc_id lcidi tempr_type_slc_id slcidj
temp_load_type tltj}×tnslc

growing_mech_structure problem type:

num_loadcases nlc
dload_type timeindload
{lc_id lcid num_sublc nslci}×nlc
{tfunc_lc_id lcidi tfunc_slc_id slcidj gfunctj}×tnslc

50 CHAPTER 9. FORMAT OF A PREPROCESSOR INPUT FILE

{tempr_type_lc_id lcidi tempr_type_slc_id slcidj
temp_load_type tltj}×tnslc
{num_pres_displ_lc_id lcidi num_pres_displ_slc_id slcidj
num_presc_displ npdj presc_displ_val
val_1 val_2 ... valnpdj

}×tnslc

where the meaning of particular identifiers follows:

nlc - the number of load cases (%ld). It must be even for nonlinear statics problems
where even load cases are proportional while odd are constant ones.

lcidi - id of the i-th load case, i.e. lcidi=i (%ld)

tlti - type of the temperature load has to be given by one of the optional values {0 |
1 | 2 | 3} where 0 means no temperature load, 1 represents absolute tempera-
ture increments defined at nodes, 2 represents temperature increments defined at
nodes that will be scaled by time function of the given subloadcase and 3 stands
for the automatic import of temperatures values from TRFEL in case of coupled
mechanical-transport analysis.

nmstrec - number of macrostress components (%ld). It is used only for the homogeniza-
tion problems type of 3 (probdesc::homog=3).

mstrec - the value of macrostress component (%le). It is used only for the homogeniza-
tion problems type of 3 (probdesc::homog=3).

nmstrac - number of macrostrain components (%ld). It is used only for the homoge-
nization problems type of 4 (probdesc::homog=4).

mstrac - the value of macrostrain component (%le). It is used only for the homogeniza-
tion problems type of 4 (probdesc::homog=4).

nslci - number of subloadcases in the i-th load case (%ld). It is used only in the time
dependent problems, see notes below the identifier description for more details about
the subloadcase concept.

slcidj - id of the j-th subloadcase in the given i-th load case, i.e. slcidj = j) (%ld). It is
used only in the time dependent problems, see notes below the identifier description
for more details about the subloadcase concept.

tnslc - the total number of subloadcases in all load cases, i.e tnslc=∑nlc
1 nslci

gfunctj - record of a time function for the j-th subloadcase of the i-th load case. The time
function should return a magnitude used for the scaling of all values in the given
subloadcase. The time function record is described in the section 9.9 or in [7]. It is
used only in the time dependent problems, see notes below the identifier description
for more details about the subloadcase concept.

9.4. SECTION MATER 51

npdj - the number of prescribed displacement values at nodes of the j-th subloadcase in
the i-th load case (%ld). It is used only in the case of growing mechanical problems.

valk - a value of k-th prescribed value at nodes in the j-th subloadcase and i-th load
case (%le). It is used only in the case of growing mechanical problems.

In the above description, a subloadcase concept is referenced. The concept is used in
the forced dynamics if the timeindload load type is specified. The same concept is
also used in time dependent problems and growing mechanical problem if the number of
subloadcases nslc is set to nonzero. In such cases, the user can specify several load cases
as usual but each load case can be subdivided into several load cases called subloadcases.
Each subloadcase has the same format as ordinary load cases used in the linear statics
problems where the constant values of load are specified. Additionally, there must be
given a time function gfunct for each subloadcase which returns for the given time a
subloadcase scale, i.e. all components of load vector assembled from the given subloadcase
are multiplied by the actual gfunct value.

In case of growing mechanical problem, there must be also given values of prescribed
displacements at nodes. These values are referenced by integer identifiers returned from
the time functions used for the definition of boundary conditions in a such problem type.
Basically, the number of prescribed values is given by the maximum number returned from
that time functions. The values of prescribed displacements are also scaled by appropriate
time function gfunct of the given subloadcase.

There is also another concept of the time dependent load definition which can be used
in forced dynamics, time dependent problems and growing mechanical problems. The
load type can be specified with timedepload option in forced dynamics or by settinf nslc
to zero in time dependent problems and growing mechanical problems. In such case, all
load components must be specified by individual time functions.

Both concepts cannot be used together in one preprocessor/MEFEL input file. In
both concepts, arbitrary complex load case can defined but concepts differs in the size
of the MEFEL input file produced. If the load components of particular load cases are
indepenent and varies in time too much, it would be better to choose timedepload option
probably but if the magnitude of most of load componets varies in time according to the
same time function it is better to use timeindload option.

9.4 Section mater

The section beginning is marked with the keyword begsec_mater and the section is closed
by the keyword endsec_mater. The section format is the same as the format of a material
input file - see chapter 5 for more details. Should be noted that if the section mater is
involved in the preprocessor input file then all material parameters are taken from this
section and no material input file name must be specified in the files section. See also
section 9.1 for options which controls the format of mater section.

52 CHAPTER 9. FORMAT OF A PREPROCESSOR INPUT FILE

9.5 Section crsec
The section beginning is marked with the keyword begsec_crsec and the section is closed
by the keyword endsec_crsec. The section format is the same as the format of a cross
section input file - see chapter 6 for more details. Should be noted that if the section
crsec is involved in the preprocessor input file then all cross section parameters are taken
from this section and no cross section input file name must be specified in the files
section. See also section 9.1 for options which controls the format of crsec section.

9.6 Section nodvertpr, nodedgpr, nodsurfpr, nodvolpr
The section beginnings are marked with the keywords

begsec_nodvertpr, begsec_nodedgpr, begsec_nodsurfpr or begsec_nodvolpr

and sections are closed by keywords

endsec_nodvertpr, endsec_nodedgpr, endsec_nodsurfpr or endsec_nodvolpr.

The naming convention for these sections consists in prefix nod and suffix pr. The root of
a section name represents entity type to which the section commands will be applied to,
i.e. vert means vertex, edg means edges, surf means surfaces and vol means volumes
or regions. Should be noted that group of nodes are defined/selected on the level of mesh
file with help of two specifiers where one specifier represents the entity type while the
second one denotes entity identifier so called property id. Such a nodal group are formed
from nodes that were generated on/in the specified entity. See chapter 4 for more details
about the relation between mesh and selection of nodal groups. Thus the group of selected
nodes are referenced by section name which defines the entity type and property id which
is involved in every command in nodal sections.

The following commands are available in nodal sections:

ndofn - defines the number of degrees of freedom (DOF) at nodes

bocon - defines Dirichlet’s boundary conditions, i.e. prescribed displacements at nodes
(except of growing mechanical problem)

dof_coupl - defines coupled DOFs at nodes (except of growing mechanical problem)

nod_tfunc - defines the time function identifiers in case of growing mechanical problems.
The Dirichlet’s boundary conditions and DOF coupling can be defined with help of
these functions

nod_crsec - defines cross section parameters at nodes

nod_spring - defines spring elements, i.e. spring supports, connected to the selected
nodes.

nod_lcs - defines nodal local coordinate systems in which the nodal equilibrium equa-
tions will be assembled

9.6. SECTION NODVERTPR, NODEDGPR, NODSURFPR, NODVOLPR 53

nod_load - defines nodal concentrated load, i.e. nodal forces, independent on time

nod_tdload - defines time dependent concentrated load at nodes, i.e. nodal force com-
ponents as independent time functions

nod_inicond - defines initial conditions at nodes (strains, stresses, internal variables)

nod_temper - defines temperature changes at nodes

Sections may be ordered arbitrarily in the input file and there are no restrictions on the
command order or number of commands in particular sections. MECHPREP processes
particular nodal sections in the order nodvolpr, nodsurfpr, nodedgpr and nodvertpr. If
a command is being applied to the same node several times then the following operations
may be performed:

merging - given assigned properties are merged together if possible (load, boundary
conditions, initial conditions, coupled DOFs). For example, this operation is being
performed on condition that the given property is assigned to the different direction
or DOF than the ones that were assigned formerly.

comparing - given assigned property is compared to the one assigned formerly and error
is reported if they differs or warning. is written to the log file if they are the same
(boundary conditions, cross section, local coordinate systems, coupled DOFs).

rewriting - the properties assigned formerly are rewritten by new values (time functions,
temperature changes), see the order of section processing described above. Com-
mands in the later processed sections rewrites values assigned in sections processed
former.

A detailed description of nodal commands is provided in the following subsections. For
each command, the corresponding subsection contains the purpose of the command, syn-
tax, parameter description, operations performed for multiple assignment and example
of usage. Should be noted that all nodes in the mesh must have an assigned number of
DOFs and usually, there must be some Dirichlet boundary conditions defined at certain
nodes in order to avoid the system matrix singularity.

9.6.1 ndofn command
This command defines the number of DOFs at particular nodes. The command has the
following syntax:

ndofn ndof propid prop

where the parameters have the following meaning:

ndof - the number of degrees of freedom at nodes (%ld).

prop - the property id of the given entity (%ld).

54 CHAPTER 9. FORMAT OF A PREPROCESSOR INPUT FILE

The number of DOFs assigned formerly are not rewritten and the error is reported if the
different ndof would be assigned to the same node. The following command placed in
the nodvolpr section defines 2 DOFs per node for nodes involved in the region with the
property id equaled to 1.

ndofn 2 propid 1

9.6.2 bocon command
This command defines Dirichlet’s boundary conditions at particular nodes. These condi-
tions are represented by prescribed nodal displacements that can be either 0.0 at nodes
with supports or they can be nonzero at nodes where the prescribed displacements should
be applied. The command has the following syntax:

bocon propid prop num_bc nbc
{dir d_i cond vali [lc_id nlci [slc_id slci]}×nbc

or

bocon propid prop num_bc nbc
{dir d_i gcond gfi [lc_id nlci [slc_id slci]}×nbc

or

bocon propid prop num_bc nbc
{dir d_i tdcond expri [lc_id nlci [slc_id slci]}×nbc

where the parameters have the following meaning:

prop - the property id of the given entity (%ld).

nbc - number of boundary conditions being assigned by the command (%ld). It corre-
sponds to the number of DOFs constrained by this command.

di - local DOF number (%ld) of i-th condition. This number defines direction in which
the condition will be applied to. The values range from 1 to ndof of the given nodes.

vali - the static value of prescribed displacement in d-th DOF

gfi - static value of prescribed displacement in d-th DOF given by general function
(gfunct record - see chapter 7),

expri - string expression with time function description whose value defines the given
prescribed displacement with respect to actual time (%s). The more details about
string expressions can be found in section 7.2. This parameter may used only in
case of time dependent problems or forced dynamics problems.

The following parameters are optional (including of corresponding keywords) and they
must be specified only if the vali 6=0 and also in the case of time dependent problems:

9.6. SECTION NODVERTPR, NODEDGPR, NODSURFPR, NODVOLPR 55

nlci - load case identifier of i-th condition in which the prescribed displacements will be
involved (%ld).

slci - subloadcase identifier of i-th condition in which the prescribed displacements will
be involved (%ld). It must be given only for the time dependent/forced dynamics
problems for time independent load scaled by time dependent factor.

Boundary conditions assigned formerly are merged with the new ones and the error is
reported if the different values of prescribed displacements would be assigned to the same
node and the same local DOF. The following example placed in the nodedgpr section fix
all DOFs at nodes involved in the edge with the property id equaled to 2. The linear
static plane stress problem is assumed in this case.

bocon propid 2 num_bc 2 dir 1 cond 0.0 dir 2 cond 0.0

The following command placed in nodsurfpr section defines prescribed displacements for
the proportional load case in nonlinear static 3D problem. The displacement 1.0·10−5 m
is prescribed in the z direction to nodes on surface with property 4.

bocon propid 4 num_bc 1 dir 1 cond 1.0e-5 lc_id 1

The following command placed in nodvertpr section defines prescribed displacement
for the time dependent load case in forced dynamics 2D problem. The displacement
2.0·10−4 sin(5t) m is prescribed in the y direction to node with vertex property 5.

bocon propid 5 num_bc 1 dir 2 tdcond 2.0e-4*sin(5.0*t) lc_id 2

The following command placed in nodsurfpr section defines prescribed displacements for
the the constant load case in nonlinear static 3D problem. The prescribed displacement
value in x direction varies linearly in dependence on z coordinate of the nodes on surface
with property 2.

bocon propid 2 num_bc 1 dir 1 gcond
funct_type pars func_formula 1.0e-5-2.0e-5*z lc_id 2

Another example of prescribed displacements at vertices with property 3 for time
dependent 3D problem. The nodes at these vertices will be constrained in x direction
where the displacement 3.0·10−5m will be prescribed and also in z direction where the
displacement -1.0·10−4m will be given. All these values will be defined in the the second
subloadcase of the first load case. Should be noted that the command must be placed in
nodvertpr section.

bocon propid 3 num_bc 2 dir 1 cond 3.0e-5 lc_id 1 slc_id 2
dir 3 cond -1.0e-4 lc_id 1 slc_id 2

56 CHAPTER 9. FORMAT OF A PREPROCESSOR INPUT FILE

9.6.3 dof_coupl command
This command prescribes boundary condition such that particular nodes have assigned the
same DOF number in the given direction which results to the same values of displacements
calculated at these nodes. The command has the following syntax:

dof_coupl propid prop ndir nd {dir di}×nd

where the parameters have the following meaning:

prop - the property id of the given entity (%ld).

nd - number of directions in which the DOFs will be coupled by the command (%ld), i.e.
number of coupling conditions.

di - local DOF number (%ld) of i-th condition. This number defines direction in which
the condition will be applied to. The values range from 1 to ndof of the given nodes.

The following command placed in the nodedgpr section fix all DOFs in the x direction at
nodes involved in the edge with the property id 8.

dof_coupl propid 8 ndir 1 dir 1

9.6.4 nod_tfunc command
This command prescribes Dirichlet’s boundary condition in case of growing mechanical
problems. In such the problem type, DOFs at particular nodes must be controlled by
time functions which return 0 if the given DOFs should not involved in the problem
solved, i.e. they are constrained or 1 if the given DOFs are free. The positive integer
value greater than 1 should be returned if the given DOFs with the same time function
value are coupled. The negative integer value should be returned if there are nonzero
prescribed displacements at given time. In such the case, the function value represents
the the negative value of index k of prescribed values valk defined in section loadcase, see
section 9.3. All these time functions must be defined in the section gfunct and referenced
by their identifiers. By default, the nodal DOFs are controlled by time function of adjacent
elements and only supports or other special cases must be defined by this command whose
syntax follows:

nod_tfunc propid prop ndir nd {dir di tfunc_id idi}×nd

where the parameters have the following meaning:

prop - the property id of the given entity (%ld).

nd - number of directions in which the time functions will be assigned by the command
(%ld), i.e. number of boundary conditions.

di - local DOF number (%ld) of i-th condition. This number defines direction in which
the condition will be applied to. The values range from 1 to ndof of the given nodes.

9.6. SECTION NODVERTPR, NODEDGPR, NODSURFPR, NODVOLPR 57

idi - identifier of time function from the section gfunct (%ld) of i-th condition. The
values range from 1 to ngf where ngf is defined in the section gfunct.

The following command placed in the nodsurfpr section fix all DOFs in the x and y
directions at nodes involved in the surface with the property id 6. It is supposed that
growing mechanical problem with plane stress elements would be solve in this case.
begsec_nodsurfpr
.
.
nod_tfunc propid 6 ndir 1 dir 1 tfunc_id 1 dir 2 tfunc_id 1
.
.
endsec_nodsurfpr
.
.
begsec_gfunct
time_functions
num_gfunct 5
gf_id 1 funct_type itab
nitab_items 2
0.0 0
1.0e3 0
.
.
endsec_gfunct

9.6.5 nod_crsec command
The command assigns cross section parameters to the selected nodes. Usually, the nodal
cross section command is used in case of plane problems where the thickness should be
prescribed at nodes which leads to the approximation of thickness on adjacent elements
with help of element shape functions. Another possibility represents the cross section
defined on elements (see section 9.7.3) where the cross section parameters are assumed to
be constant on element and for example, jumps in thickness can be defined. The command
has the following syntax:
nod_crsec propid prop type t type_id id

where the parameters have the following meaning:
prop - the property id of the given entity (%ld).

t - the cross section type specifier according to Tab 6.1 (keyword or %ld).

id - the cross section parameters set identifier (%ld). The identifier refers to the cross
section parameter set of the given cross section type ti which is defined in the section
crsec or in the cross section input file. See chapter 6 for more details about the
cross section specification.

58 CHAPTER 9. FORMAT OF A PREPROCESSOR INPUT FILE

The following command placed in the nodvolpr section defines uniform thickness 0.25 m
at nodes involved in the region with the property id 0. The cross section parameters
are taken from the section crsec included in the preprocessor input file. It is supposed
that plane stress mechanical problem would be solve in this case, crsec section has the
parameter keywords switched on by defining appropriate options in section files. There
are also two different thicknesses (0.1 and 0.25) defined in section crsec.

begsec_files
.
.
read_crs_strings no
read_crs_kwd yes
endsec_files
.
.
begsec_nodvolpr
.
.
nod_crsec propid 0 type csplanestr type_id 2
.
.
endsec_nodvolpr
.
.
begsec_crsec
num_crsec_types 1 # number of cross section types
crstype csplanestr num_inst 2
cross section of plane problem
1 thickness 0.10
2 thickness 0.25
endsec_crsec

9.6.6 nod_spring command
The command assigns spring support to the selected nodes. The spring supports are
represented by spring elements in the given direction whose stiffness is governed by the
material model specified. The material model is defined by the sequence of material types
and corresponding identifiers of material parameter set. The number of material types
in the sequence and their order depends on the first material type used. For example,
elastic isotropic material is defined with help of single type specifier and corresponding
parameter set id. Plasticity materials are defined by plasticity material type, where the
yield stress and hardening parameters are given, and type of elastic material where the
coefficients of elasticity are given. Single material type graphm represents another useful
choice for spring elements where the nonlinear stiffness is calculated in terms of working
diagram defined by gfunct (see chapter 7). For more details about material types and

9.6. SECTION NODVERTPR, NODEDGPR, NODSURFPR, NODVOLPR 59

the definition of materials on elements see section 9.7.2 and chapter 5. The command has
the following syntax:

nod_spring propid prop dir d num_mat nm {type ti type_id idi}×nm

where the parameters have the following meaning:

prop - the property id of the given entity (%ld).

d - the number which defines direction in which the spring support will be applied to
(%ld). The values range from 1 to ndof of the given nodes.

nm - the number of material types used in the material model description

ti - the material type specifier according to Tab 5.1 (keyword or %ld).

idi - the material parameters set identifier (%ld). The identifier refers to the material
parameter set of the given material type ti which is defined in the section mater
or in the material input file. See chapter 5 for more details about the material
specification.

The following command placed in the nodsurfpr section applies spring supports in the z
direction (3D problem is assumed in this case) at nodes involved in the surface with the
property id 8. The stiffness of these supports is set to 8.0 MN/m with help of Young’s
modulus of elastic isotropic model. The value of Poisson’s ratio is ignored in this case.

begsec_nodsurfpr
.
.
nod_spring propid 8 dir 3 num_mat 1 type elisomat type_id 1
.
.
endsec_nodsurfpr
.
.
begsec_mater
num_mat_types 3 # number of material types
mattype elisomat num_inst 1
1 e 8.0e6 nu 0.0
.
.
endsec_mater

The following command placed in the nodsurfpr section applies spring supports in
the y direction at nodes involved in the surface with the property id 2. The stiffness of
these spring supports will be defined with help of graphm material type.

60 CHAPTER 9. FORMAT OF A PREPROCESSOR INPUT FILE

begsec_nodsurfpr
.
.
nod_spring propid 2 dir 2 num_mat 1 type graphm type_id 1
.
.
endsec_nodsurfpr
.
.
begsec_mater
num_mat_types 1 # number of material types
material with defined working diagram for 1D
mattype graphm num_inst 1
working diagram is defined by piecewise linear function

1 gtable approx_type linear ntab_items 4

table with four values follows
displacement force
-1.0 0.0
0.0 0.0
1.0e-3 2.5e6
1.0 2.5e6

endsec_mater

In the following example, the spring supports in x and y directions are defined at nodes
on the edge with the property id 1. Spring behaviour is defined by J2 plasticity model
with the yield stress fs=3 MPa and no hardening coupled with elastic isotropic model
with Young’s modulus E=20 MPa. Poison’s ratio ν=0.0 is ignored for spring elements.

begsec_nodedgpr
.
.
nod_spring propid 1 dir 1 num_mat 2 type jflow type_id 1

type elisomat type_id 1
nod_spring propid 1 dir 2 num_mat 2 type jflow type_id 1

type elisomat type_id 1
.
.
endsec_nodedgpr
.
.
begsec_mater
num_mat_types 1 # number of material types
J2 plasticity material type
mattype jflow num_inst 1
fs 3.0e6 k 0.0

9.6. SECTION NODVERTPR, NODEDGPR, NODSURFPR, NODVOLPR 61

elastic isotropic material
mattype elisomat num_inst 1
e 20.0e6 nu 0.0
endsec_mater

9.6.7 nod_lcs command
The command defines a local coordinate system in the selected nodes which the equi-
librium equations are calculated in. It is useful for the definition of rotated supports
where the user can specify support, i.e. zero prescribed displacements, with help of bocon
command and consequently, if the local coordinate system is defined in the given node
then the boundary conditions are assumed to be defined in such local system. Similarly,
components of nodal load are assumed to be defined in such local system. The command
has the following syntax:

nod_lcs propid prop dim nd {basevec {compij}×nd}×nd

where the parameters have the following meaning:

prop - the property id of the given entity (%ld).

nd - number of base vector components (%ld). It represents the dimension of the problem,
i.e. nd=2 for 2D problems and nd=3 for 3D problems.

compij - j-th component of i-th base vector (%le).

The following command placed in the nodvertpr section applies local coordinate system
xlyl rotated 30◦ anticlockwise (2D problem in xy plane is assumed in this case) at node
with the vertex property id 1.

nod_lcs propid 1 dim 2 basevec 0.8660254 0.5
basevec -0.5 0.8660254

9.6.8 nod_load command
The command defines a constant concentrated load in selected nodes. Generally, the load
is represented by force components whose meaning is defined in the problem solved. The
command has the following syntax:

nod_load propid prop lc_id nlc [slc_id slc] load_comp {vi}×ndof

where the parameters have the following meaning:

prop - the property id of the given entity (%ld).

nlc - load case id which the load will be involved into (%ld).

slc_id - subloadcase id of the given nlc-th load case (%ld) which the load will be
involved into. It is used only in the time dependent problems, see notes in the
section 9.3.

62 CHAPTER 9. FORMAT OF A PREPROCESSOR INPUT FILE

vi - i-th load component (%le). The number of nodal load components is given by the
number of DOFs ndof assigned to the nodes by the command ndofn.

Should be noted that if one node has got assigned load in several nod_load commands
then the merging is performed and values of corresponding particular load components
are added. In such a case, a message is written to the log file.

The following command placed in the nodedgpr section applies vertical forces 15 kN
to nodes involved in the edge with property id 4. The forces are assigned to the second
load case of 2D plane stress linear statics problem.

nod_load propid 4 lc_id 2 load_comp 0.0 1.5e4

9.6.9 nod_tdload command
The command defines a time dependent concentrated load in selected nodes. Generally,
the load is represented by force components whose meaning is defined in the problem
solved. Every load component is defined by a general time function and the command
should be used only in case that dload_type value defined in the loadcase section is set
to timedepload. The command has the following syntax:

nod_tdload propid prop lc_id nlc load_comp {vfi}×ndof

where the parameters have the following meaning:

prop - the property id of the given entity (%ld).

nlc - load case id which the load will be involved into (%ld).

vfi - i-th load component (gfunct record - see chapter 7). The number of nodal load
components is given by the number of DOFs ndof assigned to the nodes by the
command ndofn.

Should be noted that if one node has got assigned load in several nod_tdload commands
then the merging is performed and values of corresponding particular load components
are added if it is allowed in gfunct. In such a case, a message is written to the log file.

The following command placed in the nodvertpr section applies vertical time de-
pendent force with amplitude 10 kN and period π to nodes involved in the vertex with
property id 3. The forces are assigned to the first load case of 2D plane stress forced
dynamics problem.

nod_tdload propid 3 lc_id 1 load_comp funct_type stat const_val 0.0
funct_type pars func_formula 1.0e4*sin(2*t)

9.6.10 nod_inicond command
The command defines initial conditions for the specific load case. The command can be
used for mat_nonlinear_statics, forced_dynamics, mech_timedependent_prob and
growing_mech_structure problem types. The command has the following syntax:

9.6. SECTION NODVERTPR, NODEDGPR, NODSURFPR, NODVOLPR 63

nod_inicond propid prop lc_id nlc cond ini_cd_type ict nval nv {vi}×nv

where the parameters have the following meaning:

prop - the property id of the given entity (%ld).

nlc - load case id for which the initial conditions will be defined (%ld). Should be noted
that for nonlinear statics problems, the constant load case id must be specified, i.e.
nlc must be even number.

ict - initial condition type which can be specified either by one of the keywords {none |
inidisp | inistrain | inistress | iniother | inicond} or equivalent inte-
ger identifier {0 | 1 | 2 | 4 | 8 | 16}. Details about particular options is given
in the text below this list.

nv - number of initial values defined in the selected nodes (%ld). The number of values
depends on ict specified, see notes below this list for more details.

vi - i-th initial value (%le). The meaning of the initial values is given by the type of
initial conditions ict, material model used and problem type solved.

Several different initial condition types can specified by ict whose description follows:

none - initial condition is not set.

inidispl - initial displacements, displacement components must be given in vi. The
number of components is given by the number of DOFs at the given nodes.

inistrain - initial strain components must be given in vi. The number of components
is given by the type of problem solved.

inistress - initial stress components must be given in vi. The number of components
is given by the type of problem solved.

iniother - initial values of internal variables must be given in vi. The number of
components is given by the material model used.

inicond - various initial condition values must be given in vi. The number of components
is given by the material model used.

The following command placed in the nodvolpr section applies initial conditions for
modified Cam-Clay model to all nodes of region with property id 0. The initial conditions
are assigned to the first load case of axisymmetric nonlinear statics problem.

nod_inicond propid 0 lc_id 2 cond ini_cd_type inicond nval 7
v_kappa_ref, p_ref, pc_ini
2.67 -1.0 -50.0
eps_x_ini, eps_y_ini, eps_r_ini, gamma_xz_ini
-1.6667e-03 -1.6667e-03 -1.6667e-03 0.0

64 CHAPTER 9. FORMAT OF A PREPROCESSOR INPUT FILE

9.6.11 nod_temper command
The command defines heat load represented by changes of temperature at nodes in the
specific load case. The command should be used in accordance of load case setup given in
the section loadcase. In case of heat load, the temp_load_type must be set to value 1
or 2. In later case, the values of nodal temperature changes for time dependent problems
will be scaled by subloadcase time function. The command has the following syntax:
nod_temper propid prop lc_id nlc [slc_id slc] temperature t

where the parameters have the following meaning:
prop - the property id of the given entity (%ld).

nlc - load case id which the heat load will be involved into (%ld).

slc_id - subloadcase id of the given nlc-th load case (%ld) which the heat load will
be involved into. It is used only in the time dependent problems, see notes in the
section 9.3.

t - the temperature change value (%le).
The following command placed in the nodvolpr section applies heat load represented
by change of temperature 15 K to nodes of region with property id 5. The heat load is
assigned to the second subloadcase of the first load case in the time dependent mechanical
problem.
nod_temper propid 5 lc_id 1 slc_id 2 temperature 15.0

9.7 Section eledgpr, elsurfpr, elvolpr
The section beginnings are marked with the keywords
begsec_eledgpr, begsec_elsurfpr or begsec_elvolpr

and sections are closed by keywords
endsec_eledgpr, endsec_elsurfpr or endsec_elvolpr.

The naming convention for these sections consists in prefix el and suffix pr. The root
of a section name represents enity type to which the section commands will be applied
to, i.e. edg means edges, surf means surfaces and vol means volumes or regions. Should
be noted that group of elements are defined/selected on the level of mesh file with help
of specifiers following the element connectivity where entity identifiers, so called property
id, are specified for volume/region in which the element is being involved. Additionally,
for each element edge and surface, the property id is also given. Such a nodal group are
formed from elements that were generated on/in the specified entity or whose boundaries
are connected with the given entity. See chapter 4 for more details about the relation
between mesh and selection of element groups. Thus the group of selected elements are
referenced by section name which defines the entity type and property id which is involved
in every command in element sections.

The following commands are available in element sections:

9.7. SECTION ELEDGPR, ELSURFPR, ELVOLPR 65

el_type - defines type of the element, e.g. quadrilateral element with linear shape
functions. For plane elements, there is also given if the stress/strain state is plane
stress or plane strain.

el_mat - defines material model used on the given elements.

el_crsec - defines cross section type for the given elements.

el_load - defines load on elements with help of the read_prep function of loadel class
used in MEFEL. Definition of arbitrary load type - edge, surface or volume - can
be accomplished with single command el_load on selected elements.

edge_load - defines traction forces on edge [N/m]. It allows for definition of load in
dependence on spatial coordinates - f(x, y, z). The load is applied on all adjacent
elements of edge with the given property id.

surf_load - defines traction forces on surface [N/m2]. It allows for definition of load in
dependence on spatial coordinates - f(x, y, z). The load is applied on all adjacent
elements of surface with the given property id.

volume_load - defines a volume load [N/m3]. It allows for definition of load in depen-
dence on spatial coordinates - f(x, y, z). The load is applied on all elements with
the given volume/region property id.

edge_tdload - defines time dependent traction forces on edge [N/m]. It allows for
definition of load in dependence on spatial coordinates too - f(x, y, z, t). The time
dependent load is applied on all adjacent elements of edge with the given property
id.

surf_tdload - defines time dependent traction forces on surface [N/m2]. It allows for
definition of load in dependence on spatial coordinates too - f(x, y, z, t). The time
dependent load is applied on all adjacent elements of surface with the given property
id.

volume_tdload - defines a time dependent volume load [N/m3]. It allows for definition
of load in dependence on spatial coordinates too - f(x, y, z, t). The time dependent
load is applied on all elements with the given volume/region property id.

el_tfunc - defines the time function identifiers in case of growing mechanical problems.
The elements are added or withdrawn according to the returned values from this
time function (element birth and death is controlled by this function).

Sections may be ordered arbitrarily in the input file and there are no restrictions on the
command order or number of commands in particular sections. MECHPREP processes
particular element sections in the order elvolpr, elsurfpr and eledgpr. If a command
is being applied to the same element several times then the following operations may be
performed:

66 CHAPTER 9. FORMAT OF A PREPROCESSOR INPUT FILE

merging - given assigned properties are merged together if possible (load). For example,
this operation is being performed on condition that the given property is assigned
to the different direction or DOF than the ones that were assigned formerly.

comparing - given assigned property is compared to the one assigned formerly and error
is reported if they differs or warning. is written to the log file if they are the same
(element type, materials, cross sections, local coordinate systems).

rewriting - the properties assigned formerly are rewritten by new values (time functions),
see the order of section processing described above. Commands in the later processed
sections rewrites values assigned in sections processed former.

A detailed description of element commands is provided in the following subsections.
For each command, the corresponding subsection contains the purpose of the command,
syntax, parameter description, operations performed for multiple assignment and example
of usage. Should be noted that all element in the mesh must have an assigned number
element type and material model. For 1D and plane elements, the cross section must be
also given.

9.7.1 el_type command
This command defines the type of element and consequently the type of problem solved
which cannot be determined on the topological basis. For example, a triangular plane
element with three nodes can represent either plane stress problem, plane strain problem,
axisymmetric problem, or plate problem. The command has the following syntax:

el_type propid prop t [strastrestate s]

where the parameters have the following meaning:

prop - the property id of the given entity (%ld).

t - the type specifier of the finite element according to Tab 9.1 (keyword or %ld).

s - stress/strain state specifier which can be one of the following options defined by
keywords {planestress | planestrain} or by integers {10 | 11}. It is used only
for the following element types specified by t: planeelementlt, planeelementqt,
planeelementrotlt, planeelementlq, planeelementqq, planeelementrotlq.

Should be noted that elements used for 2D and axisymmetric problems must be defined
in the xy plane. More details about the element shape functions and node ordering can be
found in [9]. If the element type is assigned to element having the type assigned formerly
then the types are checked and if they differs then the error is reported.

9.7.2 el_mat command
This command defines material models used on elements which can have assigned several
material models even. The command has the following syntax:

9.7. SECTION ELEDGPR, ELSURFPR, ELVOLPR 67

Element Element Source Description
type id type keyword file in MEFEL/SRC

1 bar2d barel2d.cpp 1D linear bar element for 2D
2 beam2d beamel2d.cpp beam element for 2D
3 bar3d barel3d.cpp 1D linear bar element for 3D
4 beam3d beamel3d.cpp beam element for 3D
6 barq2d barelq2d.cpp 1D quadratic bar element for 2D
7 barq3d barelq3d.cpp 1D quadratic bar element for 3D
8 subsoilbeam soilbeam.cpp subsoil element for beams in 3D

10 . . . 15 spring_1 . . . spring in 1. local DOF direction . . .
spring_6 springel.cpp spring in 6. local DOF direction

20 planeelementlt plelemlt.cpp triangle linear plane element
for 2D prob.

21 planeelementqt plelemqt.cpp triangle quadratic plane element
for 2D prob.

22 planeelementrotlt plelemlt.cpp triangle linear plane element for
2D prob. with additional rotations

23 planeelementlq plelemlq.cpp quadrilateral linear plane element
for 2D prob.

24 planeelementqq plelemqq.cpp quadrilateral quadratic plane
element for 2D prob.

25 planeelementrotlq plelemrotlq.cpp quadrilateral linear plane element for
2D prob. with additional rotations

35 planequadcontact plquadconact.cpp four node interface element for 2D
41 cctel cct.cpp CCT triangle Mindlin plate element
42 dktel dkt.cpp DKT triangle Kirchoff plate element
43 dstel dst.cpp DST triangle plate element
45 q4plateel q4plate.cpp quadrilateral Q4 plate element
46 argyristr argyrisplate.cpp triangle Argyris plate element
50 subsoilplatetr soilplatetr.cpp triangle subsoil for plate elems.
51 subsoilplateq soilplateq.cpp quadrilateral subsoil for plate elems.
60 axisymmlt axisymlt.cpp linear triangle element

for axisymmtric prob.
63 axisymmlq axisymlq.cpp linear quarilateral element

for axisymmetric prob.
64 axisymmqq axisymqq.cpp quadratic quarilateral element

for axisymmetric prob.
80 shelltrelem shelltr.cpp triangle Kirchoff shell element
81 shellqelem shellq.cpp quarilateral shell element
100 lineartet lintet.cpp linear tetrahedron element
101 quadrtet quadtet.cpp quadratic tetrahedron element
102 linearhex linhex.cpp linear brick element
103 quadrhex quadhex.cpp quadratic brick element

Table 9.1: Table of element types, corresponding keywords and brief description

68 CHAPTER 9. FORMAT OF A PREPROCESSOR INPUT FILE

el_mat propid prop num_mat nm {type ti type_id idi}×nm

where the parameters have the following meaning:

prop - the property id of the given entity (%ld).

nm - the number of material models defined (%ld).

ti - the type specifier of the i-th material model according to to Tab 5.1 (keyword or
%ld).

idi - the identifier of parameter set for the i-th material model (%ld). This number
refers to the id-th parameter set of the given material type which is defined either
in the mater section or material input file.

MEFEL uses system of material model chains where the first model specified is re-
sponsible for general material behaviour. For example, if the plasticity model with J2
criterion should be exploited then it is necessary to specify two material models on the
elements. The first model must be jflow which establish the plasticity model on ele-
ment. This model contains only parameters connected with the yield criterion directly,
i.e. value of the yield stress k, hardening modulus H and setup of stress return algorithm.
The elastic properties of the material must be specified by the second material type where
user can specify one of the elastic material models, e.g. elisomat. The same principle
is used in case of damage models. Usually, the last material type in the material model
chain is the elastic one. There are also some exceptional material models such as graphm,
hypoplastmat or winklerpasternak that can be used as stand alone models and do not
need elastic model to be the last in model chain. Additionally, there is a special model for
isotropic thermal dilatancy therisodilat that can be included to the any model chain
at the last position.

Examples of the material model assigning follows where, for the sake of simplicity, only
one type of elastic material will be assumed. All these commands are placed in section
elvolpr usually, because different material models are connected with volume/regions of
elements, and thus the various property id refers to different regions of elements.
Example of material model definition for isotropic elastic model for elements involved in
region with property id 1. The elastic model takes the first parameter set defined in the
mater section, i.e. Young’s modulus E=20.0 GPa and Poisson’s ratio ν=0.20 Should be
noted that mater section has the parameter keywords switched on by defining appropriate
options in section files:

begsec_elvolpr
.
.
elastic isotropic material, the first parameter set
el_mat propid 1 num_mat 1 type elisomat type_id
.
.
endsec_elvolpr

9.7. SECTION ELEDGPR, ELSURFPR, ELVOLPR 69

begsec_mater
num_mat_types 4 # number of material types
mattype elisomat num_inst 2
1 e 20.0e9 nu 0.20 # elasticity parameters for concrete
2 e 5.0e6 nu 0.3 # elasticity parameters for soil
.
.
endsec_mater

Example of material model definition for the same isotropic elastic model but with thermal
dilatancy now. The thermal dilatancy coefficient is taken from the second parameter set,
i.e. α=1.0·10−5. The definition of this chain can be used also instead of simple elastic
model definition if thermal dilatancy is required in more advanced material models:

begsec_elvolpr
.
.
elastic isotropic material with thermal dilatancy,
the first parameter set
el_mat propid 1 num_mat 2 type elisomat type_id 1

type therisodilat type_id 2
.
.
endsec_elvolpr
begsec_mater
num_mat_types 4 # number of material types
mattype elisomat num_inst 2
1 e 20.0e9 nu 0.20 # elasticity parameters for concrete
2 e 5.0e6 nu 0.3 # elasticity parameters for soil

mattype therisodilat num_inst 2
1 alpha 1.2e5 # dilatancy parameter for steel
2 alpha 1.0e5 # dilatancy parameter for concrete
.
.
endsec_mater

Example of material model definitions for plasticity models:

j2 flow plasticity material, the second parameter set
el_mat propid 1 num_mat 2 type jflow type_id 2

type elisomat type_id 1

Mohr-Coulomb plasticity material, the first parameter set
el_mat propid 8 num_mat 2 type mohcoul type_id 1

type elisomat type_id 1

70 CHAPTER 9. FORMAT OF A PREPROCESSOR INPUT FILE

Modified Cam-Clay plasticity material, the third parameter set
el_mat propid 11 num_mat 2 type modcamclaymat type_id 3

type elisomat type_id 1

Example of material model definitions for damage models:

scalar isotropic damage material, the first parameter set
el_mat propid 3 num_mat 2 type scaldamage type_id 1

type elisomat type_id 1

orthotropic damage material, the second parameter set
el_mat propid 1 num_mat 2 type ortodamage type_id 2

type elisomat type_id 1

If the nonlocal approach should be exploited then the material model definitions should
be given as follows:

nonlocal scalar isotropic damage material, the first parameter set
el_mat propid 4 num_mat 3 type nonlocdamgmat type_id 1

type scaldamage type_id 3
type elisomat type_id 1

nonlocal J2 flow plasticity material, the third parameter set
el_mat propid 5 num_mat 3 type nonlocplastmat type_id 3

type jflow type_id 2
type elisomat type_id 1

A simple visco-plastic material model with J2 criterion can be assigned by the following
command:

simple visco-plastic material, the first parameter set
el_mat propid 5 num_mat 4 type viscoplasticity type_id 1

type simvisc type_id 2
type jflow type_id 2
type elisomat type_id 1

Combination of damage and plasticity models can be arrived at:

combination of Drucker-Prager plasticity and
scalar isotropic damage material
el_mat propid 1 num_mat 4 type damage_plasticity type_id 1

type druckerprager type_id 4
type scaldamage type_id 3
type elisomat type_id 1

Combination of B3 creep model damage plasticity models can be arrived at:

9.7. SECTION ELEDGPR, ELSURFPR, ELVOLPR 71

combination of B3 creep and and scalar isotropic damage material
el_mat propid 6 num_mat 4 type creep_damage type_id 1

type creepb3 type_id 2
type scaldamage type_id 1
type elisomat type_id 1

9.7.3 el_crsec command
The command assigns cross section parameters to the selected elements. Usually, the
element cross section command is used in case of plane problems where the thickness
should be prescribed to be constant on all elements. The second possibility represents
the cross section defined at nodes (see section 9.6.5) where the cross section parameters
are assumed to be given at nodes and approximated over the elements with help of shape
functions. Another class of elements that requires the setting of cross section type is
represented by 1D elements such as bars and beams. The command has the following
syntax:

el_crsec propid prop type t type_id id

where the parameters have the following meaning:

prop - the property id of the given entity (%ld).

t - the cross section type specifier according to Tab 6.1 (keyword or %ld).

id - the cross section parameters set identifier (%ld). The identifier refers to the cross
section parameter set of the given cross section type ti which is defined in the section
crsec or in the cross section input file. See chapater 6 for more details about the
cross section specification.

The following command placed in the elvolpr section defines uniform section area 0.25 m2

on elements involved in the region with the property id 5. The cross section parameters
are taken from the section crsec included in the preprocessor input file. It is supposed
that 2D truss beam problem would be solve in this case, crsec section has the parameter
keywords switched on by defining appropriate options in section files. There are also
two different section areas (0.1 and 0.25) defined in section crsec.

begsec_files
.
.
read_crs_strings no
read_crs_kwd yes
endsec_files
.
.
begsec_elvolpr
.
.

72 CHAPTER 9. FORMAT OF A PREPROCESSOR INPUT FILE

el_crsec propid 0 type csbar2d type_id 2
.
.
endsec_elvolpr
.
.
begsec_crsec
num_crsec_types 1 # number of cross section types
crstype csbar2d num_inst 2
cross section of 2D bar
1 a 0.10
2 a 0.25
endsec_crsec

9.7.4 el_load command
The command defines load on elements with help of the read_prep function of loadel
class (MEFEL/SRC/loadel.cpp) used in MEFEL directly. Definition of arbitrary load
type - edge, surface or volume - can be accomplished with single command el_load on
selected elements. This command can be useful on structured meshes where all elements
are generated with the same orientation and order of edges and surfaces. For example,
the command can be used for the prescribing of the compacting load in the problem
of growing structure made from layers of soil. The surface of the topmost soil layer
should be compacted by load but this surface is shared also by elements from layer added
consequently which leads to application of surface load with double intensity in such cases.
If the region of appropriate elements is defined with different property id on each surface
compacted then this command can be applied on these regions and the correct compacting
can be accomplished. The command has the following syntax:

el_load propid prop lc_id nlc [slc_id slc] load_type tl eloadrec

where the parameters have the following meaning:

prop - the property id of the given entity (%ld).

nlc - load case id which the load will be involved into (%ld).

slc_id - subloadcase id of the given nlc-th load case (%ld) which the load will be
involved into. It is used only in the time dependent problems, see notes in the
section 9.3.

tl - type of applied load. It can be one of the following options {volume | edge |
surface} or corresponding integers {1 | 2 | 3}. The option volume corresponds
to the application of volume load [N/m3], option edge corresponds to the application
of edge load [N/m] and option surface corresponds to the application of surface
load [N/m2].

eloadrec - record of element load.

9.7. SECTION ELEDGPR, ELSURFPR, ELVOLPR 73

The content of eloadrec is specific for particular load types tl. The format for tl=volume
reads:

ncomp nc load_comp {vali}×nc

where the parameters have the following meaning:

nc - the number of volume load components (%ld).

vali - the value of i-th load component in [N/m3] (%le).

In the case that tl=edge, the format reads:

nedge ned ncomp nc {coord_sys lcsi [load_comp {valij}×nc]}×ned

where the parameters have the following meaning:

ned - the number of edges on elements where the edge load will be applied to (%ld)

nc - the number of edge load components (%ld).

lcsi - specifier of a coordinate system of the i-th element edge in which the edge load
components will be given. There are available the following options {0 | 1 | 2}
where 0 means no load applied on the given edge, 1 means edge load components
given in the global coordinate system and 2 means edge load components given in
the local coordinate system of the given i-th edge.

valij - the value of j-th load component in [N/m] on the i-th element edge (%le). These
values including prefix keyword load_comp must be specified only if the lcsi is set
to nonzero value.

In the case that tl=surface, the format reads:

nsurf nsf ncomp nc {coord_sys lcsi [load_comp {valij}×nc]}×nsf

where the parameters have the following meaning:

nsf - the number of surfaces on elements where the surface load will be applied to (%ld)

nc - the number of surface load components (%ld).

lcsi - specifier of a coordinate system of the i-th element surface in which the surface
load components will be given. There are available the following options {0 | 1 |
2} where 0 means no load applied on the given surface, 1 means surface load com-
ponents given in the global coordinate system and 2 means surface load components
given in the local coordinate system of the given i-th surface.

valij - the value of j-th load component in [N/m2] on the i-th element surface (%le).
These values including prefix keyword load_comp must be specified only if the lcsi
is set to nonzero value.

74 CHAPTER 9. FORMAT OF A PREPROCESSOR INPUT FILE

The load is merged in the case of multiple assignment for the same element and the
new values of load are added to the previous ones. If there is conflict in the direction of
the load component (global x local coordinate systems) the error is reported otherwise a
message about the successful merging is written to the log file.

In case of forced dynamics, time dependent and growing mechanical problems, it should
be noted that the command cannot be used in one preprocessor file with el_tdload,
edge_tdload, surface_tdload and volume_tdload commands where the timedepload
concept is used. See 9.3 for more details about different load case concepts.

The following command placed in the section elvolpr assigns uniform surface load
6 kN/m2 in the z global direction on the third surface of each element involved in the
region with property id 5. It is assumed that a 3D linear statics problem is being solved
where the mesh consists of linear tetrahedron elements and load is included to the first
load case.

el_load propid 5 lc_id 1 load_type surface nsurf 4 ncomp 3
coord_sys 0
coord_sys 0
coord_sys 1 load_comp 0.0 0.0 6.0e3
coord_sys 0

The following command placed in the section eledgpr assigns uniform edge load 2
kN/m in the local x direction on the second edge of each adjacent element of the edge
with property id 3. It is assumed that a 2D time dependent mechanical problem is being
solved where the mesh consists of linear quadrilateral elements and load is included to
the second subloadcase of the first load case.

el_load propid 3 lc_id 1 slc_id 2 load_type edge nsurf 4 ncomp 2
coord_sys 0
coord_sys 2
load_comp 2.0e3 0.0
coord_sys 0
coord_sys 0

The following command placed in the section elvolpr assigns constant volume load
18 kN/m3 in the z global direction for each element involved in the region with property
id 1. It is assumed that a 3D linear statics problem is being solved and load is included
to the first load case.

el_load propid 1 lc_id 1 load_type volume ncomp 3
load_comp 0.0 0.0 18.0e3

9.7.5 edge_load command
The command assigns edge load to element edges with the given edge property id. It
must be placed only in the eledgpr section otherwise it is ignored. The load components
may be either constant or the intensity of the load components may vary with respect to
spatial coordinates according to the expression specified. The command has the following
syntax:

9.7. SECTION ELEDGPR, ELSURFPR, ELVOLPR 75

edge_load propid prop lc_id nlc [slc_id slc] ncomp nc
func_type ft coord_sys lcs load_comp {vali}×nc

where the parameters have the following meaning:

prop - the property id of the edge where the load will be applied to (%ld).

nlc - load case id which the load will be involved into (%ld).

slc_id - subloadcase id of the given nlc-th load case (%ld) which the load will be
involved into. It is used only in the time dependent problems, see notes in the
section 9.3.

nc - the number of edge load components (%ld).

ft - type of definition of load component values. There are available the following options
{stat | pars} or corresponding integer values {0 | 1} where statmeans constant
load components and parsmeans components defined with help of expression string.

lcs - specifier of a coordinate system on element edges in which the edge load components
will be given. There are available the following options {1 | 2} where 1 means
edge load components given in the global coordinate system and 2 means edge load
components given in the local coordinate system of the given element edge.

vali - the value of i-th edge load component in [N/m]. If ft=stat then vali is rep-
resented by real value (%le). If ft=pars then string expression is expected (%s).
The expression may be composed from standard math operators (+,-,/,*), constant
values or standard functions (sin, cos, exp, tan, pow, log). The expression is used
for calculation of load intensity at nodes on the given edge according to their spatial
coordinates which must be denoted by x, y or z in the expression string. The maxi-
mum expression string length is 1000 characters and it must not contain any space
characters. See section 7.2 for more details about option pars and the expression
strings.

The load is merged in the case of multiple assignment for the same element and the
new values of load are added to the previous ones. If there is conflict in the direction of
the load component (global x local coordinate systems) the error is reported otherwise a
message about the successful merging is written to the log file. In case of forced dynamics,
time dependent and growing mechanical problems, it should be noted that the command
cannot be used in one preprocessor file with el_tdload, edge_tdload, surface_tdload
and volume_tdload commands where the timedepload concept is used. See 9.3 for more
details about different load case concepts.

The following command placed in the section eledgpr assigns constant uniform edge
load 4 kN/m in the z global direction on each element edge which is involved in edge with
property id 2. It is assumed that a 2D plane stress linear statics problem is being solved
and load is included to the first load case.

edge_load propid 2 lc_id 1 ncomp 2
func_type stat coord_sys 1 load_comp 0.0 4.0e3

76 CHAPTER 9. FORMAT OF A PREPROCESSOR INPUT FILE

The following command placed in the section eledgpr assigns edge load with linear
course along the edge with property id 3 which is parallel with the global x axis. The edge
begins at node with x=0.0 m where the load intensity will be 2 kN/m while the end of
the edge is at node with x=4.0 m and there is load intensity 14 kN/m. It is assumed that
a 2D plane stress time dependent problem is being solved, the load acts in the z global
direction and load is included to the first subloadcase of the first load case.

edge_load propid 3 lc_id 1 slc_id 1 ncomp 2
func_type pars coord_sys 1 load_comp 0.0 3.0e3*x+2.0e3

9.7.6 surf_load command
The command assigns surface load to element surfaces with the given surface property
id. It must be placed only in the elsurfpr section otherwise it is ignored. The load
components may be either constant or the intensity of the load components may vary
with respect to spatial coordinates according to the expression specified. The command
has the following syntax:

surf_load propid prop lc_id nlc [slc_id slc] ncomp nc
func_type ft coord_sys lcs load_comp {vali}×nc

where the parameters have the following meaning:

prop - the property id of the surface where the load will be applied to (%ld).

nlc - load case id which the load will be involved into (%ld).

slc_id - subloadcase id of the given nlc-th load case (%ld) which the load will be
involved into. It is used only in the time dependent problems, see notes in the
section 9.3.

nc - the number of surface load components (%ld).

ft - type of definition of load component values. There are available the following options
{stat | pars} or corresponding integer values {0 | 1} where statmeans constant
load components and parsmeans components defined with help of expression string.

lcs - specifier of a coordinate system on element surfaces in which the surface load
components will be given. There are available the following options {1 | 2} where
1 means surface load components given in the global coordinate system and 2 means
surface load components given in the local coordinate system of the given element
surface.

vali - the value of i-th surface load component in [N/m2]. If ft=stat then vali is
represented by real value (%le). If ft=pars then expression string is expected
(%s). The expression may be composed from standard math operators (+,-,/,*),
constant values or standard functions (sin, cos, exp, tan, pow, log). The expression
is used for calculation of load intensity at nodes on the given surface according to

9.7. SECTION ELEDGPR, ELSURFPR, ELVOLPR 77

their spatial coordinates which must be denoted by x, y or z in the expression string.
The maximum expression string length is 1000 characters and it must not contain
any space characters. See section 7.2 for more details about option pars and the
expression strings.

The load is merged in the case of multiple assignment for the same element and the
new values of load are added to the previous ones. If there is conflict in the direction of
the load component (global x local coordinate systems) the error is reported otherwise a
message about the successful merging is written to the log file. In case of forced dynamics,
time dependent and growing mechanical problems, it should be noted that the command
cannot be used in one preprocessor file with el_tdload, edge_tdload, surface_tdload
and volume_tdload commands where the timedepload concept is used. See 9.3 for more
details about different load case concepts.

The following command placed in the section elsurfpr assigns constant uniform sur-
face load 1.5 kN/m2 in the x global direction on each element surface which is involved in
surface with property id 2. It is assumed that a 3D linear statics problem is being solved
and load is included to the first load case.

surf_load propid 2 lc_id 1 ncomp 3
func_type stat coord_sys 1 load_comp 1.5e3 0.0 0.0

The following command placed in the section elsurfpr assigns surface load with linear
course across the surface with property id 4 which is parallel with the global xy plane.
It is assumed that a 3D time dependent problem is being solved, the load acts in the z
global direction and load is included to the first subloadcase of the first load case.

surf_load propid 4 lc_id 1 slc_id 1 ncomp 3
func_type pars coord_sys 1 load_comp 0.0 0.0 6.0e3*x+3.5e3*y+2.0e3

9.7.7 volume_load command
The command assigns volume load to elements involved in the region/volume with the
given volume property id. It must be placed only in the elvolpr section otherwise it
is ignored. The load components may be either constant or the intensity of the load
components may vary with respect to spatial coordinates according to the expression
specified. The command has the following syntax:

volume_load propid prop lc_id nlc [slc_id slc] ncomp nc
func_type ft load_comp {vali}×nc

where the parameters have the following meaning:

prop - the property id of the region/volume where the load will be applied to (%ld).

nlc - load case id which the load will be involved into (%ld).

slc_id - subloadcase id of the given nlc-th load case (%ld) which the load will be
involved into. It is used only in the time dependent problems, see notes in the
section 9.3.

78 CHAPTER 9. FORMAT OF A PREPROCESSOR INPUT FILE

nc - the number of volume load components (%ld).

ft - type of definition of load component values. There are available the following options
{stat | pars} or corresponding integer values {0 | 1} where statmeans constant
load components and parsmeans components defined with help of expression string.

vali - the value of i-th volume load component in [N/m3]. If ft=stat then vali is
represented by real value (%le). If ft=pars then expression string is expected (%s).
The expression may be composed from standard math operators (+,-,/,*), constant
values or standard functions (sin, cos, exp, tan, pow, log). The expression is used
for calculation of load intensity at nodes of the given region/volume according to
their spatial coordinates which must be denoted by x, y or z in the expression string.
The maximum expression string length is 1000 characters and it must not contain
any space characters. See section 7.2 for more details about option pars and the
expression strings.

The load is merged in the case of multiple assignment for the same element and the new
values of load are added to the previous ones. A message about the successful merging is
written to the log file. In case of forced dynamics, time dependent and growing mechanical
problems, it should be noted that the command cannot be used in one preprocessor
file with el_tdload, edge_tdload, surface_tdload and volume_tdload commands
where the timedepload concept is used. See 9.3 for more details about different load case
concepts.

The following command placed in the section elvolpr assigns constant volume load 23
kN/m3 in the z global direction on each element which is involved in region with property
id 2. It is assumed that a 3D linear statics problem is being solved and load is included
to the first load case.

volume_load propid 2 lc_id 1 ncomp 3
func_type stat load_comp 0.0 0.0 2.3e4

The following command placed in the section elvolpr assigns volume load, with
proportional change of intensity with respect to the x axis, to all elements involved in
region with property id 4. It is assumed that a 3D time dependent problem is being
solved, the load acts in the z global direction and load is included to the first subloadcase
of the first load case.

volume_load propid 4 lc_id 1 slc_id 1 ncomp 3
func_type pars load_comp 0.0 0.0 1.5e4+0.3e3*x

9.7.8 el_tdload command
The command defines time dependent load on elements with the help of the read_prep
function of loadel class (MEFEL/SRC/loadel.cpp) used in MEFEL directly. Definition of
arbitrary load type - edge, surface or volume - can be accomplished with single command
el_load on selected elements. This command can be useful on structured meshes where
all elements are generated with the same orientation and order of edges and surfaces.

9.7. SECTION ELEDGPR, ELSURFPR, ELVOLPR 79

For example, the command can be used for the prescribing of the compacting load in
the problem of growing structure made from layers of soil. The surface of the topmost
soil layer should be compacted by load but this surface is shared also by elements from
layer added consequently which leads to application of surface load with double intensity
in such cases. If the region of appropriate elements is defined with different property id
on each surface compacted then this command can be applied on these regions and the
correct compacting can be accomplished. The command has the following syntax:

el_load propid prop lc_id nlc load_type tl eloadrec

where the parameters have the following meaning:

prop - the property id of the given entity (%ld).

nlc - load case id which the load will be involved into (%ld).

tl - type of applied load. It can be one of the following options {volume | edge |
surface} or corresponding integers {1 | 2 | 3}. The option volume corresponds
to the application of volume load [N/m3], option edge corresponds to the application
of edge load [N/m] and option surface corresponds to the application of surface
load [N/m2].

eloadrec - record of element load.

The content of eloadrec is specific for particular load types tl. The format for tl=volume
reads:

ncomp nc load_comp {gfi}×nc

where the parameters have the following meaning:

nc - the number of volume load components (%ld).

gfi - the gfunct record of i-th load component in [N/m3]. The function type may be
one of the following options {stat | pars | tab | pars_set }. If function type
is {pars | pars_set } then the expression is used for calculation of load intensity
at nodes of the given region/volume according to their spatial coordinates which
must be denoted by x, y or z in the expression string and t is considered as time
coordinate. If function type is {tab} then time dependence is considered only. See
section 7 for more details about gfunct record.

In the case that tl=edge, the format reads:

nedge ned ncomp nc {coord_sys lcsi [load_comp {gfij}×nc]}×ned

where the parameters have the following meaning:

ned - the number of edges on elements where the edge load will be applied to (%ld)

nc - the number of edge load components (%ld).

80 CHAPTER 9. FORMAT OF A PREPROCESSOR INPUT FILE

lcsi - specifier of a coordinate system of the i-th element edge in which the edge load
components will be given. There are available the following options {0 | 1 | 2}
where 0 means no load applied on the given edge, 1 means edge load components
given in the global coordinate system and 2 means edge load components given in
the local coordinate system of the given i-th edge.

gfij - the gfunct record of j-th load component in [N/m] on i-th element edge. The func-
tion type may be one of the following options {stat | pars | tab | pars_set }.
If function type is {pars | pars_set } then the expression is used for calculation
of load intensity at nodes of the selected elements according to their spatial coordi-
nates which must be denoted by x, y or z in the expression string and t is considered
as time coordinate. If function type is {tab} then time dependence is considered
only. See section 7 for more details about gfunct record. These records including
prefix keyword load_comp must be specified only if the lcsi is set to nonzero value.

In the case that tl=surface, the format reads:

nsurf nsf ncomp nc {coord_sys lcsi [load_comp {gfij}×nc]}×nsf

where the parameters have the following meaning:

nsf - the number of surfaces on elements where the surface load will be applied to (%ld)

nc - the number of surface load components (%ld).

lcsi - specifier of a coordinate system of the i-th element surface in which the surface
load components will be given. There are available the following options {0 | 1 |
2} where 0 means no load applied on the given surface, 1 means surface load com-
ponents given in the global coordinate system and 2 means surface load components
given in the local coordinate system of the given i-th surface.

gfij - the gfunct record of j-th load component in [N/m2] on i-th element surface.
The function type may be one of the following options {stat | pars | tab |
pars_set }. If function type is {pars | pars_set } then the expression is used
for calculation of load intensity at nodes of the selected elements according to their
spatial coordinates which must be denoted by x, y or z in the expression string and t
is considered as time coordinate. If function type is {tab} then time dependence is
considered only. See section 7 for more details about gfunct record. These records
including prefix keyword load_comp must be specified only if the lcsi is set to
nonzero value.

The load is merged in the case of multiple assignment for the same element and the
new values of load are added to the previous ones. If there is conflict in the direction of
the load component (global x local coordinate systems) the error is reported otherwise a
message about the successful merging is written to the log file.

The command is intended for use in forced dynamics, time dependent and growing
mechanical problems and it should be noted that the command cannot be used in one pre-
processor file with el_load, edge_load, surface_load and volume_load commands

9.7. SECTION ELEDGPR, ELSURFPR, ELVOLPR 81

where the subloadcase concept is used. See 9.3 for more details about different load case
concepts.

The following command placed in the section elvolpr assigns uniform surface load
6 kN/m2 in the z global direction on the third surface of each element involved in the
region with property id 5. It is assumed that a 3D time dependent problem is being solved
where the mesh consists of linear tetrahedron elements and load is included to the first
load case.

el_load propid 5 lc_id 1 load_type surface nsurf 4 ncomp 3
coord_sys 0
coord_sys 0
coord_sys 1 load_comp
funct_type stat const_val 0.0
funct_type stat const_val 0.0
funct_type stat const_val 6.0e3
coord_sys 0

The following command placed in the section eledgpr assigns uniform edge load
2+0.1t kN/m increasing linearly in time in the local x direction on the second edge of
each adjacent element of the edge with property id 3. It is assumed that a 2D time depen-
dent mechanical problem is being solved where the mesh consists of linear quadrilateral
elements and load is included to the first load case.

el_load propid 3 lc_id 1 load_type edge nsurf 4 ncomp 2
coord_sys 0
coord_sys 2
load_comp
funct_type pars 2.0e3+0.1e3*t
funct_type stat const_val 0.0
coord_sys 0
coord_sys 0

The following command placed in the section elvolpr assigns linearly increasing vol-
ume load from zero up to 18 kN/m3 at time 100 s and then is kept constant until 200 s.
The load is defined in the z global direction for each element involved in the region with
property id 1. It is assumed that a 3D linear statics problem is being solved and load is
included to the first load case.

el_load propid 1 lc_id 1 load_type volume ncomp 3
load_comp
funct_type stat const_val 0.0
funct_type stat const_val 0.0
funct_type tab
approx_type linear
ntab_items 3

0.0 0.0
100.0 18.0e3
200.0 18.0e3

82 CHAPTER 9. FORMAT OF A PREPROCESSOR INPUT FILE

9.7.9 edge_tdload command
The command assigns time dependent edge load to element edges with the given edge
property id. It must be placed only in the eledgpr section otherwise it is ignored. The
load components are prescribed with the help of general time dependent functions and
for each particular component, the different function has to be specified. The load com-
ponents may be either constant or the intensity of the load components may vary with
respect to spatial coordinates and time according to the gfunct specified. The command
has the following syntax:

edge_load propid prop lc_id nlc ncomp nc
coord_sys lcs load_comp {vali}×nc

where the parameters have the following meaning:

prop - the property id of the edge where the load will be applied to (%ld).

nlc - load case id which the load will be involved into (%ld).

nc - the number of edge load components (%ld).

lcs - specifier of a coordinate system on element edges in which the edge load components
will be given. There are available the following options {1 | 2} where 1 means
edge load components given in the global coordinate system and 2 means edge load
components given in the local coordinate system of the given element edge.

gfi - the gfunct record of i-th volume load component in [N/m]. The function type may
be one of the following options {stat | pars | tab | pars_set }. If function
type is {pars | pars_set } then the expression is used for calculation of load
intensity at nodes of the given region/volume according to their spatial coordinates
which must be denoted by x, y or z in the expression string and t is considered as
time coordinate. If function type is {tab} then time dependence is considered only.
See section 7 for more details about gfunct record.

The load is merged in the case of multiple assignment for the same element and the new
values of load are added to the previous ones. If there is conflict in the direction of the load
component (global x local coordinate systems) the error is reported otherwise a message
about the successful merging is written to the log file. The command is intended for use in
forced dynamics, time dependent and growing mechanical problems and it should be noted
that the command cannot be used in one preprocessor file with el_load, edge_load,
surface_load and volume_load commands where the subloadcase concept is used. See
9.3 for more details about different load case concepts.

The following command placed in the section eledgpr assigns constant uniform edge
load 4 kN/m in the z global direction on each element edge which is involved in edge
with property id 2. It is assumed that a 2D plane stress time dependent problem is being
solved and load is included to the first load case.

9.7. SECTION ELEDGPR, ELSURFPR, ELVOLPR 83

edge_load propid 2 lc_id 1 ncomp 2
coord_sys 1
load_comp
funct_type stat const_val 0.0
funct_type stat const_val 4.0e3

The following command placed in the section eledgpr assigns edge load with linear
course along the edge with property id 3 which is parallel with the global x axis. The edge
begins at node with x=0.0 m where the load intensity will be 2 kN/m while the end of
the edge is at node with x=4.0 m and there is load intensity 14 kN/m. The load intensity
increases linearly on time starting from zero. It is assumed that a 2D plane stress time
dependent problem is being solved where time stepping starts from 0 s, the load acts in
the z global direction and load is included to the first load case.
edge_load propid 3 lc_id 1 ncomp 2
coord_sys 1
load_comp
funct_type stat const_val 0.0
funct_type pars (3.0e3*x+2.0e3)*t

9.7.10 surf_tdload command
The command assigns surface time dependent load to element surfaces with the given
surface property id. It must be placed only in the elsurfpr section otherwise it is
ignored. The load components are prescribed with the help of general time dependent
functions and for each particular component, the different function has to be specified.
The load components may be either constant or the intensity of the load components may
vary with respect to spatial coordinates and time according to the gfunct specified. The
command has the following syntax:
surf_load propid prop lc_id nlc ncomp nc
coord_sys lcs load_comp {gfi}×nc

where the parameters have the following meaning:
prop - the property id of the surface where the load will be applied to (%ld).

nlc - load case id which the load will be involved into (%ld).

nc - the number of surface load components (%ld).

ft - type of definition of load component values. There are available the following options
{stat | pars} or corresponding integer values {0 | 1} where statmeans constant
load components and parsmeans components defined with help of expression string.

lcs - specifier of a coordinate system on element surfaces in which the surface load
components will be given. There are available the following options {1 | 2} where
1 means surface load components given in the global coordinate system and 2 means
surface load components given in the local coordinate system of the given element
surface.

84 CHAPTER 9. FORMAT OF A PREPROCESSOR INPUT FILE

gfi - the gfunct record of i-th volume load component in [N/m2]. The function type may
be one of the following options {stat | pars | tab | pars_set }. If function
type is {pars | pars_set } then the expression is used for calculation of load
intensity at nodes of the given region/volume according to their spatial coordinates
which must be denoted by x, y or z in the expression string and t is considered as
time coordinate. If function type is {tab} then time dependence is considered only.
See section 7 for more details about gfunct record.

The load is merged in the case of multiple assignment for the same element and the new
values of load are added to the previous ones. If there is conflict in the direction of the load
component (global x local coordinate systems) the error is reported otherwise a message
about the successful merging is written to the log file. The command is intended for use in
forced dynamics, time dependent and growing mechanical problems and it should be noted
that the command cannot be used in one preprocessor file with el_load, edge_load,
surface_load and volume_load commands where the subloadcase concept is used. See
9.3 for more details about different load case concepts.

The following command placed in the section elsurfpr assigns constant uniform sur-
face load 1.5 kN/m2 in the x global direction on each element surface which is involved
in surface with property id 2. It is assumed that a 3D time dependent problem is being
solved and load is included to the first load case.

surf_load propid 2 lc_id 1 ncomp 3
coord_sys 1
load_comp
funct_type stat const_val 1.5e3
funct_type stat const_val 0.0
funct_type stat const_val 0.0

The following command placed in the section elsurfpr assigns surface load with linear
course across the surface with property id 4 which is parallel with the global xy plane.
The load intensity decreases linearly until zero values are attained at time 3600 s. It is
assumed that a 3D time dependent problem is being solved, the load acts in the z global
direction and load is included to the first first load case.

surf_load propid 4 lc_id 1 ncomp 3
coord_sys 1
load_comp
funct_type stat const_val 0.0
funct_type stat const_val 0.0
funct_type pars (6.0e3*x+3.5e3*y+2.0e3)*(1.0-t/3.6e3)

9.7.11 volume_tdload command
The command assigns time dependent volume load to elements involved in the region/vol-
ume with the given volume property id. It must be placed only in the elvolpr section
otherwise it is ignored. The load components may be either constant or the intensity of
the load components may vary with respect to spatial coordinates and time according to

9.7. SECTION ELEDGPR, ELSURFPR, ELVOLPR 85

the expression specified. The load components are prescribed with the help of general
time dependent functions and for each particular component, the different function has
to be specified. The command has the following syntax:

volume_load propid prop lc_id nlc ncomp nc
load_comp {gfi}×nc

where the parameters have the following meaning:

prop - the property id of the region/volume where the load will be applied to (%ld).

nlc - load case id which the load will be involved into (%ld).

nc - the number of volume load components (%ld).

gfi - the gfunct record of i-th volume load component in [N/m3]. The function type may
be one of the following options {stat | pars | tab | pars_set }. If function
type is {pars | pars_set } then the expression is used for calculation of load
intensity at nodes of the given region/volume according to their spatial coordinates
which must be denoted by x, y or z in the expression string and t is considered as
time coordinate. If function type is {tab} then time dependence is considered only.
See section 7 for more details about gfunct record.

The load is merged in the case of multiple assignment for the same element and the new
values of load are added to the previous ones. A message about the successful merging
is written to the log file. The command is intended for use in forced dynamics, time
dependent and growing mechanical problems and it should be noted that the command
cannot be used in one preprocessor file with el_load, edge_load, surface_load and
volume_load commands where the subloadcase concept is used. See 9.3 for more details
about different load case concepts.

The following command placed in the section elvolpr assigns constant volume load 23
kN/m3 in the z global direction on each element which is involved in region with property
id 2. It is assumed that a 3D time dependent problem is being solved and load is included
to the first load case.

volume_load propid 2 lc_id 1 ncomp 3
load_comp
funct_type stat const_val 0.0
funct_type stat const_val 0.0
funct_type stat const_val 2.3e4

The following command placed in the section elvolpr assigns volume load, with
proportional change of intensity with respect to the x axis, to all elements involved in
region with property id 4. The load intensity also varies in time according to sin(0.5t)
function. It is assumed that a 3D time dependent problem is being solved, the load acts
in the z global direction and load is included to the first load case.

86 CHAPTER 9. FORMAT OF A PREPROCESSOR INPUT FILE

volume_load propid 4 lc_id 1 ncomp 3
load_comp
funct_type stat const_val 0.0
funct_type stat const_val 0.0
funct_type pars (1.5e4+0.3e3*x)*sin(0.5*t)

9.7.12 el_eigstr command
The command assigns eigenstrains/eigenstresses to elements involved in the entity with
the given property id. The eigenstrain/eigenstress components are defined with help of
time dependent functions. The command has the following syntax:

el_eigstr propid prop str_type strt ncomp nc eigstr_comp {esi}×nc

where the parameters have the following meaning:

prop - the property id of the given entity (%ld).

strt - specifier of type of applied eigen quantity, i.e. strain or stress, according to Tab 9.2
(keyword or %ld)

nc - the number of eigenstrain/eigenstress components (%ld).

esi - i-th eigenstrain/eigenstress component defined by record of a time function that has
to return the component value with respect to actual time and space coordinates of
the given integration point. See chapter 7 for more details about the format of time
function record.

Quantity Quantity Description
type type id

keyword
strain 0 eigenstrains will be assumed
stress 1 eigenstresses will be assumed

Table 9.2: Table of eigen qunatity types

Should be noted that only one type of eigen quantity can be defined in the problem
either eigenstrains or eigenstresses. Zero eigenstrains/eigenstresses are assigned to ele-
ments that are not involved by any of the el_eigstr commands. In the case of multiple
assignment of different eigenstrain/eigenstress component to the same element, the error
is reported otherwise a message about the multiple assignment of the same value is written
to the log file.

The following command placed in the section elvolpr assigns constant eigenstrain
vector ε0={0.0; 2.5·10−5; -3.1·10−6; 0.0}T to elements involved in region with property id
0. It is assumed that a 2D time dependent plane strain problem is being solved.

9.7. SECTION ELEDGPR, ELSURFPR, ELVOLPR 87

el_eigstr propid 0 str_type strain ncomp 4 eigstr_comp
funct_type stat const_val 0.0 # eps_x
funct_type stat const_val 2.5e-5 # eps_y
funct_type stat const_val -3.1e-6 # gamma_xy
funct_type stat const_val 0.0 # eps_z

The following command placed in the section elvolpr assigns variable eigenstress
vector σ0 according to K0 procedure to the retangular block of soil with height 40 m. In
this case, the dead weight of soil is assumed to be γ=20 kN/m3 which generates vertical
stress component σy=−γh=γ(y−40). Remaining normal stress components are assumed
to be 1/3 of the vertical one. This variable eigenstress vector is assigned to elements
involved in region with property id 1. It is assumed that a 2D time dependent plane
strain problem is being solved.

el_eigstr propid 1 str_type stress ncomp 4 eigstr_comp
funct_type pars func_formula 20000.0/3.0*(y-40.0) # sig_x
funct_type pars func_formula 20000.0*(y-40.0) # sig_y
funct_type pars func_formula 0.0 # tau_xy
funct_type pars func_formula 20000.0/3.0*(y-40.0) # sig_z

9.7.13 el_tfunc command
This command prescribes element time function in case of growing mechanical problems.
These time functions controls the element addition and withdrawing. If the element is
added to the problem then its status is ’switched on’ and it is taken into account at the
given time while the opposite element state ’switched off’ withdraw the element from the
problem. Thus the time function controls the element birth and death. The time function
must return 0 if the elements are required to be withdrawn (switched off) and it must
return 1 if the elements are required to be added to the problem (switched on). All these
time functions must be defined in the section gfunct and referenced by their identifiers.
The command syntax follows:

el_tfunc propid prop tfunc_id id

where the parameters have the following meaning:

prop - the property id of the given entity (%ld).

id - identifier of time function from the section gfunct (%ld). The values range from 1
to ngf where ngf is defined in the section gfunct.

Should be noted that nodal DOFs are defined to be free if they are connected to
elements whose status is ’switched on’. This default behaviour of nodes can be overriden
by nodal command nod_tfunct, see section 9.6.4. In the case of multiple assignment of
different time functions to the same element, the error is reported otherwise a message
about the multiple assignment of the same time function is written to the log file.

The following command placed in the elvolpr section assigns the second time function
from the section gfunct which switches on elements involved in region with property id

88 CHAPTER 9. FORMAT OF A PREPROCESSOR INPUT FILE

5 for period starting at 24000 s and lasting until the end of analysis. It is supposed that
growing mechanical problem would be solved in this case.
begsec_elvolpr
.
.
el_tfunc propid 5 tfunc_id 2
.
.
endsec_elvolpr
.
.
begsec_gfunct
time_functions
num_gfunct 5
gf_id 1 funct_type itab
nitab_items 2
0.0 0
5.6e4 1
gf_id 2 funct_type itab
nitab_items 2
0.0 0
2.4e4 1
.
.
endsec_gfunct

9.8 Section outdrv
The section beginning is marked with the keyword begsec_outdrv and the section is
closed by the keyword endsec_outdrv. It contains the description of the detailed setup
of the result output. There are three types of the output file produced by MEFEL.
Thirst type is represented by plain text file, the second one is represented by files in
formats supported by graphic postprocessors (GiD, VTK, OpenDX, etc.) and the last
one is text file with tabular output of selected quantities that is intended for the creation
of diagrams (XMGrace, GNUPLot, MS Excel, etc.). All these parameters of the result
output are controlled by classes outdriverm and outdiagm in MEFEL. The class contains
function read which is being called for the processing of this section. Contrary to MEFEL,
the keywords usage is switched on in this case. The format of this section is quite complex
and it is described in details in [10].

9.9 Section gfunct
The section beginning is marked with the keyword begsec_gfunct and the section is
closed by the keyword endsec_gfunct. The section gfunct is compulsory only for growing

9.9. SECTION GFUNCT 89

mechanical problems and it contains a list of definitions of time functions that control
nodal DOFs and element addition and withdrawing. In case of elements, the time function
must return 0 if the elements are required to be withdrawn (switched off) and it must
return 1 if the elements are required to be added to the problem (switched on). Should
be noted that nodal DOFs are defined to be free if they are connected to elements whose
status is ’switched on’. This default behaviour of nodes can be overridden by the nodal
command nod_tfunct (see section 9.6.4) in which DOFs at particular nodes are controlled
by time functions which return 0 if the given DOFs should not involved in the problem
solved, i.e. they are constrained or 1 if the given DOFs are free. The positive integer
value greater than 1 should be returned if the given DOFs with the same time function
value are coupled. The negative integer value should be returned if there are nonzero
prescribed displacements at given time. In such the case, the function value represents
the the negative value of index k of prescribed values valk defined in section loadcase.

The format of the section is given as follows:

time_functions
num_gfunct ngf
{gf_id idi gfreci}×ngf

where the parameters have the following meaning:

ngf - the total number of time functions defined (%ld).

idi - identifier of i-th time function (%ld).

gfrec - time function record.

Generally, the time function record gfrec should be in format of general function record
but in this case only itab type of general function is accepted which is represented by a
table containing times and corresponding integer values returned by time function. The
format of gfrec follows:

funct_type itab
nitab_items nit
{ti vali}×nit

where the parameters have the following meaning:

nit - the number of intervals on which the time function will be defined (%ld).

ti - initial time of i-th interval (%le).

vali - the value returned by function for time ranging in the i-th interval (%ld).

Should be noted that i-th time interval is defined as half-closed [ti,ti+1) and on that
interval the function returns vali. If time argument is less than t1 then val1 is being
returned. If time argument is greater than tnit then valnit is being returned.

The following example defines two time functions for elements and two for nodes.
The first function switches on elements at interval ranging from 5600 s to the end of

90 CHAPTER 9. FORMAT OF A PREPROCESSOR INPUT FILE

computation and the second function switches on elements at interval ranging from 24000 s
to 51000 s. The third function defines fixed nodal DOF for whole time of computation
and the fourth function defines nodal DOF coupling group 2 at interval ranging from
10000 s to 30000 s and in the remaining time, the nodal DOF is fixed.

begsec_gfunct
time_functions
num_gfunct 4
gf_id 1 funct_type itab
nitab_items 2
0.0 0
5.6e3 1
gf_id 2 funct_type itab
nitab_items 3
0.0 0
2.4e4 1
5.1e4 0
gf_id 3 funct_type itab
nitab_items 1
0.0 0
gf_id 4 funct_type itab
nitab_items 3
0.0 0
1.0e4 2
3.0e4 0
endsec_gfunct

Part II

MECHPREP - Examples

91

93

This part contains several examples of mechanical problems which can be defined with
help of MECHPREP. In chapters 10 and 11, mechanical problem of cantilever beam is
solved in 2D and 3D where various load types are defined. In chapters 12 and 13, two
nonlinear statics problems in 2D are solved with help of the Newton-Raphson method
and arclength method. Examples described in this chapter can be found on [12] where
the user can download one zip file with corresponding MECHPREP files. The listings of
files are also involved in the text of individual sections but they are divided into several
parts and inset with comments and description of these parts.

94

Chapter 10

Linear statics problem in 2D

This section describes how to prepare MEFEL input file with help of MECHPREP for
the linear statics problem of cantilever beam modelled in 2D. The beam is subjected to
four load cases:

1. Dead weight load f1=24 kN/m3 which is represented by volume load on elements
calculated approximately from the given material density ρ=2400 kg/m3.

2. Top edge is loaded by continuous load with linear distribution with zero value on
the free end of beam and maximum value f2=30 kN/m at fixed end of the beam.

3. Vertical force F3=15 kN applied at the free end of the beam.
4. Beam is subjected to the uniform temperature change ∆T4=20 ◦C.

The cantilever beam has length 5 m and rectangular cross section 0.3×0.5 m. Material of
the beam is assumed to be elastic isotropic one where Young’s modulus E=25 GPa, Pois-
son’s ratio ν=0.25 and the thermal expansion coefficient α=12×10−6 K−1. The settings
of the example is depicted in Fig. 10.1.

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

F3=15 kN
f2=30 kN/m

5 m

0
.5

 m

0.3 m

y

x

1f
T4

3

=20 Co∆

=24 kN/m

Figure 10.1: Settings of cantilever beam example in 2D

95

96 CHAPTER 10. LINEAR STATICS PROBLEM IN 2D

10.1 Topology file
In the first step, a mesh file must be created and corresponding property identifiers must be
defined in order to MECHPREP can work. The mesh file can be created either manually
or it can be generated simply with help of rectangular mesh generator gensifquad (see
section 4.2.6). Run the following command:

gensifquad cantilever2d.top 5.0 0.5 50 15 1

and if everything run well the mesh file cantilever2d.top will be created including all
property identifiers. The mesh file can be displayed with help of MeshEditor tool and
property identifiers of edges and vertices can be visualized by various colors similarly as
in Fig 10.2.

Figure 10.2: Cantilever beam - generated mesh with visualized property identifiers

10.2 Preprocessor file - section files
Having the mesh file with property identifiers created, a preprocessor file should be pre-
pared. Preprocessor file is composed from the several sections that may be organized
arbitrarily in the file but they will be introduced in the order of the real processing in
MECHPREP. Each preprocessor file must contain section files which in this case has
the following contents:

1 begsec_files
2 cantilever2d.top
3 mesh_format sifel
4 edge_numbering 1
5 endsec_files

where the topology input file is being specified to be cantilever2d.top in line 2 then
the format of the topology file is given in line 3 and finally, the it is given that edge and
surface property identifiers are given also on elements - line 4. The command in line 4 is in
accordance with setup of mesh generator gensifquad (the last argument on the command
line) which cause the write of edge property numbers on elements to the topology file.
See section 4.2 for more details about the SIFEL mesh format.

It is supposed that materials and cross sections will be given in the preprocessor file
directly and thus no file names of material and cross section files are given. More details
about this preprocessor section can be found in 9.1.

10.3. PREPROCESSOR FILE - SECTION PROBDESC 97

10.3 Preprocessor file - section probdesc

This section is used by MEFEL to identify the type of problem solved, the type of equation
system solver and some other calculation setup. Some details about the particular cases
of probdesc setup can be found in [10]. In this case, the following setup is chosen:

8 begsec_probdesc
9 Cantilever beam 5x0.5 m loaded by the various load

10 mespr 1
11 problemtype linear_statics
12

13 straincomp 1
14 strainpos 1
15 strainaver 0
16 stresscomp 1
17 stresspos 1
18 stressaver 0
19 othercomp 0
20 reactcomp 1
21

22 adaptivity 0
23 stochasticcalc 0
24 homogenization 0
25 noderenumber 0
26

27 stiffmatstor skyline_matrix
28 typelinsol ldl
29 endsec_probdesc

In this section, the title of the problem solved is given in line 9, detailed message printing
is switched on (line 10) and linear statics problem type is specified to be solved in line 11.

In the sequential two blocks of commands, the strain calculation is on (line 13) and
strains will be calculated at integration points (line 14) and therefore no averaging of
strains is necessary (line 15). The same setup for stress computation is defined in lines
16–18. The problem is linear statics and in such case, the constitutive model is assumed
to be elasticity where no internal variables are defined and thus the other values will not
be calculated (line 19). Finally, the calculation of reactions is required in line 20. All
additional advanced techniques such as mesh adaptivity (line 22), stochastic calculations
(line 23), homogenization techniques (line 24) and node renumbering (line 25) are not
taken into account in the computation.

The last block of commands defines the type of solver of system of linear algebraic
equations. The line 27 defines that the skyline storage of system matrix will be used and
system will be solved with help of LDL decomposition method (line 28) which can be
applied in this case because the system matrix is symmetric and positive definite.

98 CHAPTER 10. LINEAR STATICS PROBLEM IN 2D

10.4 Preprocessor file - section loadcase

This section defines the number of load cases and some details about the content of
particular load cases. According to the problem setting, this section looks as follows:

32 begsec_loadcase
33 num_loadcases 4
34 #temperature load type for the first load case
35 lc_id 1
36 temp_load_type 0
37 #temperature load type for the second load case
38 lc_id 2
39 temp_load_type 0
40 #temperature load type for the third load case
41 lc_id 3
42 temp_load_type 0
43 #temperature load type for the fourth load case
44 lc_id 4
45 temp_load_type 1
46 endsec_loadcase

where four individual load cases are established in line 33, and for each load case, the
type of temperature load load is defined with help of command pairs tempr_type_lc_id
and temp_load_type. The first three load cases are composed just from force load, i.e.
no temperature load is defined by in lines 36, 39 and 42 while the last one contains this
load and thus temp_load_type is set to 1 in line 45.

10.5 Preprocessor file - section mater

This section contains the list of material models and their parameters. In this example,
the distribution of material properties is assumed to be homogeneous and linear elastic
and therefore only one linear isotropic elastic material have to be defined. The section
has the following content:

49 begsec_mater
50 num_mat_types 2
51 mattype elisomat num_inst 1
52 1 25.0e9 0.25
53 mattype therisodilat num_inst 1
54 1 1.2e-5
55 endsec_mater

In the section, two material types (elastic isotropic and thermal dilatancy) are being de-
fined (line 50) and sequential lines contains the specification of these material types. The
line 51 defines that the material type is elastic isotropic with one instance of material pa-
rameter set. Line 52 defines the first instance of material parameter set of elastic isotropic

10.6. PREPROCESSOR FILE - SECTION CRSEC 99

material which requires two parameters - Young’s modulus (25 GPa) and Poisson’s ratio
(0.25). The second material model is represented by isotropic thermal dilatancy with one
instance of parameter set (line 53). The parameter set is defined on the last line where
the thermal expansion coefficient α is defined to be 12·10−6 K−1.

10.6 Preprocessor file - section crsec
This section contains the list of cross sections and their parameters. In this example,
the cross section is given by the thickness 0.3 m which is uniform across the beam. The
section has the following content:

58 begsec_crsec
59 num_crsec_types 1
60 crstype csplanestr num_inst 1
61 1 0.3
62 endsec_crsec

In the section, only one cross section type (for plane elements) is being defined (line 59)
and sequential lines contains the specification of this one cross section type. The line 60
defines that the cross section type is for plane stress/strain elements (csplanestr) with
one instance of cross section parameter set. The last line 61 defines the first instance
of cross section parameter set for plane elements which requires just one parameters -
thickness (0.3 m).

10.7 Preprocessor file - number of nodal DOFs
The section nodvolpr defines common properties for group of nodes involved in the volume
with specific property id. The most common use of this section is for the specification
of number of DOFs at nodes. In this example, two DOFs are defined in all nodes of the
mesh. The section content is listed below:

65 begsec_nodvolpr
66 # number of degrees of freedom for all nodes
67 ndofn 2 propid 1

69 endsec_nodvolpr

where the command ndofn in line 67 defines two DOFs at all nodes with region/volume
property id 1, i.e. on the whole domain solved.

10.8 Preprocessor file - Dirichlet’s boundary condi-
tions

Dirichlet’s boundary condition prescribes values of primary unknowns defined in the prob-
lem solved and they can be defined with help of bocon command. In this example, this

100 CHAPTER 10. LINEAR STATICS PROBLEM IN 2D

type of boundary conditions is represented by fixed nodes on the left edge of the cantilever
beam. This edge is marked by the property id 2 and therefore the bocon command should
be placed in the nodedgpr section whose content is listed below

72 begsec_nodedgpr
73 # fixation of nodes on the left beam edge
74 bocon propid 2 num_bc 2 dir 1 cond 0.0 dir 2 cond 0.0
75 endsec_nodedgpr

where displacements are prescribed to be zero values for all DOFs (defined in the previous
section) of nodes on the edge with property id 2.

10.9 Preprocessor file - nodal forces

The nodal forces can be applied at selected nodes with help of command nod_load which
can be placed into arbitrary section relating with nodes. This example contains just
one force 15 kN applied in the top corner node at free end of the beam. According to
the setting, the force should be involved in the third load case. The mentioned node in
the corner of the beam has got assigned vertex property 1 and therefore the command
nod_load should be placed in the section nodvertpr whose content is listed below

78 begsec_nodvertpr
79 # nodal load by force 15 kN
80 nod_load propid 1 lc_id 3 load_comp 0.0 -15.0e3
81 endsec_nodvertpr

where line 80 represents the suitable record of the preprocessor command. Should be
noted that both components of the applied force must be given in this command, i.e.
horizontal component is zero while the vertical one is the 15 kN.

10.10 Preprocessor file - temperature load

The beam is also loaded by uniform change of temperature defined in the load case 4. The
temperature change is defined with help of nod_temper and it must given at all nodes
of the beam mesh which leads to placement of this command to the section nodvolpr
because all nodes has got assigned the same volume property id 1 in the generator.

65 begsec_nodvolpr

68 nod_temper propid 1 lc_id 4 temperature 20.0
69 endsec_nodvolpr

10.11. PREPROCESSOR FILE - ELEMENT TYPE, MATERIAL MODEL AND CROSS SECTION101

10.11 Preprocessor file - element type, material model
and cross section

The FE type, material model and cross section are essential properties of elements which
must be given in all 2D problems. In this example, all elements have the same FE type,
material model and thickness and therefore the most simple way how to assign them to all
elements is the use of corresponding commands in the element section elvolpr keeping
in mind that the volume property id 1 is the same for all elements. The element type
can be assigned by the command el_type while material model and cross section by the
commands el_mat and el_crsec respectively.

84 begsec_elvolpr
85 el_type propid 1 planeelementlq strastrestate planestress
86 el_mat propid 1 num_mat 2 type elisomat type _id 1
87 type therisodilat type _id 1
88 el_crsec propid 1 type csplanestr type _id 1

91 endsec_elvolpr

where line 85 assigns plane quadrilateral element with linear shape functions and defines
that plane-stress state will be assumed on these elements. The same material model
of thermo-elasticity is assumed on all elements and assigned by the command in line
86. The model is composed from two independent parts (kewyword num_mat) one for
elasticity (elisomat - line 86) and one for thermal dilatancy (therisodilat - line 87).
Both models refers to the first instance of material parameter set with help of keywords
type_id.

Definition of thickness in line 88 by the command el_crsec has the syntax similar
to el_mat command where the type of cross section must be given with help of keyword
type and then the the first instance of cross section parameter set is referenced with help
of keyword type_id.

10.12 Preprocessor file - element load
In the first load case, the beam is loaded by dead weight load which must be applied to
all elements in the mesh. It can be achieved by the command volume_load placed in the
section elvolpr because all elements has got assigned the same volume property id 1.
The syntax of the command is listed below

84 begsec_elvolpr

89 volume_load propid 1 lc_id 1 ncomp 2
90 func_type stat coord_sys 1 load_comp 0.0 -24.0e3
91 endsec_elvolpr

where the line 89 defines volume load on all elements with volume property id 1, the load
is applied in the load case 1 and two components of load will be given latter in line 90.

102 CHAPTER 10. LINEAR STATICS PROBLEM IN 2D

The command continues in line 90 where the load is defined to be constant (keyword
func_type), applied in the global coordinate system (keyword coord_sys) and finally,
two load components are given - the dead weight load is applied in the vertical direction.

Another type of load is represented by linear continuous load applied on the top edge
of the beam in the second load case. It can be defined with help of command edge_load
placed in the section eledgpr because the load should be applied on elements adjacent
to the edge with property id 1 assigned by the generator. The content of the section is
listed below

94 begsec_eledgpr
95 edge_load propid 1 lc_id 2 ncomp 2 func_type pars
96 coord_sys 1 load_comp 0.0 -30.0e3+6.0e3*x
97 endsec_eledgpr

where line 95 defines load on element edges that are adjacent to edge with property id
1 in load case 2. With respect to the element type and number of DOFs at nodes, two
component of load must be given (keyword ncomp). The load has a linear course along the
edge and therefore it must be defined with help of a parsed expression string where the
appropriate function can be defined easily (keyword func_type). The command continues
in line 96 which defines load components to be in global coordinate system (keyword
coord_sys) and then particular load components are given after keyword load_comp.
The horizontal component is zero while the vertical component is given by linear function
f2(x) = −30 ·103 +6 ·103x. Both components are assumed to be parsed string expressions
but only the second is dependent on the spatial coordinate. Should be noted that parsed
string expressions must not contain any whitespace character otherwise they would be
broken into independent parts in places of whitespace characters and in better case, an
error would be signalized or in the worse case, different expression would be evaluated
tacitly.

10.13 Setup of the result output
The last section that has to be specified is represented by section outdrv where the
output of results from MEFEL should be configured. More details about this section can
be found in [10]. The section is composed from three parts dealing with different forms of
result output. The first part controls output to the file in the text form has the following
content:

100 begsec_outdrv
101 # Description of output to the text file
102 # --------------------------------------
103 textout 1
104 # text output file name
105 cant2d.out
106 # text output at nodes
107 sel_nodstep sel_all
108 sel_nodlc sel_all

10.13. SETUP OF THE RESULT OUTPUT 103

109 displ_nodes sel_all displ_comp sel_all
110 strain_nodes sel_no
111 stress_nodes sel_no
112 other_nodes sel_no
113 reactions 1
114 # text output at elements
115 sel_elemstep sel_all
116 sel_elemlc sel_all
117 strain_elems sel_all elemstrain_comp sel_all

elemstra_transfid 0
118 stress_elems sel_all elemstress_comp sel_all

elemstre_transfid 0
119 other_elems sel_no
120 # text output at user defined points
121 sel_pointstep sel_no

146 endsec_outdrv

In this example, the text output of results is required (line 103) to the file cant2d.out (line
105). After that the time/load steps and load case numbers must be given at which the
nodal results will be printed out. There are no time/load steps in linear statics problems
(everything is calculated at once) and therefore if the user needs to print some nodal
quantities then simply defines for keyword nod_step the value sel_all which results in
selection of all time/load steps (line 107). Results from all load cases are required to
print out in line 108 using the same value sel_all for the keyword sel_nodlc. Having
the time/load steps and load cases specified, the print configuration of particular nodal
quantities follows where for each quantity, the selection of nodes, where the given quantity
will be printed out, is followed by the selection of the given quantity components. Thus
line 109 specifies that for all nodes, all displacement components will be printed out while
the line 110 selects no nodes (keyword value sel_no) for nodal strains, i.e. no nodal
strains will be printed. The same option is specified for nodal stresses (line 111), and
nodal other values (line 112) and thus they do not be printed too. Configuration in line
113 enables the reaction output.

Configuration of nodal values output is followed by the similar configuration of ele-
ment values output performed in all integration points on the selected elements. It starts
with selection of time/load steps (line 115) and load cases (line 116). Using the same key-
word values as for nodes results to the selection of all time/load steps and all load cases.
Line 117 specifies that for all elements (keyword strain_elems), the output of all strain
components (keyword elemstrain_comp) will be performed with no transformation of
components (keyword elemstra_transfid). Line 118 specifies that for all elements (key-
word stress_elems), the output of all stress components (keyword elemstress_comp)
will be performed with no transformation of components (keyword elemstre_transfid).
Line 119 defines that no other values will be printed out. The last item of text output
configuration is given in line 121 where output values at user defined points on elements
can be specified but it has not been not fully implemented so no time steps are selected

104 CHAPTER 10. LINEAR STATICS PROBLEM IN 2D

in this case.
Should be noted that the problem is linear statics and therefore other values must not

be required to be printed out because the material model is linear elastic and it defines
zero number of internal variables which indicates that other arrays on integration points
are not allocated and required output of these values would lead to segmentation fault
errors.

The second part controls output in the various formats used in graphic postprocessor
tools. In this example, the GiD format will be required which allows for the most advanced
configuration of the output. The part configuring this output is listed below:

100 begsec_outdrv

123 # Description of output to the graphics file in GiD format
124 #---
125 outgr_format grfmt_gid
126 # graphics output file name without extension
127 cant2d
128 # setup for nodal values
129 sel_nodstep sel_all
130 sel_nodlc sel_all
131 displ_nodes sel_all displ_comp sel_all
132 strain_nodes sel_no
133 stress_nodes sel_no
134 other_nodes sel_no
135 force_nodes sel_all force_comp sel_all
136 # setup for element values
137 sel_elemstep sel_all
138 sel_elemlc sel_all
139 strain_elems sel_all elemstrain_comp sel_mtx

elemstra_transfid 0
140 stress_elems sel_all elemstress_comp sel_mtx

elemstre_transfid 0
141 other_elems sel_no

146 endsec_outdrv

Line 125 defines the format used for the result output with help of keyword outgr_format
whose value is set to gid. This results into one GiD file with all result quantities
(cant2d.res) that will be specified later in this part and another file with the mesh
description (cant2d.msh). The common GiD file name is given in line 126 to which the
corresponding suffix will be added automatically. Lines 128–141 contains the configu-
ration of the output which uses the same keywords as in the previous part with only
several differences described in the following text. The output of reactions is generally in-
volved in the configuration of nodal forces output (line 135) where for all nodes (keyword
force_nodes), all force components (keyword force_comp) will be printed out which re-
sults in output of nodal load components as well as reactions. There is also used different

10.14. PREPROCESSOR FILE 105

selection of strain and stress components on elements where sel_mtx optional value is
used (lines 139, 140). This selection type provides the output of strains and stresses in
the tensorial form (all their components) which allows for better postprocessing in the
GiD (calculation of principal values and vectors).

The last part controls output of selected quantities in particular time/load steps which
can be used for creation of diagrams which cannot be used in the case of linear statics
problems and therefore the end of outdrv section has the following content:

100 begsec_outdrv

143 # Text output of diagrams
144 # -----------------------
145 numdiag 0
146 endsec_outdrv

where the line 145 defines that the number of diagram files created is zero.

10.14 Preprocessor file
This section contains listing of the whole preprocessor file.
begsec_files
cantilever2d.top
mesh_format sifel
edge_numbering 1
endsec_files

begsec_probdesc
Cantilever beam 5x0.5 m loaded by the various load
mespr 1
problemtype linear_statics

straincomp 1
strainpos 1
strainaver 0
stresscomp 1
stresspos 1
stressaver 0
othercomp 0
reactcomp 1

adaptivity 0
stochasticcalc 0
homogenization 0
noderenumber 0

106 CHAPTER 10. LINEAR STATICS PROBLEM IN 2D

stiffmatstor skyline_matrix
typelinsol ldl
endsec_probdesc

begsec_loadcase
num_loadcases 4
#temperature load type for the first load case
lc_id 1
temp_load_type 0
#temperature load type for the second load case
lc_id 2
temp_load_type 0
#temperature load type for the third load case
lc_id 3
temp_load_type 0
#temperature load type for the fourth load case
lc_id 4
temp_load_type 1
endsec_loadcase

begsec_mater
num_mat_types 2
mattype elisomat num_inst 1
1 25.0e9 0.25
mattype therisodilat num_inst 1
1 1.2e-5
endsec_mater

begsec_crsec
num_crsec_types 1
crstype csplanestr num_inst 1
1 0.3
endsec_crsec

begsec_nodvolpr
number of degrees of freedom for all nodes
ndofn 2 propid 1
nod_temper propid 1 lc_id 4 temperature 20.0
endsec_nodvolpr

10.14. PREPROCESSOR FILE 107

begsec_nodedgpr
fixation of nodes on the left beam edge
bocon propid 2 num_bc 2 dir 1 cond 0.0 dir 2 cond 0.0
endsec_nodedgpr

begsec_nodvertpr
nodal load by force 15 kN
nod_load propid 1 lc_id 3 load_comp 0.0 -15.0e3
endsec_nodvertpr

begsec_elvolpr
el_type propid 1 planeelementlq strastrestate planestress
el_mat propid 1 num_mat 2 type elisomat type_id 1

type therisodilat type_id 1
el_crsec propid 1 type csplanestr type_id 1
volume_load propid 1 lc_id 1 ncomp 2

func_type stat coord_sys 1 load_comp 0.0 -24.0e3
endsec_elvolpr

begsec_eledgpr
edge_load propid 1 lc_id 2 ncomp 2 func_type pars

coord_sys 1 load_comp 0.0 -30.0e3+6.0e3*x
endsec_eledgpr

begsec_outdrv
Description of output to the text file

textout 1
text output file name
cant2d.out
text output at nodes
sel_nodstep sel_all
sel_nodlc sel_all
displ_nodes sel_all displ_comp sel_all
strain_nodes sel_no
stress_nodes sel_no
other_nodes sel_no
reactions 1
text output at elements
sel_elemstep sel_all

108 CHAPTER 10. LINEAR STATICS PROBLEM IN 2D

sel_elemlc sel_all
strain_elems sel_all elemstrain_comp sel_all

elemstra_transfid 0
stress_elems sel_all elemstress_comp sel_all

elemstre_transfid 0
other_elems sel_no
text output at user defined points
sel_pointstep sel_no

Description of output to the graphics file in GiD format
#---
outgr_format grfmt_gid
graphics output file name without extension
cant2d
setup for nodal values
sel_nodstep sel_all
sel_nodlc sel_all
displ_nodes sel_all displ_comp sel_all
strain_nodes sel_no
stress_nodes sel_no
other_nodes sel_no
force_nodes sel_all force_comp sel_all
setup for element values
sel_elemstep sel_all
sel_elemlc sel_all
strain_elems sel_all elemstrain_comp sel_mtx

elemstra_transfid 0
stress_elems sel_all elemstress_comp sel_mtx

elemstre_transfid 0
other_elems sel_no

Text output of diagrams

numdiag 0
endsec_outdrv

Chapter 11

Linear statics problem in 3D

This section describes how to prepare MEFEL input file with help of MECHPREP for
the linear statics problem of cantilever beam modelled in 3D. The beam is subjected to
four load cases:

1. Dead weight load f1=24 kN/m3 which is represented by volume load on elements
calculated approximately from the given material density ρ=2400 kg/m3.

2. Top surface is loaded by continuous load with linear distribution along the beam
axis and uniform distribution in the y direction where zero value is on the free end
of beam and maximum value f2=30 kN/m at fixed end of the beam.

3. Vertical displacement w3=8 mm is prescribed at the free end of the beam.
4. Beam is subjected to the uniform temperature change ∆T4=20 ◦C.

The cantilever beam has length 5 m and rectangular cross section 0.3×0.5 m. Material of
the beam is assumed to be elastic isotropic one where Young’s modulus E=25 GPa, Pois-
son’s ratio ν=0.25 and the thermal expansion coefficient α=12×10−6 K−1. The settings
of the example is depicted in Fig. 11.1.

��������������������������������
��������������������������������
��������������������������������
��������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

��
��
��
��
��
��
��

��
��
��
��
��
��
��

f2=30 kN/m

0
.5

 m

5 m

z

x
0.3 m

w
3

=
 8

 m
m

y 1f
T4

3

=20 Co∆

=24 kN/m

Figure 11.1: Settings of cantilever beam example in 2D

109

110 CHAPTER 11. LINEAR STATICS PROBLEM IN 3D

11.1 Topology file
In the first step, a mesh file must be created and corresponding property identifiers must be
defined in order to MECHPREP can work. The mesh file can be created either manually
or it can be generated simply with help of prism mesh generator gensifhex which can be
found in folder SIFEL/PREP/SEQMESHGEN. Run the following command:

gensifhex cantilever3d.top 5.0 0.3 0.5 50 10 10 1

and if everything run well the mesh file cantilever3d.top will be created including
all property identifiers. The property identifiers are generated according to Fig. 11.2
where Vi, Ei, Si and Ri denotes property identifier i of vertex, edge, surface and region,
respectively. The mesh file can be displayed with help of MeshEditor tool and property

E1z

V3 V4

V7 V8
x

E3

E9

E11

y

V2 V1

V6 V5

S1S3

S5

S6

S4

R1

E6 E5

E8E7

E4

E2

E12
E10

S2

Figure 11.2: Property identifiers generated by gensifhex on a prism domain

identifiers of edges and vertices can be visualized by various colors similarly as in Fig 11.3.

11.2 Preprocessor file - section files
Having the mesh file with property identifiers created, a preprocessor file should be pre-
pared. Preprocessor file is composed from the several sections that may be organized
arbitrarily in the file but they will be introduced in the order of the real processing in
MECHPREP. Each preprocessor file must contain section files which in this case has
the following contents:

1 begsec_files
2 cantilever3d.top
3 mesh_format sifel
4 edge_numbering 1
5 endsec_files

where the topology input file is being specified to be cantilever3d.top in line 2 then the
format of the topology file is given in line 3 and finally, it is given that edge and surface

11.3. PREPROCESSOR FILE - SECTION PROBDESC 111

Figure 11.3: Cantilever beam - generated mesh with visualized property identifiers

property identifiers are given also on elements - line 4. The command in line 4 is in
accordance with setup of mesh generator gensifhex (the last argument on the command
line) which cause the write of edge property numbers on elements to the topology file.
See section 4.2 for more details about the SIFEL mesh format.

It is supposed that materials and cross sections will be given in the preprocessor file
directly and thus no file names of material and cross section files are given. More details
about this preprocessor section can be found in 9.1.

11.3 Preprocessor file - section probdesc

This section is used by MEFEL to identify the type of problem solved, the type of equation
system solver and some other calculation setup. Some details about the particular cases
of probdesc setup can be found in [10]. In this case, the following setup is chosen:

8 begsec_probdesc
9 Cantilever beam 5x0.3x0.5 m loaded by the various load

10 mespr 1
11 problemtype linear_statics
12

13 straincomp 1
14 strainpos 1
15 strainaver 0
16 stresscomp 1
17 stresspos 1
18 stressaver 0
19 othercomp 0
20 reactcomp 1

112 CHAPTER 11. LINEAR STATICS PROBLEM IN 3D

21

22 adaptivity 0
23 stochasticcalc 0
24 homogenization 0
25 noderenumber 0
26

27 stiffmatstor skyline_matrix
28 typelinsol ldl
29 endsec_probdesc

In this section, the title of the problem solved is given in line 9, detailed message printing
is switched on (line 10) and linear statics problem type is specified to be solved in line 11.

In the sequential two blocks of commands, the strain calculation is on (line 13) and
strains will be calculated at integration points (line 14) and therefore no averaging of
strains is necessary (line 15). The same setup for stress computation is defined in lines
16–18. The problem is linear statics and in such case, the constitutive model is assumed
to be elasticity where no internal variables are defined and thus the other values will not
be calculated (line 19). Finally, the calculation of reactions is required in line 20. All
additional advanced techniques such as mesh adaptivity (line 22), stochastic calculations
(line 23), homogenization techniques (line 24) and node renumbering (line 25) are not
taken into account in the computation.

The last block of commands defines the type of solver of system of linear algebraic
equations. The line 27 defines that the skyline storage of system matrix will be used and
system will be solved with help of LDL decomposition method (line 28) which can be
applied in this case because the system matrix is symmetric and positive definitive.

11.4 Preprocessor file - section loadcase

This section defines the number of load cases and some details about the content of
particular load cases. According to the problem setting, this section looks as follows:

32 begsec_loadcase
33 num_loadcases 4
34 #temperature load type for the first load case
35 lc_id 1
36 temp_load_type 0
37 #temperature load type for the second load case
38 lc_id 2
39 temp_load_type 0
40 #temperature load type for the third load case
41 lc_id 3
42 temp_load_type 0
43 #temperature load type for the fourth load case
44 lc_id 4
45 temp_load_type 1

11.5. PREPROCESSOR FILE - SECTION MATER 113

46 endsec_loadcase

where four individual load cases are established in line 33, and for each load case, the
type of temperature load load is defined with help of command pairs tempr_type_lc_id
and temp_load_type. The first three load cases are composed just from force load or
prescribed displacements, i.e. no temperature load is defined by in lines 36, 39 and 42
while the last one contains this load and thus temp_load_type is set to 1 in line 45.

11.5 Preprocessor file - section mater

This section contains the list of material models and their parameters. In this example,
the distribution of material properties is assumed to be homogeneous and linear elastic
and therefore only one linear isotropic elastic material have to be defined. The section
has the following content:

49 begsec_mater
50 num_mat_types 2
51 mattype elisomat num_inst 1
52 1 25.0e9 0.25
53 mattype therisodilat num_inst 1
54 1 1.2e-5
55 endsec_mater

In the section, two material types (elastic isotropic and thermal dilatancy) are being de-
fined (line 50) and sequential lines contains the specification of these material types. The
line 51 defines that the material type is elastic isotropic with one instance of material pa-
rameter set. Line 52 defines the first instance of material parameter set of elastic isotropic
material which requires two parameters - Young’s modulus (25 GPa) and Poisson’s ratio
(0.25). The second material model is represented by isotropic thermal dilatancy with one
instance of parameter set (line 53). The parameter set is defined on the last line where
the thermal expansion coefficient α is defined to be 12·10−6 K−1.

11.6 Preprocessor file - section crsec

This section contains the list of cross sections and their parameters. In this example, no
cross sections are defined because the problem is assumed in 3D and all dimensions of
the domain solved are given in the mesh. In such a case, the section has the following
content:

58 begsec_crsec
59 num_crsec_types 0
60 endsec_crsec

In the section, no cross section type (for plane elements) is being defined (line 59) and
therefore no list of parameters is further specified.

114 CHAPTER 11. LINEAR STATICS PROBLEM IN 3D

11.7 Preprocessor file - number of nodal DOFs
The section nodvolpr defines common properties for group of nodes involved in the volume
with specific property id. The most common use of this section is for the specification
of number of DOFs at nodes. In this example, two DOFs are defined in all nodes of the
mesh. The section content is listed below:

63 begsec_nodvolpr
64 # number of degrees of freedom for all nodes
65 ndofn 3 propid 1

67 endsec_nodvolpr

where the command ndofn in line 65 defines two DOFs at all nodes with region/volume
property id 1, i.e. on the whole domain solved.

11.8 Preprocessor file - Dirichlet’s boundary condi-
tions

Dirichlet’s boundary condition prescribes values of primary unknowns defined in the prob-
lem solved and they can be defined with help of bocon command. In this example,
this type of boundary conditions is represented by fixed nodes on the left surface of the
cantilever beam. This surface is marked by the property id 3 and therefore the bocon
command should be placed in the nodsurfpr section whose content is listed below

70 begsec_nodsurfpr
71 # fixation of nodes on the left surface of beam
72 bocon propid 3 num_bc 3 dir 1 cond 0.0
73 dir 2 cond 0.0
74 dir 3 cond 0.0
75 endsec_nodsurfpr

where displacements are prescribed to be zero values for all DOFs (defined in the previous
section) of nodes on the surface with property id 3.

11.9 Preprocessor file - prescribed displacement
The prescribed displacements at selected nodes can be applied with help of command
bocon which can be placed into arbitrary section relating with nodes. This example
contains just vertical displacement 8 mm applied on the top left edge nodes at free end
of the beam. According to the setting, this load type should be involved in the third load
case. The mentioned nodes on edge has got assigned edge property 4 and therefore the
command bocon should be placed in the section nodedgpr whose content is listed below

78 begsec_nodedgpr
79 # prescribed displacements at nodes on the top left edge

11.10. PREPROCESSOR FILE - TEMPERATURE LOAD 115

80 bocon propid 4 num_bc 1 dir 3 cond -8.0e-3 lc_id 3
81 endsec_nodedgpr

where line 80 represents the suitable record of the preprocessor command.

11.10 Preprocessor file - temperature load
The beam is also loaded by uniform change of temperature defined in the load case 4. The
temperature change is defined with help of nod_temper and it must given at all nodes
of the beam mesh which leads to placement of this command to the section nodvolpr
because all nodes has got assigned the same volume property id 1 in the generator.

65 begsec_nodvolpr

66 nod_temper propid 1 lc_id 4 temperature 20.0
67 endsec_nodvolpr

11.11 Preprocessor file - element type and material
model

The FE type and material model are essential properties of elements which must be given
in all 3D problems. In this example, all elements have the same FE type and material
model and therefore the most simple way how to assign them to all elements is the use
of corresponding commands in the element section elvolpr keeping in mind that the
volume property id 1 is the same for all elements. The element type can be assigned by
the command el_type while material model by the command el_mat.

84 begsec_elvolpr
85 el_type propid 1 linearhex
86 el_mat propid 1 num_mat 2 type elisomat type _id 1
87 type therisodilat type _id 1

91 endsec_elvolpr

where line 85 assigns brick element with linear shape functions. The same material model
of thermo-elasticity is assumed on all elements and it is assigned by the command in lines
86 and 87. The model is composed from two independent parts (keyword num_mat) one
for elasticity (elisomat - line 86) and one for thermal dilatancy (therisodilat - line 87).
Both models refers to the first instance of material parameter set with help of keywords
type_id.

11.12 Preprocessor file - element load
In the first load case, the beam is loaded by dead weight load which must be applied to
all elements in the mesh. It can be achieved by the command volume_load placed in the

116 CHAPTER 11. LINEAR STATICS PROBLEM IN 3D

section elvolpr because all elements has got assigned the same volume property id 1.
The syntax of the command is listed below

84 begsec_elvolpr

88 volume_load propid 1 lc_id 1 ncomp 3
89 func_type stat coord_sys 1
90 load_comp 0.0 0.0 -24.0e3
91 endsec_elvolpr

where the line 88 defines volume load on all elements with volume property id 1, the load
is applied in the load case 1 and three components of load will be given latter in line
90. The command continues in line 89 where the load is defined to be constant (keyword
func_type), applied in the global coordinate system (keyword coord_sys) and finally,
three load components are given in line 90 - the dead weight load is applied in the vertical
direction.

Another type of load is represented by linear continuous load applied on the top surface
of the beam in the second load case. It can be defined with help of command surf_load
placed in the section elsurfpr because the load should be applied on elements adjacent
to the surface with property id 5 assigned by the generator. The content of the section is
listed below

94 begsec_elsurfpr
95 surf_load propid 5 lc_id 2 ncomp 3 func_type pars
96 coord_sys 1 load_comp 0.0 0.0 -30.0e3+6.0e3*x
97 endsec_elsurfpr

where line 95 defines load on element surfaces that are adjacent to surface with property
id 5 in load case 2. With respect to the element type and number of DOFs at nodes, three
components of load must be given (keyword ncomp). The load has a linear course along the
x axis and therefore it must be defined with help of a parsed expression string where the
appropriate function can be defined easily (keyword func_type). The command continues
in line 96 which defines load components to be in global coordinate system (keyword
coord_sys) and then particular load components are given after keyword load_comp. The
horizontal components are zero while the vertical component is given by linear function
f2(x) = −30 ·103 +6 ·103x. Both components are assumed to be parsed string expressions
but only the third is dependent on the spatial coordinate. Should be noted that parsed
string expressions must not contain any whitespace character otherwise they would be
broken into independent parts in places of whitespace characters and in better case, an
error would be signalized or in the worse case, different expression would be evaluated
tacitly.

11.13 Setup of the result output
The last section that has to be specified is represented by section outdrv where the
output of results from MEFEL should be configured. More details about this section can

11.13. SETUP OF THE RESULT OUTPUT 117

be found in [10]. The section is composed from three parts dealing with different forms of
result output. The first part controls output to the file in the text form has the following
content:

100 begsec_outdrv
101 # Description of output to the text file
102 # --------------------------------------
103 textout 1
104 # text output file name
105 cant3d.out
106 # text output at nodes
107 sel_nodstep sel_all
108 sel_nodlc sel_all
109 displ_nodes sel_all displ_comp sel_all
110 strain_nodes sel_no
111 stress_nodes sel_no
112 other_nodes sel_no
113 reactions 1
114 # text output at elements
115 sel_elemstep sel_all
116 sel_elemlc sel_all
117 strain_elems sel_all elemstrain_comp sel_all

elemstra_transfid 0
118 stress_elems sel_all elemstress_comp sel_all

elemstre_transfid 0
119 other_elems sel_no
120 # text output at user defined points
121 sel_pointstep sel_no

146 endsec_outdrv

In this example, the text output of results is required (line 103) to the file cant3d.out (line
105). After that the time/load steps and load case numbers must be given at which the
nodal results will be printed out. There are no time/load steps in linear statics problems
(everything is calculated at once) and therefore if the user needs to print some nodal
quantities then simply defines for keyword nod_step the value sel_all which results in
selection of all time/load steps (line 107). Results from all load cases are required to
print out in line 108 using the same value sel_all for the keyword sel_nodlc. Having
the time/load steps and load cases specified, the print configuration of particular nodal
quantities follows where for each quantity, the selection of nodes, where the given quantity
will be printed out, is followed by the selection of the given quantity components. Thus
line 109 specifies that for all nodes, all displacement components will be printed out while
the line 110 selects no nodes (keyword value sel_no) for nodal strains, i.e. no nodal
strains will be printed. The same option is specified for nodal stresses (line 111), and
nodal other values (line 112) and thus they do not be printed too. Configuration in line
113 enables the reaction output.

118 CHAPTER 11. LINEAR STATICS PROBLEM IN 3D

Configuration of nodal values output is followed by the similar configuration of ele-
ment values output performed in all integration points on the selected elements. It starts
with selection of time/load steps (line 115) and load cases (line 116). Using the same key-
word values as for nodes results to the selection of all time/load steps and all load cases.
Line 117 specifies that for all elements (keyword strain_elems), the output of all strain
components (keyword elemstrain_comp) will be performed with no transformation of
components (keyword elemstra_transfid). Line 118 specifies that for all elements (key-
word stress_elems), the output of all stress components (keyword elemstress_comp)
will be performed with no transformation of components (keyword elemstre_transfid).
Line 119 defines that no other values will be printed out. The last item of text output
configuration is given in line 121 where output values at user defined points on elements
can be specified but it has not been not fully implemented so no time steps are selected
in this case.

Should be noted that the problem is linear statics and therefore other values must not
be required to be printed out because the material model is linear elastic and it defines
zero number of internal variables which indicates that other arrays on integration points
are not allocated and required output of these values would lead to segmentation fault
errors.

The second part controls output in the various formats used in graphic postprocessor
tools. In this example, the GiD format will be required which allows for the most advanced
configuration of the output. The part configuring this output is listed below:

100 begsec_outdrv

123 # Description of output to the graphics file in GiD format
124 #---
125 outgr_format grfmt_gid
126 # graphics output file name without extension
127 cant3d
128 # setup for nodal values
129 sel_nodstep sel_all
130 sel_nodlc sel_all
131 displ_nodes sel_all displ_comp sel_all
132 strain_nodes sel_no
133 stress_nodes sel_no
134 other_nodes sel_no
135 force_nodes sel_all force_comp sel_all
136 # setup for element values
137 sel_elemstep sel_all
138 sel_elemlc sel_all
139 strain_elems sel_all elemstrain_comp sel_all

elemstra_transfid 0
140 stress_elems sel_all elemstress_comp sel_all

elemstre_transfid 0
141 other_elems sel_no

11.14. PREPROCESSOR FILE 119

146 endsec_outdrv

Line 125 defines the format used for the result output with help of keyword outgr_format
whose value is set to gid. This results into one GiD file with all result quantities
(cant3d.res) that will be specified later in this part and another file with the mesh
description (cant3d.msh). The common GiD file name is given in line 126 to which the
corresponding suffix will be added automatically. Lines 128–141 contains the configu-
ration of the output which uses the same keywords as in the previous part with only
several differences described in the following text. The output of reactions is generally in-
volved in the configuration of nodal forces output (line 135) where for all nodes (keyword
force_nodes), all force components (keyword force_comp) will be printed out which
results in output of nodal load components as well as reactions.

There is also used different selection of strain and stress components on elements
from the one used in chapter 10 where sel_mtx optional value is used (lines 139, 140 in
cant2d.pr). In this example, the selection of strain and stress components is provided
by sel_all selection type which manages the output of strain and stress components as
independent scalar values.

The last part controls output of selected quantities in particular time/load steps which
can be used for creation of diagrams which cannot be used in the case of linear statics
problems and therefore the end of outdrv section has the following content:

100 begsec_outdrv

143 # Text output of diagrams
144 # -----------------------
145 numdiag 0
146 endsec_outdrv

where the line 145 defines that the number of diagram files created is zero.

11.14 Preprocessor file
This section contains listing of the whole preprocessor file.

begsec_files
cantilever3d.top
mesh_format sifel
edge_numbering 1
endsec_files

begsec_probdesc
Cantilever beam 5x0.3x0.5 m loaded by the various load
mespr 1
problemtype linear_statics

120 CHAPTER 11. LINEAR STATICS PROBLEM IN 3D

straincomp 1
strainpos 1
strainaver 0
stresscomp 1
stresspos 1
stressaver 0
othercomp 0
reactcomp 1

adaptivity 0
stochasticcalc 0
homogenization 0
noderenumber 0

stiffmatstor skyline_matrix
typelinsol ldl
endsec_probdesc

begsec_loadcase
num_loadcases 4
#temperature load type for the first load case
lc_id 1
temp_load_type 0
#temperature load type for the second load case
lc_id 2
temp_load_type 0
#temperature load type for the third load case
lc_id 3
temp_load_type 0
#temperature load type for the fourth load case
lc_id 4
temp_load_type 1
endsec_loadcase

begsec_mater
num_mat_types 2
mattype elisomat num_inst 1
1 25.0e9 0.25
mattype therisodilat num_inst 1
1 1.2e-5
endsec_mater

11.14. PREPROCESSOR FILE 121

begsec_crsec
num_crsec_types 0
endsec_crsec

begsec_nodvolpr
number of degrees of freedom for all nodes
ndofn 3 propid 1
nod_temper propid 1 lc_id 4 temperature 20.0
endsec_nodvolpr

begsec_nodsurfpr
fixation of nodes on the left surface of beam
bocon propid 3 num_bc 3 dir 1 cond 0.0

dir 2 cond 0.0
dir 3 cond 0.0

endsec_nodsurfpr

begsec_nodedgpr
prescribed displacements at nodes on the top left edge
bocon propid 4 num_bc 1 dir 3 cond -8.0e-3 lc_id 3
endsec_nodedgpr

begsec_elvolpr
el_type propid 1 linearhex
el_mat propid 1 num_mat 2 type elisomat type_id 1

type therisodilat type_id 1
volume_load propid 1 lc_id 1 ncomp 3

func_type stat coord_sys 1
load_comp 0.0 0.0 -24.0e3

endsec_elvolpr

begsec_elsurfpr
surf_load propid 5 lc_id 2 ncomp 3 func_type pars

coord_sys 1 load_comp 0.0 0.0 -30.0e3+6.0e3*x
endsec_elsurfpr

begsec_outdrv
Description of output to the text file

122 CHAPTER 11. LINEAR STATICS PROBLEM IN 3D

textout 1
text output file name
cant3d.out
text output at nodes
sel_nodstep sel_all
sel_nodlc sel_all
displ_nodes sel_all displ_comp sel_all
strain_nodes sel_no
stress_nodes sel_no
other_nodes sel_no
reactions 1
text output at elements
sel_elemstep sel_all
sel_elemlc sel_all
strain_elems sel_all elemstrain_comp sel_all

elemstra_transfid 0
stress_elems sel_all elemstress_comp sel_all

elemstre_transfid 0
other_elems sel_no
text output at user defined points
sel_pointstep sel_no

Description of output to the graphics file in GiD format
#---
outgr_format grfmt_gid
graphics output file name without extension
cant3d
setup for nodal values
sel_nodstep sel_all
sel_nodlc sel_all
displ_nodes sel_all displ_comp sel_all
strain_nodes sel_no
stress_nodes sel_no
other_nodes sel_no
force_nodes sel_all force_comp sel_all
setup for element values
sel_elemstep sel_all
sel_elemlc sel_all
strain_elems sel_all elemstrain_comp sel_all

elemstra_transfid 0
stress_elems sel_all elemstress_comp sel_all

elemstre_transfid 0
other_elems sel_no

11.14. PREPROCESSOR FILE 123

Text output of diagrams

numdiag 0
endsec_outdrv

124 CHAPTER 11. LINEAR STATICS PROBLEM IN 3D

Chapter 12

Nonlinear statics problem - perfect
plasticity

This section describes how to prepare MEFEL input file with help of MECHPREP for
the nonlinear statics problem of simply supported beam. The nonlinearity is induced by
the material model based on perfect plasticity with von Misses yield criterion. The beam
is subjected to two load cases:

1. Dead weight load fc=27 kN/m3 which is represented by volume load on elements
calculated approximately from the given material density ρ=2700 kg/m3. This load
is assumed to be a constant.

2. Additionally, the beam is subjected to vertical force Fp acting in the middle of top
surface of the beam. The force is applied on the beam with help of rigid plate of
40 mm width and the value of this force increases proportionally until the limit
bearing capacity of the beam is attained.

The beam has length 600 mm and rectangular cross section 150 mm×10 mm. Mate-
rial of the beam is assumed to be perfectly plastic and isotropic one where yield stress
fs=20 MPa, Young’s modulus E=20 GPa and Poisson’s ratio ν=0.35. The settings of the
example is depicted in Fig. 12.1.

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

Fp

1
5
0
 m

m

y

280 mm 40 mm

x

600 mm

10 m
m

cf
3=27 kN/m

Figure 12.1: Settings of beam with von Misses plasticity in 2D

125

126 CHAPTER 12. NONLINEAR STATICS PROBLEM - PERFECT PLASTICITY

12.1 Topology file
In the first step, a mesh file must be created and corresponding property identifiers must be
defined in order to MECHPREP can work. The mesh file can be created either manually
or it can be generated with help of T3D mesh generator. The input file (j2beam.t3d.in)
for T3D is listed below

1 # Mesh for simply supported beam , run command:
2 # /home/dr/Bin/T3d -p 264 -i j2beam.t3d.in -o j2beam.t3d -d

0.050 -X -$
3

4 # base vertices
5 vertex 1 xyz 0.000 0.000 0.0 property 5
6 vertex 2 xyz 0.000 0.075 0.0 property 2
7 vertex 3 xyz 0.200 0.075 0.0
8 vertex 4 xyz 0.280 0.075 0.0
9 vertex 5 xyz 0.300 0.075 0.0 property 6

10 vertex 6 xyz 0.320 0.075 0.0
11 vertex 7 xyz 0.400 0.075 0.0
12 vertex 8 xyz 0.600 0.075 0.0 property 1
13 vertex 9 xyz 0.600 0.000 0.0 property 7
14 vertex 10 xyz 0.600 -0.075 0.0 property 4
15 vertex 11 xyz 0.400 -0.075 0.0
16 vertex 12 xyz 0.300 -0.075 0.0 property 8
17 vertex 13 xyz 0.200 -0.075 0.0
18 vertex 14 xyz 0.000 -0.075 0.0 property 3
19

20 # edges
21 curve 1 vertex 1 2 property 2
22 curve 2 vertex 2 3 property 1
23 curve 3 vertex 3 4 factor 0.1 property 1
24 curve 4 vertex 4 5 factor 0.1 property 5
25 curve 5 vertex 5 12 factor 0.1
26 curve 6 vertex 12 13 factor 0.1 property 3
27 curve 7 vertex 13 14 property 3
28 curve 8 vertex 14 1 property 2
29 curve 9 vertex 5 6 factor 0.1 property 5
30 curve 10 vertex 6 7 factor 0.1 property 1
31 curve 11 vertex 7 8 property 1
32 curve 12 vertex 8 9 property 4
33 curve 13 vertex 9 10 property 4
34 curve 14 vertex 10 11 property 3
35 curve 15 vertex 11 12 factor 0.1 property 3
36

37 # beam
38 patch 1 normal 0 0 1 boundary curve -1 -2 -3 -4 -5 -6 -7 -8

12.2. PREPROCESSOR FILE - SECTION FILES 127

size def property 1
39 patch 2 normal 0 0 1 boundary curve -9 -10 -11 -12 -13 -14

-15 5 size def property 1

The mesh is generated by the running of the following command:

T3d -p 264 -i j2beam.t3d.in -o j2beam.t3d -d 50.0 -X -$

and if everything run well the mesh file j2beam.t3d will be created including all property
identifiers. The property identifiers are generated according to Fig. 4.1 but there are
assigned additional vertex property identifiers to nodes in the middle of beam edges
(property id 5-8). There is also small area on top edge in the midpoint neighbourhood
which has got assigned edge property identifier 5 instead of 1. Resulting file j2beam.t3d
can be converted to the sifel natural format by the following command:

t3dtosiffor j2beam.t3d j2beam.top 0

where the convertor t3dtosiffor can be found in SIFEL/PREP/MESHTOOL folder.
The file j2beam.top can be displayed with help of MeshEditor tool where it is possible
to visualize the property identifiers by various colors as in Fig. 12.2.

Figure 12.2: Simply supported beam - generated mesh with visualized property identifiers

12.2 Preprocessor file - section files
Having the mesh file with property identifiers created, a preprocessor file should be pre-
pared. Preprocessor file is composed from the several sections that may be organized
arbitrarily in the file but they will be introduced in the order of the real processing in
MECHPREP. Each preprocessor file must contain section files which in this case has
the following contents:

1 begsec_files
2 j2beam.t3d
3 mesh_format t3d
4 edge_numbering 1
5 endsec_files

128 CHAPTER 12. NONLINEAR STATICS PROBLEM - PERFECT PLASTICITY

where the topology input file is being specified to be j2beam.t3d in line 2 then the format
of the topology file is given in line 3 and finally, it is given that edge and surface property
identifiers are given also on elements - line 4. The command in line 4 is in accordance
with setup of mesh generator T3d (argument -p 264 on the command line) which cause
the write of edge property numbers on elements to the topology file. See section 4.1 for
more details about the T3D mesh format.

It is supposed that materials and cross sections will be given in the preprocessor file
directly and thus no file names of material and cross section files are given. More details
about this preprocessor section can be found in 9.1.

12.3 Preprocessor file - section probdesc

This section is used by MEFEL to identify the type of problem solved, the type of nonlinear
and linear equation system solver and some other calculation setup. Some details about
the particular cases of probdesc setup can be found in [10]. In this case, the following
setup is chosen:

8 begsec_probdesc
9 Simply supported beam with von Mises plasticity

10 mespr 1 # detail output
11 problemtype mat_nonlinear_statics # non -linear statics
12

13 straincomp 1 # strains are computed
14 strainpos 1 # strains are computed in integration points
15 strainaver 0 # strains are not averaged
16 stresscomp 1 # stresses are computed
17 stresspos 1 # stresses are computed in integration points
18 stressaver 0 # stresses are not averaged
19 othercomp 1 # internal variables are not computed
20 otherpos 1 # internal variables are computed in

integration points
21 otheraver 0 # internal variables are not averaged
22 reactcomp 1 # reactions are computed
23

24 adaptivity 0 # adaptivity is not used
25 stochasticcalc 0 # deterministic computation
26 homogenization 0 # homogenization is not applied
27 noderenumber no_renumbering # nodes are not renumbered
28

29 type_of_nonlin_solver newton # the Newton -Raphson
30 stiffmat_type initial_stiff # the initial stiffness matrix

approach
31 nr_num_steps 30 # the number of increments
32 nr_num_iter 30 # the number of iterations

within increment

12.4. PREPROCESSOR FILE - SECTION LOADCASE 129

33 nr_error 1.0e-02 # the required relative norm
of residual

34 nr_init_incr 1.0 # the initial increment
35 nr_minincr 1.0e-08 # the minimum increment
36 nr_maxincr 1.0e+03 # the maximum increment
37 hdbackup nohdb # no HD backup is required
38 stiffmatstor skyline_matrix # the stiffness matrix is

stored in skyline
39 typelinsol ldl # system of linear algebraic

equations is solved by LDL
40 endsec_probdesc

In this section, the title of the problem solved is given in line 9, detailed message printing
is switched on (line 10) and material nonlinear statics problem type is specified to be
solved in line 11.

In the sequential two blocks of commands, the strain calculation is on (line 13) and
strains will be calculated at integration points (line 14) and therefore no averaging of
strains is necessary (line 15). The same setup for stress computation is defined in lines
16–18 and for internal (other) variables in lines 19–21. Finally, the calculation of reac-
tions is required in line 22. All additional advanced techniques such as mesh adaptivity
(line 24), stochastic calculations (line 25), homogenization techniques (line 26) and node
renumbering (line 27) are not taken into account in the computation.

The last block of commands defines the type of solver of system of nonlinear algebraic
equations. The line 29 defines that the Newton-Raphson iterative procedure is used,
where the system matrix is assmebled/updated only at the beginning of the computation
(line 30). The total number of performed load steps is set to 30 (line 31) and maximum
number of internal steps in the iteration of residual vector is also 30 (line 32). The relative
norm of residual is defined in line 33 to be 10−2 which means that the residual vector norm
is one hundredth of the norm of the actual load vector. Setup of magnitude of load steps
follows - the initial load coefficient increment is 1.0 (line 34), the minimum load coefficient
increment is set to 10−8 and maximum load coefficient increment is given to be 103. Line
37 defines that backup of particular load steps on harddisk is not performed. The last
two lines define that skyline storage of system matrix is used (line 38) and system will be
solved with help of LDL decomposition method (line 39) which can be applied in this case
because the system matrix is symmetric and positive definite for the associated plasticity.

12.4 Preprocessor file - section loadcase

This section defines the number of load cases and some details about the content of
particular load cases. According to the problem setting, this section looks as follows:

43 begsec_loadcase
44 num_loadcases 2
45 #temperature load type for the proportional load case
46 lc_id 1

130 CHAPTER 12. NONLINEAR STATICS PROBLEM - PERFECT PLASTICITY

47 temp_load_type 0
48 #temperature load type for the constant load case
49 lc_id 2
50 temp_load_type 0
51 endsec_loadcase

where two individual load cases are established in line 44, and for each load case, the
type of temperature load load is defined with help of command pairs tempr_type_lc_id
and temp_load_type. The all load cases are composed just from force load, i.e. no
temperature load is defined by in lines 47 and 50. Should be noted that only the first
load case is proportional, i.e. scaled by the gradually increasing load coefficient while
the second load case remains constant until the end of computation. At the beginning
of computation, the value of load coefficient is zero and the initial increment of load
coefficient is given in line 34. During the Newton-Raphson procedure, the values of load
coefficient increment are increased/decreased automatically according to the progress of
iteration keeping the range [10−8;103]. The load stepping is stopped if the maximum
number of load steps is attained or the solver cannot reduce the load coefficient increment
which has been already set to minimum value defined in line 35.

12.5 Preprocessor file - section mater
This section contains the list of material models and their parameters. In this example,
the distribution of material properties is assumed to be homogeneous where the J2 flow
yield criterion for the plastic behaviour while the elastic behviour is described by linear
elastic isotropic material. Therefore two material types must be defined in this section
whose content is listed below

54 begsec_mater
55 num_mat_types 2
56 # elastic isotropic material
57 mattype elisomat num_inst 1
58 1 70.0e9 0.35
59 # von Mises yield condition
60 mattype jflow num_inst 1
61 1 70.0e6 0.0 1 50 1.0e-6
62 endsec_mater

In the section, two material types (elastic isotropic and von Misses plasticity) are being
defined (line 55) and sequential lines contains the specification of these material types.
The line 57 defines that the material type is elastic isotropic with one instance of mate-
rial parameter set. Line 58 defines the first instance of material parameter set of elastic
isotropic material which requires two parameters - Young’s modulus (70 GPa) and Pois-
son’s ratio (0.35). The second material model is represented by plasticity with von Misses
yield criterion with one instance of parameter set (line 60). The parameter set is defined
on the last line where the yield stress is set to τ0=70 MPa, hardening modulus to 0,
i.e. perfect plasticity with no hardening is to be solved. Additionally, the setup of stress

12.6. PREPROCESSOR FILE - SECTION CRSEC 131

return algorithm must be given at the end of material parameter record. In this case, the
cutting plane stress return algorithm is selected, the maximum number of iterations is set
to 50 and the error of yield function residual is set to be 10−6.

12.6 Preprocessor file - section crsec

This section contains the list of cross sections and their parameters. In this example, the
cross section is given by the thickness 0.01 m which is uniform across the beam. The
section has the following content:

65 begsec_crsec
66 num_crsec_types 1
67 crstype csplanestr num_inst 1
68 1 0.01
69 endsec_crsec

In the section, only one cross section type (for plane elements) is being defined (line 66)
and sequential lines contains the specification of this one cross section type. The line 67
defines that the cross section type is for plane stress/strain elements (csplanestr) with
one instance of cross section parameter set. The last line 68 defines the first instance
of cross section parameter set for plane elements which requires just one parameters -
thickness (0.01 m).

12.7 Preprocessor file - number of nodal DOFs
The section nodsurfpr defines common properties for group of nodes involved in the
surface with specific property id. In 2D problems, the most common use of this section is
for the specification of number of DOFs at nodes. In this example, two DOFs are defined
in all nodes of the mesh. The section content is listed below:

88 begsec_nodsurfpr
89 ndofn 2 propid 1 # number of degrees of freedom at nodes
90 endsec_nodsurfpr

where the command ndofn in line 89 defines two DOFs at all nodes with surface property
id 1, i.e. on the whole domain solved.

12.8 Preprocessor file - Dirichlet’s boundary condi-
tions

Dirichlet’s boundary condition prescribes values of primary unknowns defined in the prob-
lem solved and they can be prescribed with help of bocon command. In this example,
this type of boundary conditions are represented by fixed node on the left end point of
beam axis and vertically fixed node on right end point of the beam axis. These nodes are

132 CHAPTER 12. NONLINEAR STATICS PROBLEM - PERFECT PLASTICITY

marked by the vertex property identifiers 5 and 7 respectively and therefore the bocon
command should be placed in the nodvertpr section whose content is listed below

73 begsec_nodvertpr
74 bocon propid 5 num_bc 2 dir 1 cond 0.0 dir 2 cond 0.0 #

left support
75 bocon propid 7 num_bc 1 dir 2 cond 0.0 # right support

77 endsec_nodvertpr

where displacements are prescribed to be zero values for all DOFs (defined in the previous
section) of node with vertex property id 5 (line 74) while for node with property id 7,
only the vertical (2nd) DOF is prescribed to be zero (line 75).

12.9 Preprocessor file - simulation of rigid plate
Another type of nodal boundary condition represents the simulation of rigid plate for
the applied load transfer which can be simulated with help of coupled vertical DOFs at
narrow area around the middle of beam. These nodes has got assigned the edge property
id 5 in the generator and therefore the dof_coupl command providing DOF coupling of
selected nodes should be placed in nodedgpr section

81 begsec_nodedgpr
82 # rigid plate <=> coupled DOFs
83 dof_coupl propid 5 ndir 1 dir 2
84 endsec_nodedgpr

where line 83 represents the suitable record of the preprocessor command coupling vertical
DOFs of all nodes at edge with property id 5 to the single DOF.

12.10 Preprocessor file - proportional load
The proportional load is represented by vertical force applied in the middle of beam on
the top edge. The node has got assigned vertex property id 6 by the mesh generator and
thus the nod_load command should be placed in the nodvertpr section.

73 begsec_nodvertpr

76 nod_load propid 6 lc_id 1 load_comp 0.0 -1.0e3 #
proportional load

77 endsec_nodvertpr

In the command in line 76, load case id must be set 1 in order to be load scaled by the
gradually increasing load coefficient. In this case, the basic magnitude of vertical load
component is set to -103 and thus the resulting load coefficient obtained at the end of
computation represents the limit vertical force in kN.

12.11. PREPROCESSOR FILE - ELEMENT TYPE, MATERIAL MODEL, CROSS SECTION133

12.11 Preprocessor file - element type, material model,
cross section

The FE type and material model are essential properties of elements which must be given
in all kinds of problems. In this example, all elements have the same FE type and material
model and therefore the most simple way how to assign them to all elements is the use
of corresponding commands in the element section elsurfpr keeping in mind that the
surface property id 1 is the same for all elements. The element type can be assigned by
the command el_type while material model by the command el_mat.

93 begsec_elsurfpr
94 el_type propid 1 planeelementlt strastrestate planestress
95 el_mat propid 1 num_mat 2 type jflow type _id 1
96 type elisomat type _id 1
97 el_crsec propid 1 type csplanestr type _id 1

101 endsec_elsurfpr

where line 94 assigns triangle element with linear shape functions. The same material
elastoplastic model is assumed to be on all elements and it is assigned by the command in
lines 95 and 96. The model is composed from two independent parts (keyword num_mat)
one for plasticity (jflow - line 95) and one for isotropic elasticity (elisomat - line 96).
Both models refers to the first instance of material parameter set with help of keywords
type_id. Cross section type and parameters are defined in line 97 with help of command
el_crsec which refers to the first instance of cross section parameters defined in above
in the file in section crsec (line 68).

12.12 Preprocessor file - constant load
In the second load case, the beam is loaded by dead weight load which must be applied
to all elements in the mesh. It can be achieved by the command volume_load placed in
the section elsurfpr because all elements has got assigned the same surface property id
1. The syntax of the command is listed below

93 begsec_elsurfpr

98 volume_load propid 1 lc_id 2 ncomp 2
99 func_type stat coord_sys 1

100 load_comp 0.0 -12.0e3
101 endsec_elsurfpr

where the line 98 defines volume load on all elements with surface property id 1, the load is
applied in the load case 2 which is kept constant for the whole computation procedure. The
command continues in line 99 where the load is defined to be with constant distribution
(keyword func_type), applied in the global coordinate system (keyword coord_sys) and
finally, two load components are given in line 100 - the dead weight load is applied in the
vertical direction.

134 CHAPTER 12. NONLINEAR STATICS PROBLEM - PERFECT PLASTICITY

12.13 Setup of the result output
The last section that has to be specified is represented by section outdrv where the
output of results from MEFEL should be configured. More details about this section can
be found in [10]. The section is composed from three parts dealing with different forms of
result output. The first part controls output to the file in the text form has the following
content:

104 begsec_outdrv
105 #-------------------------------
106 # Definition of MEFEL output |
107 #-------------------------------
108

109 # description of output to the text file
110 textout 0

152 endsec_outdrv

In this example, no text output of results is required (line 110).
The second part controls output in the various formats used in graphic postprocessor

tools. In this example, the GiD format is required which allows for the most advanced
configuration of the output. The part configuring this output is listed below:

104 begsec_outdrv

112 # description of output to the text file
113 # 3 = GiD format - one huge file
114 outgr_format grfmt_gid
115

116 # graphics output file name without extension
117 j2beam
118

119 sel_nodstep sel_all
120 sel_nodlc sel_all
121 displ_nodes sel_all displ_comp sel_all
122 strain_nodes sel_no
123 stress_nodes sel_no
124 other_nodes sel_no
125 force_nodes sel_all force_comp sel_all
126

127 sel_elemstep sel_all
128 sel_elemlc sel_all
129 strain_elems sel_all elemstrain_comp sel_mtx

elemstra_transfid 0
130 stress_elems sel_all elemstress_comp sel_mtx

elemstre_transfid 0

12.13. SETUP OF THE RESULT OUTPUT 135

131 other_elems sel_all elemother_comp sel_list numlist_items
1 5

152 endsec_outdrv

Line 114 defines the format used for the result output with help of keyword outgr_format
whose value is set to gid. This results into one GiD file with all result quantities
(j2beam.res) that will be specified later in this part and another file with the mesh
description (j2beam.msh). The common GiD file name is given in line 117 to which the
corresponding suffix will be added automatically.

After that the time/load steps and load case numbers must be given at which the
nodal results will be printed out. In this case, all load steps are selected (line 119)
and all load cases are selected (line 120). Should be noted that load cases cannot be
selected independently because of nonlinearity of the problem and results are calculated
for sum of proportional (1st) load case and constant (2nd) load case and thus load case
selection should be just sel_all defined for keyword sel_nodlc. Having the time/load
steps and load cases specified, the print configuration of particular nodal quantities follows
providing the selection of nodes for each quantity, where the given quantity will be printed
out, followed by the selection of the given quantity components. Thus line 121 specifies
that for all nodes, all displacement components will be printed out while the line 122
selects no nodes (keyword value sel_no) for nodal strains, i.e. no nodal strains will be
printed. The same option is specified for nodal stresses (line 123), and nodal other values
(line 124) and therefore they do not be printed too. Line 125 defines that at all nodes all
components of internal force vector will be printed.

Configuration of nodal values output is followed by the similar configuration of ele-
ment values output performed in all integration points on the selected elements. It starts
with selection of time/load steps (line 127) and load cases (line 128). Using the same key-
word values as for nodes results to the selection of all time/load steps and all load cases.
Line 129 specifies that for all elements (keyword strain_elems), the output of all strain
components (keyword elemstrain_comp) will be performed with no transformation of
components (keyword elemstra_transfid). Line 130 specifies that for all elements (key-
word stress_elems), the output of all stress components (keyword elemstress_comp)
will be performed with no transformation of components (keyword elemstre_transfid).
Selection of all strain and stress components on elements is specified by sel_mtx optional
value that provides the output of strains and stresses in the tensorial form (all their
components) which allows for better postprocessing in the GiD (calculation of principal
values and vectors). Line 131 defines that for all elements, one other value will be printed
out. It is consistency parameter (plastic multiplier) γ defined in plasticity model which
is stored in the other array as the 5-th component. In this case, the list selection type
sel_list is used in other array component selection and this list contains only one item
(numlist_items 1). The list of item identifiers stands at the end of record and in this
case, it contains just number 5, i.e. reference to the 5-th component of other array.

Should be noted that the order of internal variables of the other array can be arbitrary
and it is defined inside the given material model. In this example, the von Misses plasticity
model is used which is contained in the j2flow.cpp source file. Most of plasticity models

136 CHAPTER 12. NONLINEAR STATICS PROBLEM - PERFECT PLASTICITY

in MEFEL adopt the following order of internal variables for the other array:
1. plastic strain components εp stored in Voigth notation,

2. consistency parameter (plastic multiplier) γ, ε̇p = γ̇
∂g

∂σ
,

3. hardening parameters.
The beam is solved as a plane stress problem where the strain vector contains only four
components and therefore the consistency parameter is stored on the 5-th position of other
array.

The last part controls output of selected quantities in particular time/load steps which
can be used for creation of diagrams. It will be suitable to print the value of vertical
displacement in the middle of beam, vertical reaction in the left support and the value
of load coefficient in all load steps. The content of last part of outdrv section is listed
below:

104 begsec_outdrv

133 # text output of graphs
134 # number of created files with diagrams
135 numdiag 1
136 j2beam.dat
137 numunknowns 3 # number of printed unknowns
138 sel_diagstep sel_all # type of load step selection = all

load steps
139

140 # point type = node, node id = 5
141 point atnode node 5
142 # printed nodal quantity = displacement , 2nd component
143 quant_type pr_displ compid 2
144 # point type = node, node id = 1
145 point atnode node 1
146 # printed nodal quantity = reaction , 2nd component
147 quant_type pr_react compid 2
148 # point type = node, node id = 5
149 point atnode node 5
150 # printed nodal quantity = load coefficient
151 quant_type pr_appload
152 endsec_outdrv

where the line 135 defines that the number of diagram files created is 1. The name of
the output diagram file follows on the next line 136. For each diagram file, the number
of printed quantities must be given (line 137) and this number equals to the number of
columns in the table created in the diagram file. The values of selected quantities are
printed to the file in each load step selected. All load steps are selected in this case in
line 138.

12.14. PREPROCESSOR FILE 137

After the above initial setup, the definition of particular quantities follows. Each record
contains definition of point at which the given quantity should be printed out followed
by the type of quantity. The first quantity record starts at line 141 where the position
at node 5 is given and the first quantity type is given in line 143 which defines the type
of quantity to be displacement (pr_displ) where the vertical displacement component is
selected (compid 2). The second quantity record starts at line 145 where the position at
node 1 is given and the quantity type is given in line 147 which defines the type to be
reaction (pr_react) in vertical direction (compid 2). The last required quantity is the
value of load coefficient where the same value is printed in arbitrary node. In this case
node 5 is selected (line 149) and the type of quantity pr_appload is defined in line 151.

12.14 Preprocessor file
This section contains listing of the whole preprocessor file.

begsec_files
j2beam.t3d
mesh_format t3d
edge_numbering 1
endsec_files

begsec_probdesc
Simply supported beam with von Mises plasticity
mespr 1 # detail output
problemtype mat_nonlinear_statics # non -linear statics

straincomp 1 # strains are computed
strainpos 1 # strains are computed in integration points
strainaver 0 # strains are not averaged
stresscomp 1 # stresses are computed
stresspos 1 # stresses are computed in integration points
stressaver 0 # stresses are not averaged
othercomp 1 # internal variables are not computed
otherpos 1 # internal variables are computed in

integration points
otheraver 0 # internal variables are not averaged
reactcomp 1 # reactions are computed

adaptivity 0 # adaptivity is not used
stochasticcalc 0 # deterministic computation
homogenization 0 # homogenization is not applied
noderenumber no_renumbering # nodes are not renumbered

type_of_nonlin_solver newton # the Newton -Raphson

138 CHAPTER 12. NONLINEAR STATICS PROBLEM - PERFECT PLASTICITY

stiffmat_type initial_stiff # the initial stiffness matrix
approach

nr_num_steps 30 # the number of increments
nr_num_iter 30 # the number of iterations

within increment
nr_error 1.0e-02 # the required relative norm

of residual
nr_init_incr 1.0 # the initial increment
nr_minincr 1.0e-08 # the minimum increment
nr_maxincr 1.0e+03 # the maximum increment
hdbackup nohdb # no HD backup is required
stiffmatstor skyline_matrix # the stiffness matrix is

stored in skyline
typelinsol ldl # system of linear algebraic

equations is solved by LDL
endsec_probdesc

begsec_loadcase
num_loadcases 2
#temperature load type for the proportional load case
lc_id 1
temp_load_type 0
#temperature load type for the constant load case
lc_id 2
temp_load_type 0
endsec_loadcase

begsec_mater
num_mat_types 2
elastic isotropic material
mattype elisomat num_inst 1
1 70.0e9 0.35
von Mises yield condition
mattype jflow num_inst 1
1 70.0e6 0.0 1 50 1.0e-6
endsec_mater

begsec_crsec
num_crsec_types 1
crstype csplanestr num_inst 1
1 0.01
endsec_crsec

12.14. PREPROCESSOR FILE 139

properties of nodes defined by vertices
begsec_nodvertpr
bocon propid 5 num_bc 2 dir 1 cond 0.0 dir 2 cond 0.0 #

left support
bocon propid 7 num_bc 1 dir 2 cond 0.0 # right support
nod_load propid 6 lc_id 1 load_comp 0.0 -1.0e3 #

proportional load
endsec_nodvertpr

properties of nodes on edges
begsec_nodedgpr
rigid plate <=> coupled DOFs
dof_coupl propid 5 ndir 1 dir 2
endsec_nodedgpr

properties of nodes defined at regions
begsec_nodsurfpr
ndofn 2 propid 1 # number of degrees of freedom at nodes
endsec_nodsurfpr

begsec_elsurfpr
el_type propid 1 planeelementlt strastrestate planestress
el_mat propid 1 num_mat 2 type jflow type_id 1

type elisomat type_id 1
el_crsec propid 1 type csplanestr type_id 1
volume_load propid 1 lc_id 2 ncomp 2

func_type stat coord_sys 1
load_comp 0.0 -12.0e3

endsec_elsurfpr

begsec_outdrv
#-------------------------------
Definition of MEFEL output |
#-------------------------------

description of output to the text file
textout 0

description of output to the text file

140 CHAPTER 12. NONLINEAR STATICS PROBLEM - PERFECT PLASTICITY

3 = GiD format - one huge file
outgr_format grfmt_gid

graphics output file name without extension
j2beam

sel_nodstep sel_all
sel_nodlc sel_all
displ_nodes sel_all displ_comp sel_all
strain_nodes sel_no
stress_nodes sel_no
other_nodes sel_no
force_nodes sel_all force_comp sel_all

sel_elemstep sel_all
sel_elemlc sel_all
strain_elems sel_all elemstrain_comp sel_mtx

elemstra_transfid 0
stress_elems sel_all elemstress_comp sel_mtx

elemstre_transfid 0
other_elems sel_all elemother_comp sel_list numlist_items

1 5

text output of graphs
number of created files with diagrams
numdiag 1
j2beam.dat
numunknowns 3 # number of printed unknowns
sel_diagstep sel_all # type of load step selection = all

load steps

point type = node , node id = 5
point atnode node 5
printed nodal quantity = displacement , 2nd component
quant_type pr_displ compid 2
point type = node , node id = 1
point atnode node 1
printed nodal quantity = reaction , 2nd component
quant_type pr_react compid 2
point type = node , node id = 5
point atnode node 5
printed nodal quantity = load coefficient
quant_type pr_appload
endsec_outdrv

Chapter 13

Nonlinear statics problem - scalar
damage model

This section describes how to prepare MEFEL input file with help of MECHPREP for
the nonlinear statics problem of simply supported beam with notch. The nonlinearity
is induced by the material model based on perfect scalar isotropic damage model. The
beam is subjected to two load cases:

1. Dead weight load fc=12 kN/m3 which is represented by volume load on elements
calculated approximately from the given material density ρ=1200 kg/m3. This load
is assumed to be a constant.

2. Additionally, the beam is subjected to vertical force Fp acting in the middle of top
surface of the beam. The force is applied on the beam with help of rigid plate of
40 mm width and the value of this force increases proportionally until the the crack
propagation across the beam height is attained.

The beam has length 160 mm and rectangular cross section 40 mm×40 mm. Material
of the beam is assumed to be mortar with Young’s modulus E=10 GPa, Poisson’s ratio
ν=0.25, tensile strength ft=0.4 MPa and the fracture energy Gf=9 J/m2. The settings
of the example is depicted in Fig. 13.1. With respect to the setting of the task, the

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������
������������������������������

115 mm

1
0

 m
m

160 mm

5 mm

30 mm

4
0

 m
m

40 m
m

y

x

pF

3=12 kN/mf
c

Figure 13.1: Settings of notched beam with scalar isotropic damage model in 2D

141

142CHAPTER 13. NONLINEAR STATICS PROBLEM - SCALAR DAMAGE MODEL

arclength method has to be exploited in order to capture the limit notch opening when
the crack propagated almost across the whole beam height. Considering that the full crack
propagation should be captured in the numerical simulation, the load path of such problem
configuration contain in any case a drop after the peak load was attained and it would
contain even snap-back in case of very narrow notch. In such the case, the displacement
control must be used at least but for better results the loading will be controlled by the
increasing distance of the corner nodes at mouth of the notch. This type of control is
involves the arclength method implemented in MEFEL where the system of equations is
complemented by the additional condition for the length of arc of the loading path in the
form

∆l =
√

∆rT∆r + ∆λ2ψfTp f p, (13.1)
where ∆r is the vector of displacement increments, ∆λ is the increment of load coefficient,
ψ is the scaling factor and f p is the vector of proportional load.

13.1 Topology file
In the first step, a mesh file must be created and corresponding property identifiers
must be defined in order to MECHPREP can work. The mesh file can be created ei-
ther manually or it can be generated with help of T3D mesh generator. The input file
(damage-beam.t3d.in) for T3D is listed below

1 # Mesh for simply supported beam , run command:
2 # /home/dr/Bin/T3d -p 264 -i damage -beam.t3d.in -o

damage -beam.t3d -d 0.015 -X -$
3

4 # base vertices
5 vertex 1 xyz 0.0000 0.020 0.0 property 2
6 vertex 2 xyz 0.0500 0.020 0.0
7 vertex 3 xyz 0.0650 0.020 0.0
8 vertex 4 xyz 0.0800 0.020 0.0 property 5
9 vertex 5 xyz 0.0950 0.020 0.0

10 vertex 6 xyz 0.1100 0.020 0.0
11 vertex 7 xyz 0.1600 0.020 0.0 property 1
12 vertex 8 xyz 0.1600 0.000 0.0 property 8
13 vertex 9 xyz 0.1600 -0.020 0.0 property 4
14 vertex 10 xyz 0.1000 -0.020 0.0
15 vertex 11 xyz 0.0825 -0.020 0.0
16 vertex 12 xyz 0.0825 -0.010 0.0
17 vertex 13 xyz 0.0800 -0.010 0.0 property 7
18 vertex 14 xyz 0.0775 -0.010 0.0
19 vertex 15 xyz 0.0775 -0.020 0.0
20 vertex 16 xyz 0.0600 -0.020 0.0
21 vertex 17 xyz 0.0000 -0.020 0.0 property 3
22 vertex 18 xyz 0.0000 0.000 0.0 property 6
23

13.1. TOPOLOGY FILE 143

24

25 # edges
26 curve 1 vertex 1 2 property 1
27 curve 2 vertex 2 3 factor 0.1 property 1
28 curve 3 vertex 3 4 factor 0.1 property 5
29 curve 4 vertex 4 13 factor 0.1
30 curve 5 vertex 13 14 factor 0.1 property 3
31 curve 6 vertex 14 15 factor 0.1 property 3
32 curve 7 vertex 15 16 factor 0.1 property 3
33 curve 8 vertex 16 17 property 3
34 curve 9 vertex 17 18 property 2
35 curve 10 vertex 18 1 property 2
36

37 curve 11 vertex 4 5 factor 0.1 property 5
38 curve 12 vertex 5 6 factor 0.1 property 1
39 curve 13 vertex 6 7 property 1
40 curve 14 vertex 7 8 property 4
41 curve 15 vertex 8 9 property 4
42 curve 16 vertex 9 10 property 3
43 curve 17 vertex 10 11 factor 0.1 property 3
44 curve 18 vertex 11 12 factor 0.1 property 3
45 curve 19 vertex 12 13 factor 0.1 property 3
46

47 # beam
48 patch 1 normal 0.0 0.0 1.0 \
49 boundary curve -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 \
50 size def property 1
51

52 patch 2 normal 0.0 0.0 1.0 \
53 boundary curve -11 -12 -13 -14 -15 -16 -17 -18 -19 4 \
54 size def property 1

The mesh is generated by the running of the following command:

T3d -p 264 -i damage-beam.t3d.in -o damage-beam.t3d -d 15.0 -X -$

and if everything run well the mesh file damage-beam.t3d will be created including all
property identifiers. The property identifiers are generated according to Fig. 4.1 but
there are assigned additional vertex property identifiers to nodes in the middle of beam
edges (property id 5-8). There is also small area on top edge in the midpoint neigh-
bourhood which has got assigned edge property identifier 5 instead of 1. Resulting file
damage-beam.t3d can be converted to the sifel natural format by the following com-
mand:

t3dtosiffor damage-beam.t3d damage-beam.top 0

144CHAPTER 13. NONLINEAR STATICS PROBLEM - SCALAR DAMAGE MODEL

where the convertor t3dtosiffor can be found in SIFEL/PREP/MESHTOOL folder.
The file damage-beam.top can be displayed with help of MeshEditor tool where it is
possible to visualize the property identifiers by various colors as in Fig. 13.2.

Figure 13.2: Simply supported notched beam - generated mesh with visualized property
identifiers

13.2 Preprocessor file - section files

Having the mesh file with property identifiers created, a preprocessor file should be pre-
pared. Preprocessor file is composed from the several sections that may be organized
arbitrarily in the file but they will be introduced in the order of the real processing in
MECHPREP. Each preprocessor file must contain section files which in this case has
the following contents:

4 begsec_files
5 damage -beam.top
6 mesh_format sifel
7 edge_numbering 1
8 read_mat_strings no
9 read_mat_kwd yes

10 endsec_files

where the topology input file is being specified to be damage-beam.top in line 2 then
the format of the topology file is given in line 3 and finally, it is given that edge and
surface property identifiers are given also on elements - line 4. The command in line 4
is in accordance with setup of mesh generator T3d (argument -p 264 on the command
line) which cause the write of edge property numbers on elements to the topology file.
See section 4.1 for more details about the T3D mesh format.

It is supposed that materials and cross sections will be given in the preprocessor file
directly and thus no file names of material and cross section files are given. More details
about this preprocessor section can be found in 9.1. Additionally, the material parameters
will not be processed as strings but by particular material model read procedures (line 8)
and keywords will be used in the parameter definition (line 9).

13.3. PREPROCESSOR FILE - SECTION PROBDESC 145

13.3 Preprocessor file - section probdesc

This section is used by MEFEL to identify the type of problem solved, the type of nonlinear
and linear equation system solver and some other calculation setup. Some details about
the particular cases of probdesc setup can be found in [10]. In this case, the following
setup is chosen:

12 begsec_probdesc
13 Three point bending test of mortar MPA35 beam 40 x40x160 mm
14 mespr 1
15 problemtype mat_nonlinear_statics
16

17 straincomp 1
18 strainpos 1
19 strainaver 0
20 stresscomp 1
21 stresspos 1
22 stressaver 0
23 othercomp 1
24 otherpos 1
25 otheraver 0
26 reactcomp 1
27

28 adaptivity 0
29 stochasticcalc 0
30 homogenization 0
31 noderenumber 0
32

33 type_of_nonlin_solver arclg
34 stiffmat_type ijth_tangent_stiff
35 1
36 10
37 lambda_determination minangle
38 al_num_steps 300
39 al_num_iter 50
40 al_error 1.0e-3
41 al_init_length 1.0e-6
42 al_min_length 1.0e-12
43 al_max_length 1.0e-5
44 al_psi 0.0
45 check_div off
46 check_total_arcl on
47 max_total_arc_length 0.0003
48 check_req_lambda off
49 al_displ_contr_type nodesdistincr
50 probdimal 2

146CHAPTER 13. NONLINEAR STATICS PROBLEM - SCALAR DAMAGE MODEL

51 11 15
52 hdbackup nohdb
53 stiffmatstor spdirect_stor_scr
54 typelinsol spdirldl
55 endsec_probdesc

In this section, the title of the problem solved is given in line 11, detailed message printing
is switched on (line 13) and material nonlinear statics problem type is specified to be solved
in line 14.

In the sequential two blocks of commands, the strain calculation is on (line 17) and
strains will be calculated at integration points (line 18) and therefore no averaging of
strains is necessary (line 19). The same setup for stress computation is defined in lines
20–22 and for internal (other) variables in lines 23–25. Finally, the calculation of reac-
tions is required in line 26. All additional advanced techniques such as mesh adaptivity
(line 28), stochastic calculations (line 29), homogenization techniques (line 30) and node
renumbering (line 31) are not taken into account in the computation.

The last block of commands defines the type of solver of system of nonlinear algebraic
equations. The line 33 defines that the arclength method is used, where the system matrix
is updated at the beginning of each load step and for each 10-th step of iteration (line 34-
36). The load coefficient λ is solved from the quadratic equation in the arclength method
where two roots are obtained generally. The line 37 specifies that the λ is chosen so
that it yields the minimum angle between the actual and previous vectors of displacement
increments. The total number of performed load steps is set to 300 (line 38) and maximum
number of internal steps in the iteration of residual vector is 50 (line 39). The relative
norm of residual is defined in line 40 to be 10−3 which means that the residual vector
norm is one thousandth of the norm of the actual load vector. Setup of magnitude of load
steps follows - the initial step length is 10−6 (line 41), the minimum step length is set to
10−8 (line 42) and maximum step length is given to be 10−12 (line 43). Length of arc can
be calculated either form displacement increments or nodal distance increments or the
norm of load vector increments is also taken into account. Selection of type of arclength
method is controlled with help of coefficient ψ which is used as magnitude factor of the
norm of load vector increments. In this case, the load vector increments are not taken
into account and the load process is driven just by distance increments of selected nodes,
i.e. ψ=0 (line 44). Checking of divergence in course of iteration process is switched off
(line 45). Except of the total number of loading steps, there are two additional conditions
that can be employed in the stopping criteria of the arclength method. The first criterion
(line 46) defines the maximum total length of arc (line 47) which can be attained in the
computation. The second criterion (line 48) defines the limit value of the load coefficient
λ which cannot be exceeded. In this case, only total length of arc criterion is switched
on (lines 46–47) while the maximum λ criterion is not used (line 48). The last setup
option is connected with type of arclength method and selection of nodes whose distance
increment will be used for the control of the method. The line 49 defines that the nodal
distance increments will be used for the arclength control, line 50 defines the dimension
of the problem, i.e. number of coordinate components used in the distance calculation
and selection of two nodes follows in line 51 - nodes 11 and 15 are being specified in this

13.4. PREPROCESSOR FILE - SECTION LOADCASE 147

case.
Line 52 defines that backup of particular load steps on harddisk is not performed. The

last two lines define that spdirect_stor_scr storage of system matrix is used (line 53) and
system will be solved with help of sparse direct LDL solver (line 54). It is possible to
apply this setup in this case because the system matrix is symmetric and positive definite
for the secant matrix defined in the scalar damage model.

13.4 Preprocessor file - section loadcase

This section defines the number of load cases and some details about the content of
particular load cases. According to the problem setting, this section looks as follows:

57 begsec_loadcase
58 num_loadcases 2
59 #temperature load type for the first load case
60 lc_id 1
61 temp_load_type 0
62 #temperature load type for the second load case
63 lc_id 2
64 temp_load_type 0
65 endsec_loadcase

where two individual load cases are established in line 58, and for each load case, the
type of temperature load load is defined with help of command pairs tempr_type_lc_id
and temp_load_type. The all load cases are composed just from force load, i.e. no
temperature load is defined by in lines 61 and 64. Should be noted that only the first
load case is proportional, i.e. scaled by the gradually increasing load coefficient λ while
the second load case remains constant until the end of computation. At the beginning
of computation, the value of load coefficient is zero and the initial increment of load
coefficient is calculated with help of Eq. 13.1. During the arclength procedure, the values
of load coefficient increment are calculated automatically according to the progress of
iteration keeping the range of the arc length [10−12;10−5]. The load stepping is stopped if
the maximum number of load steps is attained or the solver cannot reduce the step length
which has been already set to minimum value defined in line 42 or the total length of arc
is being attained (line 47).

13.5 Preprocessor file - section mater

This section contains the list of material models and their parameters. In this example,
the distribution of material properties is assumed to be homogeneous where the initial
loading is defined by the linear elastic isotropic material while the crack propagation is
defined according to scalar damage model. It leads to the definition of two material types
in this section whose content follows section has the following content:

67 begsec_mater

148CHAPTER 13. NONLINEAR STATICS PROBLEM - SCALAR DAMAGE MODEL

68 num_mat_types 2
69 # elastic isotropic material
70 mattype elisomat num_inst 1
71 1 e 10.0e9 nu 0.25
72 # Scalar damage model
73 # Given: Gf = 9 [N/m]
74 # Estimated ft = 0.40 MPa => wf=Gf/ft=2.25e-05
75 mattype scaldamage num_inst 1
76 1 ft 4.0e5 uf 2.25e-05 norm_type normazar
77 cor_dis_energy corr_on gsra ni 50 err 1.0e-2
78 endsec_mater

In the section, two material types (elastic isotropic and scalar damage) are being defined
(line 68) and sequential lines contains the specification of these material types. The line 70
defines that the material type is elastic isotropic with one instance of material parameter
set. Line 71 defines the first instance of material parameter set of elastic isotropic material
which requires two parameters - Young’s modulus (10 GPa) and Poisson’s ratio (0.25).
The second material model is represented by a scalar isotropic damage model with one
instance of parameter set (line 75). The parameter set is defined on the last line where
the tensile strength ft=400 kPa is defined, the softening parameter wf is calculated from
the fracture energy Gf=9 N/m as wf = Gf/ft = 2.25 × 10−5 m, the Mazars’ equivalent
strain norm is assumed in the model definition. Additionally, the correction of dissipated
energy with respect to size of mesh elements is switched on and in such case, the setup of
iteration algorithm must be given at the end of material parameter record (line 77). The
type of algorithm is gsra where the maximum number of iterations is set to 50 and the
error of damage parameter residual is set to be 10−2.

13.6 Preprocessor file - section crsec

This section contains the list of cross sections and their parameters. In this example, the
cross section is given by the thickness 0.04 m which is uniform across the beam. The
section has the following content:

80 begsec_crsec
81 num_crsec_types 1
82 crstype csplanestr num_inst 1
83 1 0.04
84 endsec_crsec

In the section, only one cross section type (for plane elements) is being defined (line 69)
and sequential lines contains the specification of this one cross section type. The line 70
defines that the cross section type is for plane stress/strain elements (csplanestr) with
one instance of cross section parameter set. The last line 71 defines the first instance
of cross section parameter set for plane elements which requires just one parameters -
thickness (0.04 m).

13.7. PREPROCESSOR FILE - NUMBER OF NODAL DOFS 149

13.7 Preprocessor file - number of nodal DOFs
The section nodsurfpr defines common properties for group of nodes involved in the
surface with specific property id. In 2D problems, the most common use of this section is
for the specification of number of DOFs at nodes. In this example, two DOFs are defined
in all nodes of the mesh. The section content is listed below:

86 begsec_nodsurfpr
87 ndofn 2 propid 1
88 endsec_nodsurfpr

where the command ndofn in line 87 defines two DOFs at all nodes with surface property
id 1, i.e. on the whole domain solved.

13.8 Preprocessor file - Dirichlet’s boundary condi-
tions

Dirichlet’s boundary condition prescribes values of primary unknowns defined in the prob-
lem solved and they can be prescribed with help of bocon command. In this example,
this type of boundary conditions are represented by fixed node on the left end point of
beam axis and vertically fixed node on right end point of the beam axis. These nodes are
marked by the vertex property identifiers 6 and 8 respectively and therefore the bocon
command should be placed in the nodvertpr section whose content is listed below

90 begsec_nodvertpr
91 # fixed nodes in both dir ections
92 bocon propid 6 num_bc 2 dir 1 cond 0.0 dir 2 cond 0.0
93 # nodes fixed in vertical dir ection
94 bocon propid 8 num_bc 1 dir 2 cond 0.0

97 endsec_nodvertpr

where displacements are prescribed to be zero values for all DOFs (defined in the previous
section) of node with vertex property id 6 (line 92) while for node with property id 8,
only the vertical (2nd) DOF is prescribed to be zero (line 94).

13.9 Preprocessor file - simulation of rigid plate
Another type of nodal boundary condition represents the simulation of rigid plate for
the applied load transfer which can be simulated with help of coupled vertical DOFs at
narrow area around the middle of beam. These nodes has got assigned the edge property
id 5 in the generator and therefore the dof_coupl command providing DOF coupling of
selected nodes should be placed in nodedgpr section

99 begsec_nodedgpr
100 # rigid plate <=> coupled DOFs on edge 5

150CHAPTER 13. NONLINEAR STATICS PROBLEM - SCALAR DAMAGE MODEL

101 dof_coupl propid 5 ndir 1 dir 2
102 endsec_nodedgpr

where line 101 represents the suitable record of the preprocessor command coupling ver-
tical DOFs of all nodes at edge with property id 5 to the single DOF.

13.10 Preprocessor file - proportional load
The proportional load is represented by vertical force applied in the middle of beam on
the top edge. The node has got assigned vertex property id 5 by the mesh generator and
thus the nod_load command should be placed in the nodvertpr section.

90 begsec_nodvertpr

95 # vertical load
96 nod_load propid 5 lc_id 1 load_comp 0.0 -1.0
97 endsec_nodvertpr

In the command in line 96, load case id must be set 1 in order to be load scaled gradually by
the variable load coefficient. In this case, the basic magnitude of vertical load component
is set to -1.0 and thus the resulting load coefficient obtained at the end of computation
represents the limit vertical force in N.

13.11 Preprocessor file - element type, material model,
cross section

The FE type and material model are essential properties of elements which must be given
in all kinds of problems. In this example, all elements have the same FE type and material
model and therefore the most simple way how to assign them to all elements is the use
of corresponding commands in the element section elsurfpr keeping in mind that the
surface property id 1 is the same for all elements. The element type can be assigned by
the command el_type while material model by the command el_mat.

107 # material model assigning
108 el_mat propid 1 num_mat 2 type scaldamage type _id 1
109 type elisomat type _id 1
110 # thickness of the specimen 40 mm
111 el_crsec propid 1 type csplanestr type _id 1

116 endsec_elsurfpr

where line 106 assigns triangle element with linear shape functions. The same material
type of scalar damage model is assumed to be on all elements and it is assigned by the
command in lines 108 and 109. The model is composed from two independent parts
(keyword num_mat) one for scalar damage (scaldamage - line 108) and one for isotropic

13.12. PREPROCESSOR FILE - CONSTANT LOAD 151

elasticity (elisomat - line 109). Both models refers to the first instance of material
parameter set with help of keywords type_id. Cross section type and parameters are
defined in line 111 with help of command el_crsec which refers to the first instance of
cross section parameters defined above in the file in section crsec (line 83).

13.12 Preprocessor file - constant load
In the second load case, the beam is loaded by dead weight load which must be applied
to all elements in the mesh. It can be achieved by the command volume_load placed in
the section elsurfpr because all elements has got assigned the same surface property id
1. The syntax of the command is listed below

104 begsec_elsurfpr

112 # volume load
113 volume_load propid 1 lc_id 2 ncomp 2
114 func_type stat coord_sys 1
115 load_comp 0.0 -12.0e3
116 endsec_elsurfpr

where the line 113 defines volume load on all elements with surface property id 1, the load
is applied in the load case 2 which is kept constant for the whole computation procedure.
The command continues in line 114 where the load is defined to be with constant distribu-
tion (keyword func_type), applied in the global coordinate system (keyword coord_sys)
and finally, two load components are given in line 115 - the dead weight load 12 kN/m3

is applied in the vertical direction.

13.13 Setup of the result output
The last section that has to be specified is represented by section outdrv where the
output of results from MEFEL should be configured. More details about this section can
be found in [10]. The section is composed from three parts dealing with different forms of
result output. The first part controls output to the file in the text form has the following
content:

118 begsec_outdrv
119 #-------------------------------
120 # Definition of MEFEL output |
121 #-------------------------------
122

123 # description of output to the text file
124 textout 0

166 endsec_outdrv

152CHAPTER 13. NONLINEAR STATICS PROBLEM - SCALAR DAMAGE MODEL

In this example, no text output of results is required (line 124).
The second part controls output in the various formats used in graphic postprocessor

tools. In this example, the GiD format is required which allows for the most advanced
configuration of the output. The part configuring this output is listed below:

118 begsec_outdrv

126 # description of output to the text file
127 # GiD format - one huge file
128 outgr_format grfmt_gid
129

130 # graphics output file name without extension
131 damage -beam
132

133 sel_nodstep sel_all
134 sel_nodlc sel_all
135

136 displ_nodes sel_all displ_comp sel_all
137

138 strain_nodes sel_no
139 stress_nodes sel_no
140 other_nodes sel_no
141

142 force_nodes sel_all force_comp sel_all
143

144 sel_elemstep sel_all
145 sel_elemlc sel_all
146

147 strain_elems sel_all elemstrain_comp sel_mtx
elemstra_transfid 0

148 stress_elems sel_all elemstress_comp sel_mtx
elemstre_transfid 0

149 other_elems sel_prop numprop 1 prop 1 ent gregion
150 elemother_comp sel_list numlist_items 1 2

166 endsec_outdrv

Line 128 defines the format used for the result output with help of keyword outgr_format
whose value is set to gid. This results into one GiD file with all result quantities
(damage-beam.res) that will be specified later in this part and another file with the
mesh description (damage-beam.msh). The common GiD file name is given in line 131 to
which the corresponding suffix will be added automatically.

After that the time/load steps and load case numbers must be given at which the
nodal results will be printed out. In this case, all load steps are selected (line 133)
and all load cases are selected (line 134). Should be noted that load cases cannot be
selected independently because of nonlinearity of the problem and results are calculated

13.13. SETUP OF THE RESULT OUTPUT 153

for sum of proportional (1st) load case and constant (2nd) load case and thus load case
selection should be just sel_all defined for keyword sel_nodlc. Having the time/load
steps and load cases specified, the print configuration of particular nodal quantities follows
providing the selection of nodes for each quantity, where the given quantity will be printed
out, followed by the selection of the given quantity components. Thus line 136 specifies
that for all nodes, all displacement components will be printed out while the line 138
selects no nodes (keyword value sel_no) for nodal strains, i.e. no nodal strains will be
printed. The same option is specified for nodal stresses (line 139), and nodal other values
(line 140) and therefore they do not be printed too. Line 141 defines that at all nodes all
components of internal force vector will be printed.

Configuration of nodal values output is followed by the similar configuration of ele-
ment values output performed in all integration points on the selected elements. It starts
with selection of time/load steps (line 144) and load cases (line 145). Using the same key-
word values as for nodes results to the selection of all time/load steps and all load cases.
Line 147 specifies that for all elements (keyword strain_elems), the output of all strain
components (keyword elemstrain_comp) will be performed with no transformation of
components (keyword elemstra_transfid). Line 148 specifies that for all elements (key-
word stress_elems), the output of all stress components (keyword elemstress_comp)
will be performed with no transformation of components (keyword elemstre_transfid).
Selection of all strain and stress components on elements is specified by sel_mtx optional
value that provides the output of strains and stresses in the tensorial form (all their com-
ponents) which allows for better postprocessing in the GiD (calculation of principal values
and vectors). A different way of element selection with help of their property id that is
used for other value output. The line 149 defines that the output of other values will be
carried out for all elements with region property 1. The output will be configured to print
only one other value which is represented by the damage parameter ω. The parameter ω is
stored in the damage model in the other array as the 2nd component. In this case, the list
selection type sel_list is used in other array component selection and this list contains
only one item (numlist_items 1) - see line 150. The list of item identifiers stands at
the end of record and in this case, it contains just number 2, i.e. reference to the 2nd
component of other array. Should be noted that the order of internal variables of the
other array can be arbitrary and it is defined inside the given material model. In this
example, the scalar damage model is used which is contained in the scaldam.cpp source
file where the order of quantities in the other array can be found.

The last part controls output of selected quantities in particular time/load steps which
can be used for creation of diagrams. It will be suitable to print the value of vertical
displacement in the middle of beam and the value of load coefficient in all load steps. The
content of last part of outdrv section is listed below:

118 begsec_outdrv

152 # text output of graphs
153 # number of created files with diagrams
154 numdiag 1
155 damage -beam.dat
156 numunknowns 2 # number of printed unknowns

154CHAPTER 13. NONLINEAR STATICS PROBLEM - SCALAR DAMAGE MODEL

157 sel_diagstep sel_all # type of time step selection = all
time steps

158

159 # setup of the first column
160 point atnode node 4 # node number 4 (applied force)
161 quant_type pr_displ compid 2 # vertical component of

displacement
162

163 # setup of the second column
164 point atnode node 4 # node number 4
165 quant_type pr_appload # unknown type = time
166 endsec_outdrv

where the line 154 defines that the number of diagram files created is 1. The name of
the output diagram file follows on the next line 155. For each diagram file, the number
of printed quantities must be given (line 156) and this number equals to the number of
columns in the table created in the diagram file. The values of selected quantities are
printed to the file in each load step selected. All load steps are selected in this case in
line 157.

After the above initial setup, the definition of particular quantities follows. Each record
contains definition of point at which the given quantity should be printed out followed
by the type of quantity. The first quantity record starts at line 160 where the position
at node 4 is given and the first quantity type is given in line 161 which defines the type
of quantity to be displacement (pr_displ) where the vertical displacement component is
selected (compid 2). The second quantity record starts at line 164 where the position at
node 4 is given again and the quantity type is given in line 165 which defines the type to
be load coefficient pr_appload.

13.14 Preprocessor file
This section contains listing of the whole preprocessor file.

#
Run with: mechprep damage -beam.pr damage -beam.in
#
begsec_files
damage -beam.top
mesh_format sifel
edge_numbering 1
read_mat_strings no
read_mat_kwd yes
endsec_files

begsec_probdesc
Three point bending test of mortar MPA35 beam 40 x40x160 mm

13.14. PREPROCESSOR FILE 155

mespr 1
problemtype mat_nonlinear_statics

straincomp 1
strainpos 1
strainaver 0
stresscomp 1
stresspos 1
stressaver 0
othercomp 1
otherpos 1
otheraver 0
reactcomp 1

adaptivity 0
stochasticcalc 0
homogenization 0
noderenumber 0

type_of_nonlin_solver arclg
stiffmat_type ijth_tangent_stiff
1
10
lambda_determination minangle
al_num_steps 300
al_num_iter 50
al_error 1.0e-3
al_init_length 1.0e-6
al_min_length 1.0e-12
al_max_length 1.0e-5
al_psi 0.0
check_div off
check_total_arcl on
max_total_arc_length 0.0003
check_req_lambda off
al_displ_contr_type nodesdistincr
probdimal 2
11 15
hdbackup nohdb
stiffmatstor spdirect_stor_scr
typelinsol spdirldl
endsec_probdesc

begsec_loadcase
num_loadcases 2

156CHAPTER 13. NONLINEAR STATICS PROBLEM - SCALAR DAMAGE MODEL

#temperature load type for the first load case
lc_id 1
temp_load_type 0
#temperature load type for the second load case
lc_id 2
temp_load_type 0
endsec_loadcase

begsec_mater
num_mat_types 2
elastic isotropic material
mattype elisomat num_inst 1
1 e 10.0e9 nu 0.25
Scalar damage model
Given: Gf = 9 [N/m]
Estimated ft = 0.40 MPa => wf=Gf/ft=2.25e-05
mattype scaldamage num_inst 1
1 ft 4.0e5 uf 2.25e-05 norm_type normazar

cor_dis_energy corr_on gsra ni 50 err 1.0e-2
endsec_mater

begsec_crsec
num_crsec_types 1
crstype csplanestr num_inst 1
1 0.04
endsec_crsec

begsec_nodsurfpr
ndofn 2 propid 1
endsec_nodsurfpr

begsec_nodvertpr
fixed nodes in both directions
bocon propid 6 num_bc 2 dir 1 cond 0.0 dir 2 cond 0.0
nodes fixed in vertical direction
bocon propid 8 num_bc 1 dir 2 cond 0.0
vertical load
nod_load propid 5 lc_id 1 load_comp 0.0 -1.0
endsec_nodvertpr

begsec_nodedgpr
rigid plate <=> coupled DOFs on edge 5
dof_coupl propid 5 ndir 1 dir 2
endsec_nodedgpr

13.14. PREPROCESSOR FILE 157

begsec_elsurfpr
element type specification
el_type propid 1 planeelementlt strastrestate planestress
material model assigning
el_mat propid 1 num_mat 2 type scaldamage type_id 1

type elisomat type_id 1
thickness of the specimen 40 mm
el_crsec propid 1 type csplanestr type_id 1
volume load
volume_load propid 1 lc_id 2 ncomp 2

func_type stat coord_sys 1
load_comp 0.0 -12.0e3

endsec_elsurfpr

begsec_outdrv
#-------------------------------
Definition of MEFEL output |
#-------------------------------

description of output to the text file
textout 0

description of output to the text file
GiD format - one huge file
outgr_format grfmt_gid

graphics output file name without extension
damage -beam

sel_nodstep sel_all
sel_nodlc sel_all

displ_nodes sel_all displ_comp sel_all

strain_nodes sel_no
stress_nodes sel_no
other_nodes sel_no

force_nodes sel_all force_comp sel_all

sel_elemstep sel_all
sel_elemlc sel_all

strain_elems sel_all elemstrain_comp sel_mtx
elemstra_transfid 0

158CHAPTER 13. NONLINEAR STATICS PROBLEM - SCALAR DAMAGE MODEL

stress_elems sel_all elemstress_comp sel_mtx
elemstre_transfid 0

other_elems sel_prop numprop 1 prop 1 ent gregion
elemother_comp sel_list numlist_items 1 2

text output of graphs
number of created files with diagrams
numdiag 1
damage -beam.dat
numunknowns 2 # number of printed unknowns
sel_diagstep sel_all # type of time step selection = all

time steps

setup of the first column
point atnode node 4 # node number 4 (applied force)
quant_type pr_displ compid 2 # vertical component of

displacement

setup of the second column
point atnode node 4 # node number 4
quant_type pr_appload # unknown type = time
endsec_outdrv

Chapter 14

Time dependent problem -
visco-plastic model

This section describes how to prepare MEFEL input file with the help of MECHPREP for
the time dependent problem with nonlinear visco-plastic material. The problem involves a
bar composed from two parts with the different cross section area subjected by load which
is variable in course of time. The nonlinearity is induced by the material model of visco-
plasticity which is handled by Perzyna’s approach [13] where J2 flow criterion is being
adopted. One part of the bar has length of 500 mm and cross section area A1=201.1 mm2,
the other part has length of 400 mm and cross section area A2=113.1 mm2. The settings
of the example is depicted in Fig. 14.1.

1g
2g

A21A

500 mm 400 mm

F(t)

Figure 14.1: Settings of a bar with the visco-plastic model

The loading consists of two load cases that are assumed to influence the structure
simultaneously:

1. defines static dead weight load given by values g1 and g2

2. defines load F(t) whose components are prescribed by suitable time functions; in
this case, the horizontal component is defined by time function whose diagram is
given in Fig. 14.2 and the vertical component is 0.

There are two possibilities how to define load cases. In the first approach, the load
is defined with the help of subloadcases that are involved in one main load case. The
definition of subloadcases is the same as in the linear or nonlinear statics problems but

159

160 CHAPTER 14. TIME DEPENDENT PROBLEM - VISCO-PLASTIC MODEL

0 5 10 15
t [s]

0

500

1000

1500

2000

2500

3000

t
[s

]

0 5 10 15
t [s]

0

500

1000

1500

2000

2500

3000

t
[s

]

Figure 14.2: Diagram of time dependent force F(t).

the time function for load coefficient of every subloadcase must be given. Each load
component of the given subloadcase is multiplied by the actual value of load coefficient
in course of the time stepping. In the second approach, the definition of load in the given
load case is more general - every load component must be specified as an independent time
function. In both approaches, the same results can be attained but they result in different
size of load section of the MEFEL input file depending on the problem solved. The type
of approach is selected by the appropriate value of num_sublc. For the subloadcase
approach, a nonzero value must be given after the keyword num_sublc while the zero
must be specified for load components defined by independent time functions.

The material of the bar is assumed with following parameters: Young modulus E=2 GPa,
Poisson’s ratio ν=0.35, yield stress of part 1 fs1=10.06 MPa, yield stress of part 2
fs2=2.55 MPa and coefficient of viscosity η=2.5×10−9 Pa·s.

14.1 Topology file
In the first step, a mesh file must be created and corresponding property identifiers must be
defined in order to MECHPREP can work. The mesh file can be created manually in editor
with respect to the simple topology. More details about the sifel topology format can be
found in section 4.2. Should be noted that property numbering scheme exploits just vertex
property identifiers at nodes, for the assignment of supports and nodal force, and volume
properties on elements for the assignment of material parameters. It should be noted that
node 2 forms interface between elements and thus consistently, it should involve volume
property identifiers from both elements. The topology file bar-viscopl.top (including
comments of the SIFEL format) is listed below

14.2. PREPROCESSOR FILE - SECTION FILES 161

1 #
2 # section of nodes
3 #
4

5 3 # number of nodes
6

7 # node_id , coord_x , coord_y , coord_z , num_prop ,
8 # {prop_ent prop_ent_num} x numprop
9 1 0.0 0.0 0.0 2 1 1 4 1

10 2 0.5 0.0 0.0 3 1 2 4 1 4 2
11 3 0.9 0.0 0.0 2 1 1 4 2
12

13 #
14 # section of elements
15 #
16

17 2 #number of elements
18

19 # elem_id , elem_type=bar , node_1 , node_2 , volume_prop_id
20 1 1 1 2 1
21 2 1 2 3 2

The file bar-viscopl.top can be displayed with the help of MeshEditor tool where it is
possible to visualize the property identifiers by various colors as in Fig. 14.3.

Figure 14.3: Simple bar structure - mesh with visualized property identifiers

14.2 Preprocessor file - section files

Having the mesh file with property identifiers created, a preprocessor file should be pre-
pared. Preprocessor file is composed from the several sections that may be organized
arbitrarily in the file but they will be introduced in the order of the real processing in
MECHPREP. Each preprocessor file must contain section files which in this case has
the following contents:

1 begsec_files
2 bar -viscopl.top

162 CHAPTER 14. TIME DEPENDENT PROBLEM - VISCO-PLASTIC MODEL

3 mesh_format sifel
4 edge_numbering 0
5 read_mat_strings no
6 read_mat_kwd yes
7 read_crs_strings no
8 read_crs_kwd yes
9 endsec_files

where the topology input file is being specified to be bar-viscopl.top in line 2 then the
format of the topology file is given in line 3 and finally, it is given that edge and surface
property identifiers are not given on elements - line 4.

It is supposed that materials and cross sections will be given in the preprocessor file
directly and thus no file names of material and cross section files are given. More details
about this preprocessor section can be found in 9.1. Additionally, the material parameters
will not be processed as strings but by particular material model read procedures (line
8) and keywords will be used in the parameter definition (line 9). Additionally, the same
setup for the cross section parameter processing is given in lines 10 and 11. Cross section
parameters will not be processed as strings but by particular cross section read procedures
(line 10) and keywords will be used in the parameter definition (line 11).

14.3 Preprocessor file - section probdesc

This section is used by MEFEL to identify the type of problem solved, the type of nonlinear
and linear equation system solver and some other calculation setup. Some details about
the particular cases of probdesc setup can be found in [10]. In this case, the following
setup is chosen:

15 begsec_probdesc
16 Simple bar structure with viscoplasticity model
17 mespr 1 # detail output
18 problemtype mech_timedependent_prob
19

20 straincomp 0 # no explicit strain computation
21 stresscomp 0 # no explicit stress computation
22 othercomp 0 # no explicit internal variable computation
23 reactcomp 0 # no explicit reaction computation
24

25 adaptivity 0 # adaptivity is not used
26 stochasticcalc 0 # deterministic computation
27 homogenization 0 # homogenization is not applied
28 noderenumber no_renumbering # nodes are not renumbered
29

30 time_contr_type fixed # time steps with fixed length
31 start_time 0.0
32 end_time 15.5

14.3. PREPROCESSOR FILE - SECTION PROBDESC 163

33 num_imp_times 0 # the number of important times
34 funct_type stat
35 const_val 0.01 # initial time step length
36

37 timetypeprin seconds
38 hdbackup nohdb
39

40 nr_num_iter 10
41 nr_error 1.0e-6
42 check_div off
43

44 stiffmatstor skyline_matrix # skyline storage of system
matrix

45 stiffmat_type initial_stiff
46 typelinsol ldl # solution by LDL decomposition
47 endsec_probdesc

In this section, the title of the problem solved is given in line 16, detailed message printing
is switched on (line 17) and material time dependent problem type with negligible inertial
forces is specified to be solved in line 18.

In the sequential two blocks of commands, the explicit strain calculation is off (line 20),
the same setup for explicit stress computation is defined in line 21 and for internal (other)
variables in lines 22. Finally, the explicit calculation of reactions is not required in line 23.
Should be noted the above setup may ignored with respect to problem type which requires
calculation of strains, stresses and internal variables at integration points. Additionally,
output of reactions will be required in the outdriver section and therefor they will be
calculated before the call of output procedure. All additional advanced techniques such
as mesh adaptivity (line 25), stochastic calculations (line 25), homogenization techniques
(line 37) and node renumbering (line 28) are not taken into account in the computation.

Remaining blocks of commands defines the time stepping and the type of solver of
system of nonlinear algebraic equations. Line 30 defines that the time stepping will be
proceeded with the fixed time step length, with start time 0.0 (line 31) and finish time
15.5 (line 32). There are no important times in which the calculation should be performed
(line 33). The time step length is given by gfunct type record (see 7) which can define
step length with respect to attained time. In this case, constant type of time function is
given in line 34 and the fixed time step length of 0.01 s is defined in line 35. Basically,
all time values should be specified in seconds in the input file but resulting time units at
output files can be defined by keyword timetypeprin. In this case, there is not required
conversion of time values on the output and therefor the keyword value is seconds in line
37. Backup of particular load steps on harddisk is not performed (line 38).

The block with the setup of Newton-Raphson iteration procedure for nonlinear cal-
culation follows. Line 40 defines the maximum number of iterations performed in the
equilibrium search. Required residual norm follows in line 41 and no iteration divergency
will be checked (line 42). The last block define that skyline_matrix storage of system ma-
trix is used (line 44), the initial stiffness matrix approach will be employed (line 45) and

164 CHAPTER 14. TIME DEPENDENT PROBLEM - VISCO-PLASTIC MODEL

the equation system will be solved with the help of LDL solver (line 46). It is possible to
apply this setup in this case because the system matrix is symmetric and positive definite
for the initial matrix defined in the visco-plastic model.

14.4 Preprocessor file - section loadcase

This section defines the number of load cases and some details about the content of
particular load cases. According to the problem setting, this section looks as follows:

50 begsec_loadcase
51 num_loadcases 1
52

53 # the subloadcase approach for the load definition is
selected , i.e.

54 # the number of subloadcases is nonzero
55 lc_id 1 num_sublc 2 # the main load case 1 involves 2

subloadcases
56

57 # load coefficient of the 1. subloadcase
58 tfunc_lc_id 1
59 tfunc_slc_id 1
60 funct_type tab # type of general function - table
61 approx_type linear # piecewise linear interpolation
62 ntab_items 8 # the number of rows in table
63 # {time , load_coef_value} x 8
64 -1.0 2.2e3
65 4.0 2.2e3
66 4.0 5.0e2
67 8.0 5.0e2
68 8.0 2.5e3
69 12.0 2.5e3
70 12.0 1.0e2
71 16.0 1.0e2
72 # load coefficient of the 2. subloadcase
73 tfunc_lc_id 1
74 tfunc_slc_id 2
75 funct_type stat # type of general function - constant
76 const_val 1.0 # constant value
77

78 # temperature load type for the first load case
79 #
80 # the first subloadcase
81 tempr_type_lc_id 1
82 tempr_type_slc_id 1
83 temp_load_type 0

14.5. PREPROCESSOR FILE - SECTION MATER 165

84 # the second subloadcase
85 tempr_type_lc_id 1
86 tempr_type_slc_id 2
87 temp_load_type 0
88 endsec_loadcase

where where one load case is established in line 51, and for each load case, the number
of subloadcases must be specified. For each subloadcase, the time function for load co-
efficient magnitude and type of temperature load must be given. The load coefficient
magnitude is given by command triples tfunc_lc_id, tfunc_slc_id and gfunct while
temprature load is given by command triples tempr_type_lc_id, tempr_type_slc_id
and temp_load_type for each subloadcase. All load cases are composed just from force
load, i.e. no temperature load is defined in lines 81–83 and 85–87. Only the first subload-
case is fully time dependent, i.e. scaled by the piece-wise constant function defined by
gfunct record in lines 58–71, while the second subloadcase is intended for constant dead
weight load which remains constant until the end of computation (lines 73–76).

14.5 Preprocessor file - section mater
This section contains the list of material models and their parameters. In this example,
the distribution of material properties is assumed to be different for both bar elements,
the material of element 1 has yield stress fs1=10.06 MPa while yield stress of element
2 is fs2=2.55 MPa. It is assumed to visco-plastic material model for both elements and
this material type requires to specify one model of viscous behaviour and other model
for plasticity. Furthermore, each plasticity model requires definition of elastic behaviour.
Therefore four material types must be defined in this section whose content is listed below

91 begsec_mater
92 num_mat_types 4
93 # elastic isotropic material
94 mattype elisomat num_inst 1
95 1 e 2.0e9 nu 0.35
96 # simple 1D plasticity yield condition
97 mattype simplas1d num_inst 2
98 1 fs 1.06e7 k 0.0 nostressretalg nohs
99 2 fs 2.55e6 k 0.0 nostressretalg nohs

100 # simple viscous material
101 mattype simvisc num_inst 1
102 1 eta 2.5e-9
103 # artificial material for combination of visco -plasticity
104 mattype viscoplasticity num_inst 1
105 1 # there are no parameters of visco -plasticity material
106 endsec_mater

In the section, four material types (elastic isotropic, simple 1D plasticity, simple viscosity
and visco-plasticity) are being defined (line 92) and sequential lines contains the specifica-

166 CHAPTER 14. TIME DEPENDENT PROBLEM - VISCO-PLASTIC MODEL

tion of these material types. The line 94 defines that the material type is elastic isotropic
with one instance of material parameter set. Line 95 defines the first instance of mate-
rial parameter set of elastic isotropic material which requires two parameters - Young’s
modulus (2 GPa) and Poisson’s ratio (0.35). The second material model is represented by
simple 1D plasticity model with two instances of parameter sets (line 97). The parameter
sets are defined in lines 98 and 99 where the yield stress is set to fs1=10.6 MPa and
fs2=2.55 MPa respectively. In both cases, hardening modulus is 0, i.e. perfect plastic-
ity with no hardening is to be solved. Additionally, the setup of stress return algorithm
and setup of hardening modulus evolution must be given at the end of material param-
eter record. In this case, no stress return algorithm is required because visco-plastic is
integrated explicitly and no hardening setup is required with respect to zero hardening
modulus. One instance of model of simple viscosity model is defined in line 101 for which
the viscosity coefficient η=2.5×10−9 Pa·s is being defined in line 102. The last material
model type is represented by artificial material model for combination of viscous and
plasticity material models whose one instance is defined in line 104. The last line 105 of
the section defines material parameters for visco-plastic artificial material which require
no parameters.

14.6 Preprocessor file - section crsec
This section contains the list of cross sections and their parameters. In this example, the
cross section is given by the cross section area A1=201.1×10−6 m2 for the bar element 1
and cross section area A2=113.1×10−6 m2 of the element 2. The section has the following
content:

109 begsec_crsec
110 num_crsec_types 1
111 crstype csbar2d num_inst 2
112 1 a 201.1e-6
113 2 a 113.1e-6
114 endsec_crsec

In the section, only one cross section type (for 2D bar elements) is being defined (line
110) and sequential lines contains the specification of instances of the cross section type.
The line 111 defines that the cross section type is for plane bar elements (csbar2d) with
two instances of cross section parameter set. The last two lines 112 and 113 defines cross
section parameter sets for these instances which require just one parameter - cross section
area.

14.7 Preprocessor file - number of nodal DOFs
The section nodvolpr defines common properties for group of nodes involved in the vol-
ume/region with specific property id. The most common use of this section is for the
specification of number of DOFs at nodes. In this example, two DOFs are defined in all
nodes of the mesh. The section content is listed below:

14.8. PREPROCESSOR FILE - DIRICHLET’S BOUNDARY CONDITIONS 167

127 begsec_nodvolpr
128 ndofn 2 propid 1 # number of degrees of freedom at nodes
129 ndofn 2 propid 2 # number of degrees of freedom at nodes
130 endsec_nodvolpr

where the command ndofn in line 89 defines two DOFs at all nodes with surface property
id 1, i.e. on the whole domain solved.

14.8 Preprocessor file - Dirichlet’s boundary condi-
tions

Dirichlet’s boundary condition prescribes values of primary unknowns defined in the prob-
lem solved and they can be prescribed with help of bocon command. In this example,
this type of boundary conditions are represented by fixed node on the left and right end
points of bar structure and vertically fixed node in the middle. These nodes are marked
by the vertex property identifiers 1 and 2 respectively and therefore the bocon command
should be placed in the nodvertpr section whose content is listed below

118 begsec_nodvertpr
119 bocon propid 1 num_bc 2 dir 1 cond 0.0 dir 2 cond 0.0 #

left and right supports
120 bocon propid 2 num_bc 1 dir 2 cond 0.0 # middle support

123 endsec_nodvertpr

where displacements are prescribed to be zero values for all DOFs (defined in the previous
section) of node with vertex property id 1 (line 119) while for node with property id 2,
only the vertical (2nd) DOF is prescribed to be zero (line 120).

14.9 Preprocessor file - nodal time dependent load
The time dependent load is represented by horizontal force F(t) applied in the middle
node of bar structure. The node has got assigned vertex property id 2 and thus the
nod_load command should be placed in the nodvertpr section.

118 begsec_nodvertpr

121 # time dependent force in the middle node
122 nod_load propid 2 lc_id 1 slc_id 1 load_comp 1.0 0.0
123 endsec_nodvertpr

In the command in line 122, load case id must be set 1 and and subloadcase id must be
set also to 1 in order to be load components scaled by the load coefficient defined in lines
60-71. In this case, the basic magnitude of the horizontal load component is set to 1.0
and thus the resulting load component is prescribed by load coefficient value directly.

168 CHAPTER 14. TIME DEPENDENT PROBLEM - VISCO-PLASTIC MODEL

14.10 Preprocessor file - element type, material model,
cross section

The FE type and material model are essential properties of elements which must be given
in all kinds of problems. In this example, all elements have the same FE type and material
models differs not in types but in parameters only. Therefore the most simple way how
to assign them to elements is the use of corresponding commands in the element section
elvolpr keeping in mind that the volume/region property id 1 is assigned to element 1
and property id 2 is assigned to element 2. The element type can be assigned by the
command el_type while material model by the command el_mat.

133 begsec_elvolpr
134 # element properties for thick bar
135 el_type propid 1 bar2d
136 el_mat propid 1 num_mat 4 type viscoplasticity type_id 1
137 type simvisc type_id 1
138 type simplas1d type_id 1
139 type elisomat type_id 1
140 el_crsec propid 1 type csbar2d type_id 1

146 # element properties for narrow bar
147 el_type propid 2 bar2d
148 el_mat propid 2 num_mat 4 type viscoplasticity type_id 1
149 type simvisc type_id 1
150 type simplas1d type_id 2
151 type elisomat type_id 1
152 el_crsec propid 2 type csbar2d type_id 2

157 endsec_elvolpr

where lines 135 and 147 assigns plane bar element with linear shape functions. The visco-
plastic material model type is assumed to be on both elements. The model with higher
yield stress 10.6 MPa is assigned to element 1 by the command in lines 136 and 139. The
model is composed from four independent parts (keyword num_mat) one for visco-plastic
model (viscoplasticity - line 136), one for model of viscosity (simvisc - line 137), the
other for plasticity (simplas1d - line 138) and the last model for for elasticity (elisomat
- line 139). All models refers to the first instance of material parameter set with help of
keywords type_id. Cross section type and parameters for element 1 are defined in line
140 which refers to parameter set instance with larger cross section area.

The model with lower yield stress 2.55 MPa is assigned to element 2 by the command
in lines 147 and 152. The model is composed from four independent parts (keyword
num_mat) one for visco-plastic model (viscoplasticity - line 148), one for model of
viscosity (simvisc - line 149), the other for plasticity (simplas1d - line 150) and the last
model for for elasticity (elisomat - line 151). All models except of plasticity refers to the
first instance of material parameter set with help of keywords type_id. The plasticity
model refers to the second instance of parameter set where the lower yield stress is being

14.11. PREPROCESSOR FILE - CONSTANT LOAD 169

defined. Cross section type and parameters for element 2 are defined in line 152 which
refers to parameter set instance with a smaller cross sectional area.

14.11 Preprocessor file - constant load
In the second subloadcase, the structure is loaded by dead weight load which must be
applied to all elements in the mesh. It can be achieved by the command volume_load
placed in the section elvolpr because all elements has got assigned the same volume
property ids 1 and 2. Both commands should refer to the second subloadcase which is
being defined as constant. The syntax of the command is listed below

133 begsec_elvolpr

141 # dead weight load defined as volumetric load
142 volume_load propid 1 lc_id 1 slc_id 2
143 ncomp 2 func_type stat coord_sys 1
144 load_comp 0.0 -12.0e3

153 # dead weight load defined as volumetric load
154 volume_load propid 2 lc_id 1 slc_id 2
155 ncomp 2 func_type stat coord_sys 1
156 load_comp 0.0 -12.0e3
157 endsec_elvolpr

where the lines 142–144 defines volume load on all elements with volume/region property
id 1, the load is applied in the load case 1 and subloadcase 2 which is kept constant for the
whole computation procedure. The same command is being applied in lines 154–156 but
for elements with property id 2. In both cases, two load components are given (keyword
ncomp), the load is defined to be with constant distribution (keyword func_type), applied
in the global coordinate system (keyword coord_sys) and finally, the dead weight load
12 kN/m3 is applied in the vertical direction (keyword load_comp).

14.12 Setup of the result output
The last section that has to be specified is represented by section outdrv where the
output of results from MEFEL should be configured. More details about this section can
be found in [10]. The section is composed from three parts dealing with different forms of
result output. The first part controls output to the file in the text form has the following
content:

160 begsec_outdrv
161 #-------------------------------
162 # Definition of MEFEL output |
163 #-------------------------------
164

170 CHAPTER 14. TIME DEPENDENT PROBLEM - VISCO-PLASTIC MODEL

165 # description of output to the text file
166 textout on
167 bar -viscopl -slc.out
168 sel_nodstep sel_all
169 sel_nodlc sel_all
170 displ_nodes sel_all displ_comp sel_all
171 strain_nodes sel_no
172 stress_nodes sel_no
173 other_nodes sel_no
174 reactions 1
175

176 sel_elemstep sel_all
177 sel_elemlc sel_all
178 strain_elems sel_all elemstrain_comp sel_all

elemstra_transfid 0
179 stress_elems sel_all elemstress_comp sel_all

elemstre_transfid 0
180 other_elems sel_all elemother_comp sel_all
181

182 sel_pointstep sel_no

232 endsec_outdrv

The text output is switched on by the command on line 166. The results in plain format
will be printed to the text file whose name is given in line 167 (bar-viscopl-slc.out).

After that the time/load steps and load case numbers must be given at which the
nodal results will be printed out. In this case, all load steps are selected (line 168)
and all load cases are selected (line 169). Should be noted that subloadcases cannot be
selected independently because of nonlinearity of the problem and results are calculated
for sum of all subloadcases and thus load case selection should be just sel_all defined
for keyword sel_nodlc. Having the time/load steps and load cases specified, the print
configuration of particular nodal quantities follows providing the selection of nodes for
each quantity, where the given quantity will be printed out, followed by the selection of
the given quantity components. Thus line 170 specifies that for all nodes, all displacement
components will be printed out while the line 171 selects no nodes (keyword value sel_no)
for nodal strains, i.e. no nodal strains will be printed. The same option is specified for
nodal stresses (line 172), and nodal other values (line 173) and therefore they do not be
printed too. Line 174 defines that at all nodes all reaction components will be printed.

Configuration of nodal values output is followed by the similar configuration of ele-
ment values output performed in all integration points on the selected elements. It starts
with selection of time/load steps (line 176) and load cases (line 177). Using the same key-
word values as for nodes results to the selection of all time/load steps and all load cases.
Line 178 specifies that for all elements (keyword strain_elems), the output of all strain
components (keyword elemstrain_comp) will be performed with no transformation of
components (keyword elemstra_transfid). Line 179 specifies that for all elements (key-

14.12. SETUP OF THE RESULT OUTPUT 171

word stress_elems), the output of all stress components (keyword elemstress_comp)
will be performed with no transformation of components (keyword elemstre_transfid).
Selection of all strain and stress components on elements is specified by sel_all optional
value that provides the output of strain and stress components as independent scalar
values. The line 180 defines that the output of other values will be carried out for all
elements and all internal variables will be printed (keyword elemother_comp). Finally,
there is no output of quantities at user defined points on elements (line 182).

The second part controls output in the various formats used in graphic postprocessor
tools. In this example, the GiD format is required which allows for the most advanced
configuration of the output. The part configuring this output is listed below:

160 begsec_outdrv

184 # description of output to the text file
185 # 3 = GiD format - one huge file
186 outgr_format grfmt_gid
187

188 # graphics output file name without extension
189 bar -viscopl -slc
190

191 sel_nodstep sel_all
192 sel_nodlc sel_all
193 displ_nodes sel_all displ_comp sel_all
194 strain_nodes sel_no
195 stress_nodes sel_no
196 other_nodes sel_no
197 force_nodes sel_all force_comp sel_all
198

199 sel_elemstep sel_all
200 sel_elemlc sel_all
201 strain_elems sel_all elemstrain_comp sel_all

elemstra_transfid 0
202 stress_elems sel_all elemstress_comp sel_all

elemstre_transfid 0
203 other_elems sel_all elemother_comp sel_all

232 endsec_outdrv

Line 186 defines the format used for the result output with help of keyword outgr_format
whose value is set to grfmt_gid. This results into one GiD file with all result quantities
(bar-viscopl-slc.res) that will be specified later in this part and another file with the
mesh description (bar-viscopl-slc.msh). The common GiD file name is given in line
189 to which the corresponding suffix will be added automatically.

After that the time/load steps and load case numbers must be given at which the
nodal results will be printed out. In this case, all load steps are selected (line 191)
and all load cases are selected (line 192). Should be noted that subloadcases cannot be

172 CHAPTER 14. TIME DEPENDENT PROBLEM - VISCO-PLASTIC MODEL

selected independently because of nonlinearity of the problem and results are calculated
for sum of all subloadcases and thus load case selection should be just sel_all defined
for keyword sel_nodlc. Having the time/load steps and load cases specified, the print
configuration of particular nodal quantities follows providing the selection of nodes for
each quantity, where the given quantity will be printed out, followed by the selection of
the given quantity components. Thus line 193 specifies that for all nodes, all displacement
components will be printed out while the line 194 selects no nodes (keyword value sel_no)
for nodal strains, i.e. no nodal strains will be printed. The same option is specified for
nodal stresses (line 195), and nodal other values (line 196) and therefore they do not be
printed too. Line 197 defines that at all nodes all components of internal force vector will
be printed.

Configuration of nodal values output is followed by the similar configuration of ele-
ment values output performed in all integration points on the selected elements. It starts
with selection of time/load steps (line 199) and load cases (line 200). Using the same key-
word values as for nodes results to the selection of all time/load steps and all load cases.
Line 201 specifies that for all elements (keyword strain_elems), the output of all strain
components (keyword elemstrain_comp) will be performed with no transformation of
components (keyword elemstra_transfid). Line 202 specifies that for all elements (key-
word stress_elems), the output of all stress components (keyword elemstress_comp)
will be performed with no transformation of components (keyword elemstre_transfid).
Selection of all strain and stress components on elements is specified by sel_all optional
value that provides the output of strain and stress components as independent scalar
values. The line 203 defines that the output of other values will be carried out for all
elements and all internal variables will be printed (keyword elemother_comp).

The last part controls output of selected quantities in particular time/load steps which
can be used for creation of diagrams. It will be suitable to print the value of horizontal
displacement and horizontal force component in the middle of bar structure and the
value of actual time at all time steps. Additionally, attained stresses will be printed at
integration points of both elements. The content of last part of outdrv section is listed
below:

160 begsec_outdrv

205 # text output of graphs
206 # number of created files with diagrams
207 numdiag 1
208 bar -viscopl -slc.dat
209 numunknowns 5 # number of printed unknowns
210 sel_diagstep sel_all # type of load step selection = all

load steps
211

212 # point type = node , node id = 2
213 point atnode node 2
214 # printed nodal quantity = time
215 quant_type pr_time
216 # point type = node , node id = 2

14.13. PREPROCESSOR FILE 173

217 point atnode node 2
218 # printed nodal quantity = displacement , 1st component
219 quant_type pr_displ compid 1
220 # point type = node , node id = 2
221 point atnode node 2
222 # printed nodal quantity = force , 1st component
223 quant_type pr_forces compid 1
224 # point type = element ip , local integration point id = 2
225 point atip elem 1 ip 1
226 # printed element quantity = stress , 1st component
227 quant_type pr_stresses compid 1
228 # point type = element ip , local integration point id = 1
229 point atip elem 2 ip 1
230 # printed nodal quantity = stress , 1st component
231 quant_type pr_stresses compid 1
232 endsec_outdrv

where the line 207 defines that the number of diagram files created is 1. The name of
the output diagram file follows on the next line 208. For each diagram file, the number
of printed quantities must be given (line 209) and this number equals to the number of
columns in the table created in the diagram file. The values of selected quantities are
printed to the file in each load step selected. All load steps are selected in this case in
line 210.

After the above initial setup, the definition of particular quantities follows. Each
record contains definition of point at which the given quantity should be printed out
followed by the type of quantity. The first quantity record starts at line 213 where the
position at node 2 is given and the first quantity type is given in line 215 which defines
the type of quantity to be actual time.

The second quantity record starts at line 217 where the position at node 2 is given
and the second quantity type is given in line 219 which defines the type of quantity to
be displacement (pr_displ) where the horizontal displacement component is selected
(compid 1).

The third quantity record starts at line 221 where the position at node 2 is given again
and the quantity type is given in line 223 which defines the type to be force pr_forces
and its horizontal component is selected (keyword compid).

The fourth quantity record starts at line 225 where the position at the first integration
point (keywords atip, ip) of element 1 (keyword elem) is being defined. The type of
quantity is specified in line 227 which defines the type to be stress pr_stresses and its
first component (keyword compid). The same record with different element number is
defined for the fifth quantity in lines 229–231.

14.13 Preprocessor file
This section contains listing of the whole preprocessor file.

174 CHAPTER 14. TIME DEPENDENT PROBLEM - VISCO-PLASTIC MODEL

#
Run with: mechprep bar -viscopl.pr bar -viscopl.in
#
begsec_files
bar -viscopl.top
mesh_format sifel
edge_numbering 0
read_mat_strings no
read_mat_kwd yes
read_crs_strings no
read_crs_kwd yes
endsec_files

begsec_probdesc
Simple bar structure with viscoplasticity model
mespr 1 # detail output
problemtype mech_timedependent_prob

straincomp 0 # no explicit strain computation
stresscomp 0 # no explicit stress computation
othercomp 0 # no explicit internal variable computation
reactcomp 0 # no explicit reaction computation

adaptivity 0 # adaptivity is not used
stochasticcalc 0 # deterministic computation
homogenization 0 # homogenization is not applied
noderenumber no_renumbering # nodes are not renumbered

time_contr_type fixed # time steps with fixed length
start_time 0.0
end_time 15.5
num_imp_times 0 # the number of important times
funct_type stat
const_val 0.01 # initial time step length

timetypeprin seconds
hdbackup nohdb

nr_num_iter 10
nr_error 1.0e-6
check_div off

stiffmatstor skyline_matrix # skyline storage of system
matrix

14.13. PREPROCESSOR FILE 175

stiffmat_type initial_stiff
typelinsol ldl # solution by LDL decomposition
endsec_probdesc

begsec_loadcase
num_loadcases 1

the subloadcase approach for the load definition is
selected , i.e.

the number of subloadcases is nonzero
lc_id 1 num_sublc 2 # the main load case 1 involves 2

subloadcases

load coefficient of the 1. subloadcase
tfunc_lc_id 1
tfunc_slc_id 1
funct_type tab # type of general function - table
approx_type linear # piecewise linear interpolation
ntab_items 8 # the number of rows in table
{time , load_coef_value} x 8
-1.0 2.2e3
4.0 2.2e3
4.0 5.0e2
8.0 5.0e2
8.0 2.5e3

12.0 2.5e3
12.0 1.0e2
16.0 1.0e2
load coefficient of the 2. subloadcase
tfunc_lc_id 1
tfunc_slc_id 2
funct_type stat # type of general function - constant
const_val 1.0 # constant value

temperature load type for the first load case
#
the first subloadcase
tempr_type_lc_id 1
tempr_type_slc_id 1
temp_load_type 0
the second subloadcase
tempr_type_lc_id 1
tempr_type_slc_id 2
temp_load_type 0

176 CHAPTER 14. TIME DEPENDENT PROBLEM - VISCO-PLASTIC MODEL

endsec_loadcase

begsec_mater
num_mat_types 4
elastic isotropic material
mattype elisomat num_inst 1
1 e 2.0e9 nu 0.35
simple 1D plasticity yield condition
mattype simplas1d num_inst 2
1 fs 1.06e7 k 0.0 nostressretalg nohs
2 fs 2.55e6 k 0.0 nostressretalg nohs
simple viscous material
mattype simvisc num_inst 1
1 eta 2.5e-9
artificial material for combination of visco -plasticity
mattype viscoplasticity num_inst 1
1 # there are no parameters of visco -plasticity material
endsec_mater

begsec_crsec
num_crsec_types 1
crstype csbar2d num_inst 2
1 a 201.1e-6
2 a 113.1e-6
endsec_crsec

properties of nodes defined by vertices
begsec_nodvertpr
bocon propid 1 num_bc 2 dir 1 cond 0.0 dir 2 cond 0.0 #

left and right supports
bocon propid 2 num_bc 1 dir 2 cond 0.0 # middle support
time dependent force in the middle node
nod_load propid 2 lc_id 1 slc_id 1 load_comp 1.0 0.0
endsec_nodvertpr

properties of nodes defined at regions
begsec_nodvolpr
ndofn 2 propid 1 # number of degrees of freedom at nodes
ndofn 2 propid 2 # number of degrees of freedom at nodes
endsec_nodvolpr

14.13. PREPROCESSOR FILE 177

begsec_elvolpr
element properties for thick bar
el_type propid 1 bar2d
el_mat propid 1 num_mat 4 type viscoplasticity type_id 1

type simvisc type_id 1
type simplas1d type_id 1
type elisomat type_id 1

el_crsec propid 1 type csbar2d type_id 1
dead weight load defined as volumetric load
volume_load propid 1 lc_id 1 slc_id 2

ncomp 2 func_type stat coord_sys 1
load_comp 0.0 -12.0e3

element properties for narrow bar
el_type propid 2 bar2d
el_mat propid 2 num_mat 4 type viscoplasticity type_id 1

type simvisc type_id 1
type simplas1d type_id 2
type elisomat type_id 1

el_crsec propid 2 type csbar2d type_id 2
dead weight load defined as volumetric load
volume_load propid 2 lc_id 1 slc_id 2

ncomp 2 func_type stat coord_sys 1
load_comp 0.0 -12.0e3

endsec_elvolpr

begsec_outdrv
#-------------------------------
Definition of MEFEL output |
#-------------------------------

description of output to the text file
textout on
bar -viscopl -slc.out
sel_nodstep sel_all
sel_nodlc sel_all
displ_nodes sel_all displ_comp sel_all
strain_nodes sel_no
stress_nodes sel_no
other_nodes sel_no
reactions 1

sel_elemstep sel_all

178 CHAPTER 14. TIME DEPENDENT PROBLEM - VISCO-PLASTIC MODEL

sel_elemlc sel_all
strain_elems sel_all elemstrain_comp sel_all

elemstra_transfid 0
stress_elems sel_all elemstress_comp sel_all

elemstre_transfid 0
other_elems sel_all elemother_comp sel_all

sel_pointstep sel_no

description of output to the text file
3 = GiD format - one huge file
outgr_format grfmt_gid

graphics output file name without extension
bar -viscopl -slc

sel_nodstep sel_all
sel_nodlc sel_all
displ_nodes sel_all displ_comp sel_all
strain_nodes sel_no
stress_nodes sel_no
other_nodes sel_no
force_nodes sel_all force_comp sel_all

sel_elemstep sel_all
sel_elemlc sel_all
strain_elems sel_all elemstrain_comp sel_all

elemstra_transfid 0
stress_elems sel_all elemstress_comp sel_all

elemstre_transfid 0
other_elems sel_all elemother_comp sel_all

text output of graphs
number of created files with diagrams
numdiag 1
bar -viscopl -slc.dat
numunknowns 5 # number of printed unknowns
sel_diagstep sel_all # type of load step selection = all

load steps

point type = node , node id = 2
point atnode node 2
printed nodal quantity = time
quant_type pr_time
point type = node , node id = 2

14.13. PREPROCESSOR FILE 179

point atnode node 2
printed nodal quantity = displacement , 1st component
quant_type pr_displ compid 1
point type = node , node id = 2
point atnode node 2
printed nodal quantity = force , 1st component
quant_type pr_forces compid 1
point type = element ip , local integration point id = 2
point atip elem 1 ip 1
printed element quantity = stress , 1st component
quant_type pr_stresses compid 1
point type = element ip , local integration point id = 1
point atip elem 2 ip 1
printed nodal quantity = stress , 1st component
quant_type pr_stresses compid 1
endsec_outdrv

180 CHAPTER 14. TIME DEPENDENT PROBLEM - VISCO-PLASTIC MODEL

Bibliography

[1] SVN pages of SIFEL versions http://cml.fsv.cvut.cz/websvn/

[2] Download page of SIFEL https://cml.fsv.cvut.cz/getsifel/

[3] SIFEL web pages http://mech.fsv.cvut.cz/~sifel

[4] GiD - The Personal Pre and Post Processor http://www.gidhome.com/

[5] - T3D Mesh Generator http://ksm.fsv.cvut.cz/~dr/ t3d.html

[6] - T3D User Guide http://mech.fsv.cvut.cz/~dr/ software/T3d/guide/guide.html

[7] - GEFEL manual

[8] - PARGEF manual

[9] - MEFEL manual

[10] - MEFEL input files on http://mech.fsv.cvut.cz/~sifel/MA1/ONLINE/ infiles.html

[11] - MIDAS manual on http://mech.fsv.cvut.cz/~da/MIDAS/en/

[12] - MECHPREP example files on http://mech.fsv.cvut.cz/~sifel/MAN/
mechprep-exam.zip

[13]

181

Index

cross section, 31
example, 33, 34
type, 32

elements
SIFEL format, 18, 19

general function, 37
constant, 38
example, 38, 40–42
parsed expression, 38
set of parsed expressions, 40
table of integer values, 41
table of real values, 39
types, 37

gfunct, see also general function

keywords
a, 34, 35, 70
alpha, 68
approx_type, 39, 40, 59
basevec, 60
begsec_crsec, 57, 70
begsec_elvolpr, 67, 68, 70, 78
begsec_files, 57, 70
begsec_gfunct, 56, 78, 80
begsec_mater, 58, 59, 67, 68
begsec_nodedgpr, 59
begsec_nodsurfpr, 56, 58, 59
begsec_nodvolpr, 57
bocon, 54
clim, 29
coh, 29
cond, 54, 62
const_val, 38
coord_sys, 71–75
crstype, 31, 34, 35, 57, 70
dim, 60
dir, 54–56, 58, 59

dload_type, 49, 50
dof_coupl, 55
dof_coupld, 55
e, 29, 58, 60, 67, 68
edge_load, 73, 74
edge_numbering, 46
edges, 18
eigstr_comp, 77
el_crsec, 70
el_eigstr, 77
el_load, 71–73
el_mat, 65, 67–69
el_tfunc, 78
el_type, 65
elem_id, 18
elem_id, 18
eltype, 18
endsec_crsec, 57, 70
endsec_elvolpr, 67, 68, 70, 78
endsec_files, 57, 70
endsec_gfunct, 56, 78, 80
endsec_mater, 58–60, 67, 68
endsec_nodedgpr, 59
endsec_nodsurfpr, 56, 58, 59
endsec_nodvolpr, 57
enodes, 18
eprop, 18
err, 29
faces, 18
fs, 29, 59
ft, 29
func_formula, 38, 40, 41
func_type, 73–77
funct_type, 37, 38, 40–42, 56, 78, 80
gf_id, 56, 78–80
glob_id, 18
hanging_nodes_file, 46

182

INDEX 183

ini_cd_type, 62
itab, 42, 56, 78, 80
ix, 35
iy, 35
iz, 35
k, 29, 59
kappa_y, 35
kappa_z, 35
lc_id, 49, 50, 54, 60–63, 71–77
limval, 40, 41
load_comp, 60, 61, 71–77
load_type, 71–73
loc_z, 35
macro_strain_comp, 49
macro_stress_comp, 49
mattype, 25, 28, 29, 58–60, 67, 68
mesh_format, 46
ncomp, 71–77
ndir, 55, 56
ndofn, 53
nedge, 71
ni, 29
nitab_items, 41, 42, 56, 78, 80
nod_crsec, 56, 57
nod_inicond, 62
nod_lcs, 60
nod_load, 60, 61
nod_spring, 58, 59
nod_tdload, 61
nod_temper, 63
nod_tfunc, 55, 56
node_id, 18
notation, 13
nsurf, 72, 73
ntab_items, 39, 40, 59
nu, 29, 58, 60, 67, 68
num_crsec_types, 31, 34, 57, 70
num_elements, 18
num_funct, 40, 41
num_gfunct, 56, 78–80
num_inst, 25, 28, 29, 31, 34, 35, 57–60,

67, 68, 70
num_loadcases, 49, 50
num_macro_strain_comp, 49
num_macro_stress_comp, 49

num_mat, 58, 59, 65, 67–69
num_mat_types, 25, 28, 29, 58, 59, 67,

68
num_nodes, 18
num_pres_displ_lc_id, 50
num_pres_displ_slc_id, 50
num_presc_displ, 50
num_sublc, 49, 50
numprop, 18
nval, 62
phi, 29
presc_displ_val, 50
prop, 18
propedg, 18
propid, 53–63, 65, 67–78
propsurf, 18
psi, 29
read_crs_kwd, 46, 57, 70
read_crs_strings, 46, 57, 70
read_mat_kwd, 46
read_mat_strings, 46
rho, 35
slc_id, 54, 60, 63, 71, 73–77
strastrestate, 65
surf_load, 74, 75
temp_load_type, 49, 50
temperature, 63
tempr_type_lc_id, 49, 50
tempr_type_slc_id, 49, 50
tfunc_id, 55, 56, 78
tfunc_lc_id, 49, 50
tfunc_slc_id, 49, 50
theta, 29
thickness, 35, 57
time_functions, 56, 78–80
timedepload, 49
timeindload, 49, 50
type, 56–59, 65, 67–70
type_id, 56–59, 65, 67–70
uf, 29
volume_load, 76, 77
x, 18
y, 18
z, 18

184 INDEX

material, 25
example, 28, 29
type, 26

MECHPREP
compilation, 16
input file, 45
section crsec, 51
section files, 46
section loadcase, 48
section mater, 51
section probdesc, 48

installation, 15
notation, 13
running, 16

mesh, 17
generator, 22
gensifquad, 22
SIFEL format, 18
T3D format, 17

nodes
hanging, 43
SIFEL format, 18

section
crsec, 51
files, 46
loadcase, 48
mater, 51
probdesc, 48

