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Multiscale analysis of heterogeneous materials for second order continuum 56

S. Mesarovic, J. Padbidri:
Boundary conditions for multiscale simulations of heterogeneous microstructures: continua and granular materials58

W. Cecot:
On application of adaptive FEM to multiscale modeling 60

I. Schmidt, L. C. Brinson:
Nanoholes and nanoshapes: the influence of nanotube geometry on polymer composite properties 62

B. K. Thakkar, L. G. J. Gooren, R. H. J. Peerlings, M. G. D. Geers:
Creasing behavior of corrugated paper board 64

V. Sansalone, T. Lemaire, S. Näıli:
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Probabilistic aspects for heterogeneous materials failure 90

S. Bossuyt, H. Cuypers:
Multiple cracking in cementitious-matrix composites: Parameter identification via inverse methods and optical full-
field measurements 92

D. Novák, D. Lehký:
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V. Lukeš, E. Rohan:
Numerical modelling of large deforming foam materials by the computational homogenization method 176

Ch. Hellmich, A. Fritsch:
‘Universal’ microstructural patterns in cortical and trabecular, extracellular and extravascular bone materials, quan-
tified through multiscale continuum microelasticity 178

C. Pichler, R. Lackner:
Multiscale characterization and modeling of creep and autogenous shrinkage of early-age cement-based materials180

S. Ricker, A. Menzel, P. Steinmann:
Computational homogenization for discrete micro-structures including damage 182

VIII Instabilities, Anisotropy, Enhanced Continua 185

F. Nicot, L. Sibille, F. Darve :
Why does a domain of bifurcation exist in granular materials? 186

R. Desmorat, A. Souid, F. Ragueneau:
Anisotropic damage model with micro-cracks closure effect for seismic applications 188

J. Tejchman:
Modeling of textural anisotropy in granular materials with stochastic micro-polar hypoplasticity 190

J. Pamin, A. Stankiewicz:
Localization of deformation and pore pressure in two-phase modified Cam-clay plasticity model 192

Prague, Czech Republic, 25-27 June 2007 7



MHM 2007: Modelling of Heterogeneous Materials with Applications in Construction and Biomedical Engineering

T. Bennett, H. Askes:
Wave dispersion in heterogeneous materials using aC0-implementation of gradient elasticity 194

IX Microplane Models 197

Z. P. Bažant:
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Microplane model for composite laminates 200

J. Ožbolt:
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J. Bobiński, J. Tejchman:
Implementation of non-local integral models into commercial FE-methods 302

10 Prague, Czech Republic, 25-27 June 2007



Contents

M. Baritz, G. Deliu:
Some considerations about elasticity of the eye-lens microstructure 304

M. Picq, J. Pousin:
Variational reduction for the transport equation 306

M. Perego, A. Veneziani, E. Agostoni, S. Salsa:
Mathematical and numerical modelling of focal ischemia 308

V. Minutolo, E. Ruocco:
Heterogeneous interface numerical solution by field boundary element method 310

D. Jaeger, B. Henrich, J. Schischka, J. Bagdahn, R. Jaeger, M. Moseler:
Modelling the mechanical properties of electro-spun non-wovens for tissue engineering starting from a single fibre
experiment 312

P. P. Proch́azka, A. E. Yiakoumi:
Optimization based back analysis of tunnel stability 314

J. Svoboda, F. D. Fischer:
Onsager’s principle: A handy tool in modelling of evolving microstructures 316

J. Halgrin, F. Chaari, E. Markiewicz, P. Drazetic:
Spongy bone mechanical behavior under quasi static to dynamic loadings: Development of an equivalent physical
model 318

Q.-V. Le, F. Meftah, Q.-C. He, Y. Le Pape:
Analytical derivation of the asymptotic creep behavior of concrete by multiscale homogenization 320

T. Krykowski, A. Zybura:
The analysis of load capacity changes of rc elements as the result of electrochemical corrosion and surface active
substances 322
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Preface

Preface

Virtually all natural and man-made materials exhibit a heterogeneous internal structure if observed on a sufficiently fine scale of
resolution, and many of them contain pores filled by one or more pore fluids. Realistic description of deformation and failure
mechanisms in such materials, as well as of their transport properties, still remains a major challenge of contemporary mechanics
and physics. Moreover, in some cases the internal microstructure evolves in time due to chemical reactions or biological processes
that often involve interaction with the environment.

The aim of the conference onModelling of Heterogeneous Materials with Applications in Construction and Biomedical Engineer-
ing (MHM 2007) is to gather specialists in modelling of heterogeneous materials that work in different domains of application
but face similar general problems. Attention focuses on theoretical modelling and numerical simulation on multiple scales, but
advanced experimental techniques and characterization methods, e.g. on the nano- and micro-levels, are also represented. The
central theme of the conference is closely related to sustainable development, in which new materials play a key role. Compu-
tational modelling, based on sound theory and supported by experiments, is an essential tool for the design and optimization of
innovative materials, tailored for specific purposes. In the area of construction materials, a very important aspect is their multi-
functionality. In biomedical engineering, an ever increasing attention is paid to novel materials to be used in advanced implants
for critical organs such as the heart, liver and pancreas, and also to biomimetic gels and polymers for tissue repair as a treat-
ment of arthritis and osteoporosis. We hope that this conference will not only display recent achievements but also contribute to
cross-fertilization of different scientific communities and to formation of new international research teams.

The Faculty of Civil Engineering of the Czech Technical University in Prague already hosted two international workshops on
modelling of a particular class of materials with important applications in the construction industry: theUS–Europe Workshop on
Fracture and Damage in Quasibrittle Structures(1994), and theWorkshop on Mechanics of Quasibrittle Materials and Structures
(1998). Both workshops were attended by leading experts in the field and, due to their relatively limited size and well-defined
central theme, created a favorable climate for stimulating discussions. This year, we would like to build on the success of the
workshops and prepare optimal conditions for the participants of a scientific gathering of a larger size and scope.

MHM 2007 is organized as one of the Thematic Conferences of ECCOMAS, theEuropean Community on Computational
Methods in Applied Sciences. In three days, 19 plenary lectures, 97 lectures in parallel sessions and 28 posters will be presented.
The opening lecture will be delivered by a distinguished alumnus of the Czech Technical University, Professor Zdeněk P. Bǎzant,
whose approaching 70th anniversary will be commemorated by a special workshop preceding the conference. Not only Zdeněk
but also his alma mater celebrates an important anniversary. The Czech Technical University in Prague is a direct successor of
one of the oldest engineering schools in Europe, established by an imperial decree in January 1707. We hope that the participants
will enjoy the days spent on the campus of the CTU and in the city of Prague.

The Proceedings of MHM 2007 contain extended two-page abstracts grouped into thematic areas that correspond to sessions of
the conference. The presenting author of each paper with multiple authors is marked by an asterisk. Searching for the work of a
specific author is facilitated by the author index on the last pages of the Proceedings. Many contributions contain color figures,
and we sincerely apologize that due to budget limitations it was possible to print in color only some of them. However, the book
of proceedings is accompanied by a CD with a PDF file, in which all the color illustrations can be admired in their full beauty.

We would like to thank all coworkers who provided technical assistance with the editorial work, in particular M. Brouček,
M. Horák, M. Posch, V.̌Smilauer and J. Zeman. We also express our gratitude to all members of the Scientific Committee, which
was composed of the following international experts: Z. P. Bažant, T. Belytschko, I. Carol, S. C. Cowin, F. Darve, W. Dienemann,
M. Doblaŕe, L. Dormieux, W. Ehlers, D. Gawin, F. Glasser, Ch. Hellmich, G. A. Holzapfel, J. M. Huyghe, H. Jennings, E. Kuhl,
K. Maekawa, R. W. Ogden, E. Õnate, G. Pijaudier-Cabot, G. W. Scherer, B. Schrefler, K. Scrivener, P. Steinmann, F.-J. Ulm and
K. Willam. Last but not least, we would like to thank F. Caner, D. Ciancio, B. Markert, L. Sanavia, M.Šejnoha and J. Zeman
who, in addition to several members of the Scientific Committee, organize minisymposia or sessions at MHM 2007. Let us hope
that the conference will be enriching and stimulating for all of us.

Zdeňek Bittnar and Herbert Mang, conference chairmen

Milan Jirásek, chairman of the local organizing committee

Prague, Czech Republic, 25-27 June 2007 13
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Microplane Modeling of Damage or Fracture and Multiscale Concepts

Z. P. Bažant

Northwestern University, 2145 Sheridan Road, CEE
Evanston, IL 60208, USA; z-bazant@northwestern.edu

Summary: The concepts of microplane model in representing the physical reality for materials with softening damage and frac-
turing are discussed, the basic features of microplane model M4 are outlined, and the relation to multiscale modeling approaches
is critically examined.

Motivation, concepts and advantages
The classical constitutive models expressed in terms of stress
and strain tensors and their invariants are attractive by their sim-
plicity but cannot capture the intricate response of quasibrittle
materials such as concrete, rock and polymer-fiber composites.
For example, a relation betweenI1 andJ2 characterizes inter-
nal friction only in a vague non-specific way. It cannot cap-
ture frictional slip or microcrack growth occurring solely on a
few distinct planes of particular orientations. Neither can these
classical models capture the vertex effect. To capture it, many
simultaneous yield or damage surfaces (or loading potentials)
intersecting at each current state point would have to be used.
Ignoring the existence of many such surfaces is what leads to
the expedience of non-associated flow rules. Although, in the-
ory, Koiter’s multisurface plasticity could be used, the difficul-
ties appear unsurmountable if these surfaces are restricted to
be functions of the stress invariants. Yet each yield or damage
surface does not have to be invariant. Only their aggregate, the
constitutive model as a whole, must be properly invariant. The
microplane model overcomes all of the aforementioned prob-
lems. It can be regarded as non-classical multisurface plasticity
or damage in which a yield or damage surface is associated with
a generic plane of any orientation within the material, called the
’microplane’, and is defined not in terms of tensors but in terms
of stress and strain vectors. The tensorial invariance is ensured
by integration or summation over the microplanes of all the spa-
tial orientations. The advantages of the microplane modeling
approach include: slip and crack openings of any orientations,
automatic representation of the vertex effect, apparent devia-
tions from normality, cross effects such as pressure sensitivity
and dilatancy, Bauschinger effect and hysteresis. Realistic gen-
eralization for anisotropic material properties are possible and
do not involve great increase of complexity.

Basic modeling features
In microplane models, the relation to continuum tensors is ob-
tained by assuming the strain (or stress) vector on the mi-
croplane to be a projection of the strain (or stress) tensor, and
using a variational principle to obtain the response stress (or
strain) tensor, which leads to integration (or summation) over
planes of all orientation. More fundamentally, the microplane
model automatically ensues by assuming the free energy den-
sity to be a sum of the free energy densities associated with
microplanes of all possible orientations. In numerical practice,
only a finite number of discrete microplanes is used, based on
an optimal Gaussian integration formula for the surface of a
unit hemisphere. To avoid significant infringements on invari-
ance, at least 21 discrete microplanes have proved to be nec-

essary. The lecture reviews the characteristic uni-, bi-, and tri-
axial tests, proportional, nonproportional and cyclic, that must
be correctly reproduced, and then outlines microplane model
M4 for concretes which can describe these tests, along with ex-
tensions to capture distinct widely opened fractures. In contrast
to Taylor models for non-softening plasticity, softening dam-
age requires that the strain (rather than stress) vectors be the
projections of the strain (rather than stress) tensors, which is
called a kinematic (in contrast to static) constraint. Arbitrarily
large finite strains are considered. The rate effects are included
according to the activation energy of fracture growth and vis-
coelasticity of matrix. Generalizations to porous rocks, fiber re-
inforced concrete and orthotropic laminates are also described.
One aspect, which is much less important for high deformation
rates than for static loading, is the spurious localization of soft-
ening damage. Implementation of a nonlocal approach with a
characteristic material length, needed for preventing spurious
localization with mesh sensitivity and for capturing the ener-
getic (non-statistical) size effect, is briefly addressed. It may be
pointed out that an analog of microplane constitutive relations
can be successfully applied in a random three-dimensional lat-
tice model, which has the further advantage of automatically
representing the nonlocality of softening damage. A crucial fea-
ture of the lattice model is that the lattice connections between
the adjacent particles must transmit not only normal but also
shear forces. The geometric randomness of the lattice serves to
avoid bias in the direction of propagation, but is insufficient to
produce realistic statistical scatter of structural resistance. For
that purpose, the strength of lattice connections must be gener-
ated according to an autocorrelated random field. The capabil-
ities of microplane model M4 are demonstrated by large-scale
simulations (with up to 15 million finite elements) of explo-
sions within a reinforced concrete structure, and of missile pen-
etration and groundshock. An extension of microplane model
to simulation of failure envelopes, fracture and size effect in
highly orthotropic fiber-polymer laminates has also proven ef-
fective.

Do current multiscale concepts promise to be
more powerful than microplane?
It is interesting to clarify the relationship of the microplane
model to multiscale modeling. Its purpose is to capture mi-
crostructural phenomena with
(a) interactions among orientations, and
(b) interactions at distance.

The microplane model does not capture (a) but it does (a),
though in a simplified way. Recognizing this, and scanning the
palette of current multiscale formulations, one may distinguish
4 types of multiscale models:
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Type 1. Embedment of subscale region discretization into a
point of macro-scale continuum (e.g., into an integration point
of a finite element).
Type 2. Overlapping of a finite region of a coarse mesh by a

fine mesh that models the subscale (meso-scale).
Type 4. Microplane model, in which interactions among ori-

entation are lumped into one macro-continuum point.
Type 4. Replacement of a finite region of a coarse mesh on

the macro-scale with a refined discrete (lattice-particle) model
of the meso-structure.

Normally only Types 1 and 2 are perceived as really multi-
scale, and this is indeed the case for hardening elasto-plastic
behavior. However, in the case of softening damage or fractur-
ing, subscale simulation of interactions at distance must pri-
marily deliver to macro-continuum scale the characteristic ma-
terial lengthl0 (or the effective width of fracture process zone,
or damage band), which is the salient property of the nonlo-
cal or gradient formulations. It appears that the existing Types
1 and 2 do not achieve it, and it seems inconceivable that they
could without simulating size effect. In some Type 1 and 2 vari-
ants, the simulated (embedded or overlapping) region is also
a continuum, with anassumed, rather than physically deter-
mined, characteristic length, which is indispensable as the lo-
calization limiter on the macro-continuum scale (of nonlocal,
second gradient or micropolar type). In others, a coarse (em-
bedded or overlapping) subscale region is physically simulated
and, if this region is> l0, a damage localization band may be
obtained; but this band cannot have a realistic size and orienta-
tion unless the subscale zone were supported, at all its boundary
nodes, by springs representing the tangential stiffness of the en-
tire surrounding structure, with correct loading-unloading com-
binations at all points (which would be required to capture the
effect of the rate of energy release from the structure). Using the
embedded or overlapping subscale region to calculate, from im-
posed strain or deformation increments, the stress increments to
be delivered to the macro-continuum mesh is an approach that
cannot capture the damage localization aspects. These stress
increments, in general, represent strain-softening, yet no local-
ization limiter appears to be used to handle it in Type 1 and 2
models. Such multiscale models cannot be objective. They ex-
hibit spurious mesh sensitivity and converge to failure with zero
energy dissipation as the mesh size is refined to zero. They run
into the same classical trap of strain-softening, repeatedly en-
countered since 1976. So it appears that, for softening damage
and fracturing, there currently exists no multiscale model that
realistically captures the interactions at distance. Since such in-
teractions also play some role in the interaction among orienta-
tions, none of the existing multiscale (or multiphysics) models
promises to surpass the microplane model (Type 3). Types 1, 2
and 3 are, therefore only semi-multiscale models, conceivably
having approximately the same modeling capability. Among
them, the microplane model is the simplest. The only really
multiscale model is Type 4, although it is not normally seen as
such.
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Figure 1: a,b,c) Explosions within a bridge pier and on bridge
deck; e,f,g) problems of existing multiscale approaches. Relia-
bility indices in FORM and SORM need to be modified.
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Summary: This paper examines failure mechanics issues in composites at the example of brick masonry when the interaction of
fired clay units and mortar layers leads to intriguing failure mechanisms [1]. The presentation highlights the difference of ”finite
thickness interface formulations” versus ”zero-thickness interface models” which exhibit adhesive as well as frictional resistance.

Introduction

Due to the composite construction of masonry, progressive fail-
ure is a intriguing process. Masonry consists of two compo-
nents, brick units and mortar joints, which exhibit very different
stiffness and strength proprieties. Starting from the laboratory
identification of the mechanical proprieties of brick and mortar,
the failure processes in compression, tension and shear reveal
the importance of mismatch among the elastic and inelastic pro-
prieties of brittle brick units and bounding mortar layers. The
studies reveal the critical role of the interface transition zone
which exhibits a life of its own besides the brick units and the
mortar binder.

Experimental results

Bricks, mortar, and masonry prisms were tested at the Univer-
sity of Colorado structural materials laboratory. The axial re-
sponse behavior of the prism experiments is shown in Fig. 1
together with test data of mortar and brick.

Figure 1: Experimental results for prism, brick and mortar
tests.

Note the mortar strength in compression is less than a quarter
of the brick strength, whereby both constituents have a much
lower tension capacity when compared to their compressive
counterparts. Probably the most interesting observation is the
composite prism strength, which falls between the mortar and
brick response in axial compression. Consequently, a masonry
wall subjected to compression does not necessarily fail in com-
pression of its weakest component, but it fails in tension due to

mismatch conditions in the composite.

Numerical simulation

Several three dimensional finite element studies were per-
formed on the masonry prism using the commercial soft-
ware ABAQUS Version 6.5. Fig. 2 illustrates the 3D geometry
whereby the ABAQUS damage-plasticity concrete model was
used to characterize the elastic and inelastic behavior of mortar
and solid brick units. The 3D simulation of the prism compres-

Figure 2: 3D finite element mesh.

sion test was analyzed with and without lateral restraints at the
top and bottom faces of the specimen. The results are shown in
Fig. 3 together with the input data of the underlying calibration
curves for the response behavior of mortar and brick units in
axial compression. As expected from the experimental obser-
vations, the prism response falls between the mortar and brick
behavior in axial compression.
For a better understanding of the progressive failure mechanism
of the masonry composite, shear stress contours are shown in
Fig. 4 at the mortar joint at mid-height at the last elastic load
stage before plastic behavior develops in the prism. Due to the
frictional restraint in the mortar-brick interfaces, the weaker
mortar is confined and restrained from lateral expansion by the
stiffer brick units. Consequently, the brick is in a state of biax-
ial tension-compression, while the mortar layer is subjected to
a state of triaxial-compression.
A key point in the failure mechanism of a masonry prism is the
initial mismatch of the elastic properties of brick and mortar.
This leads to a failure mode which is governed by the tensile
capacity of the brick units rather than the compression capac-
ity of the mortar. For this reason, a generalized plane strain
model was used to perform a number of sensitivity studies to
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Figure 3: 3D numerical results.

Figure 4: Shear stress at mortar joint.

examine the effect of different constitutive assumptions and
to study the thickness effect of the mortar bed-joints [1]. The
most important investigation was a study of the brick strength
in tension on the overall prism capacity in compression. The
results of this parametric study (Fig. 5) show that the increase
of tensile brick strength significantly increases the capacity of
the prism in compression. Moreover, the results indicate that
the prism strength gradually approaches the high axial com-
pression strength of brick unit when the tensile capacity of the
brick increases. In concert with the results of the other sensitiv-
ity studies this observation supports the notion that prism fail-
ure is governed by the limited strength of the brick in biaxial
tension-compression.
One of the mesh sensitivity studies was performed to investi-
gate the critical role of the mortar in the overall failure mech-
anism. In addition to the standard 3D mesh shown in Fig. 2,
three coarser meshes were considered to model the mortar bed
joints. Using the same mesh layout for the bricks (3 elements
high, 6 elements wide and 4 elements deep), the mortar joints
were modeled by the “coarse mesh 2” using two layers of solid
elements for the mortar thickness, while “coarse mesh 1” used
only one layer. In contrast to the finite thickness representation
of the mortar joints with continuum elements, “coarse mesh 0”
inserted a single layer of zero-thickness cohesive interface el-
ements between the bricks elements. The results of this mesh

Figure 5: The effect of brick tensile strength.

sensitivity study are shown in Fig. 6. All continuum models

Figure 6: Mesh sensitivity study.

show close agreement with respect to the axial compression re-
sponse of the masonry prism. This is primarily due to the mis-
match in Poissons ratio which induces biaxial tension in the
brick unit subjected to axial compression. The most interesting
result of this parametric study is the failure mechanism pre-
dicted by the single layer of zero-thickness interface elements
for the mortar joints, which results in an entirely different fail-
ure mechanism of the prism in compression [1]. This mode
conversion stems from the inability of the zero-thickness co-
hesive interface elements to capture the lateral tension in the
brick unit due to the mismatch of the two materials with regard
to the Poissons ratio and their elastic stiffness. Consequently
prism failure simply reproduces the brick calibration curve in
compression except for a slight reduction of the overall ductil-
ity.
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Summary: Hydrated nanocomposites are a class of complex chemomechanical materials that possess a high degree of hetero-
geneity from atomistic to macroscopic scales. This includes the Calcium-Silicate-Hydrates (C-S-H), the binding phase in all
cementitious materials; the load bearing clay fabric in shales, the sealing formations in most hydrocarbon reservoirs; and hy-
droxyapatite, the mineral binding phase of bone’s ultrastructure. All these materials have in common the presence of structural
water incorporated into an often plate or sheet like arrangement of atoms at nanoscales, which justifies their name as hydrated
nanocomposites. These hydrated nanoparticles form the fundamental building block whose behavior is expected to delimitate
macroscopic material diversity. The focus of this presentation is to advance emerging techniques that make it possible to as-
sess in-situ the nanoproperties of such highly heterogeneous hydrated nanocomposites, and to identify common features of such
materials at nano- and microscales.

Statistical indentation techniques

The method we introduced for measuring hardness and elas-
tic properties of highly heterogeneous materials by a statisti-
cal analysis of instrumented indentation techniques, has widely
been adopted and used in the characterization of nanomechan-
ical behavior of C-S-H [1, 2, 3, 4], shales [5, 6] and bones
[7]. Its attractiveness stems largely from the fact that properties
of mechanically meaningful phases can be identified in-situ by
performing large grids of indentations on highly heterogeneous
samples, with a proper choice of the indentation depth to ensure
the self-similar properties of classical continuum indentation
analysis [8]. For this reason, the method is most suited for hy-
drated nanocomposites, whose multi-scale material phases can-
not be recapitulated in bulk form, and for which it is difficult to
indent on a specific material phase with sufficient repeatability.

Briefly, we recall that nanoindentation consists of making con-
tact between a sample and an indenter tip of known geometry
and mechanical properties, followed by a continuously applied
and recorded change in load,P , and depth,h. Typical tests
consist of a constantly increasing load, followed by a short hold
and then a constant unloading; aP − h curve is reported. The
analysis of theP − h curve proceeds by applying a continuum
scale model to condense the indentation response into two in-
dentation properties; indentation modulus,M

M =
√
π

2
S√
Ac

(1)

and indentation hardness,H:

H =
P

Ac
(2)

whereS = dP
dh is the (measured) initial slope of the unload-

ing branch of theP − h curve,P is the (measured) maximum
indentation load, andAc is the projected contact area of the in-
denter on the sample surface. The projected contact area,Ac, is
typically determined as a function of the (measured) maximum
indentation depth,hmax [8].

Recognizing the high heterogeneity of hydrated nanocompos-
ites at the nano- and micro-scale, application of the indentation
technique is a challenge, as it is difficult to choose to indent on
a specific material phase with sufficient repeatability. To ad-
dress this challenge, it is advantageous to perform large grids of
indentations on heterogeneous samples, and subsequently per-
form a statistical deconvolution of the indentation results.

Microporomechanics analysis of indentation re-
sults

Hydrated nanocomposites, namely C-S-H, hydroxyapatite in
bones, and clays, possess a very distinct disordered morphol-
ogy of the solid phase, similar to a polycrystal [9, 5, 7, 3, 6].
For such highly disordered materials, linear and nonlinear mi-
croporomechanics [10] provides a link between the composite
indentation properties(M,H) and the solid stiffness(ms, νs)
and strength properties (solid cohesioncs, friction angleαs) as
a function of the packing densityη of the porous material; in a
dimensionless form [3, 11]:

M

ms
= ΠM (νs, η, η0) (3)

H

cs
= ΠH (αs, η, η0) (4)

whereη0 = 1/2 for a polycrystal material. The previous equa-
tions allow one to determine from each indentation test the
packing density of the solid phase. Carrying out a large array
of tests then allows one to obtain, from a statistical analysis,
mineral properties and packing density distributions [12]. By
way of example, Fig.1 shows the packing density scaling re-
lations for (M,H) obtained from fitting 300 nanoindentation
on a white cement paste. A statistical analysis then shows that
the main hydration products present in cement-based materials
have a packing density distribution that settles –on average–
around two limit packing densities: the random packing limit
of spheres of64% and the ordered packing limit of spheres of
74%. These packing density distributions are consistent with
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Figure 1: Packing density scaling of (a) indentation modulusM
and (b) indentation hardnessH of 300 nanoindentation tests on
a w/c = 0.5 white cement paste. (c) Packing density distribu-
tion.

measurements of the packing density by mass density measure-
ments [13].

Conclusion (from [12])

The overall picture which emerges from a comparative investi-
gation is that hydrated nanocomposites are nanogranular mate-
rials, whose nanomechanical behavior is driven by the packing
of their elementary particles: The elementary particles present
in C-S-H, bone and shale all possess an isotropic strength be-
havior. We attribute this strength to cohesive bonds that are
activated at particle-to-particle contact surfaces, which are ex-
pected to be sufficiently smaller than the mineral cohesion
itself. The isotropy of the strength behavior hints towards a
random orientation of the contact surfaces. Particles transmit
forces over randomly oriented contact surfaces, activating the

intrinsic elasticity of the nanoparticle. In the case of C-S-H and
apatite, this intrinsic elasticity is found to be isotropic; while
it turned out to be anisotropic in the case of the load bearing
clay phase in shale. The elementary particles present in cement
paste, bone and shale all possess an isotropic mechanical mor-
phology. By isotropic morphology, we mean one in which the
particle shape and aspect ratio do not affect significantly the
nanomechanical response. This isotropic morphology is remi-
niscent of a random orientation of the particle-to-particle con-
tact surfaces over which forces are transmitted. This random-
ness prevails even in the case of particles having a visible shape
as it is the case of clay particles in shales. Such an isotropic
morphology is indicative of a percolation threshold ofη0 = 1/2
as recognized by the polycrystal, or selfconsistent model of mi-
cromechanics, which turns out to be most suitable for hydrated
nanocomposites.
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at MIT.

References

[1] Constantinides G., Ulm F.-J., Van Vliet K. (2003).Mate-
rials and Structures, 36, 191–196.

[2] Constantinides G., Ulm F.-J. (2004).Cement and Con-
crete Research, 34, 67–80.

[3] Constantinides G., Ulm F.-J. (2007).J. of the Mechanics
and Physics of Solids, 55, 64–90.

[4] DeJong M. J., Ulm F.-J. (2007).Cement and Concrete Re-
search, 37, 1–12.

[5] Ulm F.-J., Abousleiman, Y. (2006).Acta Geotechnica, 1,
77–88.

[6] Bobko C., Ulm F.-J. (2007): The nanomechanical mor-
phology of shale, in review.

[7] Tai K., Ulm F.-J., Ortiz C. (2006).Nano Letters, 6, 2520–
2525.

[8] Oliver W. C., Pharr G. M. (2004).J. of Materials Re-
search, 19, 3–20.

[9] Hellmich C., Ulm F.-J. (2002).J. of Biomechanics, 35,
1199–1212.

[10] Dormieux L., Kondo D., Ulm F.-J. (2006):Microporome-
chanics. J. Wiley & Sons, Chichester, UK.

[11] Cariou S., Ulm F.-J., Dormieux L. (2007). Hardness-
packing density scaling relationships for cohesive-
frictional porous materials, in review.

[12] Ulm F.-J., Vandamme M., Bobko C., Ortega J. A., Tai K.,
Ortiz C. (2007). Statistical indentation techniques for hy-
drated nanocomposites: concrete, bone and shale, in re-
view.

[13] Jennings H. M. (2004).Materials and Structures, 37, 59–
70.

Prague, Czech Republic, 25-27 June 2007 21



MHM 2007: Modelling of Heterogeneous Materials with Applications in Construction and Biomedical Engineering

Stress and Growth in Soft Biological Tissues

D. Ambrosi∗

Dipartimento di Matematica, Politecnico di Torino
corso Duca degli Abruzzi, 24, I-10129 Torino, Italia

davide.ambrosi@polito.it

Summary: Many soft tissues, and arteriesin primis, exhibit residual stress after unloading, a characteristic related to the ability
to self-organize their own constituents (cells and extracellular matrix proteins). This behavior can be theoretically predicted in a
continuum mechanics framework assuming that the body self-remodels toward ahomeostaticstress state. Open questions concern
the characteristics of a stationary grown state, as dictated by the mechanical properties of the material and by the specific external
load. Introducing a suitable mathematical framework, we perform numerical simulations for the remodelling of a two dimensional
(axisymmetric) nonlinear elastic cylinder. In particular, the stress-modulated remodeling of the cylinder wall is addressed when
local variations in the mechanical properties of the material occur. The main result is that, as in one spatial dimension, the
tendency of the system to homeostasis generates, thanks to the remodeling process, a residual stress that homogenizes the tension
in the body under load. Possible physiological implications of this result are discussed.

When observed on a sufficiently long time scale, biological
systems are always open systems: they exchange mass and en-
ergy with the external environment. This characteristic makes
the mathematical analysis of the biological systems inherently
more complex than the purely mechanical ones, for which an
assumption of closed system is possible. The mechanics of soft
tissues is a specific example of problems that must include ex-
ternal actions (e.g. nutrients and mass inflow) when considered
on a time scale longer than a few days. The arterial wall me-
chanics among this class of problems is particularly interesting
for two reasons. On one hand its clinical interest is self-evident.
On the other hand, in spite of numerous experimental works on
the topic, the inner mechanisms of residual stress creation is not
yet well understood.

A related specific aspect of the complexity of biological sys-
tems is that their relationship with the surrounding environment
forces them into a continuous evolutionary process to attain a
steady state, generally known as homeostasis. Derived from the
Greek “similar” + “to stand”, homeostasis denotes the natural
tendency of a living organism to maintain equilibrium. In order
to maintain homeostasis, biological tissues undergo changes in
mass as well as structural and functional adaptation to their en-
vironments. The present work focuses specifically on how the
mechanical environment influences living tissues and, in partic-
ular, the category of biological tissues called soft tissues, which
are characterized by large elastic deformation under physio-
logic loads. The basic hypothesis is that the gradual remod-
eling of soft biological tissues, through growth or resorption
of cells and extracellular component is directly linked to the
stress within the tissue and that remodeling proceeds toward
stress homeostasis.

A key theoretical point is the statement of the growth law for
the soft tissue, thegrowth dynamics. In general this will de-
pend on many chemo-mechanical factors, including the avail-
ability of nutrients. To date, few heuristic laws for understand-
ing growth based on experimental observations have been de-
vised, and they are in essence based on the theory of homeo-
static stress. The most relevant contribution is due to Taber and
Eggers [2], who assume that the growth of an artery, schemat-
ically represented by a homogeneous elastic annulus of fung-

like material, is ruled by the achievement of a radially constant
equilibrium circumferential stress (the Cauchy one) and that
this drives the system toward the associated residual tensional
state.

Under suitable assumptions on the general framework men-
tioned above, it is possibile to recover the model proposed by
Taber and Eggers as a small strain limit of a non-linear the-
ory [1]. Numerical simulation elucidate the role of the remod-
eling process in a non-homogeneous aortic vessel under some
geometrical simplifications. The body is considered to be axis-
symmetric and made of non-linear orthotropic hyperelastic ma-
terial. The wall is supposed to be stiffer in some part, an as-
sumption mimicking the typical aneurysmatic conditions. The
system evolves to a homeostatic state, assumed to be indepen-
dent of possible local variations in the elastic properties. Ac-
cording to the numerical results, a stress-modulated remodel-
ing of the wall of the vessel reduces the bending and, in this
sense, can have a stabilizing effect with regards to possible lo-
cal variations in the mechanical properties of the material. In
fact both the radial and circumferential stresses after remod-
elling are homogeneized around a medium value, damping the
peaks created by the inhomogeneity in the not-grown state.
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Summary: The theoretical description and numerical analysis of the avascular growth of neoplasms poses a very difficult chal-
lenge due to the complicated biological scenario on hand. In regard to the complex metabolic processes governed by nutrient,
angiogenic, and growth factors, it is convenient to proceed from a macroscopic modeling approach instead of getting lost in
the description of the physiochemical mechanisms on the cellular level. Following this, a thermodynamically consistent model
for volumetric tumor growth is developed by recourse to mixture and porous media theories. In particular, the hydrated organic
tissue is treated as a biphasic mixture constituted by a porous solid (tumor cells and extracellular matrix) which is permeated by
an organic fluid. Since the imbalances of production and degradation of the individual constituents associated with growth and
necrosis of the tumor tissue are strongly influenced by several chemical factors (nutrients, enzymes, etc.), the model incorpo-
rates two additional caloric state variables. Essentially, they can be thought of as locally available “growth energies” which are
determined by the constituent energy balances.

Introduction

The application of continuum mechanics to material model-
ing of hard and soft biological tissues, such as bone, cartilage,
or muscle, has been extensive in the last decades, where the
nonlinear, inelastic, and anisotropic behaviors have been ad-
dressed. In that sense, a complete review of some achievements
in the biomechanics of biological tissues including growth and
remodeling is given by Taber [11] and Humphrey [6]. Here,
particularly focusing on the biological process of growth, it is
apparent that growing tissues not only undergo changes in size
and shape but also in their inner structure and inherent prop-
erties. In fact, real biological tissues are composed of many
constituents, like various cell types, abundant water, extracel-
lular matrix (ECM), etc., cf. Cowin [5] for details, so that it
is furthermore clear that changes in the relative amount and
the properties of these components during growth affect the
macroscopic behavior of the tissue. Following this, it seems to
be natural to describe growing biological materials by use of
multiphasic continuum theories, such as the theory of porous
media (TPM), which enables the macroscopic (volume aver-
aged) modeling of interacting components by recourse to the
theory of mixtures (TM) but also accounts for the local compo-
sition through the concept of volume fractions. In this context,
Preziosi and Farina [12] and Steeb and Diebels [13] formally
employed the porous media approach to account for the sep-
arate contributions of each constituent during growth. In the
same sense, Klisch and Hoger [15] additionally used the mul-
tiplicative geometric concept of Rodriguez et al. [17] by intro-
ducing a growth deformation gradient in combination with the
TM, and Humphrey and Rajagopal [7] developed a theory that
considers the continual production and removal of constituents
in potentially different stressed configurations. In this context,
the applications of porous media theories to growing tissues
are, for instance, devoted to cartilage (Klisch et al. [14]) and
bone (K̈uhn and Hauger [16]).

It is the goal of this contribution to present a consistent TPM
model that enables the multi-dimensional analysis of the early
stages of solid tumor growth. In particular, we consider the

growth of a cluster of tumor (neoplastic) cells towards an avas-
cular tumor which receives nutrients from the surrounding tis-
sue only by diffusion as it is not yet supplied by blood vessels.
The structure of an avascular tumor distinguishes an outer rim
of proliferating tumor cells, an intermediate region where tu-
mor cells are alive but do not proliferate (quiescent state), and a
central core of nutrient-starved necrotic tumor cells. The mech-
anisms affecting the growth of cells are the diffusion and the
consumption of nutrients and oxygen, the resistance or stress
exerted by the surroundings on the cells, and the frequency
of mechanical load on the cells, see, e. g., Sutherland [10] and
Kunz-Schughart et al. [8]. The model concept and the consti-
tutive relations are inspired by and partially adopted from the
already existing continuum mechanical models for avascular
tumor growth, such as the singlephasic formulation of Ambrosi
and Mollica [1, 2] which is extended by a reaction-diffusion
equation for the nutrients whose concentration is treated like a
measure of a metabolistic energy, or the works of Byrne and
Preziosi [4], Ambrosi and Preziosi [3], and Roose et al. [9]
where tumor tissue is described as a multi-component material.

Biphasic porous media growth model

Based on the theory of porous media (TPM) [18], we consider
a solid tumor as a saturated biphasic mixture consisting of two
de facto immiscible contstituents, namely a solid skeletonϕS

representing the living tumor cells embedded into extracellular
matrix and a single pore-fluid phaseϕF consisting of interstial
liquid, necrotic debris, and cell precursers, cf. Fig.1.

Figure 1: Biphasic porous media growth model.

24 Prague, Czech Republic, 25-27 June 2007



Plenary Lectures

In this regard, the growth process is described by a distinct
mass exchange between both constituents, where the complex
metabolic mechnisms are governed by a non-mechanical ex-
tension of the biphasic model. More precisely, temperature-
equivalent “growth energies”CαΘ > 0 (α ∈ {S, F}) are in-
troduced as measures of the average amount of chemical en-
ergy available for cell metabolism which can be regarded in full
analogy to the thermodynamic temperature as a measure of the
average kinetic energy of atoms. To be in line with continuum
thermodynamics, this further entails the introduction of associ-
ated (conjugate) “configurational entropies”ηαc as measures for
the randomness in the distribution of matter analogously to the
thermal entropy. In addition to the constituent growth energies
CSΘ andCFΘ, the further primary variables of the model are the
solid displacementsuS , the effective pore-fluid pressurepFR,
and the solid volume fractionnS all governed by a correspond-
ing partial or mixture balance relation in the context of the TPM
approach, see Ehlers [18]. To close the set of equations, suitable
constitutive laws, e. g., for the solid extra stress and the caloric
interaction, have to be defined satisfying the entropy principle
for mixtures.

Finite element analysis

The numerical treatment of such coupled multi-field prob-
lems can efficiently be performed by the mixed finite element
method (FEM). Therefore, the weak forms of the governing
balance relations, namely the momentum and volume balance
of the mixture, the solid volume balance, and the solid and
fluid energy balances are needed for the determination of the
unknownsuS , pFR, nS , CSΘ, andCFΘ. It remains to implement
a convergent algorithm for the solution of this nonlinear five-
field variational problem. The general capabilities of the model
can be seen from a first qualitative simulation of the finite 2-d
growth of a tumor spheroid (Fig.2).

Figure 2: Qualitative 2-d simulation of a growing tumor
spheroid. Depicted is the distribution of the soliditynS (frac-
tion of living tumor cells) in the initial and the final stage.
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Summary: An Abdominal Aortic Aneurysm is a frequently observed pathological enlargement of the infrarenal aorta, and
if kept untreated, it might enlarge until rupture. Indication of clinical treatments is linked to a rupture risk assessment of these
formations, which however, is under ongoing and controversial scientific discussion. Recently, strong evidence has been provided
that a biomechanical analysis leads to reliable data for clinical decisions. Within this paper a recently proposed hyperelastic
formulation for arterial layers is applied to predict the stress field in the aneurysm wall. The constitutive model accounts for
dispersed collagen fiber orientations and has been integrated into Finite Element models with patient specific geometries. To this
end the 3D geometries of aneurysms are reconstructed from standard clinical images using a segmentation technique, which is
based on deformable models.

Motivation and background

Abdominal Aortic Aneurysms (AAAs) are pathological en-
largements of the infrarenal aorta, frequently observed in the
elder male population. Untreated (AAAs) eventually enlarge
until they rupture; an event with mostly mortal consequences
[3]. Up to date no effective therapeutic strategies either to limit
the growth of these lesions or to prevent their eventual risk of
rupture are available.

A surgical or minimal invasive method called (AAA) repair is
the most common treatment, and according to the current clin-
ical view, it is indicated when the aneurysm exceeds a certain
dimension or expansion rate. However, this kind of rupture risk
assessment is under ongoing and controversial scientific dis-
cussion and there is scientific evidence (for example [1]) that
a detailed biomechanical analysis could provide much more
reliable data for clinical decisions. Moreover, it allows deep
insights in the mechanical loading condition of the aneurysm,
which is of basic scientific requirement to understand this type
of disease, and which might be useful to improve the human
conditions of patients suffering from it.

Continued advances in computer technology and computa-
tional methods are increasing our ability to handle large amount
of data and allows us to model patient specific problems nowa-
days. The Finite Element Method (FEM) provides a powerful
numerical tool to solve the arising 3D (coupled) mechanical
problems, it can handle the nonlinear character of the related
problems and combines synergetically with medical imaging.

A hyperelastic model for arterial layers

Collagen fibres are key ingredients in the structure of arter-
ies and in the adventitial and intimal layers, the orientation of
the collagen fibres is dispersed, as shown by, e.g., polarized

light microscopy of stained arterial tissue. As a result, con-
tinuum models that do not account for the dispersion are not
able to capture the stress-strain response of these layers. Within
this paper we apply the recently proposed structural continuum
framework [2], which is able to capture the dispersion of the
collagen fibre orientations. The approach allows the develop-
ment of a new hyperelastic free-energy function that is particu-
larly suited for representing the anisotropic elastic properties
of arterial layers. In particular, the mechanical contributions
derived from elastin and collagen are treated separately, and
hence, the model allows an investigation of the biomechani-
cal consequences of proteolytic degeneration of these structural
proteins.

Description of the collagen fiber distribution

As a starting point of describing the collagen fiber distribution
within a particular arterial layer, we introduce a density func-
tion ρ(M). It characterizes the distribution of fibers in the refer-
ence configuration of the continuum with respect to the referen-
tial orientationM ; an arbitrary unit direction vector in the 3D
Eulerian space, i.e.|M | = 1. In addition, we assume that the
collagen distribution can be seen as a superposition of trans-
versely isotropic distributions within two families of collagen
fibers. As shown recently [2], a transversely isotropic distri-
bution can always be represented by the generalized structural
tensorH of the comprehensive form

H(a0, κ) = κI + (1− 3κ)a0 ⊗ a0, (1)

whereI anda0 denotes the identity tensor and the mean orien-
tation of the distribution. Remarkable,H depends on a single
dispersion (structural) parameterκ, which represents the fiber
distribution in an integral sense and describes its ‘degree of
anisotropy’. This structural parameter is linked to the density
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functionρ(M) according to

κ =
1
4

π∫
0

ρ(M(Θ)) sin3 ΘdΘ, (2)

whereΘ ∈ [0, π] denotes the Eulerian angle between a partic-
ular collagen fiber and the mean orientationa0 of the distribu-
tion.

Constitutive model for the aneurysm wall

Clinical relevant AAA lesions are usually comprised by the
aneurysm wall and the Intra-Luminal Thrombus (ILT). While
the ILT can be modeled as an isotropic neoHookean material,
the aneurysm wall is nonlinear and anisotropic [4]. In order
to derive the deviatoric partΨ of hyperelastic potential for
the aneurysm wall, it is assumed that it can be represented
by superposition of the isotropic potentialΨg for the non-
collageneous groundmatrix and the two transversely isotropic
potentialsΨf i, i = 1, 2 for the embedded families of collagen
fibers. Hence, the free-energy function reads

Ψ(C,Hi) = Ψg(C) +
∑
i=1,2

Ψf i(C,Hi(a0 i, κ)), (3)

whereC = J−2/3FTF andHi = κI + (1 − 3κ)(a0 i ⊗ a0 i)
are the modified right Cauchy-Green tensor and the generalized
structural tensor, respectively. HereF denotes the deformation
gradient with the volume ratioJ = detF > 0.

The non-collageneous groundmatrix is captured by an incom-
pressible isotropic neo-Hookean model and for the transversely
isotropic free-energy function of thei−th family of collagen
fibers the following form

Ψf i(C,Hi) =
k1

2k2
{exp[k2Ei

2]− 1}, i = 1, 2,

with Ei = Hi : C− Hi : I (4)

is proposed, whereHi : C denotes an invariant of the symmet-
ric generalized structural tensorHi and the symmetric modified
right Cauchy-Green strain tensorC. Moreover, we introduced
the Green-Lagrange strain-like quantityEi, which character-
izes the strain in the direction of the mean orientationa0 i of
the i−th family of fibers. In eq. (4) k1 andk2 are material pa-
rameters to be determined from mechanical tests of the tissue,
whilea0 i andκ are structural parameters to be determined from
histological data of the tissue.

Predicted stress fields in AAAs

The geometry of the aneurysm plays one major role in its
biomechanical analysis, and hence, accurate 3D reconstruc-
tion from clinical data is a critical issue. In particular, image
segmentation is a difficult task, and herein deformable mod-
els, which are thought to be the most promising approach to
the problem, have been applied. To this end an active contour
moves according to internal (defined by the elasticity of the
image model) and external (defined by the properties of the im-
age) forces until the image is successfully segmented. Within
this work Computer Tomography (CT) images, which have

been provided by the clinical cooperator, are automatically seg-
mented and based on that 3D grids for the FE computations are
generated. Principal material axes are defined and according to
this frame the proposed anisotropic material model (3) is uti-
lized. The incorporated structural and material parameters are
defined from independent experimental investigations, where
data from polarized light microscopy and planar biaxial testing
[4] of AAA tissue is used. A quasi-static (blood) pressure load-
ing of 13.33 kPa is assumed to act on the luminal site of the
aneurysm, and the solutions of the arising non-linear problems
lead to maximum principal Cauchy stress field typically shown
in Figure1.

Figure 1: Distribution of the maximum principal Cauchy stress
in the AAA wall loaded with 13.33 kPa blood pressure.

Conclusions

A detailed biomechanical analysis is thought to provide re-
liable data for a rupture risk assessment of AAAs. The de-
veloped model uses a new anisotropic hyperelastic model for
the aneurysm wall and patient specific geometries are recon-
structed from routinely taken clinical images. The proposed
hyperelastic model reflects arterial wall histology and incorpo-
rates the distribution of the collagen orientation. At least for the
adventitial and intimal layers, where the collagen orientations
exhibit high dispersion, this is a crucial requirement to capture
their mechanical properties.
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Summary: Osmotic, electro-static and/or hydrational swelling are essential mechanisms in the deformation behaviour of porous
media, such as biological tissues, synthetic hydrogels and clay-rich rocks. Present theories are restricted to incompressible con-
stituents. This assumption typically fails for bone, in which electrokinetic effects are closely coupled to deformation. An electro-
chemo-mechanical formulation of quasi-static finite deformation of compressible charged porous media is derived from the
theory of mixtures. The model consists of a compressible charged porous solid saturated with a compressible ionic solution. Four
constituents following different kinematic paths are identified: a charged solid and three streaming constituents carrying either a
positive, negative or no electrical charge, which are the cations, anions and fluid, respectively. The finite deformation model is
reduced to infinitesimal theory. In the limiting case without ionic effects, the presented model is consistent with Biot’s theory.
Viscous drag compression is computed under closed circuit and open circuit conditions. Viscous drag compression is shown to
be independent from the storage modulus.

Introduction

This paper focuses on the mechanics of ionised biological,
mineral and synthetic porous media. As a consequence of the
fixed charges a variety of physical phenomena are observed
in these materials, such as streaming potentials, diffusion po-
tentials, electro-osmosis, electro-phoresis. Biological materials
consist mainly of water. A number of models for soft biolog-
ical tissues have been developed in the past [4, 2]. They all
assume incompressibility of their constituents, because this as-
sumption is valid for soft tissue applications. Bone typically
does not comply with the assumption of incompressible con-
stituents. While soft tissues allow for volume change through
squeezing and soaking of fluid, volume change in bone is as-
sociated with compression of the solid phase, compression of
the fluid phase and squeezing and soaking of fluid from the en-
vironment. Soft tissues exhibit apparent compressibility, while
hard tissues have intrinsic compressibility as well. Indeed, the
bulk modulus of water is in the order of 2 GPa while the typ-
ical compressive stiffness of bone is one order of magnitude
higher. In addition, bone is well known to exhibit streaming po-
tentials under deformation [5]. Micromechanical models have
been developed to predict the streaming potentials in a single
canaliculus [1]. It is suspected that streaming potentials and
streaming currents are a key element in the understanding of
bone mechanosensing and remodelling [3]. On the other hand,
poromechanical models are capable of handling a full osteon,
but neglect the ionic component of the flow. The present paper
aims at filling this gap and provide a poromechanical theory
that does account for streaming potentials and currents. Miner-
als of the phyllosilicate class have a crystal structure consist-
ing of silicate layers stacked upon each other, which becomes
charged when exposed to water. Shale is a rock type containing
a large amount of phyllosilicate type clay minerals. Swelling of
shales is a major technical problem in petroleum engineering,
which can severely threaten the stability of boreholes. As down
hole pressures are typically in the order of tens of MPa, com-
pressibility of constituents is vital in these applications. In the

limiting case of incompressible constituents, the theory reduces
to the quadriphasic theory presented earlier [2].

Theory

We consider a ionised porous medium saturated with a mono-
valent homoionic solution (e.g. NaCl) subjected to infinitesi-
mal deformation. Conservation of mass of the streaming con-
stituents (cationsβ = +, anionsβ = − and waterβ = f )
require:

∂ζβ
∂t
−∇ · qβ = 0 (1)

in whichζβ is the unstrained content of constituentβ, ∂
∂t is the

time derivative for an observer moving with the solid andqβ
is the unstrained content flux of constituentβ relative to the
solid. The fluxes are related to the electro-chemical potentials
µγ through a coupled Darcy/Fick/Ohm law:

qβ = −kβγ · ∇µγ (2)

The electrochemical potentials are the derivative of the energy
functionW of the mixture with respect to the unstrained fluid
volumes, while the stress is the derivative of the same energy
with respect to strain. The energy function combines linear
isotropic poroelasticity with classical Donnan osmosis:

W =Gε : ε+

+ 1
2 (λ+ α2M)tr2ε+

+
∑

β=f,+,−

[−αM(ζβ − ζβ0)trε+ 1
2M(ζβ − ζβ0)2]+

+
∑
i=+,−

[RT
ζi

V i
(lnζi − lnζf − 1) +

Fzβ

V i
ξζi]

(3)

in which G andλ are the Laḿe constants,α the Biot coeffi-
cient,M the storage modulus,R the universal gas constant,T
the absolute temperature,F Faraday’s constant,V β the molar
volumes,ζβ the valences andξ the electrical potentials.
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Viscous drag compression simulation

Figure 1: An ionised porous sample is subjected to a pres-
sure gradient. The flow through the sample causes viscous drag
compression.

A porous sample is subjected to a pressure gradient (Fig.1) un-
der (1) short-circuit conditions (no voltage difference between
both sides of the sample) and (2) open circuit conditions (no
electrical current across the sample). The material parameters
areG = 6 GPa, λ = 11.2 GPa, α = 0.15, M = 36.4 or
100 GPa, hydraulic permeabilityK = 2.210−7 mm4/Ns, dif-
fusion coefficients are1.9 · 10−3 mm2/s and2.6 · 10−3mm2/s
for cations and anions. The fluid content is shown to depend
on the storage modulus while the strain is not (Fig.2 and3)
The voltage is different for the open citcuit versus closed cir-
cuit case (Fig.4)

Figure 2: Strain as a function of depth for two values of the stor-
age modulus. Continuous line:M = 36.4 GPa, typical value
for the canalicular porosity.
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Figure 4: Computed electrical potentialξ as a function of depth
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Summary: In this contribution we explore two multiscale strategies for the prediction of failure processes in heterogeneous
materials. The first method is based on a unit cell approach. Here the behavior of the discontinuity and the bulk material is
transfered from the unit cell to the macroscale. The second method is based on a projection of the fine scale behavior onto the
coarse scale model by using coarse scale test functions. The properties of the two methods are explored and illustrated with some
examples.

The treatment of unit cells which lose positive definiteness of
the tangent stiffness, i.e. are associated with a material that
loses strong ellipticity, are a focus of this work. These methods
can also be used when the material response predicted by the
unit cell loses rank one stability. The adherence of this method
to the energetic theorems of Hill are explored.

The use of subscale models such as unit cells, for the compu-
tation of failure still poses major difficulties. When failure pro-
gresses beyond a critical point at the macroscale, the tangent
stiffness of the unit cell loses positive definiteness. As a con-
sequence, the corresponding material models at the macroscale
lose either strong ellipticity or rank one stability, and unless
some modifications are made to the classical continuum formu-
lation, the problem, broadly speaking, is no longer well-posed.

We describe two methods wherein failure at the microscale is
modeled by an injected discontinuity at the macroscale. For the
first method, the behavior of the discontinuity and bulk ma-
terial is obtained from a unit cell and communicated to the
coarser scale via a virtual unit cell that provides an intermediate
step between the unit cell and the coarser scale continuum. The
method is in the spirit of FE2 [1].

We consider unit cells with sides of lengthl = αh, whereh is
the element size andα is a parameter close to unity. A unit cell
here is not a representative volume element for the boundary
conditions are not periodic. Furthermore, it is not assumed that
the fluctuations are periodic because the localization that ac-
companies microcrack growth, shear band formation and other
damage modes is not periodic.

Figure 1: Schema of the multiscale method.

The schema for the method is shown in Fig.1. At each point
in the macromodel (usually only the critical points), a linkage
is established with a virtual unit cell which in turn interrogates
the actual unit cell. The procedure is strain driven: The strain
experienced at a particular point in the macroelement is applied
to the unit cell, which is displacement driven by this strain field.

The method is implemented via the extended finite element
method, XFEM [2, 3]. As a consequence, arbitrary growth of
the discontinuities can be treated. The discontinuity behavior
predicted by the unit cell at the micro scale is used to drive the
macroscale discontinuity.

A second method which is described employs a multiscale pro-
jection to obtain the fine scale behavior [4]. This approach is
based on a two scale decomposition of the displacements and
a projection to the coarse scale by using coarse scale test func-
tions. On the coarse scale, we solve the weak form∫

Ω0

div
(
σ(u0 + ū1)

)
· η0 dΩ

=
∫
Ω0

f · η0 dΩ +
∫
∂Ω0

t

t · η0 d∂Ω (1)

for the coarse scale displacementsu0 by incorporating the
stress fieldσ(u0 + ū1) obtained from the fine scale compu-
tation, where we solve∫

Ω1

div
(
σ(u0 + ū1)

)
· η1 dΩ =

∫
Ω1

f · η1 dΩ (2)
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Figure 2: Deformed configuration of the fine scale domain.

for the fine scale displacementsu1 = u0 + ū1. For the fine
scale computation we use the pure displacement boundary con-
ditions ū1 ≡ 0 which guarantee compatibility between the
coarse scale displacement field and the fine scale displacement
field along the boundary of the fine scale domain. In the con-
text of XFEM which is used on both scales to efficiently cal-
culate cracks, these displacement boundary conditions require
a special projection technique to avoid non-uniqunesses of the
computed boundary conditions.

On the coarse scale only macrocracks, i.e. cracks that are larger
than a typical element size are modeled wheras on the fine scale
both, macrocracks and microcracks are considered. Thus, the
effect of the microcracks on the macrocracks and the coarse
scale response is captured only implicitly.

For this method, the right choice of the fine scale domain is
of great importance. Since microcracks around the crack tip of
a macrocrack strongly influence the propagation of the macro-
crack, the fine scale domains are chosen to be located around
the tips of the macrocracks. Since the influence of the micro-
cracks decays rapidly with the distance to the macrocrack tip,
it is sufficient if the fine scale domain has a diameter of a few
times the length of a typical microcrack. This leads to a very
efficient computation.

As an example, Fig.4 shows a mixed mode multiple crack
problem calculated with the multiscale method. The darkly
shaded area is the fine scale domain containing 114 microc-
racks located around the crack tip of a macrocrack. For this
example, the deformed configuration and the stress field of the
fine scale domain are shown in Figs.2 and3.

Figure 3:σyy stress component of the fine scale domain.

Figure 4: Mixed mode multiple crack problem.
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[3] T. Belytschko, N. Möes, S. Usui, and C. Parimi (2001):
Arbitrary discontinuities in finite elements.International
Journal for Numerical Methods in Engineering, 66, 1378–
1410.

[4] S. Loehnert, and T. Belytschko (2007): A multiscale pro-
jection method for macro / microcrack simulations.Inter-
national Journal for Numerical Methods in Engineering,
DOI:10.1002/nme.2001.

Prague, Czech Republic, 25-27 June 2007 31



MHM 2007: Modelling of Heterogeneous Materials with Applications in Construction and Biomedical Engineering

Modeling Fluids of Heterogeneous Materials Including Fluid-Structure Interactions
Using the Particle Finite Element Method
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Summary: We present a general Lagrangian formulation for treating problems in a unified form from fluid flows of heteroge-
neous materials to fluid-structure interactions between elastic solids and incompressible fluids. In our work the problem is solved
via the Particle Finite Element Method (PFEM). The PFEM is an effective technique for modeling complex interactions between
heterogeneous fluid materials with floating and submerged bodies including free-surface flows and internal interfaces, accounting
for splashing of waves, large motions of the bodies and frictional contact conditions.
Examples of the unified Lagrangian formulation to a number of heterogeneous materials situations are given such as mixing of
heterogeneous fluids, bed erosion and sediment transport in channels and fluid-structure interactions problems.

Introduction

Typical difficulties of modeling fluids and solids with het-
erogeneous materials using the FEM with both the Eulerian
and ALE formulations include the treatment of the convective
terms and the incompressibility constraint in the fluid equa-
tions, the modeling and tracking of the interfaces between the
heterogeneous materials, free surface in the fluid, the transfer
of information between the fluid and solid domains via the
contact interfaces, the modeling of wave splashing as well on
the free surface as in the internal interfaces, the possibility
to deal with large rigid body motions of the structure within
the fluid domain, the efficient updating of the finite element
meshes for both the structure and the fluid, etc.

In our work we propose a different route for solving problems
of heterogeneous fluids including fluid-structure interactions.
Our goal is to solve the equations of fluid using a Lagrangian
formulation. This allows following the different heterogeneous
materials in a Lagrangian frame and, in case of FSI, allows the
use for both, the fluid and solid domains, a unified formulation.
This basically means that the analysis domain, containing both
fluid and solid sub domains which interact with each other,
is seen as a single continuum domain with different material
properties assigned to each of the interacting sub domains (i.e.
the fluid and solid regions). This allows making no distinction
between fluids and solids for the numerical solution and a
single computer code can be used for solving a FSI problem
with heterogeneous fluids domains.

The key ingredients of the unified formulation presented are:

a) The use of a Lagrangian description to model the kinemat-
ics of both: heterogeneous fluid and solid domains.

b) The use of the Particle Finite Element Method (PFEM)
for redefinition of the domain boundaries and treatment of

frictional contact conditions.

c) The definition of a unified constitutive equation for the
fluid and solid materials.

Most of these problems previously described in ALE and Eu-
ler formulations disappear if a Lagrangian description is used
to formulate the governing equations of both the solid and the
fluid domain. In the Lagrangian formulation the motion of the
individual particles are followed and, consequently, nodes in a
finite element mesh can be viewed as moving material points
(here forth called “particles”. Hence, the motion of the mesh
discretizing the total domain (including both the fluid and solid
parts) is followed during the transient solution.

In this paper we present an overview of a particular class of La-
grangian formulation developed by the authors to solve prob-
lems involving heterogeneous fluids including the interaction
between fluids and solids. The method, called the particle finite
element method (PFEM), treats the mesh nodes in the fluid and
solid domains as particles which can freely move and even sep-
arate from the main fluid domain representing, for instance, the
effect of water drops. A finite element mesh connects the nodes
defining the discretized domain where the governing equations
are solved in the standard FEM fashion.

The PFEM is the natural evolution of recent work of the authors
for the solution of fluid mechanics problems using Lagrangian
finite element and meshless methods [1-3]. An obvious advan-
tage of the Lagrangian formulation is that the convective terms
disappear from the fluid equations. The difficulty is however
transferred to the problem of adequately (and efficiently) mov-
ing the mesh nodes. Indeed for large mesh motions remesh-
ing may be a frequent necessity along the time solution. We
use an innovative mesh regeneration procedure blending ele-
ments of different shapes using an extended Delaunay tessel-
lation [4]. Furthermore special polyhedral finite element needs
special shape functions. In this paper, meshless finite element
(MFEM) shape functions have been used [5].
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Basic steps of the PFEM

Let us define the collection or cloud of nodes (C) pertaining to
the fluid and solid domains, the volume (V ) defining the anal-
ysis domain for the fluid and the solid and the mesh (M ) dis-
cretizing both domains.
A typical solution with the PFEM involves the following steps.

1. The starting point at each time step is the cloud of points
in the fluid and solid domains. For instanceCn denotes the
cloud at timet = tn.

2. Identify the boundaries for both the fluid and solid do-
mains defining the analysis domainVn in the fluid and the
solid. This is an essential step as some boundaries (such as
the free surface in fluids) may be severely distorted during
the solution process including separation and re-entering
of nodes. This allows modeling splashing of waves. The
Alpha Shape method is used for the boundary definition.

3. Discretize the fluid and solid domains with a finite element
meshMn. In our work we use an innovative mesh genera-
tion scheme based on the Extended Delaunay Tessellation
[4].

4. Solve the Lagrangian equations of motion for the fluid and
the solid domains using the unified formulation proposed
in this work. Compute the relevant state variables in both
domains at the next (updated) configuration fort + ∆t:
velocities, pressure and viscous stresses in the fluid and
displacements, stresses and strains in the solid. Indeed this
step requires an iterative scheme as large motion of both
the fluid and solid domain may occur during the time step.

5. Move the mesh nodes to a new positionCn+1 wheren+1
denotes the timetn + ∆t, in terms of the time increment
size. This step is typically a consequence of the solution
process of step 4.

6. Go back to step 1 and repeat the solution process for the
next time step.

Examples

A number of examples to show the powerful of the method are
included in the extended paper. Fig. 1 shows, for instance, a
time step during the mixing of two fluids of different densities.
The representation of the free surface and the interface between
the two flows represent a difficult task, easily solved using the
technique presented in this paper.

Another interesting application of the PFEM is the solution of
erosion and sediment transport in open channel flows. The phe-
nomena of erosion and sediment transport may be treated as an
interaction between two heterogeneous materials. Fig. 2 shows,
for instance, a time step during the process of erosion of a sand
channel under the action of an impacting water stream origi-
nated by a water jet. The domain includes an elastic body rep-
resenting a bridge pile.

Figure 1: Mixing two fluids of different densities.

Figure 2: Erosion of a sand channel.
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Summary: This paper describes the crack centered enrichment of the debonding between matrix and textile reinforcement. The
basic fields are formulated with additional terms representing the discontinuity in matrix displacement as well as in the bond. The
crack bridge parameters can be evaluated in a nonlinear computation embedded in the standard Newton-Raphson framework. We
illustrate the method on the example of a 1D bar with two interacting cracks.

Introduction

A particularly important aspect of modeling cementitious com-
posites reinforced with multi-filament yarns is an explicit rep-
resentation of the crack edge geometry evolving during the fail-
ure process. It is the necessary condition for good reproduction
of the strain fields at the hot spots of the damage both in the
bond and in the yarn in the vicinity of the crack bridges. Only
with the detailed crack geometry representation it is possible to
consider the micro-scale effects occurring in cracks bridged by
multi-filament yarns resulting from varying bond quality and
bond-free length or lateral pressure.

Crack-centered debonding enrichments

This problem can be effectively tackled using adaptive enrich-
ment techniques of the finite element method providing an effi-
cient tool for introducing discontinuities and material interfaces
into an originally smooth discretization [1]. Here we consider
a one-dimensional two layered body occupying an intervalΩ
with boundary denoted byΓ. Debonded zones around disconti-
nuities at pointsxξ are denoted byΩa. To present the approx-
imation in a concise form,effective valuesof the basic fields
(matrixm and fiberf ) are defined by

for x ∈ Ω \ Ωa

σ̄ = σm + σf

ε̄ = εm = εf (1)

ū = um = uf

for x ∈ Ωa

σ̄ = σm + σf

ε̄ =
σ̄

Em + Ef
=

1
Em + Ef

(Emεm + Efεf) (2)

ū =
1

Em + Ef
(Emum + Efuf)

The basic displacement functionsum anduf can be rewritten
in terms of effective valuēu

um = ū+ ūm (3)

uf = ū+ ūf (4)

whereūm andūf are the deviations ofum anduf , respectively,
from the effective valuēu. Using Eqs. (2) this can be rewritten
as

um = ū− Ef

Em
ūf (5)

uf = ū+ ūf (6)

In order to introduce a discontinuity representing a single crack
bridge at positionx = xξ, the approximation of the effective
displacement̄u can be enriched by the step function sign(·)

ūh = N sûs + sign(x− xξ) ûe. (7)

In the debonded domainΩa (slip between matrix and fiber) the
enrichment must reflect the different displacement fields

uhm = N sûs + sign(ηa) ûe +Nm(ηa)ûm

uhf = N sûs + sign(ηa) ûe +Nf(ηa)ûf
(8)

where

ηa =
1
a
(x− xξ) (9)

is a unit coordinate system with the origin at the crack bridge
(x = xξ) andηa = ±1 marking the boundaries of the debonded
zone. The extending functionsNm(·) andNf(·) are constructed
in such a way that the approximation (8) a-priori fulfills the
kinematic conditions at pointsx = a andx = xξ. Based on the
analytical solutions of a symmetric pull-out problem with co-
hesive bond the functionsNm andNf are defined as piecewise
quadratic functions (Fig. 1) in the following way:

Nm(η) =
{
−(η + 1)2 −1 < η < 0

(η − 1)2 0 < η < 1 (10)

Nf(η) = −Nm(η)
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Figure 1: Enrichment functionNm(η).

Figure 2: Enrichment functions for fiber.

The continuity of the fiber displacement fields imposes an
additional constraint

ûe = ûf (11)

For the example of a single crack bridge the enrichment func-
tions are depicted in Figs. 2 and 3.

Verification example

As an example we present a fiber reinforced tension bar with
two interacting cracks. The crack bridge opening parameters
are computed within the standard Newton-Raphson framework.
Figs. 4–6 show the displacement fields, strains and stresses.

The described enrichment framework is constructed with the
goal to couple the described meso-scopic enrichment with
micro-scale crack bridges representation capturing the local
damage and failure mechanisms [2].
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Figure 3: Enrichment functions for matrix.

Figure 4: Displacement field of a tensioned 1D bar with two
cracks: reference displacement field, matrix and fiber displace-
ment.
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Figure 5: Strain field of a tensioned 1D bar with two cracks.

Figure 6: Stress field of a tensioned 1D bar with two cracks.
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Summary: A mathematical model for non-isothermal multiphase geomaterials which considers the dissolution of air in water
and air mass sources during its desorption at lower water pressure is presented. The solid skeleton is elasto-plastic, isothermal
or non-isothermal; heat, water and air flows and water phase changes are taken into account. Numerical solution of the model
equations by means of the Finite Element Method for coupled problems is presented and a numerical example is shown.

Porous materials are made of a solid phase and closed and open
pores. The case where the open pores are filled with one or
more fluids, i.e. multiphase media, is considered in this work.
In recent years, increasing interest in thermo-hydro-mechanical
analysis of saturated and partially saturated materials is ob-
served, because of a wide spectrum of their engineering appli-
cations. Typical examples belong to environmental geomechan-
ics, where, e.g., the pollutant transport problem within fractured
zones due to shear bands development is of interest.
Strain localization in water saturated geomaterials has been
modelled in recent years by several researchers (see e.g. the
references in [1]). There are also experimental results avail-
able, e.g. [2]. The case of globally undrained dense (i.e. di-
latant) sand samples are interesting because the experimental
results show that the water pressure decreases continuously al-
most from the beginning on. At the onset of localization this
pressure is decisively negative and is close to the cavitation
pressure. This pressure is always reached at the onset of lo-
calization and cavitation was observed [2]. Usually these ex-
periments are performed by saturating the specimens with de-
aired water and making circulate fresh de-aired water in order
to dissolve the rest of gas bubbles possibly trapped in the spec-
imens and the circuits. In field conditions this is not the case.
The question how the air dissolved in water can influence the
evolution of water cavitation during the strain localization phe-
nomenon and, more generally, how the dissolved air released
can influence the rapid water saturation variation, is the main
motivation for the development of the proposed model.
The low value of water pressure observed during strain local-
ization in water saturated dense sands, causes a release of cer-
tain amount of air dissolved in water. This is so because the
solubility of air in water, according to Henry’s law, eq. (1), de-
creases proportionally to the pressure drop

pgi = Kca · cwa (1)

with cwa the concentration of the air dissolved in water and
Kca(pw, T ) the Henry law constant, dependent on the water
pressurepw and the temperatureT . For example1 dm3 of wa-
ter saturated sand and having porosity of0.20, may contain at
20 C maximally about3.98 ml of dissolved air at atmospheric
pressure (patm= 101325 Pa) and only0.09 ml of air at pres-
sure of2339 Pa (cavitation pressure value at200 C). The ex-

cess amount of air is released in the form of small air bubbles,
which play a role of nuclei for cavitation initiation. The process
starts when the actual volume concentration of air dissolved in
water is equal to the equilibrium one corresponding to the ac-
tual water pressure. Furthermore, this air can contribute to the
gas pressure in the zone, accelerating water desaturation.
In this work, we extend the previous mathematical models of
coupled heat and mass transport in fully and partially saturated
soils [3], considering the air dissolved in pore water and air
mass sources during its desorption at lower water pressure.

Mathematical model and a numerical simulation

The multiphase porous continuum is composed of a solid skele-
ton (s) and voids filled with water (w) and air (g). The latter
is assumed to behave as an ideal mixture of dry air (ga) and
water vapour (gw). Phase changes of water and heat transfer
through conduction and convection, as well as latent heat trans-
fer are considered in the model. The solid skeleton is modelled
as an elasto-plastic deforming porous continuum in isothermal
[3] or non-isothermal conditions. Small strains and quasi-static
loading conditions are assumed. All fluids are in contact with
the solid phase. The constituents are assumed to be isotropic,
homogeneous, immiscible except for dry air and vapour, and
chemically non reacting. Local thermal equilibrium is assumed.
The primary variables are the solid displacementsu, the capil-
lary pc and the gas pressurepg, the temperatureT and the con-
centration of the air dissolved in watercwa. Partial saturation is
described at constitutive level. The interested reader can refers
to [1] for the full mathematical model. The macroscopic bal-
ance equations are now summarized. The mass balance equa-
tion for the solid skeleton, water and vapour is:

n[ρw + ρgw]
∂Sw
∂t

+ [ρwSw + ρgwSg] div

(
∂u

∂t

)
+nSg

∂ρgw

∂t
− div

(
ρg
MaMw

M2
g

Dgw
g grad

(
pgw

pc

))
−div

(
ρw
k krw

µw
[grad(pg)− grad(pc)− ρwg]

)
−div

(
ρgw

k krg

µg
[grad(pg)− ρgg]

)
− βswg

∂T

∂t
= 0

(2)
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The mass balance equation for dry air is:

div

(
ρga

k krg

µg
[−grad(pg) + ρgg]

)
− nρga ∂Sw

∂t

−div

(
ρg
MaMw

M2
g

Dga
g grad

(
pga

pg

))
+ nSg

∂ρga

∂t

+ρgaSgdiv

(
∂u

∂t

)
− βsρga[1− n]Sg

∂T

∂t
= ṁga

(3)

with ṁga the rate of mass due to released dissolved air [1]:

ṁga = div

(
cwaρ

w k k
rw

µw
[grad(pw)− ρgg]

)
+nρwcwa

∂Sw
∂t

+ div(ρwDga
w grad(cwa))

−ρwcwaSwdiv

(
∂u

∂t

)
− nρwSw

∂cwa
∂t

+ cwaβswg
∂T

∂t

(4)

The energy balance equation is:(
ρwCwp v

w + ρgCgpv
g
)
· grad(T )− div(χeffgrad(T ))

+ (ρCp)eff
∂T

∂t
= −ṁvap∆Hvap

(5)

The linear momentum balance equation of the mixture in terms
of effective Cauchy stress is written in (6), with ρ = [1−n]ρs+
nSwρ

w + nSgρ
g the mixture density. The form of the stress

tensor in (6) is thermodynamically consistent, as derived in [4].

div(σ′ − [pg − Swpc]1) + ρg = 0 (6)

A first simplified model can be derived assuming the gradient of
cwa small enough to neglect the effects of the diffusive fluxes of
dissolved air. In this case, the source term in (3) can be reduced
to ṁga = −nρwSw∂cwa/∂t (see [1] for details).

The following numerical example deals with the simulation of
the plane strain compression test described in [2] for a case of
dense sand under globally undrained conditions, where strain
localization and cavitation of the pore water was observed.
The process is simulated with the numerical model considering
these effects (case 2) and neglecting them (case 1 - see [3]).
A rectangular sample of homogeneous soil of34 cm height
and10 cm width has been discretized using quadrilateral el-
ements. The material is initially water saturated and the bound-
aries of the sample are impervious and adiabatic. Imposed ver-
tical displacements are applied on the top surface until strain
localization is obtained. Vertical and horizontal displacements
are constrained at the bottom surface. The initial temperature
in the sample is fixed at the ambient value. Gravity forces are
taken into account. The dilatant behaviour of the solid skeleton
is simulated by using the elasto-plastic Drucker-Prager consti-
tutive model, with isotropic linear softening and non associated
plastic flow.
The numerical results indicate the pronounced accumulation of
inelastic strains in narrow zones (Fig.1) and a water pressure
drop inside them up to the development of capillary pressures.
At these conditions a vapour phase appears (i.e. water cavita-
tion starts) only inside the dilatant plastic zones because the
water pressure decreases below the saturation vapour pressure
at ambient temperature of2338.8 Pa (Fig.2). A gradual water
desaturation in the strain localization bands initiates. When the

dissolved air is considered in the mathematical model (case 2),
the decrease of water pressure inside the plastic zones causes a
release of the dissolved air there, Fig.1, what visibly acceler-
ates, as compared to the case 1, the initiation of cavitation and
desaturation process, about12 s for the considered example,
Fig.2. Hence, it can be concluded that the dissolved air is of im-
portance during simulation of cavitation in globally undrained
initially water saturated dense sands. This is not the case when
the water outflow due to gravity forces and accompanying wa-
ter desaturation (Liakopoulos test) is modelled [5].

  

Figure 1: Equivalent plastic strain (left) and total amount of
dissolved air released from the pore water (right) at t=22 s. 
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Figure 2: Vapour pressure vs. time.
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Summary: This paper presents “µic”, a new model that simulates microstructural development of hydrating cement paste. The
model uses the vector approach to preserve the multi-scale aspect of cement and can be used for microstructural characterization
and micro-mechanical computations. The emphasis of this model is towards providing a flexible simulation platform to aid
experimenters with interpreting experimental results.

Introduction
Our current knowledge of cement is limited to, often contradic-
tory, experimental results on specimens that vary depending on
different conditions. With many concurrent factors it becomes
difficult to decouple their effects based on observations. Still,
with most numerical models focussing on prediction, the avail-
ability of numerical tools aiding the interpretation of results is
limited. This paper presents a model that aims at aiding, rather
than replacing experimentation.

µic the model
This model is based on the vector approach, where all elements
are represented as three-dimensional vector shapes rather than
a collection of discrete pixels. The basics of this model are de-
rived from work by Navi and Pignat [1, 2]. In the pixel ap-
proach, the size of the smallest possible object represented is
restricted by the maximum resolution, that in turn is restricted
by memory limitations [3]. So, the pixel approach can be ar-
gued not to be appropriate for multi-scale materials like ce-
ment. The vector approach provides a solution for such mate-
rials as it is not restricted by a maximum resolution. However,
due to performance issues, the vector approach is largely lim-
ited to spheres. Reactions inµic are modelled as creation and
expansion of spheres containing multiple concentric layers as
discussed in the following section.

Purely object-oriented code in Java was developed with the ob-
jective of providing the user with the flexibility to include his
ideas in simulation. The cement hydration tool-kit was devel-
oped to provide a customisable framework for the model. The
tool-kit provides generic implementations for reactions, mate-
rials, particles, etc. that can be plugged in with customisations
to implement particulate reactions. Reactions can, for example,
be plugged in with user-defined reaction kinetics.

Spherical particles are packed into a numerical volume to rep-
resent different phases of cement. While different phases may
be interspersed in varying proportions in the particles and be
present as concentric layers, they can also be present as separate
particles. Reactions can be defined as the consumption of de-
fined proportions of user-defined materials and the production
of other materials. The products can then either be deposited
over the grains already present or be deposited in new clusters
in the pores. Plugins can be used to define the amounts of mate-
rials being used up from different particles and the distribution
of products in the available space. The general steps in defining
a problem are listed in the following section.

Steps in modelling
Sinceµic has been designed to provide maximum customis-
ability to the user, a large number of inputs are required for the
definition of the problem. Although this might initially slow
down or even make difficult the definition of the problem, all
definitions can be reused and extended. The model also pro-
vides libraries for many common applications. The main steps
in the definition of the problem as listed below.

• Definition of materials

• Definition of powder properties: water/solid ratio, particle
size distribution, phase distribution

• Phase distribution of materials in particles using plugins

• Definition of particle types

• Definition of reactions

• Definition of consumption and deposition laws using plu-
gins

• Definition of other plugins

The importance of plugins in the design of the model is appar-
ent in the above list. One of the most important of these plugins
are reaction kinetics. Reaction kinetics are defined to control
the rate of consumption of materials according to laws based
on experimental observations. Many other laws can be plugged

Figure 1: Structure of the model.

into the model. Using one of these plugins, the products can be
deposited in varying proportion over different types of grains.
For example, CSH can be allowed to deposit over Alite grains,
filler particles or even as new clusters in pore space, all with dif-
ferent properties. This is achieved by defining the three types of
CSH as different materials linked to each other. The proportion
of CSH deposited in the three places can be controlled by man-
aging the produced amounts of the three types of CSH. These
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proportions are also not static and can be calculated at each
moment using the plugin. Furthermore, another plugin can be
attached to CSH to allow the production of CSH to increase the
density of the particles already present, rather than just increas-
ing the size of the particles.

Although most of the plugins are not obligatory to define and
default and library implementations are provided for all of
them, the full power of the model can be realised by using all
its features.

An example plugin
The plugin below is a reaction trigger that can be used to limit
the execution of a reaction to given start and end time.
boolean isActive(float time){
if (time< startTime) return false;
if (time> endTime) return false;
return true;}
This code can be embedded in the standard plugin format, com-
piled independently and given as an input to the model. Future
versions of the model would be able to dynamically compile
plugins given as simple text input by the user reducing com-
plexity for the user.

Execution of the reactions
Once the inputs listed above have been provided, the simulation
can be started. The model first assembles the problem by creat-
ing instances of all materials, reactions, etc. plugged in with all
user customisations. A numerical specimen, called the reactor,
is first created and packed with the particles. The initial parti-
cles are generated based on the provided particle size gradation
and the different phases are distributed in these particles. The
packing is done using a random parking algorithm.

The reactor then takes over and simulates the reactions individ-
ually. The reactions in which the rate of reaction depends on
the individual particles, the amount of each material reacting
from each particle is calculated. The products that need to be
deposited on the same particle are handled immediately while
the others are collected in a buffer. Once all particles are han-
dled for each reaction, the buffers are distributed in the system.
If possible, some materials are handled together once all reac-
tions have been calculated to improve performance. So, in ef-
fect, the reactions are simulated as change in radii of different
layers in the particles.

Results
The evolving microstructure of cement is generated as the out-
put of the program at each time step. At the same time the
global quantities are also recorded. While the global quanti-
ties can be used for comparison with experimental data, the
microstructural results can be used for comparison with micro-
graphs. Values such as heat evolution and degree of hydration
can are available at each step in simulation. Furthermore, the
microstructure can be analysed for physical (e.g. permeabil-
ity) and mechanical (e.g. Young’s modulus) properties. Paral-
lel projects are looking at extracting such information from the
vector results. A new microstructural model calledµic has been
developed. This model focusses on providing the user with the
flexibility to add his own ideas in simulations, allowing him
to test his hypotheses by comparison with experimental re-
sults. Object oriented architecture also eases extensibility of the

Figure 2: A typical 2D section of calculated microstructure.

model. The model is designed to be dynamic and evolutionary,
and not limited to our current knowledge.

Figure 3: Normalised rate of heat evolution calculated.

Conclusion
Pore analysis of the microstructure is an integral part of this
project. Currently under development, the vector approach and
other multi-scale methods are being looked at to analyse the
microstructure. Since the porosity of cement paste is hard to ac-
cess and only indirect measurements are available for its char-
acterisation, analysis of the numerical microstructure can prove
to be the crucial link between experimental measurements and
the actual properties.
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Summary: In a first part, the equations of the boundary of the bifurcation domain and of the cones of unstable stress directions
are established for an incrementally piece-wise linear constitutive relation while, in a second part, these results are also obtained
through discrete element computations. Diffuse failure is simulated numerically by perturbations of the bifurcation states.

Granular media are strongly non-associated elasto-plastic ma-
terials. Thus their elasto-plastic tensor does not satisfy the so-
called “major symmetry”. Essentially because of that, these
media give rise to various classes of bifurcations strictly inside
the Mohr-Coulomb plastic limit condition. These bifurcations
are leading to various kinds of instabilities (geometrical insta-
bilities, material instabilities, . . . ). Material or constitutive in-
stabilities are related themselves to different failure modes (lo-
calized failure in shear bands, in compaction bands, in dilation
bands, diffuse failure, . . . ); see [4].

Localised failure was extensively studied in the past from ex-
perimental, theoretical and numerical points of views. On the
contrary, while diffuse failure was detected experimentally by
various authors along “undrained” triaxial loading on loose
sands or along “q constant” drained triaxial loading, theoret-
ical studies have been devoted to this question only recently,
even if this failure mode is important in practice in the case of
landslides under small slope angles [5]. In this perspective this
lecture is devoted to the analysis of diffuse failure as a bifur-
cation phenomenon detected by Hill’s sufficient condition of
stability (sign of second order work).

In a first part we consider a phenomenological approach by
using incrementally piece-wise linear and non-linear elasto-
plastic constitutive relations. Generalised stress-strain variables
(basically linear combinations of stresses and strains) allow to
introduce new limit states strictly inside Mohr-Coulomb plas-
tic limit condition, where the second order work is vanishing.
Since at these limit points the loading path is no more control-
lable [8] and the loading state is no more sustainable [2, 3],
these points can be considered as bifurcation states. If we con-
sider the incrementally piece-wise linear relation, the bifurca-
tion criterion is given analytically by the vanishing generalised
constitutive determinant and the boundary of the bifurcation
domain can be obtained explicitly. According to the equations,
inside the bifurcation domain, cones of unstable stress direc-
tions can be also determined, because the second order work
is essentially a directional quantity. These cones are opening
gradually when the stress state is approaching to the Mohr-
Coulomb criterion. Having established the equations of the bi-
furcation domain and of the unstable cones, these results are
verified numerically by considering direct integrations of the
incrementally piece-wise linear relation. Finally a numerical
comparison is performed with the incrementally non-linear re-
lation, as in this case not any analytical proof can be exhibited
[6, 7].

The bifurcation points (associated to generalised limit states)
are related to vanishing eigenvalues of generalised constitutive
matrices relating generalized stresses and strains. To these nil
eigenvalues correspond eigenvectors which characterise the in-
finite number of solutions and the failure mechanism at these
failure states through a “failure rule”.

In a second part a discrete approach is considered by using a
discrete element method [4]. This method allows to simulate by
direct numerical computations the behaviour of a cubical spec-
imen of 10000 spheres [9] interacting by a coulombian friction.
First the sign of second order work (determined at the bound-
ary of the cubical specimen) is computed along various loading
paths and, at some stress-strain points, for various stress direc-
tions. It is remarkable that a bifurcation domain and cones of
unstable stress directions were exhibited by these direct simula-
tions. Having calibrated the incrementally non-linear constitu-
tive relation on the numerical cubical specimen, it was possible
to compare quantitatively the bifurcation domain and the unsta-
ble cones obtained with both these essentially different models.
A convincing agreement is found [9]. Then it is tried to ob-
tain a numerical diffuse failure at these presumed bifurcation
states. Taking into account exactly the conditions given by the
previous theory (i.e. stress states inside the bifurcation domain,
incremental loading in unstable directions, proper control pa-
rameters), small perturbations of the loading parameters trying
to trespass the limit states give rise to exponentially growing
strains and to a burst of kinetic energy. The loading path is no
more controllable in Nova’s sense [8]. It was also verified that
for the same perturbation applied “slightly” before the limit
states nothing particular happens. Finally the numerical input
of a small quantity of kinetic energy inside the specimen at the
limit states gives rise also to the same kind of sudden diffuse
failure. These states are not sustainable in Nicot’s sense [2, 3].
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Summary: This abstract describes recent work on the effect of induced pore fluid pressure on the mechanics of fault zones
during rapid slip or shearing as occurs during earthquake faulting. One result suggests that thermal pressurization due to shear
heating and fluid diffusion can cause localization of shearing into a very narrow zone, of order a few mm, even in a material
having a strength that increases with shear strain rate. A second result shows that heterogeneity of poroelastic parameters in a
narrow boundary layer near the slip plane can induce changes in pore fluid pressure. These changes cause alterations of effective
normal stress that, for plausible parameters, are comparable to the changes in total normal stress induced by slip on a bimaterial
interface.

Introduction

Recent field observations of mature faults [1, 2, 3, 4, 5, 6],
that is, faults that have experienced large amounts of relative
displacement, have revealed the following representative struc-
ture: A damage zone of the order of tens of meters wide sepa-
rates relatively intact rock which may be of different types on
the two sides of fault. Within the damage zone is a gouge zone
of more highly damaged and permeable material having a width
of the order of several meters. The principal slip occurs within
a very narrow, ultracataclastic zone of the order of 10 to 100
mm and may be localized to an even narrower zone of only 1
to 5 mm thickness. This very narrow zone is relatively imper-
meable to flow across it with permeabilities around10−19 to
10−20 m2.

Shear localization

The observation of the occurrence of the principal shear in a
very narrow zone is consistent with the calculation of the sta-
bility of homogeneous, undrained adiabatic shearing in a fluid-
saturated gouge zone material. The shear strain rate of the mate-
rial is assumed to be proportional to the effective normal stress
(compressive stress minus the pore pressure) but with a fric-
tion coefficient that increases with the rate-of-shearing (if rate-
weakening, deformation would localize at the onset of shear).
This type of behavior applies to stable regions in which rup-
ture cannot nucleate and to initially unstable regions that have
been driven into a stable temperature regime by shear heat-
ing. A linearized perturbation analysis [7] shows that spatial
nonuniformities with wavelengths greater than a critical value
grow exponentially in time. The critical wavelenth is given by
λcr = 2π

√
(cth + chy) /(z + 2)Hγ̇0 wherecth and chy are

the thermal and hydraulic diffusivities,γ̇0 is the rate of uniform
shearing,H is a characteristic weakening strain of the homo-
geneous solution, andz is a measure of the rate-strengthening.
ForH ≈ 0.1, z ≈ 40, based on laboratory friction experiments,
γ̇0 ≈ 100/s, consistent with a slip rate of1 m/s over a10 mm
thick layer,cth = 1 mm2/s and two values ofchy, 1.8 and4.8
mm2/s,λcr = 0.38 mm and0.87 mm. A more detailed numer-
ical analysis that takes into account nonlinearities and pressure

and temperature dependencies of the shear zone poromechan-
ical properties supports the approximate validity of the linear
stability analysis in predicting the localized zone thickness [8].

Effective normal stress changes

Because slip causes compression on one side of the fault (ide-
alized as a plane) and extension on the other, a mismatch of lo-
cal poroelastic properties, in particular, permeability or storage
coefficient, in the gouge zone causes an alteration in pore pres-
sure. More specifically, the pore pressure increases at the inter-
face if the compressive side is more permeable and decreases if
the extensile side is more permeable. In addition, mismatch of
the relatively intact material further from the slip surface also
induces a change of pore pressure because of the change of nor-
mal stress and magnitudes of the discontinuous along-fault ex-
tensile strains induced by slip on a bimaterial interface. These
changes in effective normal stress, due to changes in both total
normal stress and pore pressure, can alter the resistance to slip.

Figure 1: The Rice et al. [10] model for steady state propaga-
tion of a slip-weakening slip pulse. Model for near-fault behav-
ior shown in Fig. 2.

Rudnicki and Rice [9] have analyzed the effects of near fault
heterogeneity within the framework of the steady state, slip-
weakening pulse model of [10] shown in Fig. 1. The slipping
zone moves steadily to the right at a constant speedv. Slip δ
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begins atx = 0 and increases toδT atx = −L. The frictional
strength is of the form

τ = c(δ)− fr(σyy + p) (1)

where the first term is the cohesive part, assumed to weaken
with slip and, for convenience, taken so thatc(δ) decreases lin-
early with x from x = 0 to x = −R. In the second term,
the friction coefficientfr (assumed to be constant) multiplies
the effective normal stress, the sum of the total normal stress
σyy (positive in tension) and the pore fluid pressurep. Slip on
plane in a homogeneous elastic solid causes no change in nor-
mal stress.The pore pressure on the fault plane is obtained by
examining a narrow boundary layer (typically less than a few
10’s of mm) where fluid diffusion occurs over the time scale of
passage of the slip pulse (Fig. 2). This region is assumed to be
so narrow that it experiences uniform along-fault strains. These
will be equal in magnitude and opposite in sign if the material
on the two sides of the slip zone is the same. The solution of
this poroelastic problem reveals that the pore pressure on the
fault has the same form as that for undrained conditions (no
fluid flow) but with a modified coefficient that depends on the
poroelastic properties in the near-fault boundary layer. Because
the pore pressure change is proportional to the along-fault slip
gradient, the solution can be extended to include the case where
the elastic material on the two sides of the fault differs. In this
case slip does cause a change in the total normal stressσyy
on the slip plane and there is an additional contribution to the
change in pore pressure because the along-fault strains differ in
magnitude on the two sides.

Figure 2: Schematic variation of pore in the near slip plane
boundary layer region.

The effects due to heterogeneity of near-fault poroelastic prop-
erties and to mismatch of the elastic material outside the fault
boundary layer are compared for representative values of mate-
rial and transport properties and for mismatch of elastic prop-
erties suggested by seismic observations. The comparision in-
dicates that the magnitude of the two effects may be simi-
lar although that due to mismatch of elastic material increases
rapidly as the rupture velocity nears the generalized Rayleigh
wave speed. Because the sign of both effects may be positive or
negative depending on the arrangement of material properties,
the sense of slip and the direction of rupture propagation, they
may offset or reinforce each other.
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Summary: This paper presents a methodology for identifying the parameters of a constitutive law. Conventionally, identifications
are based on macroscopic data only. However, this does not yield any information on the correctness of the microscopic fields,
which control (for instance) crack initiation and propagation. It is for this reason that a coupled approach is proposed between
macroscopic and microscopic measurements on the one hand, and finite element simulations on the other hand. The paper focuses
on one particular aspect, which is the influence of the subsurfacic fields on the final parameter values.

Introduction

Local strain incompatabilities and stress concentrations can
cause industrial structures to fracture prematurely. In some ma-
terials, these local fluctuations are very sensitive to small varia-
tions in microstructure. Up until very recently, they were not at
all taken into account in the identification of constitutive laws
(which are then used in life-time analyses).

This present paper elaborates and validates a methodology that
fills this gap. It was originally motivated by the low ductility
at room temperature of Titanium Aluminides, which is the ma-
jor factor blocking their widespread use in aerospace industry,
but in itself the methodology is completely general and can be
applied to many materials.

Methodology

The coupled approach consists of a dialogue between experi-
ments and numerical simulations, both at the macroscopic and
at the microstructural length scale. The main idea is to measure
the microscopic strain fields and the macroscopic stress-strain
curve simultaneously, at several instants during the experiment,
and then to carry out a simulation on the same microstructure
with the same loading history. By comparing both macroscopic
and microscopic results with their experimental counterparts,
the parameters of the constitutive law can be adjusted in order
to minimise the difference.

The experimental part is illustrated in Fig.1 for a uniaxial com-
pression test on a Ti-48Al-2Cr-2Nb microstructure, provided
by ONERA DMMP. It shows the different steps of marker de-
position (a), needed for superposition of the microscopic strain
field with the morphology (and grain orientations) as deter-
mined by EBSD (b), the deposition of the microgrid, here with
a step size of the order of a micrometer (c), which is used to

measure the microscopic in-plane displacement field, and by
derivation, the microscopic strain fields (d). Full details of the
methodology can be found in [1, 2, 3]. Here it is only noted
that the finite element mesh is based directly on the EBSD im-
age (with the associated grain orientations), and that simula-
tions use theexperimentally determineddisplacement history
as boundary conditions at the mesh edges.

Figure 1: Experimental procedure. Top left (a): markers. Top
right (b): EBSD analysis. Bottom left (c): microgrid. Bottom
right (d): measured strain field (analysis with CorrelManuV).
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Virtual experiments

The main drawback of the coupled approach is that it attempts
to determine properties of the bulk material by using vol-
ume averaged information at the macroscale (the stress-strain
curve), but only surface fields at the microscale. The question
remains whether not knowing the exact grain morphology be-
low the surface leads to significantly different parameters in
the constitutive law. On the one hand, having different subsur-
face morphologies affects the surfacic fields [5]. On the other
hand, the finite element simulations use the experimentally de-
termined boundary displacements, and they already integrate
the actual subsurface morphology, as well as the influence of
the neighbouring grains. It may very well be that this is suffi-
cient to yield robust parameters for the constitutive law.

In order to address this question, several virtual (numerical) ex-
periments have been carried out. The idea is to construct a rep-
resentative virtual volume of the sample, of which the three-
dimensional grain morphology is known completely (Fig.2).
This grain morphology is generated by using a technique sim-
ilar to [4]. One can now carry out the virtual test, for instance
a uniaxial tension test, in which the parameters of the consti-
tutive law are given certain reasonable values. This test gives
a macroscopic (i.e. volume average) stress-strain curve, and a
surface strain field. From now on, these results are considered
as the reference results, i.e. they can be considered as the equiv-
alent of a real, non-virtual experiment.

Figure 2: The virtual experiment. Top: representative virtual
reference volume with (bottom) cut-out.

The methodology, as presented previously, can now be applied
to a surface area which is cut out of this virtual specimen (Bot-
tom Fig.2). Instead of the field as measured by the microgrid,
here the surface strain field of the virtual reference field is used.
Obviously, the selected surface area should be sufficiently far
away from the edges of the representative virtual volume. The
methodology is then applied as follows:

1. The selected surface area is cut out from the virtual vol-
ume, with its associated strain field, and the displacements
of its edges.

2. Another subsurface grain morphology is generatedwith
the same surface morphology. This can be a simple extru-
sion in the thickness direction, or by the same procedure
as before. In the latter case, the statistical properties of the
surface area should be conserved in the volume.

3. The edge displacements, as measured on the selected sur-
face area, are now applied as boundary conditions to this
freshly generated volume. Care has to be taken in how
the time evolution of these displacements is taken into ac-
count, because these are not always known experimentally
[3].

4. The parameters of the constitutive law, that were fixed
up until now, are reinitialised to random values, and re-
optimised in the same manner as they would in a real ex-
periment (as described in the introduction).

5. The optimised values of the parameters of the constitutive
law can now be compared to their corresponding values in
the virtual reference test. The advantage of having a virtual
reference test is that these values are known exactly, which
is not the case in the real experiment.

By repeating this procedure several times with different sub-
surface grain morphologies, some quantitative insight can be
gained into how much this affects the final parameter values.

The first calculations have been carried out on a virtual repre-
sentative volume element of about 30 grains (the one in Fig.2),
and compared to calculations on an extruded subsurface mor-
phology. They show that with the extruded morphology, the
initial critical shear stresses can be identified unambiguously.
For other parameters, this is less clear, for instance the ones
associated with the hardening. However, in the latter case this
can be explained by the fact that for the purpose of testing the
method, the calculations are not carried far beyond the initial
macroscopic yield limit. These matters are currently under in-
vestigation.

References

[1] A. Allais, M. Bornert, T. Bretheau, D. Caldemaison
(1994): Experimental characterization of the local strain
field in a heterogeneous elastoplastic material.Acta
Metal. et Mater., 42, 3865–3880.
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Summary: Dispersion and existence of the band gaps belong to well known features of periodically arranged structures with finite
scale of the heterogeneities. Assuming long waves propagation, these phenomena can be studied using the limit homogenized
model of elastic, or piezo-elastic composites. For this a strong heterogeneity in the elastic coefficients is considered. To justify
such artificial modelling assumption, we discuss a numerical convergence of the scale-dependent solution to the limit one. The
influence of the microstructural topology and geometry on the homogenization result is discussed; in particular, two cases are
considered: soft inclusions in stiff matrix and rigid inclusions in compliant matrix. The sensitivity analysis of the band gap
distribution w.r.t. shape of the inclusions is presented, numerical examples are included.

Motivation – phononic crystals

Modelling of acoustic wave propagation in heterogeneous me-
dia gains growing interest as an attractive problem from both
theoretical and practical points of view due to numerous appli-
cations in designing devices related to sound propagation. The
phononic crystals– bi-phasic elastic media with periodic struc-
ture and with large contrasts in elasticity of the phases – are
called often thephononic band-gap materialsdue to their es-
sential property to suppress propagation of elastic waves in cer-
tain frequency ranges, as confirmed by measured transmission.
Similar phenomena in the propagation of the electromagnetic
field were studied even before in the context of thephotonic
crystals.

For elastic composites an existence of band gaps for certain
wavelengths was shown in [2,3] as the consequence of the non
positivity of the limit “homogenized mass density”; the same
approach based on the two-scale homogenization was pursued
in the problem of acoustic wave propagation in apiezoelectric
strongly heterogeneous composite, [4].

Strongly heterogeneous microstructure

The periodic structure of the heterogeneous medium is gener-
ated by the reference periodic cell (RPC)Y =]0, 1[3 with in-
clusionY2 ⊂ Y , whereby the matrix part isY1 = Y \ Y2.
According to the RPC decomposition, the composite occupy-
ing domainΩ is constituted bymatrixΩε1 perforated by discon-
nectedinclusionsΩε2, Ωε1 = Ω \ Ωε2, whereε is the usual scale
parameter. While the material densityρε is comparable in both
the compartments, as an important feature of the modelling, all
other constitutive parameters (elasticitycεijkl, dielectricitydεkl
and piezoelectric couplinggεkij) are related to the geometrical
scale of the underlying microstructure by coefficientε2, which
represents thestrong heterogeneity:

ρε(x) =
{
ρ1 in Ωε1,
ρ2 in Ωε2,

(1)

however,

cεijkl(x) =
{
c1ijkl in Ωε1,
ε2c2ijkl in Ωε2,

(2)

gεkij(x) =
{
g1
kij in Ωε1,
ε2g2

kij in Ωε2,
(3)

dεij(x) =
{
d1
ij in Ωε1,
ε2d2

ij in Ωε2.
(4)

Limit homogenized model

Propagation of incident waves with single frequencyω was
treated by the two-scale homogenization in [3]. The limit model
involves the homogenized stiffness tensorCijkl corresponding
to the perforated medium with elasticityc1ijkl (no influence of
the material inY2) and thehomogenized mass tensorMij which
depends on frequencyω:

Mij(ω2) =
1
|Y |

∫
Y

ρδij −
1
|Y |

∑
r≥1

ω2

ω2 − λr
mr
im

r
j , (5)

whereλr andmr are ther-th eigenvalues and ther-th eigenmo-
mentum, respectively, obtained by solving the eigenvalue prob-
lem in Y2 with clamped boundary,c2ijkl andρ2 define the ma-
terial; the eigenmomentum is the integral overY2 of the eigen-
function.

If the piezoelectric material is considered, the homogenized di-
electricity and piezo-coupling depend exclusively on the per-
forated matrix properties, as in the case of elasticityCijkl.
The homogenized mass tensor is computed according to [5],
however, the associated eigenvalue problem reflects thepiezo-
electric coupling phenomenon, involving eigenfunctions for the
displacement and the electric potential.

Dispersion and band gaps

The dispersion properties depend on massMij(ω2). The band
gaps are identified by analyzing the eigenvalues ofMij(ω2) for
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Figure 1: Dispersion curves of guided long waves in 2D struc-
tures computed for different directions of propagation. The
wave number is relevant to the homogenized model. Band gaps
indicated by yellow (full stop gaps), or white (weak gaps).

a givenω, see Fig.2; if all these eigenvalues are negative, then
ω falls into the full stop gap (no waves can propagate on this
frequency), if some of them are positive (the weak band gap),
then waves of this frequency can propagate in a specific direc-
tion (a manifold exists). The stability of the weak band gaps
w.r.t. wave polarization depends on symmetry of the inclusions
(geometrical features). In general, the distribution of the band
gaps in the frequency spectrum is sensitive to the shape of the
inclusions. This motivated development of theshape sensitiv-
ity analysisof the band gap width. Some preliminary studies
of the compositemicrostructure optimizationwere performed,
where the objective criterion was expressed in terms of the gap
bounds.

Rigid inclusions in compliant elastic matrix

In this case the elastic coefficients in inclusions are≈ 1/ε2 and
high frequencies are assumed, so thatωε ≈ 1/ε. This leads to
localized macroscopic behaviour withvanishingmacroscopic
elasticity; the homogenized mass tensor defined by an expres-
sion similar to [5], however the associated eigenvalue problem
defined inY1 is characterized by periodic boundary conditions
on ∂Y with displacement on∂Y2 restricted to the rigid body
rotations ofY2 about its barycenter.

Limit model vs. finite scaleε > 0

The aim of this study is to validate the modelling of standard
heterogeneous materials (e.g. Epoxy resin and Duralumin) us-
ing the reported strong heterogeneity approach. Therefore, we
consider a sequence ofε dependent models and analyze the
wave propagation for structures with finite scale of inclusions
and magnitudes of heterogeneities. For some one-dimensional
structures it can be shown that theε2 “artificial scaling” allows
to estimate the distribution of the band gaps forε > 0 using the
limit model (i.e.ε→ 0 ) with less computational effort.

Acknowledgment: The research is supported by the project
GACR 101/07/1471 of Grant Agency of the Czech Republic.
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Summary: In this paper an approach for developing continuum models that are capable of accounting for effects of micro/nano-
structures in heterogeneous materials is presented. The unique feature of the present approach is that all material constants of
the continuum model are derived explicitly from the constituents of the original system. Layered media and lattice systems are
used for illustration. Harmonic wave transmission/reflection at the interface between the original system and the representative
continuum is used to evaluate the accuracy of the continuum model.

Introduction

The conventional approach in treating heterogeneous solids
with micro/nano structures has been to replace the original solid
with an equivalent continuum in which the micro/nano struc-
ture is no longer present. Such an approach yields great sim-
plifications and has been widely adopted for modeling and an-
alyzing heterogeneous materials such as many forms of com-
posite materials. However, classical continuum models become
inadequate in describing the response of solids with micro/nano
structures when the characteristic length (or wave length) of de-
formation becomes comparable to or smaller than the dimen-
sions of the representative cell of the micro/nano structure. An
example is the wavelength-dependent wave velocity in com-
posite materials. If a composite is modeled as a homogeneous
elastic solid, then the bulk plane wave (longitudinal or shear)
would propagate at a constant speed. In contrast, the exact so-
lution based on the model that retains the identity of the mi-
crostructure (fiber, particle) indicates that the wave is dispersive
meaning that the wave speed is not a constant but is affected by
wavelength (or strain gradient). Another example concerning
the inadequacy of the classical continuum theory is cracks in
materials with micro/nano structures. It is well known that, in
a classical elastic solid, the stress and strain fields exhibit an
inverse square root singularity near the crack tip. That is, the
strain gradient near the crack is exceedingly large, making the
representation of the solid with micro/nano structures by a ho-
mogeneous solid inadequate.

The main reason for the aforementioned deficiency of the clas-
sical continuum model can be attributed to its inability to ac-
count for the local motion of the micro/nano structure. A com-
mon way to solve this problem is to employ additional kine-
matic variables to describe the non-homogeneous local defor-
mation in the microstructure of the solid. This approach leads
to Cosserat continuum models [1]. There are variations among
these models which are often referred to as microstructure, mi-
cropolar, or micromorphic models [2–6]. Some authors have
even attempted to use these extended continuum models to
bridge continuum theory and molecular dynamics down to the
atomic scale [7]. Common to all the above models is that, in

addition to the usual translational displacement vector to de-
scribe the average displacement, additional deformation kine-
matic variables or even multiple displacement vectors are in-
troduced to describe the nonhomogeneous local deformation.

Among the existing Cosserat continuum type models, most of
them only present a general form of the governing equations;
extensive experiments are required to determine numerous ma-
terial constants associated with the models. On the other hand
the micro/nano-structure continuum models developed by the
present autor and co-authors [5–10] are based on the unit cell
of the original material and all the material constants of the con-
tinuum models can be derived analytically from the micro/nano
structure. The governing equations are directly derived from the
geometry and the mechanical properties of the micro or nano
structure in the unit cell.

In this presentation, the general procedure for developing con-
tinuum models with microstructural effects for heterogeneous
materials is reviewed. It is shown that different degrees of mi-
crodeformation can be described depending on the number of
kinematic variables introduced. The lowest order of the con-
tinuum model developed in this manner only accounts for the
microinertia effect and the governing equations resemble those
of the classical continuum mechanics.

Continuum model with micro-inertia

As an example, the continuum model with micro-inertia is
briefly reviewed. The macro-strain and stress are defined as
the volume averages of the strain and stress in the represen-
tative volume element (RVE). The macro equation of motion
is derived by Hamilton variational principle in which the strain
energy density and kinetic energy density involve the micro-
inertia terms. The macro equations of motion have the follow-
ing form

∂Σij
∂Xj

+ Fi = ρ̄Üi (1)

whereΣij is the macro stress,Xj is the macro coordinate,̄ρ
is the average density,Ui is the macro displacement, andFi
is an effective body force that represents micro inertia. Without
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considering the micro-inertia, this model appears to be the same
as the classical continuum model except that the stresses and
strains must be properly interpreted as the macromechanical
quantities. The effective body force is determined by assuming
an approximate local displacement field in the RVE and usually
can be explicitly expressed in a rather simple form.

The effectiveness of the micro-inertia model to represent a het-
erogeneous system can be evaluated by studying transmission
of harmonic waves through the heterogeneous system/micro-
inertia continuum system interface. If there is little wave re-
flection, then the representation is good. If the micro inertia
term Fi in Eq. (1) is set equal to zero then the micro-inertia
model reduces to a classical elastic solid or the so-called effec-
tive modulus theory.

Wave transmission/reflection in layered media

Wave reflection and transmission are considered for layered
media connected to a homogeneous continuum with micro-
inertia as shown in Fig. 1. The micro-inertia continuum model
developed by Wang and Sun [8] is adopted here. The thick-
nesses for layer 1 and layer 2 are denoted asL1 andL2, respec-
tively, and the total length for each cell isL = L1 + L2. In the
study, layer 1 is assumed to be connected to the homogeneous
medium.

We consider the system of a layered medium connected to the
micro-inertia continuum that represents the layered medium.
The numerical results are shown in Fig. 2 for

L1/L2 = 4, µ1/µ2 = 10, ρ1/ρ2 = 3, v1 = 0.3 andv2 = 0.35

For comparison, the result obtained by dropping the micro-
inertia (i.e., the effective modulus theory) is also presented in
the figure. It is easy to see that the micro-inertia model allows
almost perfect transmission of waves across the interface for
wave lengths up to six times the size of the unit cell. This im-
plies that, in this range of wave length, the micro-inertia model
can accurately describe the dynamic characteristics of the lay-
ered medium.

r c
**

1212

x
L L2 1

Figure 1: A layered medium connected to a representative ho-
mogeneous elastic medium.
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Summary: Traditional thermodynamics tells us that all closed systems exhibit a tendency to maximize entropy. So it is a struggle
to understand why so many systems are able to survive with their organizational and functional integrity intact. Progogine [1]
concluded that the secret to survivability is in an exchange of energy. A stable complex system receives low-entropy energy from
the environment while giving away energy that is entropy rich. A sustained exchange of the energies is in fact the condition for
survivability. Since these phenomena are rarely observed in solids, mean-field theories of nonlinear continuum dynamics often
provide sufficient representation of the solid behavior. These theories describe the deformation and damage processes with the use
of constitutive models. Difficulties arise when a metal is subjected to extreme loading rates and becomes a thermodynamically
open system characterized by an exchange of energy caused by dislocations travelling long distances with a nearly sonic velocity.

Formation of dynamic defect structures (DDS)

In standard continuum mechanics approach, there are total
of 16 variables (six components of stress, six components of
strain, three displacements, and mass density). There are also
16 governing equations (three equations of motion, six equa-
tions of kinematical compatibility, six constitutive relations,
and mass conservation relation). Furthermore, it is assumed that
any subvolume of a material can be isolated from its surround-
ings by imposing proper (static and kinematic) boundary condi-
tions. Since the subvolume can be reduced to a material point,
this suggests that all internal variables such as stress, strain,
displacement, and/or energy are defined in a “local” manner. In
what follows, we question validity of the assumption.

Figure 1: Exchange of energy in metals at extreme loading
rates.
As shown in Fig. 1, a material point,{Xk}, and its well-defined
surroundings (known volume,∆Vc, and its enclosure,∂Vc)
are placed in space at the initial time,t0. Under deforma-
tion, both the point and the adjacent material move into a
new location{xk} such that the total displacement is equal to
uk = xk − Xk. The surroundings of{xk} and{Xk} do not
have the same constituents [3] because defects migrate into and
out of ∆Vc. For instance, dislocations travelling through the
material establish a higher-order cross interaction between dis-
tant material points. We may not be able to track the movement
of each dislocation, but we can estimate an average frequency
of these events ast−1

d = (2υd/ln).The term2υd/ln represents
the know dislocation frequency at the nanoscale of the mate-
rial. The dislocations are moving with an average velocityυd
transporting energy and, in this manner, make the material a
thermodynamically open system. Eventually, the mobile dislo-
cations come to rest and form structures that consist of coarse
slip bands, dislocation cell walls, etc. There is a continuous

Figure 2: Fluctuating equivalent stress versus Lagrangian po-
sition in Cu-Cu impact problem, (impact velocity 1 km/s).

competition between the storage, annihilation, and nucleation
of dislocations. In our dynamic defect structure (DDS) theory
[2, 3], we recognize the fact that the mobile dislocations ex-
change energy between distant material points within a char-
acteristic volume∆Vcand with its surroundings, Fig. 1. These
events cause kinematical incompatibility. Under compressive
loading conditions, the compatibility is restored at a macro-
scopic scale and that leads to the formation of energetically
strong but not quite stable dislocation structures. At low defor-
mation rates and high temperatures, dislocation travel slowly
and short distances, and the material has enough time and abil-
ity to adapt itself to the changing environment. However, a ma-
terial subjected to extreme conditions has no opportunity for
such a gentle readjustment. In these circumstances an abrupt
restructuring of the defect structures is the only option avail-
able. We characterize the rate of the incompatibility and call
it an additional material variable. The rate of the incompatibil-
ity, ψ̇inc, vanishes when the plastic strain rate is homogenized
within the characteristic volume,∆Vc. Similarly as in [4], the
plastic strain rate is expanded using Taylor series and truncated
after the third term. In this manner, we find an approximate dif-
ferential form of the macro-homogenization criterion.

The DDS theory predicts that various metals (alloys) subjected
to extreme loading rates experience a strong mesoscale excita-
tion leading to an entrapment of kinetic energy. While a signifi-
cant portion of the energy is converted into heat, the remaining
part supports a rearrangement of the material’s internal struc-
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ture and causes fluctuations in the field of velocity, strains, and
stresses. The DDS theory explains the remarkable increase in
the plastic hardening rate [3] observed in all metals tested at
strain rates greater than 103 s−1. In 1-D numerical simulations,
we are able to reproduce conditions, at which two copper plates
impacted with each other at the velocity of 1km/s, experience a
noticeable excitation, Fig. 2.

Void nucleation as an alternative mechanism to
DDS formation
Our objective is to identify a dilatational deformation in ductile
metals, which may impede the formation of the DDS structures.
A constitutive equation for ductile material is assumed to obey
a power-law relation

ėpeq = Λ σ3
eq, (1)

where Λ is a constant and the equivalent plastic strain rate
ėpeq is coupled with the equivalent stressσeq. Components of
the plastic strain rates are defined through the use of a sym-
metric micro-mechanism tensorNij = nisj + sinj , in which
unit vectors(ni, si) represent the normal and slip directions.
In this analysis we expressedNij in terms of stresses, that is
N∗
ij = Nij (σkl), such that the new tensor satisfies all the in-

variants of the original tensorNij . Following the derivations in
[5], we find that the new tensor is

N∗
ij =

2 sinϕ/3√
3 cosϕ

(
δij −

3
2J2

SikSkj

)
+

cos 2ϕ/3√
J2 cosϕ

Sij (2)

where Sij = σij − δij σkk/3, J2 = 1
2SijSij , J3 =

SikSklSli/3, andϕ = sin−1
[
3J3

√
3/J3

2/2
]
. Components of

the plastic strain rate are

ε̇pij =
1
2
N∗
ije

p
eq (3)

and the equivalent stress, defined asσeq = 1
2N

∗
ijσij , is the

Tresca stress. The material’s dilatancy is allowed to exist. How-
ever, instead of imposing a predetermined relation for void nu-
cleation a different approach is pursued here. We assume [6]
that the rate of void nucleation and growth together with the rate
of energy dissipation due to the volumetric change and shear
are nonnegative quantities at any point of the material. The
missing constitutive equation for void nucleation is replaced by
a criterion of minimum rate of energy dissipation. In this man-
ner, the volumetric deformation brings the material as close to
its thermodynamic equilibrium as possible. As shown in Fig.
3, three distinct mechanisms of void nucleation and growth are
possible near in a ductile surroundings of the mode I crack tip.
In this plot, values of the minimum energy triaxiality ratioχ
are defined as

χ =
∫

∆Vc

σkkε̇
p
kkdV /

∫
∆Vc

σeq ė
p
eqdV, (4)

whereσkk is the hydrostatic stress,ε̇pkk is the rate of void nu-
cleation and growth anḋepeq is the maximum shear strain rate.
The energy ratioχ (vertical axis) is plotted as a function of the
stress singularity factorλ(horizontal axis); where the stresses
near the crackσij = Rλ σθij(θ) are defined in the polar co-
ordinate system{R, θ} attached to the crack tip. A change in
the stress singularity factorλ indicates the extent of damage
done to the material. The first mechanism (red line) describes

the well-known Gurson’s (stress triaxiality,σkk/σeq) criterion,
where voids are uniformly distributed near the crack tip. At
more advanced stage of deformation (brown line) voids nu-
cleate predominantly along a narrow process zone extending
ahead of the crack. This mechanism is governed by the max-
imum tensile stress. There is also a third dilatational mech-
anism (blue line), in which voids are distributed along two
branches at 50 degrees with respect to the crack direction.

Figure 3: Three dilatational deformation mechanisms in ductile
surroundings of mode I crack tip. Plot presented in terms of the
ratio of the rates of energy dissipation due to cavitation and
slip versus the stress singularity factor.

Summary and findings
1. Metals subjected to extreme loading rates exhibit behavior

that is characteristic of a thermodynamically open system.
The phenomenon is linked to the motion of mobile dislo-
cations, which exchange energy between distant material
points.

2. We accept the fact that the mesoscale plastic strain does
not satisfy the conditions of kinematical compatibility.
Consequently, the kinematical incompatibility,ψinc, be-
comes the 16-th variable added to the stresses, strains, and
displacements. The incompatibility triggers strong pertur-
bations in displacements, strains, stresses, and energy.

It is possible to recover kinematical compatibility at the length
scale at which the incompatibility occurs. The above analysis
suggests that void nucleation is such a mechanism. Often the
dilatational deformation is not a thermodynamically favorable
mechanism. Then, the formation of orderly dislocation struc-
tures is the only mechanism available.
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Summary: Static analysis of reinforced soil constructions is usually based on failure mechanisms consisting of rigid blocks.
The applicability of this approach is questionable, since it does not take into account deformations apt to mobilize the pull-out
resistance of nails. In this paper an alternative approach is presented which is based on homogenisation and consideration of
reinforced soil as a two-phase material.

Introduction

In this paper we call “reinforcement” any stiff inlet placed into
soil, be it steel nail or geotextile. It is generally expected that
such inlets increase the stiffness and strength of soil. How-
ever, their action is not yet completely understood. Collapses of
nailed walls could indicate that nailing does little or nothing to
stabilize slopes. Admittedly, small scale model test showed that
nailing stabilizes slopes in cohesionless soil [2], but these re-
sults cannot be directly assigned to full scale situations. On the
other hand, the stability of many nailed slopes could, perhaps,
be attributed to the fact that, in reality, cohesion of undisturbed
soil is often larger than assumed. In reinforced concrete the sit-
uation is simpler because there is a clear sharing of tasks: con-
crete sustains compression and reinforcement sustains exten-
sion forces. In contrast, in soil there are no considerable tensile
stresses, the bearing performance is mainly achieved by shear
stresses. What is then the role of reinforcement in soil? The ex-
isting design rules for nailed soil slopes are based on the consid-
eration of rigid block collapse mechanisms such as slip circles.
The underlying idea is that the appearance of shear bands, i.e.
strain localization, characterizes limit states of soil structures
and limit analysis has ever been the backbone of static proofs
in civil engineering. However, the considered rigid block col-
lapse mechanisms do not take into account the fact that the re-
inforcement needs an appropriate deformation to mobilize ten-
sile forces. This has been taken into account in the case of steel
fibre reinforced shotcrete, where tensile forces in the steel fi-
bres are only mobilized when cracks appear in the shotcrete.
Cracked shotcrete is generally considered as an acceptable ser-
vice state, if there are still some bearing capacity reserves. This
is, however, not the case in geotechnical engineering, where
strain localisation means that the structure is already beyond
the state of serviceability. Thus, nails expected to improve soil

Figure 1: Failure mechanisms for design of nailed cuts.

strength should become activebeforetha appearance of locali-
sation. Existing design rules are based on the concept that the
reinforcement is loaded according to some rigid block collapse
mechanisms, i.e. after the appearance of localization (Fig.1).
The related shear bands are more or less perpendicular to the

reinforcement, which implies that the latter is loaded only by
transverse forces butnotby tensile loads. Despite this, the rein-
forcement is considered to resist pull-out. This contradiction is
recognised by the design rules, see e.g. CLOUTERRE [1] stat-
ing that“At this stage calculations can also be made based on
pure tensions, i.e., by assuming that, whatever the angle of inci-
dence on the potential failure surface, the nails are only work-
ing in tension and their bending stiffness can be neglected . . . ”
This, however, remains questionable and constitutes an impor-
tant assumption, as recognised by CLOUTERRE (p. 97): “One
basic assumption to any limit equilibrium method is the simul-
taneous mobilization of all the resistances . . . This assumption
. . . is only approximated in actual conditions . . . Even though
the question of the simultaneous mobilization of the various re-
sistances has not been fully answered, it would nevertheless
seem . . . further studies on failed structures clearly need to be
conducted.”

Proposed method of analysis

A method to treat reinforced structures is homogenisa-
tion. This means that reinforcement is assumed as smeared,
i.e. homogeneously distibuted within the body, which is con-
sidered as a two-phase material. Its points are simultaneously
occupied by soiland reinforcement. The nails are assumed as
inextensible, and it is further assumed that they render the entire
structure inextensible in their direction. In other words, nails
are considered as internal constraint. Such constraints are re-
lated with stresses that cannot be inferred from the constitutive
relation of the matrix material, because they result from de-
formations that do not occur. Such stresses can be determined
as follows (cf. [4]): The internal constraint is expressed by the
equationf(D) = 0 with D being the stretching tensor. The
corresponding stress results fromZ = λn ⊗ n = λninj .
With the degree of reinforcementµs, i.e. the surface or volume
fraction of the nails, the tensile stress within the nails reads:
σs = Z/µs, with Z = |Z|. If a retaining wall reinforced with
nails (Fig.2) inclined by the angleβ is loaded by the earth
pressureE, then the nails receive a stress and counteract the
deformation of the nailed retaining wall. ¿From Fig.3 it can be
seen that the maximum elongation of nails within a sheared soil
body is obtained if the nails are inclined by the angleβ = 45◦.
To calculate the stress in the nails we first consider the stiffness
of the un-reinforced soil wall. Following an important theorem
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Figure 3: Elongation of a45◦-inclined nail at shear.

from elasticity theory, according to which all static deforma-
tions (i.e. deformations that don’t take place) are elastic ([4],
Sect. 43), we obtain with the shear modulusG of the soil the
shear stressσs =

√
2Gγ/µs. We obtain the necesary degree

of reinforcement if we take forσs the allowable stress for the
considered nails. The constraint of inextesibility is somehow
contradictional: If soil is inextensible in the direction of the
nails, then there are no relative displacements between soil and
nails, thus no shear can be transmitted into the nails. To cir-
cumvent this contradiction we assume rigid-idealplastic force
transmission between nail and soil. As with every homogenisa-
tion problem, the following question hast still to be answered:
How fine has the distribution of nails to be in order to consider
it as homogeneous? In other words, would a single thick nail be
enough or should we install many thin ones? This question can
be answered if we consider the shear stress acting between re-
inforcement and soil. Owing to the assumed rigid-idealplastic
behaviour, this stress equals its maximum value,τ = τ0. With
l being the length of the nails,A = πr2 their cross section
andU = 2πr their circumference, we have:Uτl/2 = σsA.
Herein,l/2 is the length, where the maximum shear stress pre-
vails. Thus, we obtain the conditionr ≤ lτ/σs for the max-
imum radius of the nails. The equations stated above can be
used to verify the internal stability of a retaining wall made of
reinforced soil. Its bright can be obtained form the usual re-
quirement of sufficient safety against tilting.

The model described so far assumes that force transmission oc-
curs entirely along the nail shafts. Alternatively, we can assume
endplates mounted at the outer end of the nails. Similar prob-
lems referring to rockbolting of tunnels are analysed by the au-
thor [3].
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Summary: Formulation of the scale transition equations coupling the microscopic and macroscopic variables in the second
order computational homogenisation of heterogeneous materials and the enforcement of generalised boundary conditions for
the representative volume element are considered. Differences in response predictions between the first and the second order
homogenisation are examined and a comparative study comprising benchmark problems highlights the effects of different ways
of enforcing RVE boundary conditions.

Introduction

A wide range of materials produced by industry, as well natural
materials, are heterogeneous at a certain scale of observation. In
terms of modelling, the macroscopic (equivalent) properties of
heterogeneous material are required to represent the essence of
the microstructural response and they must be independent of
its macrostructural loads and geometry. Furthermore, the transi-
tions of properties and variables between the micro and macro
levels must be consistent with basic principles of continuum
mechanics, i.e. they are subjected to the principles of conserva-
tion of mass, momentum, energy, and second law of thermody-
namics.

A comprehensive review of the overall properties of hetero-
geneous materials is provided in [7]. Traditionally, equivalent
material properties have been obtained as a result of analyt-
ical or semi-analytical homogenization techniques. In recent
years, a promising alternative approach has been developed,
i.e. computational homogenization [6]. This micro-macro mod-
elling procedure does not lead to closed-form constitutive re-
lations but determines the stress-strain relationship at a se-
lected macro level point to which a detailed microstructure
is attributed and represented by a representative volume ele-
ment (RVE) - see Figure1. This approach does not require the
constitutive response on the macro level to be known a pri-
ori and enables the incorporation of nonlinear geometric and
material behaviour [1, 6]. Moreover, computational homoge-
nization is possible for any discretization technique in space
and time, although the Finite Element Method has traditionally
been adopted for quasi-static problems. Kouznetsova [6] pre-
sented a second-order computational homogenization frame-
work whereby all microstructural constituents are treated as
classical continua and described by classical equilibrium and
constitutive equations. In this paper, the averaging method for
this second-order scheme is extended to encompass not only
periodic type boundary conditions for the Representative Vol-
ume Element (RVE) but also traction and displacement bound-
ary conditions in a generalized manner.

Multi-scale models are constructed using three main ingredi-
ents (Figure1) [2]:

1. Modelling of mechanical behaviour at microscale (RVE)

2. A downscaling rule which determines the local solution
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Figure 1: Illustration of computational homogenization
scheme.

inside the RVE, for given macroscopic deformation mea-
sures

3. An upscaling rule for the macroscopic stress measures,
given the micromechanical stress state.

Scale Transition

This paper focuses on the strategy for the transition of strains
and strain gradients from the macro-scale to the discretised mi-
crostructure. The boundary conditions enforce, in an average
sense, the deformation of the representative volume element
(RVE) according to a given macroscopically determined strain
and strain gradient. Here a novel approach is proposed which
can handle any type of boundary conditions (e.g. displacement,
periodic and traction). It is worth noting that the proposed
method is used to couple two different continua: a classical
(first-order) one at the microscale, and a higher (second-order)
continuum at the macro-scale.

The displacement field in the RVE is obtained from a truncated
Taylor’s series expansion of the macroscopic displacement field
about the geometric centre of the RVE:

u(X,x) = u0(X)+x ·ε(X)+
1
2
x⊗x : η(X)+r(X,x), (1)

where ε = sym[grad[u]] is the macrostrain tensor,η =
grad[grad[u]] is the second-order macrostrain tensor. The addi-
tional termr represents the microstructural fluctuation of dis-
placement and has been added to account for the microscale
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contribution to the displacement field and is necessary to fulfil
equilibrium in the RVE.

The boundary conditions of the RVE can be expressed in an
integral form as∫

Γ

δt ·r dΓ = 0,
∫

Γ

n⊗r dΓ = 0,
∫

Γ

n⊗x⊗r dΓ = 0, (2)

wheren is the normal vector field andδt is statically admissible
variation of tractions on the boundary. The first integral satisfies
the Hill-Mandel theorem and the second and third integral en-
force the deformation of RVE according to a given macrostrain
tensor and a given gradient of the macroscopic strain tensor
respectively, in an average sense. For Finite Element discreti-
sation of the RVE, the boundary conditions can be expressed
in terms of the microscopic displacement field and the macros-
train tensor (1) as∫

Γ

δt · (u− x · ε− 1
2
x⊗ x : η) dΓ = 0, (3)∫

Γ

n⊗ (u− x · ε− 1
2
x⊗ x : η) dΓ = 0, (4)∫

Γ

n⊗ x⊗ (u− x · ε− 1
2
x⊗ x : η) dΓ = 0. (5)

To complete the formulation it is necessary to identify the up-
scaling of the microstructural response to define the macro-
scopic stress and strain measures in terms of the microscopic
quantities. For a statistically homogeneous body, the macro-
scopic quantities can be defined as the average of the micro-
scopic quantities over the volume of the RVE [7]. For simplic-
ity, assuming geometric linearity and a quadrilateral RVE in
2D, this leads to

ε =
1
V

∫
Γ

n⊗ u dΓ, σ =
1
V

∫
Γ

x⊗ t dΓ, (6)

1
2

∫
V

(x⊗ x⊗ 1 + x⊗ 1⊗ x + 1⊗ x⊗ x) dV : η =

=
∫

Γ

n⊗ x⊗ u dΓ,
(7)

τ =
1

2V

∫
Γ

x⊗ x⊗ t dΓ, (8)

whereσ is the second-order macrostress tensor that is work-
conjugate toε, τ is third-order macrostress tensor work-
conjugate toη. It can be noted that macroscopic quantities are
expressed exclusively by displacements and traction forces on
the boundary of RVE. According to Hill-Mandel theorem it can
be shown that the work of macrostrains on macrostresses is
equal to the volume average of the work of the microstrains on
microstresses in the RVE associated with a macroscopic point.

Summary

This work has concentrated on the formulation of the equations
coupling the microscopic and macroscopic variables in second
order computational homogenization and on the definition and
enforcement of boundary conditions for the representative vol-
ume element. The proposed formulation means that any type
of RVE boundary conditions can be applied (e.g. displacement,

traction, periodic). A comprehensive description of presented
approach and numerical examples can be found in [4, 5, 3].

A number of benchmark problems (not concluded here) have
been studied in order to highlight the effects of enforcing the
RVE boundary conditions in different ways for higher order
continuum.
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Summary: We consider two-scale problems: the fine-scale model and the coarse-scale continuum. The key question in this class
of problems is related to the simulation of the fine-scale cell: How are the coarse-scale fields to be passed onto the fine scale?
The mathematical conditions that answer this question are calledminimal boundary conditions(MBC). They are minimal in the
sense that nothing but the desired constraint is imposed in contrast to periodic boundary conditions. Owing to their integral
nature, the MBC can be applied to any shape of the fine-scale computational cell. We summarize the application to fine-scale
continuum models to fine-scale discrete models with local interactions granular materials. The key to this application is the
equivalent representation of kinematics of granular flow using the Delaunay network.

Introduction

Rapid growth in microelectronics, thin films and MEMS in-
dustries, as well as recent advances in nanotechnology have
brought to light the problems on scale that is too small to be
modeled by traditional continua, yet too large to be econom-
ically treated by more accurate fine scale models. As a re-
sult, multiscale modeling and simulations have been one of the
fastest growing research areas during the last decade.
We consider two-scale problems: the fine-scale model and the
coarse-scale continuum. When the models are invoked sequen-
tially and information is passed from one scale to another, the
key question is related to the simulation of the fine-scale cell:
How are the coarse-scale fields to be passed onto the fine scale?
The mathematical conditions that answer this question will be
calledminimal boundary conditions (MBC) [1]. The attribute
minimalsignifies that such conditions impose no additional re-
strictions on the fine-scale computational cell (other then the
desired coarse-scale field).
The drawbacks of popular periodic boundary conditions are
well-known. They (i) introduce superficial cell-size wave-
lengths in the solution fields, (ii) allow localization only on
specific planes (Fig. 1 left), and, (iii) prevent response with
higher order gradients (Fig. 1 right) – a feature that is regularly
expected in functionally graded materials. Recently, kinematic
MBC for fine scale continua have been discussed [1] and im-
plemented into the finite element framework. The conditions

Figure 1: Impossible solutions under periodic boundary condi-
tions: shear localization on an inclined plane (left), and, strain
gradient, e.g., in functionally graded material (right).

are based on the definition of the coarse strain, as the volume
average of the microscopic strain field,ε (x):

E =
1
V

∫
V

ε (x) dV =
1

2V

∫
S

(un + un)dS (1)

whereu(x) is the displacement vector, andn is the unit normal
to the surface. The FE implementation is very simple [1]; the
integral in (1) is evaluated using the FE interpolation functions.
Remarkably, the problem with the weak, integral boundary con-
ditions (1) has the same sufficient condition for uniqueness as
the standard boundary value problem with pointwise boundary
conditions: pointwise positive definiteness of the fine-scale ma-
terial stiffness.
Compared to periodic boundary conditions, the MBC show su-
perior accuracy and computational economy [1].

Granular materials as networks

The governing equations are of the fine-scale model are similar
to atomistic models. The differences are twofold: models for
granular materials must include the rotational degrees of free-
dom of particles, and, atoms have nonlocal (albeit short-range)
interactions.
The main vehicle for studying the topological evolution of the
granular material will be the geometric description in terms of
Delaunay graph, illustrated in Fig. 2, which is the complemen-
tary graph to the Dirichlet (or Voronoi) tessellation graph [2].
To create an equivalent fine-scale continuum for granular stat-
ics, we use the cell-based description of strain in granular ma-
terials [2, 3, 4], which defines an effectiveC0 continuum, for-
mally equivalent to a set of constant strain finite elements.
Thus, the implementation for quasistatic problems is identical
to the one used in the fine-scale continuum model. The main
challenge is the development of efficient Delaunay construc-
tion and boundary detection algorithms.
For dynamic, explicit integration models, such as those used
for granular materials and atoms, the additional challenge is ef-
ficient implementation. The main feature is time-integration of
Newton equations with updated forces. This structure enables
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Figure 2: (a) Packing of 1,000 spheres with volume density of
about 0.5. (b) A small sample from the packing (a). (c) Delau-
nay graph of the sample in (b): true contact (blue, solid lines),
no contact (red, dashed lines).

efficient parallelization and should be preserved. A direct im-
plementation of integral MBC [1, 4] would introduce coupling
between all boundary degrees of freedom and would result in
inefficient computations. We implement these boundary condi-
tions by means of penalty method [5]. The penalty is imposed
on the violation of the prescribed strain rate rather then strain,
since the computation of strain requires re-tessellation in each
increment.

Results and discussion

To illustrate the applicability of kinematic MBC to discrete
models we consider a 2D assembly of discs with uniform size
distribution between1/2 and 1 (Fig. 3a). First, we apply hy-
drostatic pressure using the interpretation of Delaunay cells
as CSFE. Then, axial strain in vertical direction is applied
(Fig. 3b). Using MBC, any component of strain, or any com-
bination of strains can be prescribed. Shear strain application
is illustrated in Fig. 3c. MBC are applicable to any shape of
computational cell. A circular computational cell, subjected to
shear is shown in Fig. 4. In summary:

• Equivalent network kinematics enables implementation of
kinematic MBC for discrete particle models such as the dis-
crete element model used here. The implementation is direct
extension of the earlier application to fine-scale FE continua.
• Efficient explicit integration of particle dynamics is preserved
by using the penalty method to implement MBC. Future chal-
lenges include applications to:
• Atomistic simulations. The assemblies of atoms are also
subject to Dirichlet tessellation with complementary Delaunay
graph. The difficulty lies in the nonlocal (short-range) nature of
interatomic forces, particularly near the boundary.
• Fine-scale models with long-range interactions, such as dis-
location dynamics.
• Eulerian fine-scale models, such as molecular dynamics of
fluid flow, which require matter transport in and out of compu-
tational cell.

This work is supported by USDOE/MICS, grant # DE-FG02-
05ER25709.
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Figure 3: MBC applied to a 2D granular assembly. Hydrostatic
pressure is applied first. (a) Initial configuration. Rotation con-
tour plot (radians) (b) for axial strain 0.2, and (c) for shear
strain 0.225.

Figure 4: MBC shear applied to a circular sample.
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Summary: The paper tackles the problem of an adaptive finite element approximation of solutions evaluated by multiscale
models. In particular, we propose a novel approach to the mesh adaptation at the macroscale. The key point in taking advantage
of the adaptive mesh refinement at this scale is an independent approximation of the solution and the effective quantities.

Introduction

We consider structural components that are constructed of a
heterogenous material which globally possesses either elas-
tic or inelastic properties. We assume that a periodic micro-
structure of the material is known a’priori and modeling by the
homogenization technique, with at least two scale computation,
may be used.

Therefore, despite the homogenization error the discretizations
at both scales result in approximation errors. We consider here
the methods of error assessment and its reduction by the adap-
tive mesh refinement [4] in order to obtain reliable results with
possibly small number of degrees of freedom. While adapta-
tion at the fine scale may be done in a standard way, the coarse
scale mesh refinement is more challenging since mapping of the
solution between old and new representative volume elements
(RVE) would be cumbersome.

The paper is organized in the following way. First we formu-
late mathematically the problem considered. Then, the adap-
tive FEM discretization is presented with special attention paid
to error estimation. Next, the strategy of the mesh adaptation at
the macroscale is proposed. An example of adaptive discretiza-
tion of the representative volume element (RVE) is presented
and concluding remarks are formulated.

Formulation of the problem

We consider here the solid mechanics model at both scales. The
micro-scale problem (defined over an RVE) consist of finding
the displacement field (u) as well as the resulting strains (ε)
and stresses (σ) that satisfy the following equations.

div(σ̇) = 0 ∀x ∈ Ω, ∀τ ∈ [0, T ]

ε̇ = 1
2 [∇u̇+ (∇u̇)T ] ∀x ∈ Ω, ∀τ ∈ [0, T ]

σ̇ = C(ε̇− ε̇∗) ∀x ∈ Ω, ∀τ ∈ [0, T ]

ε̇∗ = f(σ, ε∗, ...) ∀x ∈ Ω, ∀τ ∈ [0, T ]

u̇ = ˆ̇u ∀x ∈ ∂ΩD, ∀τ ∈ [0, T ]

σ̇n = ˆ̇t ∀x ∈ ∂ΩN , ∀τ ∈ [0, T ]

ε∗ = ε∗0 ∀x ∈ Ω, τ = 0

(1)

where the superimposed dot stands for the time deriva-
tive. The Lipschitz boundary ∂Ω = ∂ΩD ∪ ∂ΩN ,
∂ ΩD ∩ ∂ ΩN = ∅ and ifn > 1 then measure of the Dirich-
let boundary is greater than zero (meas(∂ΩD) > 0). Functions

ˆ̇u, ˆ̇t, ε∗0 as well as the continuously (or piecewise continuously)
varying constitutive tensorC are known. We also assume that
the initial conditions are compatible with the loading. Func-
tion f that defines the rate of inelastic strains is given by the
Bodner-Partom constitutive law [2]. If the material constants
of the RVE are piecewise continuous appropriate subdomains
have to be considered and the well known continuity conditions
included.

At the coarse scale we assume a similar formulation as (1). This
time however, the constitutive tensor and the inelastic strains
are evaluated by the micro-scale analysis in RVEs attributed to
selected points. We propose to select a grid of such points in-
dependently of the FEM mesh and approximate the effective
data over the macroscale domain using the moving least square
(MLS) approximation [6]. Due to the continuous approxima-
tion of the macroscale effective quantities the well posedness
of the macroscale problem is assured.

Error estimation

Each mesh adaptation requires an a’posteriori error estimation.
Let us briefly review the basic methods of the error estimation.

1. Hierarchical - based on two solution approximations
2. Interpolation type - takes advantage of the interpolation

theory
3. Residual - makes use of the residuum of the differential

equation considered
- in either explicit
- or implicit way

4. Recovery (Zienkiewicz-Zhu) - based on the flux postpro-
cessing

We prefer the residual type error estimates since they are math-
ematically proved [1] and the equilibrated version is now ac-
cepted as the best error estimate.

Distribution of the grid points that are attributed to RVEs is
controlled by the interpolation type error estimate. Furthermore
we also control the homogenization error in the sense proposed
in [7].

Fine scale adaptation

Mesh adaptation of the micro-scale problem is assumed to be
performed in a well established way. Since the problem is often
nonlinear, a special attention has to be paid to both the error
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estimation and strategy of mesh adaptation. For the details con-
cerning inelastic problems we refer to [3]. An example of a
discretization obtained byh-adaptive FEM for a quarter of an
RVE constructed as an inelastic metallic material with a hole at
the center and subject to uniform tension in vertical direction is
presented in Fig.1.

Figure 1: Fine scale analysis; example of anh-adaptively re-
fined, 1-irregular FEM mesh in a quarter of an RVE

Coarse scale adaptation

Mesh adaptation at the macroscale is much more challenging
task since after mesh refinement the solution has to be mapped
onto the new mesh. Naturally, the whole numerical analysis
may be repeated on the newly obtained mesh. However, in the
case of time dependent or nonlinear problems we would like to
avoid such a time consuming procedure.

Three factors contributing to adaptation at the macroscale are
discussed here. They are: solution mapping after mesh refine-
ment or unrefinement, adaptive distribution of RVE and local-
ized multiscale approach [5].

The solution mapping is generally not an easy task [8]. We as-
sume that only the internal variables and inelastic strains are
mapped from the old mesh to the new one. They are used
to evaluate all necessary rates and together with the current
loading value uniquely define actual displacements, strains and
stresses. As it was already mentioned, we propose to make use
of a fixed distribution of points that are attributed to RVEs.
Thus, the macroscale (effective) quantities like tensor of ma-
terial parameters are approximated by a continuous or piece-
wise continuous functions on the basis of these point-wise val-
ues. This way despite having well posedness of the macroscale
problem we avoid the necessity of ambiguous transfer of the
problems from the old RVE grid to the new one.

In order to provide an optimal distribution of the RVEs they
should be positioned in such a way that the approximation error
of the macroscale quantities is as small as possible. Naturally,
this optimal distribution of RVEs may vary during the loading
process. Therefore, a rough (e.q. one scale) initial analysis of

the whole loading history may be considered in order to predict
the required positions of the RVEs.

Finally, we assume that the multiscale analysis may be per-
formed only in selected subregions resulting in a hybrid ap-
proach. Therefore, one should asses where in the considered
domain the multiscale approach is necessary. It may be done
on the basis an a’priori knowledge. E.g. the area surrounding
the tip of a propagating crack is suitable for multiscale model-
ing.

Concluding remarks

We have focused in this work on adaptive mesh refinement at
the macroscale level. Continuous approximation of effective
quantities, that is independent of FEM discretization, results
in both the well posedness of the macroscale problem and a
straightforward mapping of the solution after each mesh refine-
ment or unrefinement. The strategy proposed above is now be-
ing tested on selected benchmark problems. The adaptive ap-
proach not only enables effective numerical analysis but also
delivers reliable, error controlled results.
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Summary: This paper describes micromechanical and numerical simulations of nanotube polymer composites. In particular, the
work focuses on the impact of the hollow nature of the nanotubes on composite response. While this geometrical detail of nan-
otubes is typically ignored in existing simulations which use solid cylinders to represent nanotubes, recent results demonstrating
the importance of nanotube curvature and interphase effects indicate the key significance of these structural details in nanocom-
posites. Finite element simulations, traditional Mori-Tanaka predictions and a new micromechanics homogenization method [9]
for coated inclusions are employed in the study.

Introduction

Due to the intrinsic mechanical properties of carbon nanotubes,
including tensile moduli on the order of 1 TPa, strength in ex-
cess of 50 MPa and seemingly contradictory large strains to
failure, these materials have recently been heavily investigated
as fillers in polymeric matrices. The differences between nan-
otube fillers and traditional micron sized fiber fillers are vast.
Of central importance are the orders of magnitude larger sur-
face area per unit volume, the extremely high aspect ratio, the
in situ curvature of the nanoinclusions and the tubular nature
of the hollow, rolled graphene sheet. For these reasons, model-
ing strategies to elucidate the deformation mechanisms of such
nanotube-reinforced polymers are needed.

Figure 1: Atomistic and various continuum models for carbon
nanotubes.
Common micromechanical methods require an ellipsoidal
geometry of inclusions. Consequently the vast majority of
nanocomposite simulations to date have modeled the nanotube
inclusions as solid, straight cylinders. Similarly, most finite el-
ement simulations have also represented nanotubes as solid
cylinders. However, it is certain that the hollow nature of the
nanotubes (Fig. 1) significantly impacts their deformation me-
chanics, load transfer and reinforcing mechanisms in the com-
posite. As an indication of the importance of such geometric

features, recently it has been shown that the waviness or in-
herent in situ curvature of nanotubes, remarkably lowers the
stiffness of nanotube-reinforced polymers [1].

In this work, we first examine the influence of the hollow nan-
otube geometry in the context of composites with well dis-
persed single wall nanotubes (SWNT). Furthermore the added
stiffness contributions of additional shells on multiwall nan-
otubes (MWNT) are investigated, effects which have to date not
been quantified. Finally, the influence of an interphase between
nanotube and matrix can also be captured by the same modeling
strategy. Recent experimental results have led to the conclusion
that the dramatic property changes of polymer nanocompos-
ites beyond the pure matrix polymer result significantly from
the formation of an interphase region in the vicinity of the
nanoscale fillers [3-6]. A schematic of the underlying physics
of this effect is shown in Fig. 2.

Figure 2: Schematic of formation of an interphase region in the
vicinity of a nanotube a) without, b) with functionalization [7].

The aim of the presented work is to clarify the influence of
the shell-structure of nanotubes or inclusions containing nan-
otubes (e.g. nanotube with strong interphase) on the stiffness
of nanotube-reinforced polymers. In this study, numerical and
micromechanical methods are used.
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Initial results

A hybrid finite element-micromechanical modeling technique
similar to that presented in [1-3] has been used to determine
the dilute strain concentration tensor for a solid cylindrical and
a tubular nanoinclusion (see Fig. 3) directly by a sequence of
finite element calculations. Subsequently for the cylindrical in-
clusion case the effective stiffness of the polymer matrix con-
taining randomly oriented nanotube-inclusions has been calcu-
lated using the Mori-Tanaka method.

Figure 3: Cross-section of the 3-D finite element mesh for a
solid cylindrical (left) and a tubular (right) nanoinclusion.

For comparison, results by Frankland et. al. [8] have been
used. In [8], a micromechanical analysis based on the Mori-
Tanaka method was carried out using the Eshelby tensor for
spheroidal inclusions. The example uses inclusions with trans-
versely isotropic material properties as the nanotubes in an
isotropic polyimid-matrix. The predicted moduli from our hy-
brid analysis match the results given in [8] very well.

The finite element-micromechanical modeling techniques used
in the presented work avoid the calculation of the Eshelby ten-
sor and therefore they can also be applied to microstructures
containing non-ellipsoidal inclusions. However, difficulties are
encountered with application of the Mori-Tanaka method di-
rectly from the results of the tubular inclusion. Thus, additional
micromechanical investigations are carried out.

Further micromechanical and numerical calcula-
tions and outlook

As mentioned before, common micromechanical approaches
require ellipsoidal inclusions. Recently Shen and Li developed
a new method for homogenization of fibers with an inhomo-
geneous interphase [9]. These models convert fibers with in-
terphases into effective fibers which can be used directly in
existing micromechanics methods, such as the Mori-Tanaka
method. The models presented by Shen and Li have some dif-
ficulties in calculation of extremely weak fibers with stiff coat-
ings. Therefore in this work, the applicability of this analyti-
cal method to hollow nanotube-reinforced polymers is exam-
ined. Calculations are carried out for hollow SWNTs, multiple
shell MWNTs and the impact of these geometries on composite
properties compared to the usual solid cylinder model are pre-
sented. Additionally, the model will be extended to incorporate
the effects of the interphase by adding additional tubular shells
of altered matrix polymer. These simlulations quantitatively

demonstrate the importance of the interphase in nanocompos-
ite properties. Qualitative comparison of the modeling results
to experimental data on nanocomposites will be presented.
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Summary: This paper presents an experimental and numerical study on creasing behavior of corrugated paper boards. Experi-
ments have been carried out on corrugated paper board and its constituent papers. Finite element simulations have been carried
out on a plane-strain model, incorporating Hill’s plasticity criterion. The finite element simulations are found to be in good
agreement with experimental observations up to initial buckling. The study presented here is intended to help in determining
the optimum creasing depth to prevent cracking of paper boards during creasing and folding operations while manufacturing
packaging boxes.

Introduction

Packaging boxes are usually made from corrugated paper
board. The corrugated architecture imparts bending stiffness
to the board. Corrugated paper boards are folded to make the
boxes of required shape and size. To obtain neat folds, it is re-
quired to make fold lines (creases) on the board. These creases
reduce the stiffness of the board along the fold lines, thus facil-
itating neat folds in the board.

Creasing is performed by indenting a creaser knife on the cor-
rugated board. If the crease is too deep, excessive strain devel-
ops in the inner liner. If the strain is higher than the rupture
strain of the constituent paper, it results in cracking of the inner
liner. Whereas, if the crease is too shallow, the outer liner may
crack during folding due to excessive tensile strain. Thus, it be-
comes extremely important to clearly understand the behavior
of corrugated paper board during the creasing process in order
to arrive at an optimum crease depth.

Barbier [1] presents a detailed review of various processes in
paper and highlights some work, mainly experimental, in the
area. Gilchrist et al. [2] performed nonlinear finite element
analyses of corrugated boards. Uni-axial, biaxial and in-plane
shear tests were done to obtain the model constants. An elastic-
plastic material model was applied to the model constituting of
shell elements. For the failure prediction, isotropic hardening
and Hill’s yield locus was adopted.

Not much experimental and analytical work have been reported
on creasing of corrugated boards. In our study, creasing exper-
iments have been conducted on corrugated board samples to
observe their behavior during creasing. Experiments have also
been conducted on sample constituent paper in order to obtain
the mechanical properties of paper. Using these measured prop-
erties, finite element simulations have been performed to com-
pare and correlate with experimental observations.

Experiments

In-plane tensile and compressive tests have been conducted on
the liner and flute materials. During creasing, the top and bot-
tom liners are under tension, while the flute is predominantly
under compression. Hence, in-plane tension properties of the
liners and in-plane compressive properties of the flute material

are of most relevance during creasing. A representative ten-
sile stress-strain curve for liner material is shown in Fig.1.
Experiments have been conducted on creasing of corrugated
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Figure 1: Tensile stress strain curve of liner material

board with the creaser parallel to peak and valley lines. The ex-
treme cases for the creaser position are peak position and val-
ley position as shown in figure2. During creasing at the valley
position, the inner liner is more prone to cracking and during
folding, the outer liner is prone to cracking. The experimental
setup consists of a corrugated paper board sample held between
an anvil and a creaser in a tensile stage. The creaser displace-
ment and load applied are measured and recorded. A schematic
of the creasing test setup, and important creaser positions are
shown in figure2.

Numerical analysis

Numerical simulations, considering orthotropic behavior of pa-
per have been performed using MSC Marc Mentat. Corrugated
board has been modeled using 2D plane strain elements. The
experimentally obtained mechanical properties have been in-
corporated in the model. The elastic modulus in tension and
compression in machine direction is taken asEMD = 3950
MPa. Poisson’s ratiosν12 = 0.65,ν31 = 0.0035 andν32 = 0.0055
have been adopted. The elasticity modulus in cross direction
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Figure 2: Creaser schematic with important creaser positions

and thickness direction is taken as 1650 MPa. Since the creaser
is parallel to peak and valley lines and corrugations are in ma-
chine direction, the board can be safely considered to be in
plane-strain condition. The mechanisms of inelastic strain in
paper are not similar to mechanisms of plasticity of metals.
However, the inelastic strain can be modeled with reasonable
accuracy by using Hill’s plasticity criterion [2] and hence, it
has been adopted to incorporate the inelastic behavior. The fi-
nal simulated deformed shape after creasing through the corru-
gated board and the degradation in upper liner near creaser are
shown in Fig.3.

Degraded
Region

Intact
Region

Figure 3: Final deformed shape and degradation near creaser

Discussion

The experimental load displacement curve during creasing of a
5mm wide sample at peak position and corresponding numeri-
cal simulation are shown in Fig.4.
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Figure 4: Load displacement curve during creasing of corru-
gated board

The load-displacement curve of creasing behavior shows that
initially, the top liner is under bending action. With increase in
creasing depth, the top liner is no more under bending behav-
ior and contributes to the strength by direct tension; hence the
board exhibits an increase in stiffness. The first peak, which is
seen near 400 micron creaser displacement, indicates buckling
of the flute. This matches well with the experimental obser-
vation. The board experiences an almost sudden loss in stiff-
ness. The corrugated board gains stiffness then after due to
more flute waves contributing to the load. Post first peak, the
numerical simulation describes a different behavior from the
experimental observation. This could be attributed to the in-
compressible Hill’s plasticity model adopted in the model. It
clearly indicates a requirement of failure description consid-
ering the mechanisms in paper at micro-scale. Each peak in
the load-displacement curve indicates a buckling of the flute
or liner. Cracking of the board sample was not observed in
the experiments. However, considerable degradation was seen
in upper liner near the creaser, when observed under a micro-
scope. The absence of visible crack could also be attributed to
the boundary condition resulting from the small sample size,
which is not as realistic as the actual conditions in the factories.

Conclusion

Mechanical characterization of constituent paper for corrugated
paper board has been done by experiments. Corrugated paper
board has been modeled numerically using the finite element
method. The finite element simulations compare well with the
experimental observations up to the first peak and a little be-
yond; however, the post peak behavior needs refinement. This
may be achieved by incorporating appropriate failure models
driven by micro-mechanical studies.
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Summary: In this paper we describe a first step towards a multiscale modeling of bone, focusing on its basic structural unit: the
mineralized collagen fibril. We studied the elastic axial response of the fibril as a function of the mineral volume fraction. The
computationally oriented framework leads to a paradigmatic uncoupling of models at the different scales and is well suited to
further extension.

Introduction

Exceptional mechanical properties of bones are mainly due to
its specific hierarchical structure [1]. From the visible down to
the nano-scale, it is possible to distinguish: osteons, collagen
fibres, collagen fibrils, elementary constituents. For an effective
modeling of bones at the macro-scale it is essential to take into
account all these structures and the way they work in concert to
produce the overall mechanical and chemical properties [2].

Here we describe the first step towards such a throughout mul-
tiscale modeling, focusing on the bone basic unit: the miner-
alized collagen fibril. We follow the multiscale approach de-
scribed in [3]: at the fibrillar scale, we recover an equivalent
continuum on the basis of a detailed description of the sub-
fibrillar structure. The latter is modeled as a composite material
where the hydroxyapatite platelets act as a reinforcement of the
elastic collagenous matrix [4,5].

In the present work, we restrict our attention to the elastic prop-
erties of the fibril. More precisely, we focus on the dependency
of the apparent axial elastic modulus on the mineral volume
fraction, a factor which strongly influences the elastic proper-
ties of bone [6]. Nevertheless, the setting is quite general and is
well suited for dealing with a large class of nonlinear problems.

Multiscale model of mineralized collagen fibrils

We look at the mineralized collagen fibril as a collagenous ma-
trix reinforced by hydroxyapatite platelets. We assume perfect
adhesion between mineral platelets and collagen molecules,
and we restrict our attention to a linearized kinematics.

The goal of this study is to identify, at the fibrillar scale, a con-
tinuum model able to effectively take into account the main
features of the sub-fibrillar structure. To this aim, we follow
the multiscale procedure outlined in [3]: (i) we characterize a
periodic moduleat the sub-fibrillar scale; (ii ) we identify an
equivalent continuumat the fibrillar scale. The identification
procedure is based on a variational homogenization procedure.
The basic hypothesis of this approach are:(a) the admissible
deformations for the module are considered homogeneous;(b)
the average strain energy of the module is equal to the strain
energy density of the equivalent continuum. Then, it is possible
to identify the macroscopic stress measures in terms of the ac-
tions at the micro-scale. The equivalent continuum turns out to
be, in general, a Cosserat continuum.

However, here we study the dependency of the axial modulus
of the fibril on the mineral volume fraction. In this case, the fi-
bres do not undergo any rotation and the homogenized response
corresponds to that of an anisotropic Cauchy continuum [3].

Collagen molecules are organized inside the fibrils according
to the Hodge-Petruskastaggered pattern. Molecules are con-
nected with each other by non collagenous proteins to form a
crosslinked network embedding the mineral platelets, which we
assume to be arranged according to a quarter-staggered scheme
[4,5]. Then, we can consider at the sub-fibrillar level a periodic
module as depicted in Fig.1. Mineral platelets (the dark shaded
bars in the figure) are described as rigid bodies, while the col-
lagenous matrix is represented by a set of elastic springs (the
thick segments in the figure) connecting the fibres in pairs. The
springs are located at the middle of the edges of the module
(light shaded area in Fig.1).

Figure 1: Sketch of the sub-fibrillar discrete model. Light
shaded area represents the periodic module.

The effectiveness of the equivalent continuum strongly depends
on the accuracy of the lower-scale model. In particular, it is
of main importance to characterize as precisely as possible the
sub-fibrillar structure, and namely the mechanical response of
the springs representing the collagenous matrix. The required
constitutive ingredients should be provided by a detailed nu-
merical or experimental analysis at the sub-fibrillar scale. At
the present, there is not a model able to describe the complex
molecular interactions between all the constituents at this scale.
Therefore, as a first step, we decided to oversimplify the prob-
lem and to consider a linearly elastic response for the springs.

Since only the axial response is considered, we can drop from
the analysis the issues related to the rotation of the fibres. Then,
only the springs acting on relative displacements of fibres can
be retained. Their stiffness is assumed to be:

K~t = Kνν~t ν ⊗ ν + Kττ~t τ ⊗ τ , (1)

whereν andτ are unit vectors parallel and orthogonal to the
spring axis, respectively.
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Identification of the sub-fibrillar module

The elastic coefficientsKνν~t andKττ~t are identified performing a
detailed finite element (FE) analysis of the staggered collagen-
mineral structure and using the same energy equivalence argu-
ment used before for identifying the equivalent continuum.

The sub-fibrillar structure has been studied by the software
COMSOL Multiphysics. A sketch of the simulated system is
shown in Fig.2.

Figure 2: Geometry of the sub-fibrillar FE model. Volume frac-
tion of the mineral phase:Vm = 0.40; aspect ratio of the
platelets:lm/hm = 40.

FE simulations have been performed applying Dirichlet bound-
ary conditions corresponding to uniaxial deformation in two or-
thogonal directions. We considered as a parameter the mineral
volume fraction:Vm = 0.05, . . . , 0.60, while keeping constant
the aspect ratio of the mineral platelets,lm/hm = 40.

The strain energy of system obtained by FE simulations,ΦFE ,
is equated to that stored in the springs of the module:

ΦFE ≡ 4× 1
2

[
Kνν~t (~uν)2 + Kττ~t (~uτ )2

]
. (2)

Here,~uν and~uτ are the components of the relative displace-
ment between a pair of fibres, computed applying to the module
the same deformation state as the FE model.

The values ofKνν~t andKττ~t so obtained, together with the mor-
phological information, completely characterize the module.

Numerical simulation at the fibrillar scale

The morphological and constitutive information of the module
are parameterized by the mineral volume fraction. In turn, the
module is used as a lower-scale model for the equivalent con-
tinuum. In Fig.3 we show the dependency of the axial modulus
of the fibril on the mineral volume fraction.

Numerical simulations have been performed by a computer
code which has been designed in order to reflect the multiscale
procedure outlined above. An important feature of the proposed
approach is theuncoupling of the modelsat the different scales.
In fact, it is possible to show [3] that the operators which han-
dle the transition between the two scales do not depend on the
specific constitutive assumptions at the lower scale. Moreover,
they can be given a general expression which does not depend
on the specific arrangement of the lower scale components (po-
sition, form, orientation of the fibres and springs). Then, a very
few effort must be done to study the “macroscopic” effects of
different “microscopic” ingredients.

Final remarks

In this work, we studied the elastic axial response of a min-
eralized collagen fibril as a function of the mineral content by
a multiscale approach. At the macroscopic level, the body is

Figure 3: Axial modulus of the fibril as a function of the min-
eral volume fraction. Elastic modulus of the mineral phase:
Em = 120 GPa; aspect ratio of the platelets:lm/hm = 40.

described by an anisotropic Cauchy continuum, while at the
micro-scale a staggered periodic module is adopted. The model
is well suited for describing the effect of the microstructural
features on the macroscopic response.

The variational multiscale approach provides a mechanically
funded basis for establishing a bridge between the two scales.
The formalism is quite general and suitable for further exten-
sions. The numerical homogenization leads to a strong uncou-
pling of the models, which eases the taking into account of dif-
ferent morphological and constitutive ingredients at the sub-
fibrillar level.
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Summary: This paper introduces a numerical framework for the evaluation the influence of local imperfections in the material
structure on the multi-cracking performance of brittle matrix composites with multifilament reinforcement. The micromechanical
model of the bond between the multifilament yarn and the cementitious matrix is presented. The chaining of the crack bridges
utilizing the stochastic cracking theory proposed by Cuypers [2] is described.

Introduction

In comparison with other composite materials, brittle matrix
composites like textile reinforced concrete exhibit a high de-
gree of heterogeneity and imperfection that requires special
treatment in the development of numerical models. The mi-
cromechanical model with the fine resolution of filaments
(bond-layer model) used for studying the crack bridge perfor-
mance has been thoroughly described in [3].

meso-level

micro-level

Figure 1: Idealization of the material structure at micro- and
meso-level.

Previous studies using the bond layer model have shown the
significant influence of local imperfections on the performance
of the crack bridge. These imperfections are exemplified by
non-parallel orientation of filaments within the bundle or by
varying bond quality between filaments and matrix across the
bundle. As a result, the damage localization process of textile
reinforced concrete exhibits interactions between elementary
failure mechanism in the matrix, in the reinforcement and in
the bond.

The hot spots of the microscopic damage occur in the vicin-
ity of the crack bridges. In addition, the damage evolves si-
multaneously in multiple interacting cracks distributed along
the tensile specimen. In order to establish the link between the
microscopic effects and the overall response of the specimen

we combine the micro-crack-bridge model with the mesoscopic
representation of the chain of crack bridges.

Micro-crack-bridge model

The single crack bridge can be idealized as an extremely short
tensile test on yarn extended with a shear-lag-like clamping of
filaments. Due to the varying penetration profile along the yarn,
the quality of the shear lag clamping exhibits high scatter. The
effect of variations in the material structure of the crack bridge
can be included using a deterministic model with predefined
profiles of material parameters across the bundle (see Fig.2).

It should be emphasized, that this class of models can only de-
scribe a qualitative correspondence between the material pa-
rameters and response of the crack bridge. The combined use of
statistical and deterministic models of a crack bridge has been
provided in [4].

Figure 2: Micro-crack-bridge-model.

The present model for studying the behavior of the crack bridge
falls into the category of deterministic models with explicitly
defined profiles of material parameters. The effect of higher
statistical moments is not included. The interface layer between
the yarn and the matrix is regarded as a set of parallel laminas
interacting with the matrix through the given bond law. The
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laminas represent groups of filaments with the same charac-
teristics and are coupled with the matrix using zero thickness
interface elements.

The characteristics are assigned to the individual laminas based
on the prescribed profiles of filament properties. In particular,
(1) the profile of the bond qualityϕ, diminishing from the out-
side to the inside of the yarn, (2) the profile of the bond free
length` increasing from the outside to the inside of the yarn and
(3) the profile delayed activationθ of filaments (slack) within
the bond free length. These profiles do not represent the dis-
order in the filament bundle directly. The mentioned profiles
induce an inhomogeneous stress transfer throughout the bond
layer that is assumed to occur in a similar way in the heteroge-
neous material structure.

The model is able to capture the influence of the variations in
the bond performance on the macroscopically observable fail-
ure process so that these variations may be quantified in a cal-
ibration procedure. The calibration of the model is performed
both using the load-displacement curve and the curve repre-
senting the instantaneous fraction of broken filaments during
the loading process. By calibrating the model to reproduce the
experimental data it is possible to derive the effective bond law
of the bond layer between the whole yarn (filament bundle) and
the matrix that can be used at the higher modeling levels.

Multi-cracking

At the meso-scale the chaining of crack bridges follows the
concept of the Aveston-Cooper-Kelly Model [1]. The behav-
ior of a fiber reinforced brittle matrix composite under uniaxial
loading is divided into into three stages: (1) the pre-cracking
stage, (2) the multi-cracking stage and (3) the post-cracking
stage (Fig.3).

strain

st
re

ss

zone I zone II zone III

ACK- Model

Cuypers- Model

Figure 3: Multi-cracking.

Based on the ACK-Model which assumes a constant matrix
cracking stress Cuypers has developed [2] a stochastic cracking
theory by describing the failure properties of the matrix using
two parameter Weibull model:

P (σ) = 1− exp
[
−
(
σ

σR

)m]
(1)

with σ standing for the uniform tensile stress in the material,σR
for the reference failure stress andm for the Weibull modulus.

By dividing the final crack spacing〈cs〉f by the percentage of
matrix cracks that already propagated, the average crack spac-
ing 〈cs〉 for a certain composite stress can be derived:

〈cs〉 = 〈cs〉f

(
1− exp

[
−
(
σ

σR

)m])−1

(2)

The multifilament yarn is represented by a monofil with effec-
tive properties. Assuming a constant frictional interface shear
stressτ0 along the debonded interface, the debonding length
δ0 can be evaluated analytically. Then average composite strain
has to be evaluated separately for the two cases〈cs〉 > 2δ0 and
〈cs〉 < 2δ0.

In the present paper the micro-crack-bridge model is used to
evaluate the average composite strain〈cs〉 and the maximum
stress transfer lengthδmax for a given intermediate crack spac-
ing based on the stochastic cracking theory. The coupling of the
micro-crack-bridge model with the stochastic cracking theory
establishes a link between the heterogeneity in the micro struc-
ture and the performance of the composite during the micro
cracking.
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Summary: We propose a methodology to model mixed-mode crack propagation and diagonal tension failure in reinforced
concrete beams subjected to static loading. The discrete cohesive approach, accompanied by an insertion algorithm, is adopted
and a modified dynamic relaxation method is chosen as an alternative solver. The concrete matrix and steel re-bars are modeled
explicitly; the connection in between is represented by means of interface elements. The methodology is validated against three-
point bending beams with notches shifted from the middle span.

Introduction

In this paper we investigate the evolution of 3D complex frac-
ture processes in reinforced concrete specimens subjected to
static loading. We endeavor to model explicitly the diagonal
tension failure in concrete bulk and debonding of the re-bar. We
simulate the concrete matrix, the steel re-bars and the interface
between the two materials explicitly. The cracks in the con-
crete matrix are described by using cohesive theories of frac-
ture combined with the direct simulation of fracture and frag-
mentation. In reinforced concrete, the crack advancing through
the concrete matrix is hindered by the presence of reinforcing
bars. The development of the cracking process from then on
implies the deterioration of the interface, which is modeled by
inserting interface elements endowed with an effective adher-
ent law along the steel-concrete contact. As the external loads
increase the cracks in the matrix are finally able to propagate
through the steel bar. Thus, thesewing effectof the steel bars
is modeled explicitly. The difficulty of looking for a stable so-
lution is avoided by means of the dynamic relaxation method,
which always succeeds in finding a solution if such a solution
exists. The slow convergence of the method is compensated for
by means of a modified technique [1, 2]. The feasibility of the
proposed methodology is validated against fracture tests on re-
inforced beams in flexure [3].

Finite element methodology

The cohesive theory of fracture

For completeness and subsequent reference, we will now out-
line the main features of the cohesive law and the interface
constitutive law used in our calculations. A more detailed ac-
count of the theory and its finite-element implementation can
be found elsewhere [4]. A variety of mixed-mode cohesive laws
accounting for tension-shear coupling are established by the in-
troduction of an effective opening displacementw,

w =
√
β2w2

s + w2
n, (1)

which assigns different weights to the normalwn and slid-
ing ws opening displacements. Supposing that the cohesive
free-energy density depends on the opening displacements only

through the effective opening displacementw, a reduced cohe-
sive law, which relatesw to an effective cohesive traction

t =
√
β−2t2s + t2n, (2)

wherets andtn are the shear and the normal tractions respec-
tively, can be obtained. The weighting coefficientβ is consid-
ered a material parameter that measures the relationship be-
tween the shear and tensile resistance of the material.

A modified dynamic relaxation method as an alternative
solver

The crack propagation was led by a fragmentation algorithm
that was able to modify the topology of the mesh at each
loading step. This inevitably induces high geometric roughness
upon the existing material non-linearity, hence a challenge for
most implicit solvers when searching for static solutions. To
avoid this problem we consider the explicit dynamic relaxation
(DR) method as a feasible alternative solver. One of the com-
mon difficulties with the DR method is its slow convergence
rate when non-monotonic spectral response is involved. We
adopt a modified technique illustrated in [1] in order to sidestep
this difficulty. Instead of critically damping the system of equa-
tions from the beginning, as suggested by all the standard DR
procedures, the motion is kept asstrongas possible. Through
under-dampingthe system, the local movement provoked at the
loading area or the crack tip can spread to the rest of the system;
in this way the convergence rate is significantly improved.

Experimental setup

In order to validate the numerical methodology, we choose an
experimental program reported in [3]. The program was de-
signed to study mixed-mode crack propagation in reinforced
concrete. In addition, an exhaustive material characterization to
allow a complete interpretation of the test results was provided.
The tests were carried out on beams with off-notched from the
mid-span. A single, mixed-mode, macro crack carried on to the
entire loading process, see Fig.1. The load,P , and the displace-
ment under the load point,δ, were continually monitored and
recorded. A resistive extensometer centered on the tensioned
face of the beam at the mouth of the notch was used to measure
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Figure 1: Numerical and experimental comparison: (a)P -δ curve, (b)P -CMOD curve, and (c) crack patterns.

the crack opening displacement,CMOD. The mechanical prop-
erties of concrete and its characteristic length are shown in in
Table1; the parameters for steel and the bond-slip strength of
the steel-concrete interface are are given in Table2.

Numerical results

We compare the numerical simulations against the experimen-
tal data for a three point bend tests on a 150×50×600 mm
notch beam. The beam is reinforced with 2 longitudinal ribbed
bars of 2.5 mm of diameter, this gives a reinforcement ratio
of 0.13%. The comparison ofP -δ, P -CMOD and crack patterns
are shown in Figures1a, b and c respectively. The numerical
model captures the peak load, the crack trajectory, the debond-
ing and micro cracking around the bars at the notch position.
The overall performance is remarkable, taking into considera-
tion that all the material parameters fed to the numerical model
were directly measured in the experiments.

Conclusions

We have proposed a methodology to model mixed-mode crack
propagation and consequently the diagonal tension failure in
reinforced concrete beams subjected to static loading. The dis-
crete cohesive approach accompanied by an insertion algo-
rithm is adopted, and a modified dynamic relaxation method
is chosen as an alternative solver. The concrete matrix and steel
re-bars are modeled explicitly. The methodology is validated

Table 1: Concrete mechanical properties.

fc fts Ec GF `ch
MPa MPa GPa N/m mm
36.3 3.8 28.3 43.4 86.8

Table 2: Steel mechanical properties and the interface bond
strength.

Es fy,0.2 fu εu τc
GPa MPa MPa % MPa
174 563 632 4.6 6–8

against three-point bending tests on notched, reinforced beams.
A wealth of information can be extracted from thisexplicitsim-
ulation, including the complete loading-displacement curves,
detailed crack patterns at the loading plane and around the re-
bars, the stress distribution within the bars.
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Summary: This paper presents an extension of the elasto-plastic model for granular materials with microstructural consideration
[1], to model the stress-strain relationship of clay considering its inherent anisotropy. The micro elasto-plastic model includes
a Hertz-Mindlin’s elastic law for the elastic part and a double yield surface for the plastic behavior on each contact plane of
neighboring clay aggregates. Drained triaxial tests with loading in vertical and horizontal directions were performed on Shanghai
clay. The comparison between numerical and experimental data demonstrates that the new version of the model is capable of
taking into account the inherent anisotropy influence on the mechanical behavior of soft clay.

Introduction

Microstructural models for elastic stress-strain behavior of
granular material can be derived from properties of inter-
particle contacts, considering inter particle forces and displace-
ments. This apprach has been successfully applied to reproduce
the mechanical behavior of granular materials such as sands [1].
In this paper we extend it to clay by considering a clayey mate-
rial as a collection of aggregates made of several particles.
The deformation of a representative volume of the material is
generated by the mobilization of contact aggregates in all ori-
entations. Thus, the stress-strain relationship can be derived as
an average of the mobilization behavior of local contact planes
in all orientations. The forces and movements from the contact
planes of all orientations are suitably superimposed to obtain
the macroscopic stress strain tensors.

Inter-particle behavior

Elastic part: The contact stiffness of an orientation includes
normal stiffness,kαn , and shear stiffness,kαr , of the contact
plane. The value of the stiffness can be estimated from Hertz-
Mindlin’s formulation.

Plastic part: The sliding direction may be upward or down-
ward, and the shear dilation/contraction takes place simultane-
ously. The dilatancy effect can be described by

dδpn
d∆p

=
T

fn
− tanφ0 (1)

whereφ0 is a material constant which, in most cases, can be
considered equal to the internal friction angleφµ. T is the gen-
eralized shear force andd∆p is the rate of plastic sliding.

The yield function is assumed to be of Mohr-Coulomb type,

F (fi, κ) = T − fnκ (∆p) = 0 (2)

whereκ(∆P ) is an isotropic hardening/softening parameter.

κ =
kp0 tanφp ∆p

|fn| tanφp + kp0∆p
(3)

Interlocking influence: One of the important elements to
consider in granular modeling is the critical state concept. Un-
der critical state, the granular material will remain at constant
volume while it is subjected to a continuous distortion. The
void ratio corresponding to this state isec.

The critical void ratioec is a function of the mean stress. The
relationship has traditionally be written as follows:

ec = Γ− λ log (p′) or ec = eref − λ log
(

p′

pref

)
(4)

Γ andλ are two material constants and p’ is the mean stress of
the packing, and(eref , pref ) is a reference point on the critical
state line.

The internal friction angleφµ is a constant for the material.
However, the peak friction angle,φp, on a contact plane is de-
pendent on the degree of interlocking by neighboring particles,
which can be related to the state of packing void ratioe by:

tanφp =
(ec
e

)m
tanφµ (5)

wherem is a material constant [2].

Stress-strain relationship

Using the static hypotheses proposed by Liao et. al [3], we ob-
tain the relation between the global strain and inter-particle dis-
placement (we do not consider the finite strain condition)

u̇j,i = A−1
ik

N∑
α=1

δ̇αj l
α
k (6)
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Figure 1: Drained triaxial tests on Shanghai clay.

where the branch vectorlαk is defined as the vector joining the
centers of two particles, and the fabric tensor is defined as

Aik =
N∑
α=1

lαi l
α
k (7)

The mean force and moment on the contact plane of each ori-
entation are

ḟαj = σ̇ijA
−1
ik l

α
kV (8)

and one can obtaine the following relationships:

σ̇ij =
1
V

N∑
α=1

ḟαj l
α
i (9)

Triaxial testing on Shanghai clay

Experimental results: The specimens correspond to typical
Shanghai marine clay and were taken at the depth of about 5
m. The tests results are presented in Fig. 1 for various confin-
ing pressures [4]. When loaded in vertical (depositional) direc-
tion, the specimen appear stiffer and the maximum strength is
higher, which corresponds to a higher friction angle.

Numerical simulations: In order to reproduce the
anisotropic behavior of Shanghai clay, mean values and
degree of anisotropy of the parameters were determined by
curve fitting, using the experimental results obtained from the
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Figure 2: Numerical simulations of triaxial tests on Shanghai
clay.

triaxial tests atσ3 = 0.075 MPa for vertical and horizontal
loading. The results of the numerical simulations are presented
in Fig. 2.

Conclusion

A microstructural elasto-plastic constitutive model for clay was
successfully developed to capture the inherent anisotropy of
Shanghai clay. It was able to reproduce the stiffer behavior of
the specimens when loaded in the direction of deposition.
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Summary: The compressible flow of wet steam, i.e. of mixture containing water vapor and droplets, is an important issue in
many practical applications, e.g in modelling of flow in steam turbines, modelling of gas drying etc. This work is aimed at
the modelling of steady and unsteady flow in steam turbine cascades and stages. The condensation of vapor, i.e. the creation
of droplets, influences the flow field structure, especially for transonic flow, decreases the work output and may cause turbine
vibrations. We present numerical solution of cases (the flow in nozzles, turbine cascades and turbine stages), where the working
fluid at the inlet is pure vapor and starts to condensate during an expansion inside the given geometry.

Mathematical model

To model such flow of condensing steam we consider inviscid
compressible flow models (1D, 2D and 3D Euler equations) or
viscous laminar compressible flow model (2D Navier-Stokes
equations) for the flow of mixture and transport equations for
integral parameters of droplets. Further we consider homoge-
nous nucleation, zero slip velocity between vapor and droplets
and the same pressure for mixture and vapor. The example of
system of equations for 2D inviscid case is given by the Euler’s
equations for the mixture of vapor and droplets complemented
by the transport equations for the parameter’s of Hill’s approx-
imationQ0,Q1,Q2, [2]:

∂

∂t
W = − ∂

∂x
F− ∂

∂y
G + Q, (1)

where

W =[ρ, ρu, ρv, e, ρχ, ρχQ2, ρχQ1, ρχQ0]
T,

F =
ˆ
ρu, ρu2 + p, ρuv, (e + p)u, ρχu, ρχQ2u, ρχQ1u, ρχQ0u

˜T
,

G =
ˆ
ρu, ρvu, ρv2 + p, (e + p)v, ρχvρχQ2v, ρχQ1v, ρχQ0v

˜T
,

Q =
h
0, 0, 0, 0, ρ

“
4
3
πr3

cρl
J
ρ
+ 4

3
π3Q2ṙρl

”
, ρ

“
rc

J
ρ
+Q0ṙ

”
, ρJ

ρ

iT

,

symbol ρ denotes mixture density,u and v mixture velocity
components,p mixture pressure,e mixture total energy per
unit volume,χ wetness (i.e. the mass fraction of liquid phase),
t time andx andy space coordinates. System of equations is
closed by the equation for pressure [5]:

p = (γ − 1)
(1− χ)

1 + χ(γ − 1)

[
e− 1

2
ρ(u2 + v2) + ρχL

]
, (2)

whereγ is specific heat ratio andL is latent heat of condensa-
tion. The nucleation rateJ is computed according to classical
theory of Becker and D̈oring [1] with correlation of Petr and
Kolovratńık [6]. The droplet growthṙ is computed according
to heat exchange between droplet and surrounding vapor.

Due to our applications in internal aerodynamics a solution do-
main is always bounded. We recognize different types of do-
main boundaries: inlet boundary where the flow enters the do-
main, outlet boundary where the flow leaves the domain, peri-
odical boundary if some periodicity of solution can be expected
and wall boundary where the flow is going along this boundary.
Since the governing equations represents hyperbolic system (in
case of inviscid flow), the boundary conditions are specified ac-
cording to theory of characteristics.

Numerical scheme

To discretize the computational domain we use structured
quadrilateral grid. Numerical method is based on the Strang
splitting [3], i.e. instead of solving the above system of equa-
tions (1) we successively solve following three equations:

∂

∂t
W= P (i)

∂

∂t
W= − ∂

∂x
F− ∂

∂y
G (ii)

∂

∂t
W= P (iii)

(3)

and the complete numerical method can be expressed like

W(0)
i,j = Wn

i,j

W(k+1)
i,j = RK(W(k)

i,j ,
∆t
2N

), k = 0, . . . ,N − 1

W(N+1)
i,j = CV(W(N )

i,j ,∆t)

W(k+1)
i,j = RK(W(k)

i,j ,
∆t
2N

), k = N + 1, . . . , 2N

Wn+1
i,j = W(2N+1)

i,j

(4)

whereRK(W, ∆t
2N ) denotes one step of two-stage Runge-

Kutta method for equation(i) and (iii) with initial condi-
tion W and time step∆t

2N . The symbolCV(W,∆t) denotes
one step of numerical method based on Lax-Wendroff scheme
for cell-vertex finite volumes and with artificial dissipation of
Jameson’s type for the equation(ii) with initial dataW and
time step∆t. The time step∆t comes from stability condi-
tion of method for the Eq.(ii), the number of sub-iterations
N = ∆t/τ , whereτ corresponds to the time scale of conden-
sation. Instead of two-stage Runge-Kutta method for equations
(i) and(iii) we use also implicit Euler method, which has bet-
ter stability properties. The nonlinear equation is then solved
by iterative method.

Example of numerical solution

One of the examples is the flow of condensing steam in axial
turbine stage, see the figures1 and 2, where the flow is go-
ing from the left to the right, the first blade row from the left
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(called stator) is fixed and the second row of blades (called ro-
tor) moves upwards. The computational domain is splitted into
two parts. The structured quadrilateral grid in each part is fixed
to the blade row. Both grids are connected directly by the grid
lines using the technique of ’interface cells’ of Giles [4], see
also [7]. The figure1 show the instantaneous pressure field and
the figure2 the instantaneous wetness field in the turbine stage.
The condensation zone is concentrated to the rear part of stator
cascade.
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Figure 1: Instantaneous pressure isolines in turbine stage.
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Figure 2: Instantaneous isolines of wetness in turbine stage.
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Summary: Cohesive elements are developed for the analysis of adhesive joints configurations failing in the fully nonlinear
regime. The core of the adopted approach is that of using a corotational formulation to mimic the behavoiur of the adhesive layer
during deformation and fracture. The performances are demonstrated by means of a representative numerical example.

Introduction

Adhesive bonding is a technique of interest in a variety of in-
dustrial applications as it can offer improved performances with
respect to mechanical fastening methods, basically originating
from the fact that adhesive connections can transmit stresses
with more uniform distributions compared to bolts and rivets.
Typically, the adhesive is likely to be the weakest link in a struc-
tural joint and the bond region possesses a thickness that can
be considered small compared to both that of the joined bodies
and to its in-plane dimensions; hence, the adhesive layer can
be conveniently schematized as a damaging interface where
a cohesive process zone is lumped. The many advantages of
the cohesive-zone approach over the more classical methods
of Fracture Mechanics are well-known; in particular, one of its
most appealing features is that it can be easily combined with
arbitrary non-linearities of the bulk material.

In this work the adherends are allowed to experience large
elastoplastic deformations while the progressive interface de-
cohesion is modelled via the damage mechanics approach de-
veloped by the authors in [1], that is here extended to include
large rotations effects; to this end use is made of a corotational
formulation to develop interface cohesive elements compatible
with nonlinear kinematics. A numerical example and a compar-
ison with experimental results is provided that shows the ability
to tracking the highly nonlinear response obtained in the asym-
metric T-peeling test, where fracture of the adhesive layer is
accompanied by large rotations and extensive plastic deforma-
tions of the joint arms.

Nonlinear kinematics and cohesive law

The basic geometry considered is a bodyΩ consisting of the
assembly of two adherends denoted asΩ+ andΩ− that are ini-
tially in contact through a planar adhesive layerS. At each in-
stantt ∈ [0, T ] the current configuration of the structure is de-
fined by the setsΩ±(t) ⊆ <3 described by the displacements
u± from the reference configuration:

u±(X , t) = χ±(X , t)−X (1)

relating the placementsX in the reference configuration to the
deformed onesx± = χ±(X , t) occupied at timet in the cur-
rent configuration via the deformationχ±. In this context, the
virtual power identity in the spatial description of motion reads:∫

Ω

σ · sym grad(δv) dΩ +
∫
S

t · [[δv]] dS = Pext ∀δv (2)

whereσ andt are the Cauchy stress and the surface traction,
respectively,Pext is the power of external forces,δv the virtual
spatial velocity and the symbol[[·]] denotes the jump(·)+−(·)−.

In order to formulate the interface cohesive law, two main is-
sues have to be addressed, namely, the transformation rule of
the spatial velocity jump under a superimposed rigid-body mo-
tion and the transformation of the area elements ofS [2]. Ac-
tually, spatial fields are generally affected by a change in ob-
server, and so is for[[δv]]; moreover, when contact is lost and
a fracture propagates through the adhesive layer, unicity of the
the normal to the cohesive surface is lost as well. However,
both frame-invariance for[[δv]] and elimination of possible am-
biguities in the definition of the unit normaln are guaranteed
if one admits that the discontinuity in displacements across the
cohesive surface is small, i.e.[[χ(X, t)]] ' 0 before complete
separation, as basic continuum mechanics arguments show [3].

The cohesive constitutive relationship stems from the following
stored energy function [1]:

ψ([[u ]],n, D) =
1
2
(1−D)

[
kn[[un]]

2 + ks[[us]]
2
]

(3)

whereD ∈ [0, 1] is the scalar damage variable,kn, ks are un-
damaged interface stiffnesses and[[un]] and[[us]] denote the nor-
mal and tangential components of the displacement jump vec-
tor in the rotating frame attached to the interface, whose ori-
entation is defined by the unit normaln. The constitutive rela-
tionships follow from the classical thermodynamics argument;
in particular, the mixed-mode damage energy release rate reads:

Ym =
1
2
knδ

2 (4)

whereδ is the equivalent opening displacement:

δ =
(
〈[[un]]〉2+ +

ks
kn

[[us]]
2

)1/2

(5)
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and the cohesive law in the rotating frame is obtained as:

tδ = (1−D)knδ (6)

tδ being the equivalent scalar traction:

tδ =
(
〈tn〉2+ +

kn
ks
t2s

)1/2

(7)

It is worth emphasizing that the above expressions directly em-
anate from the potential (3), no a priori assumption is required
on the shape of the fracture locus and that mode partition is
made only based on the mode-mixity ratio defined as:

β =
√
ks
kn

[[us]]
〈[[un]]〉+

(8)

Basically, the model requires as input parameters the undam-
aged interface stiffnesseskn andks, that can be estimated via
acoustic measurements, the pure-mode critical fracture ener-
giesGcI , GcII and two interaction criteria for damage onset
and decohesion propagation, see [1] for a detailed discussion.

Numerical simulation of a T-peel test

In this section we consider the application of the model briefly
discussed in the previous section to predict the response of an
adhesively-bonded assembly.

The geometry of the test is shown in Figure1 (all dimensions
are in mm). The material data set for the adherends, made from
the 5754 aluminum alloy, and the bonded interface, made from
XD 4600 Ciba-Geigy epoxy adhesive, is derived from [4].

Figure 1: T-peel joint. Model problem

The cohesive model has been implemented within a user-
defined interface element as a part of general-purpose FE code
FEAP rel. 7.4 [5]. In the numerical simulation the material pa-
rameters for the interface are taken askn = 8500,ks = 750
(N/mm3) GcI = 1.00,GcII = 5.40 (N/mm). The aluminum al-
loy is modeled using the finite deformation logarithmic stretch-
based Mises model with saturation-type isotropic hardening [6]
under plane strain conditions.

The elastic constants for the adherends are taken asE=70
(GPa) andν = 0.33, while the yield stresses and strain-
hardening characteristics are extracted from an experimentally
measured stress-strain curve asσ0

y=100,σ∞y =240,Hiso=100
(MPa),β = 20.
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Figure 2: T-peel joint. Numerical vs experimental results

Figure2 compares, for the specimen with adherend ticknesses
of 1.0/2.0 mm, the numerically predicted load-deflection curve
and the experimentally observed one documented in [4]. The
numerical simulation is recognized to capture all the major fea-
tures of the macroscopic response of the structure, that includes
large rotations, asymmetry of bending and extensive plastic de-
formations of the adherends, as it can be appreciated from the
deformed shape of the sample that is also reported in Figure2.
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Summary: This paper presents a mechanical interface model able to describe the continuous transition from cohesive to frictional
behaviour. The interface constitutive laws are derived in a thermodynamically consistent framework and are potentially capable
do describe decohesion initiation, fracture propagation, closure with friction, either in the process zone, or in the fully fractured
zone. Monotonic or cyclic loading conditions can be successfully reproduced.

Introduction

The study of the adhesion between bodies, and/or the fracture
propagation along surfaces, have been successfully approached
by interface models. Combination of cohesive fracture and
damage mechanics are the main ingredients for the constitu-
tive modelling of interfaces. Another aspect of relevance is the
frictional behaviour between rough surfaces in sliding contact,
which usually is approached independently of the previous de-
cohesion problem. In this contribution a unified approach to
the decohesion and frictional sliding, including the transition
between the two phenomena, is presented. Beside some contri-
butions, [1, 2], there are few studies on that matter, and here a
quite general framework, based on thermodynamics and inter-
nal state variables, is presented. The proposed interface model
is based on the concept that the damage variableω, not only
describes the stiffness degradation, but it is also a geometri-
cal measure of the fraction of the sound area around a point.
Namely, the part(1 − ω)ds is the cohesive fraction, whereas
the complementary partω ds is the decohesed fraction, where
friction sliding may develop.

Interface formulation

The interface considered is a zero thickness layer interposed
between two linear elastic solids. It is assumed that the inter-
face is the only locus where nonlinear dissipative phenomena
may occur (opening, decohesion and frictional sliding defor-
mation modes). Small strain hypothesis is assumed. The state
of integrity of the interface is measured by a damage variable
ω, a scalar internal variable ranging between0 and1. With ref-
erence to the value of the damage, three states can be observed.
Namely: i) sound,ω = 1; ii) damaged,0 < ω < 1; iii) frac-
tured,ω = 1, (see Fig.1a). The kinematics of the interface is
given by the displacement discontinuity vector[[u]] = u+−u−
which can be decomposed in two components[[uN ]] and[[uT ]],
normal and tangential components, respectively. Further kine-
matic variables are the frictional displacementδ and the gap
displacement vectorg in case of opening and fully damaged
state (see Fig.1b). These two variables are not independent
with respect to the configurational variable[[u]]. The relevant
conjugate forces describing the statics of the interface is a trac-
tion vectort (see Fig.1c) and two further traction-like vari-
ables:tc traction related to the cohesive (reversible) component
andtf traction related to the frictional component (see Fig.1c).

Figure 1: a) Interface with the fractured, partially fractured
(process zone), and integer zones; b) kinematics of the inter-
face; c) statics of the interfaces.

The constitutive relations link static variables to the kinematic
ones. The model proposed here has some similarities with the
one presented in [2] where a multi-scale approach were invoked
for describing the state of the process zone. Namely, in the pro-
cess zone, where0 < ω < 1 it is assumed (see Fig.2a) that
(1 − ω)ds is the sound fraction, whereas the complementary
part ω ds, is the decohesed fraction, where frictional modes
may develop. Under this assumption internal congruence gives,
[[u̇]] = δ̇ = u̇c, whereuc is a strain measure in the cohesive
fraction(1− ω)dS, whereasδ is the strain measure in the fric-
tional fractionω dS. Moreover, by applying the virtual power
principle the internal equilibrium equation is given in the form
t = tf + tc. The decomposition principle, typical of small
strain plasticity, for the frictional strain component is assumed
δ = δe + δf whereδe is the elastic (reversible) strain compo-
nent, andδf is the pure frictional (irreversible) strain compo-
nents. The physical meaning ofδe can be associated to the re-
versible deformation of the microasperities formed in the dam-
aged portion of the interface (see Fig.2b). In order to develop
a thermodynamic consistent setting, let us assume the follow-
ing form for the Helmoltz free energy density (for unit interface
length)

ψ =
1
2
(1− ω)

[
K+
N 〈u

c
N 〉2++K−

N 〈u
c
N 〉2−+KTu

c2
T

]
+

1
2
ω
[
kaNδ

e2
N + kaT δ

e2
T

]
+ ψin(ξ), (1)

whereψin is the internal free energy component,ξ is an inter-
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Figure 2: a) Interface infinitesimal element with the two surface
fractions; b) sliding deformation mode with the decomposition
of the sliding displacement.

nal variable describing damage hardening state;K+
N ,K

−
N and

KT are the interface stiffness coefficients,kaN andkaT are the
stiffness coefficients related to the micro-asperities. The sec-
ond thermodynamic principle in the form of Clausius-Duhem
inequality reads

D = tT u̇− ψ̇ ≥ 0. (2)

Developing the rate of the Helmoltz free energy of eqs. (1), and
substituting in eq. (2), considering also the internal compatibil-
ity conditions

D =
(
tN −

∂ψ

∂ucN
− ∂ψ

∂δeN

)
u̇cN +

(
tT −

∂ψ

∂ucT
− ∂ψ

∂δeT

)
u̇cT

− ∂ψ

∂ω
ω̇ − ∂ψ

∂ξ
ξ̇ ≥ 0, (3)

which, following well established thermodynamic procedures,
gives the following state equations

tcN =
∂ψ

∂ucN
= [(1− ω)H(uN )K+

N +H(−uN )K−
N ]ucN ; (4)

tcT =
∂ψ

∂ucT
= (1− ω)KT u

c
T ; (5)

tfN =
∂ψ

∂δeN
= ω kaN δ

e
N ; (6)

tfT =
∂ψ

∂δeT
= ω kaT δ

e
T ; (7)

χ:=
∂ψ

∂ξ
, (8)

Y := −∂ψ
∂ω

=
1
2
[K+

N 〈u
c
N 〉2+ +K−

N 〈u
c
N 〉2− +KTu

c2
T ]

− 1
2
[kaNδ

e2
N + kaT δ

e2
T ]; (9)

It should be observed that the last term in eq. (9) is a micro-
strain energy component to be subtracted to standard energy re-
lease rate, since this energy is stored at the micro-structure level
as reversible deformation of the micro-asperities and is not
available to drive damage increments. Two dissipative mech-
anisms are observable; namely, damage and friction. Two crite-

ria for the activation of damage and the friction are assumed

φd(Y, χ) = Y − χ− Y0 ≤ 0; (10)

φf (tf ) = |tfT | − a t
f
N ≤ 0. (11)

whereY0 is the initial damage treshold. Equation (11) is a
Coulomb law anda is a coefficient related to the internal fric-
tion angle. Moreover, in order to have a dilatancy effect an fric-
tional potential function is defined as

Ωf (tf ) = |tfT | − b t
f
N ; b < a. (12)

Assuming generalized associativity, for the damage, and nonas-
sociativity for the friction, the flow rules read:

ω̇ =
∂φd
∂Y

λ̇d ξ̇ = −∂φd
∂χ

λ̇d λ̇d ≥ 0. (13)

δ̇fN =
∂Ωf
∂tfN

λ̇f δ̇fT =
∂Ωf
∂tfT

λ̇f λ̇f ≥ 0. (14)

The constitutive framework is completed by the load-
ing/unloading conditions in the formφdλ̇d = φ̇dλ̇d = 0 and
φf λ̇f = φ̇f λ̇f = 0.

Figure3. shows a typical cyclic and monotonic response of an
interface under a fixed compressive load and a monotonic or
cyclic variable horizontal load.

Figure 3: Tangential load-displacement responses for mono-
tonic or cyclic variable tangential load with fixed compressive
load.
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Summary: A stress recovery method for planar bi-material interfaces is based on the double minimization of an objective
function, representing the error between the inter-element stress tractions along the mesh-lines converging at an element node and
the projection along the same planes of the best-fit stress tensor T. An application is presented, showing significant improvement
in terms of computational efforts and accuracy of the results, in comparison with otherstandardstress recovery methods.

Introduction

The stress state along planar bi-material interfaces is required in
the analysis of heterogenous materials or of multi-body struc-
tures. For example, in the meso-mechanical fracture analysis
of concrete, the stress state along mortar-aggregate interfaces
is needed to verify the failure conditions, and thus if a crack
can start opening or not.

Several nodal stress recovery “smoothing” procedures have
been proposed in the literature. Evaluating directly stresses at
the nodes of each element, or using the stress at the Gauss
points, in any case requires then some kind of averaging since
stresses are in general different for elements sharing the same
node. These averages may incorporate weights based on dis-
tances, contributing areas or angles, etc. Other more compli-
cated methods such as “generalized inversion” [1, 2] work bet-
ter at interior and exterior nodes, but, due to their computa-
tional requirements, can only be performed with regard to part
of the mesh. The calculation of the stress state at all the mesh
points, for large meshes, may require a computational effort
higher than the one needed for the FE analysis itself.

The stress scenario becomes more complicated at a bi-material
interface, in which, following intuitive understanding, two dif-
ferent stress tensors must exist, one for each material. The stress
situation at both sides of the bi-material interface is the one
presented in Fig. 1, in which two elementary cubes of differ-
ent materials are presented. Across the interface, equilibrium
conditions ensure the identity of the traction vectors on both
surfaces in contact. Along the other directions, stress tractions
may differ, as shown in the figure. The inhomogeneity, there-
fore, implies the existence of two different Mohr circles, one
for each material.

In the literature, the stress state along bi-material interfaces is
also obtained through thead-hocinsertion of zero-thickness in-
terface elements within the FE mesh. These elastic elements are
extremely stiff, in order not to affect the response of the over-
all structure, and their easy implementation in the context of
the FEM makes it possible to obtain the stress state along the
interface without any additional post-processing. However, the
insertion of an interface element implies node-duplication, that
leads to an increase in the number of d.o.f. and, consequentially,
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Figure 1: Stress state along a planar bi-material interface.

to additional computational costs.

The main objective of the work described in this paper is to
show the advantages in terms of accuracy and efficiency of a
recently developed stress recovery method [3].

Formulation

Element nodal forces (instead of the traditionally used stress
tractions at Gauss points) around the node (from now on, node
A) at which the stress state has to be computed represent the
input data for the proposed procedure. Denoting withT1 the
stress tensor at node A relative to material 1, withT2 the stress
tensor relative to material 2 and witht(k) = (σ(k), τ (k)) the
stress traction along each mesh line concurrent to node A, an
objective functionΦ, inspired on microplane model [4], can be
written as sum of two contributions,Φ = Φ1 + Φ2, with:

Φ1 =
∑N1
k=1[(σ

(k)
1 − n(k)T1n(k))2 + (τ (k)

1 − t(k)T1n(k))2]
Φ2 =

∑N2
k=1[(σ

(k)
2 − n(k)T2n(k))2 + (τ (k)

2 − t(k)T2n(k))2]
.

(1)
beingN1 andN2 the number of mesh-lines respectively on the
side of material 1 and material 2, and(n(k), t(k)) the normal
and tangential direction vectors on each mesh line. The func-
tion Φ represents the error between the projection of the stress
tensorsT1 andT2 along each mesh-line and the unknown stress
tractions along the same planes. Note that in equation1 the un-
knowns are the components of the stress tensorsT1 and T2

and the stress tractions alongN1 +N2 planes. With the use of
equilibrium equations at each element node between the nodal
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forces and the nodal inter-element forces (assumed to be equal
to the stress tractions multiplied times a contributive area), the
numbers of the unknown in equation1 reduced to 2. A double
minimization procedure allows to compute the remaining un-
knowns, leading to a linear 2x2 system. Further details on the
formulation can be found in [3].

Example

The example reported in this section represents a concrete
structure on a rock foundation. The stress state at node A of
the bi-material interface is studied (see Fig. 2). This example is
purely academic and it is meant to show only qualitatively the
results of the proposed method. The mesh is made of 6-node
quadratic triangular elements. The applied boundary conditions
are illustrated in (Fig. 2) (also the weight of the structure and of
the foundation are taken into account). Both materials are lin-
ear elastic. Two applications have been carried out: the first a)
in which the rock Young modulusEr is set equal to twice the
modulusEc of the concrete, and a second in whichEr is 200
timesEc.

Figure 2: On the left, stress tensors for case a:Er ' Ec; on
the right, stress tensors for case b:Er � Ec.

The Mohr’s circles and the stress tractions (the black dots) for
each case are reported in (Fig. 3). ForEr ' Ec the two stress
tensorT1 andT2 are similar. ForEr � Ec one can appreciate
two different stress tensors.

A

Figure 3: FE mesh and boundary conditions of the proposed
example.

Comparison with other procedures

Due to the low computational costs of this method (it only re-
quires the solution of a linear 2-equation system), the obtained
solution for case b) has been compared with another computa-
tionally simple procedure, i.e. the average of the stresses at the
Gauss point surrounding the node at the bi-material interface.
Table 1 shows the ratio between the average-stresses and the
stresses obtained by using the proposed method. The continuity
along the vertical direction of the stress field is not ensured by
the Gauss average method, i.e.σy c 6= σy r andτxy c 6= τxy r.

Table 1:Comparison between the proposed procedure and the
Gauss stress average method

σxGauss

σx

σyGauss

σy

τxyGauss

τxy

concrete 0.7755 1.0240 1.1620
rock 0.8211 1.0078 0.8022

The results obtained by inserting zero-thickness very stiff in-
terface elements along the bi-material interface coincide with
those obtained by using the proposed formulation. However,
the insertion of the interface implies the duplication of nodes
where the interfaces are inserted, and this represents a further
computational effort.
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Summary: A formulation of the SDA method is given that allows its application with damage interface elements. The extension
is useful for generalising the method to more complex cracking phenomena and to heterogeneous materials.

Introduction

The occurrence of discontinuities in the displacement field
within the framework of quasi brittle materials (cohesive frac-
ture) can be effectively modeled by means of interface ele-
ments, equipped with a suitable constitutive behaviour. Inter-
face elements, however, suffer of several drawbacks: the im-
possibility of having continuous stress fields; the need to in-
troduce conventional elastic relative displacements, unless spe-
cial damage models are used; furthermore, it is questionable
whether the solution converges upon refinement of the mesh,
that usually modifies the measure of the surface where relative
displacements occur.

Interelement discontinuities are very useful for modeling phys-
ical interfaces between two materials, in this case, moreover,
elastic displacements are often observed, like occurs when the
surfaces are glued together. Discontinuities within a single
phase can be more effectively described by means of models
that incorporate the kinematics of strong discontinuities, like
the so-called Elements with Embedded Discontinuities [1],[2]
or the eXtended Finite Element Method.

Main goal of this paper is to develop a FE formulation of Strong
Discontinuities that allows a consistent introduction of an inter-
face constitutive model completely analogous to the one used
in interface elements, so that the two formulations can be used
simultaneously for modeling different physical situations. For
obtaining this result, we had to extend a recently proposed al-
gorithmic framework [3] based on the formal analogy with the
theory of classical plasticity to the case of damaging materi-
als. This was done through a different interpretation of theL2

orthogonality condition for the enhanced strains.

The model proposed can be extended to handle the case of bi-
material interfaces and multiple cracks by means of a suitable
choice of the kinematic fields.

Kinematics and constitutive laws

In this section a short summary of the kinematics associated
with the Strong Discontinuity Approach (SDA) is given. For
further details, refer to [2]. Let Ω ⊂ <3 be a domain andS a
surface dividing the domainΩ into two partsΩ+ andΩ− along
which the displacement field can be discontinuous, according
to the format

u(x, t) = ū +HS [[u]](x, t) (1)

whereHS is the Heaviside function related to the surfaceS and
ū, [[u]] are two continuous and regular functions. The linearized
strain tensor is obtained as

ε(x, t) = ∇Su(x, t) = ∇S ū+∇S [[u]]HS+([[u]]⊗n)SδS (2)

where it has been applied the generalized derivative to the
Heaviside function andδS represents the Dirac delta distribu-
tion with respect to the surfaceS.

An alternative form more useful for the finite element approx-
imation of the SDA [2] is obtained introducing a regular func-
tion φ(x) ∈ [0, 1] fulfilling the conditions

φ(x) =
{

1, x ∈ (Ω\Ωφ) ∩ Ω+

0, x ∈ (Ω\Ωφ) ∩ Ω− (3)

so that the displacement field becomes

u(x, t) = û(x, t) + [[u]](x, t) (HS − φ(x)) (4)

with û = ū + [[u]]φ(x). The deformation field can then be writ-
ten

ε(x, t) = ∇S û(x, t) +∇S [[u]](HS − φ(x))
− ([[u]] ⊗∇φ(x))S + ([[u]] ⊗ n)SδS︸ ︷︷ ︸

γ

(5)

In the applications we shall take a constant jump field [[u]](x),
so that the second term in (5) will be dropped from now on. The
deformation field in the continuum is thus given by the sum

ε(x, t) = ∇S û(x, t)−([[u]]⊗∇φ(x))S = ε̂(x, t)− ε̄(x, t) (6)

The previous relation can be interpreted in the sense that the
total compatible deformation̂ε is obtained as sum of two con-
tributions, the deformation of the bulk of the body,ε, and the
anelastic deformation related to the displacement discontinuity,
that can be interpreted as a plastic distortion of the continuum.
Therefore separate constitutive laws have to be assigned for the
continuum and for the occurrence of the jump.

In order to account for a non linear material evolution, a gen-
eralised damage model is adopted according to [4], introducing
the internal damage variableω, conjugated to the damage en-
ergyζ. The constitutive equations are thus obtained from inter-
nal energy and dissipation functionals,φ(εe, ωe), d(εp, ω̄p) for
the continuum, andφS([[u]]e), dS([[u]]p, αp, ωp) for the inter-
face. In this work it is assumed that the continuum is elastic,
and that the the discontinuity derives from energy dissipation
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on the interface. The constitutive equations in the continuum
are thus

σ = ∂εφ(εe, ωe)
ζ = ∂εφ(εe, ωe)

(7)

whereωe = 0 throughout the whole deformation process.

The anelastic displacement jump is obtained from the activa-
tion condition of the interface, for which it is adopted the one
proposed in [5], of the form

f(tn, ζS) = τ2 + 4µ2(σk − σ − ζS)(ζS − ζS0) = 0 (8)

The condition (8) represents an activation condition in the space
of the surface stress acting on the surfaceS, andζS rule the
evolution of the limit surface. The condition has been used for
modeling fibre reinforced concrete.

Weak formulation

The original implementation of the SDA according to Simo et
al., is based on the EAS concept. Following this methodology,
the starting point of the formulation can be taken as the mixed
multi-fields functionalΠ. In the classical form it is written as
(the generalisation to internal variables can be found in [6]

Π(û, σ, γ, ε) =
∫

Ω

σ · ∇S ûdΩ +
∫

Ω

σ · γdΩ−
∫

Ω

σ · εdΩ

−
∫

Ω

ρb · ûdΩ−
∫

Γ

t∗ · ûdΓ + Φ(ηe) + dcS(tnS)δS

(9)

The classical equations of SDA are obtained under the hypothe-
ses (not necessary, however) that the jump field [[u]] be con-
stant. After some algebra, they are:∫

Ω

σ · ∇SδûdΩ =
∫

Ω

ρb · δûdΩ +
∫

Γ

t∗ · δûdΓ

∂φc(σ) = ∇S û− ([[u]] ⊗∇φ)S

[[u]] ∈ ∂dcS(σn)
1
Ve

∫
Ωe

σndΩ =
1
AS

∫
S

tSdS

(10)

The last equation is obtained taking a Petrov-Galerkin approxi-
mation of the incompatible strain in the orthogonality condition
between stresses and enhanced strain.

From (9) using a self-equilibrated stress field (that is, one such
that

∫
Ω
τ0 · ∇S ûdΩ = 0), it is clearly seen that the enhanced

deformation fieldγ is non compatible. Equations (10) can be
solved at element level by means of a return algorithm (see [6]
for details)

Numerical results

The model can be applied to a broad range of different material
failures such as mode I, mode II and mixed mode. The model
has been implemented in a 4-node bilinear plane stress element
using FEAP.

The results of a three point bending test on a notched concrete
beam are presented in Fig.1. The test is performed prescribing
the vertical displacement. The analysis has been repeated for
two different specimens whose dimensions are2900×600 mm
and1450 × 300 mm with thicknesst = 150 mm. The results
obtained with the implemented SDA model are compared with
those given by a continuum damage model with element regu-
larisation. Fig.2 shows the distribution of the internal variable
representing the crack width for the2900× 600 mm specimen.
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Figure 1: 3-point bending test - displacement of center beam

Figure 2: 3-point bending test - opening displacements
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Summary: In the present paper, the sequentially linear approach is extended and implemented for a particular class of finite
elements useful in describing discrete rather than smeared fracture, namely the so called interface elements. Some details are
given about the general formulation and the required regularization. Applications to plane concrete cracking and masonry panels
are briefly outlined.

Introduction

The sequentially linear approach in modeling strain softening
materials and structures has recently been demonstrated to be
effective especially when the ratio between the elastic energy
stored and the energy that can be dissipated by fracture is large,
i.e. in the case of real-scale structures [1,2]. The model simu-
lates the resulting peaks and local snap-backs effectively. The
model replaces the downward stress-strain curve by a saw-tooth
curve, either saw-tooth tension- softening for unreinforced ma-
terial or saw-tooth tension stiffening for reinforced material. A
linear analysis is performed, the most critical element is traced,
the stiffness and strength of that element are reduced accord-
ing to the saw-tooth curve, and the process is repeated. The
sequence of scaled critical steps provides the global load dis-
placement response.

Basic interface formulation

The general approach is almost identical to the one followed
to implement the smeared cracking [1]. This time, the struc-
ture is discretized using both standard elastic continuum ele-
ments and interface elements where potential cracks can arise.
Young’s modulus and Poisson’s ratio are assigned to the contin-
uum elements, while the initial stiffness and strength are given
to interface elements. Subsequently, the following steps are se-
quentially carried out:

• Add the external load as a unit load.

• Perform a linear elastic analysis.

• Extract the ‘critical element’ from the results. The ‘critical
element’ is the interface element for which the stress level
divided by its current strength is the highest in the whole
structure.

• Calculate the ratio between the strength and the stress
level in the critical element: this ratio provides the ‘global
load factor’. The present solution step is obtained rescal-
ing the ‘unit load elastic solution’ times the ‘global load
factor’.

• Increase the damage in the critical element by reducing
its stiffness and strength, i.e. the interface stiffnesskn and
tensile strengthft, according to a saw-tooth constitutive
law as described in the next section.

• Repeat the previous steps for the new configuration, i.e. re-
run a linear analysis for the structure in whichkn andft of
the previous critical element have been reduced. Trace the
next critical saw-tooth in some element; repeat this pro-
cess until the damage has spread into the structure to the
desired level.

The way in which the stiffness and strength of the critical ele-
ments are progressively reduced constitutes the essence of the
model. In other words, it is necessary to provide a saw-tooth
approximation of the cohesive stress-displacement relation.

The modeling of geometrical discontinuities, like discrete
cracks in concrete or joints in rock and masonry, can be con-
veniently done with multipurpose structural interface elements.
These elements relate the tractions acting on the interface to the
relative displacements of the two sides of the interface.

The adopted constitutive law for discrete cracking is based on
a total deformationtheory, which expresses the tractions as a
function of the total relative displacements, the crack width
∆un and the crack slip∆ut (Fig. 1).

The generic intersection between the secant starting from the
origin and the softening curve is obtained solving:

kn.i∆u+
n.i = D

(
∆u+

n.ult −∆u+
n.i

)
(1)

where, the superscript + refers to the uplifted softening curve.
This uplift is necessary to guarantee the mesh size objectivity.
The amount of the uplift is determined further in order to keep
the area underneath the softening curve equal to the fracture
energy regardless the number of teeth.D is the so-called soft-
ening modulus. In the present case, for linear softening:

D =
ft

∆un.ult − ft/kn
(2)

Equation (1) provides the generic crack opening:

∆u+
n.i = ∆u+

n.ult

D

kn.i +D
(3)
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Figure 1: Saw-tooth softening curve with stepwise reduction of
the interface stiffness. Ten teeth approximation witha = 4, and
p = 36%.

Consequently, the generic uplifted strength becomes:

f+
t,i =

(
∆un.ult + p

ft
D

)
kn.i

D

kn.i +D
(4)

wherep is the percentage of the softening curve uplift. If we
adopt a stepwise reduction of the interface stiffness, the rule to
updatekn becomes:

kn.i+1 =
kn.i
a

(5)

wherea is a constant factor. The choice of the magnitude ofa is
an important issue for the method, and is performed depending
of the ultimate crack opening. For instance, ifa is chosen to be
too small, then all the teeth concentrate in the upper part of the
softening mother curve. The adequate choice depends on the
values of initial dummy stiffness, the strength and the fracture
energy.

The area beneath the saw-tooth softening can be expressed as:

A+ =
N−1∑
i=0

A+
i =

N−1∑
i=0

1
2
∆u+

n.if
+
t.ibi (6)

In order to achieve the mesh size objectivity it is sufficient to
prescribe that:

A+ = GIf (7)

which, after some algebraic manipulations, provides the opti-
mal amount of the softening curve uplift.

Applications

A symmetric notched beam of total length 500 mm; span 450
mm; height 100 mm; thickness 50 mm and notch depth 10 mm
was selected for analysis. The distance between the loading
points in the symmetric four-point loading scheme is 150 mm.
Interface elements are placed in the central section, where ex-
perimentally the crack takes place. Five different meshes were
used, referred to as very coarse, coarse, medium, fine and very
fine. Results are shown in Fig. 2.

The behaviour of a masonry wall (Fig. 3) subjected to non-
proportional normal and shear load can also be analyzed. In

Figure 2: Linear softening with stepwise reduction of the inter-
face stiffness, N =10, all the meshes.

Figure 3: Shear stresses in the masonry wall subjected to com-
pression and shear.

this case, the issue of non-proportional loading must be con-
sidered, which implies some differences compared to the stan-
dard sequentially linear approach. The masonry texture is rep-
resented using interface elements for the mortar joints and the
potential cracks in the blocks. The scaling algorithm traces the
most critical interface elements and discrete cracks open up
consecutively. The system is always positive definite due to
the saw-tooth ascending diagrams, providing a solution at each
step without difficulties. Contrarily, in the nonlinear analysis
the negative tangent stiffness requires a cumbersome choice of
increments and steering parameters, and optimal convergence
could not be achieved throughout the process, even though arc-
length techniques are used.
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Summary: In order to describe accurately the behavior of heterogeneous building material, an identification of stochastic pa-
rameters of material properties is here proposed in order to both take into account the heterogeneity and the intrinsic randomness
of such materials. Using a stochastic description of the meso structure and simple Monte Carlo method, we propose a framework
to compute statistics of material properties governing the failure of cement based media.

The domain of numerical analysis for ultimate load behavior
Civil Engineering structures leads to many important issues,
among them the modeling of heterogenous materials. Cement-
based materials, such as concrete or mortar, can be modelled
at different scales, depending on the objectives and the physi-
cal mechanisms to be accounted for. Namely, for engineering
applications and computations at the structure scale (macro-
scale), such materials might be considered as homogeneous,
and their properties obtained by using the key concept of RVE
(see [1, 2]) to obtain phenomenological models of inelastic be-
havior (e.g. see [3, 4, 5]) The main advantage of those models
is their robustness and small computational cost, hence this ap-
proach is widely spread. On the other hand, such phenomeno-
logical models are based on a set of ”material” parameters
which ought to be identified, mainly from experiments per-
formed with prescribed load paths. This methodology leads to
a set of parameters which is linked to the chosen load-path,
which will not be adapted to another path, thus leading to a
non-predictive macro-model.

In order to overcome this major drawback many authors tried
to furnish micro-mechanical basis to the macroscopic model
set of parameters (see [6, 7])and provide a more predictive
model. One way to achieve this goal is to employ homogeniza-
tion methods leading to accurate results for linear problems.
In case of non-linearities such methods are not providing good
estimates for the effective (macroscopic) properties (see [8]).
Moreover such approach do not take into account the inherent
uncertainties attached to heterogeneous materials.

Considering a small scale, this variability might be viewed from
the geometrical point of view through the stochastic descrip-
tion of the meso-structure. In this work we propose to com-
pute the macroscopic parameters for a porous media as well
as their statistics by taking into account the variability of the
meso-structure. The key point is that the material parameters at
this level are assumed to be deterministic, so that the variability
is only related to the size and the positions of the voids.

Moreover, meshing is one of the major issue in modeling het-
erogeneous two-phase materials and frequently leads to un-
desirably high number of degrees-of-freedom and distorted
meshes. For that reason, the meshing process might require a
complex and time-consuming algorithm and, more importantly,
produce the set of discrete equations which is poorly condi-
tioned. In this section, we present another approach by using
structured (regular) meshes which are not constrained by the
physical interfaces between different phases. The key ingredi-

ent for providing such models are field discontinuities intro-
duced inside the elements in which the physical interfaces are
present. The latter can be developed as the kinematics enhance-
ments which belong within the framework of the Incompatible
Modes Method (see [9, 10]). This model relies on classical CST
elements, whose kinematics description is enriched by the use
of strain and displacements discontinuities in order to represent
two phases.

In order to solve this stochastic problem and compute the sta-
tistical moments for the response quantities, we employ the
Monte-Carlo method within a distributed software environ-
ment. This stochastic integration method is based on many
evaluations of the meso-structures responses thus leading to a
time-consuming process. Moreover, as the error can directly be
evaluated in terms of the number of realizations, it is neces-
sary to choose a relatively small discrete problem, even in the
case of complex meso-structures. Using the Components Tem-
plate Library (CTL) and the Finite Elements code FEAP we
produced 9999 realizations. The statistics of the outcome prop-
erties exhibit quite narrow confidence intervals. These numer-
ical results can then be viewed as macroscopic properties for
this porous media within the context of a classical phenomeno-
logical model.
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Summary: Fibre-reinforced cement matrix composites typically exhibit non-linear constitutive behaviour in tension, due to
multiple cracking in the matrix and load redistribution to the fibres. Parameter identification for multi-scale physics-based models,
to fully describe important aspects of the multiple cracking behaviour, is hampered by the variability in effective local properties
that results from the heterogeneous microstructure. To distinguish the effects of this variability from the behaviour of individual
cracks, we augment collective load-displacement curves with data on separate cracks obtained using optical full-field techniques.

Multiple cracking model

In brittle matrix composites under tensile loading, fibres that
bridge the cracks continue to carry increasing load after the
maximum tensile strain of the matrix is reached. Thus, the
matrix progressively cracks in multiple places, until the crack
spacing is such that, at every crack, the gradual stress trans-
fer at the fibre matrix interface is interrupted by the stress re-
lief from the next crack before the strength of the matrix is
exceeded [1,2]. This implies that the fiber-matrix interface is
strong enough to prevent complete ”pull-out” of the fibers, but
not so strong that the stress concentrations at the cracks in the
matrix immediately break the fibers.

By impregnating textile reinforcements with a cementitious
matrix—as opposed to mixing loose fibres into the cement—
composites with high fiber volume fractions can be produced,
providing significantly higher tensile load carrying capacity
than the unreinforced cement. To design lightweight struc-
tures, efficiently using such composites, it becomes necessary
to quantitatively predict the material behaviour in the multi-
ple cracking and post-cracking regions, including cyclic load-
ing and environmental effects [3,4].

One aspect of multiple cracking behaviour in cementitious-
matrix composites, that quickly becomes apparent when com-
paring theory with experiment, is the variability in the effective
local strength of the matrix material. This variability may be at-
tributed to variations in material chemistry, residual stresses, or
defect densities. Experiments and specimens may be designed
to avoid the variability, and enable studies of specific phenom-
ena one at a time. These are very useful to determine the func-
tional form that a model of the phenomena should take. How-
ever, the material parameters determined on a model system
may differ significantly from those of the corresponding mate-
rial incorporated in the composite [5]. Therefore, in practical
applications the parameters must be determined for the actual
composite material that will be used.

Parameter identification

In the collective response of a heterogeneous material, the in-
trinsic behaviour is convoluted with the statistical distribution

Figure 1: ACK model of multiple cracking in brittle matrix
composites [2] with data for a glass-fibre reinforced inorganic
phosphate cement.

of local properties. Thus, a ‘blurred’ average of the intrin-
sic behaviour is observed in the stress-strain curve of textile-
reinforced cement-matrix composites. As a result, it is no
longer possible to simply read each model parameter from a
clearly identifiable section of the curve. Instead, the parameters
in the model are identified by an inverse method, optimizing the
agreement between theory and experiment. Explicitly taking a
statistical distribution of properties into account in the model
requires additional parameters to characterize the distribution,
but improves the agreement.

Poorly conditioned sensitivity matrices indicate that different
adjustments in the model parameters can give rise to very simi-
lar changes in the predicted collective behaviour. Those differ-
ent adjustments may give very different results, however, when
the model is used to extrapolate beyond the available experi-
mental data. Durability of cement matrix composites in light-
weight constructions provides a good example; accurate predic-
tions will require multi-scale models of interacting mechanical
and chemical degradation mechanisms. These mechanisms are
more sensitive to details of the multiple cracking behaviour at
the micro-scale, than the multiple cracking behaviour itself is
to those details, especially when only the averaged collective
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behaviour is considered. Experiments that distinguish the aver-
aging effect of local parameter variations from the behaviour
of individual cracks provide data that may be extrapolated with
more confidence.

Optical full-field measurements

Optical methods that record displacements at a large number
of discrete locations on the surface of a specimen under load-
ing are enabling new developments in experimental mechanics.
Full-field measurement results are very attractive for compar-
ison with finite element calculations. When the deformation
behaviour is relatively smooth and deterministic, quantitative
comparison is possible, including full-fledged inverse methods
for parameter identification [6]. Full-field data is even more
useful when investigating localized deformation events, such
as cracks, whose location is not known in advance. E.g., Elec-
tronic Speckle Pattern Interferometry [7] and Digital Image
Correlation [8] have been used to characterize crack formation
and propagation in stone and concrete.

In combination with conventional measurement of the collec-
tive load-displacement curve, these techniques —now applied
on a much smaller length scale— can be used to characterize
multiple cracking behaviour on multiple levels. Direct obser-
vations of the local displacement field surrounding the cracks
can then be used to validate and augment the parameter identi-
fication methods based on the collective multiple cracking be-
haviour. By including a number of separate cracks in the optical
field of view, statistical information on the variability of param-
eters is obtained even from a single experiment. In addition, the
measurements provide boundary conditions and local informa-
tion for models at the level of individual cracks. Thus, a multi-
scale mixed numerical-experimental characterization technique
is envisioned, based on physical models of the relevant phe-
nomena in a heterogeneous microstructure.

Acknowledgements

This work was funded by the Research Foundation – Flanders
(FWO–Vlaanderen).

References

[1] J.Aveston, G.A.Cooper, A.Kelly (1971): Single and mul-
tiple fracture, The Properties of Fibre Composites. In
Proc. Conf. National Physical Laboratories, IPC Science
& Technology Press Ltd., London, 15–24.

[2] J. Aveston, A. Kelly (1973): Theory of multiple fracture of
fibrous composites.Journal of Materials Science, 8, 411–
461.

[3] H. Cuypers (2001): Analysis and Design of Sandwich
Panels with Brittle Matrix Composite Faces for Building
Applications.Doctoral thesis, Vrije Universiteit Brussel,
Brussels, Belgium.
wwwir.vub.ac.be/memc/pdf/heidi phd.pdf

[4] H. Cuypers, J. Wastiels (2006): The effect of durability on
the design of self-bearing sandwich panels with cementi-
tious composite faces. InProc. 8th Int. Symp. On Brittle
Matrix Composites, Warsaw.

[5] H. Huypers, J. Wastiels (2006): Stochastic matrix-cracking
model for textile reinforced cementitious composites under
tensile loading.Journal of Materials and Structures, 39,
777–786.

[6] D. Lecompte, A. Smits, H. Sol, J. Vantomme, D. Van
Hemelrijck (2007): Mixed numerical-experimental tech-
nique for orthotropic parameter identification using biaxial
tensile tests on cruciform specimens.International Journal
of Solids and Structures, 44(5), 1643–1656.

[7] K. De Proft, L. J. Sluys, W. P. De Wilde (2003): Combined
experimental-numerical study to monotonic and cyclic be-
haviour of limestone. InDamage and Fracture Mechanics,
Wessex Institute of Technology, UK.

[8] D.Lecompte, J.Vantomme, H. Sol (2006): Crack Detection
in a Concrete Beam using Two Different Camera Tech-
niques.Structural Health Monitoring, 5, 59–68.

Prague, Czech Republic, 25-27 June 2007 93



MHM 2007: Modelling of Heterogeneous Materials with Applications in Construction and Biomedical Engineering

Identification of Quasibrittle Material Parameters
Based on Stochastic Nonlinear Simulation and Artificial Neural Networks

D. Novák∗, D. Lehký
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Summary: A new approach of inverse analysis is proposed to obtain material parameters of a constitutive law for quasibrittle
material in order to achieve the best agreement with experimental data. The inverse analysis is based on the coupling of a
stochastic simulation and an artificial neural network (ANN). The identification parameters play the role of basic random variables
with a scatter reflecting the physical range of potential values. A novelty of the approach is the utilization of the efficient small-
sample simulation method Latin Hypercube Sampling (LHS) used for the stochastic preparation of the training set utilized in
training the neural network. Once the network has been trained, it represents an approximation consequently utilized to provide
the best possible set of model parameters for the given experimental data.

Introduction

The nonlinear numerical analysis requires the use of an appro-
priate and realistic material model. Generally, the more sophis-
ticated model the more model parameters are needed. Basic
parameters as compressive strength, modulus of elasticity, etc.
are usually known. Typically, some other parameters, e.g. frac-
ture energy, can be estimated using the recommended formulas
from literature, but in most cases these formulas can be used
only as a first approximation of the parameters. The objective
is very often to find such a set of material parameters, which
gives the best agreement between the simulated and experimen-
tal load-deflection curves.

A strong interest has been developed for formulating inverse
analysis methods to determine the quasi-brittle fracture be-
haviour of concrete. There are basically two groups of in-
verse analysis techniques: (1) those that use the complete load-
deflection curve of one specimen size and shape; (2) those that
use the peak loads of specimens of different sizes and shapes
capturing the size effect phenomenon.

The aim of this work is to describe a new methodology of in-
verse analysis based on the coupling of the stratified simula-
tion of Monte Carlo type and artificial neural networks (ANN).
The emphasis is mainly on: (1) the efficiency of the training set
preparation for the neural network training using small num-
bers of simulations based on Latin Hypercube Sampling (LHS);
(2) the multipurpose character of the methodology relatively
easy to apply. Details can be found in papers, e.g. [1–3].

Methodology of the proposed inverse analysis

The proposed inverse analysis technique is based on the combi-
nation of the statistical simulation method of the Monte Carlo
type and ANN. Fundamental scheme of the approach is shown
in Fig. 1; ANN is trained by values of load-deflection curve and
values of identified parameters (considered to be random vari-
ables) in repeated stochastic way—the preparation of training
set for neural network uses stratified simulation.

The whole procedure is itemized as follows:

Figure 1: Scheme of inverse analysis.

1. Computational model has to be first developed using the ap-
propriate FEM software (e.g. ATENA [4]) which enables mod-
eling of both pre-peak and post-peak behavior. An initial calcu-
lation uses a set of initial material model parameters.

2. The parameters of a material model for identification are
considered as random variables described by a probability
distributions—rectangular distribution represents the bounded
range of physical existence. These parameters are simulated
randomly using LHS [5].

3. A multiple calculation of deterministic computational model
using random realizations of material model parameters is per-
formed resulting in a bundle of load-deflection curves (usually
overlapping the experimental curve), Fig. 2.

4. Realizations of the load-deflection curves serve as a basis for
training of an appropriate ANN. After the training procedure,
ANN is ready for key task: to select the material model param-
eters which can capture the experimental load-deflection curve
as close as possible.

5. Final calculation using the identified material parameters
should verify how well the parameters were identified, Fig. 3.
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Numerical examples

A traditional experiment of three-point bending of a notched
plane concrete beam was performed in order to determine frac-
ture parameters of concrete for the mass production of railway
sleepers (specimens 80×80×480 mm). Parameters for identifi-
cation were modulus of elasticity, tensile strength, compressive
strength, fracture energy and compressive strain in the uniax-
ial compressive test. For stochastic training, randomness was
introduced using the same coefficient of variation 0.15 and the
rectangular probability distribution for all random variables. 20
simulations of LHS resulted in load-deflection curves presented
in Fig. 2. This input-output information serves for the training
of ANN: network with 20 inputs, one hidden layer consisting of
15 nonlinear neurons and one output layer of 5 linear neurons.
Also the second alternative with only 3 output neurons (3 dom-
inant material parameters) was used. Final calculation results
using identified parameters are shown in Fig. 3. More details
can be found in [1].
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Figure 2: Random load-deflection curve realizations.
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Figure 3: Load-deflection curves—experiment and numerical
simulation using identified parameters.

Another example is the shear wall shown in Fig. 4 [6]. Loading
by the vertical force was applied first to represent a dead load.
Then a horizontal force was applied and increased to failure.
The behavior during the experiment reported extensive diago-
nal cracking prior to failure followed by an explosive crush-
ing of concrete. The experimental and simulated failure and a

bundle of load-deflection curves used to train ANN in order to
provide best estimates of 10 material parameters are shown in
Fig. 4.

Figure 4: Random load-deflection curve realizations—20 sim-
ulations of LHS, experimental and virtual failure.
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Summary: The present paper deals with the parameter identification of the constitutive model introduced in [1] from the results
of a three-point bending test. The model itself is capable of describing behavior of massive structures taking into account both
the diffuse damage mechanisms as well as localized failure phenomena. As all parameters of the model have a clear physical
meaning, the identification procedure can be split into a sequence of three problems, each related to a specific mode of the
material behavior. The numerical optimization strategy is based on an adaptive approximation of the objective function by the
Radial Basis Function Network dynamically evolved by minima located by a real-encoded genetic algorithm.

Introduction

Concrete is perhaps the most widely used construction mate-
rial in Civil Engineering. It can be considered as a quasi-brittle
material with very complex mechanical behavior. A model pro-
posed in [1] is a typical example of relatively simple constitu-
tive laws aimed at concrete-like materials. Despite its simplic-
ity (only seven parameters are needed for a particular material),
the model itself is capable of describing response of a massive
quasi-brittle structure until the point of localized failure. Per-
haps the most important advantage of the proposed model is
the fact that all its parameters have a clear physical interpre-
tation and can be straightforwardly visualized in terms of the
shape of a stress-strain diagram. In addition, influence of each
parameter is dominant only for specific, easily recognizable,
stages of material behavior.

Identification procedure

In this paper, we discuss the identification of the model pa-
rameters from experimental measurements made on a struc-
tural level. Generally speaking, the complexity of the identi-
fication procedure is determined by the choice of the experi-
mental setup. Solely from the identification point of view, the
simplest experiment to execute is the uniaxial tensile test. In
this case, the strain field stays mostly homogeneous during the
whole procedure and the global response, represented by the
load-displacement diagram, is very similar to the stress-strain
curve for one material point. The model parameters can be then
directly determined from the shape of the load-displacement
curve. Such a uniform loading is, however, difficult and ex-
pensive to perform in a laboratory, especially for quasi-brittle
materials. Therefore, other tests are often used in experimental
practice.

The three-point bending test, in particular, is considered to be
much simpler to perform and its results are well-reproducible.
Therefore, we focus on the identification procedure for the
proposed model parameters directly from the output of three-
point bending test. The main difficulty is in this case imposed
by heterogeneity of the stress and the strain fields, which is
present since the very start of the experiment. The macro-scale
measurements provide the load-deflection curve that integrates
data from different parts of the specimen experiencing different
regimes of (in)elastic behavior. For that reason, the possibil-
ity of a simple determination of model parameters from load-
deflection curve is lost and an advanced calibration procedure
needs to be applied.

To exploit the specific structure of the model, the identifica-
tion procedure should be divided into three sequential stages.
From the algorithmic point of view, the material calibration can
be then understood as a sequential optimization problem. Such
approach has two main advantages: first, solving three simpler
identification steps in a batch form is typically much more effi-
cient then the full-scale problem; second, it allows to use only a
subset of simulations for initial stages of the identification pro-
cess and also for latter stages, where new simulations can be
started from the end points of diagrams identified in previous
stages.

The gradient-based methods are usually considered to be the
most computationally efficient optimization algorithms avail-
able. The accuracy of numerical approximation to the ’exact’
sensitivities is driven by the choice of a pseudo-time step used
in numerical simulations. Clearly, to reduce the computational
time, the pseudo-time step should be used as large as possi-
ble. Therefore, the response-based objective function will not
be smooth and gradient-based methods are unlikely to be very
successful.
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As an alternative, techniques of soft-computing can be em-
ployed for optimization of complex objective functions. For the
current case, complexity of the optimization can be attributed
rather to its non-smooth character than to the appearance of
multiple optima; the family of problems where evolutionary al-
gorithms are the most successful methods. This opens the way
to more specialized tools, which deliver higher efficiency when
compared to usually time-consuming evolutionary algorithms.
The approach adopted in the present work is based on an adap-
tive smoothing of the objective function by the Radial Basis
Function Network [3], dynamically evolved by minima located
by a real-encoded genetic algorithm GRADE [2]. In the actual
implementation, the identification process is decomposed into
three stages: elastic stage, where Young’s modulusE and Pois-
son’s rationν are determined; hardening stage, influenced by
the limit stress̄σf and the hardening parameterK and the soft-
ening stage, which is governed also by the limit normal traction
¯̄σf and the softening parameter¯̄β. Once the parameters are de-
termined from one stage, their values remain fixed during the
remaining stages of the identification procedure. Of course, the
sequential procedure inevitably leads to the accumulation of er-
rors, which in turn requires setting the stopping precision to
rather small values. This fact in documented by Table1, stor-
ing the maximal and average errors calculated relatively to the
size of the addmissible interval obtained from100 independent
optimization runs.

Table 1: Influence of stopping precision on accuracy of identi-
fied parameters.

Parameter Stopping Average Maximal
precision onF error [%] error [%]

E 10−5 0.41 1.23
ν 10−5 0.16 2.20
σ̄f 10−2 0.87 2.58
K 10−2 0.78 2.49
σ̄f 10−3 0.30 0.59
K 10−3 0.49 1.54
¯̄σf 10−2 0.47 1.32
¯̄β 10−2 2.34 12.21
¯̄σf 3× 10−3 0.33 0.67
¯̄β 3× 10−3 0.26 2.68

The effect of the increased accuracy is further documented by
deviation of the “identified” curves from the reference one dis-
played in Fig.1.
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Figure 1: Comparison of load-deflection diagrams.

Conclusion

We have proposed a very straightforward identification pro-
cedure for the parameters of a constitutive model represent-
ing the localized failure of massive structures. The sequen-
tial identification approach has a clear link with the structure
of the constitutive model. Due to the physical insight into the
model, it was possible: first, to construct simple objective func-
tions with a high sensitivity to the relevant parameters; sec-
ond, to use only a part of the test simulation for each of three
stages, which leads to substantial computational time savings.
The non-smooth and non-convex objective functions were op-
timized by robust soft-computing methods. The proposed iden-
tification procedure was verified on100 independent optimiza-
tion processes executed for each objective function. In the worst
case, the reliability of the algorithm is76% due to very small
number of objective functions calls set in the termination con-
dition to 150 and high accuracy of searched values (smaller
than 5%). The average number of function evaluations was
smaller then50 for all three stages of identification. The ma-
jor difficulty of the proposed methods is to properly identify
the three stages of structural behavior. From the point of view
of method verification, where the reference load-deflection di-
agram is not noisy, the problem was successfully resolved.
To fully accept the procedure, however, the experimental val-
idation of the method appears to be necessary. For more de-
tails about proposed methodology we refer an interested reader
to [4].
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Summary: From clinical observations, it is known that intimal hyperplasia occurs at the outflow anastomosis of prosthetic bypass
grafts, preferentially around the suture-line and on the host artery bed. Investigators have suggested that hemodynamic factors
promote hyperplasia growth, however around the junction, compliance mismatch may play an important role on its development.
A fully three-dimensional finite element model of a prosthetic end-to-side anastomosis surgery operation is here developed in
order to study arterial response to the anastomosis. Both residual stresses and the evolving response of the arterial wall were
modelled by means of a multiplicative decomposition of the deformation gradient tensor.

Introduction

Atherosclerosis is a disease of arteries in which atheromas
(masses of plaques of degenerated thickened arterial intima) are
formed within the intima (inner wall layer) and media (middle
wall layer) of large and medium sized arteries [2]. Atheroscle-
rosis can result in decreases in the lumen cross-section of the
artery, leading to reduced blood flow to parts of the body. Af-
ter those lumen reduction or blockage process in the artery,
which may promote a stroke or other cardiovascular diseases,
surgery or specialized treatments are required. A common sur-
gical treatment in use is to by-pass the affected region with an
end-to-side anastomosis surgery, using a venous autologous or
synthetic graft. This surgical procedure is a way to treat blocked
arteries by creating new passages for blood. Vein segments
from different parts of the body or prosthetic implants, are
taken as grafts to reroute the blood around the blocked artery.
The graft is sewn into place in the artery, above and below the
atherosclerotic blockage.

Unfortunately, after end-to-side anastomosis surgery, hyperpla-
sia an re-stenosis might occur leading to serious clinical prob-
lems. Surgical imperfection and geometry or mechanical prop-
erties mismatches between the graft and the artery are pointed
out as factors which promote intimal hyperplasia. From clini-
cal observations, it is known that intimal hyperplasia occurs at
the outflow anastomosis of prosthetic bypass grafts, preferen-
tially around the suture-line and on the host artery’s bed [1]. In-
vestigators have suggested that hemodynamic factors promote
hyperplasia [4], however around the junction, compliance mis-
match and surgical techniques may play an important role on
its development [1]. Local mechanical stress, caused by these
hemodynamic an mechanical factors influence the remodelling
and growth of blood vessels leading to re-stenosis.

The aim of this work is to study the role of geometry and
mechanical properties in the stress distribution generated by
the anastomosis, as well as the intimal hyperplasia generated
by the stress concentrations in the arterial wall. A fully three-
dimensional finite element model of a prosthetic end-to-side
anastomosis surgery is developed (see Fig.1). Some aspects
have to be accounted for in order to make the model as re-
alistic as possible. The existence of residual stresses in the

Figure 1: Finite element mesh of the anastomosis model.

arterial wall [2], the multilayer nature of the artery, and the
marked anisotropic character of each layer [3], strongly affect
the global response of the artery, and were therefore accounted
for the simulations.

Finite element modelling

Finite element model geometrical parameters were taken from
the literature for human iliac artery [7], and are collected in
Table1.

The anastomosis is performed with a Dacron prosthetic graft
implanted into the host artery as a bypass, with an end-to-side
configuration. The angle between the graft and the artery was

Table 1: Geometrical data.
Geometrical parameter Value
Internal artery radius ri = 3.66 mm
External artery radius r0 = 4.96 mm

Internal artery opening radius Ri = 5.2 mm
Arterial longitudinal pre-stretch λz = 1.07 (-)

Arterial opening angle Θ = 94◦

Arterial length LA = 48 mm
Graft radius Rg = 2.9 mm

Graft thickness tg = 0.6 mm
Anastomosis angle α = 30◦
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Figure 2: Deformation gradient tensor decomposition diagram
for residual stress imposition [6].

set to30◦, which is commonly used in experimental studies [9].
Graft diameter and thickness are set initially as 5 mm and 0.6
mm respectively.

Four load steps are considered in the simulations:(i) Imposition
of initial strain, ii) Incision,(iii) Graft anastomosis,(iv) Blood
flow reestablishment.

Residual stress modelling

Residual stress has been modelled by means of the imposition
of a non-compatible deformation gradient tensor. For these pur-
poses, the initial configuration of the artery was assumed as
corresponding to the open sector of a tube. The tensorF0 was
computed as the solution to the closing of a pure bending prob-
lem. In Fig.2 it is depicted the diagram of the appearing con-
figurations in the residual stress process [6].

Volumetric growth modelling

Volumetric growth was modelled by means of the decomposi-
tion of the deformation gradient tensor asF = FeFg, whereFg
represents a non-compatible strain field responsible for the vol-
ume change andFe is an elastic tensor causing the stress field
in the equilibrium configuration [5]. Homeostatic stress values
were assumed as proposed in [8] so that the principal stretches
of Fg are computed as defined in equation1,

∂λr
∂t

=
σr − σhr
Trσhr

,
∂λθ
∂t

=
σθ − σhθ
Tθσhθ

,
∂λz
∂t

=
σz − σhz
Tzσhz

,

(1)
whereλi are the principal stretches, the(•)h superscript de-
notes an homeostatic value andTr, Tθ andTz are time valued
constants.

Results

Obtained results show the presence of elevated stresses in the
anastomotic area for a prosthetic end-to-side graft due to com-
pliance mismatch (see Fig.3). Maximal stress values appear
near the arterial incision edges, toe and heel. This observation
is in agreement with experimental results [1, 9], where they ob-
served cellular hyperplasia near the suture lines in the end-to-
side graft anastomosis and are the main reason for the increase
in tissue volume.

Figure 3: Maximal principal stress concentration (MPa): (top)
graft insertion, (bottom) final artery configuration.
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Summary: The objective of this work is to realize numerical simulations in order to comprehend how the arterial walls can
yeld and cause the aneurysms formation. The model we consider makes use of a constitutive equation that is able to represent
at the same time the nonlinearity and the inelasticity of the arterial wall. This constitutive equation, unlike the classical single
mechanism iperelastic constitutive relation, employs two mechanisms. They represent the mechanical response of elastin and
collagen, which are the most important elements of the arterial wall.

Introduction

Saccular Aneurysms are abnormal dilations of cerebral arteries,
primarily found at apices of arterial bifurcations and in cor-
respondence to curved arterial segments or near the Circle of
Willis. These pathologies are highly outstanding since the rup-
ture of the aneurysm wall causes a subarachnoid hemorrhage,
which as often as not lead to death or to a severe disability.
Pathological evidences suggest that, at first stage of aneurism
growth, the arterial wall dilation has no identifiable edges, after-
wards it evolves in a saccular aneurism with a clear neck region
[1], but the time course of this development is unpredictable.
The biggest problem is that 90% of cerebral aneurysms re-
mains asymptomatic until rupture. Only the wide ones may
show some disease symptoms since they compress other cere-
bral structures.
The most important elements of the arterial wall are collagen
and elastin. Their behavior represent the mechanical response
of the arterial wall and the model considered in this work in-
volve a dual mechanism related to these components of the
tissue. The first mechanism is based on the work of collagen
and elastin at the same time, the collagen recruitement is mod-
elled by introducing the second mechanism at a particular de-
formated configuration, while the elastin breackage is modelled
by deactivating the first mechanism at a later deformed state. In
the literature the growth of the aneurysms is related with the
damage of the elastin, probably caused by an excessive me-
chanical loading [2]. Thus, in order to model the development
of an aneurysm from a segment of arterial wall, it is necessary
to include the failure of the elastin as a load bearing mecha-
nism separately from the bulk failure of the entire wall. Classic
continuum models of arteries treat all structural components in
the wall as a single mechanism and therefore do not suite this
purpose [3]. The dual mechanism model can be viewed as a
structurally motivated phenomenological model since we ob-
tain information about the mechanical behavior of the collagen
and elastin, but it isn’t a “strictly sayng” structural model, be-
cause it does not include the material properties of independent
components.
In this work, we start from this mechanical model (proposed
by Wulandana [4]), by extending his work with 3D numerical
simulations and by comparing his results with other models.
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Elastin

L = Lo Lo < L < La

L = La

La < = L < Lb

L = Lb

B D

strain

stress

F

A

C

E

L > Lb

Figure 1: Proposed mechanisms of an idealized arterial wall
tissue under uniaxial loading (draw by [4]).

Mechanical model

The role of elastin and collagen is at the basis of the theoreti-
cal model, since the nonlinearity and inelasticity of the arterial
tissue can be represented with the dual mechanisms. The first
one describes the role of elastin and collagen which work at
the same time and the second one starts after the breackage of
elastin and only involves the collagen.
To better understand how the model works, the contribution of
these components may be illustrated by considering an ideal-
ized uniaxial model of an arterial wall strip with undeformed
lengthL0. The oversimplified diagram of this idealization is
depicted in Figure1, where the strain is the ratio between de-
formed lenghtL andL0. At the beginning, the strip is unloaded
(positionA), the collagen fibers are the black ones and the
elastin is the grey background. When the loading starts, the
collagen fibers will be stretched out until they are as long as
the arterial strip. During this range strain (gapB), the mechan-
ical response of the arterial wall is due only to elastin. When
the strain gets to the first critical levelL = La, the collagen
work starts (positionC). Then theD gap represent the func-
tional range in which the mechanical response of the tissue is
brought by both collagen and elastin. This represent the work-
ing of the first mechanism. In correspondance to the second
critical level of strainL = Lb (stage E) the damage of the
elastin fibers occurs (white background). In this model it is hy-
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pothesized that the birth of the aneurysm happens at this stage.
Upon further loading, only collagen fibers resist stretch. The
strain range where only the collagen works represents the sec-
ond mechanism. The main feature of this model is to have two
reference configurations, one for the first mechanism and the
other for the second.
By unloading the arterial strip from the stageE, the tissue goes
back to the initial configuration (stageA). In this strain range
the arterial wall has an elastic behavior, and its components are
both able to carry the stress. After the elastin breackage only
the collagen fibers work: in this case by unloading the strip it
goes back to another reference configuration.

Kinematics for the dual mechanism model

Some kinematics definitions are necessary to understand how
the dual mechanism works. The physical segment of artery is
represented by bodyB. The initial configuration isk1 andX1

is the vector position in the reference configuration. The de-
formated configuration isk andx is the corrisponding vector
position, like in the Figure2. Using this notation, the motion of
an arbitrary particle can be described with the relationship:

x = χk1(X1, t), (1)

and the deformation gradient at timet is given by:

F 1(t) = F k1(X1, t) =
∂χk1(X1, t)

∂X1
. (2)

After the bodyB is put through the critical strain level, which
causes the damage of the elastin fibers, it has to consider config-
urationk2 as new reference configuration. The relation between
the position vectorX2 in the new reference configuration and
the vector positionx in the deformed configuration is:

x = χk2(X2, t), (3)

while the relation between the two reference configurations is:

X2 = χk1(X1, t̃), (4)

wheret̃ is the time which the second mechanism stars.
The deformation gradient for the second mechanism is:

F 2(t) = F k2(X2, t) =
∂χk2(X2, t)

∂X2
. (5)

The collagen and elastin are both considered iperelastic mate-
rials. As a consequence the constitutive law can be written by
using a strain energy function. For this dual mechanism model
the strain energy functionW depends on the deformation gra-
dientsF 1 eF 2. In the functional range of the first mechanism:

W (t) = W (F 1(t),F 2(t)), (6)

and when elastin no longer contributes to load bearing, the
strain energy function depends only onF 2:

W (t) = W (F 2(t)) (7)

To define the constitutive law, it is practical to use the left

k

k1

k2

X1

X2

x

dX1

dX2

dx

dX2 = F1(X1,t)dX1

dx = F1(X1,t)dX1

dx = F2(X2,t)dX2

Figure 2: Schematic of relevant reference configuration for the
dual mechanism constitutive model, (draw by [3]).

Cauchy-Green stretch tensorB1 andB2:

B1 = F 1 · F T1 , B2 = F 2 · F T2 . (8)

By usingB1,B2 and their principal invariantsI1, II1, I2 and
II2 the corresponding Cauchy stress tensorT is:

T = −pI+2
∂W

∂I1
B1−2

∂W

∂II1
B−1

1 +2
∂W

∂I2
B2−2

∂W

∂II2
B−1

2 ,

(9)
which depends on the dual mechanisms. Further details are
shown in [3].

Numerical solutions

The 3D numerical simulation according to this model will be
carried out by means of LifeV. This is a finite element (FE)
library providing implementations of state of the art mathemat-
ical and numerical methods. LifeV is the joint collaboration be-
tween three institutions: Ecole Polytechnique Féd́erale de Lau-
sanne (CMCS) in Switzerland, Politecnico di Milano (MOX) in
Italy and INRIA (BANG) in France.
Simplified geometries as well as real geometrical models ob-
tained by CT scans will be used and some comparison with
more simple models, like the Kirchhoff Saint-Venant one, will
be performed.
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Summary: Biological soft tissues in arterial walls are characterized by a nearly incompressible, anisotropic, hyperelastic material
behavior in the physiological range of deformations. For the representation of such materials we apply a polyconvex strain energy
function in order to ensure the existence of minimizers and in order to satisfy a priori the Legendre-Hadamard condition. The 3D
discretization results in a large system of equations, thus, a parallel algorithm is applied to solve the equilibrium problem. We
are using a dual-primal FETI (Dual-Primal Finite Element Tearing and Interconnecting) method to solve elasticity problems for
three dimensional models of arterial walls and present numerical results.

Introduction

The understanding of the anatomy and composition of arterial
walls is an essential topic for the modeling of their mechanical
behavior. Because of the interest in large deformations we focus
on the modeling of elastic arteries. An example of a healthy
elastic artery is shown in Fig.1. The classification into three
layers is a common abstraction of an arterial wall. These layers
are named intima (tunica intima), media (tunica media), and
adventitia (tunica externa).

Figure 1: Composition of a healthy artery [6].

The FE-simulation of an arterial wall, especially of a diseased
one, represents a challenging task with view to the large number
of degrees of freedom. Robust, parallel solvers are essential for
the solution of the resulting large linear systems of equations.
FETI-DP domain decomposition methods have been shown to
be numerically and parallely scalable and robust for a huge
class of problems in structural mechanics, see also [4, 7, 8, 9].

Modeling of arterial tissues

We consider hyperelastic materials, which postulate the exis-
tence of a so-called strain energy functionψ, assumed to be
defined per unit reference volume. Due to the fact that arterial
tissues consist of an isotropic matrix and two embedded fiber

families wounding helically around the longitudinal axis, we
consider the additively decoupled structure of the strain energy

ψ = ψiso +
2∑
a=1

ψti(a) , (1)

cf. [5]. In order to account for the principle of material frame
indifference we focus on reduced representations where the en-
ergy depends on the right Cauchy-Green deformation tensor de-
fined by

C = FTF with F = Grad[ϕ] . (2)

The nonlinear transformationϕ maps points of an undeformed
reference state to points of a deformed actual configuration. In
order to reflect the material symmetries we introduce an addi-
tional argument tensor, the so-called structural tensor

M := a⊗ a with ||M|| = 1 , (3)

whereina denotes the direction vector of the fiber orienta-
tion. Herewith, we obtain a strain energy function of the type
ψ = ψ̂(C,M). For the construction of specific functions in a
coordinate invariant setting we need the principle invariants

I1 := tr[C], I2 := tr[cofC], I3 := det[C] , (4)

and the mixed invariants

J4 := tr[CM], J5 := tr[C2M] . (5)

With view to the existence of minimizers the polyconvexity
condition of Ball [1] represents an important concept. A variety
of polyconvex transversely isotropic energy functions for the
mechanical description of biological soft tissues occurring in
arterial walls is derived in [3, 2]. Here, we consider the isotropic
strain energy

ψiso = c1

(
I1

I
1/3
3

− 3

)
+ ε1

(
Iε23 +

1
Iε23

− 2
)
, (6)

with c1 > 0, ε1 > 0, ε2 > 1, and the transversely isotropic
energy

ψti(a) =

{
α1

(
K

(a)
3 − 2

)α2

forK(a)
3 ≥ 2

0 forK(a)
3 < 2

, (7)
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with α1 > 0 andα2 > 2 in order to ensure polyconvexity and
smooth tangent moduli.K(a)

3 = I1J
(a)
4 −J

(a)
5 is a fundamental

polyconvex function for transverse isotropy introduced in [10].

FETI domain decomposition

Linearization and discretization of our mechanical problem re-
sults in large linear equation systems that need to be solved ef-
ficiently on parallel computers. For this, we apply the paradigm
of domain decomposition. Domain decomposition methods are
iterative algorithms that create concurrency by a geometrical
partitioning of the problem and achieve numerical (quasi-) op-
timality by introduction of a small global coarse problem. In
FETI-DP domain decomposition methods [7, 8, 9, 4] the com-
putational domainΩ is partitioned intoN nonoverlapping sub-
domainsΩi, i = 1, . . . , N , i.e.

Ω =
N⋃
i=1

Ωi , Ωi ∩ Ωj = ∅ if i 6= j . (8)

Each subdomain is the union of shape-regular finite elements
with matching finite element nodes across the interface,

Γ :=
⋃
i 6=j

∂Ωi ∩ ∂Ωj , (9)

where ∂Ωi, ∂Ωj are the boundaries ofΩi,Ωj , respectively.
These nonoverlapping subdomains are also often referred to as
substructures. We then have certain conditions on the interface
Γ that will be forced to hold throughout the iteration. We in-
troduce Lagrange multipiers to enforce continuity of the global
solution at convergence. This results in a mixed system of the
form [

K̃ BT

B 0

] [
u
λ

]
=
[

f̃
0

]
. (10)

Elimination ofu then results in a system

Fλ = d (11)

which is solved using a suitable Krylov subspace method and
the FETI-DP Dirichlet preconditioner.

Parallel simulation of arteries

For the analysis of an arterial wall simulation we consider a
slightly diseased artery with a moderate atherosclerotic plaque.
We use the material parameters for the media and adventitia
found in [2] and take into account an extracellular lipid pool,
calcification and degenerated intima as the plaque. We use our
parallel FETI-DP implementation [8, 9] to solve the linearized
equation systems. The domain decomposition is performed as
shown in Fig.2 (left), where different colors indicate the partic-
ular domains. We apply an internal pressure of approximately
95 mmHg, which can be interpreted as an average blood pres-
sure. As an example a deformed configuration of an artery is
shown in Fig.2 (right), where the distribution of von Mises
stresses is depicted.

Figure 2: Decomposition of an arterial segment in the FETI-
DP algorithm (left) and distribution of von Mises stresses in an
inflated artery (right).
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Universiẗat Duisburg-Essen, Verlag Glückauf, Essen.

[3] D. Balzani, P. Neff, J. Schröder, G. A. Holzapfel (2006): A
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Summary: This study presents a three-dimensional finite element model of the mitral apparatus using a transversely isotropic
hyperelastic material model for the leaflets. The mitral valve is an important valve of the heart between the left atrium and the
left ventricle. During systole, the valve prevents blood from flowing back into the left atrium. The purpose of this study is to
illustrate the influence of the loss of stiffness in the chordae on the mitral valve response.

Introduction

This study presents a three-dimensional finite element model of
the porcine mitral valve. This model uses a saddle shaped an-
nulus and a hyperelastic transversely isotropic material model
for the leaflets. We simulate a part of the cardiac cycle starting
from the beginning of systole and ending at the peak pressure
in the left ventricle. Several finite element analyses were per-
formed in order to investigate the influence of the reduction
in chordae stiffness on the mitral valve response. This loss of
stiffness in the chordae corresponds to the Marfan syndrome.
In the Marfan syndrome the connective tissue is defective and
does not act as it should. Because connective tissue is present
in many parts of the body, it can affect many body parts such as
heart valves and blood vessels.

Methods

Geometry and boundary conditions

The mitral geometry is based on anatomical measurements
made on a pig post mortem. The annulus of the valve was as-
sumed saddle shaped. We assumed the free edge of the poste-
rior leaflet to be divided in three scallops, a large middle one
and two smaller ones representing the commissural parts of the
valve. The dimensions of the mitral apparatus are reported in
Figure1. The leaflets were allowed to rotate at the annular at-

Figure 1: Initial geometry of the valve.

tachment. The translations were constrained at the attachment
between the chordae and the papillary muscles. We assumed

fixed boundary conditions for the papillary muscles. In order to
prevent the leaflets from interpenetrating each other upon clo-
sure, a contact condition was set between the two surfaces. The
measured blood pressure in the left ventricle of the pig during
the isovolumetric contraction phase up to the maximum pres-
sure in the left ventricle in the ejection phase was applied as
load history.

Material models

The leaflets were modelled with an incompressible hyperelastic
transversely isotropic material model. The strain energy func-
tion employed to derive the constitutive model is the one pro-
posed in [1],

Ψ(I1, I4) = c0[expc1(I1−3)2+c2(I4−1)2 − 1] + p(J − 1), (1)

whereci, i = 0, 1, 2, are material parameters,
√
I4 represents

the stretch of the collagen fibers, the scalarp serves as an inde-
terminate Lagrange multiplier andJ = detF is the Jacobian of
the deformation. The material parametersci, i = 0, 1, 2 were
fitted to biaxialin vitro tests on porcine mitral valve tissue car-
ried out by May-Newman and Yin [2], using a nonlinear least
square technique.
The expression of the spatial elasticity tensorC is given as,

C = 4ψ11B⊗B

+4ψ14(B⊗ a⊗ a + a⊗ a⊗B)
+4ψ44a⊗ a⊗ a⊗ a

+2 1⊗
(
F
∂p

∂C
FT
)
− 2pI, (2)

where ψij =
∂2Ψ
∂Ii∂Ij

(i, j = 1, 4),

whereΨij may be derived from1.
The material model was implemented intoABAQUS/standard
by using the user-defined subroutineUMAT. The derivation, im-
plementation and validation of this material model are fully de-
scribed in [3].
The chordae were modeled with an incompressible isotropic
hyperelastic material. The material model was derived from the
following strain-energy functionU , i.e.

U(I1) = a1(I1 − 3) + a2[expa3(I1−3) − 1], (3)
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Figure 2: Stress-stretch behaviour in uniaxial tension of the
strut chordae with the four sets of material parameters.

wherea1, a2 anda3 are the material parameters determined
from the experimental data published by Kunzelman and
Cochran [4] and Ritchie et al. [5]. These values are consid-
ered to correspond to the healthy case. In the present study, four
analyses were conducted with decreasing values for the mate-
rial parametersai, i = 1, 2, 3. The values determined from the
experiments were multiplied by 0.9, 0.75 and 0.5. The uniaxial
behaviour of the strut chordae with respect to the different sets
of material parameters are shown in Figure2.

Results

The apical displacement of one node located in the middle of
the anterior leaflet is plotted in figure3 for the different sets of
material parameters used for the chordae. Until the ventricular
blood pressure reaches 50 mmHg, the displacement of the node
is identical in all cases. The apical displacement of the node is
the largest when the stiffness of chordae is the lowest. When the
material parameters are divided by two, the apical displacement
is 1.17 times higher than in the healthy case.

Conclusion

This study shows the importance of the chordae properties to
maintain the mitral valve in the right position. These simu-
lations were conducted with realistic material models in the
healthy case for both the leaflets and the chordae. However, this
study is numerical and qualitative, no tests data on diseased tis-
sue have been used.
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Summary: Many fibred soft tissues exhibit elastic and viscous material behavior. Furthermore, non-physiological loads drive soft
tissue to damage that may induce a strong reduction of the stiffness. The aim of this paper is to present a three dimensional finite-
strain damage model for visco-hyperelastic fibrous soft tissue. Continuum damage mechanics is used to describe the softening
behavior under large deformation. We present a 3D simulation of the behavior of the human medial collateral ligament. Results
show that the model is able to capture the typical stress-strain behavior observed in fibrous soft tissues.

Introduction

Biological soft tissues are subjected to large deformations with
negligible volume changes and show an anisotropic mechanical
response due to their internal structure. Usually, the description
of the constitutive behaviour of this type of materials relies on
the identification of an appropriate strain energy density func-
tion from which stress-strain relations are derived. Their use is
limited, in most cases, to a given range of physiological loads.
In order to obtain a more realistic and complete material model,
damage may be coupled with viscoelasticity to account for both
inelastic features. Some computational models of viscoelastic
materials with damage have previously been developed in the
literature. All these models are isotropic and were mainly ap-
plied to model rubber-like materials.

Phenomenological viscoelastic damage model

The free energy density can be written as the augmented free
energy:

Ψ(C,M,N, Dk,Qij) = Ψ0
vol(J) +

∑
k=m,f1,f2

(1−Dk)Ψ̄k
0

− 1
2

n∑
i=1

∑
k=m,f1,f2

(C̄ : Qik) + Ξ(
n∑
i=1

∑
k=m,f1,f2

Qik) (1)

whereQik may be interpreted as non-equilibrium stresses, in
the sense of non-equilibrium thermodynamics, and remain un-
altered under superposed spatial rigid body motions [3]. Qim

are the isotropic contribution due to the matrix material as-
sociated toI1 and I2 invariants andQif1 , . . . ,Qif2 are the
anisotropic contribution due to the two families of fibres as-
sociated toI4, . . . , I9 invariants [1]. Finally (1 − Dk) are
known as the reduction factors [3], where the internal variables
Dk ∈ [0, 1] are normalized scalars referred to as the damage
variables for the matrixDm and the two families of fibresDf1

andDf2 respectively [2].

Standard arguments based on the Clausius-Duhem inequality

Dint = −Ψ̇+ 1
2S : Ċ ≥ 0, lead to the following representation

S =2
∂Ψ(C,M,N, Dk,Qij)

∂C
=

=Svol +
∑

k=m,f1,f2

{
(1−Dk)S̄0

k − J−
2
3

n∑
i=1

DEVQik

}
(2)

The nonequilibrium second Piola Kirchhof stresses in (2), Qik,
are assumed to be governed by a set of linear rate equations [1]

Q̇ik +
1
τik

Qik =
γik
τik

(1−Dk)DEV [2
∂Ψ̄0

k(C̄,M,N)
∂C̄

]

lim
t→−∞

Qik = 0 (3)

whereγik ∈ [0, 1] are free energy factors associated with relax-
ation timesτik > 0.

We define a damage criterion in the strain space by the con-
dition that, at any timet of the loading process, the following
expression is fulfilled [3]

φk(C(t),Ξkt
) =
√

2Ψ̄0
k(C̄(t))− Ξkt

= Ξk − Ξkt
≤ 0 (4)

whereC̄(s) is the modified right Cauchy-Green tensor at time
s andΞkt

are defined as follow

Ξkt = max
s∈(−∞,t)

√
2Ψ̄0

k(C̄(s)) (5)

The equationφk(C(t),Ξkt
) = 0 defines a damage surface in

the strain space [2]. The damage functions proposed correspond
to the expressions

Dk =


0 if Ξkt < Ξ0

mink

ξ2[1− βk(ξ2 − 1)] if Ξ0
mink

≤ Ξkt ≤ Ξ0
maxk

1 if Ξkt
> Ξ0

maxk

(6)

with ξ =
Ξkt−Ξ0

mink

Ξ0
maxk

−Ξ0
mink

a dimensionless variable,Ξ0
mink

are

the variables (4) associated to the strain energies at initial dam-
age for matrix and fibres respectively,Ξ0

maxk
the variables (4)

associated to the strain energy at total damage for matrix and
fibres, andβk exponential parameters, see [2].
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Numerical example

The model presented has been linearized and implemented into
the finite element program ABAQUS. We reproduce in a human
medial collateral ligament (MCL) the experiment developed by
Woo et al. [4] in a rabbit MCL. That study was performed to de-
termine the viscoelastic behavior of ligaments at different load-
ing rates, such as those associated with sports-related trauma.
The particular form of the deviatoric functions̄Ψm

0 andΨ̄f
0 are

defined in (7) [5] and the volumetric part of the strain energy
function is always stated asΨvol = 1

D lnJ2 [6]. The damage
functions for the matrix and fibres were those established in (6).

Ψ̄0
m = C1(Ī1 − 3)

Ψ̄0
f1 =

C3

C4
(expC4(Ī4−1)−C4(I4 − 1)− 1) (7)

The human model of the MCL was constructed to test quasi-
static, physiological and impact conditions at displacement
rates of 0.01 mm/s and 113 mm/s corresponding to strain rates
of approximately 0.0025%/s and 28%/s, respectively.The elas-
tic, viscoelastic and damage parameters for the human MCL
were fitted and are shown in Table1.

Table 1: Material, viscoelastic and damage parameters for the
human MCL (MPa)

C1 C2 C3 C4 D

0.1539 0.0 0.1507 34.7929 3.986e-4
γm τm γf1 τf1

0.4352 0.15 0.1500 2
ψmmin ψmmax βm ψfmin ψfmax βf

0.0750 0.0932 0.120 0.3389 1.6652 0.1538

Damage distributions in matrix and fibres at 0.01 mm/s and 113
mm/s of displacement rates are presented in Figures1 and2.
We consider failure of the MCL when damage reached a value
of 0.6. At 113 mm/s of displacement rate, damage in matrix
and fibres was much lower than that at 0.01 mm/s. This ef-
fect is especially evident in the fibres where damage decreased
from 0.36 during the quasi-static test (0.01 mm/s) to 0.24 (113
mm/s) in the impact test. The peak values appeared in the liga-
ment substance also has been reported in previous experimental
studies [4]. Damage during distraction usually appears in that
region.

Matrix damage Fibre damage

Figure 1: Damage in a human MCL at 0.01 mm/s

Matrix damage Fibre damage

Figure 2: Damage in a human MCL at 113 mm/s

Conclusions

A good qualitative agreement was found between numerical
and some experimental results in the literature, indicating that
the constitutive viscoelastic damage model can capture the typ-
ical stress-strain behavior observed in fibrous soft tissue. Some
possible applications may be mentioned such as sports (skiing,
basketball, soccer) and traffic accidents that are the most im-
portant causes of ligament injury. In fact, the strain-rate dur-
ing injury is very important regarding the magnitude of the le-
sion. Vascular surgery simulations (balloon angioplasty, arte-
rial clamping or stenting), corneal laser interventions or plastic
surgery are other interesting applications to be considered in
the near future.

References

[1] E. Pea, B. Calvo, M. A. Martnez, and M. Doblar (2007): An
anisotropic visco-hyperelastic model for ligaments at finite
strains: Formulation and computational aspects.Int J Solids
Struct, 44, 760–778.

[2] B. Calvo, E. Pea, M.A. Martnez, and M. Doblar (2007): An
uncoupled directional damage model for fibered biological soft
tissues. Formulation and computational aspects.Int J Numer
Meth Engng, 69, 2036–2057.

[3] J.C. Simo (1987): On a fully three-dimensional finite-strain
viscoelastic damage model: Formulation and computational
aspects.Comput Methods Appl Mech Engrg, 60, 153–173.

[4] S. L-Y Woo, R.H. Peterson, K.J. Ohland, T.J. Sites, and M.I.
Danto (1990): The effects of strain rate on the properties of the
medial collateral ligament in skeletally inmatura and mature
rabbits: A biomechanical and histological study.J Orthopaed
Res, 8, 712–721.

[5] A.N. Natali, P.G. Pavan, E.L. Carniel, M.E. Luisiano, and
G. Taglialavoro (2005): Anisotropic elasto-damage constitu-
tive model for the biomechanical analysis of tendons.Med Eng
Phys, 27, 209–214.

[6] G. A. Holzapfel (2000):Nonlinear Solid Mechanics. Wiley,
New York.

Prague, Czech Republic, 25-27 June 2007 109



MHM 2007: Modelling of Heterogeneous Materials with Applications in Construction and Biomedical Engineering

On a Mesomechanical Modelling of Skeletal Muscles

M. Böl∗, S. Reese

Institute of Solid Mechanics
Braunschweig University of Technology, D-38106 Braunschweig, Germany

m.boel@tu-bs.de, s.reese@tu-bs.de

Summary: The structure of a skeletal muscle is dominated by its hierarchical architecture in which thousands of muscle fibres
are arranged within a connective tissue network. The single muscle fibres consist of many force-producing cells, known as
sarcomeres. These microbiological engines are part of a motor unit and contribute to the contraction of the whole muscle. From
the mechanical point of view the material behaviour of muscles is highly non-linear. They undergo large deformations in space,
thereby changing their shape significantly, so that geometrical nonlinearity has to be considered. The present approach is based
on the use of the finite element method. The material behaviour of the muscle is split into a so-called active and a passive part.
To describe the passive part special unit cells consisting of one tetrahedral element and six truss elements have been derived.
Embedded into these unit cells are further truss elements which represent bundles of muscle fibres. In summary, the present
concept has the advantage that a three-dimensional model is developed which allows us take into account many physiological
processes at the micro level.

Introduction

Skeletal muscles can be considered to be a complex organi-
sation of thousands of force-producing muscle fibres arranged
within a connective tissue. The muscular system holds about
40% of the total body weight. Muscles are responsible for the
movement of the human body, they provide strength, serve as
shock absorber and protect the skeleton system against external
loads.

One of the first mathematical models was developed by Hill
[1, 2]. This phenomenological model is derived from force-
velocity measurements on an entire muscle. As an early rep-
resentative of the group of microstructural approaches the con-
cept of Huxley [3] is crucially based on investigations of the
behaviour of the cross bridges which are assumed to have
only two possible states: coupled or uncoupled. Both, the phe-
nomenological as well as the micro mechanically-based mod-
els are applied to describe the contraction of the whole muscle.
These types of models are used in movement analysis and mus-
cle performance studies as known from multibody dynamics
systems.

To incorporate further, more complex geometrical aspects of
skeletal muscles, planimetric and three-dimensional models
were designed, see e.g. [4, 5]. Most of these continuum-based
models use a macroscopic description of the passive muscle be-
haviour (soft tissue) combined with a one-dimensional, possi-
bly micromechanically-motivated, modelling of the active mus-
cle fibres.

The present contribution differs from earlier approaches inso-
far as it is formulated at the mesomechanical level, as previ-
ously introduced in the framework of rubber-like polymers, cf.
[6]. In this way the actual geometry of the muscle, i.e. the di-
rectional distribution of the muscle fibres, can be easily taken
into account. The mechanical behaviour of muscles is, as ear-
lier mentioned by Van Leeuwen [7], split into a passive and an
active part. The here proposed concept is based on the idea of
representing the passive part by means of an assembly of non-
linear truss elements. In each truss element the force-stretch
behaviour of a certain group of collagen fibres is implemented.

The truss elements are arranged in such a way that one of them
lies on each edge of one finite tetrahedral element. In this way
a so-called tetrahedral unit cell is formed. The tetrahedral ele-
ment of the unit cell serves to model the (near-)incompressible
behaviour of skeletal muscles. By using a random assembling
procedure we are able to model arbitrary geometries. An en-
semble of these unit cells lets us simulate the behaviour of
the soft tissue alone. To incorporate muscle activation, bundles
of muscle fibres in form of non-linear truss elements are em-
bedded in the before mentioned assembly of unit cells. These
trusses contain a mathematical description of the activation at
the fibre level. In this way we are able to simulate complex
muscle structures with arbitrary muscle fibre distributions.

Material modelling of skeletal muscles

According to the aforementioned split of the material behaviour
into active and passive parts also the Helmholtz free energy

W = Wactive +Wpassive (1)

is additively decomposed into active (Wactive) and passive
(Wpassive) contributions.

The active muscle behaviour

One fundamental property of a skeletal muscle fibre is its abil-
ity to contract without any mechanical influence from outside.
In the present contribution this behaviour is implemented into
three-dimensional truss elements. The force in one truss ele-
ment is given by

Factive = ffibre P̄t ft (t) fλ (λfibre) fv (λ̇fibre) (2)

whereP̄t denotes the largest applied force inside the fibre. This
force is correlated with the activation functionft (t).

Due to the high number of fibres inside a muscle it is impos-
sible to discretiseeachmuscle fibre byone truss element. To
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compensate this, in Equation (2) the ratio

ffibre =
Nfibre

Ntruss f
(3)

has been introduced. This parameter denotes the relation be-
tween the number ofNfibre in a reference cross section divided
by the number of truss elementsNtruss f in the same reference
cross section.

Furthermorefλ (λfibre) is a function of the fibre stretchλfibre

andfv (λ̇fibre) denotes a function depending on the stretch rate
λ̇fibre of the muscle fibre. For more details of these functions
see [8].

The passive muscle behaviour

One characteristic of soft tissues is their incompressible ma-
terial behaviour. It is common to simulate this behaviour by
means of rubber-like material laws. In the present work we use
an approach by B̈ol & Reese [6] to simulate the passive muscle
behaviour (Wpassive). As aforementioned this approach bases
on a so-called unit cell represented by an ensemble consisting
of one tetrahedral element and six truss elements. Here again
the passive part of the Helmholtz free energy is split into two
contributions, the first one which is represented by the truss ele-
ment includes the behaviour of bundles of collagen fibres. The
second part takes care for the (near-)incompressibility of the
material.

Numerical simulations

Beside the study of muscle behaviour one main object of this
work is to apply the material model to realistic muscle geome-
tries to be responsive to patients-specific questions. Therefore
simulations of realistic muscle geometries are shown. Here the

Figure 1: Geometry and simulation results (only tetrahedral el-
ements are shown) of the sartorius muscle: (a) Muscle geome-
try (red = muscle tissue, grey = tendon), (b) axial, (c) coronal
and (d) sagittal view (light-grey = undeformed muscle, red =
deformed muscle).

longest muscle of the human body, the sartorius muscle, is stud-
ied which arises by tendinous fibres from the anterior supe-
rior iliac spine, running obliquely across the upper and ante-
rior part of the thigh in an inferomedial direction, see Fig.1.

It descends as far as the medial side of the knee, passing be-
hind the medial condyle of the femur to end in a tendon. This
tendon curves anteriorly to join the tendons of the gracilis and
semitendinous muscles which together form the pes anserinus,
finally inserting into the proximal part of the tibia on the me-
dial surface of its body. The action of sartorius is to cross the
legs, by flexion of the knee, and flexion and lateral rotation the
hip. Fig.1 (a) shows the whole sartorius muscle including the
tendon (coloured grey).

The sartorius muscle belongs to the group of fusiform mus-
cles. That means that the global load direction of the muscle
and the muscle fibres are aligned in parallel. Due to the spiral
geometry of the muscle also the deformation behaviour is char-
acterised by a torsion-like deformation in combination with a
contraction, cf. Fig.1 (b)-(d). This is conform to the physiolog-
ical ”function” of the muscle, because it bends the joints of the
hip and the knee in combination with a movement of the thigh
to the middle while the lower thigh is rotated to the inner site
of the thigh.
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Summary: We estimate the deformation energy of living tissue sample to obtain an approximate formula for its Young’s modulus.
It includes a nontrivial term that cannot be obtained by a simple homogenization of elastic properties. We show its importance in
explaining the effective stiffness control during the smooth muscle stimulation and present some experimental data.

Introduction

Living tissues are an excellent example of highly heteroge-
neous materials. Their realistic modeling by continuum is an
ambitious task of biomechanics. The crucial step of such a
modeling is the way in which the heterogenous structure is
“homogenized”. In this contribution, we target the mechani-
cal behavior of smooth muscle tissues. From mechanical point
of view, they appear as perfectly organized “machines” being
able to change very effectively their mechanical parameters in
a wide range. In our study, we try to show that this ability is
given by aspecial arrangementof tissues structure. Namely,
the sophisticated combination of fibers, fluids and membranes
leads to an additional term when averaging elasticity of the
whole structure. This term describes a nontrivialstructural ef-
fectresulting from impermeability of cell membranes and high
anisotropy of the cellular arrangement. It cannot be found by
a naive homogenization that gives simply an averaged stiffness
of individual components. The magnitude of this term plays
important role in tissue elasticity and is very sensitive on small
changes in proportions of cellular lengths in individual direc-
tions. It explains an extreme ability of smooth muscle tissues to
change its stiffness very effectively.

Deformation of the tissue

Let us split mentally the tissue sample intoN volume elements
of nearly identically structured parts –representative volume el-
ements(RVE). Each RVE includes one cell and a corresponding
part of intercellular space surrounding the cell. At any state, the
energy ofj-th RVE,E(j), is defined so that the energy of the
whole sample equals

∑N
j=1E

(j). The energyE(j) depends on
many physical parameters of the cell and of its near surrounding
(local stress-strain characterization at the place where the cell is
located, the actual structure of fibers, their physical parameters,
electro-chemical parameters, the structure of cell membrane,
chemical compositions of various liquids, temperature, etc.).
We can combine and arrange these parameters in such a way
thatE(j)(c1, c2, c3, δ1, δ2, δ3, . . .) whereci andδi (i = 1, 2, 3,)
characterize dimensions of the cell and mean distances between
cells (Fig. 1), respectively; whereas∆xi ≡ ci + δi corre-
sponds to the actual size of RVE in thei-th spatial direction.
The smooth muscle cells are usually very closely side-by-side,
i.e. δi � ci.
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Figure 1: The choice of RVE and a schematic explanation of
the defined length parameters.

Let us choose an arbitrary RVE, say thej-th, and consider a
sample of tissue being in natural state, i.e. without an external
load. Stability of the natural state implies thatE(j) has the local
minimum at this state. We suppose cylindrical geometry, i.e.
c1 = c2 ≡ c0, c3 ≡ d0, δ1 = δ2 ≡ δ0, δ3 ≡ ∆0. Now, let
us study asmall deformationof the sample that preserves the
cylindrical geometry, i.e. the deformations in whichc1 = c2 =
c, c3 = d, δ1 = δ2 = δ, δ3 = ∆. Choosing the coordinate
axisx1, x2, x3 so that the lengthsd and∆ are defined along the
coordinatex3, we can define the local stretches at the “point”
where the RVE is located, namely

βi =
∆xi
∆x0

i

= 1 + εi, (1)

where∆x0
1 = ∆x0

2 = c0 +δ0, ∆x0
3 = d0 +∆0. Let us suppose

that the increase of the energy of the RVE,δE(j), is approxi-
mately the same for each RVE. Supposing thatε ≡ ε3 charac-
terizes the deformation of a macroscopic sample, we obtain the
Young’s modulus of the tissue as

Y ≈ δE(j)(ε)
ε2VRV E

. (2)

Energy of deformation

During the small deformation, the free energy of the RVE in-
creases since we leave the local minimum. The energetic “land-
scape” around the local minimum may be described by a non-
negative functionfE reaching the zero value at the local mini-
mum, namely

fE = fRV E + fcell + fqv, (3)

where the functionsfRV E andfcell represent the energy con-
nected with change of volumes of the RVE (VRV E) and of the
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cell (Vcell), respectively. They have local minimum at0, where
fRV E(0) = fmem(0) = 0. The termfqv corresponds to a
change of values of all other physical quantities, like the length
of various fibers, the shape of the cell membrane, and so on.
We expandfqv into the Taylor series around the point of local
minimum and neglect terms of the third and higher orders and
all mixed derivatives, namely

fqv ≈ 2Kc(c−c0)2 +Kd(d−d0)2 +2Kδ(δ−δ0)2 + . . . . (4)

When performing the small deformation defined by the value
of ε, we reach another point on the energy “landscape”. We
suppose that this state (defined by the constraintd + ∆ =
(d0 + ∆0)(1 + ε) ≡ C(ε)) will be stable too. It means that all
free parameters of the problem relax into such values that min-
imizes the value of the free energyfE . The relaxation is thus
an additional “movement” on the energy “landscape” defining
the free energy corresponding to the small deformation as

δE(j)(ε) = min
d+∆=C(ε)

fE . (5)

The study of the minimum (5) is the crucial point of our work.
We notice first that the energy corresponding to the change of
volumes is considerable larger than the energy connected with
the change of other parameters. It means that the minimum (5)
can be reached only ifVRV E andVcell remain constant, i.e.
β1β2β3 = 1 andc2d = c20d0.

By using perturbation techniques (defined in [1]) we obtain

δE(j)(ε) = Espring(ε) + Emembrane(ε), (6)

where the first term,

Espring(ε) ≈
(

1
2

KcKδ

Kc +Kδ
c20 +

KdK∆

Kd +K∆
d2
0

)
ε2, (7)

corresponds to elasticity of a regular heterogeneous system
consisting of parts with different stiffness. If there were no im-
permeable membranes in the structure, the deformation energy
would equal to this term only. The presence of second term,

Emembrane(ε) ≈
(
2A−1

c c−2
0 +A−1

d d−2
0

)−1
G2ε2, (8)

(Ac = Kc+Kδ,Ad = Kd+K∆) is nontrivial and corresponds
to astructural effectcaused by the presence of the impermeable
cell membrane. The parameterG,

G =
(

1 +
δ0
c0

)(
1 +

Kc

Kδ

)−1

−
(

1 +
∆0

d0

)(
1 +

Kd

K∆

)−1

,

(9)
vanishes if the structure isisotropic.

Young’s modulus and experimental data

The Young’s modulus can be determined by putting (6) into (2).
The stiffness of extracellular junction is much bigger than the
stiffness of the internal cell structures (cytoskeleton and mem-
brane) [2, 3]. That is,Kc � Kδ andK∆ � Kd. It implies
that the Young’s modulus corresponding to the energyEspring
equals approximately to the Young’s modulus of the cell alone,

Ycell. Moreover, the termG may be approximated too and we
obtain the approximate formula,

Y ≈ Ycell +
1
2
c0
δ0

(
VRV E − Vcell

Vcell
− 3

δ0
c0

)2

Yconnect, (10)

whereYconnect is the Young’s modulus of extracellular junc-
tion andη ≡ (VRV E − Vcell)/Vcell is a mean proportion of the
extracellular and cellular volume. The formula shows an emi-
nent importance of the second term in the muscle cell activation
when the shape of the cell changes by increasing the diameter
c0. It means the increasing size of the second term becauseη
(> 3δ0/c0) remains constant.

The parametersYcell, Yconnect may be estimated from litera-
ture: Ycell ∼ 0, 25 kPa,Yconnect ∼ 12, 7 kPa [2, 3] (though
their variability for different tissues may be expected). The ra-
tion η, as well as the parametersc0 andd0 may be measured by
microscopic methods. It differs considerable for various tissue
(see Fig.2 with our results). We have measured the Young’s
modulus of the smooth muscle tissue of gastropods, and obtain
Y ≈ 28 ± 5 kPa. The formula (10) leads to an approximate
value of20 kPa.

Figure 2: Estimating the volume fraction of smooth muscle by
counting intersections of the isotropic point grid with profiles
of smooth muscle cells in histological section through integu-
ment of a gastropod Arion sp.,η ≈ 0.45 (A), and intestine of a
frog Xenopus sp. Trichrome stain,η ≈ 0.68 (B), scale bar 30
micrometers.
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Summary: The paper deals with modelling the cerebral perfusion (CP) using an advanced microstructure based model. The
presented approach is based on a layered representation of the vascular tree hierarchies; in each-one the strongly heterogeneous
medium described by the Biot model is upscaled using the two-scale homogenization of a periodic structure. The model involves
macroscopic pressures associated with different compartments of the perfusion system. Convected diffusion of the contrast
medium is considered; the spatial macroscopic distribution of its concentration is the measure of the perfusion.

Motivation – cerebral perfusion monitoring

Existing studies [5, 4] have shown that analysis of the cerebral
perfusion (CP) is potentially useful in the diagnosis and under-
standing pathologies in brain. One of the frequently used proce-
dures of the CP experimental assessment is based on the CT or
MRI monitoring of the injected contrast medium, so that dif-
ferences between the measured concentration image (in time)
and its modeling based prediction indicate local zones of non-
physiological perfusion. The measured quantity is the residual
concentrationc(t), defined at any location; according to the lit-
erature, nowadays its time response is assumed to obey a simple
convolution rule

c(t) = Feff

∫ t

0

ca(τ)R(t− τ) dτ, (1)

whereca(t) is the arterial concentration input,Feff is the ef-
fective cerebral blood flow (related to the local porosity) and
R(t) is the residual function. The key point of such a mod-
elling is a convenient estimation ofR(t); the existing methods
are based purely on experimental observations supplemented
by data-fitting methods (typicallyill-conditioned), or on some
more advanced approaches which consider few physiological
parameters and a statistic distribution (e.g. the Bayesian esti-
mation).

In this paper we suggest a more complex approach to the resid-
ual concentration modelling which takes into account the hier-
archical structure of the cerebral blood flow. Namely, we at-
tempt to approximate the branching vascular tree at several
levels comprising arteries, arterioles, precapilaries, capilaries,
venulae and veins. Concentrationc(t) is computed using the
model of convected diffusion in heterogeneous porous medium.

Two-scale model of parallel flows

Recently a homogenized model of blood perfusion in deform-
ing tissue was developed which assists in understanding some
diffusion-deformation phenomena inherited by the upscaled

model. In particular, one can see how the microstructural geom-
etry and topology influence the form of the homogenized con-
stitutive laws and how the individual homogenized coefficients
reflect specific modes of interactions at the microscopic level.
The micromodel considered in the homogenization procedure
is based on the Biot model for the incompressible medium (σij
is the Cauchy stress,eij(u) is the small strain of displacement
field u, p is the bulk pressure andw is the perfusion velocity)

− divσε = f , div
d
d t
uε + divwε = 0 , (2)

where

σεij = −pεδij +Dε
ijklekl(u

ε) ,

wεi = −Kε
ij∂jp

ε .
(3)

Above, the dependence on the scale of the heterogeneitiesε, is
indicated by superscriptε.

Strong heterogeneity in the permeability coefficients w. r. t. ref-
erence volume decomposition is considered; in particular, the
ε2-scaling of permeabilityKε

ij accounts for the “microscopic”
fluid flow through theinterface compartmentcorresponding to
the network of capilaries.

The limit homogenized equations obtained for infinitely small
scale of the microstructure involve the stress-equilibrium equa-
tion and other two equations governing the mass redistribution,
describing the parallel diffusion in two high-conducting com-
partments (arterial and venous sectors) separated by the low
conducting matrix. The homogenized coefficients are defined
in terms of the characteristic response of the reference volume
element. It is possible to identify the instantaneous and fading
memory viscoelastic coefficients; other effective parameters,
controlling the fluid redistribution between the compartments,
are involved also in time convolutions. Rigorous treatment of
the homogenization procedure for similar model was published
in [2].

Although the deformation and fluid flow are almost uncoupled
in normal conditions of the cerebral perfusion, potentially this
model enables us to treat non-physiological situations, when
blood pulsation occurs.
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Hierarchically arranged compartments

The existing model is convenient to approximate the lowest hi-
erarchy of the vasculature where the flow between the high-
conductive compartments (the arterial and the venous ones)
is enabled through the interface (matrix) compartment corre-
sponding to the capilaries and venulae; at this level the very
tiny vessels are blurred, being taken as a non-distinguishable
constituent of the surrounding tissue. Therefore, we treat the
convected diffusion of the contrast medium through this inter-
face, although it cannot penetrate into the extravascular space
in real tissue.

To account for higher levels we suggest thelayered hierarchi-
cal structure, where the conductive channels associated with
the arterial tree split into several downstream branches in each
layer (for the venous tree, analogical arrangement is consid-
ered). Letεγn be the characteristic distance of the parallel
channels arranged transversally w. r. t. the layer at then-th hi-
erarchy,n = 1, 2, . . . , n̄ (locally periodic structure assumed at
each layer) andνn be the branching, see Fig.1. Then

γn = γn−1/νn−1 , γ0 = L0 , ν0 = 1 , (4)

whereL0 is the reference length. This is a simple layout of the
branching, in a more realistic structure some branching would
also shunt the flow backwards form hierarchyn to n− 1.

This layout of the hierarchical structure leads to homogeniza-
tion of (2)–(3) with following modifications of the present
model:

• in each layer the “in-plane periodicity” is considered,
whereas the transversal dimension is fixed;

• at each hierarchy (layer) thematrix M separating the
highly conductive channelsCα, α = 1, 2 is permeable,
however the permeabilityκα of the surfaceΓα between
M andCα is introduced, as proposed in [6, 7], such that
the non-physiological “short circuit” effects at the upper
hierarchies (usually forn = 1, . . . , n̄− 1) are disabled by
setting the surface permeability zero;

• in addition to (2)-(3), the convection diffusion problem [3]
is considered to define the spatial distribution of the resid-
ual concentration in time:

d
d t

(φcε) = ∂i
(
dεij∂jc

ε − wεi cε
)
, (5)

wheredεij is the diffusivity of the Fick law andφ is the
microstructural porosity. It is worth noting that concentra-
tion cε is uncoupled with other fields involved in (2)–(3),
therefore (5) is homogenized oncewεi is known forε→ 0.

The limit homogenized residual concentrations computed by
the upscaled macromodel can be interpreted at the microscopic
level at each hierarchy; for a finite scaleε > 0, thus, we have an
alternative expression for concentrationc, replacing the convo-
lution in (1) by a more refined transition scheme reflecting the
geometrical and topological features of the cerebral vascula-
ture.

Preliminary studies. Viability of the proposed modelling ap-
proach is demonstrated on numerical examples computed by

Figure 1: Vascular tree: arteries and veins at two hierarchies
n, n + 1 for binary splitting,ν = 2. The hatched regions (the
matrix) separating the two vascular trees represent the mixture
of capilaries, venulae and the extravascular tissue; except of
the lowest hierarchȳn, the segments of the vascular trees are
impermeable.

the in-house developed software for the multiscale analysis
of the porous media. Since full implementation of the refined
model of the CP is a long period task, we focus on simulation of
the contrast medium flux at the lower level hierarchies, show-
ing the dispersive response to a concentration increase input at
the highest considered hierarchy.
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elling and homogenized constitutive law of large deform-
ing fluid saturated heterogeneous solids.Int. J. of Com-
puters & Structures, 84, 1095–1114.

Prague, Czech Republic, 25-27 June 2007 115



MHM 2007: Modelling of Heterogeneous Materials with Applications in Construction and Biomedical Engineering

A Multiphase Model for Biological Tissue including Growth and Remodelling

T. Ricken1, J. Bluhm2∗

1Computational Mechanics,2Institute of Mechanics, University of Duisburg-Essen, D-45117 Essen, Germany
tim.ricken@uni-due.de, joachim.bluhm@uni-due.de

Summary: A triphasic model (solid, interstices filled with water containing nutrients) based on the Theory of Porous Me-
dia (TPM) is proposed for the phenomenological description of transversely isotropic saturated biological tissues including the
phenomena of growth and remodelling. Finally, we gain a coupled set of equations determining the solid motion, mixture temper-
ature, inner pressure as well as solid and nutrient volume fractions. After presenting the developed framework of the calculation
concept, a representative numerical example is examined.

Basic model

The investigated porous body consists ofϕS (solid) which is
saturated byϕF (fluid). The fluid itself is composed ofϕL (liq-
uid) andϕN (nutrients), see Fig.1. The volume fractionnα refer

Organic Solid (S)

Fluid (F)

=

Liquid (L) + Nutrient (N)

homogenization

of the

constituents

true structure smeared model

Figure 1: Homogenization

the volume elements dvα of the constituentsϕα to the bulk vol-
ume elementdv, viz.

nα(x, t) =
dvα

dv
,

κ∑
α=1

nα(x, t) =
κ∑

α=1

ρα

ραR
= 1, (1)

wherex is the position vector of the spatial pointx in the actual
placement and t is the time. The partial densityρα = nα ραR

is related to the real density of the materialsραR involved via
the volume fractionsnα, see (1)2. Moreover, we define the Ja-
cobianJα = detFα, whereFα = (∂xα)/(∂Xα) = Gradαχα
is the deformation gradient. The differential operator “Gradα”
denotes a partial differentiation with respect to the reference
positionXα. The local statements of the balance equations of
mass and momentum are given for the constituentsϕα by

(ρα)′α + ρα div x′α = ρ̂α ,

div Tα + ρα (b− x′′α) + p̂α − ρ̂α x′α = o .
(2)

Therein,“div” denotes the spatial divergence operator,x′α is the
velocity of the constituentϕα, ρ̂α represents the mass supply
between the phases which has to conform toρ̂S + ρ̂L + ρ̂N = 0,
Tα is the partial symmetric Cauchy stress tensor,ρα b speci-
fies the volume force and̂pα describes the interactions of the
constituentsϕα which are restricted tôpS + p̂L + p̂N = o.

The system is investigated under the condition of a material in-
compressible components. The nutrient phase is assumed to be
contained in the liquid phase, so that both phases are assigned
the same velocityx′F and to the same pore pressureλ. More-
over, we assume that the liquid phase is not involved in the mass
transition and we exclude accelerations.

Constitutive modeling

The entropy inequality for the mixture yields the following
constitutive relations for the partial Cauchy stress tensors

TS = − nS λ I + 2 ρS FS
∂ψS

∂CS
FT

S = − nS λ I + TS
E,

TF = −(nL + nN )λ I = −nF λ I , nF = nL + nN

(3)
of the constituents solid and fluid (ϕF = ϕL + ϕN) with the
realistic fluid pressureλ, the tensor of identityI and the right
Cauchy-Green tensorCS = FT

S FS related to the solid.

In many living tissues, an anisotropic strain response can
be observed, which is caused by the inner structure of the
tissue. Therefore, we introduce the so-called structural tensor
M = A ⊗ A whereA denotes the vector of the preferred
direction. In [1] a functional dependency of the stored energy
is suggested with the usage of the principle invariantsI1,2,3 of
CS and the basic invariantJ4 := tr[CS M] of the argument
tensors (CS,M). The stored energy function can be written
now as ψS = [nS/(nS

0S)]n ψS
iso, neo (I1, I2, I3) + ψS

ti (J4).
Therein, the term connected with the solid volume fractionnS

describes the change of solid rigidity relating to the reference
solid volume fractionnS

0S at t = t0. The isotropic part of
ψS

iso, neo is of Neo-Hookean type, viz.

ψS
iso, neo = ψS

iso, neo (I1, JS =
√

I3)

=
1
ρS
0S

{λS 1
2

(log JS)2 − µS log JS +
1
2
µS(I1 − 3)},

(4)

whereµS andλS are the macoscopic Laḿe constants. For the
transversely isotropic part of the Helmholtz free energy func-
tion we choose for this first try a lightly modified function with

ψS
ti = ψS

ti(J4) =


1

2 ρS
0S

α1 (J4 − 1)α2 for J4 ≥ 1

0 for J4 < 1,
(5)

whereα1,2 ≥ 1 are parameters due to the stiffness of the
preferred directionA. With this, the solid effective Cauchy
stress tensor reads
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TS
E = (

nS

nS
0S

)n JS
ρS

ρS
0S

TS
E, iso, neo + JS

ρS

ρS
0S

TS
E, ti ,

TS
E, iso, neo =

1
JS

[ 2µS KS + λS ( log JS ) I ],

TS
E, ti =

1
JS
α1 α2 [ tr(CS M)− 1 ]α2−1 FS MFT

S .

(6)

Herein, the Karni-Reiner strainKS = 1/2 (BS − I) with the
left Cauchy-Green tensorBS = FS FT

S and m = FSA ⊗
FSA = a⊗ a as the structural tensor has been used.

The motions of both the solid and the fluid are con-
nected by the interaction forceŝpF = −p̂S with p̂F =
λ grad nF − SF wFS, where SF is obtained withSF =
1/(SF − ρ̂F) [α1 I + α2 M ]−1. Herein,SF describes the per-
meability tensor between the fluid and solid phase in connec-
tion to the seepage velocitywFS = x′F − x′S andα1,2 are the
parameters for the isotropic and transversely isotropic ratio of
porosity respectively. The material parameter functionSF is
postulated withSF = kS

0/µ
FR [nF

0S/n
F]m + ρ̂F, wherem de-

notes a dimensionless material parameter,kS
0 is the initial in-

trinsic permeability andµFR denotes the shear viscosity of the
fluid, see e.g. [2] or [3].

We assume a mass exchange which acts between the solid
and nutrient phase only (ρ̂F = ρ̂L + ρ̂N = −ρ̂S, ρ̂L = 0).
In view of the mass transfer, the inequality is fulfilled if the
dissipation partDρ̂S = −ρ̂S (ΨS − ΨN) ≥ 0 holds where
Ψα = ψα+nα (λ/ρα+∂ψα/∂nα) denotes the chemical poten-
tial if the influence of the velocity square is neglected. Using the
ansatzρ̂S = −δLρ̂ (ΨS − ΨN), the aforementioned dissipation
part is fulfilled if δLρ̂ ≥ 0. Under consideration of this restric-
tion it will be postulated that̂ρS is a function of the norm of the
total Kirchhoff stressesτvMi and of the solid and the nutrient
content, i.e.,

ρ̂S = ρ̂S
max ρ̂S

nN ρ̂S
τvMi

, ρ̂S
nN = − exp [−κnN (nN)2 ] + 1 ,

ρ̂S
τvMi

= −2 exp [− log(2) τvMi/τvMi0] + 1 .
(7)

Under consideration of the above given constitutive relations
a closed calculation concept has been developed by use of the
finite element approximation, see [4], which enables the calcu-
lation of the following example.

Example: femur

In the example, we consider the remodelling of bone with re-
spect to a given load case. In the following we discuss changes
belonging to the internal architecture namely the density, the
nutrients as well as the inner trabecular structure. Fig.2c,e il-
lustrate a x-ray and a photograph of a femur. The bone com-
pensates the loads from the body as a change in density and
structure. The material is assumed to be orthotopic where the
preferred directions follow the eigenvectors ofTS, see Fig.2f .
In the initial configuration the values of density and nutrients
belong tonS = 0.1 andnN = 0.7 concerning the total domain.
Due to the stress and nutrient indicated growth, we expect a
bone density remodeling to an optimized state. Comparing the
calculated density distribution as well as the trabecular bone
structure given in Fig.2d,f with the photographs in Fig.2c,e a
good approximation can be considered.

b)

d)c)

a)

e) f)

Figure 2: a) Material parameters, b) load case [5] and dis-
cretization, c) X-ray of a femur [6], d) calculated density,
e) photograph of bone structure [7], f) calculated trabecular
directions.
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Summary: In this contribution a modeling approach for stress adaptive bone remodeling caused from stress shielding due to
hip-joint endoprosthes is presented. The constitutive model is place in a thermodynamic consistent framework. Special emphasis
is laid on the description of statically equivalent load sets for joint loads and muscle forces, which is obtained from an inverse
approach based on measured CT-data. The computational method is applied for studies on the biomechanical compatibility of
different hip-joint prostheses by fully 3D finite element analysis.

Introduction

Stress shielding and related bone remodeling has been recog-
nized as one major reason for aseptic loosening of orthopedic
implants, and in addition because the bone stock quality is de-
creased the success of revision is often less promising. Com-
putational mechanics techniques can assist in optimizing this
medical treatment.

Computational methods for the analysis of stress adaptive bone
remodeling are under development since more that 15 years,
see e.g. [1, 2]. After solving some basic numerical problems,
cf. [3] for example, nowadays numerically stable and efficient
algorithms are available, e.g. [4, 5], which incorporate a consis-
tent constitutive framework. In parallel multi-scale approaches
are currently under development for a better description of the
mechanotransduction process by related bone cells [5, 6].

In summary, nowadays powerful computational methods are
available to predict bone remodeling caused from changed
loading conditions qualitatively in a reliable manner. These
techniques enable for studies on the optimization of bone im-
plants, which will be shown illustratively in this presenta-
tion, while special emphasis is laid on the overall modeling
approach. Starting with a consistent constitutive modeling of
stress adaptive bone remodeling within the continuum mechan-
ics framework, which also ensures numerical reliability and
efficiency, and ending up with an approach for the computa-
tion of statically equivalent load sets from CT-data. Based on
this carefully developed first order approach predictions on the
bone remodeling caused from different hip-joint endoprosthe-
ses system obtained from detailed 3–dimensional finite element
models will be presented. The reliability of the methods will be
underlined by observations from clinical studies.

Modeling Approach

The internal architecture of bones with distinguished cortical
and spongious sections is described by an continuum approach
with an averaged bone mass density%. For the constitutive
model the bone mass density serves as internal variable, such
that a free energy density function is stated as

ψ = ψ̃(ε, %) . (1)

Within a linear elastic first order approach a constitutive rela-
tionship between Youngs modulusE and the bone mass density
is concluded from the entropy principle as follows

E = E0

(
%

%0

)2

, (2)

whereE0 and%0 are reference values, e.g. for cortical bone.
A further ingredient is the formulation of a growth function in
analogy to damage mechanics, which in its simplest kind reads,

f = ψ − ψbio = 0 , (3)

and which describes that the bone aspires to organize itself such
that each volume element is stressed in a biologically comfort-
able manner, expressed byψbio. From the assumption that the
biological dissipation potential tends to extreme values, an evo-
lution equation for the bone mass density is derived

%̇ = λ̇
∂f

∂%
(4)

which is solved in the classical numerical concepts of damage
mechanics.

Besides the constitutive description an important issue is the
modeling of the boundary conditions. A statically equivalent
load distribution due to muscle forces and related joint loads
is computed by an inverse approach. For that measured bone
mass density distributions are mapped onto the 3–dimensional
finite element mesh of the bone. The points of applications for
resulting muscle forces and joint loads are defined and by ge-
netic algorithms the magnitude and spatial orientation of the
loads are computed such that the remodeling approach tends
to results that fit best with the measured density distribution.
In a second step the joint loads are distributed onto the finite
element mesh by a least squares technique.

As an example, on the left of fig.1 the computed joint load
distribution is depicted, the corresponding bone mass density
distribution is shown on the right in an gray-scale coding to be
interpreted as inverse radiograph representation. The obtained
structural topology is in good agreement with the original CT-
data.
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Figure 1: Distributed joint force (left) and mass density distri-
bution computed as the bio-mechanical equilibrium state.

Studies on Hip–Joint Endoprostheses

In computational studies, the bio-mechanical compatibility of
different endoprostheses systems has been studied. Each com-
putation starts with a bio-mechanical equilibrated bone model
as depicted in Fig.1. Into this bone mass distribution an im-
plant is integrated and under the same loading conditions the
bone reaction caused from the changed stress transfer is com-
puted as described before. The quality is judged by the amount
of bone loss due to remodeling.

It is well known from systematical follow ups that classical
steem-endoprostheses lead to a loss of bone quality surround-
ing the steem, cf. [7] for example. This effect is clearly reflected
from the finite element simulations. In contrast to radiographic
follow up investigations, which deliver only 2–dimensional in-
formation, the computation results 3–dimensional visualiza-
tions which provide additional insight. It is obvious that due
to the loss of bone mineralization density in the surrounding of
a prosthesis steem, a poor bone stock is released for revisions.
Thus, especially for younger patients, great effort is spent in
finding more compatible implant designs in the bio-mechanical
sense.

A couple of metaphyseal anchored prostheses have been ana-
lyzed which are designed for less arthrophy especially in distal
regions of the femur to remain a good basis for revision. In one
case a complete failure of such a development has been argued
from these studies, which is underlined by clinical experience
too.

A relatively new study is performed on the renaissance of the
hip-resurfacing technique. The finite element model and the
computed bone mass density distribution is depicted in Fig.2.
Regarding the femoral part of the hip, the advantage is obvious
because of minimal arthrophy.

Conclusions

A numerically efficient model for the analysis of bone remod-
eling phenomena has been presented. Besides the constitu-
tive modeling within a thermodynamic consistent continuum
framework, special emphasis has been laid onto the description
of statically equivalent load sets.

These computational techniques enable for qualitative studies
on bone reactions due to artificial hip-joint replacement for ex-
ample. The results computed for traditional steem-prostheses

Figure 2: Finite element femur model with a resurfacing pros-
thesis (left) and computed long term bone mass distribution in
a frontal plane cut.

are in good agreement with clinical studies. Additionally these
computations allow for a more detailed 3–dimensional analy-
sis of the effects, while radiographic techniques provide only a
thickness averaged image.

Computer simulations have been performed for some recent de-
velopments, designed for younger patients with a high risk of
revision surgery. A qualitative rating of different implant de-
signs is possible, by which misdevelopments can be excluded at
an early stage. Thus computational mechanics techniques pro-
vide powerful tools for the development of implants with opti-
mized bio-mechanical compatibility.
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dichtëanderungen am Femur nach Implantation der
zementfreien Zweym̈uller-Hüftendoprothese unter
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Summary: The modelling of non-linear swelling of biological tissues is presented in this contribution. The model under con-
sideration is based on the Theory of Porous Media (TPM) and incorporates electro-static effects as well as chemical effects like
osmosis and diffusion. Moreover, the solid matrix is modelled by a finite neo-Hookean material law accounting for the compres-
sion point of the porous solid matrix. The challenge of the materials under study is the numerics, since the boundary depend on
the current deformation state of the boundary. A numerical example will show the capabilities of the model.

Introduction

The material under consideration exhibits finite swelling be-
haviour and is composed of multiple constituents. Porous me-
dia like this could be, e. g., the inner part of the intervertebral
disc, articular cartilage, hydrogel or clay, cf. [4] and [7]. In par-
ticular, these materials consist of a charged solid matrix and an
ionized fluid, wherein the ions of a salt are dissolved. Generally,
the Theory of Porous Media (TPM) is used to model such mul-
tiphasic materials with an unknown microstructure by a ther-
modynamically consistent way, cf. [1] and [3]. The continuum
mechanical approach of the TPM is based on the Theory of
Mixtures, cf. [2], enriched by the concept of volume fractions.

Multiphase formulation

Describing a swelling solid, the TPM model of a binary ag-
gregate with the immiscible constituents solid matrix (ϕS) and
fluid phase (ϕF ) is extended by incorporating volume free fixed
charges to the solid matrix and, furthermore, by modelling the
fluid phase as a mixture of miscible components, namely, the
liquid solvent (ϕL), the cations (ϕ+) and the anions (ϕ−) of a
dissolved salt. Following this, and introducing the volume frac-
tionsnα = dvα/dv, the saturation condition is given by∑

α

nα = nS + nF = 1 ,

where nF =
∑
β

nβ = nL + n+ + n− .
(1)

To introduce the balance relations, the model is restricted to
materially incompressible constituents, mass exchanges among
the constituents like chemical reactions and phase transitions
are excluded and quasi-static processes are assumed. Therefore,
the volume balances for the phasesϕα, the concentration bal-
ances of the fluid componentsϕβ and the overall momentum
balance read:

(nα)′α + nα div
′
xα= 0 , (2)

(nF cβm)′β + nF cβm div
′
xβ= 0 , (3)

0 = div(TS
Emech.− p I ) + ρb . (4)

Therein,( · )′α represents the material time derivative with re-
spect toϕα. Furthermore,cβm denotes the molar concentration

of ϕβ in the fluid, TS
Emech. the purely mechanical solid ex-

tra stress andρb the volume force acting on the mixture as
a whole. Note thatp is the overall pore pressure consisting of
two parts, the Lagrangean multiplierP denoting the purely hy-
draulic part given by the boundary conditions and the osmotic
pressureπ developing from concentration differences:

p := P + π . (5)

The solid volume balance is solved analytically by integration
such thatnS = nS0S (det FS)−1. Additionally, a volume bal-
ance for the fixed charges is introduced, which is also integrated
analytically to yieldcfcm = cfcm0Sn

F
0S(det FS − nS0S)−1, thus

relating the initial values denoted by( · )0S to the current ones
via the determinant of the solid deformation gradient. Making
use of the electroneutrality condition, it is evident that the anion
concentration depends on the concentration ofϕ+ andϕfc, cf.

[5, 8]. Finally, with the assumptioncL =const. and
′
xL≈

′
xF ,

only the volume balance of the overall fluid, the cation concen-
tration balance and the overall momentum balance are left to be
solved numerically.

Constitutive equations

The solid skeleton is described by the extended neo-Hookean
material law proposed by [6], which accounts for the com-
paction point, a specific feature of porous materials in the large
deformation range:

τSEmech.:= µS(BS − I ) +

+λS(1− nS0S)2
( detFS

1− nS0S
− detFS

detFS − nS0S

)
I .

(6)

Therein, the Kirchhoff stress tensorτSEmech. is related to the
Cauchy stressTS

Emech.via τSEmech. = detFS TS
Emech.. Fur-

thermore,µS andλS are the Laḿe constants, andBS is the left
Cauchy-Green deformation tensor (BS = FS FTS ). The fluid
flow is described by an extended Darcy’s law, which includes
the gradients of the ion concentrations and the electrical poten-
tial. Furthermore, the ion diffusion is described by an extended
Nernst-Planck equation, cf. [5]. Given the fluid and ion motion,
the gradient of the electrical potential can be calculated from
c+mw+ − c−mw− = 0 .
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Numerical treatment and example

In the numerical computations, it is assumed that the boundary
layer is immediately in equilibrium with the external solution.
Therefore, the Donnan equation together with the electroneu-
trality condition can be used to calculate the boundary concen-
tration and the boundary osmotic pressure as well as the corre-
sponding initial values:

cm(uS , t) =

√
c̄m

2(t) +
(
cfcm (uS)

2

)
2 +

cfcm (uS)
2

,

π(uS , t) = Rθ
[
2cm(uS , t)− cfcm (uS)− 2c̄m(t)

]
.

Therein, the values of the external solution are marked by a bar.
From the above equations, it is obvious that the boundary con-
ditions depend on the internal variablecfcm (uS). Therefore, the
boundary conditions have to be considered implicitly by incor-
poration into the weak formulations of the governing equations
in order to obtain physically sound solutions (cf. Fluid Struc-
ture Interaction). To obtain the weak formulations, the balance
relations are weighted by their corresponding independent test
functionsδp, δcm andδuS , respectively. After integration over
the spatial domainΩ with the surfaceΓ, one obtains the follow-
ing setting in the primary variablesp, cm anduS :∫

Γq

q̄ δp da =
∫

Ω

nFwF · gradδp dv −
∫

Ω

div (uS)′S δp dv

+
∫

Γp

[
p− P̄ −Rθ (2cm − cfcm − 2c̄m)

]
δp da ,∫

Γ

̄ δcm da =
∫

Ω

nFcmw+ · gradδcm dv

−
∫

Ω

[nF (cm)′S+cm div (uS)′S ] δcm dv

+
∫

Γcm

[
cm −

√
c̄ 2
m +

(cfcm
2

)
2 − cfcm

2

]
δcm da,∫

Γt

t̄ · δuS da =
∫

Ω

(TS
Emech.− p I) · gradδuS dv

−
∫

Ω

(ρS + ρF )b · δuS dv .

(7)

Note in passing that the boundary conditions (7) are incorpo-
rated into the weak forms of the overall volume balance and
the cation concentration balance. The terms on the left hand
side marked by a bar denote the boundary terms. In particular,
q̄ = nF wF ·n is the fluid volume efflux,̄ = nF cmw+·n is the
outward-oriented cation diffusion, and̄t = (TS

Emech.− p I)n
is the traction force.

Finally, this model is implemented into the FE toolPANDAS1

and, as an example, the swelling of an elliptic hydrogel disc is
simulated. The disc is generated with diameters of3.0 mm and
3.7 mm and a height of2.0 mm meshed with hexahedral ele-
ments. Note that for numerical stability reasons use is made of
mixed Taylor-Hood elements, where the solid displacementuS
is approximated by quadratic shape functions and the overall
pore pressurep as well as the cation concentrationcm by linear
shape functions.

1Porous media Adaptive Nonlinear finite element solver based on
DifferentialAlgebraicSystems (www.get-pandas.com )

Figure 1: Numerical simulation by the FE toolPANDAS.

To initiate the swelling process, the cation concentration of the
external solution is decreased on the upper and circumferential
surface from0.20 mol/l to 0.15 mol/l within 10 s. The contour
plot in FigureV exhibits the decreasing cation concentration.
As one can see, the specimen initially begins to swell in the up-
per and the circumferential boundary, thus yielding a bending
of the specimen. At the end of the simulation, when equilibrium
is reached, the bending vanishes.

References

[1] R. de Boer (2000):Theory of Porous Media. Springer-
Verlag, Berlin.

[2] R. M. Bowen (1980): Incompressible porous media models
by use of the theory of mixtures.International Journal of
Engineering Science, 18, 1129–1148.

[3] W. Ehlers (2002): Foundations of multiphasic and porous
materials. In Porous Media: Theory, Experiments and
Numerical Applications, Ehlers, W. & Bluhm, J., eds.,
Springer-Verlag, Berlin, 3–86.

[4] W. Ehlers, N. Karajan, B. Markert (2006): A porous media
model describing the inhomogeneous behaviour of the hu-
man intervertebral disc.Materialwissenschaften und Wek-
stofftechnik37, 546–551.

[5] W. Ehlers, B. Markert, A. Acarẗurk (2005): Swelling phe-
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Summary: Cartilaginous tissues high load bearing capacity is explained by osmotic prestressing putting the collagen fiber re-
inforcement under tension and the proteoglycan gel under compression. The osmotic forces are boosted by a further 50 % by
the affinity of the collagen with the aquous solution. The high osmolarity of the tissue provides a strong protection against crack
propagation. Degeneration results in degradation of the prestressing and hence to internal damage. 3D visualisation of a dis-
continuity of the collagen struction of the disc is achieved by confocal laser scanning microscopy. The collagen and the cells
are visualised by means of a two fluorescent probes. The discontinuity is shown to open and close depending on the osmotic
loading of the tissue. The process of internal degradation is presently modelled using Partition of Unity method in a osmotically
prestressed fluid-solid mixture.

Introduction

Unlike most biological tissues, cartilaginous tissues tissues has
no blood perfusion. The cells of the tissue obtain nutrition
and removal of waste materials through diffusion only. This
fact implies that cartilaginous tissues renew themselves at a
much lower rate than any other tissue in the human body. The
capacity of cartilaginous tissues to withstand relatively high
loads of several MPa during a lifetime of up to 100 years, is
a noteworthy achievement, especially in view of its low stiff-
ness, low renewal rate and high water content. Cartilaginous
tissues consists of a fluid-filled extra-cellular matrix, in which
living cells are sparsely dispersed. The mechanical function is
highly dependent on the composition of the extra-cellular ma-
trix, which primary consists of collagen fibrils and negatively
charged proteoglycans. Due to the fixed charges of the pro-
teoglycans (PGs), the cation concentration inside the tissue is
higher than in the surrounding synovial fluid. This excess of ion
particles leads to an osmotic pressure difference, which causes
swelling of the tissue [4]. The fibrillar collagen network re-

nucleus annulus laminates

Figure 1: The intervertebral disc is a cartilaginous tissue con-
necting two vertebrae in the spine. It consists of a gelatinous
nucleus surrounded by a fibrous annulus.

sists straining and swelling pressures. This combination makes
cartilaginous tissue a unique, highly hydrated and pressurized
tissue, enforced with a strained collagen network. It has been
shown that the osmotic pressure inside cartilaginous tissues is
much higher than would be expected based on its FCD [5, 2].

This is because part of the water in the tissue is absorbed by
the collagen fibers. The proteoglycan molecules, because of
their large size, are excluded from this intra-fibrillar space. This
means that their effective concentrations are much higher in
the extra-fibrillar space than if they were distributed uniformly
throughout the entire matrix. Hence, the effective fixed charge
density is higher than if computed from total tissue water con-
tent. Wilson et al. [6] predict the depth dependent stress-strain
curve of articular cartilage solely from its composition and the
inclusion of the intrafibrillar/extrafibrillar water compartments
and their associated osmotic pressures. A corresponding anal-
ysis for intervertebral disc tissue (Fig.1) demonstrates that in-
trafibrillar water affects pressure distribution, osmolarity and
stress within the disc substantially [3]. Confined compression
and swelling experiments on canine intervertebral disc samples
were performed and fitted by Huyghe et al [1] using the concept
of intrafibrillar water as well.

Fractures in the intervertebral disc

A peculiar observation in intervertebral disc degeneration is the
finding that human intervertebral discs develop fractures with
age virtually independently from load to which they are sub-
jected (Fig.2). Concommitantly, the osmotic prestressing is
decreasing. Wognum et al. [7] studied the opening of a crack

Figure 2: Patent fractures in a human intervertebral disc. De-
lamination is observed in the annulus. Courtesy of Tapio Vide-
man, Calgary, Canada.
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Figure 3: The bovine intervertebral disc samples are osmoti-
cally prestressed using a polyethylene glycol solution on top of
a half-permeable membrane.

in a numerical and physical model of the degenerated inter-
vertebral disc. Degeneration was modelled as a progressive de-
crease in osmotic presstressing. They demonstrate that, while
the osmotic prestressing is decreasing, the overal fiber stress
is decreasing as well, but the stress at the crack tip increases
sharply, because the shrinking of the tissue induces opening of
the crack. This phenomenon is intrinsically multiscale in nature
and may explain the poor relationship between external loads
and crack propagation. None of the models used by Wognum et
al [7] considers the intrafibrillar water effect mentioned earlier,
while experimental data suggest that 30 % of the water con-
tained in the annulus is grabbed by the collagen and is not seen
by the charges fixed to the proteoglycan chains. This suggests
that the protective effect of osmorality against failure is further
enhanced by intrafibrillar water.

In vitro observation of the tissue

To observe the genuine tissue in 3D, a new method is created to
visualize micromechanical swelling in the intervertebral disc
annulus fibrosus. The deformations of the collagen fibers and
the cells under osmotic loading are observed by fluorescent la-
belling under the confocal microscope (Fig.3). A digital im-
age correlation technique calculates displacements and finite
strains. The results show the heterogeneous character of the tis-
sue as well as the non-affine nature of the deformation (Figs.
4–5). A Partition of Unity formulation of fluid-solid mixture is
presently developed to describe the osmotic failure mechanism.
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Figure 4: Z-stacks of a closed discontinuity in the collagen
structure of the tissue under high osmotic loading.

Figure 5: Z-stacks of a patent discontinuity in the collagen
structure of the tissue under low osmotic loading.
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Summary: This paper exposes the capabilities of the Natural Element Method (NEM) in simulating large deformations of
human cartilage. A fibre-reinforced porohyperelastic model is presented and used for the simulation of soft hydrated tissues, like
cartilage. An Augmented Lagrangian formulation has been used to enforce the incompressibility condition in the whole tissue.
Porohyperelasticity has been included in order to simulate the biphasic nature of the tissue associated to a porous solid matrix
and interstitial fluid. Anisotropy in the hyperelastic behaviour has been formulated by means of a strain energy function that takes
into account the influence of collagen fibres. The results using a natural element method are compared with the classical finite
element approximation.

Introduction

Numerical simulation plays a fundamental role in many
branches of science. Computational Biomechanics is one of
these branches in which the numerical simulation of very com-
plex processes takes place. Simulation of soft organs and bony
structures deals with complex geometries, large deformations
and involved models of constitutive behaviour. The appearance
of the Finite Element Method (FEM) in the fifties allowed to
perform such simulations in that field. However, the method
relies on the proper discretization of the geometry, an aspect
which might become cumbersome with actual geometries. In
this regard, mesh generation in a general three dimensional
model is far from being completely automatised and the devel-
opment of a specific finite element model usually takes a large
amount of user time, and indeed when the modelled organ suf-
fers large deformations, a remeshing strategy is frequently re-
quired in order to avoid numerical errors that can break out the
simulation.

Cartilage is a biological material that undergoes large deforma-
tions in order to absorb the loads within the joints. This tissue is
mostly composed of two phases: a fiber reinforced solid matrix
and a fluid phase that moves inside. The classical approach to
simulate this material is under a finite element approximation.
In this work, a porohyperelastic fiber reinforced model is pro-
posed for human cartilage using the Natural Element Method,
and the results are compared with a classical finite element ap-
proximation.

Materials and methods

The equilibrium equations for a biphasic solid can be written
as,

∇ · σse − φs∇p−K · (vs − vf ) = 0 (1)

− φf∇p+K · (vs − vf ) = 0 (2)

whereσse is usually known as effective stress. The fundamental
variables of the problem are the solid displacements, the fluid
velocities and the pressure. In this formulation, the incompress-
ibility condition is imposed using an Augmented Lagrangian
formulation [1].

Figure 1: Delaunay triangulation and Voronoi diagram of a
cloud of points.

The representation theorem for transversely isotropic scalar
functions states that a scalar functionW of the right Cauchy-
Green tensorC is transversely isotropic if and only if it can be
expressed as:

ψ
s

= W (I1, I2, I3, I4, I5) (3)

whereIj , j = 1 , ..., 3 are the principal invariants ofC associ-
ated with an isotropic behaviour and the other two, additional
invariants proposed by Ericksen and Rivlin [4] that arise di-
rectly from anisotropy.

The NEM is based on the Natural Neighbour interpolation
scheme [3, 2] that relies on the concepts of Delaunay trian-
gulations and Dirichlet tesselations [6, 5] of a set of nodes (see
Fig. 1).

The NE method has some important properties, such as the
interpolatory character of the shape functions, the linear con-
sistency of the interpolant and the partition of unity property.
In other words, the natural neighbour interpolant can exactly
reproduce a linear or constant displacement field [7]. Another
important property of the interpolant described above is its abil-
ity to reproduce a linear interpolant along convex boundaries
(Fig. 2).

Results

In this abstract the results for the articular disc of the Temporo-
mandibular Joint (TMJ) are presented. This component is a bi-
concave, fibrocartilaginous structure, which provides the glid-
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Figure 2: Linear interpolation along non-convex boundaries.

ing surface for the mandibular condyle, resulting in smooth
joint movement.

The stress distribution can be seen in Figs. 3 and 4. One of the
advantages of the natural element method is that the discontinu-
ities that arise in the finite element method due to irregularities
in the mesh can be avoided. It can be appreciated how the stress
distributions are smooth along the top and bottom surfaces. As
can be seen in Fig. 3, the maximum principal stresses were lo-
cated at the posterior band of the disc where the disc tries to
open as it is compressed. However, the maximum compressive
stresses were located in the intermediate zone (both in the bot-
tom and top surfaces) of the disc (Fig. 4).

Figure 3: Maximum principal stresses in the articular disc.

Figure 4: Minimum principal stresses in the articular disc.

Discussion

The main objective of this work is to present the possible ad-
vantages of using meshless methods in simulations of biome-
chanics problems, specifically in application to modelling hu-
man cartillage. This family of methods present some appeal-
ing characteristics comparing to the well-known Finite Element
Method. They avoid the difficult task of mesh generation in
very complex geometries, such as the case of living tissues. A
finite element meshing process can be very costly depending
on the complexity of the geometry, but a volume reconstruc-
tion approach and distribution of points inside this volume is

relatively simple. Meshless methods appear to be an efficient
alternative to FEM for this type of problems.

Biomechanics of living soft tissues usually involves several ge-
ometric non-linearities such us large displacements and strains,
as well as material non-linearities. Hydrated soft tissues can be
seeing as a network of fibre collagenous or muscular tissue em-
bedded in a high compliant matrix with a fluid phase. In the
NEM there is virtually no limitation to mesh distortions, show-
ing that results are much less dependent on the regularity of
the nodal distribution than FE methods. Compared to the finite
element method, NEM is better at handling large deformation
without any special numerical treatment because it is less de-
pendent on the original mesh. From these results, NEM appears
to be an efficient alternative to FEM for large deformation prob-
lems, especially when using a total Lagrangian description.
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Summary: A model of the ocular globe has been developed to simulate several curved incisions in clear cornea(arcuates)used
to correct astigmatism. In order to provide a pre-operative planning tool for surgeons for a more accurate values for parameters of
the corneal incisions according to each case, corneal incisional surgery was simulated in this work varying some of the parameters
involved. The model provides results very close to the theoretical ones stated in Lindstrom’s nomogram [1].

Introduction

The most frequent cause of vision default is the wrong refrac-
tion of the components of the eye. The cornea is responsible
of 75% of the whole vision of the eye. Astigmatism is a re-
fractive error due to the non-spherical shape of the cornea, that
is, the refractive power is not uniform in all meridians. Refrac-
tive surgery techniques are used to modify the radius of cur-
vature in order to repair the faulty refraction by making the
cornea as spherical as possible. It is widely extended in cataract
surgery to perform corneal incisions at the same time to achieve
emetropy. According to the optical power to be corrected, dif-
ferent sort of incisions can be performed: radial, arcuates (> 3
diopters) or limbal relaxing ones (1-3 diopters).

The variety of parameters to be decided before arcuates surgery
(number of incisions, angle, depth, shape, symmetry, optical
zone) makes very complex to design an accurate nomogram to
be used as a universal reference to achieve a spherical equiv-
alent and astigmatism correction as expected. Moreover, the
same surgical technic (same angle, optical zone, ...) usually
leads to different results for different patients. It is therefore
necessary to study the parameters involved in nomograms and
others like the material properties of the cornea which can be
quite different between patients with the same level of pathol-
ogy, to plan a patient-specific surgery that minimizes the un-
certainty in results. A biomechanical study before surgery is
therefore very convenient to asses quantitatively the effect of
each parameter on the optical outcome.

Figure 1: Model geometry[mm].

Materials and methods

A three-dimensional finite element model has been generated
from the anterior half ocular globe geometry. A revolution sym-
metry of the model has been assumed to simplify the com-
plexity of the real geometry, assumption widely used before by
other authors [2, 3]. The model is composed of three different
parts: cornea, limbus and sclera, as is shown in Fig.1.

As other biological tissues, the cornea and limbus are composed
by an extracellular matrix, highly moisturized, and collagen fib-
rils disposed in one (limbus) or two (cornea) preferential ori-
entations (see Fig.2). For this reason, these materials present
an hyperelastic, incompressible and anisotropic constitutive be-
haviour, strongly dependent on the physiological collagen fibril
distribution that therefore should be considered in any model.
An isotropic behaviour has been assumed for the sclera.

It has been used a mechanical model of the human eye based on
that proposed by Alastrué et al. [2]. The Holzapfel and Gasser
[4] strain-energy density function for soft tissues has been con-
sidered and implemented into a finite element context to simu-
late the effects of curved corneal incisions.

(a) cornea m0: Superior-
Inferior

(b) cornean0: Nasal-Temporal

(c) limbus n0: Circum-
ferencial

Figure 2: Direction of the collagen fibrils
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The free energy is considered in a decoupled form:

Ψ = Ψvol + Ψmatrix
iso + Ψfibers

iso (1)

The material parameters which define the behaviour of the ma-
trix and the collagen fibrils were taken from literature [5] or
estimated in an iterative process.

Before carrying out the simulation the model has to be driven
to a situation that represents the same conditions as the real eye.
The stress free configuration of the cornea is not known a priori,
only the one deformed by the intraocular pressure [3, 6]. The
point is therefore to introduce in the model the initial stresses
caused by the IOP.

The curved incisions are cuts performed in clear cornea, about
90% of the thickness deep and perpendicular to the surface.
According to the diopters to be corrected, the parameters of the
incisions are decided: radio, angle, number of incisions... Af-
ter surgery the incised axis flattens, that is to say the curvature
radius is larger, and its perpendicular one steepens so its curva-
ture radius becomes smaller (Fig.3). These changes achieve a
compensation in the refractive difference between the two per-
pendicular intrinsic optical axis of the cornea.

(a) Incised meridian. (b) Perpendicular meridian.

Figure 3: Flattening and steepening effect of incisional surgery.
Amplified10%.

Results

After surgery simulation the optical power measured in diopters
is estimated. The incised astigmatic principal axis and the sec-
ondary one, defined by the final position of the nodes belonging
to the corneal anterior surface and inside the optical zone, is fit-
ted by means of least squares and two radius of curvature are
obtained, one for each axis. Then the diopters can be calculated
using the expression [7]:

D ' n− 1
R

(2)

wheren is the corneal refractive index whose value is 1.377
andR [m] is the curvature radius in each axis (incised and non-
incised). The results for the incisions that have been simulated
are shown in Table1. In every performed simulation the inci-
sions are 3 mm from the apex.
The same simulation was also carried out by varying the val-
ues for the constants to obtain more or less rigid corneas and
correct results are only achieved with accurate values for the
material parameters.
The model offers another point of view to analyze the surgery

technic and its results. The after-surgical stresses show inter-
esting values and distributions that deserve to be discussed, as
it seems to be a relation between these distributions and the
keratometric maps.

Table 1: Results of simulation vs. Lindstrom’s nomogram [1]
N incisions 1 1 2 1 2 2
Angle (deg) 45 60 45 90 60 90
D Sim. result 1.47 2.13 3 2.72 4.5 5.95
D Lindstrom 1.5 2.25 3 3 4.5 6

Discussion

A tool has been developed to simulate incisions for astigmatism
correction in order to provide the surgeon a technical evidence
to make his decision while planning the surgery or designing
new incisional techniques. The results obtained by simulation
for optical power seem to be correct being very similar to those
proposed by the Lindstrom’s nomogram [1], which is nowadays
a worldwide reference in corneal surgery.
It has also been discussed the influence of the material proper-
ties. As the same incisions achieve different optical outcomes
for different patients, it would be necessary to check if the
corneal material properties variation from patient to patient is
so relevant to cause these results.
An interesting conclusion of this work is the probable rela-
tion between the distributions of strains and keratometry after
surgery.
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Summary: The human eye has the macroscopic structure of a thick shell with incompressible and anisotropic material properties.
A microstructural constitutive model is presented for the hyperelastic response of crimped collagen fibrils found in the eye tissues.
The model is based on observations that collagen fibril embedded in a soft matrix crimp into a smooth 3D pattern when unloaded.
Following ideas presented by Beskos and Jenkins [1], Freed and Doehring [2] the collagen fibril crimp is approximated by a
cylindrical helix. The presented model is derived from the nonlinear axial force-stretch relationship of an extensible helical spring
including the fully extension of the spring as a limit case. This helical spring model is introduced as a fiber-matrix constitutive
formulation into an incompressible finite shell element [3], where the incompressibility constraint is enforced through elimination
of displacement and strain variables. The ability of the present numerical model to reproduce the biomechanical response of
individual human eye shells to different intraocular pressure levels opens a promising perspective to predict a certain risk for the
development of glaucoma.

Crimped collagen fiber model

Organized collagen fibers form fibrous networks that introduce
strong anisotropic and highly nonlinear attributes into the con-
stitutive response of soft tissues. We approximate the consti-
tutive response of one collagen fiber family by the geometri-
cally exact solution of an extensible helical spring under ten-
sion (Fig.1). The nonlinear relationship between the forceP

Figure 1: Geometrical variables and forceP acting along the
centerline of the helical spring.

and the axial stretchλf = H/H0 can be derived by an iter-
ative solution [5] and is used to formulate the axial 1. Piola-
Kirchhoff stress response of one collagen fiber family as

Pf (λf ) =
|P(λf )|
πr20 sinα0

, (1)

where the helix angle α0 can be calculated from
tan(α0) = H0/2πR0. The helical model can be expressed by
three independent parameters, which are chosen in accordance
to [2] as the geometrical valuesH0/r0, R0/r0 and the elastic
modulus of the filamentE. Fig. 2 contains a comparison
between results from a strip extensiometry experiment on
porcine corneas performed by Anderson et al. [4] and model
results. The respective model parameters have been identified

Figure 2: A fit of the helix model to data taken from strip exten-
siometry experiments on porcine corneas [4].

as E = 30.0 MPa, R0/r0 = 1.94 andH0/r0 = 23.32.
The proposed model replicates the typical ”J-type” shape
of the stress-stretch curve in excellent agreement with the
experimental observations. It should be noted, that the stress
response of the helical spring model (1) represents astrictly
convexfunction including compressive stress states and the
almost linear region of fully extended fibers. However, the
stress-stretch relationship can not be presented in closed form
and needs to be solved by an iterative algorithm.

Incompressibility at large strains

Soft tissues such as those involved in the human eye are char-
acterized by anisotropy introduced through collagen fibers and
by incompressible (volume conserving) or almost incompress-
ible deformation behavior. The present work extends the in-
compressible finite-rotation shell element [3] to an anisotropic
formulation considering the previously described helical spring
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model. In this work we postulate a curvilinear coordinate sys-
temΘi having the property

Gα3 = Gα3 = 0 , G33 = G33 . (2)

Furthermore, the coordinate systemΘi is supposed to be sub-
jected only to coordinate transformations of the form

Θ̄α = Θ̄α (Θ1, Θ2) , Θ̄3 = Θ3 , (3)

where( ¯. . .) denotes a new set of coordinates. Accordingly, the
position of the index′3′ is irrelevant in component relations and
the base vectorG3 = G3 is an invariant quantity. Note that
such a coordinate system is useful for modelling shell struc-
tures. If the conditions (2) and (3) hold, the variables

Ĉ = Cαβ Gα ⊗Gβ , c = Cα3 Gα , C3
3 (4)

Ĥ = Hαβ Gα ⊗Gβ , h = Hα3 Gα , H3
3 (5)

which form surfacetensors of second (̂C, Ĥ) and first order
(c,h) whileC3

3 ,H
3
3 are invariant scalar-valued quantities of the

right Cauchy-Green strain tensorC = FT F and the general-
ized structure tensor [6]

H = κI + (1− 3κ)e0 ⊗ e0 , (6)

whereI denotes the identity tensor andκ ∈ [0; 1/3] represents
the fiber distribution in an integral sense about the mean pre-
ferred directione0. The first, third and fourth invariants ofC
required for the formulation of the strain energy function (11)
can be expressed by means of (4), (5) as

IC = trC = trĈ + C3
3 (7)

IIIC = detC

= det
(
Ĉ + c⊗G3 + G3 ⊗ c

)
+ C3

3detĈ (8)

IVC = C : H = Ĉ : Ĥ + 2(c · h) + C3
3H

3
3 . (9)

To assure pureisochoricdeformations equation (8) is used to
eliminate the transverse strain componentC3

3 in (7), (9) by
means of theincompressibility conditionIIIC = 1

C3
3 =

1− det
(
Ĉ + c⊗G3 + G3 ⊗ c

)
detĈ

. (10)

The strain energy of the fiber-matrix constitutive formulation is
composed of an isotropic part related to the energy contribution
of the ground substance (g) and an anisotropic part related to
the energy contribution ofn collagen fiber families (fi)

W (IC, IVCi) = Wg(IC) +
n∑
i=1

Wfi(IVCi) (11)

= c1(IC − 3) +
n∑
i

∫ λfi

1

Pfi(λfi)dλfi ,

where the Neo-Hooke model is used to describe the isotropic
part and the earlier introduced axial 1. Piola-Kirchhoff stress
of an extensible helical spring (1) represents the anisotropic re-
sponse of collagen fibers as a function of the mean fiber stretch
λfi =

√
IVCi.

Finite element model of the human eye

The presented fiber-matrix constitutive formulation is imple-
mented into an incompressible bilinear finite shell element with
a quadratic kinematic assumption in thickness direction [3].
To ensure an unique determination of the director and to con-
sider shell intersections an updated rotation formulation is used.
The eye model considers two spherical shells representing the
cornea and the sclera tissues with an intersection at the limbus
and the lamina cribrosa (LC) (Fig.3). The LC is characterized

Figure 3: Finite shell element model of the human eye.

by a complex sieve-like network of collagen fibers, which al-
lows the axons of the optic nerve to leave the eye ball. The
response of the LC structure to different levels of intraocular
pressure values is of special interest in the field of glaucoma re-
search. The material parameters of the considered tissues have
been fitted to different experiments, where the sclera and the
LC tissue are assumed to consist of one randomly distributed
collagen fiber family (κ = 1/3). The material behavior of the
cornea tissue is considered to be anisotropic with two preferred
fiber directions.
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Summary: Irregular lattice models are developed to simulate moisture transport in cement-based composites. Explicit modeling
of the matrix-inclusion interface enables rudimentary simulations of percolation phenomena. Special procedures are used to
calculate nodal flux and track particle flow across the computational domain. These determinations of moisture flow are being
coupled to ongoing simulations of fracture at the concrete mesoscale.

Background

Most physio-chemical degradation mechanisms of structural
concrete require a supply of moisture, and thus the transport
properties of the material can greatly affect structural durabil-
ity [1]. Differential shrinkage due to non-uniform drying, and
shrinkage accompanied by other forms of restraint, can cause
cracking that modifies the transport properties. The behavior
of the matrix-inclusion interface is of particular interest in the
coupling of moisture flow and potential cracking, as it is gener-
ally more porous and weaker compared to either the matrix or
inclusion phases.

In this extended abstract, an irregular lattice model is used
to simulate moisture flow local to aggregate inclusions. The
model formulation is based on the theory of nonlinear mois-
ture diffusion [2, 3]. The lattice elements can be viewed as one-
dimensional conduits of the field quantity (e.g. moisture con-
tent) that interconnect at the lattice nodes. The topology of the
lattice is determined by the Delaunay tessellation of the lattice
nodes, whereas the element properties scale according to the
dual Voronoi tessellation. One goal of this work is its eventual
coupling to models of fracture in multi-phase particulate media,
which are based on similar Delaunay/Voronoi definitions of the
lattice topology and element properties [4]. Figure 1 shows the
Voronoi discretization of a notched three-point bend specimen
used for such fracture simulations.

Nodal flux calculations

Nodal flux is calculated to determine the magnitude and di-
rection of flow within the continuum. After solving for nodal
potentials, the elemental flowsQk are known. Based on con-
servation of mass of the transport substance the net flow into
a node, or Voronoi cell, is zero (Fig.2a). The Voronoi cell is
sectioned through the corresponding node and perpendicular to
the direction of interest (θ, φ), as shown in Fig.2b. The flow
Qθφ through the newly established cut face (of areaAθφ) is de-
termined by summing the weighted flow contributions of alln
elements framing into the node:

Qθφ =
n∑
k=1

RkQk (1)

Weighting factorRk = A′k/Ak, whereAk is the area of facet
k andA′k is the area of facetk on the negative side of the cut

300 mm

Figure 1: a) Voronoi discretization of concrete beam; and
b) coarse aggregate distribution above prenotch

plane, as defined by normal direction (θ, φ). Principal flow vec-
tors are determined from fluxqθφ = Qθφ/Aθφ computed for
three mutually perpendicular orientations of the cut face.

Modeling the matrix-inclusion interface

The surface of a spherical inclusion, and the matrix-inclusion
interface, are discretized by placing pairs of nodes on randomly
directed rays from the sphere center; the nodes of each pair are
at distancesa and a + t from the sphere center, wherea is
the sphere radius andt is the thickness of the interface. Each
nodal pair defines a lattice element normal to and spanning the
interface. Such elements, whose Voronoi facets are shown in
Fig. 3a, are most relevant when modeling fracture of the inter-
face [4]. For modeling moisture transport, however, the struc-
ture and properties of the lattice parallel to the interface are also
important. As part of the Delaunay tessellation of the domain,
the set of nodes at distancea + t from the sphere center are
triangulated, forming the structures shown in Fig.3b.
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Figure 2: a) Elemental flow through a Voronoi cell; and b) sec-
tioning of Voronoi cell for nodal flux calculation

a) b)

Figure 3: a) Voronoi discretization of spherical inclusions; and
b) Delaunay triangulation of interface layer

As a starting point for the mesoscale modeling of moisture
transport in concrete materials, consider steady-state inviscid
flow about a single spherical inclusion in a semi-infinite do-
main. This situation is governed by the Laplace equation, sub-
ject to appropriate boundary conditions. Figure4 shows mois-
ture particle streamlines for two basic cases, whereρ is mea-
sured from the axis of radial symmetry. Particle movement is
tracked using a conventional Euler explicit scheme. Flux vec-
tors for an arbitrary point within the domain are interpolated
from the nodal values of the enclosing Delaunay tetrahedron.
The impermeable inclusion and void are modeled by assigning
sufficiently small and large diffusivity values, respectively, to
the lattice elements within the sphere. For the case of a spher-
ical void, flow is drawn inward toward the void as shown in
Fig. 4b and flow along the x-axis is magnified rather than im-
peded. The irregular geometry of the lattice does not bias the
flow field, as evident from the linear flow trajectories away from
the inclusion.

Flow past two neighboring inclusions is shown in Fig.5, where
the nodal flux vectors are determined by the mass conservation
scheme depicted in Fig.2 (in which anglesθ andφ correspond
to the principal flux direction for each node location.) Nearly all
flow is through the connected interfaces, which have been as-
signed high diffusivity values relative to those of the matrix and
inclusions. Flow occurs throughout the matrix phase of the do-
main, yet the associated flow vectors are small and well-below
the plotting threshold. These and other simulations indicate a
jump in effective permeability upon establishing interface per-
colation across the domain. In forthcoming work, the transport
properties of the interface will be modified to reflect interfacial
cracking, as determined from the fracture analyses.

(b)

(a)
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Figure 4: Tracking of moisture movement past: a) impermeable
spherical inclusion; and b) spherical void.

Figure 5: Nodal flux description of interface percolation.
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Summary: The paper discusses a model for calcium leaching of the cement paste due to interaction with low calcium content
water. The methodology is also applicable to other chemical interactions. Chemical damage and mechanical cracking are strongly
coupled. The paper introduces a constitutive model able to capture the coupled nature of the problem.

Methodology and objectives

Degradation of concrete caused by dissolution of the cement
paste due to the action of moving groundwater is a relevant phe-
nomenon in structures designed for long life, like underground
storage for aggressive waste. The phenomenon, first studied by
Ulm [1], is commonly referred to ascalcium leaching.

Due to the interaction with the mechanical crack pattern and
with the presence of an interstitial fluid phase, the chemical
leaching is strongly coupled with the mechanical and hydraulic
processes taking place in the material. The strong coupling and
the non-linear nature of the phenomenon cause severe troubles
in the numerical simulations. The structural problem is ruled
by the equations of conservation of momentum and of con-
servation of mass of the species, in addition to energy balance
for non isothermal problems. All the equations are coupled and
nonlinear.

In the paper it is proposed a multiphysic constitutive model,
so that the problem can be solved by the main field equations
coupled at the constitutive level, through the introduction of
proper internal variables. A complete poro-plastic damaging
model is used for the solid phase, and the constitutive equa-
tions are derived from a consistent thermodynamic model de-
veloped within the framework of the Generalized Standard Ma-
terial Model. This allows to use robust numerical integrators,
similar to those used in standard plasticity.

The model is limited to small deformations. Since in the prob-
lems of interest the temperature does not usually rise above
65oC, isothermal conditions are assumed.

Damage model

Fully saturatedconcrete in isothermal conditions is considered,
in order to simulate the situation of a structural element com-
pletely immersed in groundwater. In the context of the Theory
of Active Porous Media, developed by Biot and Coussy [2, 3],
the internal structure is thus fully defined by the porosityφ,
representing the local average volume ratio occupied by con-
nected voids, referred to the total RVE volume. The following
partition holds

φ = φ0 + φem + φpm + φc (1)

The first term is the initial porosity of the material, the sec-
ond and third term are related to the reversible and irreversible

porosity variation due to the deformation of the solid matrix.
The last term accounts for the increase of the void ratio due
to the dissolution of the matrix, and is assumed as a measure
of the chemical damage undergone by the material. It is pro-
portional to the calcium concentration in solution in the solid
phase, and is a measure of the chemical damage. The mechan-
ical degradation of the solid matrix is modeled, in the context
of the Continuum Damage Model, by means of two scalar vari-
ablesω1 andω2 accounting for cracking in presence of tensile
or compressive stress states, following the approach depicted in
[4].

The coupled damage process affects, in addition to the mechan-
ical characteristics of concrete, its transport properties. The hy-
draulic conduction is ruled by a Darcy-like law; the related per-
meability coefficient is assumed as dependent on the porosity
φ and on the cracks, throughω1 andω2. Because of the cement
paste dissolution, a calcium ion flow arises inside the material;
this can be thought as the sum of adiffusiveterm and acon-
vectiveterm, due to the motion of the fluid phase. The diffu-
sive term is ruled by a Fick-like law, where the diffusivity de-
pends on the porosity and on the liquid calcium concentration
(see [5, 6] for further details). In the next section the chemo-
mechanical constitutive model will be presented in some detail.

Mechanical constitutive model

The constitutive laws are ruled by the free energy, defined as a
function of thereversibleparts of the kinematic variables:

ψ = mCaψCa(c) + ψ̄s (εe, φem, α
e, ωei , s

e) (2)

where the kinematic variables are split in the sum of their re-
versible and irreversible components:

ε = εe + εp strain
φm − φ0 = φem + φpm porosity
α = αe + αp = 0 hardening
ωi = ωei + ωpi = 0 damage
s = se + sp = s0 solid calcium concentration

(3)

The dual mechanical counterparts are:

σ stress
p fluid pressure
χ hardening static variable
ζi damage static variables
Γ solid calcium potential

(4)
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In (2) the free energy of the calcium ion species has been in-
cluded, that allows to evaluate the electro-chemical potential
µCa of the ions. The free energy functional of the solid phase,
depending on the elastic components of the state variables, is
chosen in the form

ψ̄s =
1
2
εe : Cu(ωe, se) : εe +

1
2
N(ωe, se)φem

2

− b(ωe, se)N(ωe, se)εevφ
e
m +

1
2
H(ωe, se)αe2

+
∫ s

s0

Γ̄(se)dse + Γ0 s
e

(5)

whereΓ̄(se) is the equilibrium solid calcium chemical poten-
tial. A multiplicative dependence on mechanical and chemical
damage is assumed for the global bulk modulusK only. This
assumption is based on the hypothesis that the global stiffness is
damaged because of the erosion of the solid matrix, but the lat-
ter preserves its intrinsic elastic properties. As a consequence,
it is assumed

K (ωe, se) = (1 + ωe)n [1− φc(se)]K0

G (ωe, se) = (1 + ωe)n [1− φc(se)]G0

Ks = const

(6)

The elastic moduli appearing in (5) are obtained from the above
positions [6].

The static variables are obtained by differentiation of the func-
tional (2) w.r.t. to their kinematic counterparts. Due to the ener-
getic approach, the constitutive equations exhibit cross-effects
between mechanical and chemical phenomena, as a conse-
quence of the Maxwell symmetries of the energy functional (2).

The irreversible processes are described by defining suitable
plastic domains in the enriched space of the static variables. In
particular, amechanicaldomaingm(σ, p, χ, ζi) and achemi-
cal domaingc(p,Γ), describing the driving force of the leach-
ing process, are introduced. According to the expression of the
dissipation, both functions depend on the pressure. Associated
flow rules are postulated. The chemical dissipation is described
by means of viscoplastic flow rules, since the leaching process
is a slow time-dependent phenomenon. The chemo-mechanical
coupling is then solved at the constitutive level in a classical
return mapping scheme.

Applications

In this section some of the results obtained by the application
of the proposed model are reported.

Fig. 1 shows the degradation of the mechanical properties of
concrete, in terms of peak strength and Young modulus vs.
fluid calcium concentration, in a softening test. The specimen
is first loaded until a fixed strain is reached, kept constant while
a chemical leaching process occurs. The abrupt steps in the di-
agrams are related to the onset of the dissolution of the several
calcium phases contained in the cement paste.

Fig.2 shows, on the contrary, the results of a compression creep
test. The specimen is first loaded until a fixed elastic stress is
reached. This stress level is kept constant while a leaching pro-
cess is applied, and the strain is measured as the erosion takes
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Figure 1: Softening test—compression, uniaxial loading.
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Figure 2: Creep test—compression, uniaxial loading.

place. In the figure the strain and the eroded calcium ratio are
reported as a function of time for different values of the final
level of calcium concentration in the solution.

The results show the ability of the model to capture the coupled
nature of the chemical corrosion of concrete, so that it can be
usefully employed for durability analyses.
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Summary: In this study a thermo-chemo-damage model is developed in order to simulate the swelling phenomena and the
correlated deterioration of stiffness and strength in concrete due to the alkali-aggregate reaction. The model is validated on the
basis of accelerated laboratory tests.

Thermo-chemo damage model

The chemical reaction between the alkali of the mortar, the sil-
ica of the aggregates and the water, i.e. the so-called alkali-
silica reaction (ASR), produces a gel phase with an increase of
volume causing swelling and progressive damage of concrete.
The velocity of the reaction is strongly dependent on tempera-
ture and humidity of concrete. Many important concrete struc-
tures built some decades ago exhibit damage caused by ASR:
a reliable evaluation of the actual safety margin of these struc-
tures is still a challenging task.
In this work we develop a model for concrete affected by the
ASR in the framework of the poromechanics theory (see e.g.
the comprehensive book [1]), in the line of what proposed in
[2–4]. We consider concrete as a two-phase material: the con-
crete skeleton and the expanding gel. In our modelization we
assume that a single variableξ, called extent of the reaction, can
be used to measure the degree of advancement of the reaction.
This nondimensional variable grows from zero and reaches the
unit value when the reaction is completed. The gel formation
and the gel expansion are considered as simultaneous, so that
the volumetric deformation of the gel due to the reaction is as-
sumed linearly proportional to the reaction extentξ. The mi-
crocracking dissipation phenomena of the concrete matrix are
modeled by an internal variableD = 1−D(1−Dt)(1−Dc),
whereDt andDc, are isotropic damage variables, one for stress
states of prevailing tension and the other for stress states of pre-
vailing compression, as proposed in [5].
The overall macroscopic stressσ is expressed as the difference
between the effective stressσ′ in the concrete skeleton and the
swelling pressurep in the gel as

σ = σ′ − b p1 (1)

whereb is the Biot coefficient and1 is the unit tensor. The ef-
fective stress and the pressure are related to deviatoric strainse
and volumetric strain trε by

σ′ = (1−D)[2µe +K(tr ε− αϑ)1] (2)

p = −(1−D)Mb(tr ε− αϑ− κξ) (3)

whereµ andG are the shear and bulk modulus of the skele-
ton,M is the Biot modulus,α is the volumetric thermal ex-
pansion coefficient,ϑ = T − T0 is the temperature variation
from the reference temperatureT0 andκ is a parameter propor-
tional to the volumetric deformation due to ASR under isother-
mal stress-free conditionε∞,

κ =
K +Mb2

Mb2
ε∞ (4)

Under the hypothesis of full saturation, reasonable e.g. for grav-
ity dams, the rate of ASR can be considered to depend only on
the temperature historyT (t) through an internal characteristic
time tc(T ) as described in [2] and not on the relative humidity.

ξ̇(t) =
1

tc(T (t))
(1− ξ(t)) (5)

The activation of damage is governed by two loading functions
ft andfc depending on both the macroscopic stressσ and the
gel pressurep through an “inelastic effective stress”σ′′

σ′′ = σ + β p1 (6)

where the non-dimensional factorβ, with β ≤ b, governs the
damage level achievable in a concrete specimen under free ex-
pansion due to ASR. Forβ = 0 the swelling pressure of the
gel does not intervene in the damage activation, in this case the
ASR only produces an imposed volumetric strain, additional to
the thermal one. Activation functions are given the mathemati-
cal expressions proposed in [5]:

ft(σ′′, Dt) =
s : s
2
− a0t(trσ′′)2

+a1ttrσ′′ht(Dt)− a2th
2
t (Dt) (7)

fc(σ′′, Dc) =
s : s
2
− a0c(trσ′′)2

+a1ctrσ′′hc(Dc)− a2ch
2
c(Dt) (8)

wheres is the deviatoric stress,ht andhc are the hardening-
softening functions andait, aic, i = 0, 1, 2, are non-negative
material parameters governing the shape and the size of the
elastic domain.

Figure 1: Multon’s tests geometry and loading [6].
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Figure 2: Longitudinal strain evolution: (a) experimental re-
sults from [6], (b) model prediction.

Model validation

The model has been used to simulate the experimental results
reported in [6]. In these tests the expansion due to ASR under
isothermal condition is monitored on small cylindrical speci-
men of reactive concrete transversally constrained by thin steel
rings with and without an imposed axial stress, see Fig. 1. The
experimental setting was intended to generate within the speci-
mens multi-axial stress states, close to those expected within
a large structure in service conditions. The experimental re-
sults in terms of longitudinal strainεz and radial stressσr are
compared in Figs. 2 and 3 with the predictions of the proposed
model.

Despite the simplicity of the proposed model and in particular
the independence of the reaction extent of the stress state, eq.
(5), the model is able to qualitatively reproduce the decrease of
the longitudinal ASR expansion due to the presence of external
compressive stress. Also the effect of the stress triaxiality is
correctly reproduced: the thicker the steel rings, and hence the
higher the radial stress, the higher the longitudinal expansion.

Conclusions

The comparisons with the experimental tests confirm that the
model correctly reproduces the swelling phenomenon and its
structural effects. The proposed model has been implemented

Figure 3: Radial stress evolution (a) experimental results from
[6], (b) model prediction.

in a finite element code. Simulation of the effects of ASR in a
concrete dam are currently in progress.
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Summary: The present paper discusses the discrete modelling of fracture and moisture transport in quasibrittle heterogeneous
materials. The rigid body spring method is used to describe the coupled mechanisms within one framework. The elastic response
of the material is described by springs connecting the rigid bodies. Fracture is modelled by damaging those springs. Moisture
transport is divided into two parts, i.e. Darcy flow in porous media and discrete flow along fractures. Darcy flow is modelled
perpendicular to the interfaces of rigid bodies, whereas the discrete flow is described along the interfaces, which are interpreted
as micro-cracks. Fracture and moisture transport are coupled and the modelling approach is validated by benchmark tests.

Introduction

The coupling of fracture and moisture transport is often the de-
termining mechanism in many structural phenomena observed
in construction materials, i.e. spalling of concrete covers due
to corrosion of the reinforcement or excessive cracking due to
delayed ettringite formation. The present work deals with mod-
elling of fracture and flow in heterogeneous quasi-brittle ma-
terials, such as concrete, toughened ceramics, rocks and stiff
soils. This research area is well developed and many continuum
approaches have been proposed in the literature to describe the
two mechanisms. However, these approaches are computation-
ally very demanding and become almost prohibitive for the
simulation of the evolution of the microstructure of these ma-
terials. Therefore, a discrete approach is presented here. In the
following a short overview on the modelling approach is given.

Modelling of fracture

The mechanical response is described by a two-dimensional
Rigid-Body-Spring-Model (RBSM), which was originally pro-
posed by Kawai [1] and in recent years further developed and
applied to concrete, for instance, by Bolander [2].

The main idea of the RBSM is to decompose the domain into
rigid bodies connected by springs, which describe both the elas-
tic and inelastic mechanical response of the solid. Each rigid
body has 3 degrees of freedom, namely two translations and
one rotation. Fracture is modelled by an elasto-damage law for
the springs.

The decomposition of the domain is based on the Voronoi tesse-
lation. First, vertices are placed randomly in the domain. Then,
the Voronoi tesselation is performed. The random placement of
the vertices is constrained by a minimum distance between any
two vertices and between vertex and the specimen boundary.
The relation of the number of vertices for a chosen domain and
the minimum distance determines the distribution of the sizes
of rigid bodies. A saturated arrangement, i.e. maximum number
of vertices for a specific domain and minimum distance, results
in rigid bodies of similar size (Figure 1).

The degrees of freedomu = {u1, v1, φ1, u2, v2, φ2}T of two
rigid bodies sharing an interface (see Figure 2) are related to the
displacement discontinuitiesuc = {uc, vc}T at the mid point
of the interface where the springs are located. The discontinuity

Figure 1: Random placement of vertices and Voronoi tessela-
tion.

Figure 2: Rigid body spring model.

componentsuc andvc are the normal and shear components
respectively. The constitutive response is expressed by a stress-

strain law, where the strain isε = {εu, εs}T =
1
L
{uc, vc} and

L is the distance between the two vertices. The tensile failure
is described by an elasto-damage model following [3].

Heterogeneous materials are characterised by spatially varying
material properties. In the present work this is reflected in an
two-folded approach. Aggregates larger than 5 mm are mod-
elled discretely, whereas the heterogeneity due to finer particles
is described by an autocorrelated random field, which is gener-
ated using the spectral representation according to [4] and [5].
This mixed approach is a compromise between model detail
and computational time, which allows a realistic description of
the tensile failure of concrete as it is shown in Figure 3.
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(a) (b)

Figure 3: Concrete subjected to uniaxial tension: (a) heteroge-
neous microstructure. (b) fracture pattern at peak load.

Figure 4: Discretisation of Darcy and channel flow within the
RBSM framework.

Modelling of moisture transport

Moisture transport is decomposed into two parts: first, Darcy
flow in porous media and second, moisture transport along frac-
tures. The former is modelled via a discrete network of one-
dimensional conduit elements [6]. This network is defined by
the nodes of the rigid bodies (Figure 4) which already account
for the translations and rotations of the mechanical problem.
Thus, these nodes are enriched by an additional degree of free-
dom for the transport problem. In order to obtain equivalence
between a continuum description and the proposed discrete sys-
tem, the one-dimensional flow description is tuned accordingly.

In addition to this primary transport process, moisture transport
along fractures is also defined via a channel flow using a Bing-
ham flow description. Thus, the finite elements which connect
the two vertices and describe the mechanical response and the
porous flow are augmented by two additional nodes along the
interfaces between the rigid bodies, which allow the descrip-
tion of all three physical features (mechanical, Darcy flow and
channel flow) by means of a super element with one integration
point located at the midpoint of the interfaces.

Modelling of the coupling of fracture and mois-
ture transport

Both flow regimes are influenced by fracturing of the inter-
face between rigid bodies. Crack opening will allow or enhance
channel flow along this interface while flow perpendicular to
the crack opening will also be influenced. This work investi-

gates this mechanical-transport coupling and in particular the
relationship between the flow parameters and crack opening.

Conclusions

The present work deals with a discrete approach to modelling
of fracture and moisture transport in heterogeneous materials.
The importance of the coupling of these two physical features
is demonstrated by means of benchmark tests. It is shown that a
discrete approach is computationally efficient and an attractive
alternative to continuum descriptions of multiphysic phenom-
ena in heterogeneous materials.
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Summary: This research work involves the development of a new computational model for simulating the fracturing process in
a porous medium using the finite element method. Two independent numerical techniques are utilized for describing this process.
The partition of unity method is used for describing the fracturing process, and the double porosity model is used for describing
the resulting fluid flow. The basic mechanism of the proposed model is described here.

Mechanism of the model
The basic mechanism of a fracturing porous medium can be
described such that, upon application of external loads and/or
sudden changes in water levels or hydraulic pressures at the
boundaries of the medium, fractures (fissures) might initiate
and propagate in the medium, the degree of which depends on
the material properties and the amount and type of the external
forces. As a result of the fracturing process, a pressure gradient
occurs between the fluid within the matrix pores and the fluid
in the adjacent fractures. This gradient causes a fluid to flow
from a high pressure zone to a low pressure zone. Fluid flow
may alter the effective stress state and can cause a reduction
of the material bearing capacity that may result into complete
collapse of the system.

Fig. 1 illustrates the mechanism of the fracturing process in
a porous medium and the resulting fluid flow, as well as the
modeling approach adopted in this work. The figure shows that,
due to the fracturing process, the solid phase is divided into two
(or more) sub-domains defined asΩ+ andΩ−, and the fluid
phase exhibits flow towards the fracturing zone (flow towards
the porous matrix is also possible, depending on the pressure
gradient).

The fracturing process is modeled using the partition of unity
finite element method. In this method, a displacement discon-
tinuity is introduced in the displacement field of the finite ele-
ments. This is done by decomposing the displacement field into
a continuous part and a discontinuous part, where the latter is
enhanced by use of the Heaviside function. One of the main ad-
vantages of the partition of unity method is that the discontinu-
ity, once initiated, can propagate through a body independent
of the finite element mesh size. As a result of the fracturing
process, fluid starts to flow between the fractured zone and the
surrounding porous matrix. This process is modeled using the
double porosity model. In this model, the fluid flow is simu-
lated as a superposition of the flow in two overlapping con-
tinuum domains; one representing a continuum porous matrix
and the other representing a continuum fractured zone (fissured
network). The overlap between the two domains is made via
a leakage process. The pore pressure in the porous matrix is
defined asPw1 and the pore pressure in the fractured zone is
defined asPw2. The fracturing zone, dependent on the proper-
ties of the medium, might have different configurations such as
banded (weak) discontinuities or strong discontinuities. This is
illustrated in the right hand side circle of Fig. 1, in which the
fractured zone can be either a single crack (black line represent-

ing a strong discontinuity) or a combination of many fissures
(black and gray lines representing a fissured network). In this
paper, emphasis is placed on the presence of a strong disconti-
nuity.

The coupling between the fracturing process and the fluid flow
is made by the use of the Biot theory of consolidation. The
model assumes that there is an explicit coupling between the
solid deformation and the pore pressure in the porous matrix,
and an implicit coupling with the pore pressure in the fractured
zone. The latter coupling is satisfied by a leakage term between
the pore pressure in the porous matrix and the fractured zone.

The capability of the model is illustrated in detail in [1]. The
numerical results show that, using the proposed model, the very
complicated physical and mechanical processes of the fractur-
ing porous media can be simulated properly and efficiently.

Figure 1: Fracturing mechanisms and modeling approach.

Governing Equations
Equilibrium equations: For a two-phase medium, i.e. solid
and water, the static equilibrium equation in terms of total stress
tensor,σ, can be expressed as

∇ · σ + ρg = 0 (1)

in whichg is the gravity force vector per unit mass, andρis the
porous matrix density, defined as

ρ = (1 − n) ρs + nSw ρ
w

Whereρsis the skeleton density,ρw is the water density,Sw is
the degree of saturation andn is the porosity.
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The total stress is defined as

σ = σ′′ − αSw mPw (2)

in whichσ′′ is a general form of the effective stresses,Pw is
the pore pressure in the porous matrix (in what follows this pore
pressure will be presented asPw1), mT = [1, 1, 1, 0, 0, 0]T

andα = 1 − KT /Ks is the Biot compressibility parameter
with Ks the bulk modulus of the grain material andKT the
bulk modulus of the skeleton.

Continuity equations: Following the double porosity model,
the continuity equation for water flow in a partially saturated
porous matrix (subscript 1) and a fractured zone (subscript 2)
can be expressed as follows.
Porous matrix:

∇T
{
kr1 k1

µw Bw1

(
−∇Pw1 + ρw g

)}
+

ᾱ kr1 k1

µw Bw1

(
Pw1 − Pw2

)
+(

α − n1

KsBw1
S2
w1 +

n1 Sw1

Kw Bw1

)
∂ Pw1

∂ t
+(

α − n1

KsBw1
Pw1 Sw1 +

n1

Bw1

)
∂ Sw1

∂ t
+

αSw1 mT ∂ ε

∂ t
= 0

(3)

Fractured zone:

∇T
{
− kr2 k2

µw Bw2
∇Pw2

}
− ᾱ kr2 k2

µw Bw2

(
Pw1 − Pw2

)
+(

n2 Sw2

Kw Bw2

)
∂ Pw2

∂ t
+
(

n2

Bw2

)
∂ Sw2

∂ t
= 0 (4)

Here,k1 andk2 are the permeability of the porous matrix and
the fractured zone, respectively,kr1 andkr2 are dimensionless
parameters varying from zero to one, representing the relative
permeability of the porous matrix and the fractured zone, re-
spectively,µw is the dynamic viscosity of water,Kw is the
water bulk modulus, andε is the strain vector.Pw1 andPw2

are the excess pore pressures in the porous matrix and the frac-
tured zone, respectively. The degree of saturation,Sw and the
relative permeability,kr, can be pore pressure dependent, such
thatSw = Sw (pw), kr1 = kr1 (pw) andkr2 = kr2 (pw).

The second term in Eqs. 3 and 4 is the leakage term, which
describes a leakage process between the porous matrix and the
fractured zone. In this term,̄α is a coefficient, which depends
on the fracture width and geometry and describes the fluid flow
due to the pressure gradient between the porous matrix and the
fractured zone.Bw is the water formation volume factor de-
fined as water and dissolved gas volume at reservoir conditions
divided by water volume at standard conditions. This value can
often be neglected, since it is always close to 1.

Casting Eqs. (1)–(4) in the partition of unity finite element
method framework leads to

K11 K12 K13 0
K21 K22 K23 0
0 0 K33 K34

0 0 K43 K44




ā
b̄
P̄w1

P̄w2

+


0 0 0 0
0 0 0 0
C31 C32 C33 0
0 0 0 C44

 ∂

∂ t


ā
b̄
P̄w1

P̄w2

 =


F1

F2

0
F4



in which

K11 =
∫

Ω

BT DB dΩ

K12 =
∫

Ω+
BT DB dΩ

K13 =
∫

Ω

BT αmSw Np dΩ

K21 =
∫

Ω

BT DB dΩ

K22 =
∫

Ω+
BT DB dΩ +

∫
Γd

NT
u TNu dΓ

K23 =
∫

Ω+
BT αmSw Np dΩ+

K33 =
∫

Ω

(∇Np)
T k1 krw1

µw1Bw1
∇Np dΩ +

+
∫

Ωd

NT
p

ᾱk1 k
r1

µw1Bw1
Np dΩ

K34 = −
∫

Ωd

NT
p

ᾱk1 k
r1

µw1Bw1
Np dΩ

K43 = −
∫

Ωd

NT
p

ᾱk2 k
r2

µw1Bw1
Np dΩd

K44 =
∫

Ωd

(∇Np)
T k2 k

r2

µw2Bw2
∇Np dΩd +

+
∫

Ωd

NT
p

ᾱk2 k
r2

µw1Bw1
Np dΩd

C31 =
∫

Ω

NT
p

Sw1

Bw1
mT B dΩ

C32 =
∫

Ω+
NT
p

Sw1

Bw1
mT B dΩ+

C33 =
∫

Ω

NT
p λw1 Np dΩ

C44 =
∫

Ωd

NT
p λw2 Np dΩd

whereλw1 = α−n1
Ks Bw1

S2
w1 + n1 Sw1

Kw Bw1
andλw2 = n2 Sw2

Kw Bw2
.
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Summary: Effective stress in multi-phase porous media with double porosity is evaluated. Derivation procedure using Biot’s
theory approach as well as the theory of multi-phase mixtures is briefly described. Comparative evaluation of the effective stress
parameters in two methods and their quantification in terms of physically measurable parameters are presented.

Introduction

Mechanical constitutive study of multi-phase porous media re-
quires, in the first step, determination of the effective stress in
solid skeleton. Expressed as a function of the externally applied
stresses and the internal fluid pressures, the effective stress con-
verts a multiphase, multi-porous media into a mechanically
equivalent, single-phase, single-stress state continuum. Indeed,
the effective stress principle has been at the foundation of the
advancements in the modern geomechanics. Over the years,
significant contributions have been made to the understanding
and evaluation of effective stress in single-phase [1, 2] and two-
phase [3, 4] saturating fluids in single porosity media. Never-
theless, many natural geomaterials exhibit two scales of poros-
ity: macro and micro porosity. Aggregated soils, fissured clays
and fractured rocks are examples of geomaterials with double
porosity. In addition to showing two scales of porosity, the void
space in these materials is frequently filled with more than one
fluid and requires multi-phase or unsaturated constitutive mod-
elling.
A substantial amount of work has been undertaken in the area
of double porous media following the concept of double poros-
ity [5]. However, the use of the effective stress in unsaturated
double porous media has rarely been investigated [6]. In this
work, systematic approaches for the derivation of the effective
stress equations for unsaturated double porous media are eval-
uated. The effective stress parameters of the system are identi-
fied and physically measurable entities are introduced for their
determination.

Effective stress in double porous media

Significant differences of opinion exist in the literature con-
cerning the definition of the effective stress in porous media
with two or more fluid phases. Here, effective stress is simply
defined as that emanating from the elastic (mechanical) strain-
ing of the solid skeleton,

εe = Ceσ′ (1)

in whichεe is the elastic strain of the solid skeleton,Ce is the
drained compliance matrix, andσ′ is the effective stress tensor.
We place no further restriction on the definition of the effec-
tive stress. Any stress satisfying Equation (1) is regarded as the
effective stress. The effective stress defined in this manner is
applicable to elastic as well as elastic-plastic analysis of porous

media. It is noted that even in the elastic-plastic region the ef-
fective stress is determined based on the elastic component of
straining. In terms of pressure of fluid constituents, the effective
stress in the total sense is expressed as,

σ′ = σ−
N∑
π=1

απpπI (2)

in which σ is the total stress tensor,α is the effective stress
parameter, p is the fluid phase pressure, andπ = 1, . . . N rep-
resents the number of fluid phases within the system.I is the
second order identity tensor.

Parameters of effective stress

There are two main approaches to the mechanical study of con-
tinuum multiphase porous media. The first one, named Biot’s
approach, is a phenomenological approach associated with the
early work of Biot [7] where the phases are not treated sepa-
rately. The second family of approaches, including averaging
and theory of multiphase mixtures, uses the concept of volume
fraction in order to consider each single phase of the multiphase
system. These methods are used here to determine the effective
stress parameters in equation (2).

To derive the effective stress parameters for an unsaturated
double porous medium using the first approach, an elementary
volume of fissured porous medium subjected to an isotropic
external mean stress is considered with internal fluid pressures
p1
w, p1

a, p2
w and p2

a in the pore-water, pore-air, fissure-water
and fissure-air, respectively (Fig. 1a). To obtain the volumetric
strain of the element, the stresses acting on the element
are decomposed into five loading cases. Case I corresponds
to an external isotropic stress with internal fluid pressures
maintained at a reference value of zero, Case II corresponds
to an equal pore-water, pore-air, fissure-water, fissure-air and
external isotropic pressure, Case III corresponds to an equal
fissure-water, fissure-air and external isotropic pressure and
zero pore-water and pore-air pressures, Case IV corresponds
to an equal fissure-water, fissure-air, pore-air and external
isotropic pressure and zero pore-water pressure, and finally
Case V corresponds to an equal fissure-air, pore-air and exter-
nal isotropic pressure and zero pore-water and fissure-water
pressures. The crucial aspect in the above decomposition is
that the compressibility coefficient, and thus the volumetric
strain, of the various component cases can be readily measured
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through a series of simple experiments. The volumetric elastic
strain of the elementary volume,εev = tr ε, can be obtained by
summation of volumetric elastic strain in the five loading cases.

(a) (b)

Figure 1: (a) Air and water pressure in unsaturated double
porous media, and (b) schematic representation of phases in
unsaturated double porous media (aggregated soil).

Volumetric elastic strain in each loading case is calculated by
multiplying the applied stresses of each case by a relevant com-
pressibility of the system. Starting from the smallest material
scale, five compressibilities can be identified for quantification
of the effective stress parameters. These are: compressibility of
solid grains, compressibility of the porous blocks, overall com-
pressibility coefficient of fissured porous medium, compress-
ibility coefficient of porous blocks with respect to a change on
pore matric suction, and compressibility coefficient of fissured
porous medium with respect to a simultaneous change in ma-
tric suction of pores and fissures. The effective stress obtained
hereby is compared to the one given through equation (1) and
(2). This gives the effective stress as:

σ′ = σ − (α1p1
a + α2p2

a)I + α1χ1s1I + α2χ2s2I (3)

Parameters of effective stress in this equation,αm and χm

(m = 1, 2) are defined in terms of measurable compressibil-
ities of the system.

In the second approach, a multi-phase mixture is considered
with immiscible fluids at two scales of porosity (Fig. 1b). Fol-
lowing the mixture theory analyses, the stress tensor is written
for each constituent separately. The stress tensors of fluid con-
stituents are given by their partial pressure. The stress tensor in
solid constituents is written as:

σs = −nsβsI + σ′ (4)

In this equationns andβs are volume fraction and configu-
ration pressure of the solid constituent, respectively, andσ′ is
the extra part of solid stress tensor or effective stress. Config-
uration pressure of the solid constituent represents the forces
exerted at the interface of solid particles with fluid. This force
is exerted by the fluid constituents, namely liquid and gas in
both mixtures and it should therefore be equal to a fluid pres-
sure averaged over the mixtures. Herein, the total fluid pressure
can be written in analogy to the Dalton’s law [8]:

βs =
1
n

∑
m=1,2

∑
π

nπpπ (5)

wherenn andpπ are respectively volume fraction and intrin-
sic pressure of the fluid constituentπ, andn denotes the total
porosity. The first summation is made over the two levels of
porosity. Therefore, equation (4) together with equation (5) de-
termine the stress tensor in the solid constituent in terms of ef-
fective stress, fluid pressure and volume fraction of fluids. The
total stress tensor of the mixture is obtained by summing the
partial stress tensor of all constituents. The relation of effective
stress with total stress is then established through the expres-
sion of total stress tensor. The total stress tensor obtained in
this way can be rearranged as in equation (3). However, param-
eters of effective stress determined in this approach are given
in terms of the volume fraction of constituents:α1 andα2 are
respectively ratio of macro and micro porosity over the total
porosity, andχ1 andχ2 are local values of degree of saturation
at two levels of porosity.

Concluding remarks

The two approaches result in similar expression of effective
stress in unsaturated double porous media. Parameters of effec-
tive stress are physically different in the two approaches. How-
ever, physical comparison of these parameters suggests the idea
that compressibility of a double porous medium can be related
to the two existing levels of porosity.
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Summary: An elastic-plastic constitutive model for partially saturated sands and silts, formulated in terms of two stress state
variables, is presented. It serves as a material model in the context of a three-phase formulation with the three phases consisting
of the solid phase and the two fluid phases, water and air. The ability of the model to describe the material behavior of partially
saturated sands and silts is demonstrated by the numerical simulation of an extensive series of suction controlled tests for a silty
sand.

Introduction

Partially saturated soils are three-phase media consisting of a
deformable soil skeleton and the two fluid phases, water and
air. The difference between the pressures in the water and the
air phase, called capillary pressure or matric suction, has a con-
siderable impact on the mechanical behavior of partially satu-
rated soils.

Several elastic-plastic material models for unsaturated soils
have been proposed in the last fifteen years, see e.g. [1, 2, 3,
4, 5, 6, 7]. Most of these material models focus on clays and
adopt some type of CAM CLAY formulation.

The present constitutive model has been developed for sands
and silts in the context of the application of compressed air as a
means for displacing the groundwater in soils. This method can
be applied to soils with a certain range of permeability, i.e. to
sands and silts. For these types of soils a cap model, in which
a shear failure surface is available, seems to be an appropriate
choice.

Stress state variables

It is generally accepted that two independent stress state vari-
ables are required for describing the material behavior of par-
tially saturated soils. Possible definitions of stress state vari-
ables being work conjugate to the strains of the soil skeleton
are derived, e.g. in [8, 9, 10]. From thermodynamic consider-
ations it follows that a material model for the soil skeleton of
a partially saturated soil can be formulated in terms of the ef-
fective stress tensor for partially saturated soils,σ′, and matric
suctionpc:

σ′ = σ − [Sw pw − (1− Sw) pa ] I , pc = pa − pw, (1)

whereσ denotes the total stress tensor,Sw represents the de-
gree of water saturation andpw and pa are the pressures of
the fluid phases water and air;I denotes the second order unit
tensor. In the present modelpc plays the role of a stress-like
plastic internal variable. The choice ofσ′ as stress state vari-
able is advantageous, because for the limiting case of a wa-
ter saturated soil, characterized bySw = 1, σ′ degenerates to
the well known effective stress tensor for water saturated soils.
Thus, material models for partially saturated soils, formulated
in terms ofσ′ andpc, allow a straightforward transition from
partially saturated to saturated conditions.

Cap model for partially saturated soils

The constitutive relations are given as

σ′ = C : (ε− εp) (2)

with C denoting the elasticity tensor andε andεp representing
the total and the plastic strains, respectively.

The degree of water saturationSw is expressed as a function of
matric suction by the approximation proposed in [11]:

Sw = Swr + (Sws − Swr )
[
1 +

(
pc

pcb

)n]−m
, (3)

whereSws andSwr denote the maximum and residual degree of
water saturation, respectively, andpcb is the air entry value;m
andn are parameters to fit the empirical equation to experimen-
tal data.

The functional form of the shear failure surface is defined as

f1 (σ′, pc) = L(ϑ)‖s‖ − Fe (I ′1)− Fs(pc) (4)

with
Fe (I ′1) = α+ θI ′1 and Fs(pc) = k pc , (5)

whereI ′1 and‖s‖ denote the first invariant and the norm of the
deviatoric part ofσ′, L(ϑ) accounts for the dependence of the
yield surface on the third invariant of the stress tensor according
to [12] andα, θ andk are material parameters.

The functional form of the strain hardening cap is given as

f2 (σ′, κ(pc), pc) =
= Fc (‖s‖, I ′1, ϑ, κ(pc))− Fe (κ(pc))− Fs(pc) (6)

with κ(pc) ≤ I ′1 ≤ X (κ(pc)) and

Fc (‖s‖, I ′1, ϑ, κ(pc)) =

√
L2(ϑ) ‖s‖2 +

(
I ′1 − κ(pc)

R

)2

,

(7)
whereR is a material parameter, defining the ratio of the major
to the minor axis of the elliptic cap. The yield surface of the cap
model is shown in Fig.1.

The plastic potentialsg1 and g2 for the non-associated flow
rule are obtained from the yield functions (6) and (7) by set-
ting L(ϑ) = 1 and by replacingθ by ψ, which determines the
amount of plastic dilation.
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´

Figure 1: Yield surface of the cap model.

For the cap surface a logarithmic hardening law which relates
the plastic volumetric strain ratėεpv to the hardening parameter
κ(pc) is employed:

ε̇pv = λ (pc)
Ẋ (κ(pc))
X (κ(pc))

. (8)

X(κ(pc)) denotes the apex of the elliptical cap, which is given
as

X (κ(pc)) = κ(pc) +R [Fe (κ(pc)) + Fs(pc)] (9)

and
λ (pc) = λ(0) [(1− r) exp(−βpc) + r] (10)

is a scaling factor for the plastic volumetric strain rate. It
is assumed to decrease fromλ(0) at zero matric suction to
λ (pc)→ r ·λ(0) for pc →∞ with β andr (r < 1) as material
parameters accounting for the increasing plastic stiffness under
hydrostatic loading with matric suction [1].

(8) together with (10) is used to determine the intersection
X(κ(pc)) of the strain hardening cap with theI ′1 − pc plane,
which is essential for partially saturated soil models as it ac-
counts for the increasing elastic domain with increasing matric
suction in hydrostatic compression and for the irreversible de-
crease in volume on wetting at high values of effective stress.
Hence, it is referred to as loading collapse (LC) yield curve
(Fig. 1).

Numerical simulation of suction controlled tests

The material model is validated by the numerical simulation
of an extensive series of suction controlled tests [13, 14], con-
ducted on cubical specimens of a silty sand. The stress paths
include (i) hydrostatic compression tests, consisting of loading
and unloading at three different values of matric suction, (ii)
triaxial compression tests and (iii) conventional triaxial com-
pression tests, (iv) simple shear tests and (v) triaxial extension
tests at different values of matric suction and different values
of hydrostatic net stress. Comparisons of the numerical results
with the experimental data can be found in [15].
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Summary: A discrete three-dimensional (3-D) polydisperse model for unsaturated granular soils has been developped. The
presence of interparticle water is taken into account by introducing specific interaction forces between grains that are quantified
through capillary theory. In order to deal with water transfer mechanisms, the model is suction-controlled. At every suction level,
capillary forces are directly linked to the water content and computed on the basis of the Laplace-Young equation.

Introduction

Macroscopic properties of granular materials such as soils de-
pend on interparticle contact properties. For dry materials, in-
terparticle forces are related to the applied external stresses as it
has already been well investigated in the past, by means of the
Discrete Element Method, [1]. In unsaturated soils new addi-
tional elements should be defined in order to understand prop-
erly their behaviour. When a soil is unsaturated, the presence of
water between particles leads to the formation of liquid bridges
(menisci), introducing new interparticle forces. Capillary the-
ory, through the Laplace-Young equation, allows the force in-
duced by a liquid bridge to be linked to the local geometry of
the contact and to the volume of water found at a given contact.
A multi-scale approach [2] seems, therefore, to provide a per-
tinent view of the phenomenon, and DEM appears completely
suitable for analyzing capillary implications at the macroscopic
level.
Along these lines, we present a 3-Dimensional micromechan-
ical model for unsaturated granular media made of spherical
particles. The model has the particularity of being suction con-
trolled, which enables it to simulate some laboratory experi-
ments on unsaturated soils. This model can be an acceptable
approximation for granular soils such as medium to fine sands
and silts, where suction mostly arises from capillarity (no os-
motic suction like in clays).

Capillary phenomenon at the grain scale

Capillarity can be explained by superficial tension phenomena
that develop at the interface between water and air, [3]. In a
liquid bridge between two grains, superficial tension causes
the liquid-gas interface to behave like a stretched membrane,
which, as a consequence, maintains solid particles together. In
addition, a discontinuity is created between the pressure of the
gas and the liquid phases. Laplace theorem (1805), expresses
this pressure difference∆p = pgaz − pliquide as the product of
the surface tensionσ of the liquid and the mean curvatureC of
the liquid bridge surface:

∆ p = σ C (1)

Capillary phenomenon is considered at the scale of a “capillary
doublet”, made of a pair of grains, spherical in our case, linked

by a liquid bridge whose shape and profiley(x) are defined by
the Laplace equation:

∆p y(x) + σ
1 + y′2(x)− y(x)y′′(x)

(1 + y′2(x))3/2
= 0 (2)

A geometrical description of a capillary doublet is presented
in Fig. 1. Grains of radiiR1 andR2 are separated by a length
called the intergranular distanceD, anglesδ1 andδ2 represent
the wetting angles corresponding to the wetting part of the solid
grain. The way the grains are wet by the liquid is obvious by the
contact angle marksθ. The x-axis is defined as the line pass-
ing through the centers of the two spheres and constitutes a
symmetric volume whose shape is described by the profile. The
gorge radiusy0 is defined like the smaller value of this profile.

Figure 1: Capillary doublet (polydisperse case): (a) global
view, (b) geometry of the liquid bridge.

Through these considerations, interaction geometry (water vol-
umeV , intergranular distance) and capillary interparticle force
are given by:

V = π

xc2∫
xc1

y2(x) · dx− V1 − V2 (3)

where

Vi =
1
3
πR3

i (1− cosδi)
2 (2 + cosδi) (4)

D = xc2 −R2(1− cosδ2)− xc1 −R1(1− cosδ1) (5)

Fcap = 2πyoσ + πy2
o∆p (6)

Obviously in a granular assembly, particularly one with a high
water content, several particles can be included in the menis-
cus and capillary interactions are then more complex than this
doublet configuration. The model is therefore not valid for high
degree of saturation.
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Hydro-micromechanical model

A 3D code called YADE (Yet Another Dynamic Engine) has
been developed based upon the work of Donz and Magnier,
[4]. Each particle of the material is a sphere that is identified
independently by its own mass,m, and radius,R. Contact in-

Figure 2: Interaction geometry.

teractions are described by a linear elastic law, which defines
the normal forceFn in relation to the intergranular distance
(see Fig. 2 for the definition of the local coordinate system):

Fn =
{
−KnD if D ≤ 0
0 if D > 0 (7)

whereKn is the contact stiffness.

Friction between grains produces a shear forceFt in the tan-
gential plane of contact, opposite to the incremental tangential
displacementdUt, and obeying the Coulomb friction law:

dFt = −Kt dUt (8)

Ft max = −µFn (9)

whereKt is the shear stiffness, andµ the friction coefficient.

To account for capillarity, a numerical resolution of the Laplace
equation has been developed in order to link capillary pressure
(or suction) to capillary forces and water volume. The result is a
suction-controlled model where, at every time-step during the
simulation, capillary forces and water volumes are computed
based upon the microstructure and the imposed suction level,
as described by equations (1)–(3).

Figure 3: Evolution of the capillary forceFcap with D.

A schematic diagram of the capillary law implemented is
shown in Fig. 3. The choice was made to define the appearance
of a meniscus when grains are strictly in contact (no rough-
ness effects). Furthermore, it is to be noted that the formula-
tion introduced intrinsically defines the distance from which
the meniscus breaks off as depending on the given pressure and
interacting geometry.

Perspectives

The current aim of this work is to study the results of this cap-
illary model when numerical samples are subjected to load-
ing programs such as triaxial and suction variation tests. Fig.
4 shows the characteristic curve obtained for a sample made
up of 10 000 grains, with radii ranging from 0.1 mm to 0.6
mm, submitted to a wetting-drying path. It is to be noted that
results are quantitatively comparable to experimental curves,
[7]. Currently, the model enables suction to be directly linked

Figure 4: Characteristic suction-saturation degree curve for a
10,000 grain assembly.

to capillary forces and water content inside the material at the
micro-level. Development of homogenization techniques, [2, 6,
7], will allow insights to be obtained regarding the capillary in-
duced stresses and more generally unsaturated granular media
behaviour.
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Summary: The objective is this paper is to report a coupled chemo-physical formulation within the framework of Biot´s poroe-
lasticity to describe the phenomenon of hydration swelling and chemo-osmotic effects. The osmotic coefficient is responsible for
the gradient of the chemical potential, and is inversely proportional to the dissipation of the pore pressure and directly propor-
tional to the swelling. The Fickian diffusion coefficient controls the rate at which the solute diffuses through the sample, and in
doing so, affects the rate at which the pore pressure and displacement evolution, indirectly.

Introduction

An oil reservoir is formed over millions of years. First, organic
material on the bottom of a lake or the sea is buried under miles
of sand and mud. Whilst this is happening, the heat and pressure
from the earth “cooks” the organic material, forming shale. The
oil then migrates from the shale where it is formed, to a more
porous rock in which it is then stored, and it is finally trapped in
the reservoir by an impermeable rock. Therefore, where there
is an oil reservoir, there will be shale.

Shale, whose original constituents are mud, clay and organic
material such as algae, can vary from a fissile, fine grained sed-
imentary rock, to a highly cemented shaley siltstone. It is a very
low permeability rock, prone to fragmentation due to brittle-
ness, and fracture due to its low tensile strength. It is also a
water absorbing rock, which swells as it absorbs the water –
this is known as hydration swelling.

Drilling can be carried out by either percussive or rotary action
breaking up the ground at the drill tip, and the excavated mate-
rial is then removed by circulating a pressurised mud solution,
which also serves to cool the bit, lubricate the drill pipe, keep
corrosion in check, and prevent caving. Borehole instability is
extremely costly - both in time and labour, as drilling rig can be
lost, the borehole may need to be re-drilled, or sidetracked, and
the logging may be lost. The mud solution is one of the most
important factors in the success of a well, helping the borehole
to remain stable during drilling.

The vast majority of drilling muds are water-based [1], and con-
sist primarily of three parts: water, the colloidal fraction, and
the inert fraction. The colloidal fraction is the part of the mud
which is reactive, giving the mud viscosity, and the inert frac-
tion is the part which gives the mud weight. Drilling through
shale poses particular problems of instability due to the inter-
action between the shale and the drilling fluid. Shale is a low
permeability rock, in which hydraulic and chemical gradients
induce changes in pore pressure, due to hydraulic and ionic dif-
fusion and osmotic effects [2]. The drilling fluid must enable
the confining stresses in the rock around the wellbore to re-
main high enough for the well to support itself, by controlling

the pore pressure through utilising this osmotic membrane be-
haviour.

The objective is this paper is to report a coupled chemo-
physical formulation within the framework of Biot’s poroelas-
ticity to describe the phenomenon of hydration swelling and
chemo-osmotic effects.

Formulation

The mechanical behaviour of the porous medium is given in the
incremental form by [3]

dσ = dσ′ −αmdp+ ωmdC. (1)

Using the principle of virtual work, the coupled equilibrium
equation can be written as∫

Ω

δεT [DT (ε− εo) + σo −αmp+ ωmC] dΩ

−
∫
Ω

δuTbdΩ−
∫
Γ

δuT τdΓ = 0 (2)

whereσ, σ′, p, α, ω, C are total stress, effective stress, pore
pressure, Biot coefficient, swelling coefficient, and solute con-

centration, respectively, andm =
[

1 1 0
]T

.

To take into account the presence of osmotic pressure due to
solute, the Darcy’s mass fluxM is modified according to

M = −k
µ

(∇p− Φ<∇C) (3)

where k, µ, Φ are intrinsic permeability, dynamic viscosity,
and the osmotic coefficient, respectively. The reflection coef-
ficient accounts for the perfect and imperfect membrane effect
such that0 ≤ < ≤ 1. We can now introduce the continuity
equation in the form

∇ · (ρM + ρφvs) +
∂

∂t
(ρφ) = 0 (4)

while the rate of change of the porosity can be written as

dφ = (1− φ)mT dε (5)

−mT

3Ks
(dσ′ −αmdp+ ωmdC)dp+

1− φ
Ks

dp
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Figure 1: Schematic view of numerical experiment [4].

The transport of solute in porous medium can be described by
the Fickian flux, taking into account the membrane effects in
the solute transport [4]:

−∇ · (L∇p)−∇ · (D∇c) + φ
∂c

∂t
= 0 (6)

Numerical example
The numerical experiment performed has the setup shown in
Fig. 1. The thickness of the sample is 15 mm, with width 30
mm. The sample is encased in between two stiff porous plate,
maintained at a constant pressure,po. The upper plate is sub-
jected to a constant stress ofσc and at timet = 0, a salt solution
with concentrationCb is introduced. Table 1 shows the material
properties used for the calculation.

Table 1: Material properties of shale sample.

Material property value

Young’s modulusE [MPa] 2000
Poisson’s ratioν 0.3
Hydraulic conductivityk/µ [m/s] 5× 10−3

Biot’s constantα 1
Porosityφ 0.4
Fickian coefficientD [m2s−1] 1× 10−4

Osmotic coefficientΦ [MPa m3 mol−1] −3.33× 10−5

Swellingω [MPa m3 mol−1] 0

The main objective of this exercise is to investigate the
membrane and the associated osmotic-enhanced effect on the
swelling and hydraulic properties of the coupled formulation.
Fig. 2 shows that an increase inΦ increases the swelling of the
sample as expected and thus prolonged the consolidation pro-
cess. This behaviour can be rightly understood by referring to
equation (3), where the osmosis effect is interfering with the
Darcy’s flux causing a delay in the pressure dissipation. Notice
that all this happened when the swelling coefficient is assigned
a zero value. Fig. 3 illustrates a very rapid pore pressure dissi-
pation, in proportional to the value of the osmotic coefficient,
in the bottom porous plate even though the pressure has been
maintained in the upper chamber. The pore pressures increases
slowly after a while when there is sufficient solute concentra-
tion in the bottom chamber to establish a concentration gradi-
ent, thus equalising the pressure differential and restoring the
pore pressure in the Chamber B to its original value. Fig. 4
shows the diffusion of the salt solution throughout the sample
and since its variation remains the same for different osmotic
coefficient, only one set of curve is shown here.

Conclusions
The osmotic coefficient is responsible for the gradient of the
chemical potential, and thereby affects the dissipation of the
pore pressure and swelling. The Fickian diffusion coefficient
controls the rate at which the solute diffuses through the sam-
ple, and in doing so, affects the rate at which the initial
pore pressure and displacement change, indirectly. The coupled
model developed herein is in fact a weakly coupled model. This
is because the rate of change of porosity in the solute equation
is ignored and porosity change is assumed to be constant. Fu-
ture research will relax this restriction and to investigate the
effect of permeability change as the porous solid deforms.

Figure 2: Effect of osmotic coefficient on displacement.

Figure 3: Effect of osmotic coefficient on normalised pore pres-
sure in porous plate.

Figure 4: Diffusion of solute through sample.
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Summary: An Enhanced Assumed Strain four node quadrilateral element for coupled problems (displacement-pore pressure) in
soil dynamics is presented and tested for numerical stability in the undrained incompressible limit, following a technique based
on the well known inf-sup condition.

Introduction

It is a very frequent engineering situation to find soils saturated
with a fluid, most typically water. It is important to include in
the governing equations the effect of the pore fluid and its in-
teraction with the soil skeleton.

It is precisely that what the well known Biot equations do, ei-
ther in their original version [3, 4] or in the more developed
ones due to Zienkiewicz and coworkers at Swansea University
[9].

Unless certain requirements are met numerical models based
on coupled formulations become ill conditioned when the wa-
ter compressibility and the soil permeability are small, caus-
ing stability problems. A necessary condition for stability is
given by the so called patch test for mixed formulations due
to Zienkiewicz, Qu, Taylor and Nakazawa [12]. A mathemati-
cally more involved treatment of the problem is due to Babuska
[2] and Brezzi [5] through the so called inf-sup condition. Its
satisfaction is a sufficient condition for stability. The numerical
evaluation of the inf-sup condition gives rise to the inf-sup test
[7].

The extension of the standard four node displacement formu-
lation to a coupled formulation by using a standard four node
interpolation for both displacements and pressures produces an
element type that satisfies neither the patch test for mixed for-
mulations nor the inf-sup test. This problem is usually over-
come by using a higher interpolation order in displacements
than in pressures. However, it is possible through special tech-
niques [6, 9, 13] to produce stable formulations with equal or-
der interpolation in displacements and pressures. The goal of
equal order interpolation is to provide a higher degree of ap-
proximation for pressures and to produce simpler and faster
codes. One of these formulations [8] is based on the Simo-Rifai
enhanced strain element [10, 1].

The objective of the present work is to extend this formulation
to the range of soil dynamics, that is to include inertia effects
of the soil-fluid mixture.

Governing equations

For the present work the solid skeleton-pore fluid interaction
problem shall be modeled following Zienkiewicz and Shiomi
[11]. The governing equations include a linear momentum bal-
ance equation for the mixture in the first place and secondly a
mass balance equation for the fluid phase:

S(σ′ −mp) + ρmb− ρmü = 0 (1)

mTSu̇−∇Tk∇p+
ṗ

Q∗
+∇Tkρwb = 0 (2)

whereST =

[
∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x

]
, mt=(1,1,0),b= body forces,

ρm= density of the mixture,k= permeability matrix,ρw= water
density, 1

Q∗ = n
Kw

+ 1−n
Ks

, n=porosity,Kw =water bulk modu-
lus,Ks= solid grain bulk modulus.

Numerical formulation

The proposed formulation is based on the assumption that the
strain is the sum of the standard component and an additional
strain fieldε̃ which is not subjected to interelement continuity
as explained in [6]:

ε = ∇su + ε̃ (3)

The problem is initially formulated with standard the weighted
residual technique and four fields(u,σ, ε̃, p). In a second step
the stress fieldσ is eliminated, and the remaining three fields
(u, ε̃, p) are approximated with the corresponding interpolation
functions:

u = Nuū (4)

ε̃ = Gᾱ (5)

p = Npp̄ (6)

whereNu andNp are based on standard four node interpolation
functions andG is the interpolation matrix for field̃ε, based on
seven internal modes [1]. Finally the following equations are
obtained:

M¨̄un+1 +
∫
Ω

BTσ′dΩ−Qup̄n+1 = fun+1 (7)
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∫
Ω

GTσ′dΩ−Qαp̄n+1 = 0 (8)

Qu ˙̄un+1 + Qu ˙̄αn+1 + Hp̄n+1 + C ˙̄pn+1 = fpn+1 (9)

where
M= mass matrix=

∫
Ω

NT
u ρmNudΩ

Qu= coupling matrix displacement-pressures=
∫
Ω

BTNpdΩ

Qα= coupling matrix enhanced strain-pressures=
∫
Ω

GTNpdΩ

H= permeability matrix=
∫
Ω

(∇Np)T k∇NpdΩ

C= compressibility matrix =
∫
Ω

NT
p

1
Q∗NpdΩ

fun+1 = loading vector associated tou field
fpn+1 = loading vector associated top field

Approximation in time is done with the same Generalized New-
mark scheme GN22 for fieldsu and α, and with a GN11
scheme for pore pressurep. The different approximations are
expressed in the following equations:

¨̄un+1 = ¨̄un + ∆¨̄un (10)
˙̄un+1 = ˙̄un + ∆t¨̄un + β1∆t∆¨̄un (11)

ūn+1 = ūn + ∆t ˙̄un +
1
2
∆t2¨̄un +

1
2
β2∆t2∆¨̄un (12)

˙̄pn+1 = ˙̄pn + ∆ ˙̄pn (13)

p̄n+1 = p̄n + ∆t ˙̄pn + θ∆t∆ ˙̄pn (14)

Substituting these expansions in equations (7)–(9) the follow-
ing set of non linear equations is obtained:

Gu
n+1 = M∆¨̄un +

∫
Ω

BTσ′dΩ−Qup̄n+1 − Fun+1 = 0

(15)

Gα
n+1 =

∫
Ω

GTσ′dΩ−Qαp̄n+1 − Fαn+1 = 0 (16)

Gp
n+1 = Quβ1∆t∆¨̄un + Quβ1∆t∆¨̄αn + Hθ∆t∆ ˙̄pn

+C∆ ˙̄pn+1 − Fpn+1 = 0 (17)

These equations can be expressed in a more compact fashion
through the following equation:

G(x) = 0 (18)

where

x =

 ∆¨̄un
∆¨̄αn
∆ ˙̄pn

 , G =

 Gu
n+1

Gα
n+1

Gp
n+1

 (19)

and solved through a standard Newton-Raphson algorithm ex-
pressed in the following equation:

G(xi) +
∂G

∂xx=xi

dxi = 0 (20)

Following the standard Enhanced Assumed Strain technique
[6], the additional strain field is eliminated through static con-
densation, resulting in a four node displacement-pore pressure
formulation.

The element is tested for stability in the undrained incompress-
ible limit following a technique based in the inf-sup condition
[2, 5, 7, 8]. Numerical examples to illustrate the new formula-
tion are included.
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Summary: In this contribution we experimentally investigate a compressible cellular rubber. In an appropriate model we apply
the theory of porous media to describe the viscoelastic properties. The model parameters are identified by an algorithm based on
evolution strategies.

Introduction

Cellular rubber is a material which is produced since a lot of
decades. In particular, its variable application area is very im-
portant for the industry. In the majority of cases, cellular rubber
is found in the automotive industry and its subcontractors, for
example in every kind of gaskets or tubes which are used e. g.
for doors and windscreens. Therefore, it becomes necessary to
understand the material behaviour of cellular rubber and to de-
velop appropriate models.

1mm

Figure 1: Pore structure of the investigated cellular rubber on
different length scales (right: magnification of 2.5).

During the last decades a lot of research work has been per-
formed on the manufacturing process of cellular rubber itself in
order to establish a reproducible material with a homogeneous
pore distribution and homogeneous properties, cf. Haberstroh
[7, 8, 9]. For this purpose the interaction of the foaming process
and the vulcanisation has to be understood. In current contri-
butions the mechanical behaviour of cellular rubber is usually
modelled on the basis of material laws developed for rubber,
i. e. on the basis of an incompressible material law extended by
a volumetrical modification. This kind of modelling becomes
insufficient for large volumetrical strains, i. e. close to the point
of compaction and, therefore, may cause unphysical results.

Experiments

Figure 2: Dogbone specimen (left) and cylindrical tension
specimen (right).

In the present contribution, we investigate the mechanical prop-
erties of an EPDM2 cellular rubber. Based on some elementary

2Ethylen-Propylen-Dien-Kautschuk

mechanical tests the material behaviour is classified to be vis-
coelastic with a fastly decaying overstress as can be seen in
Fig.3. On the one hand, the material is found to be highly com-
pressible according to its cellular structure. On the other hand,
the material behaves nearly incompressible if the point of com-
paction is reached, i. e. if all pores are closed by a volumetric
deformation.

On the experimental side we accomplish uniaxial tension tests
on dogbone specimens and on cylindrical specimens (Fig.2).
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Figure 3: First Piola-Kirchhoff stressP11 versus stretchλ1 for
different rates.

In order to characterize the visco-elastic behaviour both quasi-
static and time dependent experiments are carried out. The de-
formation is measured contactless by optical measurement of
the stretch in longitudinal and in transversal direction, respec-
tively. Furthermore, we perform uniaxial compression tests and
hydrostatic pressure tests in order to get information of the ma-
terial behaviour under pressure. All experiments are performed
in high-precision custom-made devices.

Modelling and parameter identification

According to the micro-structure of cellular rubber we apply
the well-known theory of porous media (TPM) (cf. Bowen
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[1], Mow [10], Ehlers [4]), i. e. the concept of superimposed
continua extended by the concept of volume fractions. In the
present case, a hybrid two-phase model is chosen consisting of
a materially incompressible solid skeleton and a compressible
pore gas, cf. Diebels [2, 3]. Assuming a closed pore structure
both constituents are coupled kinematically. Therefore, it is as-
sumed that no relative motion occurs between the porous ma-
trix material and the pore gas. Following the lines of Eipper
& Ehlers [5] and Eipper [6] a point of compaction is included
into the model. Therefore, the stress response tends to−∞ if
the pores are closed by a volumetrical deformation. If the solid
sekletton is assumed to be materially incompressible, the point
of compaction is reached if the value of the JacobianJS reaches
the value of the initial soliditynS0 .

In a last part of the contribution the model parameters are iden-
tified with respect to the experimental results. Therefore, an
algorithm based on multimembered evolution strategies is ap-
plied, as it was first introduced by Rechenberg [11] and Schwe-
fel [12]. Based on the selection of different starting parameter
vectors (parents) new vectors (descendants) are generated by
random mutation. Besides the mutation procedure the mech-
anism of recombination, i. e. combining different parameters
form different parent vectors, is used in order to generate addi-
tional descendant parameter vectors. Afterwards the boundary
value problem corresponding to the experimental setup is eval-
uated for each of the descendants, where the vectors with the
best objective functions are selected to become parents of the
next generation. The evalulation of the boundary value prob-
lems can be done in parallel on a PC cluster. This algorithm
was found to be robust, stable and reliable.
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Summary: The purpose of our study is to model a thin curved poroelastic interphase between two poroelastic media as a curved
surface endowed with certain appropriate jump conditions. In contrast with most of the recent studies on curved thin interphases
(see, e.g. [1, 2]), the present work deals with a coupled phenomenon and elaborates a coordinate-free asymptotic approach.
The poroelastic interface model thus obtained is new and general. It can be implemented with reference to a Cartesian coordinate
system. Particularized to some special situations, it allows us to rediscover the widely used empirical poroelastic interface models.

Consider a curved poroelastic interphase of small constant
thicknessh between two individually homogeneous poroelastic
media referred to as medium 1 and medium 2 (Fig.1). The sub-
domain ofR3 occupied by the interphase is denoted byΩ(0)

while the sub-domains occupied by media 1 and 2 are desig-
nated byΩ(1) and Ω(2), respectively. The interfacesS1 and
S2 are both assumed to be perfect. Then, the main objective
of the study is to replace the thin interphase by an appropriate
zero-thickness imperfect interfaceS0 between media 1 and 2,
located at the middle surface parallel toS1 andS2 (Fig. 2).

Medium 2

S2

S0

S1

n

h/2

h/2
Medium 1

Interphase

Figure 1: Media 1 and 2 connected by a poroelastic interphase.

Medium 2

S2

S1

h/2

h/2

n
S0 (imperfect interface)

Medium 1

Figure 2: Media 1 and 2 connected by an equivalent imperfect
poroelastic interface.

Assumed to be linearly poroelastic, the material constituting
each medium is characterized by

σ = C : ε−Bp, p = −MφB : ε+Mφφ, (1)

whereε is the infinitesimal strain tensor,σ denotes the Cauchy
stress tensor,p andφ are the pressure and porosity increase
from the initial state,C is the drained elastic tensor,Mφ desig-
nates Biot’s modulus andB stands for Biot’s tensor.

Assuming that fluid density variations are neglected, the classi-
cal transport law for porous media, namely Darcy’s law, reads

w
ρ0

= −k.Op, (2)

wherek, ρ0 andw are respectively the permeability tensor, the
initial mass density of the fluid and the fluid flux. In addition to
the foregoing constitutive laws, the strain tensor fieldεmust be
derived from a displacement fieldu as

ε =
1
2

[Ou + (Ou)ᵀ] , (3)

the stress tensor field has to satisfy the equilibrium equations

divσ = 0 (4)

in the absence of body forces, and the fluid flux vector must
verify the conservation of the fluid massm

ṁ+ div w = 0. (5)

Furthermore, the interfacesS1 andS2 are assumed to be per-
fect, so that the traction vectort = σ.n, displacement vector
u, pressure changep and normal fluid fluxwn = w.n are con-
tinuous across them:

t(0) |Si= t(i) |Si , u(0) |Si= u(i) |Si , (6)

p(0) |Si
= p(i) |Si

, w(0)
n |Si

= w(i)
n |Si

, (7)

where i = 1 or 2 according to whether the interfaceS1 or
S2 is concerned. Above and hereafter, a quantity(·) belong-
ing to Ω(j) (j = 0, 1, 2) and evaluated onSi is symbolized by
(·)(j) |Si

.

As in [2] and [3], the basic idea used in the present work to
establish a poroelastic imperfect interface model consists in: (i)
substituting the interphase of thicknessh by a zero-thickness
interfaceS0 separating medium1 directly from medium2;
(ii) endowingS0 with certain jump relations to be satisfied by
the diplacement vectoru, traction vectort, pressurep, normal
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fluid flux wn. Thus, the main step towards obtaining the imper-
fect interface model is the derivation of appropriate poroelastic
jump relations forS0.

The first step consists in expressing the jump satisfied by the
displacement vector in configuration of Fig.1 across the inter-
phase with the help of Taylor expansions, continuity conditions
and constitutive laws:

u(2)|S2 −u(1)|S1=
h

2

[
−W (0) : (Osu(2)|S2 +Osu(1)|S1)

+Q(0).(t(2)|S2 +t(1)|S1) + v(0)(p(2)|S2 +p(1)|S1)
]
+0(h2)

(8)

where use has been made of surface derivativeOsu (see e.g.
[4]), the vectorv(i) and third-order tensorW (i) are defined by

v(i) = Q(i).B(i).n, W (i) = Q(i).H(i), (9)

with Q(i) = (n.C.n)−1
, (H(i))pqr = (C(i))psqrns.

We now consider the configuration of Fig.2 where the interface
S0 separating media 1 and 2 is imperfect. Denote byu(±), t(±),
p(±) andw(±)

n the displacement vector, traction vector, pressure
change and normal fluid flux, respectively, evaluated atS0 on
the side of medium1 for the superscript “−” and on the side of
medium2 for the superscript “+”. The deduction of the jumps
JuK = u(+) − u(−), JtK = t(+) − t(−), JpK = p(+) − p(−) and
JwnK = w

(+)
n − w

(−)
n acrossS0 is based on the requirement

that the jumps in displacement, traction, pressure change and
normal fluid flux when moving fromS1 to S2 in the configu-
ration of Fig.2 are (within the terms of order0(h2) and higher
orders) the relevant jumps when passing fromS1 to S2 in the
configuration of Fig.1.

To determine the jumpJuK acrossS0, we developu(i) |Si ,
t(i) |Si

andp(i) |Si
aboutSi in the configuration of Fig.2 by

means of Taylor’s expansions. Then, introducing them in (8)
and using constitutive laws yields

JuK =
h

2

[(
Q(0) −Q(2)

)
· t(+) +

(
Q(0) −Q(1)

)
· t(−) +

+
(
W (2)−W (0)

)
: Osu(+) +

(
W (1)−W (0)

)
: Osu(−) +

+
(
v(0) − v(2)

)
p(+) +

(
v(0) − v(1)

)
p(−)

]
+ 0(h2). (10)

It is worthwhile to notice that the displacement jump equation
(3.16) of [2] in the case of elastic interphase, is rediscovered
by settingp(+) = p(−) = 0. The expressions for the traction,
pressure and normal fluid flux jumps, which have been derived
by similar reasoning, are omitted due to the limitation of pages.

To know the different classes of interphases enclosed in this
model, we take an interest in extremal cases for the isotropic
behaviour. The components of drained elastic tensorCijkl are
assumed to be bounded and of the same order of magnitude,
verifying the Laḿe’s coefficient relationsλ(0) � λ(1), λ(2) and
µ(0) � µ(1), µ(2). Under these assumptions, for a soft inter-
phase, the displacement and traction jumps are reduced to

JtK = 0, (11)

and

JuK = h

[
1
µ(0)

t− λ(0) + µ(0)

µ(0)(λ(0) + 2µ(0))
(n.t)n

]
+

+
h

2

[
b(0)(

λ(0) + 2µ(0)
) (p(+)n+p(−)n)

]
(12)

whereb(i) designates the isotropic Biot’s coefficient of medium
i. For a stiff interphase, whenλ(0) � λ(1), λ(2) andµ(0) �
µ(1), µ(2), the displacement and traction jumps are given by:

JuK = 0, (13)

JtK = −2hµ(0) λ(0)

λ(0) + 2µ(0)
divs [tr(Osu)(δ − n⊗ n)]−

−2hµ(0) divs εs−hµ(0) divs [n⊗ (n.Osu) + (n.Osu)⊗ n]+

+ hµ(0)b(0) divs
[
(δ + n⊗ n) (p(+) + p(−))

]
, (14)

whereδ is the second-order identity tensor,εs the interface
strain tensor.

Finally, referring to isotropic permeability of mediumi
with k(i), the pressure and normal fluid flux jumps read

JpK = 0, JwnK = hk(0)∆sp, (15)

in the case of a weakly permeability interphase (k(0) �
k(1), k(2)) and

JwnK = 0, JpK = −h 1

ρf0

1
k(0)

wn, (16)

for a highly permeability interphase (k(0) � k(1), k(2)). The
foregoing equations explicitely show that the empirical open-
pore condition is a particular case of the general interface model
established here. The latter can be also particularized to redis-
cover other existing empirical imperfect interface models.
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Summary: The crucial point of the mechanically-activated permeability evolution of macrocracked geomaterials undergoing
increasing confining pressures is here adressed within the framework of micromechanics arguments. The proposed modelling
allows one to clearly intercept the key role of the pore space connectedness within the macro-fracture.

This scientific contribution lies in the industrial context of frac-
ture processes likely to develop on the walls of excavated tun-
nels. The geomaterial of interest is a shale-like material, but
the theoretical reasoning may be easily adapted to cement-like
materials. In real-life situations, fracture processes do dramati-
cally change the permeability and reduce confinement capac-
ity of host materials. This becomes a crucial point as soon
as this fractured shale is used as a natural barrier for the un-
derground storage of radioactive waste. Within this context,
an important experimental campaign has been developed at
the Laboratoire de Mcanique de Lille (France) on Callovo-
Oxfordian (Bure site, Meuse, France) saturated clay-shales.
Chemo-physical couplings related to clay-shales/water interac-
tions deserve a special attention and are disregarded here in
order to concentrate our analysis to the coupling existing be-
tween the mechanical response of tested samples (evolution of
the confining pressure versus the fracture closure) and the evo-
lution of their gaz-permeability coefficients (≈ O(10−14m2)).

The theoretical analysis based on the experimental results takes
advantage of micromechanics tools. Indeed, the irregularities of
the surfaces associated to the two lips of the macroscopic frac-
ture, physically intercepted by the conceptual rugosity, may be
considered as the physical origin of the observed non linear
mechanical and hydraulic responses. In order to reproduce the
progressive reclosure of the macroscopic fracture under con-
finement, the idea consists in modelling this macroscopic frac-
ture by a local parallel arrangement of crack-like pores. Thus,
the applied confining loading progressively closes the cracks,
beginning by the ones having the smallest initial aspect ratio.
We first derive the reclosure law for the cracks as a function
of the macroscopic loading. Then, this physical mechanism al-
lows one to derive both the macroscopic fracture closure law
and the evolution of the sample permeability coefficients.

Based on Eshelby’s work [3], cracks are modelled as oblate
spheroids that can undergo large transformations. They are
defined by a unique orientation, uniform radii (a) but differ-
ent initial aspect ratios (small-to-big axes ratioX = c/a).
Thus, considering an isotropic compressive macroscopic stress
(Σ = −Σ1 with Σ > 0 in compression), reclosure of a crack

family occurs as soon as the stress reaches a thresholdΣc` re-
lated to a given initial aspect ratio according to the following
law:

X = Xo −
Tn
3ks

(Σ−Σo) →

→ Σc` = Σ(X = 0) = Σo +
3ks

Tn
Xo (1)

whereΣo = Σ(X = Xo) stands for the reference state of
stress whileTn is a given parameter of the problem that may
be analytically derived as a function of the un-fractured solid
matrix Poisson ratio (bulk modulusks)

• At the macroscopic scale, the fracture (F) closure is con-
trolled by a closure variable denoted bycc [1] and defined
as :

cc = − 1
2R

∫
F

[ξ] · n dΓ (2)

whereR is the (cylindrical) tested samples [1], while [ξ]
is the displacement jump through fracture lips. The mi-
cromechanics reasoning then allows to derive the evolu-
tion law cc = cc(Σ), that accounts for the reclosure state
of the fracture with respect to the macroscopic stress in-
tensity applied on the samples.

• Concerning advective transport properties, classical mi-
cromechanics reasonings start from the morphological as-
sumption that a crack may be considered as a system
of two parallel planes [4, 5] with a characteristic value
of the permeability given by the factorc2/3. Theoreti-
cal developments show that the macroscopic permeability
derived by the classical mixture law, specific for a 2D-
configuration, clearly underestimates the experimentally
measured permeability. Besides, resorting to a continuous
distribution of initial aspect ratios allows one to exhibit
a monotonic decreasing function of the macroscopic per-
meability evolution lawkhom = khom(Σ). Improvements
are finally obtained by using the Self-Consistent Scheme
that naturally accounts for the concept of cracks perco-
lation phenomenon responsible for dramatic permeability
increase [2].

156 Prague, Czech Republic, 25-27 June 2007



Multi-Phase, Multi-Physics Modelling of Porous Media

The last part of the study deals with the validation of
the proposed micromechanics model with respect to the
results obtained by the experimental tests [1]. We prove
that application of the Self-Consistent Scheme for the lo-
cal mechanism of cracks closure contains all the physics
that permits to reproduce the experimental evolution laws
cc(Σ) andkhom(Σ).

References

[1] C.A. Davy, F. Skoczylas, J.D. Barnichon, and P. Lebon
(2006): Permeability of macro-cracked argilite under con-
finement: Gas and water testing.Physics and Chemistry of
the Earth(in press).

[2] L. Dormieux and D. Kondo (2004): Approche
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Summary: When modeling flow and transport in porous media, often different kinds of physical processes dominate in different
parts of the model domain under consideration. Highly complex processes generally show a strong dependence on fine-scale
properties. A multi-scale–multi-physics approach is presented in which complex processes are modeled on a finer scale then
the less complex processes and in which the complex processes are restricted to regions where they are actually governing.
Such a multi-scale multi-physics modeling approach is needed in many fields of engineering, like – among many others – the
contamination of the unsaturated zone of the groundwater by a light non-aqueous phase liquid, the sequestration of carbon
dioxide, or biomechanical applications. In this work, we will present results for the application of the multi-scale–multi-physics
algorithm to the modeling of flow and transport in the subsurface, and also first results for the modeling of brain cancer treatment
including possible future enhancements obtainable by application of the algorithm.

Introduction

Flow and transport phenomena in porous media are the gov-
erning processes in many natural and industrial systems. Con-
sidering the flow and transport processes on the one hand, they
occur on different spatial and temporal scales and may also dif-
fer locally. Highly complex processes may take place in one
part of the system necessitating an examination of the processes
on a fine spatial and temporal scale, while in other parts of
the system, physically simpler processes may take place allow-
ing an examination on a coarser scale. Considering the porous
medium on the other hand, its heterogeneous structure shows
a high dependence on the spatial scale. The porous medium
is generally heterogeneous on every spatial scale, but different
kinds of heterogeneities predominate on different scales.

To study these issues, one might consider a variety of applica-
tions ranging from soil science over industrial applications to
biomechanical systems. As an example, consider a domain with
randomly distributed heterogeneities where complex multi-
phase–multi-component processes are relevant only in a small
(local) subdomain. This situation might well be an LNAPL
contamination in the unsaturated zone of the groundwater (an
LNAPL is a light non-aqueous phase liquid, i.e. a liquid that is
not miscible with water and whose density is smaller than that
of water), where complex three-phase–three-component pro-
cesses take place in a subdomain in and around the contami-
nated zone, see Fig.1. This subdomain needs fine resolution as
the complex processes are governed by small-scale effects. For
a comprehensive fine-scale model taking into account multi-
phase–multi-component processes as well as heterogeneities in
the whole (global) model domain, the data collection is often
far too expensive and the computational effort is high.

Therefore, a general multi-scale concept has been developed,
see [2].

The presentation is structured in two main parts. In the first
part, the mathematics and numerics of the multi-scale–multi-
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Figure 1: Multi-physics processes in the subsurface occuring
on different scales.

physics algorithm with focus on its application to the case of
an LNAPL contamination in the unsaturated zone of the sub-
surface is demonstrated. In the second part, contrarily, the mod-
eling of the treatment of a brain tumor is shown as a possible
future application of the multi-scale–multi-physics algorithm.

Multi-scale–multi-physics concept for an LNAPL
saturation in the unsaturated zone

For themathematicaldescription of the considered processes,
a system of coupled partial differential equations is set up. It
is possible to decouple this fully-coupled system of equations
to a so-called fractional flow formulation where processes are
partly separated, e.g. it is solved separately for pressure, sat-
uration or concentration. Like this, it is possible to solve for
different kinds of processes on different scales (we will solve
for saturation on a coarer scale) and to treat mathematically dif-
ferent equation types in a numerically adequate fashion.

When modeling multi-phase–multi-component processes, con-
centration equations are solved from which total concentrations
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are obtained. For the solution of the pressure equation, the sat-
uration distribution is needed which can be calculated form the
pressure and concentration field using so-called flash calcula-
tions. These flash calculations use equilibrium relationships for
the mass transfer between fluid phases.

For thenumericalsolution of the partial differential equation
system consisting of pressure, saturation, and concentration
equations, a discretization in space and time is necessary. On
the one hand, the space discretization scheme has to be flexible
enough to treat elliptic as well as hyperbolic equations, on the
other hand it has to ensure that numerical diffusion is low. The
latter is an especially important aspect as due to the upscaling of
the saturation equation to the coarse scale, a macro-dispersion
term results. If the numerical diffusion is of a similar magni-
tude as the macro-dispersion, the results are not very valuable
any more. For these reasons, a discontinuous Galerkin scheme
[1] is used for which higher order discretization is easily possi-
ble.

For discretization in time, the elliptic pressure equation is
solved using a time-implicit numerical scheme, while the hy-
perbolic saturation and concentration equations are solved us-
ing an explicit Runge-Kutta scheme with a modified minmod
slope limiter.
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Figure 2: Principle of the multi-scale algorithm.

The principal idea of the developed multi-scale–multi-physics
algorithm can be taken from Fig.2. On the one hand, the global
flow field influences the local multi-phase–multi-component
processes on the fine-scale. On the other hand, the coarse-
scale effects of the fine-scale multi-phase–multi-component
processes in the subdomain are captured by source / sink terms
and the coarse-scale effects of fine-scale heterogeneities by a
macrodispersion term.

The main benefit of the multi-scale algorithm is that less data is
required due to the local solution of the concentration equations
and due to the upscaling of the saturation equation, and that
computing time can be reduced.

Next steps to do. Having developed this multi-scale–multi-
physics algorithm, further research still is to be done. Numeri-
cal performance can be improved by additionally upscaling the
pressure equation. Next, the boundary conditions of the local
domain need further fine-tuning and more flexible approaches
like a moving mesh following the LNAPL plume are possible.
Finally, as the algorithm is constructed in a flexible fashion, it
can be adapted to more complex or other physical processes.
As an example, the application to the modeling of brain cancer
treatment is shown as a possible future research field.

Outlook: modeling of the treatment of brain tu-
mors

Brain tumors are especially complicated to treat because a
blood–brain barrier exists which does not allow for substances
to leave the blood vessels in the brain, see Fig.3. Therefore the

Figure 3: Composition of a human brain.

medicine has to be injected locally, that means directly into the
brain tumor. Around the injection zone, high deformations may
occur due to the injection needle and the injected flux. Cur-
rently, first numerical simulations of this injection process are
going on which model all processes on the same scale and de-
formation processes in the whole model domain. Fig.4 shows
the concentration distribution of the medicine at a certain point
in time after the injection.

Figure 4: Concentration distribution of injected medicine in a
brain.

As data, e.g. structural information, is available from MRT in
high density for the brain, this data would need to be upscaled
before being applicable in a numerical simulator. Furthermore,
high deformations only occur in the vicinity of the injection.
Therefore, computational time could be significantly reduced
by solving the deformation equation only locally around the
injection zone and to solve globally, in the whole brain section
of interest, for flow and transport of the medicine.
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Summary: This paper describes a multi-scale approach for modelling heat and mass transfer in porous media with evolutive
microstructure. The application is focused on the chemical vapor infiltration process for the fabrication of ceramic-matrix com-
posite materials. The approach is based on a hierarchy of models and associated computing tools. The basic physical assumptions
as well as the mathematical framework leading to the various models are described and numerical results are presented.

Introduction

In several applications a key issue is the modelling of heat
and mass transfer in a porous medium whose microstructure
evolves during the process,e.g.under the action of heteroge-
neous chemical reactions. In some cases the problem is further-
more complicated by the fact that the gas transferred through
the porous medium is rarefied. Example of such a situation
are the chemical vapor infiltration process for fabrication of
composite material, the pyrloysis of decomposable material
of Thermal Protection Systems, or the smoldering,. . . ([1],
[2]). We present here a multi-scale approach for such prob-
lems, based on a hierarchy of models and associated comput-
ing tools in which larger scale models use informations such
as microstructure evolution or constitutive laws given by more
detailed, smaler-scale simulations. The macroscopic (i.e. en-
gineering scale) model in this hierarchy is an extension of
the Asymptotic Transport Model (ATM) introduced in ([3])
for porous media with fixed microstructure featuring structural
evolution.

Mathematical modelling

To set-up a model for heat and mass transfer in porous me-
dia with structural evolution we start from a set of equations
describing the flow and heat transfer at the smaller scale. The
flow is described at a kinetic level by Boltzmann equation (or
by a ”model equation” such as BGK equation), which allows
to consider flows in rarefied or transitional regime in the pores.
The heat transfer in the solid phase is described by the heat
equation and the system is closed by coupling conditions at the
interface: a diffusive reflexion condition and a relation which
ensures the continuity of the energy fluxes. These conditions
take into account the fact that the interface is moving during
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the simulation.
Then, by an asymptotic analysis which combines an homoge-
nization process (assuming a periodic structure of the material)
and the hydrodynamic limit for the kinetic equation we derive
a transport model at the larger scale. Moreover we take into ac-
count the heterogenous chemical reactions that are the cause of
the structural evolution and we finally get :

ε(t, x)∂t(ρg) + divxJ = ωg (1)

J +D∇xρg − D̃∇xT = 0 (2)

∂tρs = ωs (3)

∂t[εsρses(T ) + ερgeg(T )]− divx(K∇xT ) = 0 (4)

εs(t, x) =
ρs(t, x)

ρ#
s

ε(t, x) = 1− εs (5)

whereρg andρs are the apparent density of the gas and solid,
ρ#
s is the intrinsic density of the solid phase,T is the temper-

ature,εs the volume fraction of the solid phase,ε the porosity,
ωg, eg andωs, es the production terms and internal energy of
gas and solid. The effective transport tensorsD = D(ε, ρs, T )
andD̃ = D̃(ε, ρs, T ) are defined through kinetic cell closure
problems andK = K(ε) is defined through elliptic cell closure
problems ([3],[4]). More precisely these closure problems are
defined on the fluid phaseYf (t) of the unit cellY for D and
D̃, and on the solid phaseYs(t) of the unit cellY for K. For
instance, the cell closure problem definingD is

− L(f0βi) + v · ∇y(f0βi) =
−f0
ρ0

vi in Yf (t) (6)

βi(y, v)v·n>0,y∈ΓY (t) =
∫
w·n<0

|w · n|βi(w)M(T )dw

wheref0 is the absolute Maxwellian distribution with density
ρg and temperatureT andL is the linearized collision operator
used in the Boltzmann equation. In order to uncouple the dif-
ferent scales, we make the following assumption:

160 Prague, Czech Republic, 25-27 June 2007



Multi-Phase, Multi-Physics Modelling of Porous Media

(H) We assume that in every unit cell of the material the solid
phase traces during its evolution the same intrinsic sequence
Ys(τ).
Of course in a particular simulation each unit cell will trace this
intrinsic sequence at its own rate which depends on the macro-
scopic state it encounters. With this assumption the architec-
ture of the approach is composed of the following set of nested
models (and associate computing tools):

(i) micro-scale: the intrinsic sequence of solid phase traced
by unit cells is computed by a level set method and can be
parametrized by the porosity when the sequenceYs(t) is in-
creasing (as in CVI, for instance). The results is a data base
{Yf (εj)}{j}.
(ii) micro/macro-scale :for each value of the porosityεj , for
discrete values ofρg andT the various cell closure problems
are solved onYf (εj) and a data base of effective transport co-
efficients is obtained :

{
D(εj , ρkg , T

l)
}
{j,k,l}.

(iii) macro-scale :At the macroscopic scale, for engineering
purpose (for instance in order to analyse the effect of reactor
control parameters in the CVI process), the above transport
model is used with geometry, initial and boundary conditions
corresponding to the considered configuration. The model uses
the data base created by the micro/macro-scale computing tool
(ii).

The macroscopic transport model has been derived for transi-
tional flows inside the pore. However we can prove that this
model is consistent with usual ones in limit regimes. More
precisely, in the limit of dense flows̃DijT/Dijρg → 1 and
furthermoreJ = −(B/µ)∇p so that we recover the Darcy
law as constitutive law for the flow. Furthermore, for simple
geometry such as pipes, the tensorD gives in the rarefied limit
the well-known Knudsen diffusion tensor.

Numerical results

The basic computing tools of the hierarchy have been devel-
oped and validated ([4]). The solution of the cell closure prob-
lems has been tested on realistic sample of materials. Fig-
ure 1 shows the porous structure of a C/C composite preform
deduced from a Synchrotron-X Micro Tomography. It is de-
scribed by50× 50× 50 voxels.

Figure 1: C/C composite preform (SXMT data from LCTS)

On Figure 2 the principal directions of the effective coefficient
D computed with the micro/macro-scale model are drawn over

a section of the preform. The principal direction corresponding
to the larger eigenvalue follows the main direction of the pores,
proving that the model is able to extract relevant information
on the flow even in a complex geometry (computing the
tensorD leads to solve systems with 1 700 000 unknowns).
Our approach has been used for the simulation of pyrolysis

Figure 2: Principal direction of the tensorD

in a carbon-phenolic composite material with a simplified
microstructure. Figure 3 shows the position of the pyrolysis
front at a given time and the velocity of the interface between
the solid and fluid phases. This simulation uses the three
sub-models of the hierarchy ((i), (ii) and (iii)).
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Figure 3: Pyrolysis front and velocity of the interface
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évolution structurale et applications.Ph. D. Thesis, Uni-
versit́e Bordeaux 1.

Prague, Czech Republic, 25-27 June 2007 161





Homogenization of Elastic and Inelastic Behaviour

Part VII

Homogenization of Elastic
and Inelastic Behaviour

Prague, Czech Republic, 25-27 June 2007 163



MHM 2007: Modelling of Heterogeneous Materials with Applications in Construction and Biomedical Engineering

Numerical Assessment of Charles Bridge in Prague:
An Uncoupled Multi-Scale Approach

J. Zeman1∗, J. Novák1, M. Šejnoha1,2, J. Šejnoha1,2
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Summary: In this contribution, a numerical study of a two-span segment of Charles Bridge in Prague is presented. The analysis
itself is executed in a fully staggered manner, both in terms of material modeling as well as the assessment of external actions on
the structure. The results of the model are validated in terms of typical displacements of parapet walls and crack distribution and
opening due to a combined effect of temperature change, dead load and water pressure. In overall, the analysis has provided a
valuable estimate of the load-bearing capacity of the structure providing the basis for the optimal planning of remedial measures.

Introduction

Charles Bridge in Prague is one of the listed monuments hav-
ing the paramount historical importance. Since its completion
in 1406, it has experienced several extensive damages, mainly
due to repeated floods and water erosion. These were followed
by reconstruction, rehabilitation and strengthening measures,
which resulted in a large technological and material variability
inside the bridge body.

The present study was initiated by the need of a reliable as-
sessment of the current state of the bridge and the extent of the
intended reconstruction works. Of course, a certain compro-
mise, based on a careful engineering judgment, must be made
between the theoretical appeal of the computational model and
necessary simplifications due to limited data available [1]. Even
under such restrictions, however, the modern computational
tools and methods can provide a reliable basis for diagnostics
of historical structures and possible rehabilitation works, espe-
cially when compared with linear elastic models [2].

In the ideal case, the analysis to be performed should be
(i) multi-scaledue to heterogeneity of the structure on sev-
eral spatial scales, (ii) based onnon-linear material models
taking into account quasi-brittle response of masonry materi-
als, (iii) multi-physicalto incorporate climatic effects on the
structure and the interaction of the bridge with water, (iv)time-
dependentto cover the behavior of the bridge in different peri-
ods of the year and (v)three-dimensionalas the bridge is a very
massive structure.

Clearly, such an analysis is not currently feasible, not only from
the viewpoint of theoretical and numerical difficulties, but sim-
ply due the amount of information required to capture the inter-
action within the sub-systems. The pragmatic approach adopted
in this work is to “decouple” the analysis into independent sim-
plified parts, which are solved using appropriate specialized nu-
merical tools. Outputs of these sub-problems then serve as in-
puts for a detailed non-linear mechanical simulation allowing
us to assess their impact on the overall behavior of the bridge.

Geometrical model of structure

The analyzed two-dimensional segment was decomposed into a
number of quasi-homogeneous parts. The partitioning was de-
rived mainly from heterogeneity of the structure resulting from
construction and re-construction steps. In addition, the model
was refined in the vicinity of surfaces to correctly represent the
temperature gradients. Moreover, to capture structure-subsoil
interaction, the model incorporates finite element mesh of the
layered subsoil, see Fig.1 as an example.

Figure 1: Finite element mesh of the two-span model

Material modeling

Non-linear mechanical behavior of individual materials form-
ing the structure was described using a quasi-brittle three-
dimensional constitutive modelCC3DNonLinearCementitous
implemented in the ATENA computer code [4]. The model
assumes small strains and initial isotropy of a material, ten-
sile behavior is governed by the Rankine-type criterion while
in compression, the Menetrey-Willam yield condition is used.
The objectivity in the strain-softening regime is ensured by the
crack band model with mesh adjusted softening modulus. A
particular material is described using five well-defined input pa-
rameters: tensile and compressive strengths, Young’s modulus,
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Poisson’s ratio, fracture energy and the coefficient of thermal
expansion.

When dealing with a heterogeneous part of the structure, how-
ever, the previous description applies to individual constituents
only. To this end, the parameters characterizing the “smeared”
response of selected parts of the structure were extracted from
the first-order homogenization simulations executed on repre-
sentative periodic unit cells. A detailed discussion of individ-
ual steps supported by numerical-experimental validation can
be found in [3].

External actions

In the present days, when the bridge is open to pedestrians only,
the dominant actions on the structure result from its self-weight
and annual temperature changes. Introduction of both actions
into the model is briefly summarized bellow.

Self-weight Due to a massive character of the structure, the
self-weight presents the far most important permanent action.
Even more importantly, it turns out that the definition of the
computational model plays a central role in getting meaning-
ful results. When the bridge is loaded by the self-weight as a
whole body (without taking into account stages of construc-
tion), the results of a linear elastic analysis predict the appear-
ance of tensile stresses in the vaults of the bridge. Obviously,
this is an incorrect answer indicating the global failure of the
bridge even in the construction stage. Therefore, a more de-
tailed model of the construction progress is required when con-
sidering the self-weight effects. Owing to the lack of detailed
historical data on this subject, a three-stage procedure was used
to apply the dead load. The refined model now shows realistic
distribution of stresses and crack patterns.

Temperature change The temperature fields inside the struc-
ture were based on a two-dimensional coupled heat and mass
transfer simulation performed in the finite volume code DEL-
PHIN [5]. Obtained results were validated against in-situ mea-
sured temperature profiles; the maximum difference found was
≈ 5◦C. Using the extremal two-dimensional data, the temper-
ature distribution on the bridge surfaces as well as inside the
bridge filling were determined. These values were subsequently
used to define boundary conditions for a linear stationary three-
dimensional heat transfer analysis and the resulting temperature
profiles were introduced into the mechanical model.

Example of analysis results

The reported loading combination involves self-weight of the
structure, water pressure due to normal water level and the sum-
mer temperature change. The steep temperature change gradi-
ents result in an extensive array of cracks at the interface be-
tween parapet walls and irregular stone masonry filling, see
Fig. 2. The maximum predicted crack opening displacement
is 0.7 mm. We can also identify two dominant areas of smaller
cracks (with crack opening displacement up to0.2 mm), the

Figure 2: Crack patterns due to positive temperature change

first within the interface between pavement and parapet walls
and the second one on the surface of masonry in the mid-span.

The results also allow us to provide an explanation for several
important failures located mainly at the oblique part of the para-
pet wall. Two dominant mechanisms can be identified : (i) in-
creased displacements of parapet walls in the vicinity of the
buttress, (ii) high compressive stresses due to restraining ef-
fects of the neighboring parts of the structure. It is worth noting
that despite a number of simplifying assumptions adopted in
the analysis, the predicted crack pattern and their width com-
ply rather well with in-situ observations.

Conclusions

• The computational homogenization approaches, when
carefully validated with small-scale tests, can provide a ra-
tional procedure for feeding material models with reliable
data without a need of large-scale destructive experiments.

• The performed assessment shows that the bridge is cur-
rently stable and safe for all load combinations both lo-
cally and globally. This conclusion justifies the “mini-
mal” variant of the remedial measures that are currently
in progress.

This work was supported by the reasearch plan MSM
6840770003 of the Ministry of Education of the Czech Repub-
lic.
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Summary: This contribution discusses the formulation of two-scale computational frameworks for masonry structures. The het-
erogeneous nature of masonry coupled to its periodic stacking of quasi-brittle constituents leads to preferential damage patterns.
Their influence can be incorporated in structural computations using computational homogenisation concepts. The ingredients
needed to couple structural and constituents scales are introduced for the case of planar structures, and their extension to flexural
effects on masonry walls is discussed. A first tentative of a coupled two-scale framework for masonry plates is presented.

Introduction

The formulation of macroscopic constitutive laws for the be-
haviour of masonry is a complex task, due to its strongly hetero-
geneous mesostructure which considerably influences its over-
all mechanical behaviour. Due to the quasi-brittle nature of its
constituents, this results in initial and damage-induced (evolv-
ing) anisotropy properties, accompanied with localisation of
damage. In its structural use, such a material may be subjected
to cracking, leading to localisation of damage at both the struc-
tural and fine scales. Closed-form laws have therefore been de-
veloped for equivalent anisotropic media for elastic and crack-
ing behaviour [1], later applied for modelling plate failure [2].
The use of such models in the cracking regime is however im-
peded by their costly and cumbersome identification. As a com-
plementary approach to closed-form constitutive relations, the
multi-scale computational strategies aim at solving this issue by
deducing a homogenised response at the structural scale from
a representative volume element (RVE), based on constituents
properties and averaging theorems.

Computational homogenisation

Computational homogenisation approaches allow to identify
homogenised continuum properties from the constituents con-
stitutive behaviour of a heterogeneous mesostructure. In a com-
putational context, in each (macroscopic) point of the struc-
tural scale discretisation, a sample of the mesostructure is used
to determine the material response. For this purpose the lo-
cal macroscopic strain measure is applied in an average sense
to the mesostructure and the resulting mesostructural stresses
are determined numerically. The averaging of these mesostruc-
tural stresses and the condensation of the mesostructural tan-
gent stiffness to the homogenised tangent stiffness then furnish
the macroscopic material response associated with the macro-
scopic point. This concept, which is also known as multilevel-
FEM has been used before to model heterogeneous polymeric
systems and other materials, see e.g. [3], and is illustrated in
Fig. 1. The definition of such a nested scheme essentially re-
quires the definition of four ingredients: (i) a fine scale constitu-
tive setting for the constituents, (ii) the definition of a represen-
tative mesostructural sample, (iii) the choice of a macroscopic

Figure 1: Multi-scale computational scheme.

representation, and (iv) the set-up of scale transitions linking
structural and fine scale quantities.

Multiple-scale treatment of damage localisation

In order to incorporate damage localisation effects at both the
structural and fine scales, this approach has to be adapted, by
carefully selecting the above-mentioned features. For in-plane
loaded structures, in which both fine and coarse scale descrip-
tions follow similar kinematical assumptions, these adaptations
have been proposed recently in [4].

In this approach, the homogenised tangent stiffness is used to
detect the occurrence of structural scale damage localisation.
A continuous-discontinuous multi-scale enhanced scheme is
then proposed, in which the localising behaviour at the fine
scale of constituents is modelled using available closed-form
descriptions (e.g. cohesive zones, non-local damage). A well-
posed macroscopic description is preserved upon macroscopic
localisation detection by embedding discontinuous localisation
bands with mesostructurally motivated properties and width,
see Fig.2. At a macroscopic point, a localising band (b) is em-
bedded into an unloading region (s) with an average strain de-
composition rule given by

Eb = E + fs (~m~n)sym

Es = E− f b (~m~n)sym (1)
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Figure 2: Computational homogenisation-based embedded dis-
continuity.

wheref b, fs represent the respective volume fractions of the
subregions and~m is a strain jump. Based on these macroscopic
strains applied in an average sense to unit cells, computational
homogenisation is used to obtain the response of the macro-
scopic point from the behaviour of each region. As an addi-
tional equation, the traction is required to remain continuous at
the interface between the localising and unloading regions

~n.
(
Σb −Σs

)
= ~0 (2)

Two-scale computational framework for flexural
effects

This framework can be extended to plate formulations, where
higher order kinematical quantities such as curvatures appear at
the structural scale. This requires to adapt the structural scale
description as well as the scale transitions. At the structural
scale, a Reisner-Mindlin description is used. A strong disconti-
nuity approach for plates at failure, as proposed in [5], is used
upon macroscopic localisation. The kinematics of the shell de-
scription is then generalised by considering an element-based
enrichment (a displacement jump){ξ}, see Fig.3, added to the
regular part of the displacement field according to

{ue} = {u}+ [Ψ]{ξ} with JΨK = 1 (3)

where the deflection and rotations dofs are collected in{u}, and
[Ψ] represents a set of functions exhibiting a unit jump along a
curveΓd. Based on the discretisation of the regular and discon-
tinuous parts of the displacement field, the generalised strains
(transverse shear and curvatures) in the bulk of the material are
obtained as

{εb} = [B]{d}+ [G]{ξ} (4)

where[G] is a set of strain operator associated to the displace-
ment jumps [5].

In order to determine the additional displacement jump fields,
the weak form of equilibrium is solved together with a conti-
nuity condition on generalised stresses (moments and resultant
forces) along the discontinuityΓd∫

Γd

[
δ~ξθ ·

(
~Md −m · ~n

)
+ δξw (Vd − ~v · ~n)

]
dΓ = 0 (5)

where the stress resultants in the bulk are given by{
~M = m · ~n
V = ~v · ~n

Figure 3: Kinematics of shell discontinuity.

and where~Md andVd represent the generalised stresses in the
discontinuity. In contrast with the closed-form evolution laws
used in [5] for the discontinuity behaviour, this structural scale
description is here coupled with the computational homogeni-
sation concepts to set up a nested computational procedure for
flexural effects. Prior to localisation, the generalised stresses
are obtained numerically from a RVE computation based on ex-
tended scale transition rules. The generalised tangent stiffness
[Ctan] is also obtained, from which structural scale localisation
is detected according to the criterion

det
(
Ctan

)
= 0 (6)

Upon localisation, the bulk material is assumed to unload elas-
tically along the secant stiffness, while the behaviour of the dis-
continuity is still deduced from the scale transition

{σ̇d} = [Cd]{ξ̇} (7)

The implementation details of this framework will be given,
and its results will be illustrated to show that mesostructurally
motivated preferential damage orientations can be incorporated
into structural plate computations in a natural fashion.
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Summary: The aim of this paper is to provide a comparison between the results of a homogenization procedure for the determi-
nation of the ultimate loads of out-of-plane loaded masonry walls and the results of a new experimental set up.

Introduction

In a previous paper, Sab [2] suggested a homogenization pro-
cedure for the yield design of thin periodic plates has been
proposed. Applied to masonry walls, this procedure leads to
a Love-Kirchhoff homogeneous plate model. Hence, it does
not take into account shear stresses. In [3] Sab et al. developed
the above mentioned approach for both thin and thick periodic
brickwork plates taking into account the effect of out-of-plane
shear forces on the yield strength domain. The periodic brick-
work is made of 3D infinitely resistant blocks connected by
Mohr-Coulomb interfaces (cohesionc and friction angleϕ).
According to the homogenization procedure with shear effects,
the panel is modeled as an homogeneous Reissner-Mindlin
plate subject to in-plane and out-of-plane loads. The homog-
enized yield surfaces are obtained semi-analytically in terms
of c, ϕ and the geometric characteristics of the microstructure
(block dimensions and pattern). They are additional and com-
plementary to the in-plane anisotropic yield surfaces found by
De Buhan and de Felice [1]. There is a need to compare these
theoretical surfaces to experimental results. Hence, the purpose
of this communication is to adopt the homogenized model and
to compare its results to the first ones of a new experimental set
up developed for this purpose.

Experimental set up

A reduced scale rectangular brickwork-like plate (in-plane di-
mensions 660x462mm) is subjected to in-plane uniform pre-
stresses and to an increasing out-of-plane force applied in its
center as shown in Fig. 1. The bricks are all made of the same
wooden material (in-plane dimensions 49x19mm). The design
of the bricks has been made very carefully in order to obtain
the same roughness for all faces and consequently the same
frictional behavior at the interfaces (c = 0 andϕ is uniform).
The in-plane forces are all equal:Ti = T , i = 1, 2, 3, 4. They
are applied through 4 elastic springs which are attached to two
pairs of opposite sliding metallic boundaries as shown in Fig. 1.
The out-of-plane force is an increasing vertical weightV ap-
plied on a small region which is situated at the center of the
plate (the two in-plane directions of the plate are actually the
two horizontal directions, hence the plate is also submitted to its
own weight). Two thicknesses of the blocks are tested: 19mm
and 30mm. For each type of blocks, the limit loadVlim is mea-
sured for several values of the horizontal forceT (cf. Figs. 2b

and 3b). As expected, it is found thatVlim is proportional to
(T − Tw) whereTw is the in-plane force corresponding to the
failure of the plate under its own weight. Moreover, it is ob-
served that the failure modes are different: shear mode for thick
blocks (Fig. 3b) and bending mode for thin blocks Fig. 2b).

Figure 1: Experimental set up.

Perspectives

Using the observed failure modes, the kinematic method for
the determination of the limit load of a homogeneous Reissner-
Mindlin plate will be used in order to give a prediction ofTw
and of the ratioVlim/(T − Tw) for both the thin plate and thick
the plate. These theoretical values will be compared to the ex-
perimental ones.
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(a)

(b)

Figure 2: Ultimate load for thin plates: (a) bending failure
mode, (b) results for 6 values of the horizontal forceT . Lin-
ear regression.

(a)

(b)

Figure 3: Ultimate load for thick plates: (a) shear failure mode,
(b) results for 6 values of the horizontal forceT . Linear regres-
sion.
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Summary: The goal of this contribution is to demonstrate that the elements of quantitative characterization of random mi-
crostructures can be efficiently used in order to generate the random field description tailored to a specific geometry distribution.
The elastic analysis of an irregular masonry panel via Stochastic Finite Element Method is included.

Introduction

The mechanical behavior of random media is a relevant re-
search topic in a wide variety of applied mechanics fields, such
a composite materials, geotechnical engineering and biome-
chanics. There are cases when the classical continuum me-
chanic approach is insufficient to model adequately materials
with a microstructure. A common feature of these media is the
random spatial arrangement of components forming the hetero-
geneous microstructure. A useful way to take into account this
randomness is its stochastic characterization.

For many engineering applications, two different approaches
are available to the modeling of random heterogeneous mate-
rials. The first one, based on the well-established homogeniza-
tion theories, essentially replaces the heterogeneous body by a
homogeneous equivalent with unknown properties. The char-
acteristics of a fictitious homogenized material are determined
from the analysis of a statistically representative sample of the
material in question.

The alternative methods employ the techniques of stochastic
continuum mechanics. In this context, the spatial distribution of
material parameters is described by a given random field. Al-
though the latter method is generally preferable to the homog-
enization techniques, its major disadvantage is that the random
field is often introduced without a clear link to the underly-
ing microstructure. If the microstructure can be related to the
spatially varying material property fields, characterization and
simulation of uncertain mechanical properties can be done [1].

The goal of this contribution is to demonstrate that the elements
of quantitative characterization of random microstructures can
be efficiently used to generate the random field description tai-
lored to a specific geometry distribution.

Probabilistic numerical methods are most appropriate tools to
analyse these stochastic structures, since they incorporate in-
formation concerning the random fluctuations of input param-
eters and permit conclusions concerning the fluctuations of the
output parameters. The statistics of the structure response can
be then obtained using the classical Stochastic Finite Element
Method (SFEM). The basic assumption is that the material
properties are described by a random field [2]. Using the the-

ory of composite materials, the random fields of the mechanical
properties are defined by means of the corresponding stochastic
field that describes the microstructure. The mechanical proper-
ties are assumed to be known through their second-order statis-
tics and are assumed to vary continuously over the space. This
approach takes into account the correlation function obtained
from a procedure that uses the statistical descriptors of the ran-
dom geometry [3, 4]. This method starts from the analysis of a
sample image that is digitally reduced to a binary image; then,
the statistical descriptors of the random geometry are evaluated
and finally the random field describing the mechanical proper-
ties is characterized by means of the evaluation of its funda-
mental quantities (for example, the correlation functions).

The issue of representing the random process used to model
the random material properties is crucial to the SFEM. The
Karhunen-Lòeve (KL) expansion is utilized for this purpose
[5].

A KL expansion provides a second-moment characterization
of a random processH (x, θ), function of the position vectorx
defined over the domainD and withθ belonging to the space of
random eventsΩ, in terms of deterministic orthogonal function
and uncorrelated random variables as follows:

H (x, θ) = µ (x) +
M∑
i=1

√
λi ξi (θ)ϕi (x) (1)

whereµ (x) is the mean of the process,λi and ϕi (x) are
the eigenvalues and eigenfunctions of the covariance function,
ξi (θ) is a set of uncorrelated random variables andM is the
number of KL terms.

The second level of representation involves the solution pro-
cess. Since the analysis is conducted in the context of Finite
Element analysis, the solution process consists of a vector ran-
dom process whose members represent the random solution at
the nodes of the mesh.

Principles of the method are exemplified through an elastic
analysis of the irregular masonry panel depicted in Fig. 2. Fig. 1
shows the result obtained by a software developed to evaluate
the statistical descriptors of microstructure.
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Figure 1: Example of the program used to obtain correlation
function for a chaotic masonry panel.
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Summary: Over the last few years, granular and granular-like media have been gaining a tremendous interest in computational
mechanics [9, 10]. Based on their discontinuous nature, an appropriate method is needed to simulate the behavior of particulate
media. The discrete element method (dem) [1, 2] provides the perfect means to do so, but also includes the drawback of high
computational costs if the number of simulated particles (nop) grows towards infinity. To overcome this drawback a multiscale
method is used, restricting the number of particles by introducing a geometric periodic representative volume element (rve). The
discontinuous confined granular media are placed on the microscale level simulated by the means of thedem. A finite element
method is used on the macroscale level to discretize the overall continuum. Quantities between the different scales are related by
the use of averaging theorems, see [5].

Generation of geometric periodic representative
volume element

The evolution process of the periodic representative volume el-
ement is based on the Lubachevsky-Stillinger algorithm [4] de-
veloped in the context of computational chemistry. This algo-
rithm is known to produce highly packed particle assemblies
including periodic boundaries, see [6, 7].

Starting with a periodic boundary box of dimensions,lrve× lrve

particles with radii zero are randomly inserted. Provided with a
random velocityvi , as well as a unique particle growth rategi
related to a given grain size distribution the algorithm is started.
Using an event driven method to step forward in time, particles
collide and their radiiri grow depending on the elapsed time,
see (1).

n+1ri = nri + gi ∆t ∀ i ∈ {1, . . .nop} (1)

Correspondingly, the volume fractionφ, i.e. the volume occu-
pied by the particles per volume of the periodic boundary box,
is directly related to the prescribed growth rates.

Demanding a constant individual particle velocity between the
collision events, the well known Euler formula is applied. With
this the position of particlei at timen+1t is calculated by:

n+1xi = nxi + ∆t nvi ∀ xi , vi ∈ Rdim (2)

The events, collisions between two particlesi andj, are treated
by an enhanced purely elastic impact law between bodies of
equal mass, resulting in:

+
n+1vni

= min
{

−
n+1vni

,
−
n+1vnj

}
− gi ,

+
n+1vnj

= max
{

−
n+1vni

,
−
n+1vnj

}
+ gj .

(3)

Here,vni
represents the normal particle velocity with respect

to the collision direction. Quantities prior to the contact are in-

dicated by
−
(•), whereas

+

(•) represents quantities posterior to

the collision. A finished geometric periodic volume element is
shown in Fig.1. The driving frame is spanned by the particles in

Figure 1: Geometric periodic volume element containing 1000
primary particles and their periodic images. Boundary parti-
cles belonging to the driving frame are colored in red. The pe-
riodic boundary box is illustrated by a black box. The final vol-
ume fraction reached is approximatelyφ ≈ 0.84761.

the boundary setB , colored in red. The boundary frame can
be considered to be a closed ordered sequence of the boundary
particles, resulting into a closed hull.

B :=
{
i ∈ {1, . . . ,nop} : BRi

(
0xi

)
∩ ∂rve 6= ∅

}
(4)

The remaining particles belong to the inner particle setI ,
driven by the particles on the boundary. A summary of the input
parameters is given in Table1.
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Table 1: 1000 primary particles, quartz sand, see [8]

grain∅ mass % volume % particle % particle
[mm] [%] [%] [%] [/]
0.315 0.00 0.00 0.0000 0
0.250 2.50 2.50 0.6227 6
0.160 39.72 39.72 24.1531 242
0.125 44.22 44.22 44.0557 441
0.100 9.58 9.58 14.9131 149
0.063 3.70 3.70 14.5119 145
0.050 0.28 0.28 1.7435 17

Microscale level computation

Using the previous outlined method to produce a geometric
periodic granular representative volume element allows to di-
rectly start the computation on the microscale level. Note that
due to the generation process, a stable and nearly force free par-
ticle assembly is created, which is kept intrinsically stable by
the definition between primary particles and their images.

The deformation process is driven by a deformation gradient
tensorF , applied on the boundary frame particles in a peri-
odic matter, see (5). Additionally, the previous definition of the
boundary frame allows to differentiate between linked and un-
linked neighbors in the boundary frame particle set which has
influence on the force calculation.

n+1xi,⊕ − n+1xi,	 = F
[
nxi,⊕ − nxi,	

]
∀ i ∈ B (5)

Here⊕ and	 refer to the split of the boundary frame into a
positive and negative side.

Relating any particle and its images in a direct manner to the
deformation gradient tensor ensures the exclusion of rigid body
translations and rotations of the granular assembly.

The use of only penalty type laws to position the boundary
frame particles underlines the characteristics of the applied pe-
riodic boundary conditions with regards to their softness. To
solve the described boundary value problem at the microscale
level a dynamic relaxation method is utilized, overcoming the
loss of regularity of the stiffness matrix during deformation.

Homogenization

Inserting the geometric periodic granularrve on the microscale
level, having a finite element model on the macroscale level,
allows to calculate confined granular materials with a minimum
of computational effort. The connection between the two scales
is accomplished by applying averaging theorems, see [3].

The complete homogenization cycle can be outlined as follows:
The macroscopic deformation gradient at each integration point
is used on the microscale level to drive the boundary frame par-
ticles. Completing this task leads to an output of a stress tensor
on the microscale level, which is returned to the macroscale
level.
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Summary: High-resolution finite element models of trabecular bone can be used to study trabecular structure-function relation-
ships, elasticity, multiaxial strength, and tissue remodelling in more detail than experiments. Appropriate boundary conditions
have to be applied on Representative Volume Elements (RVE) and ”apparent” instead of ”effective” overall elastic properties
can be computed. Beside effects of the RVE size, scan/analysis resolution, segmentation process, etc. the type of the applied
BCs might have a strong influence on the predicted elastic properties. This study provide some answers concerning these errors
by comparing different boundary condition types (displacement controlled, mixed BCs, periodic Bcs), different RVEs (original
and mirrored-periodic RVE), and various bone densities (BVTV 6,5% - 37,6%). Finally, the Young’s moduli, shear moduli, and
Poisson’s ratios are computed and the errors are compared.

Introduction

While multi-axial and off axis properties of trabecular bone
play an important role in fracture and prosthesis design, exper-
imental data on multi-axial properties are limited due to tech-
nical difficulties. Use of high-resolution finite element models
[1] can avoid these problems if they are sufficiently accurate.

Beside other factors, the applied boundary conditions have an
influence on the predicted elastic properties. Huet [2] intro-
duces the notion ”apparent” properties. Comparisons of differ-
ent BCs were previously done by Kowalczyk [3] but only for
idealized periodic structures and two type of BCs (uniform dis-
placement and periodic) were investigated.

The objective of this study is to study real bone geometries in-
stead of idealized and introduce a new BCs type. The apparent
stiffness tensors are obtained from FEM RVE analyses where
uniform displacements, mixed BCs, and periodic BCs are ap-
plied on the models. Additionally, the ”anisotropic” bone RVEs
are mirrored to get ”orthotropic” samples and results for differ-
ent BCs compared with the original one.

Boundary conditions

Hill [ 4] showed that all necessary and sufficient conditions of
the equivalence between the energetically and mechanically de-
fined properties of elastic materials are contained in the so-
called Hill condition:

〈σ : ε〉 = 〈σ〉 : 〈ε〉 (1)

This condition means that the average (〈. . . 〉 =
∫
V
. . . dV ) of

the product of the stressσ and strain tensorsε equals the prod-
uct of their averages. Using the Gauss theorem the Hill con-
dition can be generalized to nonlinear heterogeneous materials
[5]:

〈σ : ε〉 − 〈σ〉 : 〈ε〉 = 0 ⇔ (2)∫
∂B

(
t− 〈σ〉 · n

)
·
(
u− 〈ε〉 · x

)
dS = 0 , ∀x ∈ ∂B

where∂B is the boundary of a the RVE andt, u, n, x are
the traction, displacement, normal and radius vector, respec-
tively. For an infinite homogeneous body this condition is triv-
ially satisfied, but for a finite heterogeneous body it requires
that the body is loaded in a specific way on its boundary∂B.
This is satisfied by three different types of boundary conditions
for random media [6]:

1. Uniform displacement (Dirichlet) boundary condition

u(x) = ε0 · x ∀x ∈ ∂B (3)

2. Uniform traction (Neumann) boundary condition:

t(x) = σ0 · n ∀x ∈ ∂B (4)

3. Uniform displacement-traction (orthogonal mixed)
boundary condition:(
t(x)− 〈σ〉 · n

)
·
(
u(x)− 〈ε〉 · x

)
∀x ∈ ∂B (5)

whereε0 andσ0 denote constant tensors, prescribed a priori on
the RVE. From the strain and stress average theorems it follows
thatε0 = 〈ε〉,σ0 = 〈σ〉. Each of these BCs results in different
”apparent” stiffness tensors. For uniform displacement BCs the
stiffness tensorCd is introduced:

〈σ〉 = Cd : ε0 , (6)

and for force controlled BCs the compliance tensorSt:

〈ε〉 = St : σ0 (7)

Hazanov [7] showed that displacement and traction BCs pro-
vide bounds for the stiffnessCdt based on mixed BCs:

[St]−1 ≤ Cdt ≤ Cd (8)

where this inequality is understood in terms of quadratic forms.

In the case of periodic micro structures ([8]) the boundary must
always appear in parallel pairs denoted ask+ andk− and for
the corresponding boundary it has to be fulfilled that:

u(x)k
+
− u(x)k

−
= ε0 ·∆xk ∀x ∈ ∂Bk (9)

where∆xk is a constant distance between corresponding sur-
faces.
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Voxel model

Six bone samples are extracted from a human proximal femur
and scanned with a resolution of 26µm on aµCT40. From
these data’s, cubical voxel models are cropped (edge length of
5.2 mm), rotated such that the globalx, y, z coordinate system
is aligned with the orthotropic axis (see [1]), and resampled
with a factor of 2 (BVTV< 20%) or 3 (BVTV> 20%). The
dataset is segmented and the hexahedral voxel models are gen-
erated for ABAQUS (Fig.1, left). The BVTV of the samples is
6.52%, 10.7%, 12.25%, 15.76%, 20.76%, and 37.61%. A sec-
ond type of model is genered by mirroring the 5.2 mm cubical
RVEs alongx, y, andz axis (Fig.1, right). Thus a periodic
orthotropic microstructure is obtained.

Figure 1: Cubical FEM model with 5.2 mm (left) and mir-
rored (periodic) cube with 10.4 mm edge length (right).
BVTV=12.25%.

All models are analyzed using uniform displacement and mixed
BCs. In the case of the mirrored (big) FEM periodic BCs are
applied additionally. Six independent load cases (3×uniaxial
tension, 3×shear) are analyzed.

Results

For the big FEM models, the mixed boundary conditions
give exactly the same result as the periodic BCs (=reference
solution). The uniform displacement BCs (=”upper bound”)
show important overestimation of elastic material parameters
(Fig. 2), where the errors are higher for the shear moduli and
decrease with increasing BVTV.

Figure 2: Error in the Young’s moduli, shear moduli, and Pois-
son’s ratio for the big (10.4 mm) FEM model. The results are
related to the results with periodic BCs.

A similar but more pronounced trend is visible for the small
RVE (Fig. 3). The uniform displacement BCs yield fully

anisotropic stiffness tensors, while mixed BCs give only or-
thotropic stiffness tensors. The error between the results of the
small and big RVE in the case of mixed BCs is negligible.
Force controlled BCs (lower bound) give in the present case

Figure 3: Error in the Young’s moduli, shear moduli, and Pois-
son’s ration for the small (5.4 mm) FEM model. The results are
related to the results from the big RVE with periodic BCs.

of a porous media ”zero” stiffnesses and, therefore, are not in-
cluded.

Discussion

Orthogonal mixed BCs can be realized only in at least or-
thotropic materials (i.e. the bone RVE have to be rotated before
the FEM analysis). But mixed BCs are the best choice because
they give the same overall elastic properties as periodic BCs.
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Summary: In this paper we treat large deforming solids with inclusions filled by a compressible ideal gas. This simplified model
can represent such widely used materials as polymer foams, etc. Our mathematical model is based on the two-scale homogeniza-
tion procedure, where the material model at the macroscopic scale is described in terms of the homogenized (effective) material
parameters obtained by solving the local microscopic problems. The parallel computational strategy is proposed to solve the
large number of the local microscopic subproblems.

Introduction

The problem of computing large deformations in a heteroge-
neous media ([3], [4]) is characterized by non-uniform change
in the microstructure, the macroscopic properties depend on the
spatial position. The system of governing equations is nonlinear
and the multi-scale analysis becomes fully coupled, it results in
a sequence of the macroscopic and the local microscopic prob-
lems.

The assumption of periodicity is crucial for the application of
the homogenization method. The microstructure is assumed to
be formed as a periodic lattice generated by a representative
volume element (RVE) which reflects geometrical arrangement
of the structure at the microlevel, see Fig.1.

MACRO MICRO

hyperelastic matrix gas

Ym

Yc

Figure 1: Macro- and micro-scale, structure of the RVE.

Two scale homogenized model

The homogenization procedure ([1]) is applied to the micro-
model based on the hyperelastic material model (matrix) and
adiabatic process of the ideal gas (inclusion). The incremental
updated Lagrangian formulation is used for linearization of the
finite deformation problem, cf. [3]

The microscopic representative cellY is decomposed as
Y = Ym ∪ Yc, whereYm is the matrix andYc is the inclusion.
The Cauchy stress in the matrix is given by the strain energy
function (neo-Hookean or Mooney-Rivlin model) whereas in
the inclusion the shear stress is not defined and the pressure is
derived from formula for the ideal gas

p V κ = const. (1)

Local microscopic problem

The following local cell problems (in discretized form) are
solved to compute the corrector functionsχkli for displace-
ments,πkl for the pressure in the matrix and̄πkl for the pres-
sure in the inclusion

 µK −µKp
µKp0

−µKT
p

µIm
µKT

p0
µIc

 χkl

πkl

π̄kl

 =

 µKΠkl

−µKpΠkl

−|Yc| δkl

,
(2)

whereµK is the tangent stiffness matrix,µKp andµKp0 are
matrices corresponding to the pressure terms,µIm andµIc in-
volve the compressibility parameters of the matrix and inclu-
sion,Πkl

i = δik yl.

The microstructure must be updated at each macro-iteration
step using the macroscopic deformation, this updating process
does not result in an equilibrated microscopic configuration. In
order to satisfy equilibrium conditions, we must find correct
displacement and pressure fields using the ULF algorithm. It
means to solve the system (2) (with different right-handside
terms) iteratively for the (micro)incrementsδu, δp, δp̄, see
Fig. 2.

Global macroscopic problem

The correctorsχkli , πkl and π̄kl determine the homogenized
stiffness coefficientsQijkl

Qijkl =
1
|Y |

[(
Πkl − χkl

)T
µK

(
Πij − χij

)]
+

+ p̄0 (δjkδil − δijδkl) , (3)

wherep̄0 is the inclusion pressure.

In order to constitute the macroscopic subproblem we have to
define the averaged (averaging over the microscopic domain)
stressSij

Sij =
1
|Y |

 ∫
Ym

σijdY − p̄0 δij |Yc|

 . (4)
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At the global macroscopic level the goal is to find the macro-
scopic increment of displacements∆u0, it is obtained by solv-
ing the macroscopic system involving the homogenized stiff-
ness coefficientsQijkl (MK = MK(Q)) and the averaged
stressSij (f = f(fextern,S))

MK∆u0 = f . (5)

Figure 2: Macro-micro computational algorithm.

Parallel strategy

The resolution of the coupled microscopic subproblems
presents solving the system of linear equations in each inte-
gration point of the macroscopic problem. In the case of 3D
structures the number of microproblems is very large and reso-
lution time enormous. The resolution time can be reduced using
a parallel algorithm.

For the parallel computation we use a cluster of Linux ma-
chines communicating via the MPI library. We assign one com-
putational node (master) to solve the macroscopic problem and
the others (slaves) work on the microscopic ones as demanded
by the master. Since data needed to communicate between the
master and the slaves are quite small we achieve nearly linear
speedup, cf. Fig.3.

Acknowledgment: The research is supported by the project
MSM 4977751303 of the Czech Republic.

Figure 3: Speedup: 3D problem; 1280 microscopic subprob-
lems× 5 macro-iterations; cluster MINOS and KONOS.

a)

b)

c)

Figure 4: a) Macroscopic deformation, b) and c) microscopic
deformation at two different points of the macrodomain.
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Summary: This paper describes a multiscale homogenization technique valid for the anisotropic elasticity of bone materials
across various species and observation scales.

Bone materials are characterized by an astonishing variabil-
ity and diversity. Still, because of ‘architectural constraints’
due to once chosen material constituents and their physical
interaction, the fundamental hierarchical organization or ba-
sic building plans of bone materials remain largely unchanged
during biological evolution (Gould and Lewontin, 1979). Such
universal patterns of microstructural organization govern the
mechanical interaction of the elementary components of bone
[hydroxyapatite, collagen, water; with directly measurable tis-
sueindependent elastic properties (Katz and Ukraincik, 1971;
Cusack and Miller, 1979)], which are here quantified through
a multiscale homogenization scheme (Zaoui, 2002; Fritsch
and Hellmich, 2006) delivering effective elastic properties of
bone materials: At a scale of 10 nm, long cylindrical collagen
molecules, attached to each other at their ends by∼ 1.5 nm
long crosslinks and hosting intermolecular water inbetween,
form a contiguous matrix called wet collagen [Fig. 1(a)]. At
a scale of several hundred nanometers, wet collagen and min-
eral crystal agglomerations interpenetrate each other, forming
the mineralized fibril (Fig. 1(b)]. At a scale of 5-10 microns
[Fig. 1(d)], the extracellular solid bone matrix is represented
as collagen fibril inclusions embedded in a foam [Fig. 1(c)]
of largely disordered (extrafibrillar) mineral crystals (Hellmich
and Ulm, 2002; Hellmich et al., 2004). At a scale above the
ultrastructure, where lacunae are embedded in extracellular
bone matrix, the extravascular bone material is observed [Fig.
1(e)]. Model estimates predicted from tissue-specific composi-
tion data gained from a multitude of chemical and physical tests
(Lees, 1987) agree remarkably well with corresponding acous-
tic stiffness experiments (Lees et al., 1983) across a variety of
cortical and trabecular, extracellular and extravascular materi-
als. Besides from reconciling the well-documented, seemingly
opposed concepts of ‘mineral-reinforced collagenmatrix’ (Cur-
rey, 1969) and ‘collagen-reinforced mineral matrix’ (Crolet et
al., 1993; Hellmich and Ulm, 2002) for bone ultrastructure, this
approach opens new possibilities in the exploitation of com-
puter tomographic data for nano-to-macro mechanics of bone
organs.
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Figure 1: Micromechanical representation of bone material by
means of a five-step homogenization procedure (Fritsch and
Hellmich, 2006).
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Summary: Concrete is a partially saturated, porous medium gaining strength and stiffness in the course of the hydration process,
i.e., the chemical reaction between anhydrous cement and water. Inelastic material behavior of concrete such asviscoelasticity
(time-dependent deformation under sustained loading) andautogenous shrinkage[bulk deformation of the (closed) cement-based
material system associated with capillary depression of the pore liquid] are affected by the hydration extent. Unlike material
models formulated exclusively at the macroscopic scale of observation, multiscale models allow the explicit link of complex
macroscopic behavior to its respective origin at finer scales of observation with a sound physical / chemical basis of the employed
constitutive laws at these finer scales. Whereas finer-scale composition (and its history) is accessible through recently developed
hydration models for the main clinker phases in ordinary Portland cement (OPC) [1], a multiscalemodel for the prediction of
autogenous-shrinkage deformations and basic creep of early-age cement-based is presented in this paper.

The proper description of the mechanical behavior of con-
crete is essential for the reliable prediction of the performance
and safety of structures made of plain, reinforced, and/or pre-
stressed concrete. At early ages, the beneficial increase of the
stiffness and strength of concrete in the course of hydration is
accompanied by autogenous-shrinkage deformations and sig-
nificant creep under loading. Opposed to material models for-
mulated exclusively at the so-called macroscale, i.e., the scale
of structural analysis, capturing the mentioned characteristics
of early-age concrete in a phenomenological manner, a multi-
scale model (see Figure1) for the prediction of autogenous-
shrinkage deformations and basic creep of early-age concrete
is developed in this paper, covering:

• Experimental characterization at finer scales of observa-
tion.
Nanoindentation (NI), characterized by driving a tough
(usually a diamond) tip into the ground and polished sam-
ple surface, is employed for experimental characterization
at the micrometer range. Based on the obtained NI-test
results, the creep behavior of calcium-silicate-hydrates
(CSH) is found to be of logarithmic type [4].

• Identification of basis mechanical properties of the mate-
rial phases encountered at finer scales of observation from
NI-test results
Lacking analytical solutions for conical indentation into
materials showing viscoelastic-plastic behavior, numer-
ical results are used to construct solutions for (i) vis-
coelastic indentation and (ii) viscoelastic-cohesive inden-
tation in dimensionless form. These relations are em-
ployed for identification of material properties from NI-
test data [6, 2].

• Upscaling schemes for elastic and viscoelastic material
behavior.
Classical homogenization schemes for upscaling of elas-
tic properties based on continuum micromechanics, e.g.,
the Mori-Tanaka scheme, are expanded towards consid-
eration of (i) eigenstresses for upscaling of autogenous-
shrinkage deformations [5] and (ii) viscoelastic behavior
of CSH for upscaling of creep properties [3]. As regards
the latter, the Laplace-Carson transformation of the Mori-
Tanaka scheme is employed.

• Experimental verification of upscaling schemes.
In order to assess the quality of the developed upscal-
ing schemes, results from (i) autogenous-shrinkage ex-
periments conducted at the laboratory of the Institute for
Mechanics of Materials and Structures, Vienna University
of Technology [5], and (ii) creep experiments taken from
the open literature [3] are employed. The developed multi-
scale model links the logarithmic type creep behavior ob-
served at the macroscale to finer scales, considering the
continuously changing finer-scale composition as well as
the stiffening effect of inclusions and the compliant effect
of (partially saturated) pores at the different observation
scales.

• Application to shotcrete tunnel analysis.
Finally, the multiscale model is employed to specify the
early-age properties of shotcrete within a so-called hybrid
analysis of a shotcrete tunnel lining, allowing consider-
ation of the actual mix design and the conditions at the
construction site. The performed hybrid analysis provides
access to the level of loadinḡL of the tunnel support struc-
ture, which is illustrated for one cross-section of Lainzer
tunnel near Vienna, Austria (see Figure2).
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Thus, by using the developed multiscale model in structural
analysis, the actual composition and (microstructural) loading
of early-age concrete can be considered. Moreover, since the
link between the macroscopic behavior of the material and its
composition is established, performance-based optimization of
the mix design is possible.

portlandite CHgypsum CS̄H2

monosulfate C4AS̄H12

C3(A,F)H6

ettringite C6AS̄3H32

Ia. anhydrous cement

C3S
C3AC4AF

C2S

CSH-HDCSH-LD

waterair

Ib-2. porous CSH

I. CSH / anhydrous-cement scale

IV. macroscale

II. cement-paste scale

` = 10−1m

` = 10−2m

` = 10−6 - 10−4m

` = 10−8 - 10−6m

aggregate

Ib-1. CSH

III. mortar scale

Figure 1: Scales of observation for upscaling of creep and
shrinkage properties of cement-based materials [` = size of
representative volume element (RVE)]
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Summary: Within this work we focus on the extension of the computational homogenization scheme – or the FE2-Method
– towards the simulation of discrete micro-systems, especially structural elements on the micro-level. Furthermore, a damage
model monitoring local softening and failure is incorporated.

Motivation

The past years have been marked by a growing significance
in so-called multi-scale and homogenization methods. This is
motivated by the fact that a wide class of engineering materi-
als possess a heterogeneous micro-structure like, for instance,
metal foams, alloys or composite materials, which become
more and more important due to their diverse competitiveness
to classical materials. On account of these micro-structures, it is
not sufficient to simulate the macroscopic behavior of such ma-
terials with pre-assumed (overall) material parameters, or rather
constitutive-law-based standard methods. Therefore, the main
goal of the homogenization method applied is to define macro-
scopic material behavior, e.g. stress-strain relations, based on
the underlying micro-structures. The coupling of the length
scales is based on the following relations between the macro-
scopic and microscopic deformations and stresses:

FM =
1
V0

∫
V0

Fm dV0 =
1
V0

∫
∂V0

x⊗N dA0 (1)

PM =
1
V0

∫
V0

Pm dV0 =
1
V0

∫
∂V0

t0 ⊗X dA0 . (2)

In this work we apply the so-called computational homoge-
nization scheme which is suitable for the coupling between
a macroscopic continuous system simulated via FE methods
and various micro-systems. For an overview of the coupling
with continuous FE simulated micro-systems via first-order
deformation gradients at small strains see e.g. [1] or for the
large strain case see [2, 3], whereby the latter also focuses on
non-linear history dependent material behavior. An extension
of these first-order homogenization is given by the so-called
higher-order homogenization schemes – see [4] – which are
also able to incorporate the length scales of the underlying
micro-structures.

The advantages of the (first-order) computational homogeniza-
tion scheme applied here can be shortly summarized as follows:
It is applicable to the small and the large strain case both on
the micro- and macro-structure. Furthermore, it is possible to
include nonlinear material behaviors on the micro-level. The

micro-level may be simulated with various techniques like for
instance FE methods, lattice statics or molecular dynamics. On
top of that, the homogenization procedure can be coupled with
interface formulations which can for instance be used for sim-
ulations of delamination processes.

Discrete micro-structures

The present work deals with the extension of the continuous
micro-systems – presented in the references – to discrete micro-
systems. Accordingly, the underlying micro-structure in each
macroscopic integration point is considered as a structural set-
ting – see Fig.1 for an illustration of the relation between the
macroscopic and the microscopic level.

Figure 1: Connection between Macro- and Micro-Level.

Preliminary studies focus especially on truss structures which
represent systems where mass points under certain loadings
may quasi-statically interact with their immediate neighbors via
springs – see e.g. the work by Friesecke and Theil [5] for such
a system constrainted by the Cauchy-Born rule. To give an ex-
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ample, we here refer to a truss element, so that

F em = λem n
e ⊗N e , P e

m = P em n
e ⊗N e . (3)

with ‖ne‖ = ‖N e‖ = 1 andλe = le

Le

The influence of different admissible boundary conditions –
necessary to perform the macro-micro transition – on the ho-
mogenized macroscopic quantities will additionally be high-
lighted. Boundary conditions are admissible if they satisfy the
so-called Hill-Mandel condition requiring that the variation of
the work performed on the macro-level should be equal to the
volume average of the variation of the work on the micro-level.
Due the equilibrium of forces at the inner nodes this condi-
tion simplifies in the discrete form to a sum over all resulting
forces in the trusses and the nodal displacements at the bound-
ary nodes:

PM : δFM =
1
V0

∑
bc-nodes

∑
trusses

fres · δum. (4)

Examples for such boundary conditions are linear displace-
ments or constant tractions on the boundary, or periodic
displacements and antiperiodic tractions. According to these
boundary conditions, deformation or load, respectively, is ap-
plied to the micro-structure via, e.g., the macroscopic deforma-
tion gradient tensor in a deformation-driven scheme.

In the special case of discrete microstructural settings it should
be pointed out that in equations (1) and (2) the boundary inte-
gral may be replaced by a discrete sum over all boundary nodes:

FM =
1
V0

∑
bc-nodes

x⊗N (5)

PM =
1
V0

∑
bc-nodes

∑
trusses

fres ⊗X , (6)

wherebyfres exhibits the resulting force at each boundary
node emerged from the boundary conditions applied.

Damage model

In addition to the extension towards discrete micro-structures, a
damage model has been incorporated into the homogenization
scheme. The damage model applied to the micro-level simu-
lates a continuous decrease in material stiffness. Thus a soften-
ing effect is observed until total failure occurs in the material
at local macroscopic integration points. In order to implement
this damage formulation a damage variabled is introduced,
whereby0 ≤ d ≤ 1. Adopting a strain-based formulation,
compare [6], the algorithmic update results in

κn+1 = max
(
W̄
(
F n+1
m

)
, κn, κ0

)
(7)

dn+1 = φ
(
κn+1

)
, (8)

whereinW̄ denotes the effective strain energy – taking the re-
duced formatW̄ (λem) for a truss element – andφ is assumed
as

φ (κ) = 1− exp
(
h
[
κ0 − κ

])
. (9)

Accordingly, the Piola stress is derived from

Pm = ∂Fm
W (d,Fm) (10)

with W (d,Fm) = [1− d] W̄ (Fm) . (11)

Outlook

Concerning future research, the truss formulation on the micro-
level will be extended to beam structures – see e.g. [7]. Further-
more, the presented damage model may be extended towards
the simulation of defects contained in the microscopic speci-
men which enables the comparison with atomistic simulations,
for example with lattice statics based on pair potentials or the
embedded atom method.
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Summary: This contribution examines the relation between both microscopic and macroscopic second-order works. It is shown
that the vanishing of the microscopic second-order work, related to a material or a geometrical cause, may induce the vanishing
of the macroscopic second-order work, indicating that the mechanical state of the specimen is unsustainable.

Both experimental and numerical investigations ascertain that
for nonassociated materials such as granular assemblies a broad
domain exists, strictly within the plastic limit, where different
failure modes can coexist (Darve and Laouafa, 2000 and 2002;
Darve et al., 2004; Darve and Vardoulakis, 2005). We focus
herein on the notion of loss of sustainability, which was re-
cently shown to be a proper mode of bifurcation (Nicotet al.,
2006). Given a mechanical rate-independent system in equilib-
rium under prescribed control parameters, the mechanical state
is reputed unsustainable if and only if the system can reach
spontaneously (namely, without change in the control param-
eters) another mechanical state. We establish in a very general
manner that such bifurcation modes, characterized by a devel-
opment of kinetic energy, are detected by the vanishing of the
second-order work, defined in a semi-Lagrangian formalism
as the inner product between the Piola-Kirchoff stress tensor
of the first kind and the velocity gradient tensor (Nicotet al.,
2006).

Specializing our investigation to granular materials, these the-
oretical predictions were perfectly confirmed from recent dis-
crete element simulations. For this purpose, a granular sam-
ple, in a given mechanical state (such that an incremental load-
ing direction leading to the vanishing of the second-order work
exists) after a given loading history, was considered. The pre-
scribed control parameters are imposed to remain constant. It
was shown that any infinitesimal perturbation applied to any
granule induces a dramatic increase in the kinetic energy of the
assembly, leading to the collapse of the material. If the same ex-
periment is carried out by considering a mechanical state such
that no incremental loading direction leading to the vanishing
of the second-order work exists, then no amplification in the
kinetic energy of the system is observed (Sibilleet al., 2007).

Starting from micromechanical considerations, we show that
both macroscopic (on the specimen scale) and microscopic (on
contact scale) second-order works are related through a fun-
damental multiscale relation (Nicotet al., 2007). This rela-
tion expresses that the macroscopic second-order work for the
whole granular assembly is equal the sum of the microscopic
second-order works computed on each contact, with respect to
the frame attached to each contact. This relation is at the basis
of our microstructural investigation. In particular, it was estab-

lished that two main causes are responsible for the vanishing of
the macroscopic second-order work:

• A material cause, related to the plastic behavior of some
contacts.

• A geometrical cause, related to the deletion of contacts.

In particular two-dimensional conditions, the vanishing of the
microscopic second-order work implies that an unloading along
the normal direction of the contact occurs, and that the incre-
mental tangential displacement is higher than a positive limit
value function of the incremental normal displacement (Nicot
and Darve, 2006). As verified from simulations carried out us-
ing a micro-mechanical model (Nicot and Darve, 2005; Darve
and Nicot, 2005a and 2005b), conditions for the vanishing of
the macroscopic second-order work are less restrictive in two
dimensions than in three dimensions.

In conclusion, the microscopic second-order work may vanish
only if the considered nonopening contact is in a plastic regime
and is subjected to a normal release. However, and particu-
larly in three-dimensional conditions, the microscopic second-
order work is likely to be positive even though the contact be-
haves plastically. It should be emphasized that the microscopic
second-order work cannot vanish in a compressive situation.
Thus, on a grain assembly scale, the second-order work is ex-
pected to remain positive along confined loading paths such as
oedometric loading (i.e., one-dimensional compression).

Opening the contact can also contribute to the vanishing of the
microscopic second-order work. This is an outstanding feature
of granular materials, where sudden collapses may occur, and
inducing significant rearrangements between grains. This fea-
ture was well-recognized from both experimental investigations
(Odaet al., 1982) and numerical simulations based on a dis-
crete element method (Bardet, 1994). In order to tackle this
question, it is relevant to consider that the granular assembly
can be split into two distinct regimes. Indeed, it has been es-
tablished that a granular medium can be considered as com-
posed of two distinct phases (Horne, 1965; Radjaiet al., 1998).
Specific patterns for grains that are joined by contacts trans-
mitting high contact forces may be developed within the gran-
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ular assembly. Since these patterns are responsible for the abil-
ity of the medium to transmit local forces, they are denoted
force chains (or solid paths, using the terminology adopted by
Horne). These chains constitute the so-called strong phase. In
the vicinity of these chains, a network of weak contacts exists,
associated with low contact forces; similarly, this network con-
stitutes the so-called weak phase. However, force chains are
likely to collapse abruptly; this is particularly true for rounded
particles since particle rotations may occur. Indeed, it is well-
known that particle rolling is to a large extent responsible for
the so-called buckling effect (Oda, 1982, and more recently,
Tordesillas and Walsh, 2002). The collapse of force chains in-
duces substantial structural rearrangements, directing bursts of
kinetic energy of the assembly. This geometrical “instability”
can be detected by the vanishing of the second-order work. Fur-
thermore, it has also been established (Radjaiet al, 1998) that
the low normal contact forces that exist within the weak phase
may justify that several contacts are in the plastic regime, pos-
sibly leading to the vanishing of the microscopic second-order
work for these contacts.

In conclusion, it was established that the vanishing of the
second-order work has two origins. A geometrical origin es-
sentially concerns the strong phase and is related to important
changes in the structure resulting from the collapse of force
chains. A material origin could be linked to the sliding between
adjoining granules that mainly occurs within the weak phase.
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Summary: An anisotropic damage model has been recently proposed for concrete with a quite reduced numbers of material
parameters and with good numerical properties [1]. The dissymmetry tension/compression in such a model is due to the damage
induced anisotropy. The quasi-unilateral conditions of microcracks closure were written in this initial model mainly built for
monotonic applications on the hydrostatic stresses only. The present work proposes a better modeling of the microcracks closure
effect. A proper 3D thermodynamics framework is used to recover both hydrostatic and shear stiffness in compression. Seismic
applications are then described using multifibre beam analysis.

Introduction

Damage in quasi-brittle materials is anisotropic. Many re-
search efforts have been made to model loading induced dam-
age anisotropy, at different scales, leading to popular mod-
els [2]. But an important difficulty remains in most modeling
approaches: the numerical cost and the model robustness. In
quasi-static this point is not so crucial, but it becomes critical
for dynamics applications as in earthquake engineering. On the
basis of an anisotropic damage model recently proposed [1, 4]
for concrete with a quite reduced numbers of material param-
eters and with good numerical properties (no need of an itera-
tive process at the Gauss point level), one focuses next on phe-
nomenological modeling for non monotonic applications of the
microcracks closure effect and stiffness recovery in compres-
sion.

Thermodynamics potential

One considers Ladevèze’s framework for anisotropic damage
[5] in order to build a Gibbs potentialρψ?, with ρ the density,
which can be continuously differentiated,

ρψ? =
1 + ν

2E
[
tr
(
HHHσσσD+HHHσσσ

D
+

)
+ 〈σσσD〉− : 〈σσσD〉−

]
+

1− 2ν
6E

[
〈tr σσσ〉2+
1− tr DDD

+ 〈tr σσσ〉2−
]

(1)

where the notation〈.〉− stands for the negative part, in terms
of principal values for tensors, whereD denotes the devi-
atoric part and where the effective damage tensor is set as
HHH = (111 − DDD)−1/2. A single thermodynamics damage vari-
able is used but which acts fully for ”tension” and partially for
”compression” (note that the state of stress can be 3D). In order
to keep the differentiability feature of Gibbs energy a special
positive partσσσD+ is built with the eigenvaluesλI and the corre-

sponding eigenvectors~T I of (HHHσσσD) [5, 3]. The vectors~T I and
λI are given by the eigenvalue problem

σσσD ~T I = λIHHH−1 ~T I (2)

in which the normalization~T I THHH−1 ~T J = δIJ is made. The
positive partσσσD+ is then defined as

σσσD+ =
3∑
I=1

[
HHH−1 ~T I

] [
HHH−1 ~T I

]T
〈λI〉+ (3)

expression which simplifies in case of proportional loading as
σσσD+ = 〈σσσD〉+, the classical positive part of the deviatoric stress
tensor. The elasticity law derives from Gibbs potential asεεεe =
ρ ∂ψ?/∂σσσ or:

εεεe =
1 + ν

E

[
(HHHσσσD+HHH)D + 〈σσσD〉D−

]
+

1− 2ν
3E

[
〈tr σσσ〉+
1− tr DDD

+ 〈tr σσσ〉−
]
111

(4)

It is continuous (all 3D stress tensor components are continuous
even in non proportional loading) and takes into account the
quasi-unilateral effect.

Damage criterion and damage law

A damage criterionf defines the elasticity domain asf < 0 and
damage growth asf = 0 for any loading including tension and
compression. The criterion was of the formf = ε̂ − κ(tr DDD)
in the initial model withε̂ Mazars equivalent strain andκ a
consolidation function,

κ(tr DDD) = a · tan
[
tr DDD

aA
+ arctan

(κ0

a

)]
(5)

introducing the damage thresholdκ0 andA, a as damage pa-
rameters. A response equivalent in both monotonic tensile and
compressive cases is gained by setting:

f = ε̂− κ
(
DDD : 〈εεε〉+
maxεI

)
(6)

with maxεI the maximum positive extension. Expression (6)
allows for tensile damage deactivation in compression. Last,
damage induced anisotropy is modeled through the damage law
[6]

DDD = λ̇〈εεε〉+ (7)
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of damage governed by the positive extensions. The damage
multiplier λ̇ is gained from the consistency conditionf = 0,
ḟ = 0.

An example of the stress-strain response in cyclic tension is
given in Fig.1. The stiffness recovery in compression after a
damaging tension can be noticed.

σ
(Pa)

zoom

ε

Figure 1: Tension-compression-tension

Discussion and applications

The anisotropic damage model proposed is 3D and has quite a
reduced number of material parameters (5 including the 2 elas-
ticity parameters) due to the fact that the damage anisotropy
is responsible for the dissymmetry tension/compression. The
present model recovers the initial anisotropic model in mono-
tonic cases making the identification simple. It ensures the
stresses continuity in 3D, the stiffness recovery (unilateral ef-
fect). Seismic applications take advantage of such a modeling
as a single set of parameters is used for both tension and com-
pression and as the non monotonic response is gained by a
classical numerical scheme solving nonlinear differential equa-
tions. Using multifibre beam analysis only the 1D version of
the model needs to be implemented, work which has been done
in CEA Cast3m Finite Element code.
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Summary: The paper deals with a numerical analysis of the effect of textural anisotropy on the behaviour of cohesionless
granular materials with consideration of shear localization. For a simulation of the mechanical behavior of a granular material
during a monotonous deformation path, an isotropic micro-polar hypoplastic constitutive model was used. To describe textural
effects, spatially correlated random fields of the initial void ratio were subject to rotation against the horizontal axis. The results
were compared with those obtained with an anisotropic micro-polar constitutive model. The calculations were carried out with
a dense granular specimen during plane strain compression under constant lateral pressure.

Introduction

Granular materials are heterogeneous and discrete systems
composed of grains with different shape, size, roundness and
roughness. Thus, their behaviour is influenced by the orienta-
tion of grains with respect to the direction of sedimentation.
This inherent anisotropy due to texture (fabric) is called a tra-
verse isotropy since the material has a rotational symmetry with
respect to one of the co-ordinates axes. The plane perpendicu-
lar to the orientation direction is called bedding plane and it is
a plane of isotropy.
The laboratory experiments on plane strain compression show
evidently that the orientation of the bedding plane relative to
the principal stress directions has a pronounced effect on the
stress-strain behaviour [1]. The shear stiffness, peak friction
angle and average volume change are usually larger and strain
corresponding to the peak value are smaller for loading per-
pendicular to the bedding plane than for loading parallel to it.
The inclination of the shear zone with respect to the bottom
becomes smaller. For large monotonic shearing, the stress ra-
tio approaches a stationary value [1], i.e. anisotropy vanishes at
residual state (critical state) at large shear deformation due to
the so-called SOM-effect (swept out of memory effect). The
DEM simulations seem to confirm also this SOM-effect in
granular bodies.
In this paper, a novel approach was attempted to describe textu-
ral anisotropy with isotropic micro-polar hypoplasticity. First,
the initial void ratio in the granular specimen was distributed
stochastically by using a random correlated field. Next, this
field was rotated by different angles to simulate the speci-
men preparation process in laboratory experiments, which was
characterized by the angle between the filling and loading di-
rection [1]. An isotropic micro-polar hypoplastic constitutive
model was used, which is able to describe the essential prop-
erties of granular materials during shear localization in a wide
range of pressures and densities. In addition, the numerical re-
sults from the isotropic model were compared with three dif-
ferent anisotropic micro-polar constitutive models [2-4]. The
effect of this rotation on the spontaneous shear zone formation
in dense sand during plane strain compression under constant
lateral pressure was numerically investigated with the finite el-
ement method.

Constitutive model

Non-polar hypoplastic constitutive models describe the evo-
lution of the effective stress tensor depending on the current
void ratio, stress state and rate of deformation by isotropic non-
linear tensorial functions. A striking feature pertinent to hy-
poplasticity is that the constitutive equation is incrementally
non-linear in deformation rate. The hypoplastic models are ca-
pable of describing a number of significant properties of gran-
ular materials, e.g. non-linear stress-strain relationship, dilatant
and contractant volumetric change, stress level dependence,
density dependence and material softening. A further feature of
hypoplastic models is the inclusion of critical states, in which
grain aggregate can deform continuously at constant stress and
constant volume. In contrast to plastic models, a decomposition
of deformation into elastic and plastic parts, the formulation of
yield surface, plastic potential, flow rule and hardening rule are
not needed. The hallmark of these models are their simple for-
mulation and procedure for determining the material parame-
ters with standard laboratory experiments.
It has been shown that hypoplastic constitutive models with-
out a characteristic length cannot describe realistically shear
localization [5]. A characteristic length can be introduced into
hypoplasticity by means of micro-polar, non-local and second-
gradient theory [5]. In this paper, a micro-polar theory was
adopted. A micro-polar model makes use of rotations and cou-
ple stresses, which have clear physical meaning for granular
materials. In the calculations, micro-polar isotropic hypoplas-
tic model was used [3,5]. The constitutive relationship requires
ten material parameters [3].

Input data and FE-implementation

FE-calculations of plane strain compression tests were per-
formed with a sand specimen with initial dimensions ofho=140
mm (height),b=40 mm (width) andl=1.0 m (depth due to plane
strain calculations). 3584 triangular elements were used. The
quadrilateral elements composed of four diagonally crossed tri-
angles were used to avoid volumetric locking due to dilatancy
effects. The height of the finite elements was not larger than
five times mean grain diameter to properly capture shear lo-
calization. A quasi-static deformation was imposed through a
constant vertical displacement increment prescribed at nodes
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along the upper edge of the specimen. The boundary condi-
tions of null shear stress were imposed at the top and bottom of
the specimen. To preserve the stability of the specimen against
horizontal sliding, the node in the middle of the top edge was
kept fixed. As the initial stress state, aK0-state was assumed.
Next, a confining pressure ofσc=200 kPa was prescribed.
A spatially correlated distribution of the initial void ratioeo
was assumed in the granular specimen in the form of a two-
dimensional Gaussian stochastic field. Randomness of the ini-
tial void ratio was described by the following homogeneous
correlation function [6]:

K(x1, x2) = s2
d e−λx1∆x1(1 + λx1∆x1)e

−λx2∆x2(1 + λx2∆x2)

where∆x1 and∆x2 are the distances between two field points
along the horizontal axisx1 and vertical axisx2, λx1 andλx2
are the decay coefficients characterizing a spatial variability of
the specimen properties while the standard deviationsd repre-
sents their scattering. The simulation process was divided into
three stages [8]. First, the four corner random values were gen-
erated. Next, a propagation scheme with a growing number of
points covered a defined base scheme of the field mesh. In the
third stage, the base scheme was appropriately shifted, and the
next group of unknown random values was simulated. The base
scheme was translated so as to cover the entire field nodes. For
the sake of simplicity, only single realizations were performed
in the first step with the initial void ratioeo =0.65 in the speci-
men. The standard deviations should be assumed based on ex-
perimental data. Due to the lack of experimental data, how-
ever, one assumed two different standard deviationssd = 0.05
(small scatter) andsd = 0.10 (large scatter). One assumed
strongly correlated fields in the horizontal direction (λx1 = 1)
and weakly correlated fields in the vertical one (λx2 = 3). A
strongly correlated field implied a small variation ofeo. There-
fore, the density in the horizontal direction was close to a uni-
form distribution. Next, the generated random fields were ro-
tated by the angleθ = 0o andθ = 90o against the horizontal
axisx1 to simulate the filling process in laboratory tests (θ =
bedding plane inclination).
The numerical results for three different spatially correlated
random fields of the initial void ratio (withλx1 = 1, λx2 = 3
andsd = 0.05) rotated byθ = 0o, θ = 45o andθ = 90o are
depicted in Figs. 1 and 2. The normalized load-displacement
curves are shown in Fig.1 (P = resultant vertical force on the
top, ut2 = vertical displacement of the top boundary). The de-
formed FE-meshes with the distribution of the equivalent total
strainε̄ = √εijεij are demonstrated in Fig. 2 (εij = strain ten-
sor).
The normalized overall vertical force in the granular specimen
is the largest for the rotation angleθ=0o, smaller forθ=45o and
the smallest for the angleθ=90o (as in the experiments [1]).
One shear zone occurs inside of the specimen which crosses
the specimen and whose location is caused by a stochastic dis-
tribution of the initial void ratio. The shear zone thickness is
insignificantly influenced by the rotation angleθ (it slightly in-
creases with increasingθ). By making use of Cosserat rota-
tions the shear zone thickness is about 8-9 mm [(16-18)×d50].
The shear zone inclination against the bottom always decreases
slightly with increasing angleθ from 54o (θ=0o) down to 50o

(θ =90o).

Figure 1: Effect of the rotation angleθ on the normalized
load-displacement curve with stochastic distribution ofeo us-
ing isotropic micro-polar hypoplastic model [3] (λx1 = 1,
λx2 = 3, sd = 0.05): a) θ = 0o, b) θ = 45o, c) θ = 90o.

Figure 2: Deformed meshes with the distribution of equivalent
total strain at residual state (λx1 = 1, λx2 = 3, sd = 0.05):
a) θ = 0o, b) θ = 45o, c) θ = 90o.
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Summary: The modified Cam-clay plasticity is employed in a two-phase soil modelling. A simple Laplacian-enhancement of
the theory is discussed. The influence of permeability and fluid phase compressibility on shear band instabilities is investigated.
The mesh-sensitivity of localization simulations is verified.

Introduction

The influence of the fluid phase on instabilities in two-phase
soil modelling is a subject of ongoing research, see for instance
[1, 2, 3, 4, 5, 6]. The solid-fluid interaction can influence the
critical load level for which an instability occurs as well as
the direction and width of the localization band. The two-phase
modelling of soil involves a gradient term via the Darcy’s law.
However, its effect is strongly dependent on the permeability
coefficient and thus some localization limiter still seems nec-
essary. Moreover, the constitutive description plays an impor-
tant role in the solid-fluid coupling. This issue is investigated in
the paper within the formulation based on a gradient-enhanced
modified Cam-clay model.

Two-phase modelling

Soil is a multiphase material which consists of a solid skele-
ton and voids filled with fluids (usually water and air). In this
paper soil is described as a two-phase medium (solid + water)
which, with the assumption of incompressibility of solid grains,
is governed by the following two equations:

∇ · σt + ρ̂g = 0 (1)

∇ · u̇+ ∇ · vd − nθ̇f = 0 (2)

whereσt - total stress tensor for the porous medium,ρ̂ - sat-
urated density of the solid-fluid mixture,g - gravitation vec-
tor,u - displacement vector,vd - Darcy’s velocity,n - porosity
andθf - volumetric strain of compressible fluid. Equation (1)
represents the balance of momentum and eq. (2) the balance
of mass. They require appropriate boundary conditions and the
rate eq. (2) requires an initial condition as well.

We note that the balance of the medium is maintained by the
total stress, while the deformation and limit states of saturated
soil are governed by the effective stress tensorσ defined as
σ = σt + Ipf with unit tensorI and pore pressurepf .

Gradient-dependent modified Cam-clay model

The modified Cam-Clay model, originated in [7], is commonly
accepted as reliable for a large class of soils. It belongs to crit-
ical state models and describes the behaviour of the soil skele-
ton, since the constitutive equations are written in terms of

effective stresses. This plastic model, combined with nonlin-
ear elasticity, is capable of reproducing the essential physical
properties of soils, including hardening/softening and contrac-
tion/dilatation. In particular, dilatation due to large preconsoli-
dation involves softening and negative excess pore pressure.

The yield function for the gradient-dependent modified Cam-
clay model is written as:

f(σ,Λ,∇2Λ) = q2 +M2p [p− pc(∆θp) + g∇2Λ] (3)

whereq =
√

3J2, J2 - second invariant of the deviatoric ef-
fective stress tensor,M - function of the internal friction angle,
p - effective pressure acting on the soil skeleton,pc - (posi-
tive) measure for the current degree of overconsolidation,θp -
volumetric part of the plastic strain tensor, dependent on plas-
tic multiplier Λ, andg - positive gradient influence factor. The
algorithmic implementation of the model is based on [8] and
presented in [9].

Discretization of three-field formulation

To combine the problem of pore pressure evolution with the
gradient-enhanced plasticity modelling of the solid skeleton,
the weak forms of equations (1-3) are required. Upon dis-
cretization of the displacementsu, plastic multiplierΛ and ex-
cess pore pressurepf , one obtains the incremental matrix prob-
lem: Kuu KuΛ −Kup

KΛu KΛΛ 0
KT
up 0 Kpp

 ∆ū
∆Λ̄
∆p̄

 =

 fext − fint

fΛ

∆t∆fp


(4)

in which Kuu is the classical tangent stiffness operator,
KuΛ andKΛu are equilibrium-plasticity coupling matrices,
KΛΛ is the gradient-dependent yield condition matrix,Kup

is deformation-pore pressure coupling operator,Kpp results
from pore pressure discretization of eq. (2) and involves explic-
itly the time increment∆t. The right-hand side vector contains
residual terms of the discrete nonlinear problem, cf. [10].

Influence of fluid phase on localization

In this paper the influence of the fluid phase on soil instabili-
ties is investigated using the local and gradient-enhanced mod-
ified Cam-clay model. The numerical investigation is focused
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Figure 1: Biaxial compression test for local Cam-clay model:
vertical strain (left) and pore pressure (right) distribution for
coarse and medium meshes.
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Figure 2: Biaxial compression test for two-phase medium with
gradient-dependent Cam-clay model: load-deformation curves

on shear banding localization in the classical plane strain bi-
axial compression test. It turns out that deformations obtained
for various values of permeability coefficient are sensitive to
the discretization density unless gradient regularization is em-
ployed. Some stabilizing effect of the fluid phase is observed
only in the pore pressure distribution, see Fig.1.

Figure2 shows the load-deformation diagrams obtained for the
two-phase medium using the gradient-dependent model. Fig-
ure 3 shows the vertical strain and pore pressure distributions
for three mesh refinements and proves that the adopted gradient
enhancement provides an effective regularization.

The physical consequences of the gradient enhancement and
the influence of fluid compressibility are also investigated in
the paper. The reasons for inconsistent conclusions from the
results presented in [5] and [10] are discussed.
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Summary: Wave propagation through heterogeneous materials is dispersive, that is, the propagation velocity of the harmonic
wave components depends on the wave number. A homogeneous continuum material model can be used to represent a hetero-
geneous medium, and wave dispersion can be modelled by including additional gradients of certain state variables. Particularly
suited for a realistic description of wave dispersion are those formats of gradient elasticity that incorporate so-called micro-inertia
(related to intrinsic time scales); other terms related to micro-stiffness (and intrinsic length scales) may also be present in the
formulation. A widespread use of gradient elasticity in large-scale applications is hampered by the often stringent continuity
requirements imposed on the numerical interpolation scheme. Gradient elasticity formulations are normally fourth-order partial
differential equations in terms of the displacements and require therefore continuity of the primary unknowns as well their first
derivatives. In this contribution, we will revisit the general gradient elasticity formulation that includes micro-inertia as well as
micro-stiffness, and we will re-formulate this theory such that the continuity requirements areC0, rather thanC1. This enables a
straightforward implementation of this particular theory.

Introduction

In their linear form, the constitutive equations of gradient elas-
ticity are written as [2, 3]

σij = Cijkl
(
εkl − `2sεkl,mm

)
(1)

whereσ is the stress,C contains the elastic moduli,ε is the
strain defined as the symmtric gradient of the displacements
u, and subscripts following a comma denote a derivative with
respect to a spatial coordinate. The newly introduced material
parameter̀s is a material length scale and it represents the un-
derlying microstructure.

Models can be derived for which strain singularities are
avoided, realistic dispersion is predicted and the additional pa-
rameters can be expressed in terms of microstructural proper-
ties. For this class of models the constitutive equations can be
written as

σij = Cijkl
(
εkl − `2sεkl,mm

)
+ ρ`2müi,j (2)

whereρ is the mass density, a superimposed dot denotes a time
derivative, and two length scales have appeared:`s related to
higher-order stiffness and̀m related to higher-order inertia.

Ultimately a numerical implementation based on discretisation
must be attempted. The field equations according to Eq. (2) are
of the fourth order in the displacements and therefore the shape
functions must be at leastC1-continuous. The need for aC1 im-
plementation of Eq. (2) can be avoided by applying an operator
split as discussed in detail by Ru and Aifantis [3]. In this paper,
the model according to Eq. (2) will be reformulated along sim-
ilar lines such that it can be implemented straightforwardly by
means of the finite element method.

The Ru-Aifantis theorem

Solution strategies will be sought that facilitate the numerical
solution of gradient elasticity problems. Firstly, the static case

is considered. The equilibrium equations associated with the
static form of gradient elasticity of Eq. (1) can be cast in terms
of displacements as

Cijkl

(
ugk,jl + ugl,jk

2
− `2s

ugk,jlmm + ugl,jkmm
2

)
= 0 (3)

where body forces are not considered. A superscriptg has been
used for the displacements to indicate that gradient dependence
is present. Solving these fourth-order equations (analytically or
numerically) can be a tedious task, however Eq. (3) can be re-
arranged as [3]

Cijkl
uak,jl + ual,jk

2
= 0 (4)

where the auxiliary displacementsua are defined as

uai = ugi − `
2
su
g
i,mm (5)

The auxiliary displacements are obtained from Eq. (4) which
takes the format of classical elasticity — indeedua can be iden-
tified as the classical elasticity displacements in statics. Next,
the gradient-dependent displacementsug are obtained by solv-
ing the non-homogeneous Helmholtz equation (5) whereua is
used as a source term. Not does this only offer a tremendous
simplification in analytical solution methods, also the continu-
ity requirements imposed on the shape functions in numerical
methods have become less strict:C0-continuous, rather than the
cumbersomeC1-continuous, shape functions suffice. Eqs. (4)
and (5) can be used instead of Eq. (3) while capturing the same
material response — this is known as the Ru-Aifantis theorem
[3].

When dynamic loading conditions are imposed, Eq. (2) rather
than Eq. (1) should be used so that a realistic dispersive be-
haviour is obtained. The equations of motion in terms ofug
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then read

ρ
(
ügi − `

2
mü

g
i,mm

)
=

= Cijkl

(
ugk,jl + ugl,jk

2
− `2s

ugk,jlmm + ugl,jkmm
2

)
(6)

The goal is now to accomplish a simplification of Eq. (6) simi-
lar to that of Eq. (3), such that a formulation results for which
C0-continuous interpolations suffice.

In the case that̀m 6= `s it is not possible to rewrite the left-
hand-side and the right-hand-side of Eq. (6) with a single sub-
stitution in the spirit of Eq. (5). Since the fourth-order spatial
derivatives appear in the right-hand-side, the auxiliary displace-
mentsua are substituted on this side, hence

ρ
(
ügi − `

2
mü

g
i,mm

)
= Cijkl

uak,jl + ual,jk
2

(7)

in conjunction with Eq. (5). Now, the system is fully coupled
as both variablesua andug appear in both expressions. How-
ever, a further elaboration is made by taking the second time
derivative of Eq. (5):

üai = ügi − `
2
sü
g
i,mm (8)

A symmetric formulation can now be obtained by multiplying
Eq. (8) with `2m/`

2
s, the result is used to replace theügi,mm term

in Eq. (7), and multiplying Eq. (8) with ρ(1−`2m/`2s), the result
is to be used instead of Eq. (5). With these substitutions, the
symmetric set of coupled equations reads

ρ

(
`2m
`2s

üai −
`2m − `2s
`2s

ügi

)
= Cijkl

uak,jl + ual,jk
2

(9)

together with

ρ

(
−`

2
m − `2s
`2s

üai +
`2m − `2s
`2s

ügi −
(
`2m − `2s

)
ügi,mm

)
= 0

(10)
Note that in this case, the auxiliary displacementsua cannot be
interpreted as the displacements of classical elasticity.

Discretised system of equations

The field equations are now discretised taking into account the
derived boundary conditions. Adopting the usual matrix-vector
notation, the weak form of Eq. (9) is written as∫
Ω

δuuuT ρ

(
`2m
`2s

üuua − `2m − `2s
`2s

üuug
)

dV −
∫
Ω

δuuuTCLεεεa dV = 0

(11)
whereδuuu is a vector of test functions andL is a differential
operator. Integrating the last term of Eq. (11) by parts leads to∫

Ω

δuuuT ρ

(
`2m
`2s

üuua − `2m − `2s
`2s

üuug
)

dV +
∫
Ω

δεεεTCεεεa dV =

=
∫
Γn

δuuuT ttt dS (12)

where the prescribed tractionsttt have been substituted on the
relevant part of the boundaryΓn. Similarly, Eq. (10) is cast in
its weak format according to∫

Ω

δvvvT ρ

(
−`

2
m − `2s
`2s

üuua +
`2m − `2s
`2s

üuug−

−
(
`2m − `2s

)
∇2üuug

)
dV = 0 (13)

with δvvv a vector of test functions. The last contribution is inte-
grated by parts, which gives∫

Ω

δvvvT ρ

(
−`

2
m − `2s
`2s

üuua +
`2m − `2s
`2s

üuug
)

dV+

+
∑

ξ=x,y,z

∫
Ω

∂vvvT

∂ξ
ρ
(
`2m − `2s

) ∂üuug
∂ξ

dV = 0 (14)

Homogeneous natural boundary conditions have been assumed
by which the boundary integral cancels.

The two vectors of trial functionsuuua anduuug are discretised as
uuua = Naua anduuug = Ngug. The test functionsδuuu andδvvv are
also discretised with shape functionsNa andNg, respectively.
Discretisation in time is performed using the constant acceler-
ation variant of the Newmark scheme.

A more thorough exposition of the formulation, along with ex-
amination of the boundary conditions and a numerical example,
is given in [1].
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Northwestern University, 2145 Sheridan Road, CEE
Evanston, IL 60208, USA; z-bazant@northwestern.edu

Summary: For quasibrittle structures failing at macro-fracture initiation, there exists a size effect not only on the mean strength
of structure but also on the type of its strength distribution, which varies from Gaussian (normal) to Weibullian as the size
increases.There are serious consequences for the safety factors and structural lifetime.

Motivation and problem
The uncertainty in the understrength (or capacity reduction)
parts of safety factors, which are still essentially empirical, is
much larger than the typical errors of modern computer anal-
ysis of structures. This problem is paramount importance for
quasibrittle structures. Its resolution would yield greater bene-
fits than most refinements in computational mechanics. Purely
empirical, statistically based, safety factors are adequate for
structures whose failure is either purely ductile or purely brittle
because the type of cumulative probability distribution func-
tion (cdf) of structure strength is independent of structure size
and geometry, and is either Gaussian (normal) or Weibullian.
Not so for structures consisting of quasibrittle materials, which
include, at normal scale, concrete, fiber-polymer composites,
tough ceramics, rocks, sea ice, wood, etc., at normal scale, and
many more at the scale of MEMS and thin films. For such struc-
tures, which are the focus of this lecture, the cdf continuously
varies from nearly Gaussian to Weibullian as the structure size
increases, and also depends on the structure geometry. Quasib-
rittle structures are characterized by a fracture process zone that
is not negligible compared to the cross-section dimensions of
the structure. As firmly established by now, the mean strength
of quasibrittle structures failing at fracture initiation does not
scale as a power law but varies with the structure size as a grad-
ual transition between two asymptotic size effect laws of power
law type—one of them deterministic (or energetic), based stress
redistribution due to a large fracture process zone, and the other
statistical, based on the weakest-link model and Weibull theory
or random material strength. In this lecture, it is argued that the
safety factors for such structures, which have generally been
considered as size independent and purely empirical, must also
be considered to depend on the structure size as well as shape.
Furthermore, the dependence of structural lifetime on structure
size (at fixed nominal stress) must be considered to deviate,
for such structures, from the power law predicted by Weibull
theory, and the type of cdf of structure lifetime to be size de-
pendent. The safety factors must ensure an extremely low fail-
ure probability,≤ 10−6. For such a low probability, direct ex-
perimental verification by strength histograms is impossible. A
physically based theory whose experimental verification is in-
direct is, therefore, required.

Conspectus of main results
Recently it has been shown that the cdf of strength can be de-
rived from the Maxwell-Boltzmann distribution of atomic ther-
mal energies and the stress-dependence of activation energy of
interatomic bond breaks (Fig. 1a). The analysis indicates that

the far-left tail of every cdf of strength of a representative vol-
ume element (RVE) of any material must be a power law. For
ductile (plastic) materials, the power-law tail is so remote that
it plays no role, but not for quasibrittle materials. The cdf of
strength of quasibrittle structures of positive geometry (which
are the structures failing at fracture initiation) can be modelled
as a chain (or series coupling) of RVEs (Fig. 1e). It is demon-
strated that the RVE must be modelled by neither a chain nor
a bundle. Rather, it must be statistically represented by a hier-
archical model consisting of bundles (or parallel couplings) of
only 2 long sub-chains, each of them consisting of sub-bundles
of 2 or 3 long sub-sub-chains of sub-sub-bundles, etc., until the
nano-scale of atomic lattice is reached. The power-law char-
acter of the cdf tail is indestructible. It is transmitted through
all the scales from nano to macro while its exponent is grad-
ually raised from 1 on the atomistic scale to a value equal, on
the RVE scale, to the Weibull modulus (typically between 10
and 50). The physical meaning of Weibull modulus is shown
to be the minimum number of cuts needed to separate the hi-
erarchical model into two halves, which should be equal to the
number of dominant cracks needed to break the representative
volume element (RVE) of material. Thus the model indicates
the Weibull modulusm to be governed by the packing of in-
homogeneities within a RVE. It is also shown that the RVE
cannot be defined in the classical sense but must be understood
as the smallest material volume whose failure causes failure of
the whole structure (of positive geometry). The model indicates
that the cdf of RVE strength must have a broad Gaussian (or er-
ror function) core, onto which a power-law tail of an exponent
equal to the Weibull modulus is grafted at the failure probabil-
ity of about 0.001, if the structure is quasibrittle. The model
predicts how the grafting point, separating the Gaussian and
Weibullian parts, moves to higher failure probabilities as the
structure size increases, and also how the grafted cdf depends
on the temperature, lifetime (or load duration, loading rate) and
activation energy (which in turn is affected by aggressive chem-
ical species). On a large enough scale (equivalent to at least
1000 RVEs), quasibrittle structures must follow the Weibull
distribution with, necessarily, a zero threshold. Thus the cdf
of structure strength changes from predominantly Gaussian for
small sizes to predominantly Weibull for large sizes (Fig. 1a,e).
It is widely agreed that engineering structures must generally
be designed to ensure failure probabilityPf ≤ 10−6. Since
the point ofPf = 10−6 is, for the Weibull distribution, about
twice as far from the mean than it is for the Gaussian distribu-
tion of the same mean and variance (Fig. 1a), the understrength
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part of the safety factor must be approximately doubled when
passing from very small to very large structures (Fig. 1d). This
serious consequence, unique to quasibrittle structures, has not
been considered in the design of large concrete structures or
large composite parts of aircraft made of composites. On the
other hand, the coefficient of variation of quasibrittle structures,
unlike perfectly brittle structures, decreases with structure size
(Fig. 1d). This behavior may partly or fully offset the need for
a larger safety factor. The experimental histograms with kinks,
which were previously thought to require the use of a finite
threshold, are shown to be fitted much closer by the proposed
chain-of-RVEs model with a zero threshold (Fig. 1c). For not
too small structures, the model is shown to represent, in the
mean sense, essentially a discrete equivalent of the previously
developed nonlocal Weibull theory, and to match the mean size
effect law previously obtained from this theory by asymptotic
matching (Fig. 1e). The chain-of-RVEs model (Fig. 1e) can be
verified and calibrated from the mean size effect curves, as well
as from the kink locations (Fig. 1c) on experimental strength
histograms for sufficiently different specimen sizes. Strength
histograms for specimens of one size (Fig. 1a) are not sufficient.
The mean stochastic response agrees with the cohesive crack
model, crack band model and nonlocal damage models. Anal-
ysis of some major structural collapses, e.g., the devastating
failures of Malpasset dam and Schoharie Creek Bridge on New
York Thruway, reveals that the size effect (on both the mean
nominal strengthσN and the safety factor) must have been a
significant contributing factor. The tolerable abutment displace-
ment of that ill-fated record-slender and record-tall arch dam
would today be about four-times smaller than that deemed tol-
erable according to the standard design procedures at the time
of design. Finally, the new theory also indicates that, for qua-
sibrittle structures, the definitions of Cornell and Hasofer-Lind
reliability indices in FORM and SORM need to be modified.
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[6] Z. P. Bǎzant, M. Vǒrechovsḱy, D. Novák (2007): Energetic-
Statistical Size Effect Simulated by SFEM with Stratified
Sampling and Crack Band Model.”Int. J. of Numerical
Methods in Engineering, in press.

Importance of Tail Distribution of Pf

Pr
ob

. o
f F

ail
ur

e

0

1

Tolerable 
failure prob.
Pf = 10-6

Gaussian 
cdf

Weibull
cdf

Same mean, same ω

σ/µMean
1

TG
TW

Nω= function of Pf and

Pf = 1 – exp[-(σ/µ)m]

Tail Offset Ratio TW / TG

Load

Basis of Probabilistic Model for Quasibrittle RVE
Maxwell-Boltzmann distribution
⇒ frequency of exceeding activation energy Q

/e Q kTf −=

3)cdf of break surface:

2)Critical fraction of broken bonds

breaks restorations
14243 142431)Net rate of breaks ( ) / ( ) /= e eQ kT Q kTκσ κσ− − − +−

/= 2e sinhQ kT

kT
κσ−

reached within stress duration τ

( ) min sinh ,  1i
s bF C

kT
κσσ ⎛ ⎞= ⎜ ⎟

⎝ ⎠

( )2 ebb
Q kTC ϕ τ −=

( )bϕ τ

Q

E
σ = 0

x

κσ
κσσ1

Pf1

Fs(σ)

σ
bC kTκσ

Tail =

0

5.3

-6

-2

2

2.4 2.8 3.2 3.6 4.0

Quasi-Brittleness or Threshold Strength?

-6

-2

2

0.5 1.5 2.5 3.5

Despite using a 
threshold to 
optimize fits, 
Weibull theory 
can fit only the tail

Optimum fit by Weibull cdf
with finite threshold

1
3.6

1

4.6

1

Optimum fit by chain–of–
RVEs, zero threshold 

Age
2 d

ays

1
m=16

1

m=20

Weibull’s (1939) 
tests of Portland 
cement mortar

1

m=24

ln σln(σ−σu)
7 d

ay
s

28
 da

ysW
eib

ull
sc

ale
ln

[−
ln

(1
−P

f)]

ndata (2 days) = 680
ndata (7 days) = 1082
ndata (14 days) = 1106

Pf  ≈ 0.65

RVE size ∼ 0.6−1.0 cm
Specimen vol. ∼ 100−3000 cm3( )( )01 e

m
N u S

fP σ σ− −= −
Weibull cdf with 
finite threshold:

KINK - classical 
Weibull theory 
can’t explain

⇒ Pgr ∼ 0.0001−0.01

0.0

0.5

1.0

0.2 0.6 1.0 1.4
σ N /S 0

P f

104 103 102 101 1  RVE

Assumed  
Pgraft = 0.001
for 1 RVE∆tail,4,

∆tail,1

∆tail,1 or∆tail,4= distance from the mean to Pf = 10-6 for 
1 RVE (almost entirely Gaussian) or 104 RVEs (almost entirely Weibull)

∆tail,4
∆tail,1

Comparison of tail length

Size Effect on Safety Factor

Gaussian cdf with 
the same mean and 
CoV, for 104 RVEs

∆Gauss–tail,4

∆tail,4 /∆Gauss–tail,4= 1.72
∆tail,1 /∆Gauss–tail,1= 0.96

Type 1 Size Effect on Mean and  
pdf via Asymptotic Matching

Small (D → 0)

log D ( Size )

lo
g 
σ N

 ( 
N

om
. S

tr
en

gt
h 

)

Gaussian pdf
Intermediate Asymptote

m nd

Weibull pdf

Large D D→∞

Larger D
Small Size Asymptote

Large Size 
Asymptote

→

Higher T
τLonger

Each RVE = one
hierarchical

model

1

0

rn r
m

s b
N r

s o

l rDf
l D l D

σ
⎡ ⎤⎛ ⎞⎢ ⎥= +⎜ ⎟+ +⎢ ⎥⎝ ⎠⎣ ⎦

cdf of Structural Lifetime
For finite Neq:

Mean lifetime as function of load & temperature: Size effect

For Neq→∞: 1
m

Effect of temperature
Asymptotic 
size effect

Large size

Small size

Figure 1: Explanations of concept and properties of activation
energy based chain-of-RVEs model.

Prague, Czech Republic, 25-27 June 2007 199



MHM 2007: Modelling of Heterogeneous Materials with Applications in Construction and Biomedical Engineering

Microplane Model for Composite Laminates

G. Cusatis1∗, Z. P. Bǎzant2, A. Beghini3
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Summary: This paper presents the spectral stiffness microplane (SSM) model, which is a general constitutive model for compos-
ite laminates, able to simulate the orthotropic stiffness, pre-peak nonlinearity, failure envelopes, post-peak softening and fracture.
The model is verified by comparisons with experimental data for uniaxial and biaxial tests of unidirectional and multidirectional
laminates

Introduction

Various theories can be found in the literature for the de-
scription of the mechanical behavior of fiber-polymer compos-
ites [1]. These theories, however, generally neglect the quasib-
rittle character of these materials. In quasibrittle fracture, the
crack tip is surrounded by a nonlinear zone (fracture process
zone) that is not negligible compared to the cross section di-
mension of the structures. The fracture process zone (FPZ) at
crack tip occupies almost the entire nonlinear zone and under-
goes softening damage instead of plastic deformation typical of
ductile behavior. The stress along the FPZ is nonuniform and
the stress decreases with crack opening gradually, due to dis-
continuous cracking in the FPZ, crack bridging by fibers, and
frictional pullout of inhomogeneities.

The present paper summarizes the outcome of a recent research
effort [2, 3] in which a complete theory for the mechanical
behavior of fiber-polymer laminates has been formulated in
the framework of the microplane model. A constitutive law
is first developed for laminates with unidirectional reinforce-
ment. Subsequently, general laminates with multidirectional re-
inforcement are modeled as an overlay of lamina with unidirec-
tional reinforcements of different orientations.

Microplane model mormulation with spectral de-
composition

By exploiting the spectral decomposition theorem, the material
stiffness matrix can be decomposed [4] as follows:

E =
∑
I

λIEI (1)

whereλI are the eigenvalues of the stiffness matrix andEI de-
fine a set of matrices constructed through the diadic products
of the eigenvectors of the materials stiffness matrix. The matri-
cesEI also decompose the stress and strain vectors into ener-
getically orthogonal modes, which are called eigenstresses and

eigenstrains. In the case of isotropic materials, these orthogo-
nal modes represents the volumetric and deviatoric deformation
modes.

By projecting the eigenstrains on a generic microplane of a
kinematically constrained microplane model [5], it is possi-
ble to decompose the microplane strain vector into orthogonal
components (εPI , microplane eigenstrains) that can be used to
drive the constitutive behavior at the microplane level. From the
microplane eigenstrains, the microplane eigenstresses,σPI ,
can be calculated according to suitable constitutive relations
for the normal and shear components of each eigenmode. The
macroscopic stress tensor may then be computed from the prin-
ciple of virtual work, which reads:

σ =
3
2π

∑
I

∫
Ω

EIPTσPIdΩ (2)

whereΩ is the surface of a unit hemisphere,σ is the contraction
of the stress tensor into a six-dimensional vector, andP is the
macro-micro projection operator.

In [2] and [3], the approach highlighted above has been
fully developed with reference to unidirectional (transversely
isotropic) composite laminates. In this case, four orthogonal
modes exist and each mode can be approximately associated
with a specific failure mode. This observation greatly simplifies
the formulation of the constitutive behavior at the microplane
level.

Calibration and validation

An extensive calibration and rigorous validation of the pre-
sented model is still under way. Nevertheless, preliminary re-
sults [2, 3] are promising and the developed theory seems to
be able to capture the most relevant aspects of the behavior of
composite laminates. Fig. 1 shows the comparison between the
microplane simulation, the well known Tsai-Wu criterion [7],
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Figure 1: Comparison between numerical simulations (solid
line), Tsai-Wu criterion (dashed line), and experimental results
(points) from [6] for the biaxial failure envelope of a unidirec-
tional laminate.

and the experimental results (published in [6]) for the biaxial
failure envelope of a unidirectional laminate.

The developed and calibrated microplane model for unidirec-
tional laminates can be then used for the simulation of multidi-
rectional laminates. A widely used laminate lay-up is (90/+45/-
45/0)S , which is quasiisotropic. The behavior of this multi-
directional laminate is here simulated assuming each ply to be
governed by the microplane model for unidirectional laminates.

Fig. 2 shows the comparison between the experiments, the mi-
croplane model prediction and the prediction of the Tsai-Wu
criterion. The microplane model theory agrees very well with
the experimental data in the tension-tension quadrant of the en-
velope. For the tension-compression quadrant, the prediction is
less accurate but still satisfactory. However, marked disagree-
ment is found in the compression-compression quadrant, in
which both the microplane model and the Tsai-Wu criterion
severely overestimate the laminate strength.

Conclusions

1. The spectral decomposition theorem, applied to the mate-
rial stiffness matrix, is a powerful tool to analyze generally
anisotropic materials.

2. The present SSM (spectral stiffness microplane) model
describes well the experimentally observed behavior of
fiber composites, not only for uniaxial stress-strain curves,
but also for multiaxial failure envelopes.

3. The main advantage of the SSM model is that one and
the same model can simulate the orthotropic stiffness, fail-
ure envelopes and the post-peak behavior, which include
strain-softening damage and fracture mechanics aspects.
This further implies that the SSM model must be able to
automatically predict the energetic size effect.

4. The SSM model can be implemented as a material sub-
routine in finite element codes, either implicit or explicit.
From experience with microplane models for concrete, the

Figure 2: Comparison between numerical simulations (solid
line), Tsai-Wu criterion (dashed line), and experimental results
(points) from [6] for multiaxial failure envelope for a multidi-
rectional laminate.

kinematically constrained formulation is known to be very
stable in finite element analysis.
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Summary: The paper describes modeling of initial anisotropy of wood in the framework of microplane theory. The performance
of the proposed model is demonstrated on one numerical example. In the example a 3D finite element analysis of a wooden
specimen loaded in tension is carried out at the meso scale. The results are compared with the test results and the comparison
shows reasonably good agreement.

Introduction

In engineering practice there is an obvious need for a model,
which is able to realistically predict the response of materials
with strong initial anisotropy, such as wood. Initial anisotropy
is a consequence of the material structure, i.e. by nature the ma-
terial has different properties in different directions (e.g. wood,
fiber composite materials, etc.). In the present paper the mi-
croplane material model, which accounts for initial as well as
damage induced anisotropy, is considered as a possible model-
ing alternative to the classical macroscopic models, which are
based on the theory of tensorial invariants. The concept of the
microplane model is based on the following fundamental as-
sumption:

ΨM =
3
4π

∫
Ω

Ψmf(n)dΩ (1)

in which Ω represents the surface of the unite sphere,n is di-
rection of the microplane,Ψm is the microplane free energy,
ΨM is the macroscopic Helmholz free energy andf(n) is em-
pirical weighting function which controls the contribution of a
single microplane to the macroscopic response of the material.
Knowing or assumingΨm andf(n) it is possible to calculate
macroscopic response from microplane responses using differ-
ential form of (1).

Initial anisotropy in the microplane model

There are two possibilities to account for initial anisotropy in
the microplane model. The first, relatively simple one, is to set
functionf(n) in (1) to be dependent on the orientation of the
microplane normal relative to known weak direction(s)w (see
Fig. 1). When the microplane direction coincides with the weak
directionf(n) = 0 and when it is perpendicular to itf(n) = 1.
Once the functionf(n) is known, the anisotropy is automati-
cally accounted for. Here is the main difficulty to identifyf(n)
from experiments. The second, more general possibility takes
the advantage of the microplane formulation in which the uni-
axial microplane constitutive laws (σm = ∂Ψm/∂εm) are de-
fined for each plane separately. The material anisotropy results
automatically when these laws are adopted as a function of
the microplane orientation. In the here used model the first ap-
proach was adopted.

To account for the anisotropy of wood, without discrete mod-
eling of its structure, two coordinate systems were considered:

(i) the local coordinate system (x,y,z), in which the analysis
is carried out, and (ii) the material coordinates (X,Y,Z), which
define the orientation of the material structure (see Fig. 2). The
origin of the material coordinates coincides with the center of
the cross-section of a tree.

Figure 1: Orientation of weak direction.

Figure 2: Position of the specimen in the cross-section of a tree
and variation of density in the radial direction.

To account for three dominant directions of the wood structure
(R-radial, T-tangential and L-parallel to the grain), two weak
directions are defined by their unit vectorswR and wT (see
Fig. 2) and one strong direction (parallel to the grain) is defined
by wL. The resulting functionf(n), which controls the initial
anisotropy in (1), is calculated as:

f (n) = f (n)R · f (n)T · f (n)L
with: f (n)R = 1− |cos (ΘR)|αR

f (n)T = 1− |cos (ΘT )|αT

f (n)L = |cos (ΘL)|βL

(2)
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whereΘ is the angle between the microplane orientationn and
the corresponding orientation of the material weak or strong
planes (R, T and L, see Fig. 2), respectively. Parametersα
(0 ≤ α ≤ 1) andβ (β ≥ 1) in (2) are empirical. Together with
the basic microplane parameters, as defined in [2], they control
the relation between initial stiffness and strength in the three
dominant directions of the material.

Numerical example

The performance of the model is illustrated on one numerical
example. In the example 3D finite element analysis of a wooden
specimen loaded in uniaxial tension was carried out. The finite
element discretization was performed using eight-node solid fi-
nite elements (see Fig. 3). The average element size in the zone
of interest was 0.30 mm. To assure mesh objective results the
crack band method was used. The analysis was performed at
the meso scale, i.e. the size of the specimen in the compan-
ion experiment by Dill-Langer et al. [1] was roughly 10 mm.
Due to the small specimen size and high level of anisotropy of
wood, the homogenization of the material properties, typically
used for macroscopic analysis, was not possible.

Figure 3: Geometry of the specimen and 3D finite element dis-
cretization.

The identification of the model parameters is not straightfor-
ward. Two levels of identification procedures were performed:
(i) identification of average macroscopic properties of wood,
which are typically required for macroscopic finite element
analysis and (ii) identification of parameters that are needed for
the analysis at the meso scale. The macroscopic set of model
parameters can be used only if the specimen size is sufficiently
large. For wood this is the case if the minimal specimen dimen-
sion is approximately larger than 50 mm. However, in the tests
performed in [1] the specimen size was of the order of 10 mm
and the size of the finite elements should be less than 1 mm.
This implies that analysis at the meso scale needs to be carried
out in order to account for the fact that over the width of the
year ring∆R (see Fig. 2), the size of which is roughly 1.5 mm,
there is a large difference in the density of the wood. Conse-
quently, the mechanical properties of the wood inside the ring
varies considerably. To account for this, an additional internal
variableρ was introduced. Its value varies between 1 and 3 (see
Fig. 2). The stiffness and the strength at the microplane level
are assumed to be proportional toρ.

The microplane model parameters obtained from the first level
of calibration (macroscopic) were modified such that the re-
sulting strength and the stiffness obtained from the meso anal-
ysis were similar to that obtained from the meso experiment
on unnotched specimens loaded in the radial and tangential di-
rections, respectively. The parametersαR, αT andβL were as-
sumed to be independent of the type of the analysis. It is in-
teresting to observe that the resulting microplane parameters
were such that the strength and the areas under the constitutive
stress-strain curves (fracture energies) were in the meso anal-
ysis smaller than the corresponding macroscopic values. This
is a consequence of the fact that the meso type of experiment
(analysis) accounts only for local effects. The interaction over
a distance is not accounted for. Consequently, as expected, the
parameters of the model used in the meso analysis are not rep-
resentative for macro analysis.

Results and conclusions

Similar to the experiment [1], after reaching maximum resis-
tance the load drops immediately to zero, which indicates a
brittle type of failure. The distribution of maximum principal
strains on the hardening part of the load-displacement curve
(20% of the peak load) is shown in Fig. 4a. The figure clearly
reproduces the structure of wood, i.e. due to the lower density
and strength of the younger part of the year rings, strains start to
localize into these zones. Close before the peak load the crack
propagates from the notch tip in the radial direction until it hits
a ring of older wood. Subsequently, in the post-peak region
the crack propagates along the direction of the year ring (see
Fig. 4b). Similar crack propagation was observed in the exper-
iment (Fig. 4c). It can be concluded that the presented model is
able to predict the complex failure mechanism of wood at the
meso scale without a need for the adopting the finite element
mesh to the internal structure of the wood.

Figure 4: Localization of max. principal strains: (a) before
peak load, (b) after peak load and (c) in the experiment [1].
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Summary: We summarize the microplane model for soft tissue and demonstrate the application of the model for human annulus
fibrosus. Recently Peng et. al. [1] and Guo et. al. [2] showed that, the classical anisotropic hyperelastic constitutive models for
soft tissue which do not account for the fiber-matrix shear interaction cannot simulate the behavior human annulus fibrosus. In
this study, we show that the microplane model for soft tissue adjusted for human annulus fibrosus can accurately simulate the
behavior of annulus fibrosus without fiber-matrix interaction. A comparison of results obtained from(i) a fiber-matrix parallel
coupling model without the fiber-matrix interaction,(ii) the same model with fiber-matrix interaction, and(iii) microplane model
for soft tissue adapted to annulus fibrosus is presented.

Introduction

Recently, two papers, [1] and [2], have been submitted for pub-
lication in which the fiber-matrix interaction is shown to be in-
dispensable for simulating mechanical behavior of annulus fi-
brosus by optimally fitting various experimental data from liter-
ature and contrasting the results obtained from the model with
fiber-matrix interaction against those from the model without
any such interaction. In this study, microplane model for soft
tissue published in [4] is adapted for annulus fibrosus by incor-
porating two fiber families in accordance with the physiology
of the lamellae. To be able to provide a fair comparison, the 1D
fiber constitutive law is kept the same as in [1], except for the
material parameters, which have to be readjusted because of
the 3D angular fiber distribution employed in the microplane
model. The constitutive model for the matrix is neo Hookean
in this model as well [5, 6]. In contrast, there is no explicit
fiber-matrix interaction employed in microplane model for soft
tissue. However, there is indeed interaction of distributed fibers
provided automatically by construction of the model.

Microplane constitutive model for soft tissue

Isotropic incompressible neo-Hookean microplane model.
The formulation for isotropic compressible neo Hookean mi-
croplane model was developed in [5] as part of a framework for
hyperelastic microplane models and the anisotropic hyperelas-
tic microplane model for blood vessel tissue was developed in
[4]. In these formulations, the macroscopic free energy per unit
volume, denotedρ0Ψ, is assumed to be integral of microplane
free energies per unit area of a unit hemisphereΨΩ, i.e.

2πR3

3
ρ0Ψ =

∫
Ω

ΨΩdΩ (1)

HereR = 1 is the radius of the unit hemisphere,Ω denotes the
surface of the unit hemisphere,ρ0 is the mass density,Ψ is the
macroscopic free energy per unit mass per unit volume,ΨΩ is
the microplane free energy per unit area given by

ΨΩ (λD, λJ) = µ0

(
λ2
D

2
+
λ−3
D

2
− 5

6

)
+

1
3
g(J) (2)

in which,µ0 is the material constant,λD is distortional stretch
andJ = detF is the volume change withF = ∂x/∂X be-
ing the deformation gradient tensor andg(J) is the volumetric
energy function. The microplane stretch is defined as

λN = λDλJ =
√

N ·C ·N (3)

whereλJ = J1/3 is the volumetric stretch,N is the microplane
normal vector,C is the right Cauchy-Green tensor. The volu-
metric energy function is given by

g(J) =
λ0

2

(
J +

1
J
− 2
)

(4)

It can be shown that substitution of Eqs.2, 3 and4 into Eq.1
results in

ρ0Ψ =
µ0

2
(
ID1 − 3

)
+ g(J) (5)

whereID1 is the first invariant ofCD = J2/3C.

Collagen fibers: Anisotropic microplane model.In [6] it is
reported that under a microscopic study of arterial tissue, a di-
rectional distribution of densely packed collagen structures is
observed. The probability density function corresponding to the
distribution of orientation of cell nuclei (and thus that of the
collagen fibers) in a human aortic media in 2-D reported in that
study is given in Fig. 1. To facilitate the computations, the dis-
crete data points are fitted with a convenient probability density
function given by

φ(N) = Φ(θ) = c1 exp
(
c2θ

2
)

(6)

whereθ is the angle in radians measured from the circumferen-
tial direction. Thus, the proposed microplane constitutive law
with a continuous representation of fiber directions in 3D can
be expressed as

Σ=
3
2π

∫
Ω

[(
ΣD
λDλ2

J

+ φ(N)ΣF

)
N⊗N− ΣD

3
λDC−1

]
dΩ

+ΣJλJC−1 (7)

where the fiber stress isΣF = ∂ΨF /∂λF in which
λ2
F = N · C ·N andΨF = C2(λ2

F − 1)2 + C3(λ2
F − 1)2 if

λF > 1, ΨF = 0 if λF < 1.
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Figure 1: The distribution of orientation of cell nuclei (and thus
of collagen fibers) in aortic media (taken from [6]).

Figure 2: Tensile behavior of multi-layer human anterior outer
annulus fibrosus; inter-fiber angle is60◦.

Discussion of results

The predicted mechanical response from fiber-matrix parallel
coupling model(i) without shear interaction,(ii) with shear in-
teraction, and(iii) microplane model for annulus fibrosus, are
demonstrated in Figs. 2–5. The plot in Fig. 2 shows that the
material properties of annulus fibrosus show significant differ-
ences due to factors such as age, lifestyle and diseases. In this
study we chose to fit the one by Elliott and Setton [3], because
they also provide equivalent data in the perpendicular direc-
tion, as shown in Fig. 3. These two figures are simultaneously
fitted to calibrate the material constants asC2 = 0.45 MPa,
C3 = 82.6 MPa for the parallel coupling and asµ0 = 0.068
MPa,C1 = 6 MPa,C2 = 4000 MPa,c1 = 20.5 andc2 = −80
for the microplane model. All other test data are simulated
with the material parameters being fixed. In Fig. 4, microplane
model performs as well as the parallel coupling model with in-
teraction even though it does not have the explicit formulation
for interaction, but the performance of the model without the
interaction may be considered not acceptable. In Fig. 5 mi-
croplane model performs similar to parallel coupling model
with shear interaction; that without the interaction performs
poorly.
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Summary: The connective tissue in ligaments is composed mainly of collagen fibrils, with contributions from trapped water and
mucopolysaccharide ground substance matrix. In this work we develop constitutive relations for the skeletal ligament material
based on the microplane formulation at large strain. New microplane strain measures are tested to take into account the fiber
stretch. We compare our results with classical macroscopical formulations.

Introduction

The skeletal ligaments are short bands of tough fibrous con-
nective tissue binding bones together across joints. The tissue
is formed by an amorphous matrix with collagen bands across
it. Ligaments typically sustain uniaxial loads and therefore the
constituent collagen fibers are highly aligned, showing non-
linear properties in the primary loading direction.

There are several works devoted to characterize the mechanical
response of ligaments to uniaxial loads (partial reviews in [1,
2]).

Mathematical models of ligament behavior are, in general,
characterized as phenomenological (containing exponential or
bilinear functions selected to best fit uniaxial stress-strain data)
or structural (based on the structure or microstructure of tissue
components). Both type of characteristics can be incorporated
in hyperelastic models (into the strain energy function).

The amorphous matrix (quasi-fluid with random inclusions) is
modeled as non-linear isotropic and the oriented collagen fibers
allow to capture the anisotropy of the mechanical response.
Some models include also the fiber-matrix interactions [3].

The hyperelastic formulation is used in the traditional (tenso-
rial) context to establish the mathematical model for the mate-
rial behavior. To capture the transversal isotropy of the material,
five invariants (Ii, i = 1, . . . 5) introduced by Spencer [4] are
used (C is the the right Cauchy Green tensor anda0 the fiber
direction in the reference configuration):

I1 = trC, I2 =
1
2

[
(trC)2 − trC2

]
, I3 = detC

I4 = a0.C.a0, I5 = a0.C2.a0

I1, I2 andI3 are associated with the isotropic matrix (as usual,
we assume it incompressible,I3 = 1), I4 enables us to take into
account the interaction between the fibers stretch and the bulk
matrix andI5 let us to include shear fiber-matrix interactions.

As the ligaments can be considered as incompressible, only
four invariants are needed in the formulation.

The smart use of the invariants allows good agreements with
the observed characteristics (a bilinear model [3] or a derivable
one [5, 6] combining Mooney-Rivlin hyperelasticity with expo-
nential stretching). These models are based on a macroscopic
formulation.

The aim of this work is to develop a model for the material of
the ligaments, based on the microplane theory [7].

Constitutive equations for a transversally
isotropic elastic material

This study takes into account finite deformations at macro-
scopical level. The Lagrangian formulation is used because the
Green Lagrange strain tensorE and the second Piola Kirchhof
stress tensorΣ are energetically conjugates in the hyperelastic
formulation [7].

With the usual notation (F for the deformation gradient,C as
above, for the right Cauchy Green tensor) letρ0Ψ be the free
energy density per unit volume. According to the microplane
theory, it can be written as [7]

ρ0Ψ =
3

2Π

∫
Ω

ΨΩ

(
E(N), N

)
dΩ (1)

with ΨΩ = Ψ(N) the free energy for the microplane (de-
fined by the normal vectorN ) andE(N) a suitable set of mi-
croplane strain measures functionally related. When the mi-
croplane strain measures are specified, the macroscopic stresses
can be computed as:

Σ =
∂(ρ0Ψ)
∂E

=
3

2Π

∫
Ω

Σ(N)•∂E
(N)

∂E
dΩ (2)

beingΣ(N) = ∂ΨΩ/∂E
(N), the microplane stresses.

It is accepted that, for ligaments,ρ0Ψ can be expressed as
[2, 3]:

ρ0Ψ = F1(I1, I2) + F1(I4) + F1(I1, I2, I4, I5) (3)

whereF1 represents the material response of the (isotropic) ma-
trix. F2 accounts for the fibers’ stretch andF3 is the contribu-
tion from the interaction between fibers and ground substance.

In this work we develop an expression for the microplane strain
energy that recovers the Neo-Hookean model for the amor-
phous matrix and depends on the directiona0 of the fibers. It
has the following general form:

Ψ(N) = Eλ

(
λ2
N

2
+
λ−3
N

3
− 5

6

)
+
∣∣a0.N

∣∣ f(λa) (4)
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with Eλ constant (calibrated experimentally),λN = |N.F | the
microplane stretch of the matrix fiber initially aligned with the
microplane normalN , andf(λa) a suitable function of the col-
lagen fiber stretchλa.

The first term in the right hand side of (4) leads to the (well
known) Neo-Hookean model, as is demonstrated in [7].

Two possibilities for the functional form off are analyzed. The
results are compared with those published.
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Summary: This paper deals with the application of the microplane theory within the framework of general elastoplasticity to
the field of geotechnical engineering. Microplane theory, combined with other constitutive laws such as elastoplasticity and
damage, holds a great potential for advanced material modelling. However, the application of the elastoplasticity theory within
the constitutive framework of microplanes, adequate to represent the real behaviour of geotechnical materials, has proven to be a
complex problem. In this paper the main characteristics of a microplane elastoplastic constitutive law which reproduces well the
overall response for complex kinds of behaviour, typical of geological materials will be discussed.

Constitutive modelling of cohesive-frictional, quasi-brittle ma-
terials such as concrete has experienced a great progress and
reached an important degree of refinement through the devel-
opment of algorithms such as the M4 and M5 models of Bažant
and co-workers [1–8]. However, such models utilise a consider-
able amount of non-dimensional, fixed and non-fixed adjustable
parameters, which for the case of concrete have been identified
after long trial and verification processes. Some geologic ma-
terials, particularly rocks, exhibit many of the constitutive fea-
tures observed also in concrete. However, due to the large num-
ber of variables that played a role in the geological processes
that formed such materials, it seems almost impossible trying to
identify all the parameters that would be necessary to represent
the material’s behaviour with a microplane model. Moreover,
geological materials range from hard rocks, of quasi-brittle be-
haviour, to soft rocks or soils which exhibit a more plastic be-
haviour. A general model for this wide collection of materials
would have no practical engineering applications unless its be-
haviour can be modelled with only a limited number of easily-
measurable parameters.

The aim of the research summarized in this paper is the devel-
opment of an engineering application based on the microplane
theory adequate to solve practical geotechnical problems such
as excavations, slopes, earth and rockfill dams, etc. One way of
achieving this, taking the advantages of microplane modelling,
consists in defining a microplane elastoplastic constitutive law
whose yield criterion is based on parameters that can be easily
related to those of some classical invariant-based macroscopic
model. A fundamental feature to achieve is that the microplane
model parameters can be automatically calculated from typical
geotechnical engineering data like friction angle, cohesion and
tensile strength. This requires a very good knowledge of the
relations between the microplane parameters and the macro-
scopic response of the model. However, the application of the
elastoplasticity theory within the constitutive framework of mi-
croplanes, adequate to represent the real behaviour of geotech-
nical materials has proven to be a complex problem. A proposal
for the coupling of elastoplasticity and microplane theory has
already been presented by the authors [9, 10]. Its fundamental
features, and application to solving boundary value problems,
are to be extended in the present paper.

Figure 1: Yield surface on theτ -σN plane for each microplane.

A crucial point of the coupled microplane-elastoplasticiy for-
mulation of a material model is the understanding of how the
microplane constitutive equations are linked to the macroscopic
response, not only in terms of parameters, but also in terms
of the shape of the macroscopic yield surface deduced from
the integrated microplane plastic stresses. In this paper we will
discuss the main characteristics of a microplane elastoplastic
constitutive law which reproduces well the overall response for
complex kinds of behaviour, typical of geological materials.
For this purpose a three yield surface (one for tension, one for
cohesive-frictional response and one for volumetric yielding),
fully elastoplastic formulation will be presented. Fig. 1 shows
the yield surface defined for each microplane on theτ -σN stress
space. After integration, the macroscopic yield surface shown
in Fig. 2, in the principal stress space, is obtained.

In the first part of the paper some classical rock mechanics lab-
oratory tests will be simulated via finite element models (solv-
ing the boundary value problem) in order to study the capabil-
ity of the algorithm to represent the progressive plastification
and failure of the rock samples and the relation of such plas-
tic phenomena with the orientation of different planes within
the material matrix. A main objective of the experiments is the
establishment of the relations between microplane input param-
eters and the local and global failure response of the samples,
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Figure 2: Macroscopic yield surface in the principal stress
space.

as well as its deformational processes.

In the second part, the potential of the model for simulat-
ing anisotropy (inherent and/or induced) will be tested. The
algorithm allows the user to define any number of inherent
anisotropy directions not necessarily coinciding with the exact
orientation of particular microplanes. Then, the anisotropic pa-
rameters are distributed on the microplanes assigning different
weights according to their proximity to the anisotropy direc-
tions. Again, some classical laboratory tests will be simulated
with a general finite element code.
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Summary: This paper presents a constitutive model for early age concrete behavior that is formulated through the amalgamation
and extension of two existing models: 1) the microplane model M4, and 2) the microprestress-solidification theory. The resulting
constitutive model is able to simulate the main features of concrete behavior, such as creep, shrinkage, thermal deformation,
cracking, and damage from the beginning of the hydration process up to the complete maturity.

Introduction

In concrete constructions a great effort is nowadays made to en-
sure the durability and the functionality of the structures being
built. Cracking due to shrinkage and to thermal effects is one
of the cause of major concern, particulary at early ages. This
kind of non-structural cracks can induce major structural prob-
lems and/or mar the appearance of monolithic constructions. In
addition, reinforcing steel may become exposed to oxygen and
moisture that lead to an increased chance of corrosion.

The work presented in this paper is part of a research effort
aiming at the formulation of a hygro-, thermal-, chemical-, and
-mechanical computational framework for the simulation of
concrete mechanical behavior at the early age and beyond. Such
a framework will enable the design and construction of more
durable and more functional reinforced concrete structures.
The hygro-thermal-chemical problem (not discussed herein) is
solved by choosing temperature, relative humidity as the pri-
mary variables governed trough standard mass and energy bal-
ance equations. The hydration processes are assumed to influ-
ence the solution of the hygro-thermal problem through the
evolution of the hydration degree, which describes the hydra-
tion rate as a function of chemical affinity. The hygro-thermal-
chemical problem is then coupled with the mechanical problem
where a suitable constitutive law is adopted. The main features
of this constitutive law is described in the following.

Early age constitutive model

In absence of high confining pressure, concrete strain can be
additively decomposed into several components: the instanta-
neous strain,εi, the viscoelastic strain,εev, the purely viscous
strain,εf , the inelastic strain (due to cracking and damage),εcr,
the free shrinkage strain,εsh, and the thermal strain,εT .

The instantaneous strain is the strain that appears immedi-
ately after the application of loads and, it can be considered
time and age independent. The viscoelastic strain models the
visco-elastic properties of the solid gel of calcium silicate hy-
drates and it can be described effectively according to the so-

lidification theory [6] in which the aging of concrete is mod-
eled through the volume growth of a non-aging constituent:
ε̇(t) = γ̇(t)/v(t). The functionv(t) approximately describes
the volume fraction of solidified material during the hydration
processes and the variableγ̇(t) is the viscoelastic strain in the
cement gel, which is assumed to be fully recoverable upon un-
loading. The purely viscous strain (flow strain)εf is the com-
pletely irrecoverable part of the creep strain, which can be de-
scribed through the microprestress theory [4, 3]. The rate of
the viscous strain is formulated as a power function of the so-
called microprestressS, which is an average measure of the
self-equilibrated micro-stresses acting across the slip planes
represented by the hindered adsorbed water layers in the mi-
crostructure of the cement paste. The microprestress theory can
accurately describe long-term aging, as well as drying creep
and transitional thermal creep [3].

Damage and cracking strain is modeled through the microplane
model M4 [1, 10], in which the constitutive relation is for-
mulated in terms of stress and strain vectors acting on sev-
eral microplanes with different orientation in a certain mate-
rial point. The microplane strains are obtained through projec-
tion of the strain tensor (kinematic constraint) and the stress
tensor is obtained by a weak enforcement of the equilibrium
(principle of virtual work). The model is rate dependent and
the rate-dependence is based on the activation energy concept
[2]. To prevent pathological spurious mesh sensitivity, the con-
cept of crack band model [5] is also adopted. A realistic aging
model has been established in which the mechanical properties
act as internal-like variables, and their evolution laws must at
least be formulated in terms of hydration degree and tempera-
ture. In this work, the microplane model M4 has been extended
in order to take into account the effect of aging on concrete
strength and brittleness. Following the approach proposed in
[8] the microplane material parameters are made dependent on
both hydration degree and temperature. Both hydration degree
and temperature are obtained from the solution of a coupled
hygro-thermal-chemical problem.

The rate of the free shrinkage strain (shrinkage of a stress-free
volume of material) is assumed to be proportional to the change
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of relative humidity and the rate of the thermal strain is assumed
to be proportional to the change of temperature.

Numerical examples

The numerical algorithm developed by Di Luzio [10] to incor-
porate the early age mechanical model into the numerical solu-
tion of coupled hygro-thermo-chemo-mechanical problems is
adopted in this work. In the following, two numerical examples
are used to validate the overall computational framework. The
first one deals with the simulation of the response of concrete
specimens, both in sealed and drying conditions, loaded at dif-
ferent ages [7]. The simulation of companion specimens sub-
jected only to humidity variations is also carried out (Fig.1). In
the second example the effect of the aging on the mechanical
properties is simulated with reference to the experimental in-
vestigation of Khan et al. [11] (Fig. 2). The examples show that
the proposed model is a promising tool for analysis of concrete
structures starting from the initial stages of the hydration pro-
cess up to the complete maturation. Extensive calibration and
validation of the model is ongoing.

Figure 1: Comparison between numerical results and experi-
mental results by Bryant and Vadhanavikkit [7] concerning the
response of concrete specimens loaded at the age of 8, 28, 84
and 182 days: a) sealed specimen (basic creep); and b) un-
sealed specimen (drying creep).

Figure 2: Numerical vs experimental results (Khan et al. [11])
relevant to the effect of aging on Young modulus and compres-
sive strength.

Conclusion

This paper describes a thermo-chemo-mechanical model that
accounts for many of the features observed in the behavior of
concrete at early ages. The short-term mechanical behavior is
based on the microplane model M4 extended to include the
phenomenon of aging. The long-term mechanical behavior is
based on the microprestress-solidification theory. The capabil-
ities and potentialities of the model are shown by performing
simulations of some available experimental data with a good
agreement between the numerical and the experimental results.
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Summary: In this paper, an extension of the Microplane model M4 is presented. The stress-strain boundaries are modified
and new boundaries are defined. It is assumed that fibers act in parallel with the concrete matrix. By adapting the sub-material
algorithm, which is used in microplane model M4 for plain concrete, a new code was generated for the modeling of Fiber
Reinforced Concrete (FRC) under uniaxial tension and compression. The enhanced microplane model M4 predictions agree with
the existing uniaxial tension and compression experimental data for FRC.

Introduction

In recent years, the microplane model was developed and
widely used for concrete and other quasi brittle materials. In
this work, an extension of the Microplane model M4 is pre-
sented for Fiber Reinforced Concrete (FRC). By adding fibers,
the mechanical behavior of concrete, such as crack resistance
and fracture toughness, is enhanced. If the fiber content is in
the range of 0.2 to 2 percent of concrete volume, it is called low
content FRC. As it can be seen from previous works, the pre
peak tension and compression behavior of low content FRC is
the same as the plain concrete, but its post peak behavior is dif-
fered by the more ductile behavior of FRC than plain concrete
[1,2]. In this paper, the Microplane M4 model was developed
for prediction of FRC behavior under uniaxial tension and com-
pression. The enhanced microplane model M4 can simulate the
behavior of FRC with high fiber content, too. The prediction
has a good agreement with the existing experimental data in
both pre peak and postpeak regions.

Review of basic relations of microplane model

The microplane constitutive model is defined by a relation be-
tween the stresses and strains acting on a plane having an ar-
bitrary orientation, characterized by its unit normalni [3]. The
basic hypothesis, which is ensures stability of post peak strain
softening [4], is that the strain vector on the microplane is the
projection of macroscopic strain tensor. Therefore:

εN = Nijεij (1)

εM = Mijεij , εL = Lijεij (2)

where εN is normal strain on microplane andεM and εL
are shear strains on microplane. In equations (1) and (2),
Nij = ninj ,Mij = (minj +mjni)/2, Lij = (linj+ljni)/2
(repetition of the subscript implies summation). The kinematic
constraint relates strains on the micro level (microplane) and
macro level (continuum). Therefore, the static equilibrium can
be enforced approximately by principle of virtual work [4] writ-
ten for surfaceΩ of the unit hemisphere:

2π
3
σijδεij =

∫
(σNδεN + σMδεM + σLδεL)dΩ (3)

The most general constitutive relations on the microplane level,
is considering the microplane stresses as a function of its strain
[4]. The general relation of stress-strain boundaries are:

σN ≤ FN (εN ) (4)

F−V (εV ) ≤ σV ≤ F+
V (εV ) (5)

F−D (εD) ≤ σD ≤ F+
D (εD) (6)

|σM | ≤ FT (σN , εV ) (7)

|σL| ≤ FT (σN , εV ) (8)

The relation of this boundaries can be found in [4] in more
details.

Enhanced microplane M4 model for FRC

By adding fiber in low content, the concrete shows more ductile
behavior in post peak region. Microplane model can reproduce
the macroscopic inelastic behavior with using simple relation
between stresses and strains which are acting on planes with
arbitrary orientation. Thus, for considering the effect of fibers
in concrete, we assume that they act in parallel with the matrix.
Therefore we can say:

σN = σmN + σfN (9)

σL = σmL + σfL (10)

σM = σmM + σfM (11)

In these relations, the superscriptm andf are implies matrix
and fiber, respectively.

For this simulation, we should define the boundaries for fibers
the same as the boundaries for concrete, which are defined in
[4]. We assume that fibers incrementally elastic in their bound-
aries and they can not violet their boundaries. According to
previous works, the FRC up to a specific percentage of fiber
content has a same stress and strain peak as plain concrete [2].
This behavior enforced to define restriction fiber content in nor-
mal stress boundary of fiber. We called it threshold percent,α.
For instance the normal boundary for fiber can be formulated
as below:

σbfN = FN (εN , α, x) = xEfkf4c1〈x− α〉A (12)

+〈εN − c1c2k1〉xEfkf1c1A
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Figure 1: Uniuaxial tension test data of Shah [2] and optimized
fit with enhanced M4 model.

where:

A = exp

(
− 〈εN − c1c2k1〉
k1c3 + c4〈−σV

εV
〉

)
(13)

In these equations, the parametersci are constant parameters,
which are defined in more details in [4],Ef is fiber Young mod-
ulus,kf are fitting parameters, which are defined the various
concrete behavior, andx is fiber content. The first term of equa-
tion (12) defines the change in pre peak behavior of FRC ac-
cording to the threshold percent and the second term is defined
the post peak behavior. The volumetric and deviatoric boundary
can be the same as for concrete.

Predicting of test results

To examine the accuracy of the enhanced microplane M4
model, simulation of uniaxial tension and compression test are
conducted. For this purpose, we use the uniaxial test result
which of Shah [2]. In this experiment, the specimen had 2%
fiber content and the fibers are smooth steel fiber with 25 mm
length and 0.43 mm diameter. As Fig. 1 illustrates, the model
has a good agreement with the test result.

We also used uniaxial compression test which of Shah [2] with
various percent of fiber content. Fig. 2 illustrates the good pre-
diction of the uniaxial compression behavior with different con-
tent of fibers. As it is expected, by increasing the fiber content,
the peak point is also affected and the post peak region is more
ductile.

Conclusion

By assuming parallel action for fiber and matrix, and defining
new boundaries for fiber, the uniaxial test results of FRC with
different fiber content can be predicted. The good agreement
between the enhanced microplane M4 model and the test data,
interest us that this model is good established and can be used
for FRC.

Figure 2: Uniaxial compression tests data from Shah [2] and
optimized fits with enhanced M4 model.
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Summary: This paper presents a method and requirements of material parameter identification for the Microplane material
model. The procedure, applied here to identify microplane model parameters from the experimental data is based on inverse
analysis approach, which consist of minimizing the function representing the differences between the experimental data and data
computed by material model. Two numerical processes are implemented here is based on interaction of two numerical tools; an
optimization code(GA90)and the microplane material model driver.

Introduction

Since the concrete is one of the most commonly used mate-
rial in engineering structures, it is very crucial for the struc-
tures to develop a reliable and robust model for the mechan-
ical behavior of the concrete. Nowadays based on the mi-
cromechanics and computational algorithms the complex be-
havior of concrete can be simplified and modeled successfully.
Recently a variety of theoretical models have been proposed
and discussed in the referenced literature to describe the wide
range of the inelastic behavior of concrete [13, 14]. Among the
many of them, Microplane model developed by Bazant and co-
workers [8, 9, 7] is one of the reliable and robust model that
accurately predict the complex behavior of the concrete un-
der various loading conditions. For an accurate modeling of
the material behavior of concrete a certain number of model
parameters are necessary, depending on the model used. The
problem is that concrete is more complex than the most other
materials. The graphical characterization of its nonlinear tri-
axial behavior necessitates the curves for at least 7 different
characteristic types of responses, and the curve fitting of each
of these responses necessitates no less than 3 or 4 parameters.
Looking at it from the view point of microstructure, to char-
acterize its geometry at several scales, the mechanical proper-
ties of all the constituents, their mutual bonding, defects, and
pores, one needs at least 25 parameters [10]. In the case of
microplane model there are mainly 29 parameters that seem
to be adjusted to the experimental data for a given concrete.
This large number of parameters which significantly influence
the material behavior must be identified accordingly such that
the accurate behavior of the material can be obtained. Every
constitutive equation has its own method for parameter iden-
tification. In conventional approaches, the model of interest is
first approximated and its parameters are identified sequentially
through the curve fitting approach. However, this is not possible

for models where parameters are not easy to identify directly by
some features in the test results. Adding to this difficulty it is
the fact that the most of the material parameters lack their obvi-
ous or direct physical interpretation and they differ in scale for
a given model. Also, even under load histories in simple labora-
tory tests, many parameters will highly interact with each other,
affecting the model response predicted. Then a systematic and
objective computer based procedure for parameter identifica-
tion is necessary [4, 5, 3, 2].

In this paper we , therefore, propose to use EAs for identifying
the parameter set to the microplane model. The advantage of
the proposed approach is that parameter can be identified with-
out any divergence in every case.

Parameter identification of microplane model

Although microplane model contains many parameters, all of
them except four have have fixed values for all types of con-
cretes. The fixed parameters are those for which the optimiza-
tion yielded nearly the same values for different concretes.
They are denoted asci, (i = 1, . . . 17). The typical four free
materials parameters, denoted aski (i = 1, . . . 4) are very cru-
cial and they need to be adjusted for any given type of concrete.
In the inverse analysis the parameter identification problem can
be formulated to find the parameter set (vector)x ∈ X by iter-
atively changing input values until the simulated output values
match the measured data (vector)y ∈ Ψ . This input-output
relation may be expressed as follows [1]

y = ψ(x) + e (1)

wheree ∈ Ψ is the error measure. This error measure given in
equation (1) is minimized with respect to material parameters
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and its expression is defined as

Minimize e(x) = 0 x ∈ Rn

subject to constraints

ceqi (x) = 0 i = 1 . . . neq
cini (x) ≤ 0 i = 1 . . . neq
L ≤ x ≤ U

(2)

wherex is a vector with n unknown parameters. The constraints
can be nonlinear equations andneq is the number of equality
andnin is the number of inequality constraints.L andU are
lower and upper limits for the parameters. Bruhms and Anding
[6] give the following definition for an error measure as

e(p) =
1
2
rTGr (3)

whereG is diagonal matrix with individual standard devia-
tion errors for the measured data. The vectorr has a square of
the difference between computed and experimentally obtained
stressri = (σe − σc)2i at different strains or times. The matrix
G can be used also to make the error non-dimensional and in-
clude scaling factor,w(ε). Now the objective function of this
parameter identification problem can be written as

f = min
∑

(σe − σc)2iGij(σe − σc)2j (4)

This objective function clearly depends on the measured data
and the model in use. (EAs)where genetic algorithms(GAs)
have been most successfully used to minimize such an objec-
tive function, which quantifies the fit between computed results
and the experiments.

Analysis and Discussions

It is very important that these parameters be identified cor-
rectly in order to predict material behaviors accurately. In sum-
mary, the processes of material parameters identification prob-
lem consists of the constitutive equations of the model, ini-
tial condition,material parameters of the model, and the ex-
perimental conditions.The model parameters have been opti-
mized so as to make the responses very close to the typical
test data exit, especially those from triaxial tests at various
confining pressures. The numerical process implemented here
is based on the interaction of two numerical tools; an opti-
mization code (Ga90 and material model driver(IFED90 [10])
The performance of the proposed identification method is
investigated with the actual experimental data from litera-
ture [11, 12] and more comprehensive test data from the Wa-
terways Experimental Stations (WES). The experimental data
consists of the uniaxial(unconfined) compression test [11],
three triaxial compression tests each with a lateral confine-
ment of34.5 MPa,68.9 MPa,103.4 MPa and172.4 MPa [12],
and confined compression test. Parameters vectorx =
[k1, k2, k3, k4, c1, c2, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12
, c13, c14, c15, c16, c17] are identified.
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Summary: A new procedure based on layered feed-forward neural networks for the microplane material model parameters
identification is proposed in the present paper. It is based on the inverse mode of the inverse analysis. Novelties are usage of
the Latin Hypercube Sampling method for the generation of training sets, a sensitivity analysis and a genetic algorithm-based
training of a neural network by an evolutionary algorithm. Advantages and disadvantages of this approach together with possible
extensions are thoroughly discussed and analyzed.

Introduction

The problem of an inverse analysis appears in many engineer-
ing tasks. Generally speaking, the aim of an inverse analysis is
to rediscover unknown inputs from the known outputs. In com-
mon engineering applications, a goal is to determine original
conditions and properties from physical experiments or, equiv-
alently, to find a set of parameters for a numerical model de-
scribing the experiment. Therefore, existence of such numerical
model is assumed in this work and the task is to find parameters
of the model to match its outputs to experimental data.

In overall, there are two main philosophies to solution of this
problem.A forward (classical) mode/direction is based on the
definition of an error function of the difference between out-
puts of the model and experimental measurements. A solution
comes with the minimum of this function. The main advantage
of this approach is that the forward mode is general in all pos-
sible aspects and is able to find an appropriate solution if such
exists.

The biggest disadvantage of the forward mode is the need
for a huge number of error function evaluations, especially
when employing derivative-free optimization algorithms to er-
ror minimization. This problem can be managed by two ap-
proaches: the first one is based on parallel decomposition and
parallel implementation, the second one employs a computa-
tionally inexpensive approximation or interpolation methods.

The second philosophy,an inversemode, assumes existence
of an inverse relationship between outputs and inputs. If such
relationship is constructed, then the retrieval of desired inputs
is a matter of seconds. This is of a great value especially for
repeated identification of one model.

On the contrary, the main disadvantage is an extremely de-
manding search for the inverse relationship. Nowadays, arti-
ficial neural networks [1, 2] are commonly used due to their
ability to approximate complex non-linear functions and their
straightforward implementation and utilization.

Microplane model

Concrete is one of the most frequently used materials in civil
engineering. Nevertheless, as a highly heterogeneous material,

it shows very complex non-linear behavior, which is extremely
difficult to describe by a sound constitutive law. Consequently,
a numerical simulation of response of complex concrete struc-
tures remains a very challenging and demanding topic in engi-
neering computational modeling.

One of the most promising approaches to modeling of con-
crete behavior is based on the microplane paradigm, see [3]
for the most recent version of this family of models. It is a fully
three-dimensional material law that incorporates tensional and
compressive softening, damage of the material, supports dif-
ferent combinations of loading, unloading and cyclic loading
along with the development of damage-induced anisotropy of
the material. As a result, the material model presented in [3]
is fully capable of predicting behavior of real-world concrete
structures, once provided with proper input data, see [4] for
more details. The major disadvantages of this model are, how-
ever, a large number of phenomenological material parameters
and a high computational cost associated with structural analy-
sis even in a parallel implementation [4].

Although the authors of the model proposed a heuristic cali-
bration procedure [3], it is based on the trial-and-error method
and provides a guide to determination of selected material pa-
rameters. In particular, a certain type of concrete is described
by eight parameters: Young’s modulus E, Poisson’s ratioν, and
other six parameters (k1, k2, k3, k4, c3, c20), which do not have
a simple physical interpretation, and therefore it is difficult to
determine their values from experiments. Hence, a reliable and
inexpensive procedure for identification of these parameters is
demanded.

Proposed algorithm

In the view of potential improvements proposed in a recent
work on soft computing methods [5], a new methodology based
on artificial neural networks for the microplane parameter iden-
tification is proposed in the present contribution. In order to be
able to asses the reliability of identified material parameters,
results of a stochastic sensitivity study based on the Latin Hy-
percube Sampling (LHS) method [5] are presented first. Differ-
ent tests, proposed in [3], are simulated numerically and used
to determine, which model parameters can be reliably identi-
fied from these tests. In the next step, a neural network-based
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procedure is presented for identification of material parameters.
More precisely, a fully connected feed-forward layered neural
network with bias neurons is used. A crucial point here is the
generation of a training set used to determine weights of indi-
vidual neurons [7]. To this end, the LHS method is again em-
ployed as it allows using a limited number of computational
simulations while ensuring the representativeness of the gener-
ated training set [5]. The training procedure itself is based on
a real-coded genetic algorithm SADE [6, 8] that has outper-
formed the traditional Backpropagation algorithm [9]. More-
over, the parameters with the highest sensitivity were estimated
as the first. In the next step, they were used to improve quality
of remaining, less sensitive, parameters. Finally, the application
of the proposed identification procedure to the back analysis of
laboratory experiments is presented to show performance of the
method, see Fig.1.

Figure 1: Comparison of measured data and results of final
simulation of the uniaxial test.

As the best results, we can highlight the fact that the sensitivity
analysis shows not only the influence of individual parameters
but also approximately predicts the errors produced by the neu-
ral network. Although the obtained predictions from the neural
network are still not identical with the desired ones, they can
be further improved by much longer training process and/or
by changing the topology of a neural network. Nevertheless,
the main advantage of the proposed approach can be still em-
ployed – the trained neural network can be used for the next
estimation phase in the future without the need of expensive
numerical simulations.
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Summary: A multi-scale approach is employed to model the transport of a cement-based grout in a porous matrix. Periodic
homogenization is used to derive the average grout concentration and fluid flow equations, as well as the macroscopic flow and
transport parameters. Particular attention is paid to the filtration of cement grains occurring on the solid skeleton surface. The
numerical computations performed using the Finite Element Method allow to compare different deposition modes with several
3D microstructures, and to confront the macroscopic response with experimental interstitial pressures and filtrated mass data.

Introduction

Grouting of a micro-cement suspension within a saturated soil
is studied when grout filtration is taking place on the solid
skeleton surface. As filtration can entail a rapid clogging of
the pore flow channels, it may considerably reduce the grout-
ing efficiency or even compromise the whole grouting process.
Clogging processes are highly dependent on details of the pore
structure as well as on the deposit morphology, and existing
macroscopic models [2, 3] do not allow to express the effect of
the complex soil microstructure, nor to identify the mechanisms
favouring the filtration at the level of the pores.

In consequence, in order to develop a realistic model for the
transport of a cement-based grout within a saturated porous
medium in the presence of filtration, the Homogenization of
Periodic Media (HPM) method is used, which naturally takes
into account the heterogeneity of the porous matrix microstruc-
ture.

Model description
The macroscopic porous domain to be grouted is assumed to
contain sand grains, grout filtrated on the sand grains surface,
and residual voids filled with the flowing fluid phase, in such
a way that a Representative Elementary Volume (REV) can be
defined which size is small compared to the macroscopic vol-
ume. As the medium is assumed to be periodical, the REV co-
incides with the periodic cell. Withl a characteristic length of
the period andL the macroscopic lengthscale, the separation of
scales is written as follows [1, 4]:

ε =
l

L
� 1 (1)

Condition (1) introduces two independent dimensionless space
variablesy = X/l, x = X/L, whereX is the physical space
variable.x is the macroscopic space variable andy is the mi-
croscopic space variable describing the local scale. As a result,
each unknown physical quantityφ is looked for in the form of
a double scale asymptotic expansion [1, 4]:

φ (x, y) = φ(0) (x, y) + εφ(1) (x, y) + ε2φ(2) (x, y) + ...,

x = εy (2)

Furthermore, the porous medium studied is assumed to be satu-
rated and nondeformable, meaning that the fluid-solid interface

movement takes only place under the effect of grout deposition.
Grout is assumed to be miscible with water initially present
within the interstitial space, and as the resulting grout suspen-
sion is highly concentrated in cement, the fluid phase density
depends on the grout concentration. For the same reason, the
fluid phase viscosity and the diffusion coefficient vary with the
grout concentration.

The dimensionless Navier-Stokes equations, the fluid continu-
ity equation and the transport equation describe the problem at
the microscopic scale:

µ∆yv + (λ+ µ)∇y (∇y · v)− ε−1∇yp =

ερ
∂v
∂t

+ ε2ρ (v · ∇y)v (3)

ε
∂ρ

∂t
+∇y · (ρv) = 0 (4)

ε2
∂c

∂t
+∇y · (−D∇yc+ εcv) = 0 (5)

In the previous equations,v is the fluid velocity vector,p is
the interstitial fluid pressure.ρ andµ represent respectively the
density and the viscosity of the fluid phase, whilec is the grout
concentration andD is the diffusion tensor of the grout com-
ponent within the fluid phase.

The filtration boundary conditions on the solid-fluid interface
surfaceΓsf :

(−D∇yc+ εcv) · n = ερv · n = ε2αc (6)

v · t = 0 (7)

are complemented by the conditions of periodicity for all the
dimensionless transport and flow variables.α is the grout filtra-
tion coefficient,n is the unit outward normal vector, andt the
unit tangent vector onΓsf .

Asymptotic expansions of the form (2) are introduced for the
physical variables of the problem in order to obtain the macro-
scopic description. After inserting the differentiation rule and
the asymptotic expansions in the normalized local description
(3)–(7), components corresponding to the same powers ofε are
identified in the equations and the problems to be solved on the
periodic cell can be derived at the successive orders of approx-
imation.
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The homogenization procedure leads to the macroscopic flow
and grout transport equations:

φ
∂ρ(0)

∂t
+∇x ·

(
−ρ

(0)Khom

µ(0)
∇p(0)

)
= −αc(0)Sfs

φ
∂c(0)

∂t
+∇x ·

(
c(0)

〈
v(0)

〉
−Dhom∇c(0)

)
= −αc(0)Sfs

φ = Ωf/Ω andSfs = Γsf/Ω are respectively the macroscopic
porosity and the specific surface of the granular arrangement,
while Khom andDhom are respectively the effective perme-
ability and diffusion tensors, which relate the microscopic and
macroscopic descriptions and are introduced by the upscaling
process in a straightforward manner.

〈
v(0)

〉
is the volume av-

erage of the microscopic velocity vector.

The resulting formulation has been implemented in a Finite El-
ement solving procedure. As the parametersKhom and depend
on the grout concentration and the evolution of the interstitial
space available to flow, a program has been developed in Mat-
lab which solves the macroscopic fluid flow and transport equa-
tions concurrently with the local boundary problems defined for
Khom, Dhomand the porosityφ on the periodic cell. The 3D
microstructures considered and the different deposition modes,
which can be surfacic, intergranular or a combination of both,
are illustrated in Fig. 1.

Figure 1: 3D microstructures employed to compute the macro-
scopic permeability : a) initial granular arrangement b) sur-
face deposition c) and d) intergranular deposition.

One-dimensional soil grouting simulations

The model performance is confronted with existing soil column
grouting experiments presented in [2] and [4], as illustrated in
Fig. 2. Pressure increase takes place in two main steps sepa-
rated by an intermediate stabilized stage. As explained in [2],

during the first stage water initially filling the interstitial space
is replaced by the cement-based grout under no significant fil-
tration, while the cement filtration is responsible for the second
phase of pressure increase. The numerical pressures display the
same kind of evolution, and the best agreement between exper-
iment and computation is obtained when intergranular deposi-
tion mode is dominant. The same conclusion is reached con-
cerning mass intake comparisons.

Conclusion

The effective governing equations for fluid pressure and grout
concentration capture the macroscopic behaviour observed dur-
ing one-dimensional grouting experiments, and although the
microstructures retained to describe the filtration mechanisms
are rather simple, they lead to realistic effective permeability
predictions, without need to resort to any phenomenological
permeability function.

Figure 2: One-dimensional soil grouting. Comparison between
experimental and numerical pressures.
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Summary: A novel, mechanistic-type numerical model of concrete at early ages [1] has been used for two-scale modelling of
the hygro-thermal phenomena in internally cured maturing concrete. The model is used for analysis of the concrete behaviour at
the meso-scale, where the material is treated as a composite made of inclusions of internal water reservoirs surrounded by the
maturing mortar. The internal moisture source terms and moisture transport properties are then up-scaled into the macro-scale,
at which the material is treated as a continuum and analysed in the full range of hydration-related phenomena. The simulations
results are compared to some published experimental data concerning performance of internally cured, maturing concrete.

Mechanistic-type model of concrete

The presented model of maturing concrete has been recently
used for macro-scale modelling of a wide range of chemical,
hygro-thermal, and mechanical phenomena, accompanying hy-
dration of cement, e.g. [1]. Now, the efforts focus on the use of
the model for two-scale modelling of concrete, i.e. at the meso-
and macro-scale (see also [2]). For the sake of brevity, only a
brief description of the model assumptions is given here (for
more details see [1]).

The balance equations for phases and interfaces are developed
at the micro-level and then volume-averaged, by means of the
Hybrid Mixture Theory by Hassanizadeh and Gray (see [1]) in
order to obtain their macroscopic formulation. The constitutive
laws are introduced directly at the macro-scale, where evolu-
tion of some material properties is governed by the hydration
degree. The final governing equations of the model, i.e. mass,
energy and momentum balances are written in terms of the cho-
sen primary variables: gas pressure, capillary pressure, temper-
ature and displacements, and the hydration degree as an inter-
nal variable. The equations are discretized in space by means
of FEM and implemented into the computer code HMTRA-
FRESH, [1]. Concrete is treated as a deformable, multiphase
porous material. All the phase changes are taken into account
as well as the generalized, complex chemical reactions. The
mass and energy transport mechanisms are considered for spe-
cific phases of concrete. Full coupling between hygro-thermo-
mechanical phenomena and the chemical reactions during ce-
ment hydration is assumed. Coupled influence of the relative
humidity and temperature on the hydration process evolution,
and further on macroscopic properties of the material allow us
to analyse their non-linearity due to aging.

The mechanical behaviour of the model, in particular shrink-
age and creep strains are described in terms of the effective
stress principle, developed by Gray and Schrefler for media
with a well-developed internal surface (i.e. cementitious com-
posites), see [1]. The effective stress accounts both for the ex-
ternal load and the internal load exerted by the pore fluids on the
solid skeleton, rising with the decrease of pores relative humid-

ity. Finally, creep is modelled by means of the microprestress-
solidification theory by Bazantet al. [3], modified in such a
way that the total stresses are replaced with the effective ones.
Thanks to such an assumption it is possible to model the cou-
pling between creep and autogenous shrinkage strains in the
absence of any external load.

Two-scale modelling concept

Although the model as described in the previous section was
successfully validated for the macro-scale problems related to
autogenous phenomena, [1], in the case of internal curing fur-
ther model developments are necessary. It seems, that the only
reasonable way in this case is to use the two-scale modelling
concept which involves description of coupled heat and mois-
ture transport at two scales: meso- and macroscopic. Our ap-
proach is based on the so-called numerical homogenization.
The effective properties of the macro-scale, i.e. homogenous
model, Fig. 1c, in particular water mass source due to inter-
nal ‘water reservoirs’, are obtained by scaling up the results,
Fig. 1b, simulated for the Representative Elementary Volume
(REV), Fig. 1a, at the meso-scale. The REV is modelled as con-
sisting of two porous materials: an inclusion of saturated ‘water
reservoir’, visible in the edge of the cutting, surrounded by the
mortar, Fig. 1a, which are treated as homogenous. In concrete
technology practice, the ‘reservoirs’ are supplied by introduc-
ing into mortar saturated light weight aggregates (LWA) or su-
per absorbent polymers (SAP), [4].

In this paper, the linkage between the both scales is considered
in one direction only, i.e. up-scaling. The up-scaling scheme
allows for determining the effective properties and the mass
source term in the homogenized moisture balance equation
based on the results of the meso-level analysis. The numerical
homogenization of the effective properties is done as follows:

– the thermal conductivity and intrinsic permeability of in-
ternally cured mortar is obtained from the analysis of heat
and water flows in the REV;
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Figure 1: The scheme of scale-linkage and FEM meshes used
in numerical simulations.

– the sorption isotherm of the medium is modified, using the
volume-averaged results obtained at the meso-level for the
REV being in the state of hygro-thermal equilibrium;

– the hydration process evolution equation is modified by
changing the viscosity parameter in the relation describing
the normalized chemical affinity, influencing the hydration
rate, [1].

The up-scaling of the water transport from the internal ‘water
reservoir’ into maturing mortar is done by introducing an ad-
ditional water source term into the macro-scale mass balance
equation. This term is assumed as a volume averaged (consid-
ering the ratio of volume occupied by LWA or SAP) deriva-
tive of the water mass loss from LWA (or SAP) with respect to
the hydration degree of the mortar (i.e. the evolution-governing
variable of the model).

At the macro-level, the real specimen is modelled by means
of the strip cut off of the cylinder specimen (Fig. 1c) with the
dimensions and boundary conditions described with respect to
the real experiment. The analysis is carried out with the modi-
fied properties for the full range of phenomena accompanying
cement hydration.

Simulation results

In order to illustrate the possibilities of the model the nu-
merical example based on the experimental work by Craeye
and De Schutter [4] has been carried out in accordance with
the scheme described in the previous section. The authors
of the experiment measured the linear deformations of the
high performance concretes modified by means of addition of
various types and amounts of LWA or SAP. The autogenous
strains of internally cured samples were then compared to
the reference ones showing the improved performance of the
former due to internal curing.

In Fig. 2 some exemplary results of our simulations are
presented. The results concern the strains computed directly at
the meso-level. As can be seen, a good agreement was obtained
for the simulations of concrete with LWA. Some discrepancy is
visible only in the case of initial swelling. However, one should
notice that the initial period of material behaviour cannot be
yet modelled by the assumed mathematical model, mainly due

Figure 2: Results of the numerical meso-level simulations com-
pared with the experimental data [4] concerning autogenous
strains of concretes modified with different amounts of LWA or
SAP. The masses refer to the amount of water per 1 m3.

to great complexity of physical phenomena in fully saturated
maturing concrete. In the case of simulations of concrete with
SAP greater shrinkage was predicted by the model than that
observed in reality. This is the main problem which further
developments of the model should be focused on. As proved
by our numerical analysis, a part of influence of SAP on the
material performance (especially on the decrease of RH and on
the material strains) cannot yet be modelled by the described
model. This in particular concerns the phenomena related to
the modifications of inner-structure caused by SAP in reality.

However, as proved by the examples presented, the phenomena
of water transport from the internal sources during concrete
curing and the material deformations can be analysed with the
presented model using the two-scale modelling scheme, thus a
further research in this field will be carried out.
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Summary: This contribution introduces a multi-scale framework for the thermomechanical analysis of heterogeneous solids.
The principles of the method rely on a two-scale computational homogenization approach which is applied successfully for
the stress analysis of multi-phase solids under purely mechanical loading. The present paper extends this methodology to heat
conduction and thermomechanical problems. The flexibility of the method permits one to take into account local microstructural
heterogeneities and thermal and mechanical anisotropy, including nonlinearities which might arise at some stage of the loading
history. The resulting complex microstructural response is transferred back to the macro level in a consistent manner. A proper
macro to micro transition is established in terms of the microscopically applied boundary conditions and likewise a micro to
macro transition is formulated in the form of consistent averaging relations. A nested finite element solution procedure within
the operator split formalism is outlined and the effectiveness of the approach is demonstrated by an illustrative example problem.

Introduction

Materials with a high thermomechanical resistance are indis-
pensable in many engineering applications. Refractories used
in furnace linings, thermal coatings and microelectronic com-
ponents are just a few examples indicating the wide range of
applications where a structure is exposed to strong temperature
changes and cycles. The materials selected for heat isolation
purposes are generally far from being homogeneous due to their
multiphase, porous microstructure. Under severe thermal con-
ditions, it is well documented that the relevant damage mecha-
nisms originate from the induced stress gradients, the thermal
expansion anisotropy and the non-uniformity and mismatches
between the constituents at the meso or micro level.

Modeling framework

To incorporate the underlying mechanisms more transparently
in our modeling effort and to investigate the interaction of
mechanical and thermal fields and its consequences from a
microstructural perspective, a multi-scale analysis approach
for thermomechanical problems is proposed within the frame-
work of computational homogenization. Computational ho-

Microstructure

RVE

RVE Analysis

Micro BVP

Macro. FE

Integration Point

Macro Analysis

Figure 1: Schematic representation of the computational ho-
mogenization scheme

mogenization is a multi-scale strategy in which the material re-
sponse is obtained from the underlying microstructure by solv-
ing a boundary value problem defined on a representative vol-

ume element of the microstructure (RVE) where characteris-
tic physical and geometrical properties of the fine scale (differ-
ent phases, internal boundaries, flaws etc.) are embedded. The
scale bridging from macro to micro is achieved by the formula-
tion of consistent RVE boundary conditions in terms of macro-
scopic quantities passed to the micro level (RVE input, step I in
figure1). Then, the microscopic field excited by the prescribed
boundary conditions is resolved by a proper discretization tech-
nique applied to the micro-scale BVP (step II in figure1). The
resulting microscopic quantities are used to extract the macro-
scopic quantities (step III in figure1) via a consistent averaging
scheme. Furthermore, the relation between infinitesimal varia-
tions of the RVE output quantities in relation to infinitesimal
variations of the input quantities are extracted, i.e. the tangent
operator.

In what follows, the subscript capital ‘M’ denotes macroscopic
quantities whereas a lower case ‘m’ will be the indicator for
microscopic quantities, including some differential operators,
e.g. the gradient operator~∇M or ~∇m.

Within a geometrically nonlinear continuum framework, in the
absence of body forces and internal heat sources, the balance
equations to be satisfied at the micro level take the standard
form,

~∇m · σm = ~0 (1a)

~∇m · ~qm = 0 (1b)

with ~qm the microscopic heat flux andσm the microscopic
Cauchy stress in the microstructural components. The heat flux
~qm and the stressσm are related to the gradients of the tem-
perature and the displacements by proper constitutive relations.
At the micro level, it is assumed that a steady-state temperature
profile is reached instantaneously due to the negligibly small
size of the representative volume element (RVE), which is typ-
ically the point of departure in any first order homogenization
scheme.

At the macro level the balance equations have the general form,
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~∇M · σM = ~0 (2a)

(ρcv)M θ̇M + ~∇M · ~qM = 0 (2b)

whereθM is the temperature at macro level. This system is
completed with proper macroscopic boundary conditions. Ex-
plicit constitutive relations for~qM andσM are notrequired.
Instead, the macroscopic quantities are extracted from the re-
sponse of the underlying microstructure in a consistent way.

The thermal energy consistency of micro and macro levels is
assured by enforcing the condition

θM (ρcv)M =
1
V

∫
V

θm(ρcv)mdV (3)

with (ρcv)M =
∫
V

(ρcv)mdV

which also guarantees a unique temperature profile. The me-
chanical and thermal excitation of the microstructure is pre-
scribed in terms of the macroscopic deformation gradientF and
the temperature gradient~∇MθM through macro-to-micro scale
bridging relations

FM =
1
V

∫
V

FmdV (4a)

~∇MθM =
1
V

∫
V

~∇mθmdV (4b)

which constitute basis to specify the boundary conditions at the
micro level, in combination with periodicity assumptions.

With the prescribed boundary conditions in terms of macro-
scopic quantities, the micro level problem is solved by the finite
element method. Upon the solution, the macroscopic quantities
are extracted from the micro level as simple volume averages,

σM =
1
J

PMFTM with PM =
1
V

∫
V

PmdV (5a)

~qM =
1
V

∫
V

~qmdV (5b)

whereP stands for the first Piola-Kirchhoff stress tensor and
J = detFM. Equations (5) are derived from the micro-macro
virtual work equivalency (macrohomogeneity condition) and
the entropy consistency condition. The tangent operators used
in the incremental-iterative solution of the macroscopic balance
equations are extracted through a condensation procedure from
the microstructural system of equations as outlined in [1] and
[2].

Solution algorithm

The coupled thermo-mechanical problem is solved by the op-
erator split approach in which the coupled problem is split into
two sub-problems, namely (1) the thermal equilibrium prob-
lem with a fixed displacement and hence a fixed stress field and
(2) the mechanical equilibrium problem with a fixed tempera-
ture field. The solution of the micro-BVP is embedded in the
macroscopic solution algorithm which leads to a nested finite
element procedure as presented in [1] and [2]. The framework is

constructed in such a way that damage evolution and coupling
between the fields through damaging of the microstructure can
be incorporated in the model.

The two scale nested solution procedure is implemented and
a simple illustrative example is presented in figure2. A pla-
nar structure made of a two-phase material is exposed to a
linearly increasing temperature loading at the free (right) end.
The analysis reveals microscopic thermal and mechanical field
quantities in addition to macroscopic ones. With this method,
it is straight forward to investigate the effect of the microstruc-
tural morphology on the resulting macroscopic response. The
approach becomes superior particularly when the coupling be-
tween the micro and macro scales becomes stronger, e.g. in case
of a temperature sensitive microstructural response or in case of
materials with evolving microstructure, for which asymptotic
homogenization or unit cell based approaches are not appropri-
ate.

Equivalent Von Mises Stresses

Eqv. Von Mises Stresses
in P

Horizontal Comp. of Temp.
Grd.  In P

Integration Point P

Mechanically fixed
T = 0 C (Constant)

T
Final= 20 CTFinal

Time

1.5E+03

4.0E+02

6.0E+02

8.0E+02

1.0E+03

1.2E+03

Microstructure in P

Figure 2: Illustrative Example

Conclusively, with the framework introduced, the influence of
microstructural evolution (e.g. damage and microcracking) on
the mechanical and thermal fields and their interaction can be
effectively taken into account. This enables the modeling and
enhances the understanding of damage phenomena and opens
the possibility to identify some interesting mechanisms of fail-
ure initiation and field interaction effects which cannot be eas-
ily captured and described without incorporating the relevant
microstructural details, as done here.
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Summary: This paper describes a method for finding effective material properties of random heterogeneous materials based on
a local solution of transport equations. We apply the method to calculate the effective conductivity of several microstructures,
and assess the accuracy of the method.

Introduction

Global properties of nominally identical material specimens
can differ significantly because microstructural properties gen-
erally exhibit notable spatial random variation, indicating that
these properties are random quantities. The specimen to speci-
men variation of global properties can be significant if, for ex-
ample, the scale of fluctuation of microstructural properties and
the specimen size have a similar order of magnitude.

Global properties are typically measured in the laboratory, be-
come deterministic as the specimen size increases indefinitely,
and provide material constants for mathematical models of con-
tinuum mechanics and other fields. There are many methods
for calculating global material properties, referred to as effec-
tive properties. Many of these methods are reviewed in [2], and
applied to a broad range of microstructures.

Our objective is to present a method for finding effective mate-
rial properties of nonhomogeneous materials based on a local
solution of transport equations. We apply the method to calcu-
late the effective conductivity of several microstructures, and
assess the accuracy of the method. The method extends results
in [1], [2], and [3].

Effective material properties

Consider a microstructural specimen occupying a bounded set
D in Rd, d = 1, 2, 3, whose electric or thermal conductivity
is σ(x) > 0 at x ∈ D. Suppose the specimen is subjected to
a flux γ(x). The steady state temperature or electric potential
u(x) in the specimen is the solution of

∇
(
σ(x)∇u(x)

)
= −γ(x), x ∈ D. (1)

The effective conductivityσeff of the specimen inD is the con-
ductivity of a virtual homogeneous specimen that occupies the
setD and is equivalent to the original specimen in some sense.
For example, ifD is a sphereSd(r) of radiusr > 0, we re-
quire that the solutions of Eq. (1) atx = 0 for the original and

the virtual specimen coincide. The equality of these solutions
yieldsσeff .

We can solve Eq. (1) for the original and virtual specimens by
finite difference, finite element, or other traditional numerical
method. Alternatively, Monte Carlo techniques can be used to
solve Eq. (1) and findσeff for two-phase materials with homo-
geneous phases. For example, the effective conductivity can be
approximated from the average time required by many walk-
ers moving randomly in space with fixed steps and speeds de-
pending on the local phase conductivities. Special provisions
are made for situations in which during a step the boundary be-
tween two distinct phases is crossed ([1], [2]). Though easily
coded, these methods are not efficient in computational time,
especially for samples with very small inclusions; also, the
methods cannot be used in the case of continuously varying
conductivity (functionally graded materials).

The developments in this paper follow a Monte Carlo method
proposed by Grigoriu [3]. The method is extended to heteroge-
neous materials and can be used to find effective properties of
arbitrary microstructures. The method is based on properties of
diffusion processes, the Itô formula for continuous semimartin-
gales, and the relationship between the functional form of the
differential operator in Eq. (1) and the infinitesimal generator
of diffusion processes.

Consider [3] a stochastic differential equation defining aRd-
valued stateX, called an̂Ito process,

dX(t) = a(X(t)) dt+ c(X(t)) dB(t), t >= 0, (2)

whereB is a Brownian motion inRd and the (d,1) and (d,d)
matricesa andccT are real-valued functions defined onRd.
Define the drift and diffusion coefficients ofX by

ak(x) =
∂σ(x)
∂xk

, k = 1, . . . , d andc(x) =
√

2σ(x) i, (3)

wherei is the (d,d) identity matrix. For simplicity of numerical
computation, we choose to work with spherical samplesD =
Sd(r), d-dimensional spheres of radiusr, with a homogeneous
Dirichlet boundary condition, i.e.u(x) = 0 for x ∈ ∂D.
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Figure 1: Example of a random walk in a homogeneous mate-
rial with ∆t = 0.001 in two dimensions.

Let T (r) be the first time whenX, starting at an initial state
X(0) = 0, exitsD = Sd(r) and assume thatγ(x) = 1. The ef-
fective conductivity for a heterogeneous material is then given
by [3]

σeff =
r2

2 d E[T (r)]
, (4)

whereE[] denotes expectation value. The generation of sam-
ples of theÎto processX can be based on a finite difference
approximation.

Consider a random walk method (RWM) of a particle, which
moves with a fixed time-step∆t, according to the formula

x2 = x1 + a(x1) ∆t+ c(x1) randn(d, 1)
√

∆t, (5)

wherex1 ∈ Rd is the initial point, i.e., the point at which
the particle starts its motion anda, c are given by (3), while
randn(d, 1) stands for ad-length column of normally dis-
tributed random numbers. The total time to exit from the sam-
ple for thei-th random walker isTi =

∑
∆t. The effective

conductivity of a spherical sample is calculated by [3]

σeff =
r2

2 d T̂
, (6)

with T̂ =
∑N
i=1 Ti/N being the mean (over N random walks)

time a particle spends while travelling in the sample. Fig.1
shows an example of random walks in a homogeneous sam-
ple. (Time steps in the nonhomogeneous case are too small for
visual output.)

We observe that the effectiveness and accuracy of (5) reduces
significantly in the case the two terms depending on the con-
ductivity and its derivative have different orders of magnitude.
We suggest a modification to (5), whereby we introduce a
parameterε, which controls the value of the two terms. We
call this approach a modified random walk method (MRWM).

For a fixed value ofε, we choose the time-step as∆t =
min[ε/a, (ε/c)2], wherea, c are the absolute values of the cor-
responding vectors in (3), for which comparable contributions
from the two terms in (5) are obtained.

As an example of a hypothetical heterogeneous material, con-
sider the thermal or electrical conductivity given by an expo-
nential function in two dimensions

σ(r) = e10r
2
, r =

√
x2 + y2 ∈ [0, 1], (7)

and assume Dirichlet boundary conditions, i.e.u(1) = 0. We
study the dependence of effective conductivity on parameters
∆t andN for the random walk algorithm and (ε, N ) for the
modified algorithm. We find that the modified algorithm ap-
proximates the true value ofσeff more accurately than the orig-
inal random walk method for a given numberN of samples if
we choose the parameterε of the modified random walk method
to be on the same order as

√
∆t, where∆t is the parameter of

the original RWM.

We extend the method to discontinuous cases such as spherical
and thin elliptical inclusions and provide comparison to finite
element results. Though we solve the conductivity problem (1)
with Dirichlet boundary conditions, the approach can be modi-
fied to solve partial differential equations with mixed boundary
conditions as well [4].
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Summary: This paper investigates a 3D micromechanical modelling of ductile porous materials composed of a rigid perfectly
plastic matrix containing prolate or oblate cavities. For this purpose, we consider an eshelby-like trial velocity field in the standard
limit analysis of porous materials (Gurson, 1977) as well as in its extensions to the case where voids are non spherical. The
obtained approximate pressure-sensitive criterion is exact for hydrostatic loading and presents several original features : it is
valid for arbitrary loadings and gives very good predictions for low stress triaxility (in particular purely deviatoric loadings)
in which case they agree with the (nonlinear) Hashin - Shtrikman bound established by Ponte-Castaneda and Suquet (1998).
Significant improvements of the existing Gurson-type criteria, particularly those dealing with penny-shaped cracks, are obtained.
Finally, we indicate how these new results immediately apply to poroplastic behavior (saturated porous material).

Motivation of the study

The modeling of the behavior of ductile porous media has been
the subject of important researches in nonlinear mechanics
of materials. In his pioneering work, Gurson [4] developed a
limit analysis approach of a hollow sphere which constitutes
an upper bound for a composite spheres assemblage. Later,
the Gurson model has been extended in order to take into
account the voids shapes (see review by Gologanu et al. [3]).
Alternatively, by using variational techniques (reviewed by
Ponte Castaneda and Suquet [7]), rigorous nonlinear Hashin-
Shtrikman upper bounds have been derived for plastic porous
media with various voids shapes. An important observation is
that the Gurson model violates the corresponding upper bound
for low values of the stress triaxialityT = Σh/Σeq. However,
its predominance over the non linear Hashin-Shtrikman bound
is still observed for high stress triaxialities. A possible method
to improve the predictions of the original limit analysis of
Gurson (and in fact the subsequent models for non spherical
voids), already used by some authors, consists in considering
refined trial velocity fields. Still, due to the limitation of trial
velocity fields which have been explored in the past studies, it
seems that there is need for new investigations in this domain.
The main objective of this study is to develop a limit analysis
approach based on Eshelby-like velocity fields and to derive a
new expression of the yield function of the porous medium.

Basic concepts and methodology

The calculations have been performed in the general case of
prolate and oblate voids. By doing so, the new results can also
be compared to those which can be found Gologanu et al. [3].
As in [3], consider then a spheroidal prolate or oblate cavity
with semi-axesa1 (alonge3), andb1 (alonge1 ande2) embed-
ded in a cell which has the shape of a confocal spheroid with
the semi axesa2 (alonge3), andb2 (alonge1 ande2) (Fig. 1).
a1 > b1 corresponds to a prolate cavity whileb1 > a1 is asso-
ciated to an oblate one. Let us denotec the focal distance and

x

a2

a1

b1
b2

b1

b2

a2
a1

1

x3

x2
x1

x3

x2

a b

Figure 1: Studied cell for (a) a prolate and (b) an oblate
spheroidal void embedded in a confocal spheroid relative to
a Cartesian coordinate system(x1, x2, x3).

e1 the eccentricity defined by:

c =
√
a2
1 − b21; e1 =

c

a1
(prolate)

c =
√
b21 − a2

1; e1 =
c

b1
(oblate)

(1)

The porosityf and the void shape parameterS are given by:

f =
a1b

2
1

a2b22
; S = ln

(
a1

b1

)
(2)

The determination of the macroscopic criterion is made by
considering, as classically, a velocity fieldv in the matrix,
decomposed into a first field,A.x, corresponding to uniform
strain rateA, and an heterogeneous field, denotedvE , which
describes void expansion and shape changes. ForvE , we
propose to consider the exterior point Eshelby solution ([2],
see also [6]) adapted here to an incompressible viscous fluid
containing a spheroidal inclusion. By the consideration of
these new fields which are discussed, an approximate ex-
pression of the macroscopic dissipation is obtained (see [5]).
Since the considered velocity field introduces some unknown
kinematical parameters, a minimization procedure has to be
performed in order to determine the macroscopic dissipation
Π(D), D being the macroscopic strain rate tensor. A detailed
presentation of the computation is provided in [5].
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Figure 2: Yield surface of the porous material: case of spheri-
cal void:Σeq/σ0 as function ofΣm/σ0; comparison of the pro-
posed model (3) with the Gurson yield locus and the nonlinear
Hashin-Shtrikman bound. Porosityf = 0.1.

Examples of results

New expressions of the macroscopic criteria of the porous
medium (with prolate and oblate cavities) are derived from
Π(D). It is shown that the obtained results significantly im-
prove existing criteria for ductile porous media. Moreover, for
low stress triaxialities, these new results agree with the (non
linear) Hashin-Shtrikman bound (see [7]). For illustration pur-
pose, consider here the particularly simple case of a porous
medium with spherical cavities. In this case,f being the poros-
ity and σ0 the yield stress of the solid matrix, the obtained
macroscopic criterion takes the form :

Σ2
eq

σ2
0

+ 2f cosh

{
1
σ0

√
9
4
Σ2
h +

2
3
Σ2
eq

}
− 1− f2 = 0 (3)

At the difference of the Gurson’s criterion, (3) provides also
the strongly remarkable property that the deviatoric equivalent
stressΣeq enters with the hydrostatic stressΣh in the cosh
term. For low values ofΣh, the nonlinear Hashin-Shtrikman
bound is recovered (see Fig. 1).

It is also shown that in the general case of a spheroidal cav-
ity, the developped approach leads also to some improvements
of existing models, particularly in the case of the cracked plas-
tic medium. As an example of illustration, consider a porous
medium with prolate or oblate voids (including penny-shaped
cracks) subjected to an axisymetic load. The obtained results
are shown on Fig. 2 and are compared to numerical results pro-
vided by [3].

Extension to fluid saturated porous media

The results provided in the present study can be readily ex-
tended to the case of saturated cavities by a fluid at pressureP .
Indeed, in this case, the boundary value problem to be solved
involves application ofP at the internal surfaceλ = λ1. Thanks
to the plastic incompressibility of the solid matrix (Von Mises
material), it follows that the new problem can be recast in the
same form as for the dry porous material by replacingΣ by
Σ′ = Σ + 1P . Clearly enough, the macroscopic criterion in
the context of poroplasticity, can be obtained from the previous
results by adopting the Terzaghi’s effective principle. A full dis-
cussion of this point can be found in [1].3

3 By nonlinear homogenization techniques, [1] has shown that for Drucker-
Prager matrix the Terzaghi’s effective stress principle cannot be applied.
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Figure 3: Yield surface of the porous material: a) case of pro-
late void,a1/b1 = 5, b) case of oblate void,b1/a1 = 5, c)
case of penny shaped cracks (oblate cavities withb1/a1 → 0).
Comparison of the proposed model and ”numerical” results
obtained by Gologanu et al. (1997).
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Summary: This contribution is concerned with the microstructural modeling of single and dual phase polycrystalline metals and
its evolution during large plastic deformation. Representative volume elements (RVEs) are used in combination with a crystal
plasticity model. The applicability of this approach is demonstrated on example of two technical applications.

Introduction

Microstructure evolution of polycrystalline metals under large
plastic deformation during production processes significantly
affect their mechanical properties such as formability [1],
toughness and fatigue resistance. In this contribution are con-
sidered two practically important examples, namely, drawing
of tungsten wire for the lighting industry and rolling of high
strength dual phase steels for automotive applications. Repre-
sentative volume elements (RVE) with single crystal plasticity
describing individual grains are used in order to take into ac-
count the specific morphological aspects.

Crystal plasticity model

Grains in the polycrystalline aggregate are modelled within the
framework of crystal plasticity, see for example [2]. This phys-
ically based theory describes plastic flow as the result of the
movement of dislocations (namely slip) in a continuum way.
This means that plasticity is the result of continuous shearing
(slip) along various well-defined lattice planes. A slip systemα
is defined by the unit normal m(α)

i to the slip plane and the unit

vector s(α)
i in the slip direction.

The theory is formulated in the framework of large deforma-
tion. The total deformation gradient Fij can be decomposed as

Fij = F ∗ikF
p
kj , (1)

where F∗ij denotes plastic shear and Fp
ij accounts for elastic

stretching and rotation of the lattice. The rate of change of the
plastic deformation gradient is given by

Ḟ pikF
p−1

kj =
∑
α

γ̇(α)s
(α)
i m

(α)
j . (2)

The rate of the stretching tensor Dij can be also decomposed
into parts due to lattice deformation (*) and plastic slip (p):

Dij = D∗ij +Dp
ij (3)

The flow rule based on Schmid’s law is determined by the
Schmid tensor P(α)

ij and the shear ratėγ(α) on the slip system

α in form of a power law

Dp
ij =

n∑
α=1

P
(α)
ij γ̇(α)

P
(α)
ij =

1
2
(s∗(α)
i m

∗(α)
j +m

∗(α)
i s

∗(α)
j ) (4)

γ̇(α) = ȧ signτ (α)

∣∣∣∣τ (α)

g(α)

∣∣∣∣
1/n

whereτ (α) stands for the resolved shear stress on the slip sys-
temα, for instance

τ (α) = s
∗(α)
i σijm

∗(α)
j = P

(α)
ij σij , (5)

whereȧ denotes a reference shear rate and n the material rate
sensitivity. g(α) means the slip system hardness. The value of
each g(α) for γ = 0 has to be specified and is denoted with the
symbolτ0.

The strain hardening obeys the following evolution law:

ġ(α) =
∑
β

hαβ γ̇
(β) (6)

with the hardening matrix hαβ , where hαα stands for self-
hardening on systemα while hαβ (α 6= β) describes the
latent-hardening rate of systemα. A simple form is used for
hαα [2]

hαα = h(γ) = h0 sech2 h0γ

τs − τo
, (7)

(without summation overα),

where h0 represents the initial hardening rate andτs stands for
the saturation strength. The latent hardening modulus is given
by

hαβ = qh(γ) for α 6= β (8)

with the latent hardening parameter q.

Crystal plasticity is implemented as a user material subroutine
UMAT, based on [3], in the finite element code ABAQUS.

Representative volume element

The use of RVEs provides a detailed insight into the material
heterogeneities. The RVEs account for grain shape and lat-
tice orientation and offer a practical way for predicting grain
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morphology evolution, texture development and intergranu-
lar stresses. The geometrical microstructure is build up using
Voronöı tessellations discretized using finite elements. Each
grain of the RVE possesses a given crystal structure and lat-
tice orientation. The crystal structure determines the number
and type of potentially active slip systems. The initial lattice
orientation of the grain is prescribed to represent the desired
initial texture. The grains deform according to the single crys-
tal plasticity constitutive equations.

The periodic boundary conditions are used in order to minimize
the constraint effects. This means that the displacement vectors
of two equivalent points a and b are coupled by the macroscopic
deformation gradient̄Fij [4]

ubi − uai = F̄ij
(
xbj0 − xaj0

)
−
(
xbi0 − xai0

)
, (9)

where xai0, xbi0 indicate the position of a point pair in the non-
deformed configuration.

Drawing of tungsten wires

Tungsten wires are drawn in successive steps until they reach
a diameter suitable to be used as lamps filaments. During
the drawing process the wires undergo severe plastic defor-
mation that leads to a sharp<110> fibre texture. The well
established texture induces single grains to deform by plane
strain elongation [5]. This anisotropic deformation causes that
initially equiaxed grains tend to develop and elliptical shape
in the wire cross section. The major axes of the ellipses are
given by the initial orientation of the[11̄0] directions, perpen-
dicular to the wire axis and randomly rotated around it [6].

Figure 1: Grain curling in a tungsten wire. a) Structure ob-
served in the cross section, b) simulated microstructure using a
RVE.

This fact enhances mutual accommodation of neighbouring
grains that bend around each other and create a characteristic
pattern in the cross-section of the wire, known as grain curl-
ing or “Van Gogh sky structures”, Fig. 1. This heterogeneous
strain deformation at the microscopic level produces locally
high stress concentrations that might explain the well-known
tendency of BCC wires to develop longitudinal intergranular
cracks known as splits [7, 8].

Rolling of dual phase steels

Dual phase steels demands an explicit representation of the
microstructure during plastic deformation for a realistic sim-
ulation of the rolling process. The typical morphology of dual
phase steels is characterized by a ferritic matrix and a marten-
sitic phase which is localized within the interspaces of the fer-
rite grains. For the modeling of this morphology the previously
described representative volume elements are used. An addi-
tional and new procedure is proposed to place the martensitic
phase at the proper positions. A volume fraction of up to 25 per-
cent martensite is assumed. Each grain inside the RVE deforms
according to single crystal plasticity as illustrated before.

It is expected, that the advantageous mechanical properties of
dual phase steels may be partly attributed to the specific spa-
tial distribution of the martensitic phase. Therefore, this aspect
will be examined in detail by comparing RVE models with var-
ied arrangement of the martensitic phase. The results will be
discussed and employed to propose an appropriate RVE model
for the numerical simulation of the rolling of dual phase steel
sheets.
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Summary: In this paper we first review the efforts in both physics and mechanics literatures on using non-Riemannian geometries
in modelling continua with distributed defects. Building on the ideas from the last few decades we introduce a field theory of
solids with distributed defects. In our theory, evolution of defects is represented by a dynamic reference manifold with time-
varying metric and torsion. We will develop a covariant theory by postulating the invariance of energy balance under spatial and
material diffeomorphisms of the ambient and material spaces.

Introduction

It is known that, in principle, it is possible to investigate a crys-
talline solid with a large number of defects in a continuum
framework. Since the 1950s researchers have known that con-
tinuum mechanics of solids with distributed defects has a close
connection with the differential geometry of manifolds with a
Riemannian metric and torsion—a subject in mathematics that
has found a wide range of applications in physics and engineer-
ing. For example, dislocation and disclination density tensors
are closely related to torsion and curvature of a material con-
nection, respectively. However, in spite of many efforts in the
past decades, still a complete continuum theory of solids with
distributed defects, capable of modeling defects and their evo-
lution is missing.

In this seminar we first review the efforts in both physics and
mechanics literatures on using non-Riemannian geometries in
modeling continua with distributed defects. Building on the
ideas from the last few decades we introduce a field theory of
solids with distributed defects. In our theory, evolution of de-
fects is represented by a dynamic reference manifold with time-
varying torsion, curvature and non-metricity (see Fig. 1). We
will develop a covariant theory by postulating the invariance
of energy balance under spatial and material diffeomorphisms
of the ambient and material spaces. We study the Lagrangian
field theory of bodies with defects and consider both conserva-
tive and dissipative cases. Finally, we will make a connection
between phenomenological plasticity and the geometric theory.
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Summary: This paper reports the use of finite elements and random fields for quantifying the effects of heterogeneity in geo-
engineering. It starts by justifying the need for 3D simulations, through comparing the results of 2D and 3D analyses of failure
in a long slope cut in clay. It then discusses the implications for geo-engineering in general; in particular, with regard to parallel
computing and the need to model heterogeneity over a range of scales in many geo-environmental applications.

Introduction

This paper uses random field theory to model the heterogeneity
of geo-materials and finite elements to quantify the influence of
that heterogeneity on geo-structural response. The point-wise
variation in material properties is defined by a probability dis-
tribution, mean (µ) and coefficient of variation (V ), whereas the
spatial correlation is characterised by an exponential covariance
function and scale of fluctuation (θ). The random fields have
been generated using local average subdivision (LAS) [1] and
the finite element coding is based on [2].

Geotechnical example

The influence of heterogeneity of undrained shear strength (cu)
on the stability of a long slope cut in clay is investigated. It is
an extension of previous 2D studies [3, 4, 5, 6], and follows a
stochastic (Monte Carlo) approach, involving multiple realisa-
tions. Each realisation involves the generation of a random field
of cu, and the subsequent analysis of the problem using finite
elements.

Fig. 1 examines the influence of the spatial correlation ofcu on
reliability, R, versus global factor of safety,F , for a 1:1 slope,
5 m high and 100 m long, withV = 0.3 andθv = 1 m [7]. F is
based on the meancu, whereasR is given by,

R =
(

1− Nf
N

)
× 100 (1)

in which N is the total number of realisations andNf is the
number of realisations in which slope failure occurs. The figure
compares results for different ratios of the horizontal to vertical
scales of fluctuation(ξ = θh/θv).

The large difference between the 2D, Fig.1(a), and 3D, Fig.
1(b), solutions is attributed to two factors: the infiniteθ along
the length of the slope, implicit in the plane strain assumption,
and the inability of the 2D case to account for different failure
mechanisms. In particular, 3D modelling revealed three princi-
pal failure modes [7]: for large values ofθh, relative to the slope
dimensions, the slope fails along its length and the solution is
equivalent to the 2D case; for intermediateθh, independent and
sometimes multiple failures can occur, Fig.2; and, for smallθh,
the slope fails along its length, but the solution is not equiva-
lent to the 2D case (rather, it tends to the deterministic solution
based onµ).

(a) 2D solution

(b) 3D solution

Figure 1: Reliability versus factor of safety for a long slope.

Geo-environmental implications

The geotechnical analogy may be extended to applications in
geo-environmental engineering. These are often characterised
by very large domains, and by heterogeneity at multiple scales.
For contaminant transport and bio-remediation, there is also the
possibility of transient point and spatial statistics; e.g. due to
changes in void spaces arising from bio-chemical reactions. As
for the 3D slope example, fine mesh discretisations are needed
for modelling spatial variability, whereas multiple realisations
are needed to account for uncertainty in spatial distributions.
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Figure 2: 3D failure in a long slope.

There are two possible strategies for tackling such problems:

The first is parallel computing [2], which may be used at two
levels. For “smaller domains”, the realisations can be shared
across processors, whereas, for larger domains, individual re-
alisations can also be shared. Note that the finite element re-
quirements are optimised by assigning random field values to
element sampling points, rather than to elements themselves
[3, 4, 5, 6, 7]. Hence, in this paper, 8 random field cell values
have been mapped onto each 20-node brick element. An ad-
vantage of LAS is that very large random fields are generated
quickly, but, for larger problem domains, each field will still
need to be generated in parallel due to the storage requirement.
For example, Fig.3 shows an anisotropic random field that has
been generated over 4 processors.

The second (more complicated) possibility for modelling large
heterogeneous systems is up-scaling, in which the problem is
subdivided into different levels of heterogeneity. Hence, the
overall domain is discretised to adequately reflect the largest
heterogeneity scale, with the constitutive behaviour of each
“cell” at that level being defined by the behaviour of smaller
discretised domains at the next level down the heterogeneity
scale, and so on. The overall system would then account for
heterogeneity down to the smallest scale, but with a much re-
duced overall finite element requirement.

Conclusion

2D computer models in geo-engineering are often an over-
simplification of the real problem. This paper has considered
a simple geotechnical problem that would usually be idealised
as 2-dimensional, and shown that heterogeneity and 3D aspects
cannot be ignored.

Parallel computing has obvious potential for the modelling of
large heterogeneous systems. However, as geo-environmental
problems are often measured in km, and heterogeneity can
be present at many scales, up-scaling techniques may also be
needed.
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1Chair of Structural Statics and Dynamics, RWTH Aachen University
Mies-van-der-Rohe-Str. 1, 52074 Aachen, Germany

{jakub.jerabek,rch}@lbb.rwth-aachen.de, mmombartz@imb.rwth-aachen.de

2Institute of Structural Mechanics, Brno University of Technology
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Summary: The aim of the present work is to provide an efficient numerical framework for studying the interplay between the
statistically and deterministically introduced length-scale. This paper gives an outline of adaptive nonlinear FE-algorithm focused
on applications where the damage evolution gets driven by spatial variability of material properties at some length scale.

Introduction

The statistical length scale, i.e. the spatial measure of variabil-
ity of material parameters can act as a localization limiter of the
failure process in quasi-brittle materials. In other words, the
combination of strain-softening behavior with spatially non-
uniform material parameters affects the volume involved in the
stress redistribution. This fact has been utilized in the formula-
tion of an adaptive strategy governed by the correct reflection
of stress redistribution in the damage zone occurring during the
failure process.

The usual damage/plasticity framework is used to formulate
the extension of the standard time-integration algorithm. The
refinement/coarsening strategy is controlled by the relative dis-
tance to the inelastic range at each material point. This variable
controls both the time- and space- resolution of the discretiza-
tion. In particular, the formulation renders (1) general criteria
for controlling the time-step and (2) spatially defined mesh res-
olution control function (MRCF). The constructed MRCF re-
flects the variability of arbitrary material parameters affecting
both stiffness and strength.

In this abstract we explain the construction of MRCF in prin-
ciple and sketch the control flow in a general time-stepping al-
gorithm. The presentation shall address the connected issues of
state variable transfer and the choice of the softening material
model in a more detail.

Mesh resolution control function

The mesh control is based on the assumption that the used ma-
terial model introduces a loading function

f(ε,κ,θ) ≤ 0 (1)

representing the transition to an inelastic zone, whereε,κ and
θ represent the spatially varying fields of strain, internal vari-
ables and material properties.

Regarding a time-stepn+ 1, iterationk and a quadrature point
xI ∈ ΩI the loading function has the form

f
(k)
I,n+1 = f(ε(k)

I,n+1,κI,n,θI) R 0 (2)

that is normally followed by evaluation of trial stresses, re-
turn mapping and evaluation of the equilibrium residual. In the
present algorithm we require that prior to this evaluation the
loading function must not be violated:

f
(k)
I,n+1 = f(εI,n + η

(k)
I ∆ε(k)

I,n+1,κI,n,θI) ≤ 0 (3)

The parameterη(k)
I is introduced to adjust the time step before

proceeding with the next iteration. Assuming that the material
response is linear within the elastic domain and realizing that
the internal variablesκ are frozen during the iteration, Eq. (3)
can be rewritten as:

fI,n + η
(k)
I (f (k)

I,n+1 − fI,n) ≤ 0 (4)

with fI,n representing the value of loading function from the
last equilibrated step. Collecting the material points experienc-
ing loading

ΩK = {I|fI,n < f
(k)
I,n+1},

the scaling factor adjusting the step such that Eq. (3) holds is
obtained as

η
(k)
K =

fI,n

fK,n − f (k)
K,n+1

, ∀K ∈ ΩK (5)

Note thatηK is positive. The global scaling factor is obtained
by identifying the infimum ofηK over the subset of all points
with loading

λ(k) = inf
K∈ΩK

η
(k)
K (6)

This factor is used twice: (1) to adjust the next iteration step and
(2) to evaluate the distance from inelastic zone in each material
point (compare Eq. (4)):

fI,n + λ(k)(f (k)
I,n+1 − fI,n) ≥ −ε (7)
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Figure 1: Illustration of the step scaling of loading functionf
in k-th iteration loading stepn+ 1 in three material points.

Realizing that the left-hand-side is negative, this condition
identifies the points near the inelastic range in terms of the
threshold valueε (see Fig. 1). With the help of Heaviside func-
tion H this condition provides a mapping from the spatial do-
main to binary variableΩI → [0, 1] indicating zones with the
onset of inelasticity

φ
(k)
I = H

(
fI,n + λ(k)(f (k)

I,n+1 − fI,n) + ε
)

(8)

In these zones we require the mesh to sufficiently resolve the
variability of material parameters represented by an autocor-
relation lengthlρ. In particular, the zones near to the onset of
inelasticity (φI = 1) must be discretized with elements of size
hI ≤ lρ/nρ. Herenρ specifies the number of elements required
within the autocorrelation lengthlρ. The zones to be refined
within the current mesh are indicated by the binary mapping
ΩI → [0, 1]:

ζ
(k)
I = H

(
h

(k)
I − lρ/nρ

)
(9)

The MRCF is then constructed as a product of the functions
representing the proximity to inelasticity (8) and the mesh den-
sity requirement (9) at a quadrature pointI

ψ
(k)
I = φ

(k)
I ζ

(k)
I (10)

Further extensions of the MRFC are possible including coars-
ening and user-specified requirements on the mesh resolution.

Extension of time-stepping procedure

The application of MRCF introduces an additional inner loop
within the equilibrium iteration keeping track of the mesh res-
olution. The basic requirement is that there are no points with
ψ

(k)
I = 1 when accepting the next equilibrium state.

In particular, the solution to the discretized boundary value
problem is obtained by the standard iterative time-stepping al-
gorithm proceeding as follows. Let(•)(k)n+1 be the value of vari-
able(•) at thek-th iteration during the load step in[tn, tn+1].
Accordingly,

i let ∆d(k)
n+1 be the vector of displacement increments at the

k-th iteration, and let

d
(k)
n+1 = dn + ∆d(k)

n+1 (11)

be the total value of the vectord. The strain field can be
computed by

ε
(k)
n+1 = Bd

(k)
n+1 (12)

ii given the strain field, compute the stressesσ
(k)
n+1 in terms

of the current material model.

iii Evaluateλ(k) andψ(k)
I

IF ∃ψ(k)
I = 1 :

REMESH, TRANSFER state variables and
GO TO i

iv evaluate the global internal force vectorF int(σn+1);

v check equilibrium: if equilibrium is satisfied forσ =
σ

(k)
n+1 then(•)(k)n+1 is the solution; otherwise, continue; and

vi determine∆d(k)
n+1, setk ← k + 1, and go to stepi.

The adaptive extension is handled completely in pointiii . The
remeshing is performed hierarchically using the parent-child
relation to transfer the state variables in a targeted way. State
transfer is performed by interpolating the state variables in the
coarse mesh before entering the inelastic regime. Therefore, no
path dependence may occur due to the variable transfer. Such a
case may, however, arise if the diffusion error is large. The way
how to treat such case shall be addressed in the presentation.

Conclusions

The pilot formulation and verification of the framework has
been presented recently using one-dimensional example with
simple hardening plasticity material [2]. Here, we extend the
concept to strain-softening failure. The procedure shall be
demonstrated on more complex examples with different scales
of spatial variability. The efficiency shall be compared with the
overkill discretization of the problem.

The presented adaptive extension serves as a basis for efficient
Monte-Carlo simulations of non-linear problems with quasi-
brittle material behavior allowing us to study the role of the sta-
tistical and deterministic length scales in the simulation of the
localized failure. When choosing a particular material model
with strain-softening in connection with spatially varying ma-
terial parameters the question arises, whether or not the two
scales interact or are exchangeable at least in some range.
This question belongs to the general discussion on hierarchy
of length scales [1].
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Summary: Bone can be regarded as a quasi brittle material, where a significant non-linear zone develops ahead the crack tip.
Within this paper we utilize the strong discontinuity approach to predict failure propagation in the proximal part of the femur
under compressive loading. A geometrically detailed 3D finite element model, which accounts for inhomogeneous fracture
properties, has been applied, and the achieved computational results are compared to experimental data available in the literature.

Motivation and Background

Fracture of the proximal femur is accompanied by surgical
complexity and high socio-economical costs, such that, it is un-
der extensive scientific investigation and a large number of 3D
Finite Element computations have been proposed in the litera-
ture. Nevertheless, less attention has been given to the numeri-
cal prediction of the onset and progress of fracture of a patient
specific 3D model of the proximal femur.

Bone tissue consists mostly of collagen and mineral in the form
of hydroxyapatite crystals [1] and the heterogeneous structure
of bone tissue causes non-linear fracture zones ahead the tip.
In particular, collagen fiber bridging causes non-linear zones of
the dimension of millimeters, and hence, linear elastic fracture
mechanics does no longer apply [5].

The present work applies the strong discontinuity approach and
models fracture of the proximal femur under compressive load-
ing, where the existence of a fracture process zone is postu-
lated. We assume that mode I failure properties are applicable
to characterize the mixed mode situation present and employ
an isotropic (discrete) constitutive description of the cohesive
zone [2].

Modeling assumptions

Strong discontinuity kinematics

We follow the strong discontinuity approach and assume a dis-
continuity∂Ω0d in the displacement field separating the body
into two sub-bodies, whereΩ0+ andΩ0− denote the referential
sub-domains occupied by the them. The orientation of the dis-
continuity at a material pointXd ∈ ∂Ωd is defined by the unit
direction vectorN and the displacement at a material pointX
is assumed to beu(X) = uc(X) + H(X)ue(X). Hereuc and
ue are regular and enhanced displacement fields andH(X) de-
notes theHeavisidefunction, with the values0 for X ∈ Ω0−
and1 for X ∈ Ω0+. According to that definition and the use of
GradH(X) = δdN(Xd) the corresponding deformation gradi-
entF(X) = I +Gradu(X) = I +Graduc(X)+HGradue(X)+
δd(X)ue(X) ⊗ N(Xd) is defined. Here we have introduced
the Dirac-delta functional δd with δd = 0 and δd = ∞ for
X 6∈ ∂Ω0 d andX ∈ ∂Ω0 d, respectively.

Variational formulation

The underlying variational formulation is based a single-field
variational principle, i.e.

∫
Ω0

Gradδu : P(F)dV −δΠext(δu) =
0, whereP(F) and δu denote the first Piola-Kirchhoff stress
tensor and the admissible variation of the displacement field.
With δu = δuc + Hδue the variational principle renders two
spatial variational statements∫

Ω−

sym(gradcδuc) : σcdv +
∫

Ω+

sym(gradeδuc) : σedv−

−δΠext
c (δuc) = 0,

(1)∫
Ω+

sym(gradeδue) : σedv +
∫
∂Ωd

t · δueds−

−δΠext
e (δue) = 0,

(2)

wheredv andds are the spatial volume and surface elements,
respectively. Here,σc andσe denote the Cauchy stress tensors
andt = TdS/ds is the Cauchy traction vector associated with
a fictitious discontinuity∂Ωd, i.e. the mapping of∂Ω0d to the
current configuration. Algorithmic issues including a consistent
linearization of the statements (1) and (2) are given in [2] and
references therein.

Cohesive constitutive formulation

Bone fracture causes significant non-linear zones ahead the
crack tip [5] and the associated complex irreversible changes
on the microstructure are lumped into a discrete cohesive zone,
which are mechanically defined by the cohesive potential

ψ(û⊗ û, δ) =
t0
2δ

exp(−aδ)i1. (3)

Here i1 = û · û is the first invariant of the symmetric ten-
sor û ⊗ û, t0 denotes the cohesive strength of bone tissue and
the non-negative parametersa andδ characterize the softening
properties of the cohesive zone. According to the procedure by
CollemanandNoll, the first Piola Kirchhoff traction is defined
by

T =
∂ψ

∂û
=
t0
δ

exp(−aδ)û, (4)
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and the introduction of the mode I fracture energyGI =
∫∞
0

T ·
dû =

∫∞
0
t0δ

−1 exp(−aδ)ûdû = t0/a gives the relationa =
T0/GI for the introduced material parametera.

Crack tracking algorithm

A critical task to apply the introduced concept within a numer-
ical frame is the geometrical representation of the crack sur-
face and tracking its propagation. Especially for 3D, the de-
velopment of crack-tracking algorithms is an active research
area in computational mechanics, and different crack-tracking
schemas are under discussion.

Herein, we use the recently proposed two step predictor-
corrector schema [2]; the predictor step generates a failure sur-
face according to theRankinefailure criterion, while the cor-
rector step smoothes it and avoids the development of topolog-
ical difficulties. Hence, the corrector step draws in non-local
information of the existing crack, which is realized by fitting
a polynomial surfaceZ(X,Y ) locally to the crack surface de-
fined by the predictor step. To this endnR points on the crack
surface (located in the vicinity of the material point of interest)
are considered and the coefficients of the polynomial surface
are defined by minimizing the least-square problem

Φ =
nR∑
i=1

(Zi − Z(Xi, Yi))2 → min, (5)

whereXi, Yi, Zi denote the components of the considered
points on the crack surface. Subsequently, the orientation of the
discontinuityN in thek-th finite element is adapted (corrected)
to the normal onto the polynomial surfaceZ(X,Y ) [2].

The numerical model and its predictions

The numerical example presented herein follows closely the ex-
perimental investigation discussed in [4], where a proximal part
of about 20.0 cm of the femur is loaded until failure. We used
the geometry of the proximal part of a standardised femur and
the generated finite element mesh has been slightly refined at
those regions were failure was expected. Boundary and loading
conditions are chosen according to the experimental study [4]
and arc-length method has been applied to solve the problem.

We assume a homogeneous elastic stiffness, defined by the
Young’s modulus10.0 GPa of and the Poisson’s ratio of 0.35,
which is in accordance with reported mechanical properties of
femural bone [1]. In order to account for the different strength
of cancellous and cortical bone, the cohesive strengtht0 is as-
sumed to vary from3.0 MPa at the top of the femoral head
and35.0 MPa at the femoral shaft. The mode-I fracture energy
has been assumed to be constantGI = 1.5 kJ/m2 and further
modeling details are given in [3]

The predicted crack formation is shown in Figure1; it is found
to be in good agreement with the experimental study [4]. Apart
from that, the predicted ultimate load of7800.0 N is close to
the experimental value of8400 N reported in the same study.

Figure 1: Predicted crack formation of the proximal femur in
comparison with results of the experimental study [4].

Conclusions

The concept of strong discontinuities has be applied to pre-
dict fracture of the proximal femur, which gave a detailed in-
sight into the mechanisms of femoral fracture under compres-
sive loading. The proposed approach utilizes a cohesive frac-
ture model and a 3D crack-tracking algorithm within the Fi-
nite Element Method, which renders an efficient and stable nu-
merical concept. Although the heterogeneity of bone density
has been captured in a very rough manner, the predictions of
the presented model agreed nicely with available experimental
data.

References

[1] S. C. Cowin (2001):Bone mechanics handbook. CRC
Press, Boca Raton, Florida.

[2] T. C Gasser and G. A. Holzapfel (online): 3D crack prop-
agation in unreinforced concrete. A new smoothing algo-
rithm for tracking 3D crack surfaces.Comput. Meth. Appl.
Mech. Eng.

[3] T. C. Gasser and G. A. Holzapfel (in press): A numerical
framework to model 3-d fracture in bone tissue with appli-
cation to failure of the proximal femur.In: T. Belytschko,
A. Combescure, R. de Borst (eds.):Discretization Meth-
ods for Evolving Discontinuities. Heidelberg. Springer-
Verlag.

[4] T. Ota, I. Yamamoto, and R. Morita (1999): Fracture
simulation of femoral bone using finite-element method:
How a fracture initiates and proceeds.Bone and Mineral
Metabolism, 17, 108–112.

[5] Q.D. Yang, B.N. Cox, R.K. Nalla, and R.O. Ritchie
(2006): Re-evaluating the toughness of human cortical
bone.Bone, 38, 878–887.

Prague, Czech Republic, 25-27 June 2007 241



MHM 2007: Modelling of Heterogeneous Materials with Applications in Construction and Biomedical Engineering

A Regularized XFEM Formulation for Frocess Zone Modelling

E. Benvenuti∗, A. Tralli

Engineering Department, University of Ferrara
via Saragat, 1- 44100 Ferrara, Italy

elena.benvenuti@unife.it, antonio.tralli@unife.it

Summary: A new finite element scheme for modelling fracture is presented, which extends to the case of elastodamaging
interfaces the approach for elastic interfaces developed by the authors in reference [1]. The process zone is modelled as a soft
elastodamaging layer, whose thickness introduces a characteristic length scale into the continuum model. When the characteristic
length is finite, an extended FE model with a finite process zone is obtained. When the characteristic length vanishes, a crack
model with a cohesive traction-separation law is recovered. The associated finite element formulation is based on the partition
if unit property of the standard interpolation functions (e.g. [2]), and can be seen as an extended finite element formulation
(XFEM) with a regularized kinematics. Some results obtained for a DCB test and a plate subjected to shear load are synthetically
presented.

Introduction

Interfaces with finite or zero thickness are of great interest in
structural mechanics applications. In this work, a soft and thin
layer whose thickness is a model parameter is embedded in a
body. Let us consider a two-dimensional bodyΩ with smooth
boundary∂Ω, subjected to prescribed displacementsu = ū
on ∂Ωu and to given surface load distribution̄F on ∂Ωf . The
domain is divided by an internal surface∂Ωd with normaln
and tangentt into two disjoint sub-domainsΩ+ andΩ−, so
thatΩ ≡ Ω+

⋃
Ω−. Furthermore, a layer of thickness2Lρ is

obtained by shifting∂Ωd by an offsetLρ/2 with Lρ > 0 in the
n+ and then− directions, respectively (Fig.1).

We assume that the displacement fieldu is characterized by a
bounded jumpbd|u(x)|ec = u+(x) − u−(x) across the surface
∂Ωd, whereu+ andu− denote the restrictions ofu to ∂Ω+

d

and∂Ω−d , respectively. The vector field

a(x) = Hρ(d(x)) (1)

is introduced, whered(x) is the signed distance function. The
functionHρ is a smooth approximation of the Heaviside func-
tionH, which can be defined asH(x) = −1 if d(x) · n < 0
andH(x) = 1 if d(x) ·n > 0. FunctionHρ is continuous with
continuous derivatives, The length of the regularization is the
decaying lengthLρ, that is related toρ and depends on the type
of functionHρ that is adopted. Asρ vanishes,Hρ reproduces
the Heaviside functionH(x).

d

ρΩ

ρ

n
t

2L ρ Ω
Ω

−

+

Figure 1: Layer of thicknessLρ

Finite element formulation

Let the domainΩ be discretized intoM non over-lapping finite
elementsΩ ≡

⋃M
i=1 Ωi connected atN nodes. The displace-

mentu and the jumpa are modelled as independent fields. The

primal fieldsv anda are approximated as

v ≈ NV , a ≈ NA (2)

where vectors V = {v1,v2, . . . ,vN } and A =
{a1,a2, . . . ,aN } collect theN nodal values, and the same
polynomial shape functionsN = {N1,N2, . . . ,NN }, are
adopted for bothv anda. The total displacement field is ap-
proximated as

u = NV +HρNA (3)

The latter expression satisfies the local Partition of Unity prop-
erty of standard finite element interpolation functions. The
same regularized kinematics was exploited in reference [3].
The associated strains are

ε(0) = BV , ε(1) = HρBA , ε(2) = δρ(NA⊗s n) (4)

whereδρ = d(Hρ(s))/d s.
A crucial point is the constitutive modelling of the stress which
are fields work-conjugated to the strain components

σ(0) = D(0)(ε(0)+ε(1)) , σ(1) = σ(0) , σ(2) = D(2)ε(2) (5)

where D(0) the elastic constitutive operator of the bulk.
Isotropic damage governed by the scalarω(2) is associated to
the cohesive stressσ(2) through the elastodamaging constitu-
tive operatorD(2) = (1− ω(2))2E(2).

Damage evolution is governed by the following set of loading-
unloading conditions:

φ = Y (2) − Ỹ (2) ≤ 0 ω̇(2) ≥ 0 φω̇(2) = 0 (6)

whereY (2) is the damage energy release rate andỸ (2) is the
damage threshold.

Following [4], D(2) is obtained starting from the knowledge of
the real thickness of the layert and the constitutive operatorDc
of the given real interface as follows [1]

D(2) =
Dc

tδρ
such thatσ(2) =

Dc

t
(NA⊗s n) (7)

Let us assume virtual variations̃v andã and the associated vir-
tual strains̃ε(0), ε̃(1), ε̃(2)∫

Ω

σ(0) · ε̃(0) +σ(1) · ε̃(1) dΩ+
∫

Ωρ

σ(2) · ε̃(2)dΩ = Lext (8)
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where the external workLext :=
∫
∂Ωp NtFtṽdS. After re-

placement of the constitutive laws, and considering as given
the solution at the instanttn, at the instanttn+1, the equilib-
rium equations can be rephrased into the matrix form(

Kvv Kva

Kav Kaa

)
{ v

a }
∣∣
n+1

= {
∫
Ωf NtFt dS

0 }
∣∣
n+1

(9)

where

Kvv =
∫

Ω

BtD(0)
n+1B dΩ (10a)

Kva = Kt
av =

∫
Ω

BtD(0)BHρ dΩ (10b)

Kaa =
∫

Ω

H2
ρB

tD(0)B dΩ +
∫

Ωρ

δρN̄tDc
t

N̄ dΩ (10c)

andε(2) = N̄A.

It can be shown that the work carried out by the stressσ(2) by
the strainε(2) converges to the work of the traction for the dis-
placement discontinuity asρ tends to zero (see reference [1]).

h

w

δ

L
a

Figure 2: Double cantilever beam:L = 100 mm, a = 30
mm,h = 6 mm; the constitutive parameters areE = 135300
N/mm2 andν = 0.

P/
w

δ

0 1 2 3 4 50

0.5

1

1.5

2

2.5

3

3.5

Figure 3: Double cantilever beam with a internal elasto-
damaging layer: a) damaged deformed mesh; b) load per unit
width versus opening displacement forρ = 0.01 (blue-dashed
line) mm andρ = 0.008 mm (red-continuous line); the initial
damage threshold is̃Y (2) = 1 Nmm2 andEc/t = E/105.

Results

A discussion on the most appropriate quadrature techniques can
be found in Reference [1]. Here, three-noded triangles with a
grid of 13 quadrature points has been adopted. The opening
and shearing components of the displacement jump define the
modes and can be simultaneously present in the general case of
mixed-mode delamination. However, the effectiveness of the

proposed methodology has been tested simulating a mode I
crack growth in double cantilever beams and a mode II crack
growth in a plate subjected to plane strain state. In the first case,
the specimen of Fig.2 has been tested. The load per unit of
width has been plotted versus the opening displacement by as-
sumingρ = 0.01 mm andρ = 0.008 mm in Fig.3. The second
test has been carried out on a plane strain plate subjected to a
made II loading. The influence of the adopted internal scale and
of the mesh size is shown in Fig.4; the profiles in continuous
line refer to the extra-fine mesh, those in dashed line to a fine
mesh.

Conclusive remarks

A general approach has been presented that makes it possi-
ble to deal with delamination problems and to model the tran-
sition from continuous to discontinuous failure. By decreas-
ing the values of the characteristic lengthLρ and by changing
the constitutive matrix associated to the process zone, a cohe-
sive “spring-type” interface which transmits the traction vectors
and allows for discontinuous displacements is recovered when
the thickness vanishes [4]. In the most general case, a process
zone of finite width placed either intra- or extra-element can be
explicitly accounted for. Other important issues like a proper
modelling of the process zone as a function of the damage level
and the transition from continuous damage to crack are the sub-
ject of an undergoing research.
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Figure 4: Mode II loading: load-displacement profile of a
10mm×10mm plate forρ1 = 0.01 mm andρ2 = 0.02 mm;
the constitutive parameters areE = 135300 N/mm2 and
ν = 0; the initial damage threshold is̃Y (2) = 1N/mm2 and
Ec/t = E/105.
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Summary: In this work we discuss the Finite Elements Method using the embedded discontinuity of strain and displacement
fields, which can handle the problem of localized failure in heterogeneous materials by using structured (regular) meshes. On the
chosen 2D model problem we develop all the pertinent details of the finite element approximation. With such a modeling in hand
we also presented how to take into account for the variability of the geometrical description at the meso-scale level.

The majority of materials used in the civil engineering and the
mechanical engineering are composed of several phases. Along
the life, structures are often cracked, and therefore it is not pos-
sible to neglect cracking of the structure during computations.
In this work we present an approach which makes possible to
take into account for cracks propagation in materials composed
of several phases.

Many methods of simulation (including the Finite Element
Method) are using mesh refinement in conformity with the var-
ious phases of modeled material. In this case, a typical element
contains only one phase some leading to complex meshes and
a rather high number of elements. One also risks to have dis-
torted elements that can lead to a badly conditioned problem
because the form and the size of inclusions and voids of the
real structures are not obvious (see [10, 1, 3]). This kind of rep-
resentation is generally too expensive in computation time but
gives a solution with high accuracy.

In addition, some methods of resolution (e.g. for the macro-
scopic method see [5]) give less accurate solution compared to
the previous ones but are much efficient in computation time.
For these methods, a typical element represents several phases
with different behaviors (elastoplastic, damage, etc...). Here an
element consists of two various phases, leading to a jump of
strain inside the element, which is represented by a discontinu-
ity of strains field. The interface between the two phases also
takes into account a debonding and therefor it is also repre-
sented by a discontinuity of displacements field [4].

In order to represent two discontinuities (displacement and
strain) we use the Incompatible Modes Method (see [9, 7]).
We introduce two complementary modes, one for the displace-
ments discontinuity and another for the strain discontinuity (see
[6]). In this way we enhance only elements that contain two
phases. The elements are enhanced locally and the total num-
ber of unknowns remains still the same.

The second important point of this work, cement-based mate-
rials, such as concrete or mortar, can be modelled at different
scales, depending on the objectives and the physical mecha-
nisms to be accounted for. Namely, for engineering applications
and computations at the structure scale (macro-scale), such ma-
terials might be considered as homogeneous, and their prop-
erties obtained by using the key concept of RVE (see [2, 8])
to obtain phenomenological models of inelastic behavior (e.g.
see [10, 1, 3]) The main advantage of those models is their
robustness and small computational cost, hence this approach

is widely spread. On the other hand, such phenomenological
models are based on a set of ”material” parameters which ought
to be identified, mainly from experiments performed with pre-
scribed load paths. This methodology leads to a set of parame-
ters which is linked to the chosen load-path, which will not be
adapted to another path, thus leading to a non-predictive macro-
model.

We illustrate the possibilities provided by the use of structured
mesh representation and the efficient computation capabilities
of the proposed model for dealing with random heterogeneities.
To that end, we consider herein a porous material (typical of
many cement-based material) at a meso-scale level. At this
scale we assume that such a material is characterized by a two-
phase microstructure with a solid phase and a fluid phase. The
former will be referred as the ”matrix” and the latter is sup-
posed to represent the voids or inclusions. Depending on the
number of inclusions their sizes and positions, the non-linear
macroscopic response of such a material will vary. In other
words, the macroscopic characteristics, such as Young’s modu-
lus or the yield stress, will be influenced by the meso-scale ge-
ometry. Our goal here is to carry out numerically study of the
variations of the macroscopic characteristics upon the inclusion
sizes and positions. The key point for this study is that the vari-
ability introduced into the model is only strictly restricted to the
specimen geometry, whereas the mechanical characteristics of
the two phases are deterministic and remain constant during all
the process.

In particular, the matrix phase is supposed to be accurately
modelled by an elastic-perfectly plastic model based upon the
Drucker-Prager criterion. The voids are represented by a simple
linear isotropic elasticity model with very small value Young’s
modulus.
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Summary: Lattice model was used to model fracture processes in concrete at the meso-level. Concrete was described as a three-
phase material including aggregate, interfacial transition zone and cement matrix. The calculations were carried out for concrete
specimens of a different size subject to uniaxial extension.

Introduction

A realistic description of the fracture process is of major
importance to ensure safety of the structure and to optimize
the behavior of material. The phenomenon of the propagation
of the fracture process in brittle materials can be modelled
with continuous and discrete models. The lattice models are
the simplest discrete models to simulate the development
and propagation of fracture in brittle materials consisting of
a main crack with various branches, secondary cracks and
microcracks. They allow a straightforward implementation
of the material heterogeneity which is projected on a lattice
and corresponding properties are assigned to relevant lattice
elements.

The intention of the paper is to describe and to understand the
mechanism of fracture in concrete specimens during uniaxial
extension. In contrast to other lattice models [1, 2], a geomet-
ric type lattice model was used what is a novelty [3, 4]. Owing
to that, the computational effort was significantly reduced. The
calculations were performed with concrete considered as three-
phase material (aggregate, cement matrix and interfacial tran-
sition zone). Attention was paid to the effect of the specimen
size on its strength during uniaxial tension.

Lattice model

In our 2D-lattice model, the quasi-brittle material was dis-
cretized in the form of a triangular grid including beam ele-
ments (as in the lattice model described in [1, 2]). The distri-
bution of beams was assumed to be completely random anal-
ogously to a Voronoi’s construction scheme (Fig. 1). First, a
triangular grid was created in the material with the side di-
mensions equal tog. In each triangle of the grid, additional
interior squares were assumed with an area of s×s. Next, one
point was selected at random within these interior squares.
Later, all points inside of squares were connected with neigh-
boring ones within a distance ofrmax to create a non-uniform
mesh of beams, where the maximum beam length wasrmax

(e.g. rmax = 2g), the minimum beam length wasrmin (e.g.
rmin = 0.1g for s = 0.6g) and the minimum angle between
beams was assumed to beα (e.g.α = 20◦). A uniform tri-
angular mesh could be obtained with parameters = 0. Using
this grid generation method, the beams could cross each other
in two dimensional calculations but they did not intersect each
other in three-dimensional analyses. The beams possessed a

longitudinal stiffness described by the parameterkl (which con-
trolled the changes of the beam length). The beams were treated
as only geometric lines and the model was of a kinematic type,
i.e. the calculations of beam displacements were carried out on
the basis of the consideration of successive geometry changes
of beams due to translation, rotation and deformation (normal
and bending). Thus, the global stiffness matrix was not built
and the calculation method had a purely explicit character. The
displacement of the center of each beam was calculated as the
average displacement of two end nodes belonging to the beam
from the previous iteration step: The displacement vector of
each beam node was calculated by averaging the displacements
of the end of beams belonging to this node caused by trans-
lation, rotation, normal and bending deformations. The node
displacements were calculated successively during each calcu-
lation step, beginning first from beams subject to prescribed
displacements. A beam was removed from the lattice if the lo-
cal critical tensile strainεmin was exceeded. All presented nu-
merical calculations were strain controlled. To perform them,
the self-written program was used.

Numerical results

The 2D calculations of a deterministic size effect in concrete
specimens during uniaxial tension were performed with a three-
phase concrete specimen composed of aggregates, cement ma-
trix and interfacial zones. The beams were distributed non-
uniformly (α = 20◦, s = 0.6g, g = 1 mm, rmax = 2g).
The minimum beam length was about 0.3 mm and the max-
imum one was about 2 mm. The following material param-
eters were used for the cement matrix, aggregate and bond:
pm = kb/kl = 0.7 (with kl = 0.01) and localεmin = 0.2% for
cement matrix,pm = kb/kl = 0.7 (with kl = 0.03) and local
εmin = 0.133% for aggregate andpm = kb/kl = 0.7 (with
kl = 0.007) and localεmin = 0.05% for bond, respectively.
The aggregate density was assumed to be 50%. The mean ag-
gregate diameter was taken asd50 = 3.5 mm (for the aggregate
size of the range 2-8 mm). First, a grading curve was chosen.
Next, certain amounts of particles with defined diameters were
generated according to this curve. Finally, the spheres describ-
ing aggregates were randomly placed in the specimen preserv-
ing the particle density and a certain assumed mutual minimum
distance. Five simulations were performed for each case. The
interfacial zones were added by assigning different properties
to the beams which directly connected the aggregate with the
cement matrix. Their width changed between 0.3–2 mm. The
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moduli of elasticity were: E=60 GPa (aggregate), E=20 GPa
(cement matrix) and E=14 GPa (bond), respectively. Thus the
interface had the lowest strength.

To investigate a deterministic size effect, the calculations were
carried out with two different rectangular concrete specimens
using the same beam distributions:10 × 10 cm2 and20 × 20
cm2 (Figs. 2 and 3). The results show that the specimen strength
and ductility increase with decreasing specimen size (as in the
experiment [5]) while the crack pattern remains similar. In turn,
the fracture energy decreases.

Conclusions

The lattice model is very useful in studying and understanding
the phenomenon of the crack formation and crack propaga-
tion during uniaxial tension since it can reproduce fracture
processes observed in real laboratory experiments. Owing to
this, novel (stronger and better) engineering materials can be
developed. By using an elastic–purely brittle local fracture law
at the particle level of the material, global softening behavior
is obtained.

The heterogeneous 2D lattice model for concrete used in the
paper requires 4 material parameterskl, kb, E, εmin for each
material phase and 4 grid parametersg, s, α andrmax related
to the distribution, quantity and length of beams.

The obtained results of crack patterns and stress-strain curves
for a three-phase concrete material during uniaxial tension are
qualitatively in agreement with experimental ones for concrete.

The material composition has a significant effect on the mate-
rial behaviour, in particular the particle density and distribution
of weak bond zones. The strength and pre-peak nonlinearity de-
crease with increasing aggregate density and decreasing mean
aggregate diameter during uniaxial tension. The material duc-
tility increases when the aggregate density increases. The ver-
tical strain corresponding to the peak increases with decreasing
particle density. At the low particle content debonding occurs
extensively near the isolated aggregates. At the high particle
density, percolation of bond zones occurs, and the condition for

Figure 1: Scheme to assume a non-uniform distribution of
beams in the lattice (s = size of interior squares,rmax = max-
imum beam radius,α = minimum angle between two beams,g
= size of triangular grid).

Figure 2: Deterministic size effect of 2D concrete specimens
subject to uniaxial extension with sizes10×10 cm2 (small spec-
imen) and20× 20 cm2 (large specimen) (σ22 - vertical normal
stress,ε22 vertical normal strain).

Figure 3: Fracture in concrete specimens of different sizes:20×
20 cm2 (a) and10× 10 cm2 (b).

macro-crack nucleation and growth occurs. The pre-peak non-
linearity cannot be ignored at low particle density. The macro-
crack process occurs before the maximum load.

The simulations of a deterministic size effect show a decrease
of nominal strength with increasing specimen size as well as an
increase of fracture energy with size.
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Summary: We measured the mechanical response of soft open-cell polyether polyurethane solid foams of different densities
subjected to a set of multiaxial loading cases. Then, we formulated a mean-field unit-cell model of the foams and compared the
predictions of the model with the experimental results.

Introduction

Solid polymeric foams are light cellular materials which are
employed in numerous applications. They come in two vari-
eties: rigid and soft. Rigid polymeric foams are stiff and brittle.
In the aeronautical industry, rigid polymeric foams are the most
commonly used materials in the cores of structural panels. On
the other hand, soft polymeric foams may be deformed elas-
tically to extremely high strains. In packaging, soft polymeric
foams are very effective at shielding fragile products from the
jolts associated with transportation and handling. These foams
are also widely used in car seats, where they are ideally suited
to provide comfort to the occupant and, in the event of a crash,
to help keep the occupant safe.

Our interest here is in soft, open-cell polymeric foams. These
foams are manufactured by promoting the growth of numer-
ous gas bubbles within a solid layer of soft, elastic polymer
such as polyether polyurethane. As the bubbles grow, the layer
of polymer expands anisotropically, mostly along a direction
normal to the plane of the layer—the so-calledrise direction.
The microstructure of open-cell polymeric foams consists of a
three-dimensional network of slender bars of similar length and
cross-section. This network may be modeled as a periodic ar-
ray of cells or identical groupings of bars—the open cells of
the foam. Because the bars of the cells are slender and elastic,
they undergo large rotations and displacemets without break-
ing, and soft open-cell polymeric foams are highly nonlinear
elastic materials. Even under service conditions, these foams
display a complex phenomenology that may include configura-
tional transitions and heterogenous fields.

Experiments

We conducted a series of tests of open-cell polyether
polyurethane foams for several different loading cases includ-
ing uniaxial compression along the rise direction; uniaxial com-
pression along two mutually perpendicular transverse direc-
tions (both normal to the rise direction); uniaxial tension along
the rise direction; compression along the rise direction super-
posed to shear; and compression along the rise direction super-
posed to hydrostatic pressure. For each loading case, we per-
formed tests with foam specimens of five different densities
ranging from 50.3 to 220.5 kg/m3. For each test we measured
the mechanical response; in a few tests, we also took pictures of
the surface of the specimen and used the Digital Image Correla-
tion (DIC) technique to compute the strain fields on the surface

of the specimen.

In this abstract we discuss just a few examples of our experi-
mental results. For uniaxial compression along the rise direc-
tion, the mechanical response of relatively high density foams
displayed a monotonically increasing stress whereas the me-
chanical response of relatively low density foams displayed
the type of stress plateau associated with the occurrence of a
phase transition. For these relatively low density foams, mea-
surements computed using the DIC technique showed that
heterogeneous, two-phase strain fields accompanied the stress
plateaus, as expected [2]. On the other hand, for uniaxial com-
pression along any of the two transverse directions tested, the
mechanical response did not display stress plateaus, not even
for the least dense foam. The DIC results computed for the least
dense foam showed homogeneous strain fields at all stages in
the test, confirming the absence of a configurational phase tran-
sition.

Model

We used the experimental results to calibrate a mean-field
model. This model may be implemented in a general purpose
finite element program; it is a triaxial generalization of the uni-
axial mean-field model of reference [1]. In the model, a unit
cell composed of several bars is cut off from an idealized, per-
fectly periodic open-cell foam. Then, the unit cell is deformed
in accord with the applied mean field, and the attendant stress
tensor is computed by energy minimization. To deform the unit
cell in accord with the applied mean field, the tips of the bars
of the cell (where the cell was attached to the rest of the ideal-
ized foam) are subjected to a set of displacements affine with
the prevalent deformation gradient. The tips of the bars are left
to rotate freely.

The unit cell is characterized using several physically mean-
ingful material or geometric parameters whose values may be
readily estimated for a given foam.

Predictions versus experimental results

To compare the predictions of the model with our experimen-
tal results, we superpose plots of the predicted and measured
curves of stress versus strain (up to 15%) for all the loading
cases and for all the foam densities tested. In all instances, we
compute all the predicted curves using a single set of model
parameters. We show that with a suitable choice of parameters
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the model gives predictions that compare favorably with our ex-
perimental results for all loading cases. For some loading cases
and foams of relatively low density, the model predicts stress
plateaus and heterogeneous strain fields in agreement with our
experimental results.
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Summary: This paper presents the condualistic approach for modelling heterogeneous materials in 2D and 3D. It allows an
arbitrary number of phases, which can be combined into larger phases at several stages of the modelling process. We show how
sketching the interior of each phase permits to define parametric phase boundaries (1) which respect the sketched interiors such
that (2) their geometry can vary significantly while their topology remains fixed and (3) whose parameters span a convex space,
well-suited for optimization. The approach is illustrated with examples of trabecular bone and biomimetic bone scaffolds.

Problem statement

This paper presents a new approach, the condualistic approach,
to the computer-aided modelling and representation of the
meso-scale geometry of heterogeneous materials. Geometric
models play a key role in understanding the functional be-
haviour of these materials at the macro-scale as they provide,
together with material properties, the input for simulations of
for example mechanical behaviour or permeability.

However, generating geometric models which are suitable for
simulation is not a sinecure. Firstly because of the complexity
of the materials themselves we would like to make the mod-
elling procedure as simple and as close to the structure as pos-
sible. Secondly because of the presence of multiple, possibly
adjacent phases between which the phase boundaries must be
unique and well-defined interfaces. Thirdly, a modeller is often
not only interested in one geometric realization, but in differ-
ent realizations for which some parameters are kept constant
and others are varied over some different distribution. The pre-
sented approach enables parametric modelling, but moreover
allows to vary the geometry significantly without changing the
topology.

Condualistic modelling

Overview The condualistic modelling approach proceeds in
four steps, as shown in figure1. In the first step the modeller
defines the phases constituting the material and provides for
each phase a sketch of its interior. In the second step from these
sketches a skeleton is computed, which is a simplicial complex
defining the topology of and between the phases of the mate-
rial. In the third step the skin is computed, which is a set of
parametric surfaces representing the phase boundaries. In the
fourth step, both the skeleton and the skin are combined into
solid representations of the phases. The algorithms and data
structures used in this approach are implemented in a 2D and
3D C++ library.

Condualism The first step in condualistic modelling is to de-
fine all the homogeneous components of the material, which
are represented by regions. A region may simply be thought
of as a color or a tag representing a homogeneous component

Components(4) Skin(3)

Skeleton(2)Sketch(1)

Figure 1: Overview of the condualistic modelling process

of the material such as a phase. Actually, the region abstrac-
tion is introduced to avoid the physical meaning attached to the
term ‘phase’. In various steps of the modelling process, regions
can be aggregated (taken together) into larger regions, which to
some extent enables multiscale modelling.

The term ‘-dualistic’ is chosen because all regions are treated
in a symmetrical manner and are considered as complemen-
tary entities constituting the whole material. The prefix ‘con-’
stresses the fact that different adjacent regions either define a
boundary between these regions or are aggregated into a larger
region.

Sketch The sketch (figure1.1) is a representation of theinte-
rior of all regions, consisting of primitives such as points and
line segments, whose ‘color’ represents the region to which it
belongs. Certain guidelines and rules apply for these primitives.
Firstly, primitives of different regions must not intersect each
other, because this would mean that the overlapping points be-
long to the interior of more than one region simultaneously.
Secondly, the primitives must span the volume to model, i.e.
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the model volume is the convex hull of all primitives. Thirdly,
primitives belonging to the same connected component in a re-
gion may be disconnected but must be close enough to each
other to ensure that they are connected later on in the skele-
tonizing step.

Skeleton Next, using the Delaunay triangulation, the skeleton
is computed. In this process, no points or line segments disap-
pear from the sketch, but points which are natural neighbours
and have the same region are connected (compare figure1.1 and
1.2). Similarly, natural neighbouring points having different re-
gions indicate the presence of a phase boundary between these
points. This results for each region in a set of well-defined dis-
connected networks, called skeleton components, which define
the structure of the material.

Skin From the skeleton the skin is computed, which is a set of
parametric polyhedral surfaces representing the boundary be-
tween two adjacent regions. The vertexes of these surfaces are
parametric but restricted to degrees of freedom (gray lines in
figure1.3) which on the one hand allow the surface to deform
in the complete space between the skeleton components, but on
the other hand ensure that no skeleton component is ever inter-
sected by the skin. Thus the geometry of the skin may vary sig-
nificantly, while its topology is fixed and defined by the skele-
ton.

Moreover, the degrees of freedom have straightforward geo-
metrical meaning, and the parameters which define the skin are
all defined between 0 and 1, spanning a convex space, well-
suited for numerical optimization.

Components Finally, using the skeleton and the skin, the
modeller may define solid components of each region or some
parts of each region. These solid components are parametric,
because the skin is also parametric, allowing different geomet-
rical realizations having the same structure, as shown in fig-
ure 1.4. Because the skin provides well-defined interfaces be-
tween adjacent regions, solid components of different regions
fit perfectly into each other, and interpenetration problems are
avoided.

On the one hand, the resulting model can be used to measure
and even optimize geometrical characteristics such as the vol-
ume fraction or the surface area to volume ratio, which can
be expressed as functions of the skin parameters. On the other
hand, they may be exported to free-form fabrication models,
used to generate BEM surface meshes or FEM volume meshes,
or be simply converted to 2D or 3D digital images (pixel/voxel
representation) of arbitrary resolution.

Examples In this presentation, the approach will be illus-
trated. The first example is a simple synthetic model of a granu-
lar material, illustrating the ability to define and aggregate mul-
tiple regions. The second example is a model representing a
unit cell of trabecular bone, showing how to design sketches to
yield a certain skeleton. The third example (figure2) is a dig-
ital image-based reconstruction of a biomimetic titanium bone
scaffold, to assess that the condualistic modelling approach is

able to realistically represent complex microstructures with a
limited number of degrees of freedom and computation time.

Figure 2: Skin and components of a titanium bone scaffold [1]

Related work

A vast number of (1) digital image-based and (2) CAD-based
tools exists for generating geometrical models [2], as well as
(3) a number of medial representations.

Digital image-based or voxel representations are commonly
used to represent heterogeneous materials, they represent mul-
tiple phases simultaneously and are often acquired from real
samples using 3D scanning techniques. However, they have
limited resolution and their number of parameters increases at
a cubic rate, making them less suited for geometrical modelling
and optimization. It was our objective to propose a resolution
independent representation which has a better scalable number
of parameters, which have more clear geometrical meaning and
preserve a predefined topology.

CAD-based modelling using Constructive Solid Geometry
(CSG) or boundary representations, is also used to generate
parametric, resolution independent geometric models. How-
ever, we observed that for complex structures this process
quickly becomes labour intensive and error-prone, especially
when multiple adjacent phases have to be modelled. Therefore
we propose to model the phase interiors, which is less complex
and yields more insight in the material structure, leaving the
intricate job of defining the phase boundaries to the computer.
Nevertheless we acknowledge that drawing good sketches and
finding suitable parameters may not be straightforward.

Perhaps most closely related to our work are medial represen-
tations and skin surfaces [3] which allow to model solid bodies
using a representation of their interiors. While the theory de-
veloped for these techniques is useful for our purposes, they
themselves focus on representing a single phase, and represent-
ing multiple adjacent phases becomes tedious.
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Summary: A novel sampling sphere distribution (SSD) method based on mobile sampling spheres is developed for describing
microstrustural anisotropy of trabecular bone using grayscale images. Efficient implementation of SSD on segmented and unseg-
mented 3DµCT images of anatomically diverse human trabecular bone samples is demonstrated. The second order fabric tensor
of SSD corresponds well with the one derived from the mean intercept length (MIL) method applied on segmented images. The
results of SSD are extended to higher order approximations and their robustness with respect to sampling sphere radius and image
resolution is examined.

Introduction

Architectural anisotropy (or fabric) and the mechanical prop-
erties of cancellous bone are closely related (review: [1]). The
increasing resolution of non-invasive imaging techniques such
as CT or MRI allows to assess trabecular architecturein vivo
which may be exploited to predict mechanical properties for
clinical diagnostics, treatment or follow up. In fact, architec-
tural anisotropy can be adequately described by a positive defi-
nite second order tensor called fabric tensor.
There are well-known and widely used methods to compute
this fabric tensor. Mean intercept length (MIL) is an interface-
based, while volume orientation (VO), star length distribu-
tion (SLD) and star volume distribution (SVD) are volume-
based methods to identify main trabecular orientations (review:
[2]). They were all shown to be good predictors of mechani-
cal anisotropy, but all of them require segmented images. The
thresholding procedure to generate these binary images is an
important and delicate step, especially for low resolution im-
ages where the voxel size is larger than the dimension of the
structural elements (partial volume effect). To circumvent this
problem, grayscale images could be used directly to quantify
architectural anisotropy. Recent publications showed different
approaches along this idea.
For instance, Fast Fourier Transform was applied on radio-
graphic images to quantify trabecular orientation in 2D [3].
Wald et al. presented a 3D autocorrelation function to measure
its orientational dependence assuming bone as a quasi-periodic

Figure 1: Left: the filled container sphere with1/8 of its vol-
ume removed to show the internal density distribution in colors;
right: the corresponding second order tensor.

structure [4]. The relationship of the latter method with MIL
or other measures of anisotropy remains unknown. Saha et al.
introduced the tensor scale method (TSD) for computing the
local orientation of small structures such as trabeculae [5]. The
orientation is based on the axes of an ellipse fitted to the local
density distribution and homogenization scheme of this local
measure is proposed to provide global orientation anisotropy.
The goal of this study is to develop, validate and test an ef-
ficient and robust method to quantify architectural anisotropy
based on grayscale images in a region of interest (ROI) of tra-
becular bone.

Method

The sampling sphere distribution (SSD) method is designed for
unsegmented 3D images with positive density values. We as-
sume the ROI to be a closed convex set within such an im-
age. The basic idea of the method is to sample the ROI den-
sity (grayscale) with spheres over a periodic grid. The sampling
spheres are free to move from the initial grid positions and get
attracted by the center of gravity of the local density distribu-
tion. This way, the spheres move towards the center or junction
of the heterogeneities to capture their orientation. After conver-
gence of their motion, their content is collected and summed
up into a container of identical shape. The size of the sampling
spheres must be determined according to the characteristic size
of the underlying structure (e.g. trabecular spacing). Finally, the
densities of the container are made symmetric with respect to
its center which becomes the center of gravity of the distribu-
tion.
The spatial distribution of density in the spherical container is
then approximated with generalized Fourier series leading to a
normalized orientation distribution function (ODF) on the con-
tainer surface:

SSD(n) = g + G : F + G : F + ... (1)

Only even-ranked tensors of the ODF appear due to the central
symmetry. The second order approximation exhibits at least or-
thotrophic symmetry and leads to the definition of a fabric ten-
sor characterized by three eigenvaluesmi and three orthogonal
eigenvectorsmi (Fig. 1). Higher order approximations allow
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to describe more complex ODFs with lower symmetries. As
black and white images can be considered as a special case of a
grayscale image and the method can also be applied on binary
data. This property ensures a basis of control and comparison
with the methods based on segmented images.

Results

The method was tested onµCT images with 26µm isotropic
resolution(µCT40, Scanco) of 18 human trabecular bone biop-
sies. The samples were selected from 6 anatomical locations:
femoral trochanter, femoral neck, T10 vertebra, L2 vertebra, ra-
dius and calcaneus, with a broad range of volume fraction and
degree of anisotropy (MIL) computed with the associated soft-
ware. The fabric tensor of the second order results of the SSD
was compared to the fabric tensor of MIL. The analysis of the
eigenvectors showed that in case of samples with higher degree
of anisotropy (DA) the mean deviation from the main eigendi-
rection of MIL is3.30±3.52 degrees (15 samples). As expected
in the case of smaller DA, this angular deviations increase and
become indeterminate when two or three eigenvalues degener-
ate. As shown in Fig.2, a strong linear relationship was found
between the respective eigenvalues withR2 = 0.964.

Figure 2: Eigenvalues of MIL and SSD for 18 samples.

When using segmented images, the eigenvalues and eigen-
vectors remained close to those obtained with grayscale im-
ages. In particular, a strong linear relationship was obtained be-
tween their eigenvalues (R2 = 0.971), angular deviation of the
eigendirections was2.56± 2.21 degrees for the main direction
(15 samples).
Additional tests were performed to examine robustness of the
method with respect to image resolution. When coarsening the
images to52µm and104µm resolution, the eigenvalues kept a
strong linear relationship with the original ones, the coefficient
of determination beingR2 = 0.996 andR2 = 0.974 respec-
tively.
Despite the mentioned guideline to select the appropriate sam-
pling sphere size, its influence on the fabric tensor was exam-
ined and found to be quite negligible. In order to verify the
potential of SSD to describe more complex orientation pat-
terns, the image of an artificial orthogonal grid structure that

exhibits cubic symmetry was created and analyzed with a4th

order approximation. As expected, a more detailed ODF with
cubic symmetry was obtained that emphasized the three main
orientations of this grid.

Discussion

A novel three-dimensional SSD method is proposed to describe
the architectural anisotropy of a trabecular bone ROI. The ap-
plication onµCT graylevel images of a broad range of human
trabecular morphologies is demonstrated. Fortunately, the SSD
method was found to be robust with respect to its unique pa-
rameter, the sampling sphere diameter. This favourable prop-
erty suggests that the method is not exceedingly sensitive to
trabecular spacing. The second order results of SSD showed
an excellent correlation with the results of the MIL method
considered as a gold standard for segmented images. Current
fabric-elasticity models based on MIL eigenvalues can there-
fore also be used with SSD data. As suggested by the4th or-
der approximation of an artificial structure, SSD contains more
information than MIL and is in this sense closer to SLD. In-
terestingly, the results of SSD on segmented and unsegmented
images are very similar, which is a further demonstration of the
robustness of this novel method. The implemented version of
SSD is computationally efficient: for example, the analysis of
a 270 × 270 × 600 voxel region takes less than 1 minute on a
standard PC for a standard sampling sphere size.
While FFT is restricted to 2D images so far, ACF is applicable
exclusively on rectangular ROIs. TSD provides an elliptical ap-
proximation of volume orientation and has not been compared
with MIL. It is therefore difficult to compare the performance
of SSD with these other methods.
To conclude, SSD is an efficient and robust tool for characteri-
zation of fabric in grayscale images of human trabecular bone.
The extension of the SSD method toin vivoclinical CT systems
will be undertaken in a close future.

References

[1] P. K. Zysset (2003): A review of morphology–elasticity
relationships in human trabecular bone: Theories and ex-
periments,Journal of Biomechanics, 36, 1469–1485.

[2] A. Odgaard (1997): Three-Dimensional Methods for
Quantification of Cancellous Bone Architecture,Bone,
20, 315–328.

[3] B. Brunet-Imbault, G. Lemineur, C. Chappard, R. Harba,
C. L. Benhamou (2005): A new anisotropy index on tra-
becular bone radiographic images using the fast Fourier
transform,BMC Medical Imaging, 5.

[4] M. J. Wald, B. Vasilic, P. K. Saha, F. W. Wehrli (2005):
Study of trabecular bone microstructure using spatial au-
tocorrelation analysis,Medical Imaging 2005, Proc. of the
SPIE,5746, 291–302.

[5] P. K. Saha, F. W. Wehrli, (2004): A robust method for
measuring trabecular bone orientation anisotropy at in
vivo resolution using tensor scale,Pattern Recognition,
37, 1935–1944.

Prague, Czech Republic, 25-27 June 2007 255



MHM 2007: Modelling of Heterogeneous Materials with Applications in Construction and Biomedical Engineering

Reconstruction of Multi-Phase Microstructure
from Computer Tomography

D. Rypl∗, Z. Bittnar

Czech Technical University in Prague, Faculty of Civil Engineering, Department of Mechanics
Thákurova 7, 166 29 Prague, Czech Republic

drypl@fsv.cvut.cz, bittnar@fsv.cvut.cz

Summary: The present paper deals with the modelling of microstructure initially represented by a digital image obtained from
Computer Tomography or any other similar scanning device. In the digital representation, the boundary voxels are identified
and then replaced by a semi-regular triangulation of the same resolution of the image. This triangulation is then subjected to
recursive subdivision to recover a smooth surface of the microstructure which is then retriangulated according to a user specified
resolution. The performance of the proposed approach is shown on an example.

Introduction

Modern technologies as computer tomography (CT) or mag-
netic resonance tomography (MRT) offer a powerful nonde-
structive technique for digital representation of opaque solid
objects. This voxel based representation can be discretized us-
ing for example the marching cubes algorithm [1]. The resolu-
tion of the resulting triangulation, however, is strongly depen-
dent on the resolution of the digital representation which might
be either too coarse (without important features being captured)
or too fine (with unimportant features captured by excessive
number of elements). To make the fine discretization appropri-
ate for numerical analysis, it has to be further processed. One
choice [2] is to adapt the triangulation by successive modifica-
tions using a set of geometrical and topological operators ac-
cording to the desired resolution. Alternatively, the digital rep-
resentation may be first used to derive a smooth representation
which is then subjected to triangulation of a variable resolution.
In [3], the smooth representation is recovered using the spheri-
cal harmonic analysis. However, this method is limited to star-
shaped objects without internal voids and cannot be therefore
applied to a general microstructure. In the present work, the
smooth representation is reconstructed using a recursive subdi-
vision interpolating technique [4].

Digital representation of microstructure

The three-dimensional digital representation that comes out
from CT or similar scanning devices can be interpreted as se-
quence of two-dimensional gray scale digital images corre-
sponding to (but not necessarily physically taken at) parallel
cuts through a three-dimensional object. Each digital image
consists of the grid of pixels of gray scale value related to a spe-
cific property (e.g. density). Assuming that the pixel in each im-
age is of the shape of a square and that the individual cuts are
at the distance corresponding to the edge length of that square,
then the digital representation is described by a set of gray scale
cubes - voxels. Clearly, the amount of data to be handled by the
voxel based representation grows cubically with the increasing
resolution, which makes this representation prohibitively mem-
ory demanding. It is therefore apparent, that an alternative rep-
resentation of the microstructure with variable resolution and
handling much smaller amount of data is desirable.

Microstructure reconstruction

In this work, the multi-phase microstructure is represented by
a variable size surface triangulation that is reconstructed from
the initial digital representation. Firstly, the gray scale digital
representation is thresholded into voxels of appropriate discrete
values of gray corresponding to individual phases of the pro-
cessed microstructure. In the next phase, the boundary voxels
(and their boundary sides) of individual phases are identified.
Note that this boundary voxel representation is slightly modi-
fied in order to eliminate small features that might disturb the
smooth representation of microstructure surface that is to be
recovered. A triangulated boundary representation is then ob-
tained from the boundary voxel representation by replacing the
boundary sides of boundary voxels by semi-regular triangula-
tion with nodes at the centres of those boundary sides. Note that
care must be taken to handle some special topological cases.
In this triangulated boundary representation, the individual sur-
faces (and their boundary curves) bounding individual phases
of the microstructure are identified and then subjected to recur-
sive interpolating subdivision [4, 5] yielding aC1 continuous
surface. In the final phase, the individual smooth boundary sur-
faces are triangulated using the Advancing Front Technique [6].
Since there is available no global mapping of the recovered sur-
faces, the discretization is performed directly in 3D space on
the surface. Note that the resolution of the final triangulation is
independent of the resolution of the initial digital representa-
tions and is driven mainly by the user specification and proper-
ties (curvature) of the recovered smooth representation.

Example

The proposed algorithm is demonstrated on the example of
a two-phase microstructure. In Fig.1, the original voxel based
representation of a single phase is displayed. The surface mesh
reconstructed over the microstructure of that phase is then
shown in Fig.2.

Conclusions

This paper has presented an approach for the reconstruction of
a multi-phase microstructure from the digital representation ob-
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Figure 1: Voxel representation of a microstructure.

tained from CT. It is beneficial in the sense that it is capable to
handle complex topologies and its final resolution is indepen-
dent of the resolution of the digital representation. Although
only the surface representation has been treated in this work,
the reconstructed surface triangulation can be easily employed
for the solid triangulation of the microstructure, again with vari-
able resolution. However, while the shape of the microstructure
is captured quite precisely, the volume fractions of individual
phases exhibits some discrepancies when compared to the ini-
tial digital representation. This also implies that statistical dis-
tribution of individual phases is not reconstructed optimally.
From this point of view, the future research is to be focused
on further enhancement of the quality of the reconstruction, es-
pecially in the quantitative sense.
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Dolejškova 5, Prague 8, CZ 182 00, Czech Republic

2Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague
Trojanova 13, Prague 2, CZ 120 00, Czech Republic

Bicanova@it.cas.cz, hSeiner@it.cas.cz, pSedlak@it.cas.cz, ML@it.cas.cz, Heller@it.cas.cz

Summary: This paper presents a novel method for determination of all independent elastic coefficients of single variants of
martensite from RUS measurements of finely twinned crystals.

Introduction

Elastic coefficients of the martensitic phase of the shape mem-
ory alloys, as well as the thermal dependencies of these coef-
ficients near the transition temperatures, are crucial parameters
for the interpretation and understanding of the mechanism of
the shape memory effect. All independent elastic coefficients
of the martensitic phase can be determined by the resonant ul-
trasound spectroscopy (RUS) from a simply shaped specimen
of single variant of martensite.

Resonant ultrasound spectroscopy [1] is a well-known tech-
nique for study of elastic properties of solids based on the inver-
sion of natural frequencies of free elastic vibration of a small
specimen. However, automatic and reliable resonance detection
and its classification, stability of the inversion procedure, initial
guess independence, and its accuracy estimation, is still a hard
nut of this technique, especially in the case of high anisotropic
and low symmetric solids with general crystallographic orien-
tation. We have recently introduced several improvements of
the RUS technique [2] :

1) The standard Ritz method was adopted for the calculation of
resonance frequencies of a parallelepiped (generalized prism)
specimen with arbitrary orientation of crystallographic axes.

2) Reliable mode identification and, thus, well stability of
resonance inversion was achieved by the displacement field
measurement on the vibrated specimen using scanning Laser-
Doppler interferometry (Figs. 1, 2).

3) Efficiency of the inverse computation was improved by de-
riving the analytical expression of the gradient and the Hessian
of the objective function.

4) The accuracy and reliability of the presented method are in-
vestigated using a Monte Carlo simulation.

However, for some shape memory alloys, the single variants are
difficult to obtain, whereas the martensites of these alloys nat-
urally form fine twinned structures, consisting of parallel lami-
nae of different variants.

Therefore, it is suggested to extend this approach also for de-
termination of all independent elastic coefficients of single vari-
ants of martensite from RUS measurements of finely twinned

crystals. The proposed algorithm is based on homogenization
of the elastic properties, using a geometrical ray model of elas-
tic wave propagation in a laminated structure (shown schemati-
cally in Fig. 3). The direct evaluation of the homogenized elas-
tic properties from coefficients of the single variants is illus-
trated on synthetic input data (CuAlNi), as well as on real ex-
perimental results.

Figure 1: Experimental set-up.

Figure 2: Example of comparison of measured and computed
shapes of eigenmodes of a CuAlNi martensitic single crystal
specimen.
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Figure 3: The principle of homogenization of the elastic properties, using a geometrical ray model of elastic wave propagation.

Experimental results

The result are shown in Table 1, where the coefficients of
the single variant (<1% of other variants) are compared to
measured and evaluated elastic coefficients for finely twinned
martensite, containing approximately 10% of a mirrored vari-
ant. The coefficients of a single variant are in good agree-
ment with the results from pulse-echo measurements published
by authors in [3]. The theoretical effective coefficients of the
twinned structure were computed by an algorithm based on
the Snell-Descartes law. Especially in the diagonal coefficients
C11,C22 andC33, the agreement between measured and evalu-
ated elastic coefficients is satisfactory. However, the symmetry
of the twinned structure deviates from orthotropy, which may
be the reason for the discrepancy in determined shear coeffi-
cients.

Table 1: Effective elastic coefficiens measured and evaluated of
finely twinned martensite of CuAlNi.

Elastic Relative contents of the mirrored variant [%]
coefficient
GPa < 1% ≈ 10% 10% evaluated

C11 185.3 191.2 189.7
C22 151.3 150.5 150.7
C33 241.9 236.4 236.0
C44 63.2 64.2 63.5
C55 23.9 24.1 25.5
C66 62.0 62.0 61.1
C23 88.0 98.2 92.2
C13 67.0 64.9 65.3
C12 141.8 138.8 140.7

Concluding remarks

The inversion procedure for determination of elastic coeffi-
cients of anisotropic solids was generalized for an arbitrary ori-
ented nonrectangular parallelepiped. The procedure was also
stabilized by using a novel hybrid architecture of the opti-
mizing algorithm, which utilizes analytical expressions of the
Hessian of the minimized error function. Laser interferometry

was used for association of measured frequencies to particular
eigenmodes. The agreement between measured and computed
shapes of the eigenmodes confirms the reliability of obtained
elastic coefficients.

Applicability of the proposed method for a general paral-
lelepiped enabled this method to be also used for determina-
tion of effective elastic properties of finely twinned martensitic
structures. As a testing material, the CuAlNi alloy was chosen
again. However, the main possible income of such measure-
ments lies in experimental investigation of naturally twinned
materials, such as NiMnGa, where the single crystals of pure
martensitic variants cannot be easily prepared.
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Summary: Applied thermodynamics has been developed as a tool to calculate the mineralogy of hydrated Portland cement and
to determine the impact of limestone (calcite) additions. The results are used to relate chemical and mineralogical properties to
engineering parameters, such as porosity and strength.

Introduction

In the early 20th century, the science base for inorganic ce-
ments became decoupled from mainstream materials sciences.
This has led to relative isolation from other relevant areas of
research. Thus little quantitative progress has been made on the
relationships between, on the one hand, physical chemistry, in-
cluding mineralogical and microstructural aspects, and on the
other, engineering properties of Portland cement. This is un-
fortunate as much of the man-made infrastructure depends on
Portland cement products and, increasingly, on economic use
and long performance life of construction. Predictions of the
properties of the hardened product rely heavily on empirical
correlations and accumulated experience. Examples include the
relationships between water content and strength of hardened
concrete first demonstrated by Feret about 1900 [1]. But these
models are of limited applicability and often lack theoretical
justification. To progress, it is necessary to return to funda-
mentals. We begin by developing models of cement mineralogy
based on the thermodynamics of hydration. It has been neces-
sary to develop a new thermodynamic database [2, 3]. Although
some features of cement hydration are metastable, these can be
included in models. The calculated mineralogical development
can be used to calculate the space filling achieved by solids.
The hydrates occupy less volume than the reactants and the re-
sulting pore space weakens the matrix.

Experimental

Calculations have been made using GEMS [4], a software to
minimise the free energy of a given system. GEMS computes
mass balances, giving the composition of the aqueous phase as
well as tabulating coexisting solids. From the amount and molar
volumes of the phases, the specific volume of solids and aque-
ous phase can be calculated.; “total porosity” is defined by the
amount of excess mixing water which is not chemically bound
in the cement hydrates and the estimated chemical shrinkage
of the cement paste. Air voids are not considered. The calcula-
tions of Fig 1 use a model cement composition consisting of ini-
tially 69 wt.-% CaO, 22 wt.-% SiO2, 4.5 wt.-% Al2O3 and 4.5
wt.-% CaSO4 (∼2.6 wt.-% SO3). 100 g of cement are blended
with increasing quantities of limestone (CaCO3). Thus the ini-
tial amounts of several of the cement’s main chemical compo-
nents (SiO2, Al2O3 and CaSO4) diminish due to dilution. The

water:binder ratio was kept constant at 0.5 by mass (including
CaCO3). A hydration degree of 100% and a constant tempera-
ture of 25 ˚ C were assumed.

Results and discussion

Fig. 1 shows the mineralogical evolution, with calcite ad-
dition, and the specific volume of the solids. It is obvious
that mineralogical changes influence the solids volume signif-
icantly. It is important to note that the mineralogical changes
occurring upon adding calcite to cement do not just involve
carbonate-containing phases, e.g. calcite and carboaluminates,
but markedly affect the amounts of other phases, notably et-
tringite and portlandite: sulfate, displaced from monosulfoa-
luminate in the course of its conversion to carboaluminates,
is incorporated into ettringite (AFt), a low-density, water rich
phase with high molar volume. As shown in Fig. 1 the result-
ing ettringite increases the molar volume of the cement solids
and binds liquid water. A more detailed explanation of miner-
alogical changes due to the addition of limestone to cement is
given in [5–7]. Herfort [8] has demonstrated in similar unpub-
lished studies the evolution of compressive strength and poros-
ity of a cement blended with low contents of reactive limestone.
The cement composition is similar to that of the model cement
used in calculation of Fig. 1. It is apparent that thecalculated
porosity changes of the model cement correlate very well with
themeasuredcompressive strength of mortar samples (Fig. 2).
The minimum calculated porosity and maximum compressive
strength occur at about 2 wt% calcite.

Figure 1: Volume changes of hydrate phases and pore so-
lution of a hydrated model cement with fixed sulfate ratio
(SO3/Al2O3 ∼0.7) in dependence of changing carbonate con-
tents.
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Figure 2: Comparison of relative changes of calculated poros-
ity of model cement paste (SO3/Al2O3 ∼ 0.7) and relative
changes of measured 1 year compressive strength of mortars
(SO3/Al2O3 ∼ 0.7, w/c=0.5; strength data were taken from
Herfort [8]).

Figure 3: Calculated total porosity of mortar samples compa-
red to measured compressive strengthfc (figure taken from
Lothenbach et al. [3]).

Up to about 3 wt.% calcite is calculated to react with the model
cement, with any excess behaving as an inert filler. But up to∼
10 wt.-% calcite added to the model cement will improve the
space filling properties, decreasing total porosity and increasing
compressive strength relative to the cement-only benchmark.
Thus controlled limestone blending shows promise to improve
the physical space filling of pastes, reducing free porosity while
also decreasing the clinker content. Limestone has traditionally
been regarded as an inert filler and the strength-enhancement
effect -if any- attributed to improved packing arising from opti-
mised granulometric properties of the mix. However this paper
has shown that some, perhaps much, of the limestone is reac-
tive and that mineralogical changes have a great impact on the
space filling and related physical and mechanical properties of
the hydrated matrix. Thus both, physical and mineralogical as-
pects have to be considered to achieve optimum performance of
the cement. However similar space filling in plain Portland ce-
ments are also related to time and temperature of hydration. As
shown by Lothenbach et al. [3], there is a strong dependency
between calculated porosity and compressive strength. Poros-
ity is difficult to measure in cement systems, different methods
giving different results. Calculation enables an unambiguous
basis for determining intrinsic porosity and, as Fig. 3 shows,
agrees reasonably well with measured values. Thus it is pos-
sible to calculate porosities of cement pastes together with the
hydrate mineralogy and link these calculations with mechanical

properties, e.g. strength.

Conclusion

Empirical models used in civil engineering to predict cement
and concrete properties are generally restricted to narrow fields
of application of known performance, and cannot adequately
explain the effect of changes in chemical or mineralogical com-
position such as the additional of limestone. This paper devel-
ops new paradigms linking chemical and mineralogical con-
stitution with physical and mechanical properties. Microstruc-
ture is not yet included. The studies reported here represent just
the first steps in establishing quantitative links between cement
chemistry and mineralogy with physical and mechanical prop-
erties. The chosen example has shown that calcite at low con-
centrations is consumed by reaction with cement and the reac-
tion products enhance space filling and strength. Theory and ex-
periment are in good accord: the predicted benefit is significant
to industry and enables the more economic use of energy-rich
cement clinker. Moreover we anticipate that other space-filling
strategies can be developed. Thus the more scientific approach
described here represents a step forward and can be used as a
basis to drive research.
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Summary: Temperature influences the composition of the solid and liquid phase. The conversion of ettringite and monocarbonate
to monosulphate was observed experimentally in Portland cements at approximately 50 ˚ C, which agrees well with the results of
thermodynamic modeling. These changes of the composition of the hydrate assemblage decrease the volume of solids present,
increase the porosity and thus influence negatively compressive strength.

Influence of temperature

Higher temperatures lead initially to a fast hydration of Port-
land cements and to a high early compressive strength. How-
ever, the 28 and 91 day strength of mortar and concrete sam-
ples is found to be reduced at higher temperature (see Figure
1), although the observed degree of hydration is similar to that
achieved in the temperature range 5-50 ˚ C.

Figure 1: Compressive strength (in N/mm2; standard deviation
indicated by bars) as a function of time.

At higher temperatures, the precipitating hydrates are dis-
tributed inhomogenously resulting in a coarser porosity, denser
C-S-H, and the morphology of ettringite is more equant. In ad-
dition, at 50 ˚ C or above, monosulfate is increasingly formed
at the expenses of ettringite and monocarbonate [1]. Temper-
ature also influences the composition of the pore solution.
The concentrations of many of the ions present remain little
changed but sulphate concentrations increase and aluminium
concentrations decrease at higher temperatures.

Figure 2: Measured concentrations in the pore solutions of a
cement hydrated at 5, 20, 50 ˚ C. The lines are intended as eye
guides only.

Thermodynamic modelling

The composition of the phase assemblage and the pore solution
of Portland cements hydrated between 0 and 60 ˚ C can be mod-
elled as a function of time and temperature [2]. The results of
thermodynamic modelling show a good agreement with experi-
mental data. At 5 and at 20 ˚ C, a similar phase assemblage was
calculated to be present, while at approximately 50 ˚ C, thermo-
dynamic calculations predict the conversion of ettringite and
monocarbonate to monosulphate.

Modelling showed that in Portland cements which have an
Al2O3/SO3 ratio of> 1.3 (bulk weight), above 50 ˚ C mono-
sulphate and monocarbonate are present (cf. Figure 3). In Port-
land cements which contain less Al (Al2O3/SO3 < 1.3), above
50 ˚ C monosulphate and small amounts of ettringite are ex-
pected to persist.
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Figure 3: Calculated volume of hydrates in a Portland lime-
stone cement as a function of temperature assuming a dissolu-
tion of 75 % of the clinker phases.

A good correlation between calculated porosity and measured
compressive strength is observed (cf. Figure 4). A weak de-
pendence of the calculated porosity on the temperature was ob-
served, which disappeared when different densities of C-S-H at
different temperatures were assumed. This indicates that other
factors such as the heterogeneous distribution of the hydration
products and differences in morphology of the hydrates (e.g.
longer ettringite needles at lower temperature) play only a mi-
nor role for the strength development while the primary factor
influencing strength is the degree of space filling or, conversely,
the capillary porosity of the system as e.g. demonstrated by Ver-
beck and Helmuth [3].

Figure 4: Calculated total porosity of mortar samples com-
pared to measured compressive strength. White data points in-
dicate data from mortars hydrated at 5 ˚ C, light grey refers to
20 ˚ C, dark grey to 30 ˚ C and black to 40 ˚ C.

Conclusions

Temperature influences both the composition of the aqueous
and the solid phase. Monosulphate instead of ettringite and
monocarbonate is formed around 50 ˚ C; the sulphate concen-
tration in the pore solution increases with higher temperatures.
The results of thermodynamic modelling show a good agree-
ment with the experimental data. At both 5 and 20 ˚ C, a sim-
ilar phase assemblage was calculated to be present. The ther-
modynamic calculations predicts the conversion of ettringite
and monocarbonate to monosulphate at approximately 50 ˚ C,
which agrees well with experimental observations in Portland
cements [1, 4].

The changes of the composition of the hydrate assemblage with
increasing temperature decreases the volume of solids present
in the hydrating cement, increases the porosity and thus influ-
ences negatively compressive strength. A good correlation be-
tween calculated porosity and measured compressive strength
was observed.
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Summary: This paper presents the multiscale model of concrete heat evolution. Cement hydration model CEMHYD3D is used
at the micrometer scale, controlled with actual temperature from macroscale concrete level which is computed by means of heat
conduction differential equation. Effects of cement chemical composition, fineness and initial temperature are examined in more
detail. The validation shows considerable impact of heat of hydration on temperature evolution, especially in massive structures.

Introduction

The hydration of concrete is an exothermic process, contribut-
ing to temperature rise of concrete structure under normal cir-
cumstances. Concrete, as a multicomponent material, may be
considered as hydrating cement paste with inert aggregates, en-
abling the multiscale modeling at the micrometer resolution of
cement paste [1]. The effect of temperature is mainly twofold;
an initiation of thermal stress and changing the hydration kinet-
ics.

The thermal stress originates due to internal or external confine-
ment, typically when new concrete is placed on a rock founda-
tion. Possible cracks cause a decay in structure and they will
never close up in the future [1]. Precise prediction of heat dis-
tribution through the structure will be explored in more detail.
The basis for proper problem formulation is based on a nonsta-
tionary, diffusion-type, differential heat-flow equation:

−∇Tq(x) +Q(x, t) = ρ(x)cv(x)
∂T (x, t)

∂t
(1)

q(x) = −λ(x)∇T (x) (2)

whereq(x) is a heat flux,Q(x, t) represents a heat source,
ρ(x) stands for material density,cv(x) is specific heat capacity
andλ(x) is heat conductivity of isotropic material. Dirichlet,
Neumann and Cauchy boundary conditions and initial condi-
tions may be associated with Eq. (1). The principle of virtual
temperatures allows numerical solution of Eq. (1) via FEM and
explicit or implicit time discretization.

Figure 1: Coupling between cement paste and structural level

The heat source represents the hydration heat of concrete,
which is strongly influenced with actual temperature. There-
fore, it is necessary to couple hydration model at the microscale
with structural model at macroscale in terms of temperature and
hydration heat, Fig.1.

CEMHYD3D hydration model is used for the modeling of heat
evolution in a cement paste microstructure [2]. The model al-
lows to include various chemical composition of cement, ce-
ment fineness, water regime of curing and the effect of temper-
ature history. The microstructure is built from voxels 1× 1 ×
1 µm, each of them representing one chemical phase, Fig.2.

Figure 2: Microstructure 50× 50× 50 µm,w/c = 0.25,
used for generation of hydration heat, initial (left) and at
the degree of hydration of 0.63 (right). Red =C3S, cyan
= C2S, green =C3A, yellow = C4AF, black = porosity,
violet = C-S-H, blue = CH

Basic chemical reactions are included in CEMHYD3D hydra-
tion model. All implemented chemical reactions produce cer-
tain amount of heat. The reactions are partially reversible and
the total amount of heat is calculated from consumed clinker
minerals and other chemical phases. For example, the hydra-
tion of silicates is implemented as

C3S + 5.3H → C1.7SH4 + 1.3CH, 517 J/g, (3)

C2S + 4.3H → C1.7SH4 + 0.3CH, 262 J/g, (4)

where the heat is related to the amount ofC3S orC2S. Ordinary
Portland cement releases approximately 500 J/g.

The representative volume element (RVE) corresponds to the
CEMHYD3D’s microstructure, Fig.2. The modeling of tem-
perature effect is based on the Arrhenius equation

τ(T )
τ(T0)

= exp
[
Ea
R

(
1
T0
− 1
T

)]
, (5)
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whereτ is the characteristic time,T andT0 are arbitrary and
some reference temperature of hydration,R is the universal gas
constant andEa is the apparent activation energy. It is a well-
known fact that a temperature rise of 10◦C in concrete causes
approximately two times hydration speedup.

Results

The validation aimed at the quantification of following effects
in slab and massive-like constructions:

• RVE size due to its randomness and the impact on the heat
of hydration,

• chemical composition of Portland cement,

• saturated and sealed water environment,

• initial temperatures,

• water/cement ratio.

The heat evolution on a bridge cross section of “TT” shape was
simulated as the representative of slab and massive parts. The
bridge is composed from 350 mm thick slab and two beams
1200 x 2100 mm. The 2D heat conduction problem was dis-
cretized with 156 finite elements. Heat generation on each ele-
ment is simulated on RVE size of 50× 50× 50µm.

Figure 3: Temperature distribution after 26 h of hydration, ordi-
nary Portland cement CEM I 42.5 R, 300 kg/m3, water/cement
ratio 0.5, initial temperature 20◦C

The multiscale model of cement hydration coupled with macro-
scopic heat conduction provides valuable tool for modeling of
temperature distribution on structures. The reasonable size of
RVE 50× 50× 50 µm of cement microstructure was found.
All simulations testify that hydration heat is critical in massive
parts where heat conduction is slow and small surface fraction
is not effective in cooling. The factors having impact on the
temperature inside concrete structures were found in the fol-
lowing order:

• initial temperature and outer temperature after the hydra-
tion has started,

• cement fineness,

• chemical composition of cement,

• water/cement ratio.
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Summary: This paper concerns on experimental and numerical investigations of cement paste. Multiple nanoindentation experi-
ments with emphasis on creep effects and including cyclic loading were carried out in this study. Limitations of using traditional
elastic solution in simple loading cases was shown. The paper concerns also on the appropriateness of conventional methods
used for evaluation of micromechanical properties and it investigates possibilities of the use of enhanced methods for better
description of the nanoindentation process. Several models based on analytical visco-elastic solution and finite element model
with general visco-elasto-plastic constitutive relation were proposed. The models were used for simulation of nanoindentation
and for estimation of material parameters of hydrated phases of cement paste at micrometer scale.

Introduction

Cement is the main binding component of concrete and other
cementitious composites. The development of various exper-
imental techniques, namely nanoindentation, made possible
to access also its mechanical properties at submicron length
scales. Nanoindentation is based on the direct measurement
of the load-displacement relationship using a very sharp tip
pressed into the material. Nowadays, nanoindentation is widely
used for assessment of micro-mechanical behavior of thin
films, metals, plastics and other materials. Several works can
be found also for cement-like materials, e.g. [1, 2].

Nanoindentation of cement pastes

In contrast to usual indentation on metals, for example, cement
paste is much more complex and also time-dependent mate-
rial. From the microstructural point of view, cement paste is a
heterogeneous material with several material phases. The most
important are the hydrated phases (C-S-H gels) for which the
material properties are assessed in this study. Cement paste also
exhibits significant creep that can affect evaluation of its elas-
tic properties using standard procedures [3]. Ignoring creep in
the evaluation of results can lead to overestimation of elastic
properties. Simulation of indentation process and comparison
with experimental data can answer the question on the appro-
priateness of different constitutive relations and the underlying
material behavior.

Experiments

Cement paste samples were prepared and tested by means of
nanoindentation. Only hydrated phases were considered for the
evaluation of results. Several types of loading were prescribed:

(i) one-cycle loading (loading, holding and unloading)
(Fig. 3b),

(ii) multi-cycle loading to increasing loads without holding
periods at peaks (Fig. 1),

Figure 1: Example of multi-cycle loading with increasing load
and no holding period at the peaks.

(iii) cyclic loading with long holding periods at the peak
(Fig. 3c).

Experiments were carried out in a large load range to cover also
wide ranges of penetration depths.

Analysis of indentation data and their numerical
simulation

Traditionally, only elastic parameters are evaluated from
nanoindentation experiments. In this case, unloading part of the
load-displacement curve is supposed to be elastic and an ana-
lytical solution is used for assessment of elastic modulus, for
example [3]. However, the material behavior does not always
fulfill such a strong assumption. It can be seen in Fig. 1 that the
loading curve contains a bulge at the beginning of unloading in
each cycle. It shows the role of creep that is present even on the
unloading branch. It leads to spurious size effect on the evalu-
ation of elastic properties using standard procedures based on
elasticity [3] as shown in Fig. 2. On the other hand, using long
holding periods significantly reduces this kind of spurious size
effect (Fig. 2). Generally, material response may contain also
inelastic deformations and more precise material models are
needed for its description.
Recently, an analytical solution based on visco-elasticity was
derived by Vandamme and Ulm [4]. This kind of model was
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Figure 2: Size effect on the elastic modulus evaluated with
Oliver-Pharr method [3] ignoring creep effects (thin line) and
using long holding periods (thick line).

found to be suitable for simple (one-cycle) experiments. Vis-
cous parameters can be found easily in this case from the creep
in holding period (Fig. 3a) and the overall material response is
described well (Fig. 3b). However, for a general case of multi-
cycle experiments this model fails because it cannot describe
also plastic deformations that are present in subsequent loading
cycles (Fig. 3c.). Since the loading path was too complicated
for the analytical solution [4] simplified loading history with-
out intermediate unloading was used. It is the reason why no
cyclic loading is shown in the simulation in Fig. 3c. However
the numerical response does not wrap the experimental curve
as it was expected. Using the same material parameters lead to
underestimation of deformation in this experiment.

It motivated us to construct the finite element model with more
complex constitutive laws and with the possibility of setting an
arbitrary loading history. Multi-cycle experiments were quali-
tatively captured by using constitutive relation containing not
only creep (viscous part) but also plastic strains (Fig. 3d).
However, parameters of this qualitatively most suitable elastic-
plastic-creep model are difficult to obtain. Presently, the possi-
bility of using a more sophisticated method of parameter iden-
tification based on genetic algorithms is being researched.

Conclusions

Based on the experimental evidence it was found that standard
evaluation procedures based on elasticity [3] lead to spurious
size effect on elastic properties for cement paste. It is caused by
the presence of creep in the initial part of the unloading branch.
In case of using long dwell period at peak loads this effect can
be significantly decreased.
An analytical visco-elastic solution [4] can be successfully used
for simulation of one-cycle experimental curves. Material pa-
rameters are, in this case, obtained by nonlinear fitting of creep
curve during holding period. The same model applied for more
complex type of experiment with cyclic loading leads to under-
estimation of deformations.
General FE model with visco-elasto-plastic constitutive re-
lation can qualitatively match also multi-cyclic experimental
loading paths. However, parameters of this qualitatively most
suitable model are difficult to obtain. Presently, the possibility
of using genetic algorithms for parameter identification is in-
vestigated.

(a)

(b)

(c)

(d)

Figure 3: Experimental curves (thin lines) and numerical re-
sponses (thick lines): (a) holding period (creep), (b) one-cycle
loading, (c) multi-cycle loading modeled by viscoelasticity, (d)
multi-cycle experiment modeled by visco-elasto-plastic model.
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Summary: In the present paper, we experimentally investigate the effects of chloride exposure and calcium leaching on the
mechanical properties on various levels of microstructure of fiber-cementitious composites. The levels include fiber-matrix inter-
face, matrix itself, and cohesive crack traction due to fiber bridging. The performed tests show consistent effects across different
scales.

Introduction
Application of strain hardening fiber reinforced cementitious
composites (SHCC) is often seen as one of possible ways to
improve durability of concrete and reinforced concrete (R/C)
structures, especially of those exposed to harsh environment
[8]. These materials, which are also called high performance
fiber reinforced cementitious composites (HPFRCC), are char-
acteristic by the ability to sustain significant straining under
increasing load in tension. The overall deformation is mostly
attributed to formation and opening of a large number of dis-
tributed sub-parallel matrix cracks bridged by fibers – a process
called multiple cracking. From the durability point of view, it
is important that the widths of these cracks remain in the sub-
millimeter range, even when the overall strain attains the level
of several percent. The composite is then much less susceptible
to ingress of water and aggressive agents from the environment
than ordinary R/C would be at the same structural deformation.

The conditions that a brittle-matrix composite with discontinu-
ous fibers has to satisfy to achieve multiple cracking have been
rigorously studied and set forth by several authors in the past
(e.g. [5], [2]). In simple words, existence of multiple crack-
ing is determined by sufficiently low matrix cracking strength
and sufficiently strong crack-bridging action of fibers. The for-
mer is related to the size of initial matrix flaws and the ma-
trix fracture toughness, while the latter mostly depends on fiber
volume fraction and alignment, fiber strength, and fiber-matrix
bond strength. For the sake of simple production and applica-
tion of the composites, it is desirable to use low volume frac-
tion of short random fibers. Engineered Cementitious Compos-
ites (ECC) [3] represent a class of SHCC materials whose mi-
crostructure (micromechanical parameters of fiber, matrix, and
their interface) is consciously optimized so as to achieve strain
hardening behavior even with fiber volume fraction as low as
2%. As we have discussed in the first paragraph, when ECCs
are used to improve structural durability, the composites’ abil-
ity to undergo damage in the form of multiple cracking under
severe environmental conditions is essential. Since the overall
mechanical behavior of ECC materials is closely related to their
tailored microstructure, this ability can be estimated if the ef-
fects of aggressive environment on mechanical phenomena that
take place at the microscale, are known. In the present study, we
experimentally investigated the effects of chloride exposure and
calcium leaching on the mechanical behavior on various levels
of the composites’ microstructure. Note that in the real world,

chloride attack usually occurs due to use of deicing salt for road
maintenance or in seashore and marine structures. Leaching
can take place in structures exposed to soft water or water con-
taining ions likeSO2−

4 ,NH+
4 underground structures, sewers,

dams, etc.

Specimen preparation and treatment
Material composition used in the tests was derived from the
standard PVA-ECC type M45 developed at the University of
Michigan [7]. However higher water/cement ratio was used to
achieve sufficient workability with constituents available in the
Czech Republic. The composite contained 2% by volume of
PVA fibers.

Specimens were prepared by casting and, in case of fracture
tests (see below), cutting from larger plates. Consequently,
some pieces were kept in room conditions as reference (O-
series), while others were exposed to chloride attack (S-series)
and yet others to calcium leaching (N3-series and N6-series).
Chloride attack was induced by 10 cycles of 5-days immer-
sion in a saturated solution of NaCl at 20oC and 2-days drying
in oven at 50oC. Leaching was preformed by immersing the
samples for 70 days into 3 mol/l (N3-series) or 6 mol/l (N6-
series) water solution of NH4NO3 at room temperature. After
the chemical exposure, the specimens were left covered in room
conditions for about one month before being tested.

Fiber pullout tests
In order to estimate the basic bond properties of fiber-matrix
interface, single-fiber pullout tests were conducted [1]. A fiber,
partially embedded (typically 2-4 mm) into cylindrical matrix
specimens (27 mm high, 32 mm in diameter), was pulled out
in axial direction under displacement control. Pullout forceP
and pullout displacement∆ were monitored and recorded. The
measured force was correlated with model described in ref. [4],
from which chemical bond strengthGd and frictional bond
strengthτ0 were calculated. Figure 1 shows that both chlo-
ride and nitrate attacks significantly reduce the chemical bond
strength. On the other hand, frictional bond is decreased only
by nitrate, while chloride exposure causes its slight increase.

Nanoindentation
To gain a better understanding of the phenomena observed in
the pullout tests, nanoindentation of the fiber-matrix interfacial
transition zone (ITZ) was carried out [6]. Figure 2 shows that
in control specimens (O), the local elastic modulus increases as

270 Prague, Czech Republic, 25-27 June 2007



Microscale Modelling of Cementitious Materials

Figure 1: Effect of chemical exposure on chemical bond (left
columns) and frictional bond (right columns).

Figure 2: Effect of chemical exposure on the matrix local elastic
modulus.

the distance from the fiber increases, before attaining a stable
value at about 30µm from the fiber. This can be attributed to
higher porosity of the ITZ close to the fiber. This tendency is
almost unaffected by chloride attack (S). On the other hand,
nitrate causes degradation of the matrix by calcium leaching,
which manifests itself by low modulus even farther from the
fiber.

Fracture tests

Matrix fracture toughness is another important micromechan-
ical parameter, since it controls initiation of multiple cracks
from matrix defects. Fracture tests on small 3-point bending
notched beams (150×20×12 mm) with notch size close to the
largest intrinsic flaw (5 mm) were carried out. From the load
at initiation of crack propagation, the matrix fracture tough-
ness was estimated. Fig. 3 shows that the fracture toughness
is almost unaffected by chloride treatment. Exposure to nitrate
causes a severe decrease of this parameter.

From the peak loads attained in these tests, we also calculated
the modulus of rupture. Since the peak load is mostly deter-
mined by the cohesive traction acting between crack surfaces,
we obtained qualitative information on the effectiveness of fiber
bridging on a single crack. Fig. 3 indicates that the bridging
effectiveness significantly degrades due to exposure to nitrate,
while chloride causes only a slight decrease.

Concluding remarks

The performed tests showed consistent effects of aggressive
environment on fiber-cementitious composites across different
scales. Exposure to nitrates (calcium leaching) strongly de-
grades the cementitious matrix, which results in reduction of
fiber bond, matrix toughness, and cohesive crack-bridging trac-
tion. Chloride treatment almost does not affect the matrix prop-
erties. It causes slight change in fiber bond properties, which
results in small decrease of the bridging traction.

Figure 3: Effect of chemical exposure on matrix fracture tough-
nessKImc (left columns) and composite modulus of rupture
(right columns).

Acknowledgments
The presented research has been supported by the Czech Sci-
ence Foundation grant GACR 103/05/0896 and the Ministry of
Education, Youth and Sports of the Czech Republic contract
MSM6840770003. The accelerated chloride treatment was car-
ried out in collaboration with RWTH Aachen University.

References

[1] P. Kabele, L. Nov́ak, J. Ňeměcek, L. Kopecḱy (2006): Ef-
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Summary: The rate-dependent behavior of filled rubber is investigated in compression regimes. The viscosity-induced rate-
dependent effects are described. The parameters of a constitutive model of finite strain viscoelasticity are determined by nonlinear
optimization methods. The material model is implemented into finite element code and the viscoelastic stress response of carbon-
black filled rubber at large strains in relaxation, creep and cyclic loading is simulated.

Model of viscoelastic material at finite strains

Rubber materials are applied in various branches of mechani-
cal engineering because of their damping properties. The mod-
elling and FEM simulations of the structural response require
a constitutive model which captures the complex material be-
haviour.
The ground-stress response of filled rubber is usually mod-
elled in the phenomenological framework of finite elasticity
by Mooney-Rivlin or Ogden models, or by Aruda and Boyce
model in terms of the micromechanically based kinetic theory
of polymer chain deformations.
Beside the elastic response the filled rubber shows also the
finite viscoelastic overstress response which is apparent in
creep and relaxation tests. Cyclic loading tests show a typical
frequency-dependent hysteresis as well where the width of the
hysteresis increases with increasing stretch rates.
The constitutive theory of finite linear viscoelasticity is a ma-
jor foundation for modeling rate-dependent material behaviour
based on the phenomenological approach. In this approach, a
suitable hyperelasticity model is employed to reproduce the
elastic response and the inelastic overstress is determined by
an evolution equation.
The origin of the material model of finite strain viscoelasticity
used in our work is the concept of Simo [1,2]. The finite ele-
ment formulation of the model was elaborated by Holzapfel [3]
and used by Holzapfel & Gasser [4] for the simulation of the
viscoelastic deformation of fibre reinforced composite material
undergoing finite strains. The model is based on the theory of
compressible hyperelasticity with the decoupled representation
of the Helmholtz free energy function composed of the volu-
metric and the isochoric elastic parts and of the dissipative po-
tential responsible for the viscoelastic contribution [5]. The 2nd

Piola-Kirchhoff stress with volumetric, isochoric and overstress
terms reads:

S = S∞V OL + S∞ISO +
m∑
α=1

Qα (1)

The evolution equation for the overstressQα is in the form:

Q̇α +
Qα

τα
= ṠISOα, SISOα = β∞α S

∞
ISO (2)

whereβ∞α is the nondimensional strain energy factor [1] and
τα is the relaxation time.
We assumed slightly compressible material, the volumetric

and isochoric (Mooney-Rivlin) parts of Helmholtz free energy
function were chosen in the form:

Ψ∞V OL(J) =
1
d
(J − 1)2,

Ψ∞ISO(C̄) = c1(Ī1 − 3) + c2(Ī2 − 3) (3)

The viscoelastic behaviour was modelled by use ofα = 2 re-
laxation processes. The relaxation timesτ1, τ2, the free energy
factorsβ∞1 , β∞2 , the parametersc1, c2 andd were determined
experimentally from the relaxation tests of rubber specimens in
compression.

Figure 1: Multistep relaxation experiment.

Experiment

All tests were performed in the compression regime at constant
ambient temperature under strain control. Blocks of filled rub-
ber 44 x 27 x 22 mm were used as specimens. Prior to an actual
test, each virgin specimen was subjected to a pre-loading pro-
cess to remove the Mullins’ softening effect.
The relaxation behaviour at different strain levels was exam-
ined in simple-step and in multi-step relaxation tests. The strain
rate of 0.05 mm/s was applied during the loading path. The
stress relaxation was recorded for 1200 s. Fig. 1 shows the time
histories of stress at different strain levels in the multi-step re-
laxation test.
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The stresses measured at the termination points of the relax-
ation periods are approximate values of the equilibrium stress.
The difference between the current stress and the equilibrium
stress is the overstress.
Fig.1 compares the experimental data of a multistep relaxation
test and the curves fitted to the proposed material model by non-
linear least squares method. All curves reveal the existence of a
very fast stress relaxation during the first 10 seconds followed
by a very slow rate of relaxation.
Comparing the results obtained at different strain levels, it can
be seen that relaxation tests carried out at higher strain lev-
els possess larger over-stresses and subsequently show a faster
stress relaxation than those at lower strain levels with lower
over-stresses.
The seven material parameters were calculated by nonlinear op-
timization methods in Matlab. First the parametersc1, c2 andd
were determined from the equlibrium stresses, then the param-
etersβ∞1 , β∞2 andτ1, τ2 were determined from the relaxation
data. Fig.1 compares the experimental data of a multistep re-
laxation test and the curves fitted with the proposed material
model.

Finite element simulation

We implemented the material model in the Lagrangian config-
uration into Comsol Multiphysics. The Structural Mechanics
and PDE modules were used for the calculation of time depen-
dent response of a rubber block in creep, relaxation and cyclic
loading.
The application mode type plane strain in Structural Mechanics
Module, the time dependent analysis and the Mooney-Rivlin
hyperelastic material were chosen for the calculation of the
equilibrium response.
The components of the isochoric stress rateṠ

∞
ISO were derived

in Symbolic Toolbox in Matlab and added to the scalar expres-
sions in Comsol. PDE module was used for the integration of
the evolution equation (2).
The results of the simulations of the compressive loading at
different strain rates and of the cyclic loading at Figs. 2 and
3 show the good qualitative agreement with experimental time
dependent behaviour of filled rubbers.
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Summary: This paper focuses on the modeling of a fiber-reinforced composite material, by means of a micropolar continuum.
The macroscopic constitutive relation is obtained by a multiscale procedure, bridging the continuum with a lattice-type micro-
model. Numerical results show the influence of the morphological and constitutive micro-features on the macroscopic response.

Introduction

Mechanical response of composite materials is strongly influ-
enced by the microstructural features of the material. From the
engineering point of view, it is important to set up effective
macroscopic mechanical models, without resorting to an ex-
plicit description of the microstructure.

Micropolar continua [1] have been found to be suitable for
modeling a large class of fiber-reinforced composite materi-
als, namely when the reinforcements are much stiffer than the
emebedding matrix: fibre reinforced polymers [2], masonry-
like materials [3], bones ultrastructure [4]. However, the con-
stitutive characterization of such continua is tricky, since it de-
pends not only on the constitutive properties of the microcon-
stituents but also on their arrangement.

To obtain the appropriate macroscopic constitutive description,
we used a two-scale homogenization based on a principle of
energy equivalence. The resulting formal expression is insensi-
tive to the specific geometrical and constitutive assumptions at
the microscale, and that makes the procedure quite general.

In this study we explore how the microscopic ingredients in-
fluence the macroscopic properties of the fiber-reinforced ma-
terial, focusing on both morphological (size and orientation of
the fibers) and constitutive (No-Tension vs. Coulomb-like re-
sponse of the matrix) issues.

Two-scale model for fiber-reinforced composites

Our reference material is a composite characterized, at the mi-
croscopic level, by short, stiff fibres embedded in a deformable
matrix. We assume perfect adhesion between the fibres and the
matrix. Our modeling is based on a two-scale description of the
material. At the microscale, we consider a periodic microstruc-
ture, where the module is alattice-type model(Fig.1): the fibers
(represented by the dark shaded bars in the figure and labeled
a, b, ..., in the following) are described as rigid bodies. They in-
teract with each other by a set of springs, represented by thick
segments in the figure, which are the only deformable elements
and describe the effect of the matrix. At the macroscale, the

equivalent continuum turns out to be amicropolar continuum,
where material particles are described by a displacement field,
u, and by a skew-symmetric 2-tensor field,W , representing the
microrotation of the fibres.

Figure 1: Sketch of the orthotropic lattice adopted as micro-
model. Light shaded area represents the periodic module.

A suitable choice of the macroscopic constitutive relation is a
crucial point. Here, the idea is to describe the macroscopic re-
sponse explicitly resorting to the microstructure, in a truly mul-
tiscale, computationally-oriented setting. The key assumptions
of the procedure are:(a) the admissible deformations for the
module are considered homogeneous;(b) the average strain en-
ergy of the module,φµ, is equal to the strain energy density of
the macromodel,φM .

Then, it is possible to identify the macroscopic stress measures,
namely the Cauchy stressS and the couple-stressS, in terms
of the actions at the microscale, namely the forcetab and the
coupleCab exchanged between all the pairs of fibersa andb.

S = HS(tab,Cab), S = HS(tab,Cab). (1)

The homogenization operatorsHS andHS do depend on the
morphology of the module butdo notdepend on the constitu-
tive assumptions at the microscale.

In turn, the micro-actionstab andCab are computed from the
relative displacementuab and rotationWab of the fibers:

tab = t
(
uab,Wab

)
, Cab = C

(
uab,Wab

)
, (2)

wheret andC are constitutive maps, anduab andWab are com-
puted by affine expansion of the fieldsu andW .
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Numerical simulations

The micropolar model is well suited to describe the depen-
dency of the macroscopic response on the morphology of the
microstructure. We show that considering the test case in Fig.2:
a beam of lengthL and heightH = L/10, in plane-strain,
four-point bending loading condition. The elastic strain energy
Φ :=

∫
φM (a synthetic measure of the deformability of the sys-

tem) is reported as a function of the scale factorλ :=w/L, for
three different orientations of the fibers. The mechanical re-
sponse strongly depends on both the orientation and the size
of the fibers. Other morphological factors, like the aspect ra-
tio of the module (herew/t = 10), are not considered in this
study, but they would likely influence the overall behaviour as
well. In the same figure, dashed straight lines refer to the corre-
sponding (anisotropic) Cauchy model, which is clearly unable
to show any scale effect. Moreover, it can not be even consid-
ered the limit case of the micropolar continuum whileλ → 0.

Figure 2: (Top) Geometry and loads. (Bottom) Plot of the strain
energy vs. the orientation and the size of the fibers;ΦMP : mi-
cropolar model;ΦAC : Cauchy model;ΦC : bare matrix.

An important feature of the proposed approach is theun-
coupling of modelsat different scales. Since both the
(strain-)localization and the (stress-)homogenization operator
are not influenced by the specific constitutive assumptions at
the microscale, the micromodel can be formulated indepen-
dently. Then, a very few effort must be done to study the macro-
scopic effects of different microscopic constitutive ingredients.
As a toy problem, we studied a “wall” on an inclined plane, sub-
jected to its weigth, Fig.3. At the microscale, we assumed for
the springs a No-Tension and a Coulomb-like [3] constitutive
behaviour, respectively. In the former case, the microrotation
field is very smooth, while in the latter a band appears in the
microrotation map, corresponding to a high vertical gradient of
fibres rotation. Under and over this band, microrotations real-

ized in the Coulomb-like model attain values much lower and
much higher than the No-Tension model, respectively.

Figure 3: Microrotation map for a wall subjected to its weigth.
Comparison between No-tension and Coulomb-like model.

Final remarks

In this work we studied the response of a target fiber-reinforced
composite (epoxy matrix reinforced with short, stiff glass fi-
bres) by a multiscale approach. At the macroscopic level, the
body is described by a micropolar continuum, while at the mi-
croscale a lattice periodic cell is adopted. The model is well
suited for describing the effect of the microstructural features
on the macroscopic response. We considered in the numerical
simulations both morphological and constitutive issues. Such
features are very important for understanding the relation be-
tween the microscopic structure and the macroscopic proper-
ties of the material, and therefore for an optimum design of the
microstructure.

The multiscale approach provides a mechanically funded basis
to build up equivalent continua endowed with the parameters
suitable for describing different microstructures. The macro-
scopic constitutive relation is implicitly recovered by a numer-
ical homogenization: this leads to a clearuncouplingof the
modeling at the two scales, which makes the proposed frame-
work quite general and suitable for further extensions.
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Summary: In work the variant of the theory of the plasticity involving micro strains, directed on the account of features of
inelastic behavior of geomaterials is given. Influence of the first and the third invariants of stress tensor on process of deformation
is considered. Comparison of numerical finite-element calculations with experimental data for triaxial tests is made.

Introduction

In works [1-3] the theory of plasticity, considering micro
strains, has been offered for metals, in it the big role was
devoted to account of internal micro stresses which arise on
borders of grains owing to heterogeneity of plastic deforma-
tion. Such approach was allowed to describe main effects of
process of plastic deformation of metals at complex loading
[4] even at essential simplifications.

In the given work generalization of the theory of the plasticity
involving micro strains is presented, which allow to describe in-
elastic deformation of geomaterials. The same idea about non-
uniform granular structure of the representative macro volume
consisting of micro particles of various sizes and various ori-
entations is put in the basis of the model. In suggested variant
of the theory the mechanism of micro fracture [3] leading to
strain softening is accepted as the basic mechanism of inelastic
deformation. A measure of micro fracture is tensorσfk , which
is coaxial with directing deviatorα, fixing a direction in de-
viatoric space. As a result of such generalization we come to
the theory which considers influence of the first and the third
invariants of stress tensor on plastic deformation and fracture.

Formulations of the theory

We will write down the local law of strain softening in the form
of

σk + σfk = G̃ : εk (1)

whereεk, σk, σfk are tensors of micro strain, micro stress and
stress of micro fracture of k-th particles accordingly.

The law of development of micro fracture stress of each particle
is set in the form of:

σ̇fk = σ̇fkµk, µk = εk/εk, (2)

whereεk is the local limit of micro fracture in strain space
(εk(0) = εk0), µk is directing tensor, defining a direction of
rate of change of micro fracture stress which is also represented
coaxial withα (directing deviator, fixing a direction in devia-
toric space):

µk = m1e+m2α+m3α ·α (3)

The law of change of limit of micro fracture can be set in a
following general view

ε̇k =
∑
n

Eknσ̇
f
n ≡

〈
Eknσ̇

f
n

〉
(4)

whereEkn is the function of influence defining the contribu-
tion of n-th particle in change of micro fracture limit ofk-th
particle and symbol〈 〉 represent averaging throughout all mi-
cro particles. In special cases this relation can be simplified up
to

ε̇k =

 E1σ̇
f
k + E2σ̇

f : µk + E3

〈
σ̇fk

〉
, µk = µk′

E2σ̇
f : µk + E3

〈
σ̇fk

〉
, µk 6= µk′

(5)

whereµk′ is direction of active micro fracture.

For an establishment of connection of local laws of micro- and
macroscopical deformation we shall take advantage of relations
of Kroner’s type:

(σ̇ − σ̇k) = Ã : (ε̇k − ε̇) (6)

whereÃ is tensorial function of the fourth rank of micro- and
macro condition of material. The relations (6) allows to re-
ceive a number of widespread approaches in polycrystalline
modeling with particular choice of functioñA, for instance,
approaches of type of Taylor, Voigt, Reuss, Eshelby, Kroner,
advanced self-consistent models.

Stress of macro fracture is defined as the sum of micro fracture
stresses of all micro particles:

σ̇f =
∑
k

σ̇fkµk (7)

Resulting formula

From here it is possible to receive

σ̇f = −ε̇ :
(〈

˜D4
D1

: µkµk

〉
+D5

〈
˜D4
D1

: µk

〉〈
D3
D1

: µk
〉)

:

:
(
Ĩ −

〈
D2
D1
µkµk

〉
−D5

〈
D2
D1
µk

〉〈
D3
D1
µk

〉)−1

(8)
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where

D1 = 1− E1µk : (Ã+ G̃) : µk (9)

D2 = 1 + E2µk : (Ã+ G̃) : µk (10)

D3 = E3µk : (Ã+ G̃) : µk (11)

D̃4 = Ã+ G̃ (12)

D5 =
(

1−
〈
D3

D1

〉)−1

(13)

Here〈 〉means averaging of the quantities, which is carried out
only on active particles (

√
εk : εk = εk andσ̇fk > 0).

Results

Last relation defines resolving equation of the theory of the
plasticity involving micro fractures. Algorithms of identifica-
tion of universal parameters of the theory on the basis of acces-
sible base experiments are presented in the work. On the basis
of the presented model algorithms of numerical calculations by
final elements method are developed. Results of comparison of
numerical modeling with experimental data for triaxial tests of
geomaterials are shown in the work.
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Summary: In the given work the description of the theory of micro strains is given. Close connection of the theory with mi-
croplane theories is shown. Lacks and advantages of both approaches to the description of plastic deformation of metals are
analyzed.

Introduction

In work [1] the theory of micro strains which was the further
development of the approaches stated in works of Novozhilov
and his collaborators [2, 3] is stated. Interrelations between this
theory and other theories of plasticity, in particular slip theo-
ries, physical theories of plasticity, structural models, have been
established. In the given work the interrelation of the theory of
micro strains with the microplane theories, which have received
last time intensive development in the appendix to plasticity of
metals [4, 5], is analyzed.

Main features of theory of micro strains

Scheme of the theory of micro strains, consists in assumption
that the representative macro volume is consisting of final
number of the interconnected micro particles. The stress-strain
state of each micro particle is defined by micro stresses and
micro strains. Thus there is accepted that there are exists
at least two levels of the characteristic sizes: macro level
defined by the size of representative macro volume, and micro
level which characteristic size is defined by the size of micro
particles. We shall note that in the theory the size of a micro
particle is not fixed. By virtue of it the concept ”micro particle”
is purely conventional and only reflects the fact of existence
of two characteristic levels at construction of constitutive
relations.

Let us note the basic features of the theory of micro strains
which distinguish it from other plasticity theories with struc-
ture. The first, there is enough detailed account of the internal
stresses arising between various particles in a material. Phys-
ical nature of such stresses is connected with discrepancy of
plastic deformation from grain to grain. The phenomenological
approach to their account allows to abandon from necessity of
experiments for definition of physical constants and allows to
define them from macroscopical behavior. The second feature
of the given theory is generalization of tensor of micro plastic
strain on tensor of a general view that allows to construct the
theory of plasticity of the polycrystals in deviatoric space,
differing from the theory of plasticity of polycrystals in the
same degree as a condition of plasticity of the Tresca and
Mises. In the third, in the theory of micro strains the big
attention is given to interference of plastic strains of individual
particles. This moment also is a key at establishment of
interrelation with other theories. With special choice of the

law of interference of micro strains it is possible to receive the
scheme of deformation like in microplane model.

Formulation of theory of micro strains

System of resolving equations of the theory of micro strains
represented in the form [1-3] of

σ = G̃ : (ε− εp) (1)

σ = τ + ρ (2)

τ = τα (3)

ε̇p = ε̇pα (4)

ρ(α, t) =
∫
Ω

R(α,α′)εp(α′, t)dΩ (5)

〈σ〉 − σ = A (εp − 〈εp〉) (6)

As a result of transformations we come to one integral equation

σ : α = τ0 +
∫
Ω

R1(α,α′)εp(α′, t)dΩ (7)

from which it is necessary to find intensity of micro plastic
strain εp(α′, t) and domain of active micro plastic deforma-
tionsα′ ∈ Ω. Macro plastic strain is defined then under the
formula

〈εp〉 =
∫
Ωα

εp(α′, t)α′dΩ (8)

Interrelation with microplane theory

Now let us assume

α = (n⊗m+m⊗ n)/2 (9)

i.e. we shall consider, that micro plastic strain occurs as a result
of plastic slip on planes with normaln in the directionm.

Then the resolving equation will become

τnm = τ0 +
∫
Ω

Rnm(n,m, n′,m′)γ(n′,m′, t)dΩ (10)

This equation can be treated as the generalized resolving equa-
tion of slip theory. In particular it is shown in [3], that from last
relation at

Rnm(n,m, n′,m′) = δ(1 − n · n′m ·m′)F (γnm) (11)
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the theory of Batdorf-Budiansky follows. Let us assume now

Rnm(n,m, n′,m′) = Rn(1 − n · n′)Rm(m ·m′) (12)

andRn(n · n′) = δ(1− n · n′), Rm(m ·m′) = m ·m′, then
it is easy to show, that on a plane with normaln the active
direction always will be directed along tangential stress acting
on this plane

m = σT = σ · n− σNn = (e− n⊗ n) · (σ · n) (13)

and we obtain known [4, 5] relations of microplane model for
metals:

εp =
3
4π

∫
Ωn

εTr · (n⊗ δ + δ ⊗ n)dΩn (14)

Conclusions

Thus, in the given work it is shown, that microplane theories is
one of subclasses of the theory of micro strains. Series of nu-
merical calculations of plastic deformations of metals at com-
plex loading has been lead for finding-out of quantitative and
qualitative differences of both approaches. It is shown, that re-
sults are close enough at active loading. For complex cyclic
loading the modified theory of micro strains [6] is used and the
modified microplane theory is constructed, allowing to describe
ratcheting.
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Summary: This article briefly outlines the conceptual basis of biomechanics analysis and discusses a number of the key technical
considerations involved, specifically from the standpoint of effective modelling of biomechanical systems. The purpose of this
paper is to perform a biomechanical analysis of a human ankle joint and fibula bone by determining the reaction forces in static
conditions using inverse dynamic method. Also this paper treats some theoretical aspects of a finite element analysis of a human
fibular bone to validate the applicability of the finite element technique to this kind of complex structures.

Ankle joint reaction forces in static conditions

Using an inverse dynamics approach the reaction forces in the
ankle joint can be calculated, where the anthropometrical data
of 70 kg person are used as input data for biomechanical system
[2].

Inverse dynamic method presumes some conditions:

• the human body is divided in segments;

• each segment is rigid and it has a fixed mass located as a
point mass at its center of mass (which will be the center
of gravity in the vertical direction);

• the location of each segment’s center of mass remains
fixed;

• the length of each segment remains constant;

• the friction force in the joint is null.

By using the stance phases of foot to the ground (Fig. 1), we
can calculate the reaction forces and net joint moment in the
ankle [2].

3D reconstruction of human fibula

The proposed solution is based on a method witch combine the
imagine processing techniques and 3D computer graphics. The
method adopted for visualization is the conversion of 2D image
slice data, as grey value images. The resolution can vary from
0.2 to 1 mm. The program also generates high-resolution 3D
renderings in different colours directly from the slice informa-
tion. Contrast enhancement can be carried out interactively to
improve the model. The segmentation mask can be displayed
in a different colour on top of the image [1, 2].

The steps to obtain the human fibula 3D model are:

1. Import of all processor data witch are represented by 2D
thomographic slice. The number o 2D slices are 72 and
the height of each one is one millimeter. These 2D slices
belong to a person with a weight of 70 kg.

Figure 1: The foot contact fazes with the ground: 10%, 25%,
45%, 70%.

2. Thresholding means that the segmentation object (visual-
ized by a colored mask) will contain only those pixels of
the image with a value higher than or equal to the thresh-
old value. A low threshold value makes it possible to select
the soft tissue of the scanned patient. With a high thresh-
old, only the very dense parts remain selected. Detection
of bone tissue can be obtained by using the optimal gray
value, established between minimum value of 2080 and
maximum value of 3056 Hounstield units.

3. The 3D representation of the ankle articulation and fibular
bone (Fig. 1). As it can be seen in the picture below, the
left hand said model represents the human ankle articula-
tion and on the right hand said the fibular bone [1].
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Figure 2: 3D representation of ankle joint and fibular bone.

Finite element analysis of human fibula

Finite element studies generally involve few stages. The first
phase, known as preprocessing, involves prescribing the mesh
geometry, specifying the material property distributions, and
designating the loading [3]. The bone is modeled as nonho-
mogenous, orthotropic and linear elastic material. This means
that the bone elastic modulus vary between 33% (when the den-
sity is 1.5 g/cm3) and 62% (when the density is2 g/cm3) and
has the higher value on axial direction then transversal and lon-
gitudinal direction. On the axial direction the elastic modulus is
19.34 GPa, on the transversal direction the value is 11.23 GPa
and on the longitudinal direction the value is 9.74 GPa. Also
the Poisson coefficient (νx = 0.31; νy = 0.18; νz= 0.18) and
tensile strength (σx = 4.32 GPa;σy = 3.57 GPa;σz = 3.57 GPa)
are different on the X, Y, Z directions [2–5].

In this case, when the material is orthotropic (composite mate-
rial), for accurate results I have used ten node tetrahedral ele-
ments with the element mesh size of 2 mm. The finite element
software has generated for fibular model a number of 498,910
nodes and 361,404 elements [2].

The 3D model is constrained on the superior part and on the
inferior part is subjected with a compression force of 112.6 N.
The compression force is the 1/6 part of the total reaction force
witch acts in a human ankle having a weight of 70 kg [2].
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Summary: Bone characterization is still a relevant problem due to the complexity of bone tissue. Bones are composed of
complex porous media at the microscopic scale and at macroscopic scales we deal with homogenized properties, that have
to be determined. A first approximation of long bones consists in considering the cortical part to be filled with an isotropic,
linear, viscoelastic medium, and neglecting the trabecular part. The configuration in the sagittal plane takes the form of a circular
viscoelastic cylinder, placed in a softer viscoelastic medium. Considering circular section, the problem is analytically solved in
the frequency domain, providing the direct problem. Inverse problem is focused on the low frequency problem in order to retrieve
relaxed properties of the cortical bone. The algorithm is based on the low frequency approximation of the analytical solution of
our problem. In particular, we show how low frequency approximation can be relevant to highlight the ill posed character of the
inverse problem.

Introduction

We are concerned by cortical bones in the appendicular portion
of long bones. Cortical bone is arranged as bundles of osteon
packed tightly together. Bone is a highly heterogenous porous
anisotropic media at both micro and macro scale. As we deal
with wavelengths large compared to the size of bundles of os-
teon, homogenized models involving homogenized parameters
are appropriate. Because of the low porosity of cortical bones
(3 − 5%), we are dealing with a viscoelastic medium [1] to
model cortical tissue. We show how we could solve the prob-
lem of the diffraction of a cylindrical incident wave striking a
viscoelastic tube (representative of the cortical bone), by an an-
alytical method.
Finally, we consider the low frequency approximation of the
analytical solution and show how it can used to solve explicitly,
but partially, the inverse problem of the recovery of mechanical
parameters of the long bones.

Direct problem

Measurement and material ingredient We consider that the
mediumM0, occupying the host domainΩ0 (the surround-
ing domain and the medullar cavity) is viscoelastic such that
ρ0 = 1030 kg·m−3,

(
c0S
)
R

= 200 m·s−1, Q0
S = 100,(

c0P
)
R

= 1500 m·s−1, Q0
P = 150, values which are repre-

sentative of muscles [2].
In the appendicular part, cortical bone is transversally isotropic
and cancelous bones are neglected. The bone is solicited by an
incident P wave radiated by a line source located in the sur-
rounding medium. We assume that the excited portion of the
bone is sufficiently long for the latter to be assimilated with an
infinitely-long cylinder. In such case, we are dealing with a 2-D

viscoelastic diffraction problem.
Heterogeneity and porosity of cortical bone are accounted by
considering mediumM1 filling Ω1 (cortical ring) to be a ho-
mogenized viscoelastic solid such thatρ1 = 1850kg.m−3,(
c1S
)
R

= 1800 m·s−1, Q1
S = 30,

(
c1P
)
R

= 3050 m·s−1,
Q0
P = 50 ([2]). Note that in such model, dissipation in the cor-

tical bone is of particular interest for osteoporosis diagnosis.
Finally, we consider a circular tubes (inner radiusrext and outer
radiusrin). This is consistant with the low frequency approxi-
mation that would be used.

Governing equations We solve the scattering problem in an
analytical manner. The problem is to determine the field in
the subdomainΩ0. We are dealing with the Fourrier transform
of the scalar and vectorial potentials, respectivelyφ(x, ω) and
ψ(x, ω) = ψ(x, ω)i3 related to the diplacementuj through
uj(x, ω) = ∇φj(x, ω) + ∇ ∧ ψj(x, ω) These potentials ver-
ify Helmholtz equation (with source terms atxs = (rs, θs)
for scalar potential). In the cylindrical coordinate system, these
potentials satisfy the displacement and the traction continuity
conditions on the outer and inner interfaces and the outgoing
wave condition.
The viscoelastic properties are expressed by complex wave
number depending on frequency and on the relaxed material
parameters.

Field representations The incident P wave is radiated by a
line source located atxs = (rs, θs). Incident, scattered and
transmitted fields are represented thanks to cylindrical func-
tions. For exemple, in the case of scattered fields (satisfying
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radiation condition) :{
φ0d =

∑∞
m=0 a

0
mεmH

(1)
m (k0

φr) cos (m (θ − θs))
ψ0d =

∑∞
m=0 b

0
mεmH

(1)
m (k0

ψr) sin (m (θ − θs))
(1)

whereinH(1)
m () are them-th order and the first kind Hankel

function andε0 = 1, εm>0 = 2. Our goal being to express
the coefficientsa0

m andb0m, this is done by first expressing the
continuity of the boundary conditions at each interface and by
using the orthogonality relations of the abovecosm(θ − θs)
functions, secondly by inverting the system.

Low frequency approximation We follow the approach ex-

posed in [3]. We first defineχ = k0
φrext ande =

rint
rext

. We

assume thatχ is small enough (i.e.,0 < χ � 1) for it to be
true for all the arguments of all cylindric functions in the sys-
tem expressing the continuity condition. This authorizes use of
the small-argument asymptotic forms :

H
(1)
0 (ζ) ∼ 2i

π
ln ζ ; H(1)

m (ζ) ∼ − i(m− 1)!
π

(
ζ

2

)−m
Jm(ζ) ∼ 1

m!

(
ζ

2

)m
; ζ → 0, m = 0, 1, ...

(2)

After a series of algebraic manipulations, the following asymp-
totic form of a0

m andb0m are found (form > 1 the terms are
negligible in regards toχ2):

a0
0 = ã0

0 · χ2 +O
(
χ4
)
, a0

1 = ã0
1 · χ2 +O

(
χ4
)

b01 = b̃01 · χ2 +O
(
χ4
) (3)

wherein

ã0
0 =

iH(1)
0

(
k0
φr
s
)

4
iπ
4
F (Π0

R,Π
1
R,Π

2
R, µ

0
R, µ

1
R, µ

2
R, e)

ã0
1 =

iH(1)
1

(
k0
φr
s
)

4

(
iπ
8

)
G(ρ0, ρ1, ρ2, e)

b̃01 =

√
Π0
R

µ0
R

× ã0
1

(4)
where, the functionF andG are independ of the frequency and
are given in Apendix.
Eq. (4) only involves the Laḿe coefficients of the relaxed pa-
rametersΠj

R andµjR, j = 0, 1, 2 becauselimω→0 Πj(ω) = Πj
R

and limω→0 µ
j(ω) = µjR. Then, by employing the low fre-

quency approximation, we deal with the static characteristics
of the involves media and not at all with their frequency behav-
ior (i.e. the quality factors).

Inverse problem

Recovering the scattering coefficients At a pointx = (r, θ),
the low frequency approximation of the diffracted potentials in
the host solid becomes (to second order inχ)

φ0d(x, ω) ≈
(
ã0
0H

(1)
0

(
k0
φr
)

+ 2ã1
0H

(1)
1

(
k0
φr
)
cos (θ − θs)

)
χ2

ψ0d(x, ω) ≈ 2b̃01H
(1)
1

(
k0
ψr
)
χ2 sin

(
θ − θi

)
(5)

We are considering that a multi-frequency scattered field is
available all around the bone in a circular ring of radiusb. Mak-
ing use of the orthogonality relations we uncouple the different
order of the cylindrical decomposition, and we define:

Iφm(ω)=
∫ θi+π

θi

φ0d(b, θ, ω) cosm
(
θ − θi

) dθ
π

=a0
mH

(1)
m

(
k0
φb
)

Iψm(ω)=
∫ θi+π

θi

ψ0d(b, θ, ω) sinm
(
θ − θi

) dθ
π

=b0mH
(1)
m

(
k0
ψb
)

(6)
The inversion is then obtained by extrapolating the previous
parameters to their zero frequency limit. In a second step the
mechanical parameters are obtained trough the equation:

lim
ω→0
Iφ0 (ω) = ã0

0H
(1)
m

(
k0
φb
)
χ2 = F × F

lim
ω→0
Iψ1 (ω) = b̃01H

(1)
m

(
k0
ψb
)
χ2 = G ×G

(7)

WhereF andG are the preceding equation of the material pa-
rameters of bones and host media, andF andG are complex
function of known coefficients (measurements parameters and
host material properties).
These relations show that the field is a nonlinear function of
the material parameters. Knowinge, we could only retrieve the
densityρ1 and get an equation relatingΠ1

R andµ1
R.

Conclusion

The last relations shows that the low-frequency perturbation
scheme enables an explicit (partial) solution of the inverse
problem of the reconstruction. Supposing that the host media
and the external radius is known, we are interested in4 bone
parameters (three material static parameters of the bone speci-
men :Π1

R , µ
1
R ρ

1 and thicknesse) but only two of them can be
imaged through low frequency measurement using such model.

Apendix

F (Π0
R,Π

1
R,Π

2
R, µ

0
R, µ

1
R, µ

2
R, e) = {(

Π1
R − µ1

R −Π2
R + µ2

R

)(
Π0
R − µ0

R + µ1
R

)
e2+(

Π0
R − µ0

R −Π1
R + µ1

R

)(
Π2
R − µ2

R + µ1
R

)
}/{(

Π1
R − µ1

R −Π2
R + µ2

R

) (
µ0
R − µ1

R

)
e2+(

Π1
R − µ1

R + µ0
R

) (
Π2
R − µ2

R + µ1
R

)
}

G(ρ0, ρ1, ρ2, e) =

(
ρ2 − ρ1

)
e2 + ρ1 − ρ0

ρ0

(8)
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Summary: This paper describes some results obtained for the contact problems arising in mathematical modeling of the hetero-
geneous materials. Variational method developed in the previous work for the friction contact problem is used in the macroscale.
In the nanoscale a molecular dynamic and static approach is proposed and realized as well as a hybrid model.

Introduction

This work is devoted to the development of numerical meth-
ods for finding of the contact stress interaction at the separation
boundary of two different phases in a heterogeneous material,
as well for stresses and strains near this boundary. Two mate-
rial models are used: traditional continuum model for an elastic
solids, and molecular dynamic and/or quasi-static models. In
the 1st kind problems the contact interaction is investigated for
the following conditions at the separation boundary: continu-
ous contact, increasing or decreasing contact without- and with
Coulomb friction, adhesion contact with failure, i.e., with crack
propagation. The solution methods are given in [1]. A general-
ization consists of the development of algorithms onto two de-
formed body. At nanoscale level two models are used: the first
one is two lattices composed from different kind of particles,
the second model is a homogeneous lattice (nanocoating) inter-
acting with an elastic body. First kind problem are solved by the
molecular dynamic methods [2], Newtons iteration are used for
quasi-static problem solution. A newness of this part consists of
development of a hybrid model which a continuum and discrete
particles with long-range interaction are used simultaneously.

Mathematical setting and discretization

Let Ω1 and Ω2 be two deformed solids (two homogeneous
phase) in contact, andΣC be the separation boundary. In an in-
ternal point ofΩ1 andΩ2 the equilibrium equations hold. The
following boundary condition holds at the any point ofΣC :

1. contact displacement and forces (scalar product of the
stress tensor to the external unit normal vector) are equal
one to other for the continuous contact,

2. impenetrability condition and non positiveness of the con-
tact pressure holds for the frictionless increasing or de-
creasing contact, with zero tangential contact force,

3. in a friction contact problem the Coulomb friction law
holds onΣC .

Discretization with respect to the spatial variables is made with
the boundary element method (BEM), using the fundamental
solution for 2D problems, Boussinesq and Cerruti formulae for
3D problems. The finite difference approximation is used for
the discretization with respect to load parameter to take into
account the history of a loading. Equations for a lattice are the
traditional 2nd Newton law equations, with the forces defined
by a potential of the long-range interaction. Verlet integration
algorithm is used [2].

Examples

In the frame of the contact problem for two elastic bodies the
following mechanical phenomena were found.

• There exists a critical angle between the separation bound-
ary and the boundary of the domainΩ1 ∪ Ω2: when a
current value of such angle exceed this critical value then
an unbounded increase of the contact stresses take place
with the movement to the point of intersection of the men-
tioned two boundary; this phenomenon was analyzed for
2D problems.

• The contact stresses depends on the loading history when
the Coulomb friction is taken into account; this depen-
dence was detected for 2D- and 3D friction contact prob-
lems.

• The tangential contact stress is smooth if we use step-by-
step algorithm for the friction contact problem, and it has
a discontinuous derivative if we do not take into account a
loading history.

Some interesting results of this part of work are presented in
Figs. 1–2. The curves in Fig. 1 relate to 2D problem and show
the distribution of the normal contact pressure of the contact
interaction between a rigid rough fragment of the broken rein-
forced fiber in the deformed matrix of a composite material.
The Coulomb friction law is used. It can be seen that there
exists a concentration of the contact stresses near the end of
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the fiber. Theoretically this stress tends to infinity when we
approach to fiber ends. Solid curves in Fig. 1 correspond to
Galin’s and Spence’s solution, dotted lines represent the numer-
ical solution obtained with BEM. Note that for a small length of
the fiber fragment the numerical solutions are almost the same
that the analytical ones.

Fig. 1 shows some results of the numerical solution of a 3D
friction contact problem for a fragment of the cylindrical rigid
rough fiber contacting with the plan layers. The contact stresses
increase when we approach to the ends of a fragment. Theoret-
ically there exists the limit equal to infinity. The presented fric-
tion stresses are the modulus|~σT | of the friction stress vector
(Euclidean norm). Note that the solution is obtained for 10 steps
of the external load being an approach of the layers. A sections
of the surface|~σT (x, y)| by a plane parallel to the cylinder axis
is a smooth curve with a maximum corresponding to the sep-
aration point of the stick and slip domains. Note that for one
loading step this curve is not smooth.

A theory of interaction of a coating with a coated material at
the nanoscale is proposed. This theory is based on the molec-
ular static and molecular dynamic approach [2]. Some results
of the numerical experiments are shown in Fig. 3. Theses re-
sults relate to a chain composed from two different kinds of
atoms: atoms numbered 0,1,2,. . . ,N1 correspond to Cu, atoms
N1, ..., N2 correspond to Ag. Atom No “0” is fixed, atom No
“N1 + N2” is loaded by a given displacement, and there ex-
ists a gap betweenN1 andN2-th atoms. The calculation was
made for Morse’s potential with the constants (and dimension-
alities of all the quantities) taken in [2]. The number of the load
steps is equal to 1000 for maximal displacement of the last atom
equal to 25. The solid curves correspond to 500 steps, the dot-
ted curves, (a) for the force acting on the atom No”I”from
right, and (b) for the displacement of the atom, correspond to
the final state of the system with the gap equal to 1. It can seen
that the destroyed bond correspond to the junction point of two
materials. Note that inside two fragments of chain the displace-
ments are a linear functions and the interaction force is con-
stant. Then we can use the equation of a deformed continuum
in such a subdomains. Only near the ends of the chain and near
the junction point of two different materials we must use the
molecular static (or dynamic) approach. Some applications of
the molecular dynamic approach to a biomedical nanotechnol-
ogy were investigated too.
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Figure 1: Distribution of the normal contact stresses.

Figure 2: Distribution of the contact stresses.

Figure 3: Displacements and forces in an atom chain (one-
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Summary: This paper describes the numerical solution of Newtonian and non-Newtonian fluid flows in two dimensional and
three dimensional branching channel. Viscous incompressible laminar fluid flow is considered. The system of generalized Navier-
Stokes equations and the continuity equation presents the mathematical model. This unsteady system (repared by artificial com-
pressibility method) is solved numerically using finite volume method in conjuction with multistage Runge-Kutta method. The
numerical results for three dimensional case are presented.

Mathematical model

Firstly, we consider the non-Newtonian flows. The generalized
system of two dimensional Navier-Stokes equations and conti-
nuity equation for incompressible laminar flows in conservative
form is

R̃Wt + Fx +Gy =
R̃

Re
(Rx + Sy), Re=

q∞l

ν
, (1)

whereq∞ is reference velocity value and

W = col‖p, u, v‖, R̃ = diag‖0, 1, 1‖, (2)

F = col‖u, u2 + p, uv‖, G = col‖v, uv, v2 + p‖, (3)

R = col‖0, g11, g21‖, S = col‖0, g12, g22‖. (4)

We used one of the known non-Newtonian models

gij = 2 | e |r eij , eij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (5)

For Newtonian fluids (special form of the previous system with
r = 0) the system of Navier-Stokes equations and continuity
equations for incompressible laminar flows reads

R̃Wt + Fx +Gy =
R̃

Re
∆W. (6)

Numerical solution

The artificial compressibility method is used to find steady state
solutions. Then we can rewrite system (1) (non-Newtonian flu-
ids) or (6) (Newtonian fluids) as

Wt = −(F̃x + G̃y) (7)

where

F̃ = F − 1
Re
F v, G̃ = G− 1

Re
Gv

F andG are inviscid fluxes defined by (3) andF v andGv are
viscous fluxes represented right hand side in the systems (1)
and (6).

The system of equations (7) is integrated overDij (finite vo-
lume cells). After applying mean value and Green’s theorems
we get

Wt |ij= −
1
µij

∮
∂Dij

F̃dy − G̃dx. (8)

The integrals on the right hand side are numerically approxi-
mated by

Wt |ij= −
1
µij

4∑
k=1

F̃ij,k∆yk − G̃ij,k∆xk. (9)

The system of ordinary differential equations (9) is solved by
finite volume method. We used multistage Runge-Kutta method
as numerical method for this system

Wn
ij = W

(0)
ij

W
(r)
ij = W

(0)
ij − αr∆tRW

(r−1)
ij

Wn+1
ij = W

(m)
ij r = 1, . . . ,m,

RWn
ij = RWn

ij −DWn
ij ,

(10)

where for our computations we usedm = 3, three-stage
Runge-Kutta coefficientsα1 = α2 = 0.5, α3 = 1.

The steady residualRWij is defined by

RWij =
1
µij

4∑
k=1

[(
Fk −

1
Re
F vk

)
∆yk−

−
(
Gk −

1
Re
Gvk

)
∆xk

]
,

(11)

the termDWij presents the artificial viscosity of Jameson’s
type (for details see, e.g., [2])

In order to satisfy the stability condition the time step is chosen
as (for details see, [1]):

∆t = min
i,j,k

CFL µij

ρA∆yk + ρB∆xk + 2
Re

(
(∆xk)2+(∆yk)2

µij

) , (12)

ρA =| û | +
√
û2 + 1 ρB =| v̂ | +

√
v̂2 + 1,

| û |, | v̂ | are the maximal values of the components of velocity
vector inside the computational domain.

The computation is performed until the value of the L2-norm
of residual satisfes RezWn

ij ≤ εERR with εERR small enough
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Figure 1: Velocity isolines of 3D channel for non-Newtonian
fluids.
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Figure 2: Velocity magnitude distribution in the cuts of 3D
channel from Fig.1.

(MN denotes the number of grid cells in the computational
domain), where

RezWn
ij =

√√√√ 1
MN

∑
ij

(
Wn+1
ij −Wn

ij

∆t

)2

. (13)

Numerical results

We present the numerical results for 3D branching channel.
Fig. 1 and Fig. 2 show the fluid velocity distribution and
cuts of main and branching parts of the channel for the non-
Newtonian fluids in 3D channel, Reynold’s number is defined
by Re = q∞4S1/µO, Re = 300 for this case. In the Fig.3
and Fig.4 the velocity isolines and cuts of both parts of the
channel for Newtonian fluids with the Reynold’s number 300 is
shown. The history of convergence of the residuals of the vector
W = (p, u, v, w)T is presented. By the symbolq the velocity
magnitude is denoted, i.e.q =

√
u2 + v2 + w2.
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Figure 3: Velocity isolines of 3D channel for Newtonian fluids.
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Department of Mechanics
University of West Bohemia in Pilsen, Husova 11, 306 14 Plzeň, Czech Republic
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Summary: The viscoelastic behaviour of a material of which microstructure is formed of elastic balls floating in a viscoelastic
matrix is studied. The model is based on expressions of the elastic and the dissipative potentials resulting from the work and the
power of forces developed at the micro-scale during reconfiguring between micro-constitutents.

Introduction

Viscoelastic behaviour is typical of a number of materials such
as polymers and biological tissues. These materials have mem-
ory but typically this memory fades with time. Assuming the
time fading to be enough important, the short time history of
the deformation can be represented by the rate of deformation
[1]. General constitutive law for a material where stress at a
given material point depends on deformation and on the rate of
deformation at that point, is

S(t) = pC−1 + 2
∂W e(C)
∂C

+ 2
∂W v(Ċ,C)

∂Ċ
. (1)

Herein the deformation is assumed to be isochoric (
√

detC =
1,C is the right Cauchy-Green strain tensor) andp in the hydro-
static pressure. The key question when modeling viscoelastic
material is consequently “which” expressions have to be cho-
sen for the elastic and the dissipative potentialsW e andW v?
It is clear that these expressions should reflect the reality of
material constitution: they define the “constitutive” law of ma-
terial behaviour. Unfortunately it is impossible to take all as-
pects of the material microstructure into account in a reason-
able model. For instance, here, the microstructure is averaged
to model the heterogeneous material as a material where mi-
crostructure is constituted of inclusions floating in a matrix. In
what follows, the term “balls” is preferred over “inclusions”
because the balls will be considered to be smoother than the
matrix. Moreover balls are assumed to be incompressible. The
elastic behaviour of such a material has been already studied
in details in [2]. In this paper viscoelasticity is included to the
material behaviour assuming the matrix to be viscous. Material
model includes some internal variables in terms of lengths sizes
of balls and distances between balls. In addition to the macro-
scopic constitutive law (1), the study asks for the laws gov-
erning the time evolution of these internal variables. They are
given by the compensation at the micro-scale between the elas-
tic forces due to the stretching of the elastic components and
the viscous force due to the fluid movement in matrix. Work
and power of these forces are essential quantities for the consti-
tutive law. They are used to define the expressions of the elastic
and the dissipative potentials.

Expressions of potentials

Thanks to the determinism of the considered material mi-
crostructure, the elastic and the dissipative potentials occur-

Figure 1: Material which microstructure is formed of ‘balls and
springs’.

ring in the expression (1) can be expressed as functions of the
macroscopic deformation and of the microscopic configuration.
The microscopic configuration is governed by sizesci of balls
and the distances∆i between balls,i = 1 . . . 3 (see Figure1)
so thatW e = W e(F, ci,∆j) andW v = W v(F, Ḟ, ci,∆j).
Changes in these internal variables’ values lead to microscopic
material restructuring. Micro-restructuring is accompanied by
development of forces at the micro-scale. These forces are of
two kinds. Elastic forces are due to the extension or the con-
traction of elastic components. Viscous forces are implied by
the fluid movement of the matrix. Then, the main idea of this
work was to express the elastic and the dissipative potentials
as the densities of the work and of the power of these forces,
respectively. For simplicity, the model of linear springs is used
for averaging the elastic components. Elastic forces are forces
developed by the contraction or the extension of springs:

fe = K(h− h(0)), (2)

wherefe is force,K is rigidity andh andh(0) are current and
rest lengths, respectively. The workwe of the forcefe is then

we =
∫
fedh =

K

2
(h− h(0))2. (3)

The elastic potentialW e is defined as the density of the sum of
works developed in all elastic components within a representa-
tive volume element (RVE). Withh = ci in balls andh = ∆i

between balls,i = 1 . . . 3, we obtain

W e =
1

2Vrve

3∑
i=1

(
Kc
i (ci − c

(0)
i )2 +K∆

i (∆i −∆(0)
i )2

)
,

(4)

whereKc
i andK∆

i are the rigidity of the elastic reinforcement
of the cell and of the matrix respectively, along theith direc-
tion; the superscript index(0) is used for rest lengths.Vrve is
the volume of each RVE; it remains constant during any defor-
mation since the material is incompressible.
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Viscous forces are reaction forces to the movement of the ma-
trix due to the compression or the aspiration of the fluid be-
tween two balls surfaces. Viscous force developed during a
compression or an aspiration of fluid between two identical sur-
faces depends on the fluid viscosityη, the thicknessh between
the two surfaces, the relative velocityḣ between the two sur-
faces and the common areaS of the surfaces. In agreement
with the dimensional analysis we can write

fv = ηḣ
Sα

h2α−1
, (5)

whereα is a positive dimensionless number. The powerwv of
fv is:

wv =
∫
fvdḣ =

ηḣ2Sα

2h2α−1
. (6)

The dissipative potentialW v is defined as the density of the
sum of all viscous powers developed in the matrix. Withh =
∆i andS = cjck, t reads

W v =
η

2Vrve

(
(c2c3)α

∆2α−1
1

∆̇1
2

+
(c3c1)α

∆2α−1
2

∆̇2
2

+
(c1c2)α

∆2α−1
3

∆̇3
2
)
.

(7)

Internal variables

When the sample undergoes a mechanical loading, every RVE
deforms. Expressing the gradient of deformation in local coor-
dinate

Fij = δijλi, (8)

the external deformation of the RVE is given by the principal
stretchesλi. Namely its lengths sizes∆xi can be related to the
reference ones∆xref

i m

∆xi = λi∆xref
i . (9)

Nevertheless, for any fixed macro-deformation, an inner re-
structuring within the RVE may occur moving theci and∆i

values. The current values of these internal variables are given
solving ordinary differential equations that result for the forces
compensation at micro-scale

Fe + Fv = 0. (10)

The forcesFe andFv diverge from the forcesfe andfv. In-
deed, the latter ones consider the micro-variables as indepen-
dent from each other,

fe(ξ) = Vrve
∂W e

∂ξ
, (11)

fv(ξ) = Vrve
∂W v

∂ξ̇
, (12)

whereξ = ci or ∆i. In reality, the internal variablesci and∆j

are not independent from each other but they are linked together
by the following two equations. The ball’s volume preservation
holds the product

Vc ≡ c1c2c3, (13)

which is constant, and three geometric relationships

ci + ∆i = ∆xi, i = 1 . . . 3, (14)

have to be fulfilled at any time. The dependence between micro-
variables is induced by using the total derivative. For instance,
working with the variable∆1, the total elastic contribution is
given by

Fe(∆1)= Vrve
dW e

d∆1
=

= Vrve

(
∂W e

∂∆1
+
d∆j

d∆1

∂W e

∂∆j
+

dci
d∆1

∂W e

∂ci

)
, (15)

and the total viscous contribution is:

Fv(∆1)= Vrve
dW v

d∆̇1

=

= Vrve

(
∂W v

∂∆̇1

+
d∆̇j

d∆̇1

∂W v

∂∆̇j

+
dċi

d∆̇1

∂W e

∂ċi

)
. (16)

Replacing the potentialsW e andW v by their expressions (4)
and (7), the forces compensation (10) leads to an ordinary dif-
ferential equation for∆1 that can be numerically solved. In
fully 3D modeling, this equation does not suffice to character-
ize the current configuration of the micro-structure, but is has
to be coupled with a second equation written by considering a
second micro-variable, e.g.∆2. However if the deformation is
plane or if it respects transverse isotropy symmetry, then that
equation suffices.

The domain of material application is very large. For instance,
the model can be applied to the phenomenon of stress relax-
ation. The restructuring between the micro-constituents of the
tissue may explained the delay in stress response. The model
could be also useful in biomechanics. Biological tissues are
generally assumed to be incompressible and viscoelastic. Their
microstructure is very complex but for a very simple approxi-
mation the model of balls may mimic the occurrence of biolog-
ical cells.
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Summary: Presented work deals with the reconstruction of cement paste microstructure for the purpose of simulation of its mi-
cromechanical behavior. Two-dimensional real images of cement paste captured by environmental scanning electron microscope
(ESEM) were employed for this reconstruction in two and also three dimensions. Thresholded images were converted to binary
representation that allowed using statistical descriptor (autocorrelation function). Computed examples proved good efficiency of
the reconstruction algorithms.

Introduction

Hydrated cement paste is a heterogeneous material at mi-
croscale which consists of three main phases- hydration prod-
ucts, unhydrated clinkers and pores. There are several known
models for the reconstruction of its microstructure. For exam-
ple, the Powers model can describe newly formed phases in the
quantitative way. In order to reconstruct the cement microstruc-
ture also spatially, more sophisticated model has to be used.
Such model, based on voxel structure, was developed by Bentz
(CEMHYD3D, [3]). In this model, the primary microstructure
is generated using statistical descriptor in the form of autocor-
relation function.

After the iteration process that includes dissolution, diffu-
sion, transport of chemicals and phase percolation the three-
dimensional microstucture of hydration products is generated.

Methods

The final goal of the presented work is to elaborate an effi-
cient numerical algorithm for the simplified (three-phase) mi-
crostructure reconstruction of a particular cement paste sample
using real ESEM images. For this purpose images captured by
the back-scattered electron (BSE) detector of ESEM were used.
Contrast in BSE images is produced by the variation of atomic
number within the scanned area of the specimen surface. This
variation corresponds to the different material phases. The re-
sulting image displays phases in the grey scale. Typical image
of the cement paste contains black color that represents empty
pores (they have zero reflectivity), white color of unhydrated
clinker minerals (they contain calcium and silica and they have
high reflectivity) and grey levels that can be assigned to various
hydration products (C-S-H gels, calcium hydroxide, ettringite
etc.). So far, there has not been found a way how to distin-
guish between the hydrated phases just according to the grey
level. For the purpose of the simplified model, the complex mi-
crostructure was treated like a three-phase medium. Hydrated
phases, clinkers and pores were selected from the image using
thresholding levels. Since the tresholding was done manually
(according to the chemical composition from ESEM), the re-
sults are necessarily dependent on this intentional choice.

Reconstruction algorithm in two dimensions

The proposed reconstruction algorithm is based on the binary
representation of the real microstructure. To provide a general
statistical descriptor of such a system it is useful to characterize
each member of an ensemble by a random stochastic function
characteristic functionχr(κ, α), which is equal to one when
a pointx lies in the material phaser in the sampleα a and
equal to zero otherwise [1]. Then, the one-point probabilitySr
function gives the probability that a pointx will be found in a
given phaser and the two-point probability functionSrs stands
for the probability that the pointsx andy will be located phases
r ands, respectively:

Sr(x) = P (χr(x) = 1) (1)

Srs = P (χr(x)χs(y) = 1) (2)

For the case of statistically homogeneous and ergodic media,
information contained in the one-point probability function re-
duces to the volume fraction of a given phase. In addition, the
two-point probability function then depends onx− y distances
and it can be obtained from the relation

Srs (x, y) =
1

WH
IDFT

{
DFT {χr (x, y)}DFT {χs (x, y)}

}
(3)

whereW is the width of image,H is the height of image,
χr(x, y) is the characteristic function of phaser,χs(x, y) is the
characteristic function of phase s,DFT andIDFT stand for
the direct and inverse Fourier transform and overline denotes
the complex conjugate [1].

The process of the reconstruction of a real microstructure starts
with the replacement the grey-scale image with a binary one. In
this way a two-phase reference system is created (e.g. pores and
other phases, Fig. 1a). The two point probability (autocorrela-
tion) function is represented by a matrix with the same dimen-
sions as the source binary image [2]. The second step is to use
a random checkerboard with volume fraction of the reference
system as the initial structure (Fig. 1b). The structure is then
altered by a phase interchange of two randomly selected pixels.
The resultant two-point probability function of the intermediate
(new) system is calculated. Then the series of iterative steps in
which always two pixels are altered is carried out. The conver-
gence of the iteration is controlled by the difference of norms
of autocorrelation functions between the previous and the new
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images. The matrix norm of the autocorrelation function can be
written as:

‖A‖ =

 W∑
i=1

W∑
j=h

axy

1/2

(4)

The iteration loop is stopped after reaching a specified tolerance
limit (Fig. 1d). The iterative process is depicted in Fig. 3a.

Reconstruction algorithm in three dimensions

Similarly to two dimensions,Srs(x, y) is computed from 2-
D binary image. However, for 3-D reconstruction it has to be
converted toS(d) format since for an isotropic media the au-
tocorrelation function should only be a function of the distance
d = ‖x−y‖ [3]. In this case, the autocorrelation function forms
a two-column matrix. The first column contains the distance
between two points in the same phase and the second column
expresses the average probability that two points in certain dis-
tance are in the same phase.

In our algorithm an initial 3-D microstructure is created using
a Gaussian noise (which was taken from CEMHYD3D algo-
rithm). It has a probability density function of the normal dis-
tribution as the Gaussian noise. Then, the convolution mask
of two images is computed. It involves the multiplication of
a group of pixels in the input image (created with the Gaus-
sian noise) with an array of pixels in a convolution mask (spec-
ified by the autocorrelation function). The output value pro-
duced in a spatial convolution operation is a weighted average
of each input pixel and its neighboring pixels in the convolution
mask. Initial 3-D microstructure is also filtered by a convolu-
tion mask maintaining periodic boundaries. The newly created
microstructure is thresholded in order to convert each pixel into
black or white. The resulting 3-D microstructure is produced so
that it has very similar autocorrelation function as the input 2-D
image (Fig. 3b).

Examples

In order to verify the reliability of the proposed algorithm, an
example of 2-D reconstruction was computed on the artificial
image (Fig. 1). Although the final image does not match ex-
actly the reference one it is very similar in terms of similar
autocorrelation functions and it also respects periodic bound-
ary conditions. Using lower-order correlation functions leads
to non-uniqueness of the solution that is caused by i ncomplete
morphological information. On the other hand, the computa-
tional algorithm is simple, although also time-consuming.
An example of 3-D reconstruction of the real 2-D image is pre-
sented in Fig. 2. For the comparison, the graph of autocorrela-
tion functions for the reference and reconstructed structures is
presented in Fig. 3b.

Summary

To summarize, algorithms for 2-D and 3-D reconstruction of
random microstructure of cement paste using image analysis
and two-point probability function was presented. However, it

is clear that even if the correlation function of the reference
and reconstructed images are in good agreement, it is not en-
sured that both images will match each other. An extension to
higher-order correlation functions and applying various bound-
ary conditions to the resulting system that will match better is
possible. It is planned to use the result of this work as an input
for finite element analysis of the micromechanical properties of
cement paste.

Figure 1: 2-D reconstruction: a) reference system, b) initial im-
age, c) intermediate image after 3 000 steps, d) final image (af-
ter 10 000 steps).

Figure 2: 3-D reconstruction: a) reference 2-D image, b) re-
sulting 3-D microstructure 100x100x100µm.

(a) (b)

Figure 3: (a) Evolution of the norm of autocorrelation func-
tion for 2-D example in Fig. 1, (b) the graph of autocorrelation
functions for reference system (red) and structure in 3D (blue).
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Summary: This paper defines a variety of general constitutive laws for various substances and creates a systematic overview of
various types of constitutive models. It deals with identification of parameters of hyperelastic isotropic and anisotropic constitu-
tive models from various types of mechanical tests in greater detail and presents results achieved with a biaxial testing machine
for soft tissues.

Introduction

For many years, linear elastic constitutive model (Hooke´s law)
was sufficient for technical practice. More sophisticated mod-
els of our up-to-date computer age enable us, among others, to
model also more complex material behaviour described by vari-
ous mathematical formulas constitutive models. Many of these
constitutive models are presented e.g. in [1] in their mathemat-
ical as well as graphical form. However, it appears to be useful
to complete the dependencies presented in [1] and to systemize
all the constitutive models into several basic categories and to
express the relations among them explicitly.

Basic categories of constitutive models

In mechanics in the common sense, constitutive models are
mathematical descriptions of mutual dependencies between
acting loads (or stresses) and deformation of bodies (or defor-
mation rate), including time dependencies, i.e., among others
creep and relaxation responses. Constitutive dependencies can
be defined as follows:

Constitutive dependenciesare causal dependencies among
tensors of stresses and strains and quantities derived of them
by mathematical operations, with accounting of time dependen-
cies.

In the sense of this definition, the simplest idealized states of
matter (rigid solid, perfect fluid, perfect gas) can be understood
as basic constitutive models. On the other side, a number of
rather complex constitutive models have been formulated till
now, with various components of their behaviour (elastic, plas-
tic, viscous); the simpler models can be derived of them as their
special cases. Therefore it is useful to systemize all the consti-
tutive models into several hierarchical levels.

• Basic constitutive models.This level consists of the con-
stitutive relations for rigid solid, perfect fluid and perfect
gas (and plasma, if there are any).

• Simple constitutive models.This level consists of mod-
els describing the behaviour of matters that differ from the
above “perfect” ones by one certain property only, e.g. lin-
ear elastic solid, viscous fluid etc.

• Combined constitutive models.This level consists of
models created by combination of two or more simple
constitutive models. They use, among others, reologi-
cal models to describe e.g. the behaviour of viscoelastic,
elastic-plastic, viscoplastic and elastic-viscoplastic mat-
ters.

A schematic overview of some most frequent constitutive mod-
els with mutual relations among them is presented in Fig. 2.
The three above levels of constitutive models are distinguished
by different colours in this scheme.

Identification of constitutive parameters

The more complex constitutive models and identification of
their parameters require also more complex mechanical test-
ing. In our institute, a machine for various types of biaxial tests
was produced recently; it is presented in Fig. 1.

Figure 1: Biaxial testing machine for polymers and soft tissues.
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Figure 2: Systematic scheme of constitutive models.

Conclusion

Some results of tests realized with this machine and parameters
of constitutive models identified on the base of these tests will
be published in the paper.
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Summary: In the present paper, a preliminary version of a fully coupled non-linear multi-phase mathematical model based
on continuum thermodynamics is presented for simulation of hygro-thermo-mechanical behaviour of moist, partially saturated
concrete at high temperatures. The hygro-thermal behaviour of concrete is highly complex phenomenon which is influenced
by cracking of concrete. The couplings between hygro-thermo-mechanical responses are dealt with by a consistent constitutive
approach choosing proper expressions for the Helmholtz free energy and the dissipation potential.

Introduction

In the present paper, a thermodynamically consistent model to
describe the behaviour of concrete at elevated temperatures is
presented. The model is based on the theory of mixtures and the
principles of continuum mechanics and macroscopic thermody-
namics [1, 2, 3, 4, 5]. In the model, the following phenomena
are taken into account:

• the reversible thermoelastic behaviour of concrete,
• damaging of concrete,
• transport of water, water vapour and air in the porous

cement paste,
• adsorption of water into the cement gel,
• phase change between water and water vapour and
• diffusion of water vapour in the gaseous component.

Thermomechanical theory

The concrete is considered as a multiconstituent system con-
sisting of a solid skeleton (s), liquid water (l) and a gaseous
component (g) of water vapour (v) and air (a).

The volume fractions of the solid, liquid and gaseous compo-
nents are defined as

βk =
dV k

dV
, k ∈ {s, l, g} , (1)

where dV k is the volume of componentk and dV the refer-
ence volume. Since the water vapor and air belong to the same
gaseous component, their relative proportions are measured via
the molar fractionsζv andζa such that

ζv ≡ ζ =
nv

nv + na
, ζa ≡ 1− ζ =

na

nv + na
, (2)

wherenk is the mole number of constituentk. The molar vol-
ume fractions,ξk, are defined as

ξs = βs, ξl = βl, ξv = ζvβg ≡ ζβg, ξa = ζaβg. (3)

Apparently the molar volume fractions satisfy the constraints∑
k

ξk = 1, ξk ≥ 0, k ∈ {s, l, v, a}. (4)

The molar volume fractionsξk relate the the apparent densities
ρk to the intrinsic (bulk) densities̄ρk according to

ρk = ξkρ̄k, k ∈ {s, l, v, a}. (5)

The state of motion of constituentk at an arbitrary instant of
time t is described by a velocity fieldvk(x , t), wherex is the
vector of spatial coordinates. The motion the solid component
can be described more conveniently by its displacement field
us ≡ u(x , t).

The deformations are described either by the rate of deforma-
tion

dk = 1
2

[
∇vk + (∇vk)T

]
, k ∈ {s, l, v, a} (6)

or by the strain

εs ≡ ε = 1
2

[
∇u + (∇u)T

]
. (7)

The material time derivative of a quantity following the move-
ment of constituentk is determined by the operator

dk
dt

=
∂

∂t
+ vk·∇. (8)

The velocityv s is then obviously the material time derivative
dsu/dt.

Because constituents have in general different velocities at the
same macroscopic point of the mixture, a reference velocity
field v∗(x , t) is introduced in order to establish the fundamen-
tal principles for the mixture. The material time derivative with
respect to the reference movement can be expressed as follows

dk
dt

=
d∗
dt

+ vk∗·∇, (9)

wherevk∗ is the relative velocity of the constituentk with re-
spect to the reference velocity:vk∗ = vk − v∗.

The balance law of linear momentum and the conservation laws
of mass and energy for the concrete can be expressed as follows
[2]:

ms + m l + mv + ma = 0, (10)

θs = 0, (11)

θl + θv = 0, (12)

θa = 0, (13)

`s + `l + `v + `a = 0, (14)

where the linear momentum production ratemk the mass pro-
duction rateθk, and the energy production ratèk for con-
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stituentsk ∈ {s, l, v, a} are defined as

mk =ρk
dkvk

dt
+ θkvk −∇·σk − ρkg , (15)

θk =
∂ρk
∂t

+∇· (ρkvk) , (16)

`k =ρk
dkek
dt

+ (ek − 1
2vk·vk)θk − σk:dk

+ mk·vk∗ +∇· qk − rk. (17)

whereσk is the Cauchy stress tensor,ek the specific internal
energy,qk the heat flux vector,rk the external energy supply
of constituents,k ∈ {s, l, v, a} and the acceleration of gravity
is denoted asg .

According to the second principle of thermodynamics the en-
tropy production should always be positive. Introducing the ab-
solute temperatureT and the specific entropysk of constituent
k, the entropy inequality for the concrete can be stated as

T (γs + γl + γv + γa) ≥ 0, (18)

where the entropy production rateγk of constituentk is defined
as follows

γk = ρk
dksk
dt

+ skθk +∇·
(qk
T

)
− rk
T
. (19)

Constitutive relations

The thermodynamic state and the material behaviour are de-
fined in terms of variables of state and dissipation through the
Helmholz free energies and the dissipation potential. The vari-
ables defining the thermodynamic state are the absolute tem-
peratureT , which is assumed to be uniform for all constituents,
the strain tensorε and the damage tensorD , which takes into
account microfracturing of the solid component, as well as the
intrinsic densities̄ρs, ρ̄l, ρ̄v andρ̄a and the molar volume frac-
tions ξs, ξl, ξv and ξa. The variables defining the dissipation
behaviour in turn are the heat flux,q = q s + q l + qv + qa,
the rate of damage,̇D ≡ dsD/dt, and the relative velocities
v ls, vvs andvas. Reversible material behaviour is described by
means of the Helmholz free energies

ψs = ψs(T, ε,D , ρ̄s, ξs, ξl, ξv, ξa), (20)

ψv = ψv(T, ρ̄v, ξs, ξl, ξv, ξa), (21)

ψl = ψl(T, ρ̄l, ξs, ξl, ξv, ξa), (22)

ψa = ψa(T, ρ̄a, ξs, ξl, ξv, ξa), (23)

whereas irreversible material behaviour is characterised
through the dissipation potential

φ = φ(q , Ḋ , v ls, vvs, vas ; T,D, ρ̄v, ξs, ξl, ξv, ξa). (24)

The thermodynamically admissible constitutive relations are
derived from the Helmholz free energies and the dissipation
potential by exploiting the entropy inequality (18) as follows.
Introducing the Legendre transformations

T−1ψk = T−1ek − sk, k ∈ {s, l, v, a}, (25)

postulating the representation of the power of dissipation

T (γs + γl + γv + γa) =
∂φ

∂q
·q +

∂φ

∂Ḋ
:Ḋ +

∂φ

∂v ls
·v ls

+
∂φ

∂vvs
·vvs +

∂φ

∂vas
·vas (26)

and taking into account the field equations (11)-(17) yield the
relevant constitutive equations, see [6].

Concluding remarks

A rather general formulation for the analysis of hygro-thermo-
mechanical behaviour of concrete at elevated temperatures is
presented. The resulting model is capable of describing the fol-
lowing phenomena: the thermoelastic and damaging behaviour
of concrete, transport of water, water vapour and air in the
porous cement paste, adsorption of water into the cement gel
and diffusion of water vapour in the pores. In addition, the
model takes into account the phase change between liquid wa-
ter and water vapour.

Further improvements to the model will include:

• shrinkage of concrete due to the loss of adsorbed and
chemically bound water during heating,
• inclusion of a model for transient thermal creep and
• model for the plastic behaviour of concrete, that is

mainly due to the relative sliding of the microdamaged
material surfaces.

Moreover, numerical implementation of the model is under de-
velopment.
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Summary: In this paper the problem of numerical approximation of non-Newtonian fluid flow with free surface is considered.
Various industrial slurries are concentrated mixtures of very small particles and grains in water. Generally, these suspensions
are non-Newtonian fluids exhibiting a yield stress that needs to be overcome for the flow to take place, cf. [1], [2]. Recently
it has become possible to simulate a broad variety of flows with many different constitutive equations. The use of the finite
element method for non-Newtonian flows was studied, e.g., by [4] or [6]. The main interest is paid to the proper simulation of
non-Newtonian fluid flow. The developed numerical procedure is applied on the solution of several free surface problems.

Introduction

The study of dynamics of fluids which do not belong to the
class of Newtonian fluids is important problem mainly in many
industrial applications, cf. [2]. The Newton’s law of viscosity
is simply inadequate for the description of macromolecular liq-
uids as well as various mixtures (e.g., fresh concrete, mortar),
where the viscosity coefficient can drammatically vary with the
change of fluid’s rate of strain. Recall that the incompressible
fluids are characterized by two material constants: the density
ρ and the viscosityµ. The experimental description of the in-
compressible non-Newtonian fluid is far more complicated, cf.
[1]. In this paper we address the rheological models of fluids
from the class of so-calledtime independent fluids/generalised
Newtonian fluids, where the local viscosity coefficient depends
only on recent local values of the rate of shear and do not ex-
hibit memory effects.

The mathematical description of this problem consists of the
continuity equation, Navier-Stokes system of momentum equa-
tions and the constitutive equation for the specified fluid. The
constitutive equation is not linear and thus even for very low
convection, the generalization of the Stokes problem is nonlin-
ear even if the convective terms ommited.

The addressed problem is the numerical simulations of the flow
of the fresh concrete. Concrete in its fresh state can be thought
as a fluid, provided that a certain degree of flow can be achieved
and that the concrete is homogeneous. The description of flow
of a fluid use concepts such as shear stress and shear rate. Con-
crete as a fluid is most often assumed to behave like a Bingham
fluid, cf. [1]. In this case the fluid is characterized by two pa-
rameters: yield stress and plastic viscosity. The parameters of
the model can be found by rheological methods and depends
on the ingredients quality of the concrete. Naturally, the model
can not describe the qualitative state and chemical changes of
the concrete, but for the fresh state it can provide useful approx-
imation.

Furthermore, the problem with free surface needs to be approx-
imated. The fluid surface is not known apriori, but it is part of
the solution. The widely used methods can be characterized ei-
ther as the interface capturing or the interface tracking methods,
cf. [5].

The mathematical problem is discretized by the finite element

method. The stabilization procedure is based on modification
of Galerkin Least Squares method acording to [3].

Constitutive equations

The Cauchy stress tensorσ consists of the normal stress com-
ponents (pressurep) and the extra stress tensorτ ′, i.e.

σ = −pI + τ ′ (1)

The relation between the deviatoric componentsτ ′ of the
Cauchy stress tensor and the rate of strain tensor depends on the
physical properties of the modeled fluid. In the case of Newto-
nian fluid the relation is linear. Strictly speaking no fluid can
be considered as Newtonian, but for micromolecular fluids (air,
water) the Newtonian fluid description is very good approxima-
tion of the real fluid. On the other hand, for the macromolecular
polymer fluids as well as for the mixtures of small particles and
water (as concrete) the model of the Newtonian fluid is inappro-
priate. In this case the nonlinear relation between the deviatoric
components and the strain tensor can be employed.

In the case when the fluid does not include memory effects and
its viscosity depends only on local value of the shear stress, the
fluid can be characterized as the generalized Newtonian fluid,
see, e.g., [1], [2]. The generalized form of the Newtonian law
of viscosity is described by the constitutive equation

τ ′ = µD (2)

where the viscosity functionµ = µ(γ̇) depends on the shear
rateγ̇ given by

γ̇ =
√

2
∑
ij

d2
ij (3)

The employed models of the generalized Newtonian fluids are
Power law fluidwith the constitutive equationµ = µ0γ̇

α−1 or
the Binghamfluid with two parametersτ0 - yield stress,µ -
plastic viscosity. Henceτ = τ0 + µγ̇.

Two phase formulation

In order to describe the free surface flow in complex geome-
tries, where the fluid motion can meet boundaries far from the
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initial configuration, the model is described with the aid of two
phase flows (let us distinguish the two phases as fluid and gas).
The initial configuration with the given fixed walls is filled with
two fluids, where the first one is the fluid of our interest and the
other one is the surrounding gas which fills up the remaining
room of the configuration. The two fluids with densitiesρ(k),
the fluid velocitiesv(k), pressuresp(k) and the viscositiesµ(k)

are considered. The domain occupied by thek-th fluid at time
t is denoted byΩ(k)

t . From conservation laws the system of
equations holds

ρ(k) ∂v
(k)
i

∂t
+ ρ(k)

∑
j

∂
(
v
(k)
i v

(k)
j

)
∂xj

+
∂p(k)

∂xi
=

∑
j

∂

∂xj

(
µ(k)dij

)
+ ρ(k)fi

on the domainΩ(k)
t for k = 1, 2. The system is equipped with

boundary conditions and an initial condition.

Furthermore, on the interfaceΓIt
the kinematic condition

v(1) = v(2) and the dynamic conditionσ(1) · n = σ(2) · n
are precribed (no surface tension is assumed).

Following [5] we can introduce the functionsρ,µ andv defined
on the computational domainΩ = Ω(1)

t ∪ Ω(2)
t as ρ = ρk,

µ = µk andv = v(k) onΩ(k). Then the following formulation
of the problem can be given

ρ
∂vi
∂t

+ ρ
∑
j

∂ (vivj)
∂xj

+
∂p

∂xi
=
∑
j

∂ (µdij)
∂xj

+ ρfi (4)

and
ρ∇ · v = 0

on the domainΩ.

Level set method

The free surface modelling can met difficulties caused by either
the mathematical modelling (e.g. the moving interface, physical
transfer process through the surface) or the numerical approx-
imation (e.g. approximation of the moving interface, disconti-
nuity of physical quantites - density, viscosity, pressure - across
the interface). The methods of free surface approximation can
be divided to two classes theinterface tracking methods(the
interface is approximated exactly) or theinterface capturing
methods(the fluid volume is tracked rather then interface).

In this paper the level set method is employed, see, e.g., [5].
The equation (4) is coupled with the transfer equation for the
additional level set function functionϕ

∂ϕ

∂t
+∇ · (vϕ) = 0 (5)

where the meaning of the functionϕ at a pointx indicates
whether it is occupied by the fluid (ϕ > 0) or by the gas
(ϕ < 0). The surface is identified by the equationϕ = 0.

The density, viscosity and velocity can be given with the aid of
Heaviside functionH(ϕ) as

ρ = ρ1 +H(ϕ) (ρ2 − ρ1) µ = µ1 +H(ϕ) (µ2 − µ1)

In the numerical approximation the regularized Heaviside func-
tion Hε is employed, where the thickness of the interface can
be regulated through the parameterε. The reinitialization step
of the level set algorithm is needed in order to insure that the
level set functionϕ remains a distance function through the
computation.

The equation
∂ϕ

∂t
+∇ · (vϕ) = 0 (6)

is discretized with the aid of finite element method. The first
order piecewies linear reconstruction is applied.

Figure 1: Numerical simulation of the standing wave problem.
The densityρ is depicted.
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Summary: Due to their biocompatibility and remarkable properties, such as large reversible strains and shape memory effect,
Nickel-Titane Shape Memory Alloys (SMA) are increasingly used in biomedical engineering. Combining such materials with an
elastomer gives enhanced possibilities of active composite applications. In this study, a Finite Element Method is used to model
the behaviour of a pseudoelastic SMA wire embedded in an elastomer ribbon. The SMA behaviour is described using a consti-
tutive law based on micromechanical considerations, while a hyperelastic model is used for the elastomer. A good correlation is
observed between numerical and experimental results.

Introduction

In SMA/elastomer devices, multiphysic couplings of the SMA
material confer adaptiveness to the composite structure, which
behaviour depends on thermomechanical conditions. Since the
late 90’s, many SMA/elastomer applications developed in the
fields of robotics [1], biomimetics or load transmission [2],
have showed the interest of the elastomer mechanical contri-
bution to the global response of the composite. In this work,
a “snake-like”-shaped NiTi wire embedded in a photoelastic
elastomer matrix is studied. Behaviours of both materials are
described by means of thermodynamic potentials. So as to as-
sess the validity of the model used, and the structural interac-
tion effects between the constituents of the composite, FEM
calculation results are compared to experimental quantitative
and qualitative results.

Materials and testing conditions

A 0.2 mm diameter NiTi wire (50.6% at. Ni) was cold-worked
at 22% then heated at 350 ˚ C for 15 minutes, to get a pseudoe-
lastic behaviour of the SMA at room temperature. As for the
elastomer matrix, commercial glue was selected for its photoe-
lastic properties and easy processing. The NiTi wire was em-
bedded in a 1mm x 10mm x 70mm elastomer ribbon to obtain a
flat composite, which allows to use photostress analysis exper-
iments to visualise stress fields near the wire/matrix interface.
To obtain less than 3% strain in the SMA for 10% elongation
of the composite, predimensional calculations led to the design
of a 1 mm radius “snake-like”- shape (see Fig. 3) for the NiTi
wire. All tensile tests were carried out at room temperature at
a constant elongation rate of 10%.min−1. Several material pa-
rameters were identified from tensile tests on SMA wire and
elastomer ribbon separately.

Constitutive law of the components

To describe the behaviour of complex SMA structures, a
macroscopic thermomechanical constitutive law was developed
by Peultieret al. [3], from results obtained within a microme-
chanical approach (see Fig. 1) using self consistent method [4].
The model is based on a thermodynamical description of the

phase transformation. An evolution criterion of martensite vol-
ume fraction denoted byf is derived from the following ther-
modynamical potential:

Ff = σij ·εTij−B(T −T0)−Hvar ·f−Hgrain ·f ·(εTij)2 (1)

whereεTij is the mean transformation strain,T0 is the mean
transformation temperature, and B is a material parameter.
Hvar andHgrain denote intervariant and intergranular inter-
action coefficients respectively. This model was implemented
in the ABAQUS FEM code through a User Material (UMAT)
subroutine.

Figure 1: Representative volume element (RVE) of a polycrys-
talline SMA [3].

To describe the behaviour of the elastomer, the following
Moonley-Rivlin potential was chosen:

Ψ = C10(I1 − 3) + C01(I2 − 3) (2)

whereC10 andC01 are material constants,I1 and I2 are the
first and second strain tensor invariants. Note that this model is
currently used in FEM simulations [5]. Moreover, to complete
this hyperelastic model, the hysteresis phenomenon was taken
into account using Bergström and Boyce law [6]. Both previous
modellings of the elastomer were already implemented in the
ABAQUS FEM code.

Comparison of numerical and experimental re-
sults

Tensile tests on separate SMA and elastomer and on the
SMA/elastomer composite allow to quantify structural interac-
tion effects between the constituents, as well as to assess the
validity of the FEM model used.
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On Fig. 2, the experimental response of the composite com-
pared with the sum of the responses obtained for separate com-
ponents shows that structural interactions increase the stiffness
of the composite.

Figure 2: Experimental responses of: (a) SMA; (b) elastomer;
(c) sum of (a) and (b); (d) composite.

Fig. 3 (experimental qualitative results) shows strongly
heterogeneous stress fields, induced by structural in-
teractions between the constituents of the composite.

Figure 3: Photoelasticimetry results: each color of area corre-
sponds to a mean stress level.

Fig. 4 (numerical quantitative results) shows similar
stress field shapes. The good correlation observed be-
tween both kinds of results proves that the FEM model
used correctly describes structural interaction effects.

Figure 4: PFEM results: mean stress field in the middle plane
of the composite.

Concerning the global response of the composite, Fig. 5 shows
that experimental and numerical responses are very close on
loading, as well as on the second part of unloading. The dis-
crepancy observed (at most 10% on load values) at the begin-
ning of unloading arises from the Bergström and Boyce law
description of the hysteresis for the elastomer. On the whole,
the present FEM modelling of the composite gives satisfactory
results.

Figure 5: Experimental and numerical responses of the com-
posite.

Conclusions

In the present study, the behaviour of an SMA/elastomer com-
posite was modelled using thermodynamic potentials for both
materials. FEM calculation results were successfully compared
with experimental results obtained under tension loading at
room temperature.

In further works, a complete thermomechanical constitutive
law for SMAs will be optimized, including shape memory ef-
fects. Moreover the development of SMA/elastomer compos-
ites for biomedical applications is envisaged (e.g. active fab-
rics), involving either pseudoelasticity or two way shape mem-
ory effect of a “snake-like”-shaped NiTi wire.
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Summary: This paper presents hints useful in the implementation of non-local models of the integral type into a commercial
FEM program Abaqus/Standard. First, strain localisation and a regularisation method in the form of a non-local theory is briefly
discussed. Then, gathering of the non-local global data is described. The modelling of notches and symmetry of the specimen is
presented. Advantages and shortcomings of the proposed method are outlined.

Strain localisation

In quasi-brittle materials after the peak the phenomenon of
strain softening occurs. A gradual decrease of carrying stresses
with increasing strains takes place. In concrete it can be ob-
served both in tension and compression. The deformations lo-
calise in small areas in the form of cracks or shear zones. Un-
fortunately, classical FE-simulations with materials with soft-
ening are not able to properly model strain localisation. The
obtained results suffer from a mesh sensitivity. The reason is
that differential equations of motion change their type and the
boundary value problem is ill-posed. To capture realistically
strain localisation, a characteristic length of microstructure has
to be included. It restores a well-posedness of the boundary
value problem and enables to obtain an objective numerical so-
lution. There are many different methods of regularisation e.g.
micro-polar, viscous, strain gradient or non-local ones.

Non-local theory

To regularise boundary value problems in brittle materials with
a constitutive law defined within the continuum mechanics, a
non-local theory was chosen. It is based on a spatial averag-
ing of a tensor or scalar state variable (describing the mate-
rial degradation) in a certain neighbourhood of a given material
point. The non-locality is used mainly in damage mechanics,
plasticity, coupled damage and plasticity, but also it has been
already applied to smeared crack models, microplane models,
hypoplasticity and lattice models. For simplicity, we will re-
strict ourselves only to the two first constitutive models.

In damage mechanics, usually the definition of the equivalent
strain measurẽε is replaced by its non-local counterpart defined
as [2]

ε̄(x) =
∫
V

α(x, ξ)ε̃(ξ) dξ, (1)

wherex are the coordinates of the considered point,ξ denotes
the coordinates of the surrounding points and a functionα is
equal to

α(x, ξ) =
α0 (‖x, ξ‖)∫

V
α0 (‖x, ζ‖) dζ

. (2)

As a weighting functionα0, the Gauss distribution can be as-
sumed

α0(r) =
1
l
√
π
e−( r

l )
2

, (3)

wherer is a distance between two points andl denotes a char-
acteristic length of microstructure. It should be noted that av-
eraging is restricted only to a small area around the considered
point. In plasticity, a slightly modified formula is used to define
the non-local hardening (softening) parameterκ̂ [3]

κ̂(x) = (1−m)κ(x) +m

∫
V

α(x, ξ)κ(ξ) dξ, (4)

whereκ is a local value of a softening parameter andm is a
constant greater than 1.

FE-modelling

Researchers involved in advanced numerical modelling of ma-
terials have to choose between two solutions. First option is to
write their own FE-code or modify and extend existing pro-
grams with a source code available (like FEAP or OOFEM
[4]). The last program is especially interesting because it in-
cludes some non-local damage models. As an alternative, one
of commercial FE-methods as Abaqus, Adina, Ansys or MSC
Marc with an unavailable source code can be applied. The use
of a commercial package (like Abaqus/Standard [1]) limits a
programming effort at one side but at the other side it cre-
ates some additional problems in an implementation of non-
typical subroutines. The non-local theory requires some nu-
merical tricks to achieve a successful implementation into the
Abaqus/Standard program.

Gathering data

The first problem is to collect the required data. To calculate
non-local parameters from equations (1) and (4), the coordi-
nates of integration points, local quantities to be averaged (ε̃
or κ) and area of finite elements have to be known. The first
two ones are available directly in integration points (procedure
UMATin Abaqus). The area of elements can be calculated by
defining user’s elements (procedureUEL in Abaqus). Alterna-
tively, one can use so called ’element characteristic length’ (re-
lated to the volume of finite elements) which is available in the
procedureUMAT.

In standard commercial programs, the information about ele-
ments or integration points is available locally, i.e. only in a
considered element (point). A non-local model requires infor-
mation from all integration points at the same time. It can be
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done by storing the data in tables defined with the aid of the
COMMONblock. In general, the data gathering can be achieved
using 3 different ways:

• Double mesh– two meshes are used (one mesh with stan-
dard elements using user’s material law (procedureUMAT)
and second mesh defined by the user’s elements (proce-
dureUEL) (Fig. 1). The elements in the second mesh are
attached to the same nodes as the main finite elements
from the first mesh. They have no stiffness, so they do
not influence the FE-results. Their task is to collect the
required data only. This option can be used when the user
controls the order, at which the proceduresUMATandUEL
are called during iterations (in some programs there is an
internal order of elements despite their numbers).

• Odd and even iterations – iterations are conceptually
divided into odd (when the data is collected), and into
even ones (when non-local calculations are performed).
Between odd and even iterations, the same node config-
uration is imposed.

• Values form previous step– non-local quantities are esti-
mated on a basis of values from the previous step (in which
they are all known). This method, unfortunately, can not
be applied to non-local damage models.

UEL mesh

UMAT mesh

Figure 1: Definition of the double mesh.

Symmetry and notches

Two other problems should be also taken into consideration
when applying non-local models. The first case occurs when
one utilises the symmetry (simulations concern only a half of
the problem). For integration points in the neighbourhood of
the axis of symmetry, the reflected points should be also taken
into account (Fig.2). The most universal method to consider
the symmetry axis is to define an additional truss element (with
no stiffness) and to ”mirror” the information for points which
are located closer than interaction radiusR.

The second problem arises when modelling notches. In this
case, an non-local interaction between points at the opposite
side of the notch should be avoided (Fig.3). Again an infor-
mation about the geometry of the notch can be provided by
defining additional truss elements with no stiffness.

R

R

axis of symmetry

modelled part reflected part

Figure 2: Symmetry of problem.

A B

R

BA

Figure 3: Interaction between points at the opposite side of
notch.

Final remarks

The presented implementation methods of non-local models
into commercial FE-packages enable to minimise the program-
mer’s effort and to use all benefits of the program. However,
a major drawback concerning a global stiffness matrix should
be mentioned. It is impossible to define a non-local tangent
stiffness matrix in damage models (local secant matrix can
be used) what reduces the convergence speed. Moreover, in
Abaqus/Standard, a global stiffness matrix is defined and fac-
torised in each iteration. In turn, in non-local plasticity, an elas-
tic global stiffness matrix is used during the whole loading his-
tory.
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Summary: This paper presents some considerations about the elastic behavior of the human eye-lens. Establishing a model of it
we were studying, in different research modules, the optical and elastic characteristics of the eye-lens microstructure. This study
it is very important to analyze the visual accommodation process of the natural eye-lens in different conditions.

In the first part of the paper they are presented some aspects
about the natural eye-lens analyze from optical point of view
for modeling and studying the accommodation phenomena, for
establishing the iso-indicial surfaces, the shape and the dimen-
sions of them.

Using the Moore model it is possible to establish the index
equation like this:

n = no (z) + n1 (z) ξ + n2 (z) ξ2 + ....... (1)

This relation was developed and applied to the microstructure
of the eye-lens in the ten layers which make an assembly of
nine bonded lens.

In this research work for modeling the behavior of the eye-
lens in different situation was adopted the Moore equation, to
which, also, was calculated the values forni in two situations:
paraxial and extra-axial fields and for the accommodation pro-
cess with the limits of this accommodation power (0-12) dpt.

The iso-indicial surfaces are presented in Fig. 1, supposing that
they have the same thickness on the optical axis in accommo-
dation (da/10) and non-accommodation state (dna/10).

Figure 1: The view of the eye-lens multilayers model.

By this calculation, in the center of the systemO(0, 0) one
can obtain, in both state of the vision process (accommo-
dation and non-accommodation) the same refractive index
na(0, 0) = nna(0, 0) = 1.406, which they are in correspon-
dence with the Gullstrand ideal values for the eye-lens center.

Some considerations about analyze and modeling of the eye-
lens by elastic behavior theory of the components surfaces are
presented in the second part of the paper

We consider the micro-structure of the eye-lens being accom-
plished by elastic, multilayer material, axial symmetrical and
uniform in each layer.

The study of the elastic behavior of the eye-lens layers by
adopting the model of the thin curvilinear plate was the most
realistic model for analyze and modeling the natural behavior
of them.

Figure 2: The model of the eye-lens layer like curvilinear plate.

For that analyze and modeling process, each
layer was assimilated with a thin curvilinear plate
(di = 0.4(0.36) mm << Du = 8.5 mm), which are
defined by a median curvilinear surface.

It was considered, also, that each layer takes part of a spherical
surface, with axial symmetry but with variable thickness in the
zOy andxOy planes.

Some initial hypothesis for simplifying the modeling process
and for deformations values calculation of this surface were in-
troducing at the beginning:

• the material for each eye-lens layer has homogeny and
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isotropy qualities and the behavior of each plate’s element
does not depend of the position and the orientation, but
only depends of the forces on him;

• the deformations of the material are in the proportionality
zone and the elasticity module is the same in all directions
(for each of the layers);

• the thickness of the plate was considered very small com-
paring with the curvature radius of the median surface.

There are two sections for these kind of layer surfaces, perpen-
dicular between them, but having, one of them, the maximum
curvature radius and the other one, the minimum radius, named
principal curvatures.

For the calculation of the sectional efforts into the dioptrically
surface of the eye-lens it is necessary to isolate a surface ele-
ment and to write the equilibrium equations for it.

The equations system is :

Nφθ
∂r

∂φ
+ ρ1

∂Nθ
∂θ

+ r
∂Nφθ
∂φ

+Nθφρ1 cosφ+ pxrρ1 = 0

Nφ
∂r

∂φ
+ r

∂Nφ
∂φ

+ ρ1
∂Nθφ
∂θ

−Nθρ1 cosφ+ pyrρ1 = 0

Nφ
ρ1

+
Nθ
ρ2

+ pz = 0

The unknowns from the equations system areNφ, Nθ, Nθφ =
Nφθ namedsectional effortsof the plate (model of the eye-lens
layer).

After this calculation and modeling of the elastic behavior of
all eye-lens thin curvilinear plates, the deformation of all layers
was observed from interior to exterior (Fig. 5).

Also was establishing that the center of the eye-lens model
had no deformation, remaining immobile, this “eye-lens qual-
ity” having a very big importance and showing that the visual
accommodation process is made by the external layers, more
elastic and flexible ones.
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Figure 3: The eye-lens model in initial conditions (without de-
formation) with 10 layers.

Figure 4: The eye-lens model after deformation with 10 layers.

Figure 5: The limits of the eye-lens behavior modeling.
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Summary: Asymptotic partial decomposition has been studied in [1] for an elliptic problem in the case of geometrical hetero-
geneous domains when the right hand side does not depend on the shrinking variable. In this work we consider the Transport
equation in an heterogeneous domain with a general right hand side. Introducing a variational reduction type method and dealing
with a constrained formulation of the problem, we show that the problem can be reduced to a 2D-1D problem.

Introduction

Let us consider the Transport equation in the following domain
Q:

Figure 1: Heterogeneous domainQ.

Let f ∈ C0(Q;R) a continuous function,a ∈ C1(Q;R) be

given, we define the functionβ =
(

1
a(t, x)

)
and we assume

a to be bounded from below by a positive number. We look for

u ∈ H(β,Q) = {ρ ∈ L2(Q),
div(β ρ) ∈ L2(Q), ρ |Q− ∈ L2(∂Q−,|(β/n) | dσ)} (1)

verifying:

(β/∇u)2 =
∂u

∂x
+ a(t, x)

∂u

∂x
= f (2)

The boundary conditions are fixed to be zero on∂Q−. Due to
the heterogeneous domain, the Transport equation can be re-
duced to an ordinary differential equation in the thin part of the
domain. This can be proved with the partial asymptotic decom-
position method [1] when the functionf is only a function of
x. A numerical method based on finite element is given in [2].

In this work, we would like to consider the general
case where the functionf depends on(t, x) variables.
Let Γε be defined by:Γε = ( 1

2 − ε, 1
2 + ε) × {δ}.

The variational reduction method consists in introducing
a product spaceH(β,Q1) × (M(Γε)

⊗
0H

1(δ, 1)) where
M(Γε) = vec(qj)mj=0. Introduce the unbounded operator:
d
dt : D( ddt ) ⊂ L

2(Γε)→ L2(Γε)
d( ddtϕ,ψ) = ( ddtϕ/ψ)Γε ∀ψ ∈ L2(Γε)

.

We assume thatM(Γε) ⊂ Ker ddt and that theq′js are or-
thogonal with respect to both theL2(Γε, a(·, δ)dt) scalar prod-
uct and theL2(Γε) scalar product. When the functiona is
time-independent, one can chooseq0(t) = 1; and qk(t) =
sin (kπ[ t−

1
2
ε + 1]) for 1 ≤ k ≤ m. Then we look for a so-

lution (u1, u2M
) =

∑m
j=0 qj(t)u2j (x)).

Consider now a weak formulation of the problem inQ \ Q1:
∀ q ∈M(Γε) ∫ 1

δ

∫ 1
2+ε
1
2−ε

∂tu2Mq(t)ϕ(x) dtdx

−
∫ 1

δ

∫ 1
2+ε
1
2−ε

u2Mq(t)∂t(a(t, x)ϕ(x)) dtdx

−
∫ 1

2+ε
1
2−ε

u2Ma(t, δ)ϕ(δ)q(t) dt

=
∫ 1

δ

∫ 1
2+ε
1
2−ε

f(t, x)q(t)ϕ(x) dtdx, ∀ϕ ∈ H1(δ, 1);ϕ(1)
= 0

(3)
The decomposed problem reads: find(u1, u2M

) verifying (3)
and :

(β/∇u1)2 = f in Q1;
∀q ∈M(Γε) b(u1 − u2M

, q) =
=
∫
{x=δ}(u1(t, δ)− u2M

(t, δ))q(t)a(t, δ) dt = 0.
(4)

The matching conditions on the interface are imposed with a
weak formulation. Now, let us specify the equations for the case
wherea is time-independent. Problem (3) is then expressed in
differential form as:j = 0

a(x)∂xu2M0(x) = 1
ε

∫ 1
2+ε
1
2−ε

f(t, x) dt;

u2M0(δ) = 1
ε

∫ 1
2+ε
1
2−ε

u1(t, δ) dt
(5)

and for1 ≤ j ≤ m

a(x)∂xu2Mj (x) = 1
ε

∫ 1
2+ε
1
2−ε

f(t, x) sin (jπ[ t−
1
2
ε + 1]) dt

u2Mj
(δ) = 1

ε

∫ 1
2+ε
1
2−ε

u1(t, δ) sin (jπ[ t−
1
2
ε + 1]) dt

(6)
For j = 0, let ε go to zero, we get the classical zero order
homogenized problem. In the case with a velocitya(·, ·) regular
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and time-dependent, for the zero order term we get:

a( 1
2 , x)∂xu2M0(x) = f( 1

2 , x) , δ < x < 1
u2M0(δ) = u1( 1

2 , δ)
(7)

Now let us introduce a test case. We seta(t, x) = 50x+exp (t),
f(t, x) = x + x exp ( t2 ), and the problem is discretized inQ1

with a finite difference method. The time step equals the space
step and is equal to0.25 × 10−2. In Figure 1, the solution is
depicted forε = 2× 10−2.
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Figure 2: Finite difference computed solution.

In Figure 2 the zero order (7) approximation is used for the
solution in domainQ \Q1.
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Figure 3: Zero order computed solution.

Let us mention that in the case where the domainQ \Q1 is too
thin, classical numerical methods do not work anymore. For
example, we need more than ten points in the thickness of the
thin domainQ \Q1. In the following Figure,ε = 0.83× 10−2,
and we can see some discrepancy between the classical finite
difference solution and the zero order approximation.
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Figure 4: Thinner case: FD computed solution.
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Summary: This paper concerns mathematical and numerical modelling of focal ischemia in tridimensional geometries. The
proposed model includes a space dependent description of the blood dynamics assuming that the vascular tissue is a porous
medium and a description of ion disorder and tissue damage rate caused by a reduction in the flow rate.

Introduction

Relevance of a deep comprehension of the brain tissue dam-
age mechanisms during focal ischemia has been realized since
a long time (see [3, 2, 7, 10]). Besides the set up of therapies for
stopping tissue degeneration in the ischemic penumbra, a pos-
sible outcome is the understanding of the failure of actions that
in other districts yield good results. For instance, fibrinolythic
therapies, that in the coronary districts works, in the neurolog-
ical context can lead to dangerous blood hemorrhages. A pos-
sible approach for having a deeper insight of these phenomena
is to resort to mathematical models and numerical simulations
(see [3, 2, 7, 10]). The main difficulties in this context concern:

1. intrinsic complexity of the phenomena at hand, that in-
volve interacting fluid and biochemical dynamics; this is
typically reflected into the complexity of the associated
mathematical models, given by systems of partial and or-
dinary differential and sometimes algebraic equations;

2. complexity of the geometries at hand that can play a rele-
vant role (see [8]);

3. parameters identification and evaluation (see [7, 1]).

These difficulties affect the set up of reliable numerical mod-
els. Numerical simulations presented in the literature are so far
limited to 2D geometries and use a lumped average parameter
to describe the cerebral blood flow, obeying an ordinary differ-
ential (see [2]) or an algebraic (see [7]) equation.

The aim of the present work is twofold. The first goal, following
the guidelines of the model proposed in [2, 1, 4] including dy-
namics for intra and extra cellular potassium and calcium ions
(see [1]) and of some heuristic indices for the tissue integrity
and the metabolic stores, is to give a more rigorous model for
the ions dynamics and include a precise description of the fluid
dynamics. More precisely, on one hand, by means of “average
volume” techniques (see [5, 6]) we present a model account-
ing for local dynamics in an average way, giving a mesoscale
picture of the ion concentrations and of the tissue integrity; on
the other hand, we include a space dependent description of the
blood dynamics assuming that the vascular tissue is a porous
medium. For this reason, we replace the ordinary differential
equation of the flow in the original model of [2] with the Darcy

law for porous media. The basic idea is that the permeability is
a function of the integrity of the tissue. The more precise for-
mulation of the hemodynamics will allow the simulation of the
possible action of fibrinolytic therapies and subsequent hemor-
rhage.
The second goal is to present numerical simulation of the phe-
nomena at hand in 3D, by means of ad hoc finite element code.

Model

The whole model is composed by two main parts: the biochem-
ical one, describing the behavior of potassium and calcium con-
centrations and the tissue damage, and the fluid-dynamics one
describing blood flow.
The biochemical part is formed by four partial differential
equations, describing the intracellular and extracellular concen-
trations of potassium and calcium and by two ordinary equa-
tions, one describing the energy reserve (E) of the tissue and
the other describing an heuristic index (I) representing the
damage rate of the tissue. Each ion concentration follows a sys-
tem of two differential equations (the first for the extracellular
concentration (Ce) and the second for the intracellular concen-
tration (Ci)): 

∂Ce
∂t
−De∆Ce = JC ,

∂Ci
∂t
−Di∆Ci = −JC .

(1)

JC is the ion flux through cell membrane and is a function of
ion concentrations and of the energy reserve (E). In our model
we rearranged the membran flux equation proposed in [1] in
order to describe the ischemic case.
The fluid dynamics part is constituted by an elliptic equation,
derived by Darcy law:

q = −K(I)∇ϕ (2)

whereq is the blood mean velocity,ϕ is the piezometric head,
andK, which is a function of the tissue integrity, is the con-
ducibility of the porous medium. The conducibilityK increases
when the tissue is injured (see [11]).
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Results

As a sample of our results, we show two simulations in very
simple geometries. In the first example we consider a sphere
and we impose a flux which is null in the centre and reaches
the physiological value at the sphere surface. Figure1 shows
the extracellular potassium concentration. As expected, the is-
chemia induces the release of potassium in the extracellular
space, which spreads in the form of periodic waves (Spreading
Depressionphenomenon). Figure2 shows the tissue integrity,
at different time istants. As expected the injuried area grows
with the passing of time (I = 0 means necrotic tissue, while
I = 1 means intact tissue). In the second example we consider
a cylinder with an artery placed along its axis. Figure3 shows
specific blood flow rate; on the left side the brain is in phys-
iological conditions, while on the right it’s simulated a reper-
fusion of the artery after being occluded for a long time. The
increased flux could be correlated with an hemorrhage risk.
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Figure 1: Extracellular potassium concentration versus the ra-
dial coordinate at timet = 4min.
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Figure 2: Tissue integrity versus the radial coordinate at differ-
ent time instants.

Figure 3: Specific blood flow rate in physiological and patho-
logical case.

The numerical results presented here show at a qualitative level

possible dynamics that can be induced by the combination of
biochemical events induced by the stroke and the reperfusion of
the occluded vessels. The quantitative validation of the model
used here is complicated by the difficulties in collecting exper-
imental data. Nevertheless, it represents an important develop-
ment of the present work.
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Summary: To analyse graded materials with Boundary Element Method a particular fundamental solution is required, conversely
when standard Kelvin’s solution is used, Field Boundary Integral Equation arises. The formulation is effective when one deals
with multiregion structures where two or more regions are linked by graded interfaces. The Field Boundary Elements have to
be used only at the interfaces whilst constant material regions require only Boundary Elements. It is shown that the procedure is
simple and stable and some case studies are discussed in detail.

Introduction

Constitutive behaviour of Functionally Graded Material (FGM)
[1-3] depends on both composition and material structure grad-
ual change over the volume, resulting in corresponding changes
on the properties of the material. The variations of material
components are intentionally designed and tailored in order to
optimize the performance in a particular application, or under a
specific set of functional requirements. In the simplest FGMs,
two different material ingredients change gradually from one to
the other.

The FGM concept is applicable to almost all engineering fields.
Examples of a variety of actual and forthcoming applications
to transport systems, energy conversion systems, cutting tools,
machine parts, semiconductors, optics and bio-systems are
widely available in literature, comprehensive reviews of FGM
research can be found in.
First examples of FGMs are available in nature: examining bio-
logical load carriers such as animal bones, it has been observed
that internal pattern has optimal shape with respect to principal
stress directions and shear stress magnitude, it is produced by
self-optimizing system, activated by biological sensors that de-
tect external mechanical stimuli producing deposition and ab-
sorption of solid component of the skeleton tissue responsible
of remodelling process. Analogous optimization characterizes
the growth some plant stems, where position, size, number of
holes constituting nutrient ducts and fibres assembly give rise
to optimal structural pattern with respect to resistance, elastic-
ity and ductility. Due to complications that arise to mechani-
cal formulation of FGM, computational analysis is an effective
method to design, and to understand FGM behaviour.

The Boundary Integral Equation Method (BIEM) has not been
widely applied to graded material since it is rather difficult to
obtain the fundamental solution except for simple variation of
constitutive properties [4-6]. Solution for some particular kind
of variability is available where the analytical solution for ex-
ponential variation is obtained.
The main disadvantage of BIEM treatment of FGM consists
of the requirement of ad hoc solution for any possible varia-
tion of the material elasticity and inhibit its use into general
purpose codes; consequently present authors developed a for-
mulation that uses the fundamental solution of homogeneous
material, say classical Kelvins solution, to deal with FGM. The

work allows representing the response of heterogeneous mate-
rial by means of Field Boundary Element Method (FBEM). The
proposed formulation can handle both isotropic and anisotropic
materials and is able to represent homogeneous and heteroge-
neous elasticity.

Unlike BEM, the formulation requires field discretization and
contains domain unknowns. This disadvantage disappears if
the material gradation reduces to a small part of the structure,
say interfaces, joints etc., while the main part is homogeneous
(Fig. 1). The structure can be analysed by pure Boundary El-
ement almost everywhere except that on the small graded part
where Field Boundary Element are required.

In the proposed work the good agreement with analytical result
is shown and the accuracy of the method is tested with respect
to FEM that allows the calculation of FGM but gives less ac-
curate results than FBEM when high gradient of stress arises
and high distorted mesh are used for the structure modelling.
In these cases FBEM gives its best results

Figure 1: FGM interface and FBEM discretization. Atomistic
and various continuum models for carbon-nanotubes.

FBEM formulation

Elastic relationship of FGM assumes that elastic coefficients
vary within the structure accordingly to a prescribed function,
isotropic material depend on two parameters, namely Young
modulusE and Poisson ratio,ν. Commonly Poisson ratio vari-
ation can be neglected due to the little interval it has to belong
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to:

ν ∈ (−1, 0.5) (1)

From equation (1), the elastic relationship is simplified intro-
ducing a scalar fieldγ (x), depending on the positionx in the
structure, that multiply elastic tensorc of the material.

σij = γ (x) cijhkεhk (2)

whereσij are the stress andεhk the strain components. Equa-
tion (2) represents a scalar varying isotropic FGM.

An elastic structure,V , satisfy the Field Boundary Integral
Equation [7]

γk ·u =
∫
∂V

ũ · tdS−
∫
∂V

γt̃ · udS+
∫
V̄

σ̃ · u · ∇γdV (3)

where the volume integral is defined over the partV̄ of the
structure where the heterogeneous law (2) holds (i.e.∇γ 6= 0).
In (3) ũ, t̃ andσ̃ are the kernels corresponding to displacement,
traction and stress of the Kelvin’s solution of the homogeneous
elastic unbounded space under one point load [8].

Equation (3) is solved by collocation on the boundary of the
structure and on internal elements of graded partV̄ .

The proposed example concern a multi-region elastic plate con-
stituted by a square with a circular inclusion. Taking as refer-
ence the young modulus of the Kelvin solution,E0, the inclu-
sion modulus is assumed equal toEi = 2E0 and the surround-
ing plate modulusEs = 8E0.

Ramped and stepped variation of the Young modulus is as-
sumed within a circular region around the inclusion to model
FGM interface. The plate is subjected to axial tensile load.

In Fig. 2, on the left, the drawing of the structure is reported
where it can be seen the variation of the elastic modulus for
both variation schemes. On the right the normal stress is plot-
ted along the middle line of the plate, it can be seen that the
stress increases approaching the graded zone, thus it suddenly
decreases across the FGM area reducing to1/4 of the outer
stress due to the corresponding reduction of the elasticity. It is
evident that ramped model of the interface result into discon-
tinuous plot of the stress that overcame the continuous result.
Conversely the ramped model describes, with good agreement,
the smoothing effect produced by graded interface.

Contour plots in Fig. 2, describe axial stress within the struc-
ture. On the left hand contour plot ramped interface results are
depicted, it can be seen that the stress increases since the inclu-
sion edge along horizontal diameter and decrease inside the in-
clusion. Along vertical diameter it is shown that vertical stress
decreases to the same value resulting into the inclusion. The
contours show the smooth behaviour of the stress and highlight
the effect of FGM presence. The left hand side plot represents
the contour of the vertical stress for the ramped interface case
where the jumps of the stress are evident.

To solve the proposed structure only the boundary of the plate,
the two boundaries of the interface and the interface domain
have been discretised, notice that for ramped representation two
or more inclusion have to be introduced.

Figure 2: Geometry, boundary condition andσy results for
ramped and stepped interface.
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Summary: Non-wovens made by the electrostatic spinning process have potential applications as scaffolds in tissue engineering.
Besides biocompatibility and high porosity, they have to posses a sufficient mechanical strength. Furthermore, stresses transmit-
ted by the scaffold to the growing tissue can play an important role in stimulation tissue growth (mechanotransduction). The
mechanical properties can be adjusted by varying the fibre orientation in the non-woven.
The used materials and cell biological experiments are cost intensive and therefore simulations are an important alternative to
the elaborate spinning process. Mechanical experiments on a microscale silicon waver-chip are undertaken for the determination
of the mechanical properties of a single fibre. Aim of the current study is to measure and simulate the mechanical properties of
differently orientated non-wovens, starting from a single fibre experiment.

Materials and method

In the electro spinning process, ultra-thin fibres are pulled out
of a polymer solution or melt by using a strong electrostatic
field. Differently aligned non-wovens were electro-spun out of
two polymeric systems: poly- (L-lactic acid) (PLLA) and poly-
(DL-lactic acid) PDLA 96/4.

The degree of alignment of the fibres was determined by evalu-
ating SEM images of the non-wovens with an image processing
routine. The C++ routine employs a 2D-Fast Fourier Transform
(FFT) routine. The angular distribution of the 2D-FFT grey
scale spectrum was fitted with a Cauchy distribution. The width
of the Cauchy distribution is used as indicator for the degree of
fibre orientation.

Uniaxial tensile tests on the non-wovens were carried out with
an EnduraTec Elf 3200 mechanical testing system. Experi-
ments were carried out with specimens with different degrees
of fibre alignment.

The single fibre’s mechanical behavior is tested on a specially
developed miniaturized tensile tester, which can be operated
with a needle manipulator. Several hundred “one way” testing
devices were etched on a silicon chip.

A molecular dynamic model (MD) was used for the simulation
of the non-woven. The results of the simulation were compared
with the experimental data. Of special interest are the internal
effects, as fibre contact and the resulting sliding forces. The
cell diffusion into the non-woven as well as the transport of
degradation products out of the non-woven are also in the focus
of investigation.

Figure 1: Experimental and calculated values for the maximum
stress vs. the width of the fibre distribution.

Results and discussion

Non-wovens based on the mentioned polymer systems were
fabricated. The fibre diameter is about oneµm. The mechanical
properties of the non-wovens depend strongly on their degree
of fibre orientation. In Fig. 1, the maximally achieved stress un-
der uniaxial load is plotted versus the degree of orientation of
the non woven. The variation of the maximum stress as a func-
tion of the degree of alignment was estimated by a basic model
assuming linear fibres.

Single fibre tensile tests were carried out on a micro-chip
(Fig. 2). The evaluation of the stress-strain-curves is still un-
der investigation.
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Figure 2: A micro chip with a uniaxial single fibre testing de-
vice.

An elementary model for the non-woven could be gener-
ated (Fig. 3). Within the non-woven simulation the fibres are
Cauchy-distributed around a main orientation. In the simulation
Lennard-Jones-Like-Potentials are describing the interactions
between the fibres. The forces between the fibres segments are
approximated with spring-like-forces.

Figure 3: Model of Cauchy distributed fibres in a non-woven.

The experimentally obtained results were compared to the the-
oretical calculations and the simulation. The calculations were
in agreement with the mechanical behaviour of the materials.

Summary

The method used for the evaluation of the degree of fibre orien-
tation verifies the SEM-observation. The experimental results
show that non-wovens with different degree of orientation and
defined mechanical properties can be prepared in a controlled
fashion. Future work will focus on a modelling of the transport
phenomena in the non-wovens.
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Summary: In certain previous papers of authors coupled numerical experimental modeling was based on minimization of func-
tional describing steepest descend mode of differences of measured and computed values of stresses or displacements at selected
points. In this way nonlinear model in numerical analysis can be improved using eigenparameters as design parameters in opti-
mization. In this paper 2D problem is solved with moving patches (support subdomains) with uniformly introduced eigenstrains.

Introduction

Using a very powerful tool, Transformation field analysis
(TFA), back analysis of structures can be regarded as seeking
optimal distribution of eigenparameters in domain of defini-
tion. Unit impulses of these quantities enable one to find ma-
terial properties from comparison of results from experimental
studies and numerical analysis at selected points, as was done
in many papers on geomechanical problems, [1, 3]. The only
problem occurs: Find optimal distribution of patches (subre-
gions), where eigenstrains are introduced or considered. This is
a problem of combined optimization, where the principal vari-
ables depend on subdomains (patches), the uniform distribution
(this is one of possible approximations) of eigenparameters is
assumed. This problem is not easy to solve, as the optimization
of principal variables must be iterated, and a reasonable tool
for it should be find out. One of such tools can serve Inverse
variational principles, which hold the volume of the domain as
constant, and design variables are subdomains, [2].

Idea of TFA involvement to the formulation

This section is focused on formulation of the general proce-
dure using the TFA. It may be done in terms of many modern
numerical methods. First, let us consider that the bodyΩ un-
der consideration (part of a structure, element, and system of
more elements, composite) behaves linearly, i.e. Hooke’s linear
law is valid in the entire body. When the problem is correctly
posed, the displacement vector, strain and stress tensors can be
obtained from the Navier equations, kinematical equations, and
linear Hooke’s law.
In the second step we select points, where the measured values
are available, either from experiments in laboratory, or from in
situ measurements. We also select pointsAr, or disjoint regions
(subdomains)Ωr, r = 1, ..., n, from the body under study, and
apply there successively unit eigenparameter impulses (either
eigenstresses or eigenstrains) to get an influence tensors (matri-
ces). Moreover, let the set of points where the measured values
are known beBs, s = 1, ...,m. Then the real stress(σ)s atBs
is a linear hull of stress(σext)s atBs due to external loading
and eigenstrains(µ)r and(εpl)r, or eigenstress(λ)r and relax-
ation stress(σrel)ratAr (similar relations are valid for overall

strain fieldε or displacementsu):

(σi)s = (σexti )s + (Pσik)
sr(µk)r + (Qσik)

sr(εplk )r, or

(σi)s = (σexti )s + (Rσik)
sr(λk)r + (T σik)

sr(σrelk )r (1)

(ui)s = (uexti )s + (Puik)
sr(µk)r + (Quik)

sr(εplk )r, or

(ui)s = (uexti )s + (Ruik)
sr(λk)r + (Tuik)

sr(σrelk )r (2)

where the influence tensorsP,Q, and alsoR andT may be
identical, as any eigenparameter may stand for the plastic or
relaxation parameter (say, eigenstrain may stand for plastic
strain, which is obvious from (1) and (2)). The strain and stress
components are written in vector form. Note that it holds:
λ = −Lµ, whereL is the elastic stiffness tensor.
The first relations in (1) and (2) describe the initial strain
method while the second relations in those equations formu-
late the initial stress method.
From the above equations it immediately follows that it holds,
for example:

(σi)s = (Sσik)
s + (Pσik)

sr(µk)r

(ui)s = (Suik)
s + (Puik)

sr(µk)r (3)

i.e., the influence of plasticity is hidden in the first terms of
right hand sides of (3). From (3) two possibilities obviously
appear: Either plastic effects disappear in the first terms of
r.h.s. of (3) or they are considered there. Certain starting plastic
rules involved in (3) are discussed in [3].
On the other hand measured stresses(σmeasi )s, or measured
displacements(umeasi )s are available in a discrete set of points.
A natural requirement is formulated in terms of steepest de-
scent type “error functionals”I, which express that the values
of measured and computed values be as close as possible:

Iσ[(µk)r] = [(σi)s − (σmeasi )s]2 −→ minimum

Iu[(µk)r] = [(ui)s − (umeasi )s]2 −→ minimum (4)

where sum is taken overi ands. DifferentiatingI by (µα)β

yields a linear system of equations for(µk)r:

(Aαk)βr(µk)r = Y βα , α = 1, ..., 6, β = 1, ...,m (5)
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Inverse variational principles

Following extended primary variational principles one can
write the energy functionals on the whole domainΩ as:

Π = 1
2a(u, u)− [p, u] −→ minimum (6)

wherea(.,.) is an energetic norm and [.,.] is the scalar product
on the boundaryΓ of Ω, with p being prescribed traction. Let us
divideΩ into disjoint subregionsΩr, union of them isΩ. Then
(6) can be rewritten as

Π =
∑

1
2ar(u, u)− [p, u] −→ minimum (7)

wherear(.,.) is an energetic norm on eachΩr and the sum is
taken overr.
Let now setsΩr fulfill the requirement that they are mutually
disjoint and sum of their closure coversΩ. Then the problem
appears not properly defined. In order to ensure that the prob-
lem is correctly posed, the volumes (or areas in 2D) have to be
bounded. The functional (6) then has to be improved as:

Π(u,Ω) =
∑[

1
2ar(u, u) + ωr

(∫
Ω

dΩr − Cr
)]

−[p, u] −→ stationary (8)

whereCr is a measure ofΩr, see [4], andωr are the Lagrangian
multipliers. The internal energy is a sum of integrals over ap-
propriate domainsΩr of a potential(W )r , which in our case
reads as:

(W )r = (σi)r[(εi)r − (µi)r] (9)

where(µi)r has been considered uniform inΩr . Hence, Euler’s
equations follow as:

1. Variating by displacements yields equilibrium equa-
tions involving partially uniformly distributed eigenstrains
(µi)r . They are given from (5) for given distribution of
Ωr.

2. Approximating the problem in the sense of FEM withK,
say, then the changes in the fields with respect to the sub-
domains can formally be written as:

1
2
∂Kik

∂pr
UiUk + ωr

∂Ωr
∂pr

= 0 (10)

wherepr are internal parameters declaring the shape of
the subdomainΩr. From (10) immediately follows that
the Lagrangian multipliers have to be constant for eachr,
i.e. on each subdomainΩr all components of eigenstrain
tensor remain uniform.

3. Partial differentiation of (8) byωr ensures that the mea-
sures of the subdomains are unchanges. Some recommen-
dations on how to introduce the internal shape parameters
could be found in [4], for example.

Numerical procedure for two subdomains

To show the ability of the above submitted procedure consider
a simply supported beam with length 10 m, height 1 m, the
bending stiffnessEI = 1. The problem is solved as stretched

plate, the external boundary of which is unmovable concern-
ing the subdomains. Concentrated force at the middle of the
span represents loading. Symmetric case is solved, i.e. shear
eigenstrains disappear. Values at the lower boundary are pre-
scribed (we simulate experiments) in 1/8, 1/4, 3/8, 3.5/8, and
1/2 of the span. The values of the deflectionw are 0.092, 0.2,
0.333, 0.57, 0.72. The starting position of the subdomains is
horizontal, and the upper subdomain is 7 m2 and the lower 3
m2. Starting position of the interface along common boundary
of the subdomains leads to an error of 16.32% in the deflection
at the middle of the span, the improved interface gives the error
about 5%.
Since the extreme tensile damage can be expected at the mid-
dle of the span, the area of the lower subdomain is decreased
to 1 m2. Then the error for starting configuration is 18.72 of
iterations of interfaces we get an acceptable value of 1.2%.

Conclusions

In some previous papers of the first author it has been shown
that the coupled numerical and experimental (scale) modeling
or the on site measurements can basically improve identifica-
tion of numerical mechanical model. The only problem ap-
peared the choice of subdomains. No receipt has been proposed
so far. This paper tries to improve this lack of information using
Inverse variational principles. Although simple example is pre-
sented here, the generalization to more subdomains is straight-
forward.
It is worth noting that for large extent of subdomains an ex-
tensive number of measurements is necessary. In former papers
three or at most four subregions have been considered in appli-
cations to underground structures, particularly to assessment of
tunnel face stability. The reason consists in the fact that (5) is
created for 3 in 2D or 6 in 3D components of eigenstrains (or
eigenstresses), it means 24 unknowns eigenparameters in 3D
for four subdomains is necessary to determine in each iterative
steps. From the point of view of numeric analysis this does not
make any problem, but to feed (5) at least 25 measurements
scattered enough in the original domainΩ, which can lead to
insufficient set of data.
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Géotechnique.

[4] P. P. Proch́azka: Shape optimal design using Inverse Varia-
tional Principles. Submitted toEABE.

Prague, Czech Republic, 25-27 June 2007 315



MHM 2007: Modelling of Heterogeneous Materials with Applications in Construction and Biomedical Engineering

Onsager’s Principle: A Handy Tool in Modelling of Evolving Microstructures

J. Svoboda1∗, F. D. Fischer2

1Institute of Physics of Materials, Academy of Sciences of the Czech Republic
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Summary: Onsager’s thermodynamic extremal principle formulated in terms of discrete parameters represents a systematic way
of derivation of evolution equations for the parameters characterizing the system. The Onsager’s principle is presented and used
for modelling of grain coarsening.

General instructions

The second law of thermodynamics admits all processes with
positive entropy production (positive dissipation) and does not
allow the determination of a distinct unambiguous evolution
path of the system [1]. In 1931 L. Onsager [2] formulated an
extremal principle, according to which the unambiguous path
of the thermodynamic system near equilibrium corresponds to
a constrained maximum of dissipation in any part of the system
at any time. From the thermodynamic point of view Onsager’s
principle can be understood as a strong form of the second law
of thermodynamics allowing the determination of the unam-
biguous evolution path of the system.

In 1991 Onsager’s principle was formulated first in terms of
discrete parameters characterizing the state of the system [3].
These parameters are destined to describe the system evolution
in a natural way. The application of the principle provides a sys-
tematic way of derivation of the evolution equations for these
parameters for a wide class of problems in the context of linear
non-equilibrium thermodynamics [4].

Formulation of Onsager’s principle in terms of
discrete parameters

Let us limit to closed thermodynamic systems under constant
temperature and pressure. In that case the total Gibbs energyG
of the system is the characteristic potential. Furthermore, let us
assume, that the state of the system can be described well by
a set of discrete parametersqi(t), i = 1, ...., N , at any timet
and the total Gibbs energy of the systems can be expressed by
means of the parameters:G = G(q1, ..., qN ) . The parameters
are assumed to be constrained bym relations of the type

N∑
i=1

aik (q1, ..., qN ) q̇i = 0, k = 1, ...,m (1)

The dot symbol is used for the time derivative.
We assume that the system evolves by diffusion and by migra-
tion of interfaces. Then the total dissipation in the system can
be expressed by

Q =
n∑
k=1

∫
V

RT j2k
ckDk

dV +
∫
A

v2

M
dA (2)

The number of components in the system is denoted byn , R
is the gas constant,T the absolute temperature,ck is the con-
centration,jk the diffusive flux andDk the tracer diffusion co-
efficient of componentk, v is the interface velocity andM the
interface mobility. The volume of the system is denoted byV
and the interface area byA.
Using the mass conservation laws, proper simplifications and
assumptions on the geometry of the system, the linear relations

jk =
N∑
i=1

f ik (q1, ..., qN )q̇i, k = 1, ..., n, (3)

v =
N∑
i=1

hi (q1, ..., qN )q̇i (4)

can be obtained. This procedure together with the selection of
parameters represents the key step in the development of the
model. Insertion of (3) and (4) into (2) and performance of the
integrals enables to express the total dissipation in the system
as a positive definite quadratic form of the rates of parameters
as

Q =
N∑
i=1

N∑
j=1

Uij (q1, ..., qN )q̇iq̇j (5)

Onsager’s thermodynamic extremal principle asserts that the
evolution of the system corresponds to the maximum ofQ con-
strained byQ+ Ġ = 0 and (1). The necessary condition for the
maximum reads

∂

∂q̇i

[
Q+ λ

(
Q+ Ġ

)
+

m∑
k=1

βk

N∑
i=1

aik q̇i

]
= 0, i = 1, . . . N

(6)
The quantitiesλ andβk, k = 1, . . .m, denote Lagrange mul-
tipliers. The mathematical treatment leads to resulting set of
linear equations represented by

N∑
j=1

Uij q̇j +
m∑
k=1

aikβk = −∂G
∂qi

, i = 1, . . . N (7)

and (1) forq̇i , i = 1, . . . N , andβk, k = 1, . . .m.
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Application of Onsager’s principle to modelling
of grain growth

The theoretical treatment of grain coarsening is possible only
by accepting some model assumptions, which simplify the real-
ity, however, still keep the important features of grain coarsen-
ing. One of such usual model assumptions is the approximation
of each grain by a sphere of the same volume and the mean field
approximation. Then the system of grains can be described by
the radiiRk of individual grains representing the parameters of
the system. The total Gibbs energy of the system is given by

G =
1
2
4πγ

N∑
k=1

R2
k (8)

the total dissipation in the system follows as

Q =
1
2

4π
M

N∑
k=1

R2
kṘ

2
k (9)

The quantityγ is the Gibbs energy of the grain boundaries per
unit area and M is the grain boundary mobility. The factor 0.5 in
equations (1) and (2) takes into account that each grain bound-
ary is common to two grains. The total volume of the grains in
the system must be conserved and thus

4π
3

N∑
k=1

R3
k = const.⇒

N∑
k=1

R2
kṘk = 0. (10)

Using the formalism from the previous section final equations
read

Ṙk = 2γM
(

1
RC
− 1
Rk

)
, k = 1, ..., N (11)

with RC =
∑N
i=1R

2
i

/∑N
i=1Ri being a critical radius. The

evolution equations (11) forRk are equivalent to those derived
first by Hillert [5] by means of heuristic considerations in 1965.
More details can be found in [6].
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Summary: In order to identify the spongy bone’s mechanical behavior, we performed compression tests on cylindrical samples.
Experimental results show an important dispersion and an unexpected inverse strain rate dependency. The origin of this dispersion
is the combination of the architecture effect and the mechanical properties variation. In order to reduce these dispersion sources
and to understand the inverse strain rate effect, we used a controlled constitutive material to build new equivalent samples with the
spongy bone’s architecture. These equivalent samples were subjected to compression tests with a large velocity range. However,
we obtained a classical stain rate dependency usually observed for similar cellular materials.

Introduction

In the fields of crashworthiness, ballistic protections and other
medical applications, the accurate material constitutive law of
spongy bone is needed to carry out valid finite element analysis.
Previous works [1, 2] show that spongy bone mechanical prop-
erties found in literature provide unsatisfying results. Spongy
bone is a complex network of intersecting curved plates and
tubes (trabeculae). The size and shape distribution of the tra-
beculae varies along the skull’s thickness. The spaces in and
around the trabeculae contain fluids and bone marrow. More-
over, different authors [3, 4] reported an important dispersion
on the mechanical properties of the trabeculae. All these vari-
ations are usually explained by the inter individuality, by the
osseous remodeling and by the extraction zone. That is why
works on spongy bones are undertaken to better understand the
global mechanical behavior and to identify a constitutive mate-
rial law taking into account these variations.

Compression tests on spongy bone samples

Since it is restricting to perform tests on skull from human
donors, we developed and validated our study on beef ribs. This
study will be extended later to the skull characterization. In-
deed, the skull and rib are both flat bones, which consist of two
blades of cortical bone separated by a layer of spongy one. We
isolated this layer and cored cylindrical samples. Compression
tests were performed on these samples between two parallel
plates, with a controlled loading velocity. Further information
on the samples preparation and experimental conditions can be
found in previous communications [5]. During the compres-
sion, we observe a strain localization and the section variation
is not uniform. This is why we present the compression re-
sults in term of the force versus the upper plate displacement.
Fig. 1 shows typical results obtained for five samples cut from
the same rib. These curves can be divided into three stages:
(i) Quasi linear compression of the network of trabeculae;(ii)
Collapse of the trabeculae network;(iii) Complete compaction
and acceleration of the fluid extrusion. These three stages are
usually observed during the compression of other cellular ma-
terials (foams, honeycombs). For samples bored from the same

rib, the stiffness seems to be constant but peak value and transi-
tions strains vary significantly. These dispersions are generally
attributed to the random architecture, to the localization of the
strain and to the intrinsic constitutive material variation.

Figure 1: Compression force versus displacement for five sam-
ples cut in the same rib, and compressed at 5 mm/min.

Figure 2: Compression force versus displacement for five sam-
ples cut in the same rib, and compressed at different loading
velocities.

In order to characterize the strain rate effect on the mechanical
properties of the spongy bone, samples cut in the same ribs are
compressed at different velocities. As shown in Fig.2, we ob-
tain an unexpected strain rate dependency. When increasing the
velocity of loading, the peak force value and the stiffness de-
crease. The geometrical continuity between the cortical and the
spongy bone allow us to suppose that they have the same me-
chanical properties. Moreover Adharapurapu [6] showed that
cortical bone has a classical visco plastic strain rate depen-
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dency. So, the observed behavior can not be only explained by
the mechanical properties of the constitutive material.

Compression tests provided us information on the structural be-
havior of the spongy bone but not on the trabeculae material
properties. It is then fundamental to study the spongy bone’s
architecture effect in order to dissociate it from the mechanical
properties of the constitutive material. We could then under-
stand the observed strain rate dependency.

Physical model construction

The micro-architecture of each sample was acquired thanks
to micro-computed tomography techniqueµCT . The resolu-
tion was high enough compared to trabeculae average size. The
voxel size was of70×70 µm and the distance between two con-
secutive slices was200 µm. Thanks to the marching cube algo-
rithm, we reconstructed the micro-architecture of some scanned
samples. The obtained models were used to build the physical
models by the rapid prototyping technique using a well-known
constitutive material (ABS polymer). Both the ABS polymer
and the trabeculae constitutive material have a similar strain
rate dependency. We extracted a cube of3 × 3 × 3 mm in the
center of the scanned sample and applied a scale factor of10
in order to facilitate the strain observation. Thanks to this tech-
nique, we ensured that the equivalent models, with the same
architecture are identical. Fig.3 presents one example of equiv-
alent model taken in the center of spongy bone sample.

Figure 3: One equivalent cubic sample made of ABS polymer.

Compression tests on physical models

These models were subjected to compression tests between par-
allel plates. The loading velocity range was increased in order
to compensate the scale factor effect on the strain rate. The ob-
tained results presented in Fig.4 confirm that the equivalent
models are identical since two tests at the same velocity (500
mm/min) give the same response. When we varied the loading
velocity, we obtained a classical strain rate dependency similar
to that reported for cellular materials.

Discussion

An experimental study of spongy bone’s mechanical behavior
showed an important dispersion on results. We also obtained
an unexpected strain rate dependency: by increasing the load-
ing velocity, the stiffness and the peak force decreases. This
is why we decided to build equivalent physical models, with a

Figure 4: Compression force versus displacement for equiva-
lent samples compressed at different loading velocities.

spongy bone’s architecture and a controlled constitutive mate-
rial. The compression tests on equivalent samples did not ex-
plain the particular behavior of the spongy bone. This results
suggests that the strain rate effect in the spongy bone can not
be explained only by its architecture. We are working on the
investigation of the other possible parameters inducing this be-
havior. We will investigate the trabeculae/fluid interaction dur-
ing the compression of equivalent samples.
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Summary: This work aims at investigating the influence of microscopic properties of concrete on its macroscopic creep be-
haviour. For this purpose, two solution strategies are proposed. The first one consists in determining semi-analytically the time
evolution of the macroscopic creep compliance by relating the macroscopic retardation times to the microscopic properties. The
second one limits the interest on constructing analytical asymptotes for the long term creep behaviour.

Concrete is a heterogeneous material which exhibits a vis-
coelastic behaviour under a long term applied load. The het-
erogeneous nature of the material is retrieved at different scales
of observation. At each scale, the representative element vol-
ume can be seen as elastic and porous inclusions embedded
in a viscoelastic matrix. A robust descript of the macroscopic
behaviour of the material suggests therefore to use upscaling
techniques to build the homogenised behaviour [1]. This breaks
with the classical approaches in which macroscopic constitu-
tive laws are constructed with several phenomenological pa-
rameters which are assumed, for instance, being able to de-
scribe the influence of the concrete mix on the creep behaviour.
Indeed, homogenisation techniques incorporate naturally the
microstructure associated with each concrete mix and then can
make explicit its influence on the macroscopic behaviour.

Homogenisation of viscoelastic heterogeneous materials can be
studied by using the correspondence principle which permits to
extend elastic homogenization schemes to the viscoelastic case.
The correspondence principle consists in using the Laplace-
Carson transform in order to make the viscoelastic problem
equivalent to an elastic one in the transform space [2]. The
macroscopic viscoelastic properties (creep and relaxation func-
tions) are therefore obtained in a straightforward manner but in
the Laplace-Carson transform space. Thereafter, the difficulty
consists in deriving theses properties in the time domain by in-
verting their Laplace-Carson transforms.

The inverse transformation requires prior to determine the
macroscopic relaxation times which correspond to the roots of
polynomials whose degree depends on both the number of the
microscopic relaxation times and the number of homogenized
phases. Therefore, determining these roots becomes rapidly in-
feasible, unless full numerical procedures are used which pre-
cludes assessing the influence of the microscopic properties on
the macroscopic retardation spectrum.

In this contribution, interest is focused on two widely used
elastic homogenisation schemes: the Mori-Tanaka scheme [3]
and the Christensen and Lo generalized self consistent one [4].
Generalised Maxwell and Kelvin rheological models [5] are
used for modelling the microscopic behaviour of the viscoelas-
tic phase, i.e., the matrix as shown in figure 1. Then, a two steps
procedure is proposed in order to derive long term analytical

E2

η2

...
σdev

ηm η1

Em

= Ei

σdev
E1

ηi
τi

mic

Figure 1: Generalised Kelvin model for the shear creep func-
tion of the matrix

and semi-analytical expressions for the macroscopic viscoelas-
tic properties as shown in figure 2. In this procedure, it is shown

t

Creep function Analytical solution

Semi-analytical

Figure 2: Asymptote of the effective creep function

that a part of the macroscopic retardation timesτhom, for both
creep and relaxation, coincides with the microscopic onesτmic:{

τhomk : k = 1, · · · , l
}

=
{
τmici : i = 1, · · · ,m

}⋃{
τ̄homj : j = 1, · · · , l̄

} (1)

The complementary part̄τhom is then determined from the
roots of polynomials with reduced order, which increases the
number of the solutions to be analytically determined.

Furthermore, under some additional simplifying assumptions
(constant Poisson ratio or constant bulk modulus of the ma-
trix) the remaining part of the macroscopic retardation times
presents as a family of sets of values, each set being bounded
by two successive values of the microscopic retardation times:

τmici <
{
τ̄homk : k = 1, · · · , n

}
i
< τmici+1 (2)
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This fact is very helpful when standard numerical procedures
are used for roots determination. Using the generalised self-
consistent scheme in the case of two phases composite(n =
2) , the inequality (2) can be represented by figure 3. In this
case, it is shown that the spectrum presents as a continuous
part necessarly bounded by two successive discrete retardation
times of the discrete part of the microscopic spectrum.

t

τi

mic

Spectrum

Macro continuous spectrum

Macro line spectrum

τi1

mic
τi2

mic
τi+1

mic

Figure 3: Spectrum of the effective creep function

This two steps procedure permits to separating the complexity
generated by a large numbern of phases from the one gen-
erated by a large numberm of analogical units, when deter-
mining the macroscopic retardation times. Thus semi-analytic
solutions can be determined for the macroscopic creepJhom
function, in the case of the Mori-Tanaka, writes:

Jhom (t) = L0 +L1 t+
m∑
i=2

Lie
− t

τmic
i +

m×n∑
j=1

L̄je
− t

τ̄hom
j (3)

where theτ̄homj can determined either analytically or numer-
ically. The constant termsLi and L̄j depend on the micro-
scopic properties of the material and the adopted homogeniza-
tion scheme. In the case of a constant Poisson ratio, analytical
solutions can be derived for problems with up tom = 4 analog-
ical units andn = 4 inclusion phases, which in fact correspond
to problems with a spectrum of up tol = 20 macroscopic retar-
dation times.

Moreover, it is shown that situations with very close macro-
scopic retardation times̄τhomj may occur. In this case, the spec-
trum of the macroscopic viscoelastic functions may be reduced
by replacing the population of close retardation times by an
equivalent value, the average value for instance, and summing
the corresponding amplitudes̄Lj . This feature can be of great
help when multi-scales homogenization is concerned, each up-
scaling generating new macroscopic retardation times that in-
crease the size of the problem.

However, this approach reaches quickly its limit, namely when
several homogenization scales are concerned together with a
large number of phases. An alternative approach is therefore
proposed from which asymptotes of the long term creep are
determined at each homogenization scale. This approach does
not need to compute the inverse of the Laplace-Carson trans-
form but exploits some of its prosperities in order to construct
asymptotes of the creep compliance in the time domain. This is
clearly suggested by the affine part of equation (3). At each ho-
mogenization scale, the long term creep behaviour is related ex-
plicitly to the microscopic proprieties of all the previous scales
by applying the initial and final theorem of Laplace transform.

The derived solutions are then coupled with a hydration model
[1] in order to investigate the influence of the concrete mix on
its creep behavior [6] as shown in figure4.
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Figure 4: Experimental and analytical curves of the creep func-
tion of two concrete formulations
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Summary: This work presents the influence of concrete structure damage and reinforcement corrosion process on the state of
stress in concrete beams along with FEM application to the simulation of such types of process. The damage effects in concrete
can be of mechanical and chemical type, however, the reinforcement corrosion consists of two types of process along with the
interactions: electrochemical corrosion and surface active substances.

Introduction

Typical case of aggressive environment influence on the con-
struction can led to the damage of both concrete and the re-
bar structure. The damage processes of concrete usually con-
sist in the porosity increase, cracking and scratching. The re-
inforcement corrosion is initialized by electrode processes in
local macrocell places that are mostly created in the neutral-
ized concrete or chloride penetration places. As a result of elec-
trochemical processes the active area of rebar is changed. The
other type of reinforcement corrosion is connected with the
adsorption action of ions and surface active particles that can
be found in water solution (electrolyte) occurring in scratching
and concrete pores. The adsorbed on the reinforcement surface
ions penetrate through the defects deeper in the steel structure
and activate the stress corrosion that is characterized by inter-
crystalline cracking. Intercrystalline corrosion seems to be par-
ticularly dangerous because it causes the change of the plastic
properties into brittles in spite of the fact that in normal con-
dition material shows high plasticity. The damages created as
the result of corrosion processes can be treated as the material
voids that cannot transfer the stresses.

Formulation of the model equation

We will treat concrete as the multicomponent composite
(cf. [1]) that is consisting of concrete steel and migrating sub-
stances. It will be assumed that the composite macrocompo-
nents: steel and concrete can be described by elastic-plastic
constitutive relationships, cf. [2, 3]:

Concrete:

σc = (1−Dc)Cc : εec = (1−Dc)Cep
c : εc (1)

Cep
c = Cc −

1
Hc

Cc :
∂gc
∂σ
⊗ ∂fc
∂σ

: Cc (2)

Hc =
∂fc
∂σ

: Cc :
∂gc
∂σ

+ hvc , εc = εec + εpc (3)

Figure 1: Degradation of pores structure in concrete.

Steel:

σs = (1−Ds)Cs : εes = (1−Dc)Cep
s : εs (4)

Cep
s = Cs −

1
Hs

Cs :
∂fs
∂σ
⊗ ∂fs
∂σ

: Cs (5)

Hs =
∂fs
∂σ

: Cs :
∂fs
∂σ

+ hvs , εs = εes + εps (6)

In equations (1–4)Cc, Cs are tensors of elasticity in concrete
and steel,εec, ε

e
s tensors of infinitesimal strains in concrete and

steel,Cep
b ,C

ep
s tensor of elastic-plastic material tangent mod-

ule,f, g flow and plastic potential function,Dc global damage
parameter caused by influence of aggressive media on structure
of concrete,Ds global damage parameter of steel caused by
electrochemical corrosion and surface active particles action.

Formulation of damage parameters evolution in
concrete

It will be assumed that the damage mechanism associated with
the influence of the aggressive substances on concrete is pri-
mary connected with the change of pores structure. Addition-
ally we will assume cf. [4] that the concrete structure degra-
dation parameter can be described by the use of the following
formulas, cf. Fig. 1:
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Figure 2: Degradation of rebar cross section area.

Figure 3: Change of rebar cross section diameter as a result of
electrochemical corrosion.

Dc =
Acd
Aco

(7)

Acd is the cross section area damaged as a result of aggressive
substances action,Aco original undamaged cross section area.

Formulation of damage parameters evolution
equation in steel

The scheme of rebar cross section area degradation cf. Fig. 2.
It will be assumed that the steel global degradation parameter
can be presented by using the following equation, cf. [5].

Ds = 1− (1−Dspo) (1−Dscb) ,
Dspo = Asp

Aso
, Dscb = Asmc

Ascb
, Ascb = Aso −Asp

(8)

whereAsp is the pit cross section area,Aso initial cross section
of rebar,Asmc micro cracking cross section area,Ascb gross
cross section area of the core.

Formulation of the degradation parameter Dspo: The
degradation parameterDspo evolution character is of electro-
chemical type and is described by the use of Faraday’s law [6]:

Asp = Aso − 0.25π(φso − φsp)2 (9)

Aso =
πφ2

so

4
, φsp = mλicorrt (10)

wherem type of corrosion dependent coefficient (m = 2 for
the uniform corrosion),λ conversion coefficient [µA/cm2] →
[mm/year], the size of this coefficient isλ=0.0115,icorr density
of corrosion electric current [µA/cm2].

Formulation of the degradation parameterDscb: It will be
assumed that the evolution equation describing the degradation
parameterDscb can be presented in the form of the following
equations

dDscb

dt
= K [σ̄ (t)]v σ̄ (t) =

N

Aso −Asmc
Dscb (t)|t=0 = 0 Dscb (t)|t=tkr

∼= 1

σ̄ (t) =
σ

(1−Dspo) (1−Dscb)
σ =

N
Aso

(11)

Integrating the equation (11) the final form of the global degra-
dation parameter of reinforcing steal in the form of the follow-
ing equation will be obtained

Dscb = 1− v+1
√

1− (1 + v)B (w0 + 4w1 + w2) · t
w0 = A−2v

so (12)

w1 = (Aso − 0.5Asp (t))−2v · π · (4 ·Aso)
−1

w2 = (Aso −Asp (t))−2v · π · (4 ·Aso)
−1

In this equationK, v are material parameters. They can be des-
ignate experimentally by expressing the time of breaking down
the steel specimen subjected to the influence of surface active
substances.
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rozyjnych. Zeszyty Naukowe Politechniki Slaskiej. Gli-
wice.

[6] . B. Roberts, C. Atkins, V. Hogg, C. Middleton (2000):
A proposed empirical corrosion model for reinforced con-
crete. Proc. Instn. Civ. Engrs Structs&Bldgs, 140.

Prague, Czech Republic, 25-27 June 2007 323



MHM 2007: Modelling of Heterogeneous Materials with Applications in Construction and Biomedical Engineering

The Influence of Proton-Exchange-Membrane Thickness on Fuel Cell Efficiency
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Summary: We propose a simple diffusion model of a polymer-electrolyte-membrane fuel cell and perform its thermodynamic
analysis. This model attempts to describe both transport processes in the membrane and electrochemical reactions at the elec-
trodes with a single set of equations. By using linearization of the model equations and normal mode analysis, we derive an
expression for characteristic thickness of the membrane. We also obtain an expression for the membrane efficiency and, as an
example application, use it in an experimental design for the determination of membrane transport parameters.

A diffusion-type model of PEMFC involving elec-
trochemical reaction and mass and charge trans-
fer

Fuel cells represent a prospective, efficient, and clean alter-
native to traditional ways of generating electrical energy for
automotive, portable and stationary applications. One of the
most promising types of fuel cells are PEMFCs (Polymer-
Electrolyte-Membrane or Proton-Exchange-Membrane Fuel
Cells), since they are able to operate under ambient or near-
ambient conditions, have simple design, and could be relatively
inexpensive. A hydrogen-oxygen PEMFC produces electric-
ity during electrochemical half-reactions that occur at its elec-
trodes. The anode half-reaction reads

2H2 + 4H2O 
k+
a

k−a
4H3O+ + 4e− (1)

while the cathode one reads

O2 + 4H3O+ + 4e− 
k+
c

k−c
6H2O (2)

We proposed a simple diffusion model of a polymer-
electrolyte-membrane fuel cell and performed its thermody-
namic analysis. Our model takes into account transport of pro-
tons and water through the membrane as well as the electro-
chemical reaction (1), (2). The model has the following pa-
rameters: rate constants of the electrochemical reactions, diffu-
sion coefficient of water in the membrane, proton conductivity
of the membrane, and electro-osmotic drag coefficient of the
membrane. The model output is comprised of water and pro-
tons concentration profiles.

Characteristic thickness of the membrane

Having assumed local electroneutrality within the cell and neg-
ligibility of the backward reaction rates in (1), (2), we linearized
the model equations and performed normal mode analysis of
the linearized model. As a result, we have obtained the follow-
ing approximate relation between characteristic dimension of

the membrane and its transport parameters:

L ≈ 2DH2O − 3Dσ

20j
CH2Oπ

2F (3)

Here,L is the characteristic dimension (thickness) of the mem-
brane,DH2O is the diffusion coefficient of water,Dσ is the
diffusion coefficient of protons,j is the current density,cH2O

is the concentration of water,π is the water production density,
andF is the Faraday constant. The results calculated by using
the values of transport coefficients from [1] are depicted in Fig.
1. The values around 200µm for a highly hydrated membrane
correspond with the usual thickness of common fuel cell mem-
branes.

Figure 1: Characteristic dimension (thickness)L of a Nafion
membrane as a function of the membrane water contentλ at
the temperature of 80 C and current density of 500 mA/cm2.

Coupling and efficiency

A topic of significant interest from the irreversible-
thermodynamic viewpoint is coupling between various
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transport phenomena. In our model, we analyse coupling be-
tween electric current and water diffusion flux. Quantitatively,
coupling is described by the so-called degree of coupling. It
has been shown that there is a relation between maximum
efficiency of conversion of energy of one process into energy
of another process. For our PEMFC model, this relation takes
the form

ηmax =

(
1−

√
1− q2
q

)2

(4)

whereηmax is the maximum efficiency andq is the degree
of coupling. The results obtained from (4) using experimen-
tal data from various sources are in qualitative agreement with
the empirical knowledge that the fuel cell membrane has to be
well-hydrated in order to obtain reasonable performance. On
the other hand, the figures obtained from (4) for some data sets
were significantly lower than one would expect, which suggests
possible application of the formula for checking validity of ex-
perimental data.

In-situ experimental determination of transport
parameters

Another possible application of the relation (4) is in experi-
mental determination of transport parameters of a working fuel
cell. While the electric conductivity can be measuredin-situby
using standard methods [2], the diffusion and electro-osmotic
drag coefficients can be determined by measuring water flux
through the cell as a response to known values of water con-
centration gradient and current density, cf. e. g. [3]. The prob-
lem is that transport parameters are functions of temperature
and membrane water content [4]. This means that both of these
quantities should be measured simultaneously with the mea-
surement of transport parameters. By using the relation (4),
membrane water content can be determined from the transport
parameters and the cell voltage.
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Summary: This short paper reports some preliminary results on the biomechanical simulation of corneal refractive surgery
techniques such as Radial Keratotomy (RK) and PhotoRefractive Keratectomy (PRK). These surgical techniques are used to
reshape the human cornea and thus modify its refractive power as needed to resolve most common refractive disfunctions such
as myopia, hyperopia and astigmatism.

Introduction

Refractive surgery of the cornea has become in recent years a
diffuse technique to cope with most common refractive defects
in human vision [1, 3, 6]. After the pioneering attempts of RK
in the second half of 1900, the availability of excimer-based
laser techniques such as PRK and flap-based LASIK (LAser in
SItu Keratomileusis) have blown-up the number of patients that
have been treated all over the world. The development and tun-
ing of such techniques on the single, individual cornea, seems
to have been approached mainly by an experience-gaining and
trial-and-error approach. Despite the massive use of refractive
surgery, an appropriate biomechanical model of the cornea un-
der physiological conditions and under the effect of surgical
treatments seems still to be lacking. Such an approach appears
to be necessary for a correct tuning of the techniques on both
a general and an individual basis. This would help in reducing
the risk of complete or partial failure that are still connected to
the implementation of these removal techniques (that weaken
the cornea from a structural point of view).

This work attempts a biomechanical modelling of refractive
surgery. Efforts in this direction have been already produced
by different authors, mainly with respect to well-established
RK, but also to PRK [7, 2, 9, 4, 5]. Analytical and numeri-
cal (FEM) approaches are employed to estimate the change in
dioptric power of the myopic cornea following RK and PRK
under the assumption of linear elastic behaviour. The following
specific aspects as described in the sequel have been consid-
ered. A comprehensive account of the study is given in [8].

Membrane/flexure behaviour of the cornea based
on Shells Theory

The basic equations of Shells Theory [10] are solved to analyze
the stress/deformation response of the cornea in physiological
conditions under internal IOP (IntraOcular Pressure). The pure
membrane regime is investigated for a vanishing constraint at
the limbus interface between cornea and sclera (rollers). Flex-
ure behaviour is instead taken into account by assuming per-
fect built-in constraints at the limbus. Results are presented
in terms of: i) the analytical solution with 8 terms of the hy-
pergeometric series; ii) Geckeler approximate analytical solu-
tion I; iii) Hetény approximate analytical solution II. An aver-
age human cornea is considered as a constant thickness spher-
ical elastic shell with medium radiusRm=7.35 mm, thick-

nesss=0.59 mm, half opening apex-to-limbus angleθc=48◦,
Young’s modulusE=1 MPa, Poisson’s ratioν=0.49, IOP
p=15 mmHg=2 kPa. Output is obtained in terms of both stress
resultants and deformation. Fig.1 reports the vertical displace-
ment of the shellη as a function of the anomaly angleθ from
the apex. Notice that the truncated exact solution remains valid
to represent the apical zone nearθ=0◦. These results have
been compared to FEM simulations of an average physiological
cornea with variable thickness, with order-of-magnitude agree-
ment on both static and kinematic output.
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Figure 1: Vertical displacement of the corneal linear elastic
shell under IOP according to Shells Theory.

FEM modelling of RK

A 3D model of revolution is assembled, with built-in conditions
at the limbus. Four incisions are considered, by constraints re-
moval, at 85% thickness depth of the cornea, preserved free
optical zone of 4 mm diameter, length of 2.5 mm from that.
Flattening of the central cornea and bulging of the peripheral
regions are observed, trends in agreement with previous simu-
lations [7, 4]. A FEM/CAD procedure has been developed to
evaluate the local radii of curvature of the central cornea in
pre- and post-operative conditions. This allows to evaluate the
change in dioptric power of the cornea according to the formula

∆D = 337.5 (1/Rf − 1/Ri) , (1)

whereRi andRf are the estimated initial and final radii of cur-
vature in mm [3]. Values of -3.85 D and -3.81 D have been eval-
uated along the incision meridians and at 45◦ between them.
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FEM modelling of PRK

The physiological cornea is considered with both a Katsube-
type [5], step-shaped constant thickness and a Munnerlyn-type
variable thickness ablation profile [1]. The two main param-
eters in the latter PRK procedure are the maximum ablation
depthh at the apex and the diameterd of the ablation zone.
Parametric axisymmetric FEM analyses have been performed
for varioush and d. Figs. 2–3 resume the prediction of the
degree of correction in diopters. Fig.4 compares predictions
that can be made in various ways, with reference to the so-
called Munnerlyn’s formula [1], h =−∆Dd2/3, that accounts
just for the geometrical reshaping of the external surface of
the cornea after laser ablation. This formula is normally em-
ployed in defining the input parametersh, d of the surgical PRK
treatment for a given desired∆D. Our results turn out under-
corrective. However, it has to be noted that no attempts where
made in the study towards a quantitative prediction, with ad-hoc
calibration of the parameters (for example to the Young’s mod-
ulusE is given the nominal value 1 MPa). On the other hand,
the analysis shows the importance of considering not only the
pure geometrical reshaping of the cornea but also the conse-
quent change of the biomechanical response of the weakened
cornea, which is reflected by the discrepancies between curves
1-2 and 3-4 in Fig.4.

Figure 2: Degree of refractive correction∆D after PRK as a
function of ablation diameterd at constant maximum ablation
depth (h=0.1 mm).

Figure 3: Degree of refractive correction∆D after PRK as a
function of maximum ablation depthh at constant ablation di-
ameter (d=7 mm).

Figure 4: Idem as Fig.3. Comparison of different estimates
of pre- and post-operative shapes from: 1) deformed profiles;
2) same but through Munnerlyn’s formula; 3) undeformed pro-
files; 4) pure Munnerlyn’s formula on target ablation profile.

Conclusions

These preliminary results further support the need of a quanti-
tative biomechanical modelling of refractive surgery, possibly
even on an individual basis. This should complement the oph-
talmologist’s experience in defining the most appropriate treat-
ment parameters and thus help in reducing the risk of failure.
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Summary: This work contributes to the methodology of an evaluation of elastic properties of cortical bones by ultrasonic
wave inversion, whilst the bone is considered to be a linear elastic anisotropic continuum. Velocities of acoustic waves are
used as an input data into inverse problem and they are experimentally detected by means of the ultrasonic based pulse-echo
immersion technique. The geometry of bone specimens is also implicated into algorithm by the model of wave propagation
through curvilinear anisotropic sample based on the simplified ray method.

Introduction

The aim of this study is contribution to the methodology of an
evaluation of elastic properties of cortical bone by ultrasonic
wave inversion, whilst the bone is considered to be a linear
elastic anisotropic continuum. Velocities of acoustic waves are
used as an input data into inverse problem and they are experi-
mentally detected by means of the ultrasonic based pulse-echo
immersion technique. This method was developed on compos-
ite structures such as plates and cylindrical shells. The geom-
etry of bone specimens is also implicated into algorithm by
the model of wave propagation through curvilinear anisotropic
sample based on the simplified ray method, which is an original
approach and its application to the experimental determination
of the bovine femoral sample is the main subject of the inter-
est of this work. The stability of resulting data from inverse
algorithm is evaluated by the statistical method based on the
Monte-Carlo simulation. The suggested approach has a poten-
tial for qualify of such measurements performed on fresh bones
and also for improvement in-situ ultrasonic techniques.

Materials and methods

The main aim of this experiment is to deal with possibili-
ties of the measurement of the matrix of elastic coefficients
of the cortical bone by means of the dynamical, ultrasound
based, mechanical tests. The methodology should be non-
destructive; ultrasound based, appropriates for a rapid measure-
ment and undemanding a sample preparation. The ultrasonic-
pulsed through-transmission method with the specimen im-
mersed in a liquid between two opposite trans-ducers has been
chosen as a suitable technique.

Following experiments were performed on the dry bovine fe-
mur. Dry bovine bone was used instead of a wet bone [1] for

the measurement, because of the independent determination of
elastic properties separately, from the natural visco-elastic be-
havior of bones. The bone sample was slit into two parts along
the bone axis in order to monitor just simple wave propagation
through one face of the bone and each part was shape-measured
on CNC milling machine. During the experiment, just one par-
ticular place in a middle part of the bone localized on a medial
side of the bovine femur sample was examined.

The three different modes of the measurement, modes C, D
and I, were performed. Modes C and D corresponded to the
horizontal positioning of the bone between the transducer and
the reflector where the wave propagation in an axial plane of
the bone was observed. The bone geometry was not solved
in these modes, the bone geometry was considered as pla-
nar in the surrounding of a measuring position. This mode
was appropriate for evaluation of 6 out of 9 elastic coeffi-
cients (c11, c33, c44, c55, c66 andc13) of the orthotropic material
symmetry. These elastic constants were evaluated from mea-
sured quasi-longitudinal and quasi-transverse wave velocities
via the solution of an inverse problem of the Christoffel equa-
tion [2]. The mode I corresponded to the vertical configuration
of the measurement. In this mode, the propagation of the pla-
nar wave was observed in the plane perpendicular to the long
axis of the bone, so the bone curvature needs to be consid-
ered. This is resolved by means of Simplified Ray Method [3].
The technique [2] is based on a wavefront substitution by the
closely localized energy flow (ray) in every geometrical point.
The Christoffel’s equation along rays and the ray behavior at
a solid/liquid interface will be solved numerically afterwards.
Rays in immersion are lines perpendicular to the wavefront -
the planar wavefront is replaced by the set of respectively par-
allel rays. The anisotropy orientation is included in the model
by the definition of the angle of anisotropy orientation in each
point of the sample. The rays inside the sample are designed
on the basis of Huygens axiom, thus each point of the cur-
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rent wavefront is a new point source and those newly generated
wavefronts are superimpose into new wave fronts. An exam-
ple of a modeling of the complex interaction of a planar wave
in an anisotropic curvilinear specimen is illustrated on Fig.1.
The Carbon Fibre Reinforced Plastic (CFRP) tube, the mate-
rial having the transversely isotropic symmetry, is introduced
on this figure as a model example.

Figure 1: The interaction of planar wave with a strongly
anisotropic tube. The selection of initial rays; the path of one
ray; the complete interaction.

The mode I was used for the determination of coefficientsc22
andc12. The remaining coefficientc23 was determined by the
simple contact pulse-transmission measurement.

To estimate the accuracy of the optimization procedure’s re-
sults, no appropriate analytical approach is available. The only
possible solution is, thus, the Monte Carlo simulation, based
on running the whole optimization process several times with
randomly distorted input data.

Results

The stability of elastic coefficients of the bovine bone sam-
ple resulting from an inverse problem optimization was eval-
uated by the simulation based on the Monte-Carlo statistical
method [2]. Input parameters into this simulation were varia-
tions of specimen thickness, rotations of a sample (mode C,D)
or a reflector (mode I), a temperature of the water bath and a
density of the specimen. The Monte-Carlo simulation was re-
peated 30 times to generate a representative set of output data.
The variability of this set is approximately expressed by the
usual Gaussian statistic quantities, namely standard deviations.
Obviously, the presented standard deviations cannot be treated
absolutely, but they bring a valuable insight in how sensitive
and stable the optimization procedure is for each particular
coefficient. Final resultant coefficientscij in GPa can be ex-
pressed in the following form:

cij =

0BBBBB@
c11 c12 c13 0 0 0
c12 c22 c23 0 0 0
c13 c23 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

1CCCCCA =

0BBBBB@
27.4 ± 1.6 9.1 ± 3.5 8.3 ± 5.3 0 0 0
9.1 ± 3.5 30.3 ± 2.8 8.5 0 0 0
8.3 ± 5.3 8.5 34.1 ± 1.7 0 0 0

0 0 0 9.3 ± 0.9 0 0
0 0 0 0 7.0 ± 0.4
0 0 0 0 0 6.9 ± 0.5

1CCCCCA
(1)

Particular coefficients of matrix (1) were evaluated from modes
C, D and I (see Materials and Methods). The modes C and D
were used for the determination of 6 elastic coefficients without
considering the general geometry of bone specimen - without
solving the ray model. The mode I served for the determination

of 2 elastic coefficients. This mode corresponds to the vertical
configuration of the measurement, so the wave propagation and
the elastic constant evaluation of the bone specimen with the
general geometry of a bone specimen must be resolved via the
ray method.

The experimental procedure and the elastic constant evaluation
of the mode I is subsequent. The input geometry of the bone
specimen into the ray algorithm was obtained by the contact
probe on milling machine. During the experiment, the bone
sample was rotated into the vertical position, so the wave prop-
agation in the plane perpendicular to the bone axis could be
observed. Then, the ray algorithm is solved for a different po-
sitioning of the specimen until the ray model is tuned to the
measured data. The Christoffel equation along thereby obtained
rays and behavior of rays at the solid/specimen interface was
numerically solved by means of the inverse problem.

The remaining coefficient was not possible to determine via
immersion technique without additional specimen cutting. This
coefficient was evaluated subsequently via simple pulse-echo
contact technique.

Discussion and conclusion

The proposed methodology is usable for the measurement
of all 9 elastic coefficients of compact bone, but specimen
must be cut, which is at variance with request on non-
destructivity of entire process. 8 coefficients can be measured
non-destructively, but general specimen shape needs to be con-
sidered, which leads to application of ray method. The tuning of
ray model to experiment and measurement of specimen shape
is quite laborious. This immersion technique is very suitable for
quick evaluation of 5 constants of long bone non-destructively
without solution of ray model.

The resultant matrix of elastic coefficients (1) of the bovine
dry femur evaluated in this work is in line with other data [2]
and the original presumption, that the dry bone is known to be
stiffer then the wet one was satisfied.
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Šejnoha J.,164
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Jěrábek,238
Johlitz,152
Jongeneelen,122

Kabele,268, 270
Kaczmarczyk,56
Kazemi,212
Keslerov́a,288
Klawonn,104
Kochov́a,112
Kohler,144
Koliji, 142
Kolymbas,52
Kondo,230
Kong,72
Konrad,68
Kouhia,296
Kozel,288
Kozicki, 246
Kraaijeveld,122
Kravchuk,286
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Mi čan,324
Miara,46
Micciché,84
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Sváček,298
Svoboda,316
Swedenborg,26

Tahiri, 300
Tejchman,190, 246, 302
Thakkar,64
Tonar,112
Tralli, 242
Trovalusci,276

Ulm, 20

Valente,206
Valoroso,78
Vandamme,20
Varga,254
Veneziani,102, 308
Verpoest,252
Vignoles,160
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