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Chapter 1

Manual summary

1.1 Introduction

This short manual is devoted to a module of SIFEL code - an open-source finite ele-
ment (FE) computer code designed for Thermo-hygro-mechanical analyses of bentonite
materials used in engineered barriers for nuclear waste storage. This software was de-
veloped in the scope of project No. TK01010063 supported by the Technology Agency
of the Czech Republic. The Thermo-hygro-mechanical model is based on a microme-
chanical approach of non-isothermal water and vapor flow in a porous medium presented
in [Schrefler and Lewis, 1998] and a double structure hypoplastic model for expansive
clays presented in [Maš́ın, 2013], [Maš́ın and Khalili, 2016], and [Maš́ın, 2017]. Both mod-
els are extended, coupled, and implemented into the finite element code.

The manual is organized into three chapters. After the introduction in Chapter 1,
Chapter 2 describes the mathematical background of implementing the FEM for the
coupled problems in the SIFEL software package. The chapter summarizes the basic
ideas of the code, which is written in C++. There is a short description of several base
classes used in the code which store fundamental data used in the FEM analysis, such as
topology, matrices, solvers, and internal state variables. The computer implementation
is illustrated by a simple benchmark of watering a bentonite sample. The last Chapter 3
presents the program compilation and running with the description of input files.
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Chapter 2

Numerical solution of coupled
problems and its computer
implementation

2.1 Coupled problem

2.1.1 Partially coupled approach

The coupled analysis is based on the equation of the mechanical problem written in matrix
form derived from the finite element method

Kudu = f ext, (2.1)

and on the equation for the transport problem also written in matrix form derived from
the finite element method

KTdT +CT ḋT = fT . (2.2)

For example, the thermal effect on the mechanical response is usually added in to the
constitutive equation (Hook’s law) relating the strains ε and stresses σ

σ = Du (ε− εT ) , (2.3)

where Du is the stiffness matrix of the material, ε is the vector of total strains, and the
vector of thermal strains, εT , depends on the thermal expansion coefficient, αT , and the
difference of the actual temperature T , and the initial temperature, T0,

εT = mTαT (T − T0), m = (1, 1, 1, 0, 0) . (2.4)

After the FEM discretisation, the right-hand side of the mechanical problem is extended
by temperature effect

Kudu = f ext + fTu (2.5)

where

fuT =

∫
Ω

BT
uDuεTdΩ . (2.6)
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The above system of Equation (2.5) represents a partially coupled problem, so-called one
way coupled problem, where the mechanical problem is influenced by the heat transfer
problem. For the numerical solution, it is convenient to use a staggered algorithm, in
which both transport and mechanical analysis are solved simultaneously in time. The
data from transport analysis are transferred only to mechanical analysis. It means the
heat transfer analysis is solved first, and then in each time step, the temperatures are
transferred to the mechanical part to compute thermal strains. From the numerical point
of view, the rate form of Equation (2.5) is more convenient

Kuḋu = ḟ ext + ḟuT (2.7)

2.1.2 Fully coupled approach

If the mechanical material properties are influenced by temperature changes or the me-
chanical response is non-linear, it is convenient to solve both transport and mechanical
parts together in a fully coupled analysis. In such a problem, the vector with thermal
strains is split into two parts

fuT =

∫
Ω

BT
uDuεTdΩ =

∫
Ω

BT
uDuαTm

TNTdΩ dT −
∫
Ω

BT
uDuαTm

TNTdΩ dT0 ,(2.8)

where the vector dT0 contains initial nodal temperatures. Merging of both problem (2.5)
and (2.2) together and applying of previous decomposition (2.8) lead to the system of
equations for the fully coupled problem(

Kuu KuT

0 KTT

)(
du

dT

)
+

(
0 0
0 CTT

)(
ḋu

ḋT

)
=

(
f ext + f 0

uT

fT

)
, (2.9)

where dT is the vector of nodal temperatures, and fT is the vector of prescribed nodal
heat fluxes and sources. The first equation in the system (2.9) expresses the equilibrium
condition while the second equation in this system of equation represents the heat balance
condition. The zero blocks in the heat balance equation determine the independence of
the heat transfer on the mechanical problem. On the other hand, the mechanical problem
is coupled with the heat transfer through coupling matrix KuT and vector f 0

uT resulting
from the first and the second part of the vector fuT in Equation (2.8), respectively.

KuT = −
∫
Ω

BT
uDuαTm

TNTdΩ , f 0
uT = −

∫
Ω

BT
uDuαTm

TNTdΩ dT0 . (2.10)

The matrix Kuu is the stiffness matrix previously denoted Ku, the matrix KTT is the
conductivity matrix KT , and the matrix CTT is the capacity matrix CT , respectively.

Slightly different system of equations is obtained when using the rate form for the
mechanical part (2.7)(

0 0
0 KTT

)(
du

dT

)
+

(
Kuu KuT

0 CTT

)(
ḋu

ḋT

)
=

(
ḟu

fT

)
. (2.11)

The numerical solution of the system of Equations (2.9) follows the v-form or d-form
algorithms presented for the transport problem by relations (2.21) to (2.23).
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In the case of a more complicated coupled thermo-hygro-mechanical problem, the
system may have the form with non-zeros off-diagonal blocks Cuu CuT Cuφ

CTu CTT CTφ

Cφu CφT Cφφ

 ḋu

ḋT

ḋφ

+

 Kuu KuT Kuφ

KTu KTT KTφ

Kφu KφT Kφφ

 du

dT

dφ

 =

 fu

fT

fφ

 ,(2.12)

where the subscript u denotes the displacements, the subscripts φ denotes the relative
humidity and the subscript T denotes the temperature. The vectors du, dT , and dφ

contain unknown nodal variables, the vectors fu, fT , and fφ represent prescribed nodal
forces and fluxes, the matrices K with indices stands for the stiffness, conductivity and
coupling matrices and the matrices C with indices denote the capacity and coupling
matrices. The vectors fu, fT , and fφ are further split into three contributions. The
vector fu is the sum of vectors fuu, fuT , fuφ representing contributions to the nodal forces
from mechanical analysis, temperature changes, and humidity changes. The meaning of
other components is similar in the vectors fT and fφ.

The system of differential equations (2.12) can be written more compactly in the form

C(d)ḋ+K(d)d = f . (2.13)

The dependency of the stiffness, conductivity, capacity, and coupling matrices on the
attained values of variables is explicitly denoted.

It has to be noted that the permanent recalculation of matrices K and C with con-
cerning actual nodal values is very computationally demanding. In such a case, the matrix
of the system of equations C(d)+∆tαTK(d) has to be always factorized, requiring addi-
tional computational time. Experiences with numerical simulation show that the modified
Newton-Raphson method, which changes the system matrices only at the beginning of
a new time step, is suitable for weak non-linear problems. On the other hand, the full
version of the Newton-Raphson method computing matrices in each inner iteration step
in each time step is the best choice for analyses with strong non-linear dependency.

2.2 Solution of system of nonlinear equations

Equation (2.13) is a system of ordinary differential equations and its time integration is
based on the general trapezoidal rule [Hughes, 1987].

ḋ = v (2.14)

dn+1 = dn +∆tvn+α (2.15)

vn+α = (1− α)vn + αvn+1 , (2.16)

where subscripts denote the time step. The system of Equation (2.2) has the similar form
at actual time step n+ 1

Kdn+1 +Cḋn+1 = fn+1 . (2.17)

If time approximations (2.14) to (2.16) are taken into account, the equation (2.17) leads
to another form

(C + α∆tK)vn+1 = fn+1 −Kdn − (1− α)∆tKvn . (2.18)
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The predictor-corrector method can be used for the computer implementation, where the
predictor reads

d̃n+1 = dn + (1− α)∆tvn (2.19)

and the corrector has the form

dn+1 = d̃n+1 + α∆tvn+1 . (2.20)

With the help of the predictor and corrector, Equation (2.18) is slightly modified

(C + α∆tK)vn+1 = fn+1 −Kd̃n+1 . (2.21)

The system (2.21) contains time derivatives of the nodal values vn+1. This approach is
called v-form, which is not always hassle-free from the numerical point of view. Therefore
additional approach, called d-form, can be used. Time derivatives of nodal values are
expressed from Equation (2.20) in the form

vn+1 =
1

α∆t
(dn+1 − d̃n+1) (2.22)

which is reasonable for α > 0 and ∆t > 0. Substitution of expression (2.22) to the balance
equation (2.21) leads to the form(

1

α∆t
C +K

)
dn+1 = fn+1 +

1

α∆t
Cd̃n+1 . (2.23)

In case of non-linear system of Equation (2.17), where material parameters are depen-
dent on the temperature field, the Newton-Raphson method [Bittnar and Šejnoha, 1996],
[Crisfield, 1991] has to be used in every time step. For example in the v form (2.21),
the trial solution vn+1,0 of the system of equations is used for computation of the trial
nodal values dn+1,0 which are obtained from Equations (2.15) and (2.16). Substitution of
the trial solution back to the system of Equations (2.21) with actual matrices does not
generally lead to equality. An iteration loop, called the inner iteration loop, in every time
step is based on residual which can be computed from the relationship

rn+1,j = fn+1 −Kn (dn +∆t(1− α)vn) (2.24)

− (Cn+1,j +∆tαKn+1,j)vn+1,j ,

where Cn+1,j and Kn+1,j denote the matrices evaluated for dn+1,j and j is the index of
the inner loop. Corrections of nodal time derivatives are computed from the equation

(Cn+1,j +∆tαKn+1,j)∆vn+1,j+1 = rn+1,j (2.25)

and new time derivatives are obtained

vn+1,j+1 = vn+1,j +∆vn+1,j+1. (2.26)

Another approach how to solve the nonlinear algebraic Equations (2.17) comes from
the equilibrium of fluxes (computed and prescribed) in nodes, which is taken over from
the mechanical problems. This strategy is based on the equation

f int = f ext (2.27)
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where vectors f int and f ext contain internal values and prescribed/computed values, re-
spectively. Both vector depend on time t, on the vector of unknown temperature d and on
derivatives of unknown temperatures with respect to time v. The vector f int expressed
at actual time step tn+1 has the form

f int(dn+1,vn+1, tn+1) ≈ f int(dn,vn, tn) +
∂f int

∂d
∆dn +

∂f int

∂v
∆vn , (2.28)

where ∆dn and ∆vn are increments over ∆t = tn+1−tn. Previous relation can be rewritten
with help of notation

Kn =
∂f int(tn)

∂d
, Cn =

∂f int(tn)

∂v
. (2.29)

in the new expression

Kn∆dn +Cn∆vn = f int(tn+1)− f int(tn) . (2.30)

There are two sets of relations

dn+1 = dn +∆dn, vn+1 = vn +∆vn (2.31)

and recalled Equations (2.15) and (2.16)

dn+1 = dn +∆tvn+α, vn+α = (1− α)vn + αvn+1 . (2.32)

After substitution of (2.31) and (2.32) into expression (2.30)

(Cn + α∆Kn)vn+1 = f int(tn+1)− f int(tn) + (Cn −∆t(1− α)Kn)vn , (2.33)

where
f int(tn) = Kndn +Cnvn (2.34)

is applied. The new vector vn+1 is calculated from Equation (2.32), and the vector dn+1

is then obtained. Due to nonlinearity in material properties, the equality

f int(tn+1) = f ext(tn+1) (2.35)

is generally not valid and the residuum is computed

Rn+1 = f ext(tn+1)− f int(tn+1) (2.36)

The vector vn+1 corrections has to be evaluated from the relation

(Cn+1 + α∆tKn+1)∆vn+1,j = Rn+1,j . (2.37)

The final vector vfin
n+1 is the sum of contributions from inner iteraton loop

vfin
n+1 = vn+1 +

∑
j

∆vn+1,j . (2.38)

The final equality is reached at the and of the inner iteration process

ffin
int(d

fin
n+1,v

fin
n+1, tn+1) = ffin

ext(d
fin
n+1,v

fin
n+1, tn). (2.39)

If the matrices C and K are updated in every inner step, the full Newton-Raphson
method is used. If the matrices are updated only once after every time step, the modified
Newton-Raphson method is used.



Numerical solution of coupled problems and its computer implementation 10

2.3 Computer Code of the THM model

Experiences with the implementation of numerical methods, material models, and tools
for coupled problems and parallel computing showed several contradicting requirements,
namely in commercial software. It was decided to start the development of the new
open-source code SIFEL [Kruis et al., 2021]. The acronym SIFEL was derived from SIm-
ple Finite ELements. The Thermo-Hygro-Mechanical model for bentonite materi-
als was built as an extension of the SIFEL code. It uses its basic features and func-
tions. This section describes the code’s philosophy, the structure, used programming
techniques, and data structures. More details about this software can also be found in
references [Kruis et al., 2010] and [Koudelka et al., 2010].

The following requirements were determined when programming the code:

� Portability of the code. The universities had different hardware and software equip-
ment. Notably, the portability between different operating systems was required
(Linux, Windows, HP Unix).

� Simple programming techniques. The members of the project were experts in the
branch of mechanical and transport processes with solid knowledge of programming
languages but were not professional programmers. Source codes should be under-
standable for all team members as well as for new participants.

� Speed of program execution. The programming language should be compiled (FOR-
TRAN, C++) rather than interpreted (Java).

Comparing to FORTRAN 77 and FORTRAN 90 languages, C++ was selected as more
portable and comprehensive. Moreover, fast executable C++ compilers are other bene-
fits. Sometimes, the extensive usage of object-oriented programming techniques decreases
clarity for new participants. It was concluded that C++ language would be used with-
out most object-oriented programming features and concepts. From the object-oriented
programming point of view, data abstraction and encapsulation were found to be useful
concepts and understandable for all project participants. Data are joined together with
essential functions, which initialize them and perform basic operations. Compared to the
usual recommendations, the data was left public initially, and it can be changed to private
later depending on needs and experiences [Koudelka et al., 2011].

The easy extensibility of code is probably the most crucial requirement. Another
essential need is connected with code performance. These two basic requirements for
the system are contradictory because the very efficient implementation of a numerical
method differs significantly from the description of the method in textbooks. Therefore
the orientation in the code is complicated.

The attention was rather concentrated on the suitable formulation of the problem and
the correct analysis. Detailed analysis of the system of nonlinear ordinary differential
Equations (2.12) reveals the similarity of particular submatrices. The stiffness and con-
ductivity matrices (denoted by K with appropriate subscripts) generally have the form

Kij =

∫
Ω

BT
i DijBjdΩ , (2.40)
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where Bi and Bj denote the gradient matrices, Dij denotes the matrix of stiffness or
conductivity of the material and the indexes i and j substitute any of indexes u, T , p1
or p2. Similarly, the capacity matrices (denoted by C with appropriate indexes) have
generally the form

Cij =

∫
Ω

NT
i H ijN jdΩ , (2.41)

where N i and N j denote the matrices of base functions, and H ij denotes the matrix of
material parameters.

The part of the computer code dealing with coupled analyses is created for easy and
clear extensibility. When modeling, e.g., geomechanics, additional variables must be
introduced in the constitutive equations, and additional balance equations must be added
to the system. In such a case, the thermo-mechanical problem (2.9) extended by the pore
pressures and capacity terms results in the general form


Cuu CuT Cup1 Cup2

CTu CTT CTp1 CTp2

Cp1u Cp1T Cp1p1 Cp1p2

Cp2u Cp2T Cp2p1 Cp2p2




ḋu

ḋT

ḋp1

ḋp2

 +

+


Kuu KuT Kup1 Kup2

KTu KTT KTp1 KTp2

Kp1u Kp1T Kp1p1 Kp1p2

Kp2u Kp2T Kp2p1 Kp2p2




du

dT

dp1

dp2

 =

=


fu

fT

f p1

f p2

 =


fuu + fuT + fup1 + fup2

fTu + fTT + fTp1 + fTp2

f p1u + f p1T + f p1p1 + f p1p2

f p2u + f p2T + f p2p1 + f p2p2

 , (2.42)

where the index u denotes the displacements, the indexes p1 and p2 are the pore
pressures, and T represents the temperature. The vectors du, dT , dp1 and dp2 contain
unknown nodal variables. The vectors fu, fT , f p1, and f p2 represent prescribed nodal
forces and fluxes. The matrices K denote the stiffness, conductivity, and the matrices
C denote the capacity and coupling matrices. The vectors fu, fT , f p1, and f p2 are
further split into four contributions. The right-hand side vectors f are the sum of several
components, e.g., the vector fu is the sum of vectors fuu, fuT , fup1, and fup2, which
represent contributions to the nodal forces from mechanical analysis, temperature changes,
and pore pressures.

The solution of the system of Equation (2.42) directly offers the instruction for efficient
implementation. The implementation of the coupled hygro-thermo-mechanical problems
is based on three independent modules. The first module, MEFEL, is a separate computer
code for mechanical analysis that can stand alone. This module can deal with pure
mechanical analyses. It assembles submatrices Kuu,Cuu, and subvector fuu. The second
module, TRFEL, is an independent computer code for heat and moisture transfer, which
can also be used separately. It assembles the submatricesKTT , KTp1 , KTp2 , Kp1T , Kp1p1 ,
Kp1p2 , Kp2T , Kp2p1 , Kp2p2 , and subvectors fTT , fTp1 , fTp2 , f p1T , f p1p1 , f p1p2 , f p2T ,
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f p2p1 , f p2p2 . The coupling between the mechanical and transport part is implemented
into the third module, METR, which deals with the off-diagonal terms in the coupled
problem. This module assembles the submatrices KuT , Kup1 , Kup2 , KTu, Kp1u, Kp2u,
and subvectors fuT , fup1 , fup2 , fTu, f p1u, f p2u.

At this time, many merging software concepts can be found in the literature, which
consist of combinations of the existing computer codes and the data exchanges among
them. Unfortunately, they result in staggered algorithms, and they cannot attain fully
coupled analysis. In the SIFEL concept, the merging of the whole other parts of the code is
not proceeding, but suitable subroutines from particular parts are used. Additionally, new
subroutines dealing with the coupling terms had to be implemented. For an illustration
of the merging complexity, the numbers of lines of the source code are summarized. The
MEFEL code contains approximately 225100 lines, the TRFEL code contains 173800
lines, and the METR code contains 50900 lines. The number of lines of source code in
METR is higher than the usual amount of lines in the typical merging code. On the other
hand, it enables staggered and fully-coupled analysis, and the resulting code is compiled,
therefore, very fast.

The additional advantage stems from the fact that any improvement of the mechanical
or transport module is automatically projected to the code for coupled problems. It is
also very convenient for developers who can deal with one part of the whole system only.

The program can solve stationary and non-stationary, linear and nonlinear problems
of heat and moisture transfer as well as linear and nonlinear statics, eigenvibrations,
dynamics, and time-dependent problems with neglected inertial forces. Various types
of finite elements can model a 2D and 3D domain. In the SIFEL program, there are
bar, triangular, quadrilateral, tetrahedron, and hexahedron elements implemented. Both
types of approximation functions, linear and quadratic, can be used. Other features, such
as the sequential construction modeling or parallel version of the code, can be found in
references [Kruis et al., 2021] and [Koudelka et al., 2011].

2.3.1 Code structure

The code is split into independent parts that deal with a single physics problem. The
part dealing with mechanical analysis is denoted MEFEL; the part dealing with transport
processes is denoted TRFEL. There is also part GEFEL, which contains comprehensive
tools needed in connection with the finite element method. The link of the mechanical
part and the transport part is implemented in an additional part METR.

Let the matrix K defined in Equation (2.12) be assumed. It can be split into subma-
trices separated by the lines

K =


Kuu KuT Kup1 Kup2

KTu KTT KTp1 KTp2

Kp1u Kp1T Kp1p1 Kp1p2

Kp2u Kp2T Kp2p1 Kp2p2

 (2.43)

The diagonal block Kuu is the stiffness matrix, and it represents mechanical analyses
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only. This submatrix is assembled in the MEFEL module. The second diagonal block KTT KTp1 KTp2

Kp1T Kp1p1 Kp1p2

Kp2T Kp2p1 Kp2p2

 (2.44)

is the conductivity matrix, and it represents the transport process, where, e.g., heat and
moisture are assumed. This submatrix is assembled in the TRFEL module. Two off-
diagonal submatrices (

KuT Kup1 Kup2

)
(2.45)

and  KTu

Kp1u

Kp2u

 (2.46)

describe the coupling between mechanical behavior and transport processes, and they are
assembled in the METR module.

2.3.2 Structure of MEFEL, TRFEL and METR

For each module (MEFEL, TRFEL, METR), the data describing the given problem are
split into five large classes.

� probdesc - class containing the problem description,

� top - class including data relating finite element mesh,

� mat - class including data describing materials used,

� crsec - class representing data for cross-sections,

� bclc - class containing data representing boundary conditions and loadings.

The names of classes differ for particular problems by a postfix created from the problem
name abbreviation. The data of these classes are necessary almost everywhere in the code,
and this led to make them global objects. Thus, each class has one instance that is a
global variable. This approach reduces the number of parameters passed to functions. In
addition to that, each module contains global objects connected with the system matrices
and vectors of unknowns.

The class probdesc contains attributes describing the solved problem. There is a
group of attributes describing the type of problem, quantities computed, and solver of
the systems of linear equations. Also, there is an object of class hdbcontr, which controls
storage/re-storage of time steps to/from the disk. In the case of nonlinear problems, there
are also objects of classes timecon and nonlinman. The timecon holds data controlling
time steps while the nonlinman contains control parameters for the Newton-Raphson or
arclength methods. The probdesc class has data members public because they are often
used for reading, and they are seldom changed.
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The class top contains topological data connected with the mesh of elements. It in-
cludes three essential arrays of objects of classes node, element, and edge. The class node
contains data intended for the node, such as coordinates, the DOFs, and code numbers
of particular DOFs. The class element provides nodal connectivity of the given element,
type of material and cross-section, code numbers, etc. Similarly, the edge contains data
describing boundaries. The top also includes arrays of adjacent nodes, elements, and
distances of integration points.

The array of objects of intpoints is the most important data member of the class
mat. The class intpoints contains intrinsic values computed in the particular integration
points such as strains, stresses, fluxes, gradients, and other quantities. There are also
arrays of initial conditions for integrations points, the array of values of unknowns from
coupled problems, etc. For example, in the mechanical part, the mechmat class contains
arrays of temperature and moisture values at integration points. The mat class also has
arrays of objects of supported material types, i.e., implemented material models. Each
material type has one object per one set of material parameters.

The class crsec contains arrays of objects for particular cross-section types. There
are also methods for retrieving basic cross-section parameters such as thickness or area.

The bclc class holds data about boundary conditions that are arranged in particular
load cases. Several load cases can be defined in static and also in time-dependent problems.
Every load case can contain several sub-load cases due to better control of the time-
dependent load. The boundary conditions can be specified for the given load case at
nodes, elements, edges, and surfaces. Thus, bclc class contains the array of objects of the
loadcase class, in which the boundary conditions are stored, array of initial conditions,
and several auxiliary data members. The bclc class has only several methods for data
manipulation, and the loadcase class provides most of the functionality.

2.3.3 Data Storage

Two sets of data are needed in the case of problems solved by the finite element method.
There is a set of data describing finite element mesh, i.e., node coordinates and node
connectivity. The second set contains values of state and derived variables (displacements,
strains, stresses, plastic strains, temperatures, heat fluxes, etc.).

Finite element mesh

Two arrays of objects describe finite element mesh. One array contains objects of the
class node, and the second array contains objects of the class element. The class node
represents a node of finite element mesh. The class definition is in Table 2.1. It contains
node coordinates (line 4), the number of degrees of freedom (line 2), and the ordering of
DOFs in the whole problem (line 3). The class element represents a finite element, and its
definition is in Table 2.2. It does not take into account whether the element is one, two, or
three dimensional and does not care about the element shape (triangular, quadrilateral,
etc.). Particular standalone objects provide all functionality connected with the FEM
with implemented FE routines. These individual elements are referred from the class
element by et data member. The class element contains the number of nodes defining
the element (line 2), the number of DOFs per element (line 3), the number of Lagrange
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1 class node{
2 long ndofn;

3 long *cn;

4 double x,y,z;

5 };

Table 2.1: Class node

1 class element{
2 long nne;

3 long ndofe;

4 long nmult;

5 long *nodes;

6 long cne;

7 long *cn;

8 long nip;

9 long iip;

10 elemtype et;

11 };

Table 2.2: Class element

multipliers (if they are needed on line 4), the list of nodes (line 5), the indicator whether
the code numbers are defined on the element (line 6), the list of code numbers (line 7),
the list of integration points located on the element (line 8), the number of integration
points defined on the element (line 8), the number of the first integration point (line 9),
and the element type identifier (line 10).

2.3.4 State variables

State variables are stored in integration points. The definition of integration point in
the mechanical analysis is summarized in Table 2.3. The definition of integration point
in transport processes is similar, but it contains arrays of fluxes and gradients. The
integration point includes the type of material model (line 2), the number of components
of strain/stress tensor (line 3). In the case of inelastic problem, some auxiliary values
have to be stored. For example, in the analysis based on plasticity theory, the plastic
strains and plastic multipliers have to be saved. For such purposes, the array eqother

is defined. Unfortunately, one array is not enough because equilibrated values and trial
values must be stored during global equilibrium iteration. Therefore, the array eqother

contains equilibrated quantities, while the array other contains their trial values. The
class comprises the number of components of the array eqother (line 4), the number of
components of the array other (line 5), the array of the stress components (line 6), the
array of the strain components (line 7), the array of other values (line 8), the array of
eqother values (line 9), and the array of nonlocal values (line 10).
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1 class intpoints{
2 mattype tm;

3 long ncompstr;

4 long ncompeqother;

5 long ncompother;

6 double *stress;

7 double *strain;

8 double *other;

9 double *eqother;

10 double *nonloc;

11 };

Table 2.3: Class intpoint

2.3.5 Data access

Access to data can be described using an example dealing with stiffness matrix assembling.
The function assembling global stiffness matrix contains a loop over all finite elements
in a mesh. Each element calls its function for computation of the stiffness matrix. The
typical form of function which computes the stiffness matrix of a single element is in
Table 2.4. The number of nodes nne is known for each element, see 2.2. The array of
node numbers nodes is allocated on line No. 1. The function give elemnodes of the
class top assembles appropriate node numbers to the array nodes (line 2). The function
give thickness of the class crsec assembles the thicknesses to the array t. The function
gauss points(gp,w,nip) assembles the coordinates of the integration points to the array
gp and the weights to the array w. ipp denotes the number of the first integration point
on the current element (line 8). There is a loop over the number of integration points
nip. The function geom matrix(gm,x,y,gp,i,jac) assembles the strain-displacement
matrix, function matstiff(d,ipp) of the class mechmat assembles the stiffness matrix of
the material and the function bdbjac(sm,gm,d,gm,jac) of the current element computes
matrix product BTDB (line 12). The number of the integration point is incremented on
line No. 13.

2.3.6 Data Transfer

The crucial part for coupled analyses is the data transfer among all modules. In the
staggered algorithm, functions trfel mefel() and mefel trfel() transfer state vari-
ables from TRFEL to MEFEL and MEFEL to TRFEL, respectively. In the fully cou-
pled algorithm, the code is completed by four functions trfel metr(), metr trfel(),
mefel metr(), and metr mefel() transferring data between TRFEL and METR, and
between MEFEL and METR. The current SIFEL version has three types of finite ele-
ment meshes using the same nodes and elements numbering in all modules. Transport
and mechanical parts can have polynomial approximation functions of different degrees,
where linear and quadratic functions are the most used. While, the coupling - superior
part adopts approximation functions from inferior MEFEL and TRFEL parts.

There are several possibilities to transfer state variables:
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1 ivector nodes(nne);

2 Mt->give elemnodes (eid,nodes);

3 vector t(nne);

4 Mc->give thickness (eid,nodes,t);

5 vector w(nip);

6 vector gp(nip);

7 gauss points (gp,w,nip);

8 ipp=Mt->elements[eid].ipp;

9 for (i=0;i<nip;i++){
10 geom matrix (gm,x,y,gp,i,jac);

11 Mm->matstiff (d,ipp);

12 bdbjac (sm,gm,d,gm,jac);

13 ipp++;

14 }

Table 2.4: Function stiffness matrix

� by nodal values, e.g., in function trfel mefel by nodes(), where quantities are
copied to nodes from the closest integration points at the particular TRFEL ele-
ments and then passed to MEFEL elements which approximate them to the MEFEL
integration points;

� by nodal values, e.g., in trfel mefel by nodes comp(), where nodal values are
computed directly at particular TRFEL element nodes and then passed to MEFEL
elements which approximate them to the MEFEL integration points;

� by integration points, e. g, in function trfel mefel by aip(Mm->tnip, MTipmap)

which computes/passes coupling data from TRFEL to MEFEL. Data are taken from
the auxiliary integration points in TRFEL and stored in MEFEL to the nonmechq

array for non-mechanical quantities;

� by integration points, e. g, in the function trfel mefel copyip() which transfers
TRFEL quantities to MEFEL as nonmechanical quantities required in MEFEL. In
this case, the meshes must be identical in both MEFEL and TRFEL modules, and
individual values are copied between corresponding integration points;

The same strategy is also used among all parts - MEFEL, TRFEL, and METR.
The universal but the most challenging strategy of the data transfer for the future

work, which uses benefits of the mesh adaptivity problems, is the solution of three inde-
pendent finite element meshes transferring values via the global coordinate system and
finite element approximation functions.

2.3.7 Extensibility

The code extensibility can be illustrated with the help of the conductivity matrix as-
sembling for coupled problems with many variables. The matrix for heat and moisture
transfer has the form in Equation (2.44), where three unknown functions are used in the



Numerical solution of coupled problems and its computer implementation 18

model. These unknowns are temperature T , pore pressure p1, and pore pressure p2. Ta-
ble 2.5 shows a part of the code which computes and assembles the conductivity matrix
of one finite element. ntm denotes the number of unknown functions. In the case of
matrix (2.44), ntm=3. The third row in Table 2.5 represents subroutine, which computes
a submatrix defined by equation(2.40). The matrix is stored in lkm. Appropriate row
and column indexes are obtained by the subroutine codnum (lines 4 and 5), and they are
stored in rcn and ccn. The submatrix (2.40) is added to the conductivity matrix of a
finite element, which is stored in km. Further, the element matrix is localized into the
matrix of the system of algebraic equations. This subroutine shows that extensibility is
ensured, and additional state variables lead to the increase of the variable ntm.

1 for (i=0;i<ntm;i++){
2 for (j=0;j<ntm;j++){
3 conductivity matrix (i,eid,i,j,lkm);

4 codnum (rcn,i);

5 codnum (ccn,j);

6 mat localize (km,lkm,rcn,ccn);

7 }
8 }

Table 2.5: Loop for assembling of the conductivity matrix

2.4 Computer implementation of hypoplastic model

and test benchmarks

Maš́ın in [Maš́ın, 2017] developed the fully-coupled model for bentonite materials deter-
mined for a material point with suction and temperature as input parameters. The im-
plementation and coupling of this model, together with Thermo-hygro-mechanical model
based on Lewis and Schrefler’s approach ([Schrefler and Lewis, 1998]), was then imple-
mented as a staggered algorithm. The transport and mechanical parts run separately
with data transfer. In this concept, the transport part runs first before the mechanical
part. In case of only water flow in deforming medium, the system of equations (2.42)
can be modified for the partially coupled approach for transport and mechanical parts
separately with the mechanical system of equation rewritten in incremental form

� Transport part

Kwwdw +Cwwḋw = fw + fwu, (2.47)

� Mechanical part

Kuu∆du = ∆fu +∆fuw, (2.48)

where

fwu = −Cwudu = −
∫
Ω

NT
w(αSw)m

TBudΩdu = −
∫
Ω

NT(αSw)∆εV dΩ. (2.49)
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Vector ∆εV contains nodal increments of volumetric strains computed from the previous
time step. In the presented notation, the right-hand side vector ∆fuw expresses the forces
caused by changes of pore water pressure computed only in the mechanical part from pore
water pressure (or suction) increments taken from the transport part

∆fuw = −Kuw∆dw = −
∫
Ω

BT
um

T(αSw)NwdΩ∆dw. (2.50)

Vector ∆dw is the vector of pore water pressure increments. In the hypoplastic model, the
vector ∆fuw is computed from the total stress definition. The vector of total stress σtot,
which is defined, e.g., in [Maš́ın, 2017] and [Schrefler and Lewis, 1998], can be expressed
in the form of vector function

σtot = g(ε(u), pw). (2.51)

The time derivative of the stress vector has the form

σ̇tot =
∂g

∂ε
ε̇+

∂g

∂pw
ṗw = Duε̇+ hṗw. (2.52)

The stiffness matrix Du and vector h are derived in [Maš́ın, 2017]. The rate of the total
stress has to satisfy the equilibrium equation in the form

∂T (Duε̇+ hṗw) + ḃ = 0. (2.53)

Recall, ḃ is the time derivative of the body force vector. Additionally, the hypoplastic
model involves state variables given by vector p that can also be formulated in the rate
form and thus generally, the stress rate can be defined by

τ̇ = Mε̇ = Ψ (τ (t),∆ε(t)) , (2.54)

where τ is the generalized stress vector τ = {σ,p}T , M represents the generalized
stiffness matrix and ε is the generalized strain vector ε = {ε, pw}T and Ψ represents the
model response function on the given input of strain increment ∆ε of the actual time step
and attained stress level τ . The explicit integration RKF algorithm with substepping has
been selected and implemented in SIFEL. (2.54) represents the initial value problem given
by the set of ordinary differential equations. These equations can be written in generic
substep k at time interval [tn; tn+1] formally as follows

τ k+1 = τ k +∆tk

s∑
i=1

bi ki (τ k,∆ε(tn+1),∆tk) , (2.55)

where ki (τ k,∆ε(tn+1),∆tk) represents the function Ψ evaluated for the given strain in-
crement of the actual time step ∆ε(tn+1) = ε(tn+1) − ε(tn) and attained stress levels at
the prescribed points of the time interval. In Equation (2.55), dimensionless step length
∆tk ∈ (0; 1] has been introduced with the following definition

∆tk =
tk+1 − tk
tn+1 − tn

. (2.56)

A detailed description of the integration by Runge-Kutta-Fehlberg methods is presented
in the reference [Koudelka et al., 2017].
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2.4.1 Benchmark tests

The computer implementation of the hypoplastic model in connection with Lewis and
Schrefler’s approach was tested on several examples and benchmarks. Suitable bench-
marks can be laboratory tests presented in [Hausmannová, 2017]. These studies focus
on the impact of using high hydraulic gradients on combined measurements of hydraulic
conductivity and swelling pressure. The hydraulic conditions are supposed to be consis-
tent with possible water pressures in a deep repository. Both parameters are determined
in a full saturation state. Measuring these parameters in such a low-permeable bentonite
material requires much time. Therefore, the high hydraulic gradients may accelerate the
determination of these parameters. Experiments with the Czech bentonite 75 (B75) from
Černý vrch deposit were selected for numerical simulations. The material was uniaxially
compacted in the laboratory to reach the required dry density ρd = 1200 to 1750 kg/m3.
The tested samples have a diameter of 30 mm, and a height of 20 mm. The initial values
of hydraulic conductivity and swelling pressure were evaluated using a saturation pore
water pressure pw = 1 MPa corresponding to the gradient of gradpw = 50 MPa/m (hy-
draulic gradient 5000) [Hausmannová and Vaš́ıček, 2014]. A unique device was used to
measure the hydraulic conductivity and the swelling pressure (Figure 2.1). The setup of
this device is described in detail in the reference [Hausmannová and Vaš́ıček, 2014].

Figure 2.1: Scheme of the measuring device [Hausmannová and Vaš́ıček, 2014].

The finite element mesh consists of 20 axisymmetric quadrilateral elements in the
vertical direction. Linear approximation functions are used in the transport part and
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quadratic in the mechanical part. The watering process was modeled as a prescribed
pore water pressure from the bottom with the values taken from the measurements. Two
switching boundary conditions model the top permeable surface. For the first, the water
flux is prescribed zero on the boundary until the water head reaches the closest material
point, equal to zero water pressure. Then, the conditions are changed to the Dirichlet
boundary condition with prescribed zero water pressure. This procedure is commonly
used for free soil surface modeling. The initial pore water pressure pw0 = -100 MPa is set
for all benchmarks. The soil parameters used in the simulations are used from the recent
calibration for bentonite B75 [Sun et al., 2021]. The sample is fixed to avoid its swelling,
and no friction between bentonite material and the steel structure of the testing device is
neglected.

Three tests with dry density ρd=1298 kg/m3, ρd = 1498 kg/m3, and ρd = 1743 kg/m3

were used for verification and validation of coupling of mentioned material models in
SIFEL computer code and setup of their parameters. A comparison of selected results
for different configurations of dry density and hydraulic conductivity is presented. Fig-
ures 2.2 and 2.3 show the history of swelling stress for bentonite samples of dry densities
ρd = 1498 kg/m3 and ρd = 1743 kg/m3, respectively. From the considerable amount
of computations, the best results closed to the measurements are obtained by using of
Bogacki-Shampine integration scheme [Koudelka et al., 2017] for the hypoplastic model in
connection with the smoothed water retention curve [Sun et al., 2021] and for maximum
time step tmax=1000 s [Scaringi et al., 2022]. It has to be mentioned that such numeri-
cal simulations are strongly non-linear, time step length-dependent, and time-consuming.
Most of them took from 10 to 20 hours, despite the use of multithreading architecture via
OpenMP system.

Attained levels of swelling pressure at full saturation depend only on the setup of
initial dry densities. This fact corresponds to the previous experiments and hypoplastic
model calibration. The swelling stress for bentonite with ρd = 1498 kg/m3 is about 3
MPa, and for ρd = 1743 kg/m3 is 10.5 MPa, respectively. The initial swelling pressures
growth is influenced by the sample saturation rate, related to intrinsic permeability (or
hydraulic conductivity). The permeability was assumed constant for all benchmarks.
For better compliance with the measurements in the initial phase, the application of a
relationship dependent on saturation degree can be successfully used. The coincidence
between simulations and measurements is validated as relatively good. The trends of
watering with loading water pressure jumps are captured well.

From the analysis of the results, it can be concluded that coupling the hypoplastic
model in connection with Lewis and Schrefler’s approach in a staggered scheme works well.
However, the model response is primarily dependent on the hypoplastic model setup.
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Figure 2.2: History of water pressure and swelling pressure for bentonite B75 ρd = 1498
kg/m3 and Kw = 2.0·10−13 m/s [Scaringi et al., 2022] (left), and zoom of the initial phase
(right).
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Figure 2.3: History of water pressure and swelling pressure for bentonite B75 ρd = 1743
kg/m3 and Kw = 1.0·10−13 m/s [Scaringi et al., 2022], and zoom of the initial phase
(right).
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Chapter 3

Runing of the program and the
structure of input files

3.1 Compilation and program running

Download source files of the actual version from the link

https://mech.fsv.cvut.cz/∼sifel/TACR/TK01010063/download.html

The actual version of THM Model, e.g., sifel thm 2021.zip, then unpack in an arbi-
trary directory. In the directory METR, build binary files by

make

or with

make opt

for optimized binary files. Another option for optimized binary files and powerfull com-
puting with threading:

make ompopt

The binary file is located in the directory ../BIN/METR/SRC/ DBG. In case of compi-
lation with optimization, the binary file is located in ../BIN/METR/SRC/ OPT, and alter-
natively in ../BIN/METR/SRC/ OMPOPT.

To run the computation download three packed input files and unpack into the same
directory. Copy the binary file into this directory.

./metr bentonite experiment metr1 1298.in

runs the computer simulation for Mockup test of bentonite material with initial dry den-
sity 1298 kg/m3.

To run the computer simulation for Mockup test of bentonite material with initial dry
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density 1498 kg/m3 type

./metr bentonite experiment metr1 1498.in.

Each THM problem comprizes three files for mechanical, transport part, and coupled
part. The name of the inpute file for coupled part has to be an argument when runnig
the program.

3.2 Input files structure

Three input files must be created for each THM problem. It comprises one file for a me-
chanical problem, one for a transport problem, and a file for coupled problem, which con-
nects them together in a staggerred procedure. The input files for mechanical (MEFEL)
and trasnport parts (TRFEL) have the same structure written in a sequence:

� Problem description

� Topology

� Material models

� Boundary and initial conditions

� Outdriver

The input file for coupled part (METR) has more simple structure:

� Problem description

� Outdriver

3.2.1 METR input file

#

# run with ./metr bentonit 2elems metr1 1743.in

#

## Problem description

one-phase flow in deforming porous medium for Mockup test #this is comment

10 #problem type = stagerred coupled mech trans

# input file names for MEFEL and TRFEL

bentonit 2elems mefel1 1743.in -kwd=1

bentonit 2elems trfel1 1743.in

1 #detail message priting = yes

2 #Ladyzhenskaja-Babuska-Brezzi = quadratic linear mesh

3 #type of the passing data between modules 3=data are calculated in auxiliary int. points

1 #transported matter = mech one-medium
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3 #names of transported media = mech water

## Time controler

1 #adaptive time increment length

0.0 #initial time

700000.0 #end time

0 #no important times

0 #constant time step

10.0 #initial time step lenght

1.0e-5 #minimal time step

1000.0 #maximum time step

## Data about solver

2 #Newton-Raphson method = newtonc

400 1.0e-6 #number of inner iterations #error

0 #clean matrices=no

## Output file name

bentonit 2elems metr1 1743.out

3.2.2 MEFEL input file

#

# run with ./mefel bentonit 2elems mefel1 1743.in -kwd=1

#

#

## Problem description is written with "key words"

#

Simple axisymmetric specimen on triaxial test with changed suction pressure on hypoplastic

model, coupled with one-phase flow in deforming porous medium for Mockup test #this is comment

mespr 1

problemtype mech timedependent prob

straincomp 1

strainpos 2

strainaver 1

stresscomp 1

stresspos 2
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stressaver 1

othercomp 1

otherpos 2

otheraver 0

reactcomp 1

adaptivity 0

stochasticcalc 0

homogenization 0

noderenumber 0

time contr type adaptive

start time 0.0

end time 700000.0

num imp times 0

funct type stat

const val 10.0

dtmin 1.0

dtmax 1000.0

timetypeprin seconds

hdbackup nohdb

#solver data

nr num iter 300

nr error 1.0e-10

resid norm type rel react norm

check div off

stiffmatstor dense matrix

stiffmat type secant stiff

typelinsol gauss elim

#

## Topology

#

## Definition of nodes

13 #number of nodes
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# node id, x, y, z, num dof, cross sec type=nocrsec, loc coord sys

1 0.00e-03 0.00e+00 0.00e+00 2 0 0

2 1.00e-03 0.00e-02 0.00e+00 2 0 0

3 0.00e-03 1.00e-02 0.00e+00 2 0 0

4 1.00e-03 1.00e-02 0.00e+00 2 0 0

5 0.00e-03 2.00e-02 0.00e+00 2 0 0

6 1.00e-03 2.00e-02 0.00e+00 2 0 0

7 5.00e-04 0.0e-02 0.00e+00 2 0 0

8 1.00e-03 5.0e-03 0.00e+00 2 0 0

9 5.00e-04 1.0e-02 0.00e+00 2 0 0

10 0.00e-03 5.0e-03 0.00e+00 2 0 0

11 1.00e-03 1.5e-02 0.00e+00 2 0 0

12 5.00e-04 2.0e-02 0.00e+00 2 0 0

13 0.00e-03 1.5e-02 0.00e+00 2 0 0

## Definition of boundary conditons at nodes = constraints

13 #number of boundary conditions

# nod id cond dof1 cond dof2

1 0 0

2 0 0

3 0 1

4 0 1

5 0 0

6 0 0

7 1 0

8 0 1

9 1 1

10 0 1

11 0 1

12 1 0

13 0 1

## Definition of elements

2 #number of elements
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# elem id, elem type=axisymqq=64, node 1, node 2, node 3, elem code num flag, cross sec type=nocrsec,

num mat types, mat type1=hypoplastusattherma matt=421, mat id1

1 64 1 2 4 3 7 8 9 10 0 0 1 421 1

2 64 3 4 6 5 9 11 12 13 0 0 1 421 1

#

## Definition of materials = material models

#

1 #number of different material types

# hypoplastusattherma mat num param sets

421 1

# param set id,

1

# new parameters:

# phi, lam star, kap star, n star,

25.0 0.13 0.06 1.73

# nu , ns , ls , nt , lt , m ,

0.25 0.012 -0.005 -0.07 0.0 1

# alpha s , kappa m, sm star , em star , csh , se ref , em ref,

0.00015 0.07 -2000.0 0.45 0.002 -2700.0 0.50

# tref , at , bt , aer , lambdap0 , p t

294.0 0.118 -0.000154 1.0 0.7 1.0

## Aditional informations

# prescribed suction function = taken from transport part

0 #no

# prescribed temperature

1 # yes

0 # constant function

294.0

# stress integration algorithm

11 # Runge-Kutta-Fehlsberg

# RKF type ni, err, h min,

# RKF type = rkf23bst

1 10000 1.0e-5 1.0e-17

## Definition of cross-section

0 # number of cross sec types
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#

## Boundary conditions = loads

#

1 # type of load = time independent load in subloadcases

1 # number of time dependent load cases

1 # number of subloadcases

# subloadcase 1 - load will be induced by the change of suction

0 # number of loaded nodes

0 # number of loaded elements

0 # number of prescribed displacements

0 # temperature changes will not be assumed

# time function defined by constant value

0 1.0

## Definition of initial conditons at nodes |

13 # number of initial conditions at nodes

# node id, initial cond type=inicond, num of init values, e 0, ascan 0

1 16 2 0.64659 0.0

2 16 2 0.64659 0.0

3 16 2 0.64659 0.0

4 16 2 0.64659 0.0

5 16 2 0.64659 0.0

6 16 2 0.64659 0.0

7 16 2 0.64659 0.0

8 16 2 0.64659 0.0

9 16 2 0.64659 0.0

10 16 2 0.64659 0.0

11 16 2 0.64659 0.0

12 16 2 0.64659 0.0

13 16 2 0.64659 0.0

4 # eigenstresses will be assumed

# folowing lines defines hydrostatic pressure stress state -10.0 kPa

20 # axisymmetric strain/stress state

1 1 1 2 # indeces of general functions for each eigenstress component

2 # total number of eigenstress general functions used

0 -10.0 # the first function is constant

0 0.0 # the second function is constant

# the above setup results in assignment of stress vector sig=sig x, sig z, sig r, tau xz

= -10.0, -10.0, -10.0, 0.0 to all integration points
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#

## Outdriver

#

# No text output

0

# Graphical output into GiD postprocessor files

4

# file name:

bentonit 2elems mefel1 1743

# printing for nodes

4 1 1 # 4=periodic selection of time step, 1= print each 1st step, 1= print all load cases

1 1

0

0

0

1 1

# printing for elements

4 1 1 # 4=periodic selection of time step, 1= print each 1-st step, 1= print all load cases

1 1 0 # 1= print strains on all elements, 1= print all strain components

1 1 0 # 1= print stresses on all elements, 1= print all stress components

1 3 13 # 1 = print eqother on all elements, 3= type of selection of eqother components is

list, 12= number of list components

# id of required eqother componentsx13

12 13 14 15 16 17 18 19 20 21 22 23 24

# table text output

# number of tables for graphs

1

# file name:

bentonit 2elems mefel1 1743.dat

# 1. stress

16 4 1

#2=on an element, No. of element, No. of int. point, ...

2 2 1 2 1 # eps x 1

2 2 1 2 2 # eps y 2

2 2 1 2 3 # eps r 3

2 2 1 2 4 # gamma xy 4

2 2 1 3 1 # sig x 5

2 2 1 3 2 # sig y 6
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2 2 1 3 3 # sig r 7

2 2 1 3 4 # tau xy 8

2 2 1 8 12 # porosity e 9

2 2 1 8 13 # suction 10

2 2 1 8 14 # degree of saturation Sr 11

2 2 1 8 23 # epsv 12

2 2 1 8 24 # e ax 13

2 2 1 8 25 # q ax 14

2 2 1 8 21 # dtsub 15

1 2 9 # time 16

3.2.3 TRFEL input file

#

# run with ./trfel bentonit 2elems trfel1 1743.in

#

#

## Problem description

#

Simple axisymmetric specimen on triaxial test with changed suction pressure on hypoplastic

model, coupled with one-phase flow in deforming porous medium for Mockup test #this is comment

1 #meprt

61 #nonlinear

1 2 1.0 #??

0 0 0 0 #no computation of gradients,fluxes,other,eqother

0 #no gravity

0 #adaptivity

0 #stochastic

0 #homogenization

0 #renumbering

0 #advection contribution

0 #no reaction

## Time controler

1 #adaptive

0.0 #initial time

700000 #70000.0 #57800.0 #1.0e6 #19129730.0 #end time

0 #no important times

0 #constant time step
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10.0 #initial time step lenght

1.0e-5 #minimal time step

1000.0 #maximum time step

1 #type of time printing seconds

0 #no backup

#solver data

0.5 200

1.0e-10 1.0e-10

1 2 0

#information for solver storage type of conductivity and capacity matrix 3 = Dskyline, solver

type LU

3 3 3

#diagonalization of capacity matrix 1 = yes

1

#

## Topology

#

## Definition of nodes

# node id, x, y, z, num dof, cross sec type=nocrsec

13 #number of nodes

1 0.00e-03 0.00e+00 0.00e+00 1 0

2 1.00e-03 0.00e-02 0.00e+00 1 0

3 0.00e-03 1.00e-02 0.00e+00 1 0

4 1.00e-03 1.00e-02 0.00e+00 1 0

5 0.00e-03 2.00e-02 0.00e+00 1 0

6 1.00e-03 2.00e-02 0.00e+00 1 0

7 5.00e-04 0.0e-02 0.00e+00 1 0

8 1.00e-03 5.0e-03 0.00e+00 1 0

9 5.00e-04 1.0e-02 0.00e+00 1 0

10 0.00e-03 5.0e-03 0.00e+00 1 0
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11 1.00e-03 1.5e-02 0.00e+00 1 0

12 5.00e-04 2.0e-02 0.00e+00 1 0

13 0.00e-03 1.5e-02 0.00e+00 1 0

## Definition of boundary conditons at nodes

13 #number of boundary conditions

# nod id cond dof1

1 -1

2 -1

3 1

4 1

5 1

6 1

7 0

8 0

9 0

10 0

11 0

12 0

13 0

## Definition of elements

2 #number of elements

# elem id, elem type=axisymlq=217, node 1, node 2, node 3, 0, cross sec type=2d cross sec no.=1,

4x (mat type1 and mat id1)

1 217 1 2 4 3 0 2 1 601 1

2 217 3 4 6 5 0 2 1 601 1

## Definition of materials = material models

1 #number of different material types

601 1

1 # material number

7 # model type = lewis schrefler for pc solver

1 # no compressibility

1.0 # alpha

2.0e11 # ks

2780.0 # rhos0

-10.0 # pw bc
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8.0e-21 # kintr0

1 # porosity type=from mefel

0 # kintr type = constant

0 # krw type=constant

7 # sr type=mefel

1000.0 # mefel units

0 # vol strain effect

## Definition of cross-section

1

2 1

1 1.0 1.0

#

## Boundary conditions = loads

#

1 #number of loadcases for two unknowns

# part for water pressure:

1 #number of dirichlet’s b.c.

# 1st b.c. for water pressure

# watering process from the bottom:

-100000.0e3 #initial value

2 #tablefunct

1 #piecewise linear

18 #number of table rows

0.0 -100000.0e3

100.0 -100000.0e3

7200.0 930.1e3

1732800.0 930.1e3

#7200.0 0.0

#1732800.0 0.0

1734600.0 1883.5e3

3035300.0 1883.5e3

3037100.0 3893.7e3

4695500.0 3893.7e3

4697300.0 4844.5e3

5819910.0 4844.5e3

5821710.0 5386.5e3

7073310.0 5386.5e3
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7075110.0 3978.4e3

9589710.0 3978.4e3

9591510.0 1845.4e3

13219710.0 1845.4e3

13221510.0 935.2e3

19129730.0 935.2e3

0 #number of sources

1 #number of loaded elements

2 0 0 40 1 2 3 0

3 #number of nodal values for pore water pressure

#1#values for pore water pressure - ambient

2 0 0.0 0 0.0

#2#transfer coefficient for the top surface

2 0 1.0 0 1.0

#3#zero additional coefficients

2 0 0.0 0 0.0

0#number of climatic b.c.

0#nymber of climatic b.c. 2

0#number of time functions

# no boundary fluxes computation:

0

## Definition of initial conditons at nodes

# pore water pressure pw = -100MPa

1 -100000.0e3

2 -100000.0e3

3 -100000.0e3

4 -100000.0e3

5 -100000.0e3

6 -100000.0e3

7 -100000.0e3

8 -100000.0e3

9 -100000.0e3

10 -100000.0e3

11 -100000.0e3

12 -100000.0e3
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13 -100000.0e3

#

## Outdriver

#

#No text output

0

# Graphical output into GiD one postprocessor file

3

# file name:

bentonit 2elems trfel1 1743.gid

#4 1000 #printing at each 1000-th time step

4 1 #printing at each time step

1 1

1 1

1 1

1 1

1 1

0

0

4 #four graphs - output for xmgrace

bentonit 2elems trfel1 1743.dat

7 #number of printing components

1 #printing at each time step

1 2 7 #time

#printing at node, node number, uknown printing, number of unknown component 1=pore water

pressure

1 1 1 1

1 2 1 1

1 3 1 1

1 4 1 1

1 5 1 1

1 6 1 1

7 #number of printing components

1 #printing at each time step

1 2 7 #time

#printing at node, node number, other printing, number of unknown component 1=pore water
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pressure in Pa

1 1 8 1

1 2 8 1

1 3 8 1

1 4 8 1

1 5 8 1

1 6 8 1

7 #number of printing components

1 #printing at each time step

1 2 7 #time

#printing at node, node number, other printing,

1 1 8 3

1 2 8 3

1 3 8 3

1 4 8 3

1 5 8 3

1 6 8 3

2 #number of printing components

1 #printing at each time step

1 2 7 #time

#printing at node, node number, uknown printing, number of unknown component 1=pore water

pressure

1 4 1 1
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Structural Mechanics. USA. ASCE Press, New York.

[Crisfield, 1991] Crisfield, M. A. (1991). Non-linear Finite Element Analysis of Solids and
Structures. UK. John Wiley & Sons Ltd, Chichester.
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[Scaringi et al., 2022] Scaringi, G., Maš́ın, D., Najser, J., Sun, H., and Sun, Z. (2022).
Thermo-hydro-mechanical hypoplastic modelling of bentonite buffers for nuclear waste
disposal: model calibration and performance. In In preparation for Proceedings of the
20th International Conference on Soil Mechanics and Geotechnical Engineering, Sydney
2022.

[Schrefler and Lewis, 1998] Schrefler, B. A. and Lewis, R. W. (1998). The Finite Element
Method in the Static and Dynamic Deformation and Consolidation of Porous Media.
2nd Edition. John Wiley & Sons.
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