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Optimal scaling laws for ductile fracture derived from strain-gradient microplasticity

S. Conti1 and M. Ortiz1,2∗

1 Institut für Angewandte Mathematik, Universität Bonn, Endenicher Allee 60, Bonn, 53115, Germany,
sergio.conti@uni-bonn.de

2 Division of Engineering and Applied Science, California Institute of Technology Pasadena, CA91125,
USA, ortiz@caltech.edu

Ductile fracture is the process whereby a material
separates across a failure surface through mecha-
nisms, such as void nucleation, growth and coa-
lescence, that entail large amounts of plastic work.
Such extensive plastic deformation notwithstanding,
ductile fracture remains quintessentially a fracture
process, in the sense that failure takes place by
separation across a plane or surface and entails a
well-characterized amount of energy per unit area,
or specific fracture energy, to operate. Experimen-
tally, ductile fracture is easily identified fractograph-
ically, as the crack surfaces exhibit a characteristic
dimpling—the dimples being vestiges of voids—that
is in contrast to the sharp specular cracks that result
from brittle fracture. Furthermore, the measured spe-
cific fracture energies attendant to ductile fracture,
e. g., from Charpy tests or from J-testing, are much
larger than those of brittle solids.

We [1, 2, 3] carry out an optimal-scaling analysis of
ductile fracture in metals. We specifically consider
the deformation, ultimately leading to fracture, of
a slab of finite thickness subject to monotonically-
increasing normal opening displacements on its sur-
faces. We posit two competing constitutive prop-
erties, namely, sublinear energy growth and strain-
gradient hardening. Sublinear growth (the energy of
linear elasticity exhibits quadratic growth, by way
of comparison) is a reflection of the work-hardening
characteristics of conventional metallic specimens
and gives rise to well-known geometric instabilities
such as the necking of bars, sheet necking, strain lo-
calization and others. Strain-gradient hardening [4]
has been extensively investigated and demonstrated
by means of torsion tests in wires [5], nanoindenta-
tion [6], and by other means. It results in deviations
from volume scaling, i. e., in nonlocal behavior and
size dependency, in sufficiently small material sam-
ples. We show that ductile fracture indeed emerges
as the net outcome of these two competing effects:
whereas the sublinear growth of the local energy pro-

motes localization of deformation to failure planes,
strain-gradient plasticity stabilizes this process of lo-
calization in its advanced stages, thus resulting in
a well-defined specific fracture energy. Specifically,
we show that ductile fracture requires a well-defined
energy per unit area that can be bounded above op-
timally by a void-sheet construction. This specific
fracture energy bears a power-law relation to the pre-
scribed opening displacement. This power-law rela-
tion may be regarded as an effective cohesive poten-
tial, thus indicating that ductile fracture is cohesive
in nature. In particular, fracture processes involving
distributed—possibly fractal—damage are ruled out
by the analysis.
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