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s = 0

� The generalized strain κ associated with

bending of beams involves the

2nd derivative  of the field variable

w (deflection). To construct conformable

elements, C1 continuity is required.

This is achieved by considering deflections

w and their derivatives         as degrees of freedom (primary variables to be solved).

� The generalized strain ε associated with axial stretching involves the 1st derivative 

of axial displacement u. Thus C0 continuity is sufficient.

� Considering 2-node element of length l, there are totally 6 degrees of freedom.

Hermitian beam element (in plane x-z)

Degrees of freedom

dw

dx

s

,(1) ,2e ew d=
(1) (2)

,(2) ,5e ew d=
,(1) ,3e ew d′ =

,(2) ,6e ew d′ =

s = 1

,(1) ,1e eu d=
,(2) ,4e eu d=

x, u

z, w
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� Note that with the chosen degrees of freedom               corresponds to 

negative rotation 

s
(1) (2)

0, 0w ϕ′ > <

0
dw

dx
>

0ϕ <

0, 0w ϕ′ < >

ϕ+
x, u

z, w
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� The approximated deflection within an element may be expressed as:
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( ) ( ) ( ) ( ) ( )

,1 ,4,1 ,4

,2 ,3 ,5 ,6,2 ,3 ,5 ,6

e ee e

e e e ee e e e

u s N s N sd d

w s N s N s N s N sd d d d

= +

= + + +

( )
( )

( ) ( )
( ) ( ) ( ) ( )

,1

,2

,3,1 ,4

,4,2 ,3 ,5 ,6

,5

,6

0 0 0 0

0 0

e

e

ee e

ee e e e

e

e

d

d

dN s N su s

dN s N s N s N sw s

d

d

 
 
 
   

=    
     

 
 
 ( ) e es =u N d



6

Derivation of shape functions for bending

� Approximated deflection must be consistent

with the nodal DOF’s:

� Thus each shape function must satisfy 4 conditions
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( )
( )
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,(1) ,1e eu d= ,(2) ,4e eu d=
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� Note that

� To allow enough flexibility, each Ne,i for bending is assumed in the form of 

3th order polynomial 

� The constants are solved from

equations (*), which yield

( ) 2 3
,e i i i i iN s A B s C s D s= + + +

( )
( ) ( )
( )
( ) ( )

2 3
,2

2 3
,3

2 3
,5

2 3
,6

1 3 2

2

3 2

e

e e

e

e e

N s s s
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N s s s

N s l s s

= − +
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Shape functions for axial stretching

� For axial behavior, approximation by linear functions is sufficient for C0

continuity. The shape functions must be consistent with the nodal 

displacements:

� The following functions satisfy

these requirements: 

( )
( )
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,(2) ,4
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e e

e e

u u d

u u d
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Generalized strain

2

2

du

dx
d w

dx

 
    =   

   −
  

ε
κ

22 2 2

2 2 2 2

1

e

d w d dw d ds dw ds ds d w d w

dx dx ds dx ds dx dxdx ds l ds
     = = = =     
     

but u and w are approximated as functions of 
,(1)e

e

x x
s

l

−
=

1

e

du du ds du

dx ds dx l ds
= =

So we use:
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Generalized stress-generalized strain relation

0

0
e e

e e

E AN

E IM

ε
κ

    
=    

    
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Element stiffness matrix
,(1)

,(1)

1

0

e e

e

x l

T T
e e e e e e e e

x x s

dx l ds
+

= =

= =∫ ∫K B D B B D B

� In this case, the integration can be done explicitly

,(1)e
e

e e

x x dx
s ds dx l ds

l l

−
= → = → =

Note:
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Element vector of external forces

� Body force                    ... intensity per unit length (N/m)

� For example for b constant:

1

0

b T
e e e

s

l d
=

= ∫f N b s

x

z

b

b

 
=  
 

b
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,1
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ef
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ef
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ef
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Note that the 
positive 

orientation of 
forces 

(moments) 
corresponds to 

the positive 
orientation of 

DOF’s
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� Surface tractions → applied end forces (N) and moments (Nm)

x
z

,1
t

ef

,2
t

ef

,3
t

ef

,4
t

ef
,5
t

ef

,6
t

ef

Note that the positive orientation of 
forces (moments) corresponds to the 

positive orientation of DOF’s
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Transformation of coordinate system

� Up to now, all derivations were done assuming that the beam axis is 

collinear with the x-axis. We use axes x-zas element local system.

� When modeling a general structure, we usually refer all nodal degrees of 

freedom and nodal forces to a fixed global coordinate system xg-zg. Then 

some elements may be inclined with respect to the global axes and their 

stiffness matrices and load vectors must be transformed from the local 

system:  
xg

z
xzg

(1) ω

(2)

(2) (1) (2) (1)cos , sing g g g

e e

x x z z

l l
ω ω

− −
= =

,l lf d
xg

z
xzg

(1)

(2)

,g gf d

ω
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� The vectors in global coordinates can be transformed to local by:

where

l g

l g

=
=

d T d

f T f

cos sin 0

, sin cos 0

0 0 1

sub
sub

sub

ω ω
ω ω

 
   = = −       

T 0
T T

0 T

� Then

where we used the property

l l l

l g g

T
l g g

=
=

=

K d f

K Td Tf

T K Td f

1 T− =T T
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Isoparametric 2D continuum element

� Isoparametric elements use the same interpolation function for interpolation 

the element geometry and interpolation of its displacement field.

� Natural coordinates are introduced, which map the element into a square 

with side length equal to 2. For example:

r

s

(3)
(4)

(1)

(2)

(3) (4)

(1)(2)

1 1
1

1

x

y
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� For a 4-node quadrilateral element

where

( )
( )

,(1)

,(1)

,(2)

(1) (2) (3) (4) ,(2)

(1) (2) (3) (4) ,(3)
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y

 
 
 
 
 

     =    
    

 
 
 
 
 

=x N x
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( )( )(1)

1
1 1

4
N r s= + + ( )( )(2)

1
1 1

4
N r s= − +

( )( )(3)

1
1 1

4
N r s= − − ( )( )(4)

1
1 1

4
N r s= + −

(3)

(4)

(1)

(3)

(4)

(1)

(3)

(4)

(1)

(3)

(4)

(1)
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� Isoparametric elements are often used in analysis of 2D 

continuum problems (plane stress, plane strain, axial 

symmetry).

� In these problems, strain contains the first derivatives of 

displacement. C0 continuity is therefore sufficient. Nodal 

displacements ue,(i), ve,(i) are used as the degrees of freedom. 

Then displacement within an element is approximated by

( )
( )

,(1)

,(1)

,(2)

(1) (2) (3) (4) ,(2)

(1) (2) (3) (4) ,(3)

,(3)

,(4)

,(4)

0 0 0 0,

0 0 0 0,

e

e

e

e

e

e

e

e

e e

u

v

u

N N N N vu r s

N N N N uv r s

v

u

v

 
 
 
 
 

     =    
    

 
 
 
 
 

=u N d
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� Recall that when constructing the element stiffness matrices and force 

vectors, the derivatives of approximated u and v with respect to x, y are 

necessary. However, the spatial variation of displacements is expressed 

through the shape functions which depend on the natural coordinates r, s . 

Also note, that we can express x, y in terms of r, s through  

but the inverse mapping is generally not available.

� To obtain the desired derivatives we first use the chain rule as follows:

x y
xr r r

x y
ys s s

∂ ∂ ∂ ∂   
     ∂   ∂ ∂ ∂=     ∂∂ ∂ ∂    

   ∂ ∂ ∂ ∂     

∂ ∂=
∂ ∂

J
r x

e e=x N x

J ... Jacobian operator or Jacobian matrix
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� Then, provided the inverse of J exists:

Note: the inverse does not exist if there is not unique relationship between 

r, s and x, y. This may happen, for example if the element is overly 

distorted.

x

y

(3)
(4)

(1)

(2)
inner angle ≥ 180o

( ) ( )
( ) ( )

1 1

1,1 1,2 1
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∂  ∂ 
     ∂ ∂∂   ∂ = =   ∂   ∂ ∂ ∂      ∂  ∂  

J J
J

x rJ J
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,

0
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 
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 
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 
 
 
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� Approximated strain distribution within the element is obtained as

matrix Be

e e=ε B d
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� The element stiffness matrix is obtained by integration over the volume of 

the element

D ... constitutive matrix (stress-strain relation)

t ... element thickness

� It can be shown that                                           and thus

� Similarly, the nodal forces vector associated with body forces is

T
e e e

A

t dxdy= ∫K B DB

detdx dy dr ds= J

1 1

1 1

detT
e e e

r s

t dr ds
=− =−

= ∫ ∫K B DB J

1 1

1 1

detb T
e e

r s

t dr ds
=− =−

= ∫ ∫f N b J
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� To calculate the nodal forces vector associated with surface tractions, 

integration must be performed along the loaded element boundary, e.g.:

x

y

r

s

(3)
(4)

(1)

(2)

(3) (4)

(1)(2)
t = {tx, ty}T

2 2

(1) (2) (1) (2)

det

det

,
2 2

c

c

dc dr

x y

r r

x x y yx y

r r

=

∂ ∂   = +   ∂ ∂   

− −∂ ∂= =
∂ ∂

J

Jt T
e

c

t dc= ∫f N t
1

1

dett T
e c

r

t dr
=−

= ∫f N t J

c
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Idea of Gauss numerical integration

� The calculation of element stiffness matrix and nodal force vectors involves 

integration over the element volume or contour. Generally, it is not efficient 

(or even possible) to evaluate these integrals explicitly; instead numerical 

integration is used.

� The principle of Gauss numerical integration consist in approximating the 

integrand with a polynomial at a given number of points and integrating this 

polynomial. 

-1 1s1

f (s1)

f (s2)

f 

s2 s3

f (s3)

s

f
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( ) ( )
1

11

n

i i
i

f s ds w f s
=−

≅∑∫

n … number of integration points
wi … weight of integration point i

si … coordinate of integration point i

� The sought n be then approximately expressed as:

� By using n integration points, polynomials of order up to at most (2n-1) are 

integrated exactly by the above formula.

n si wi

www.wikipedia.org
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� In multiple dimensions, the formula for one dimension can be used 

successively:

( ) ( )
1 1

1 11 1

, ,
n n

i j i j
i jr s

f r s dr ds w w f r s
= ==− =−

≅∑∑∫ ∫

( ) ( )
1 1 1

1 1 11 1 1

, , , ,
n n n

i j k i j k
i j kr s t

f r s t dr ds dt w w w f r s t
= = ==− =− =−

≅∑∑∑∫ ∫ ∫
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Some types of commonly used elements

� The review in this section is based on some of elements that are implemented in 

general purpose program ADINA®. They are common types of elements that are 

available in most FEM programs. However, each program may use different 

conventions for, e.g. direction, orientation and notation of degrees of freedom and 

nodal forces, input of loads, plotting of results, etc. The implementation of individual 

elements, such as interpolation functions etc. may also differ in some cases. 

� A finite element type is defined by:

� underlying theory (beam, plate, solid, ...)

� geometrical dimension (linear, planar, spatial, …)

� number and arrangement of nodes (shape)

� used interpolation functions

� number and type of degrees of freedom in each node

� e.g. in Example 2 we used B-E beam, 1-dimensional linear element 

with 2 nodes, cubic interpolation functions, and 2 DOF’s per node. 
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Truss and cable elements

� number of nodes (shape): 2 (line), 3, 4 (curve)

� curved element transmits only axial force – behaves like cable

� global DOF’s: translations u, v, w per node in 3-D (can be used also for 2-D, 1-D)

� number of integration points: 1~4 along element length (1 sufficient for truss)

� element output: axial strain, stress, force in integration points and others

� can be used to model truss structures, cable structures, springs, reinforcement in 

concrete (compatibility with solid elements)
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Isoparametric elements for 2-D solid

� number of nodes (shape): 3~9 (generalized quadrilateral, generalized 

triangle)

� global DOF’s: 2 per node - translations v, w in plane y-z (!)

� interpolation functions: bilinear to quadratic, depending on the number of 

nodes, e.g.

v

w
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� Triangular elements may be created by collapsing quadrilaterals (nodes on 

one side of element are concentrated in to one and interpolation functions 

are modified)

� Collapsing the element without modifying the 

interpolation functions leads to element for 

linear elastic fracture analysis with 

singularity in the vicinity of a crack tip

1

r

constant 
strain

r

3 nodes 
concentrated 
into 1
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� number of integration points: 

� quadrilaterals 2×2 to 6×6 (typically 2×2 for quadrilaterals, 3×3 for others)

� triangles 1 to 13

� element output:  strain, stress, plastic strain, yield function and others in 

integration points

� recommended use:

� plane stress, plane strain, axially symmetric problems

� 9 node quadrilateral most effective

� 8, 9 node elements most efficient as rectangular elements with aspect 

ratio > 1:10

� 3, 4 node elements not effective when bending effect is significant (e.g. 

beam bending analyzed as 2-D solid)
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Isoparametric elements for 3-D solid

v

w

u

� number of nodes (shape): 4~27 (tetrahedron ~ brick)

� global DOF’s: 3 per node - translations u, v, w
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� number of integration points: 

� 2×2×2 to 6×6×6 (typically 2×2×2 for 8-node, 3×3×3 for others)

� element output:  strain, stress, plastic strain, yield function and others in 

integration points

� recommended use:

� problems where description of 3-D stress state is inevitable

� 27 node most accurate but most costly

� 20 node usually most effective

� 20 node elements most efficient as rectangular

� 8-node 3, 4 node elements not effective when bending effect is 

significant (e.g. beam bending analyzed as 2-D solid)
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Hermitian beam element

� beam element based on Bernoulli-Euler theory,

possibly corrected for shear effects

� application for 2-D, 3-D

� number of nodes (shape): 2 (straight

line, constant cross-section)

� degrees of freedom per node: 6

� 3 translations

� 3 rotations

� in 2-D use only relevant 2 translations 1 rotation

� interpolation functions: cubic for transversal translations (bending), linear for 

axial translation and torsion
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� possible input:

� shape and dimensions of cross-section (or cross-sectional moduli) 

and material model (possibly nonlinear) or

� moment-curvature and axial force-axial strain relationship (possibly 

nonlinear and coupled)
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Isoparametric beam element

� isoparametric beam element based

on Timoshenko theory

� application for 2-D, 3-D

� number of nodes (shape): 2 (straight

line), 3~4 (curved in plane)

� only rectangular cross-section

� degrees of freedom per node: 6

� 3 translations

� 3 rotations

� in 2-D use only relevant 2 translations 1 rotation

� 2 node element and 3~4 node element if nodes are not regularly spaced typically 

suffers shear locking (shear deformations are not represented with sufficient 

accuracy) → very stiff behavior, fine discretization required

� recommended use: curved geometry, large displacements (otherwise Hermitian 

element performs better)
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� Example: locking of isoparametric elements

w = -3.02408

w = -3.02400

w = -4.00000 ... exact

iso beam

iso plane stress

Hermitian beam
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Plate elements

� number of nodes (shape): 3 (triangle)

� DOF’s: 6 per node – 3 translations and 3 

rotations

� superposition of membrane and bending parts

� membrane part: 3-node constant strain 

element, plane stress

� bending part: element based on Kirchhoff theory of thin plates

� the element does not model shear deformations (Kirchhoff assumption)

� the element does not show locking

� suitable for modeling of very thin plates and shells

� possible outputs: stress resultants at integration points, nodal forces
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Solution of equation systems
From the previous derivation of FEM, we can generalize the following facts: 

� The governing equations and boundary conditions for elastic problems lead 
to a system of linear algebraic equations in the form of

=Kd f

where K = global stiffness matrix, d = global vector of nodal unknowns 
(displacements, rotations), f = global vector of external nodal loads (forces, 
moments).

� The number of equations corresponds to the number of free (unsupported) 
degrees of freedom (usually many).

� The matrix K is usually sparse (many zero elements); reordering the 
vectors d and f it can be rearranged to become banded (nonzero elements 
concentrated around the diagonal).
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� In a well posed problem, the matrix K is positive definite:

0T > ∀d Kd d

det 0>K

K is not positive definite e.g. in the following cases:

� the structure or its part in not sufficiently 
constrained to prevent rigid body motion

� the structural model contains degrees of 
freedom with zero or negative stiffness

� the material in a portion of the structure 
became unstable (e.g. as a result of 
softening, damage – will be discussed 
later).

E≤0
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� K is usually symmetric; it may not be symmetric e.g. when certain material 
models are used (non-associative plasticity, friction, etc.) 

Basically, there exist two classes of methods to solve the type of 

equation systems arising from FEM:

� direct solves 

� iterative solvers
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Direct solution methods

� algorithm performs a number of steps and operations the are exactly 

predetermined by the number of equations and properties of the system 

matrix

� algorithm based on Gauss elimination – slow, high memory demands

� sparse solvers – robust and reliable, less memory demanding, 2 orders 

faster than Gauss elimination
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Iterative solution methods

� iterative and multigrid solvers - the solution is obtained iteratively, in a 

number of iterations which is not predetermined

� suitable for large problems, where the hardware memory capacity is not 

sufficient to hold the entire system of equations

� approximate solution of the system of equations is found iteratively by 

minimizing the norm of the difference between the LHS and RHS 

beyond given tolerance

� may not recognize system matrix which is not positive definite, 

problematic use for ill-conditioned matrices
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Convergence of FE analysis results

� The finite element method is approximate numerical procedure for solving 
boundary value problems.

� Monotonic convergence – the approximate solution continuously 
approaches the exact mathematical solution of the BVP as the 
discretization is refined (number of elements increased).

displacement

number of elements

FEM

exact

� To assure monotonic convergence the 
elements must be conformable (see the 
criteria discussed in previous lecture, 
completeness and compatibility of 
displacement approximation).
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� The rate of convergence depends on the element size, order of 
approximation polynomial, and material properties

1 1
p

h pch +− ≤u u u

u ... exact solution
uh ... approximate solution by FEM
h ... typical element size
p ... order of complete polynomial of approximation
c ... constant independent of h but dependent on material properties

... Sobolev norm of order p, e.g.

� The above inequality implies, that the accuracy of the approximate solution 
by FEM can be improved by:
� reducing the element size h ...  h-convergence
� increasing the approximation polynomial order  p ...  p-convergence

... p
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� Due to imposing constraint on the displacement field by approximation, the 
displacement-based FEM gives stiffer results (smaller displacements) than 
the exact solution.

� If the problem involves stress or strain singularities (esp. in 2D/3D 
continuum models: concentrated forces, point supports, sharp corners, 
crack tips, etc.), convergence in stress or strain at such locations cannot 
be obtained, unless special singularity elements are used. Overall 
convergence of displacements is slower. E.g.:

� Convergence discussed here refers to the convergence associated with 
the finite element discretization, not with nonlinear material behavior.
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Superconvergence and optimal sampling points
� Recall the FE solution of uniaxially stressed bar:

� Displacements (the quantity of primary approximation in finite elements) attain the 
best accuracy at FE nodes.

� Strain and stress (involving gradients of the primary approximation) attain the best 
accuracy at points within elements; their accuracy at nodes is poor.

� Order of convergence at such optimum points is one order higher than anticipated 
from the approximation polynomial ... supeconvergent points

0.5 1.0 1.5 2.0

0.002

0.004

0.006

0.008

Displacement

x

0.5 1.0 1.5 2.0

-0.015

-0.010

-0.005

0.005

Strain

x
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� Optimal sampling points for strain and stress coincide with Gauss 
integration points 

� Notes:
� above applies to displacement-based FEM for elasticity problems
� full superconvergence is not achieved with triangular elements or when 

elements are distorted (quadrilaterals or triangles), but the above points still 
provide superior results.
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Example (Zienkiewicz & Taylor, 2000):
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Recovery of strains and stresses
� Various methods may be used to recover smooth distributions of strain and 

stress.
� To this end, strain or stress may be approximated within elements using the 

same shape functions as those used for primary displacement 
approximation: ( ) ( )

( ) ( )
nodal

nodal

≈

≈

ε x N x ε

σ x N x σ

� The nodal values of strain or stress may be obtained e.g. by:
� averaging of strains/stresses evaluated at optimum sampling points of 

elements sharing a given node ... not the best for triangles and inadequate 
for higher order elements.

� L2 projection: approximations *) are least-square fitted to the 
strains/stresses evaluated at optimum sampling points ... numerically costly. 

*)
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� superconvergent patch recovery (SPR): direct polynomial smoothing of 
superconvergent values over a patch of several elements

• stress is approximated by a polynomial over a patch of elements
• coefficients of the polynomial are obtained by fitting it to the stress 

values at optimum sampling points
• nodal stress values are determined from the polynomial approximation
• stress is interpolated within elements using eq. *) 

element patch

nodal values determined from patch
patch assembly points
superconvergent sampling points

... suitable for regular and irregular 
meshes, triangular elements.
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� The stress/strain recovery/smoothing should be used with caution:
� in proximity of internal boundaries (interfaces of different materials) where 

the exact stress or strain may be discontinuous
� near outer boundaries, where extrapolation from optimum sampling points 

must be used
� near locations of stress or strain singularities (concentrated forces, point 

supports, sharp corners, crack tips,...)
� example: see next slides
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E=100 MPa E=10 MPa

u = 0.01 m

-0.01

1

strain
(-)

stress
(MPa)

-0.5

-0.1-0.05
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Stress plots

No smoothing
• values at element integration 

point are used

Smoothing applied
• values from integ. points are 

extrapolated to nodes
• nodal values are averaged
• interpolation *) is used in 

elements
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