Czech Technical University in Prague
Faculty of Civil Engineering
Department of Mechanics

Rer
JPRS

Deep Learning-Based Modeling and Simulation of Heat
Conduction

Master's thesis

Ondr¥ej Sperl

Study programme: Civil Engineering
Branch of study: Structural Engineering of Buildings
Supervisor: doc. Ing. Jan Sykora, Ph.D.

Prague, January 2025

Thesis Supervisor:
doc. Ing. Jan Sykora, Ph.D.
Department of Mechanics
Faculty of Civil Engineering
Czech Technical University in Prague
Thakurova 7
160 00 Prague 6
Czech Republic

Copyright (©) January 2025 Ondiej Sperl

11

Declaration

I hereby declare I have written this master’s thesis independently and quoted all the
sources of information used in accordance with methodological instructions on ethical
principles for writing an academic thesis. Moreover, I state that this thesis has neither
been submitted nor accepted for any other degree.

In Prague, January 2025

Ondiej Sperl

il

v

Master’s Thesis Assignment

cvut ZADANI DIPLOMOVE PRACE

ZESKE VYSOKE
UZENI TECHNICKE

1. OSOBNI A STUDIJNi UDAJE
4 N
Prijmeni: Sperl Jméno: Ondfrej Osobni ¢islo: 495069

Fakulta/ustav: Fakulta stavebni
Zadavajici katedra/ustav: Katedra mechaniky

Studijni program: Stavebni inzenyrstvi - pozemni stavby

L Specializace: Statika pozemnich staveb

J
1. UDAJE K DIPLOMOVE PRACI
4 N

Néazev diplomové prace:

Hluboké uéeni jako nastroj pro modelovani a simulaci vedeni tepla
Nazev diplomové prace anglicky:

Deep Learning-Based Modeling and Simulation of Heat Conduction

Pokyny pro vypracovani:

Cilem magisterské prace je konstrukce nahradni modelu problému vedeni tepla pomoci hlubokych neuronovych siti.
Hluboké ugeni je podoblast strojového uceni, ktera vyuziva umélé neuronové sité k tomu, aby se ziskavani slozitych
vzorcU a vztahl z dat. Tyto sité

se skladaji z nékolika vrstev vzajemné propojenych uzll, které umozriuji

automatické uéeni hierarchickych reprezentaci dat. Student se v rdmci svoji prace zaméfi na testovani riznych architektur
neuronové sité. V praci by se mély rovnéz zkoumat metody, které kombinuji velmi malé soubory dat s fyzikalnimi rovnicemi.
Prace bude napsana v anglickém jazyku.

Seznam doporugené literatury:
[1] Karniadakis, George Em, et al. "Physics-informed machine learning." Nature Reviews Physics 3.6 (2021): 422-440.
[2] Lu, Lu, et al. "DeepXDE: A deep learning library for solving differential equations." SIAM review 63.1 (2021): 208-228.
[3] Chollet, Francois. Deep learning with Python. Simon and Schuster, 2021.

Jméno a pracovisté vedouci(ho) diplomové prace:
doc. Ing. Jan Sykora, Ph.D. katedra mechaniky FSv

Jméno a pracovi$té druhé(ho) vedouci(ho) nebo konzultanta(ky) diplomové prace:

Datum zadani diplomové prace: 01.10.2024 Termin odevzdani diplomové prace: 06.01.2025

Platnost zadani diplomové prace:

doc. Ing. Jan Sykora, Ph.D. prof. Ing. Jifi Maca, CSc. prof. Ing. Jifi Maca, CSc.
podpis vedouci(ho) prace podpis vedouci(ho) ustavu/katedry podpis dékana(ky)
G J
. PREVZETI ZADANI
: Diplomant bere na védomi, Ze je povinen vypracovat diplomovou préaci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci. N

Seznam pouZité literatury, jinych pramentl a jmen konzultantd je tfeba uvést v diplomové préaci.

L Datum prevzeti zadani Podpis studenta)

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Abstract

This Master’s thesis deals with implementing deep neural networks for the simulation
and modeling of heat conduction. It studies the application of deep neural networks
in searching for approximate solutions of partial differential equations and their use in
constructing surrogate models. To avoid the relatively common problem of insufficient
dataset size for model training, a physics-informed neural network is introduced in this
work, which exploits the physical laws represented by partial differential equations in the
evaluation of the loss function. This approach leads to a reduction in the size of the
training data. The proposed methods and models are assessed with a classical solution
based on the finite element method. In a particular case, the comparison is made with
the traditional method using polynomial chaos to construct the surrogate model. The
effectiveness and limitations of this approach are investigated using various examples
simulating the heat conduction problem with varying boundary conditions and thermal
properties of the domain under study.

Keywords: Deep neural networks; Physics-informed neural network; Surro-
gate modeling; Finite element method; Heat conduction

vi

Abstrakt

Tato diplomova préace se zabyva vyuzitim hlubokych neuronovych siti pro simulaci a
modelovani vedeni tepla. Prace studuje aplikaci hlubokych neuronovych siti pti hledani
priblizného feseni parcidlnich diferencidlnich rovnic a jejich vyuziti ve stavbé nahradnich
modelt. Aby se predeslo pomérné béznému problému, kterym je nedostatecnd velikost
datového souboru pro trénovani modelu, je v této praci implementovana fyzikalné infor-
movand neuronova sit, kterd vyuziva fyzikalni zdkony reprezentované parcidlnimi difer-
encialnimi rovnicemi ve vyhodnoceni ztratové funkce. Tento ptistup vede ke snizeni ve-
likost trénovacich dat. Navrzené metody a modely jsou vyhodnoceny s klasickym fesenim,
které je zalozené na metodé kone¢nych prvkia. V konkrétnim pripadu je porovnani prove-
deno s tradi¢ni metodou vyuzivajici ke stavbé ndhradniho modelu polynomiélni chaos.
Efektivita a limity tohoto konceptu jsou zkouméany na ruznych ptikladech simulujicich
problém vedeni tepla s ménicimi se okrajovymi podminky a tepelnymi vlastnostmi zk-
oumané domény.

Klicova slova: Hluboka neuronovi sit; Fyzikdlné informovana neuronova sit;
Nahradni model; Metoda koneénych prvki; Vedeni tepla

vil

Acknowledgments

I would like to thank my supervisor doc. Ing. Jan Sykora, Ph.D. for his guidance, support,
and also patience. When we started working together two years ago, he put his trust in
me and supported me all the time, and in the process, I learned things that I thought
were way beyond my capabilities. Our collaboration had a great influence on my life and
I'll always be grateful to him for everything.

I would like to express my gratitude to prof. Pierre Feissel, my French supervisor. I
would like to thank him for his valuable advice, inspiring insights, and last but not least for
the opportunity to participate in the scientific internship at the University of Technology
of Compiegne. That half a year there gave me a lot.

I would also like to thank my girlfriend Kate and my family, for their support and trust
in me. Without them, I would never have finished my studies or this work.

This work was supported by the Student Grant Competition of the Czech Technical
University in Prague, project No. SGS23/152/OHK1/3T/11, and the research project
DEEMA: Design and Optimisation Open Innovation Hub for Composites Modeling and
Design, TACR M-ERA.NET 2, project no. TH75020002.

viil

List of Tables

3.1
3.2
3.3

3.4
3.5
3.6
3.7
3.8
3.9

Summary of Results. oo 34
Summary of Results. 37
Results for various learning rates. The tables above show the loss value

and the mean absolute error calculated for the prediction and the finite

element method. 37
Random uniform. Lo 40
Sobol s sequences. e 40
Latin hypercube sampling. L. 41
Latin hypercube sampling with additional data 43
Comparison of surrogate models. 45
Error metric computed for different numbers of Npp.o 0L 47

1X

List of Figures

2.1 Infinitesimal square
2.2 Neural network scheme
2.3 Activation functions
2.4 PINN scheme e

3.1 Thermal conductivity parabolic function
3.2 Evolution of training loss as a function of epoch - Example 1
3.3 Temperature for error field computed for thermal conductivity defined as
a paraboloid function oL
3.4 Thermal conductivity defined as a wave function.
3.5 The evolution of training loss as a function of epoch - Example 2.
3.6 The loss value inspection. This figure displays the evolution of the loss
function and its parts during training of the Latin hypercube sampling for
Nr=50case. e
3.7 Average error maps. oe e e e e e
3.8 The evolution of loss computed for the example with additional data.
3.9 Amplitude of the thermal conductivity
3.10 Average error Maps oo oe e e e e e e e e e

Contents

Abstract (English) vi
Abstrakt (Czech) vii
Acknowledgments viii
List of Tables ix
List of Figures X
1 Introduction 1
2 Methodology 3
2.1 Heat conduction 3
2.1.1 Steady-state heat conduction 4
2.1.2 Non-stationary heat conduction 6
2.2 Finite element method 8
2.2.1 FEM for steady-state heat conduction 8
2.2.2 FEM for non-stationary heat conduction 11
2.3 Neural network 13
2.3.1 Simple neural network 14
2.3.2 Loss function 17
2.3.3 Training of the model 17
2.3.4 Optimizer 24
2.4 Physics-informed neural network - PINN 26
3 Examples 30
3.1 PINN as an approximation of the solution 31
3.1.1 Example 1 - Thermal conductivity defined as a paraboloid function 31
3.1.2 Example 2 - Thermal conductivity defined as a wave function . . . 35
3.2 PINN as a surrogate modelo 38
3.2.1 Example 3 - Surrogate model with changing Dirichlet BC 38

3.2.2 Example 4 - Surrogate model constructed for changing Dirichlet BC
and thermal conductivity L oo 45
4 Conclusion 48
4.1 Future works 49
Bibliography 50

x1

Chapter 1
Introduction

With the modeling of physical processes, we try to solve problems described by partial
differential equation (PDE). Due to the complicated nature (shape of domain, load, non-
linear response of material) in most engineering applications, finding an exact solution of
PDE is impossible. In engineering practice, we usually solve such a problem by finding an
approximate solution. There are many methods for finding an approximate solution, e.g.
the finite element method (FEM) [1], the finite difference method [2], the finite volume
method [2], etc. In recent years, however, a considerable amount of research has also been
devoted to the deployment of neural networks to solve engineering problems [3]-[5]. Tt
was demonstrated not only that neural networks can be used to obtain an approximate
solution of PDE’s [6], but also that they can solve inverse problems [7], be used as
surrogate models [8], and even as surrogate model without any additional data [9], i.e
data-free approach. This makes neural networks promising for the future and in any case
a subject worthy of further research.

In the presented master’s thesis we are using deep learning and neural networks for
modeling of physical processes. To investigate these, the neural network is used to find
an approximate solution of the heat equation, use it as a surrogate model both with
and without additional data, and the prediction is compared with traditional established
approaches, such as finite elements method and polynomial chaos approximation.

Deep learning models in general usually require a lot of data to be trained. Never-
theless, in practice, we often do not have such a dataset, due to expensive measurements
and computationally exhaustive FEM simulations. This issue can be resolved by imple-
menting the scheme called physics-informed neural network (PINN), naturally reducing
the required size of the labeled dataset to even a zero. The main idea behind this con-
cept is to incorporate known physics represented by PDEs directly into a loss function
of the network. This could be done in several ways: 1) Loss function is assembled based

on the unbalanced forces obtained from FD/FEM scheme. 2) We can use automatic

CHAPTER 1. INTRODUCTION 2

differentiation (AD) for direct evaluation of PDE.

The first approach with applying numerical approximation methods is feasible, and has
been done [5], but for complicated problems, it can be demanding. Automatic differenti-
ation however can be applied to almost any problem, is fast, and is already implemented
and used for neural networks training in most modern machine learning libraries, such as
TensorFlow [10], PyTorch [I1] or Theano [12]. Therefore, using AD is quite straightfor-
ward and can be applied to different problems with minimal changes to the code.

This thesis is structured as follows: Section 2 describes the methodology and concepts.
First, we address the heat conduction modeling, with emphasis on the derivation of the
heat balance equation and then we describe the common method used for its solving -
FEM. Subsequently, we briefly introduce an artificial neural network, and in more detail,
we describe the PINN concept on top of it. Section 3 deals with the practical exam-
ples of heat conduction using PINNs and explains their performances. The last section
4 summarizes conclusions from the presented examples and discusses the benefits and
drawbacks.

The neural networks and PINNs have significantly grown in popularity in recent years.
Therefore the main objective of this work is: i) To study and learn about this concept
of incorporating the physical laws into the calculation. ii) Implement PINNs for testing
their capabilities as well as shortcomings, iii) and determine whether there is a potential

for utilization of PINNs in computational mechanics.

Chapter 2

Methodology

2.1 Heat conduction

Heat conduction is one of three possibilities of heat spreading through an environment,
alongside convection and radiation. It is a direct result of collisions between atoms in
solid materials that oscillate around their equilibrium position due to kinetic energy. Heat
conduction is an important transport phenomenon for civil engineering and it is essential
to be able to calculate the related quantities, such as diffusion and condensation of water
vapor. We use the modeling of this phenomenon to calculate the thermal performance
of the civil engineering structures, and the thermal efficiency of construction details, but
also to calculate diffusion phenomena that are directly related to the temperature inside
the structure. Heat conduction is usually modeled in three dimensions, but within this
thesis, we will only model conduction in two dimensions (2D).

When modeling the 2D heat conduction, we consider the real physical body as a 2D
continuum (domain) 2 with its boundary I', which, in terms of thermal conductivity, has
the properties described by a A [%} matrix. In the continuum, there is a heat flux vector

q [%} expressing with its components the direction of the energy flow, and magnitude of

this vector is determined by gradient of temperature VT’ [%] . This behavior is described
by Fourier s law, which postulates that heat flux is equal to the product of the thermal

conductivity of the environment and negative temperature gradient:
qg=—AVT. (2.1)

Please note that matrices are denoted by bold upright letters (A) and vectors by bold italic
letters (a@). In practice, we divide heat conduction modeling into two types, depending
on the state of the structure. The first type is steady-state heat conduction, where the

temperature does not change throughout the structure. In this state, we don’t need to

CHAPTER 2. METHODOLOGY 4

consider the time dependence of the temperature and therefore it is easier to solve. When
we deal with real-world scenarios, it is quite rare for buildings to appear in this state, since
it requires temperatures to not change for a period of a couple hours. Nevertheless, it is
still frequently used to design the thermal envelope of buildings. We consider unfavorable
conditions and calculate the results as a steady state because it is easy, fast, and in most
cases provides a sufficient reserve.

The second type is non-stationary heat conduction. In this state, the temperature
changes throughout the structure in time, so we need to calculate with the time depen-
dence of the temperature. Solving such problems is more difficult, because to calculate
a particular state of construction, we need to know all the previous ones. On the other
hand, this approach is more accurate according to reality and in some cases, it is necessary

to calculate with this approach.

2.1.1 Steady-state heat conduction

We start with the expression for the steady state and then expand it to a non-stationary

state. For the 2D continuum, Fourier "s law is described as:
oT
[C]x(m)] [Paa())‘wy(w)] [8gcm)]
- aT
ay(y) Aeao(@) ay(@)| | T

dy
q(z) = —AVT(x)

(2.2)

where x is a coordinate vector (z,y).

In thermal analysis, our goal is to calculate temperature distribution on the whole
domain. To achieve this, we need to solve a differential equation based on the energy
balance, that must be satisfied at each point of it. To derive such an equation, we start
from the balance on a square extracted from it, see figure 2.1. And then we scale it down
to infinitesimal dimensions, which will provide the equilibrium condition at each point of
the domain. The continuum can also have internal heat source Q(z)!, which is used in
engineering practice to model heat increments from heating systems inside constructions,

chemical reactions, etc. If we denote the thickness of the continuum by b[m], the energy

IPlease note, that @ is marked by symbol. It is because the internal heat source is a prescribed
quantity and we are viewing it as a load. Everything denoted with = symbol is also viewed as a prescribed
quantity

CHAPTER 2. METHODOLOGY)

) Q)
N

Figure 2.1: Infinitesimal square
The heat symbol labeled by Q(x,y) symbolizes the internal heat source. The depicted
quantities are functions of coordinate vector x, but the increments are only in particular
coordinate Az and Ay.

balance of the extracted square can be written as:

gz (T)bAY + qy(x)bAx + Q(x)bAxAy = gz(z + Az)bAy + qy(x + Ay)bAx

@(x) qy(x) — qe(x + Az) qy(T+ Ay)
g (x+ Az) — gz(x) qy(x+ Ay) —qy(x) —
B Ax - Ay : +Q(x) =0

After the infinitesimal transition, i.e. Az and Ay approach zero in the limit, we convert

this condition for a point in the domain €2 as:

Ogp(@) Ogy()

ox dy +@(a:) =0
[% %] Zzz; +Q(z) =0,z € Q. (2.4)

Since g(x) = —A(x)VT(x), we can see that energy balance condition leads to a differen-
tial equation, where the solution is the temperature distribution on the domain 7'(x). To
obtain the unique solution, each point of the domain boundary I' must have a prescribed

boundary condition. For the purpose of this thesis, we consider three types of boundary

CHAPTER 2. METHODOLOGY 6

conditions, that are typically applied.
The first type is the Dirichlet boundary condition. This condition applied to heat

conduction has the form of a prescribed temperature:
T(x)—T(x)=0zclp. (2.5)

The second is the Neumann boundary condition or the second type boundary con-
dition. For heat conduction it can have a form of prescribed heat flux in the normal
direction:

na(@) ny(e)] [qx@;)‘ (@) =0

Qy<y)
z)q(x) —q(z) =0

,xel'y. (26)

n'(

And the third is the Robin boundary condition, which can be applied as heat transfer

due to laminar airflow in the boundary layer around the domain as:
() = a(z) (T(z) - To(x)) ,x € Tp, (2.7)

—mQJKS] is the heat transfer coefficient, and Tj(x) is the temperature in the

boundary layer. Another typical Robin condition could be the radiation boundary con-

where « [

dition, where the heat is emitted to the environment due to the radiation. However, this
BC is not used in this thesis.

2.1.2 Non-stationary heat conduction

When the temperature of the domain is changing in time, we have to consider the tem-

perature as its function:
T=T(z,y,t) =T(x,t). (2.8)

Given this, the constitutive equation defined by Fourier s law is expressed as:

] - el
ay(y.1) Moo (@) Ay(x)| [P52

J (2.9)
q(x,t) = —AVT(x,1)

To compute the temperature distribution, we again need to solve a differential equation
based on the energy balance of the infinitesimal square of the domain. We will use the
same approach as in the case of steady-state conduction, but since the temperature is
changing in time, we need to take into account energy accumulation inside the matter of

the domain 2. Each physical material has its thermal capacity ¢, [@LK} , which indicates

CHAPTER 2. METHODOLOGY 7

how much heat we must supply to one kilogram of material to raise its temperature by
one temperature degree. With this quantity, we can create a term that will include heat

accumulation in the energy balance:
Qc = Amey(x)AT, (2.10)

where Am [kg| is the weight of the extracted square from the domain and AT is the
average temperature change of this square. If the domain has thickness b[m], then the

average energy balance on it during time At [s| has the form:

gz (x,) DAYAL + gy(z,)bATAL + Q(z,)bATAYAL = Amey(z) AT (x, t) At
+ gz (T + Az, 1)bAYyAt + qy(x + Ay, t)bAzAt

@z, t) qy(z,t) — _ Am AT(z,t) qe(x+ Az,t) qy(x+ Ay, t)
A T, TR0 T YT A T Ay
@@+ Azt) —qu(xt) qy(@+Ayt) —gy(zt) Am AT(xz,t) — B
Ar Ay arny Ty @@ =0
(2.11)

After the limit transition Ax — 0, Ay — 0, At — 0, we get the energy balance for a

point in domain €:

_aqx(wut) _ aQy(mat) ﬁ(w> 8T<w?t) ra)

Oz o b el e = O,zc € Q. (2.12)
VTq(e,) - A, (@) T2 | Gy = 0

Due to the limit transition, the term AATZL_y was transformed to p(x) [:T%], which has

physical meaning of areal density. And since it applies that p = 'g, we can write:

OT (x,t)

Q. 2.1

—VTq(z,t) + Qz,t) = p(z)cy()

The solution to this equation is a function of temperature distribution in space and time
T(x,t). To obtain a unique solution, each point of domain boundary I' at each time ¢

must have a prescribed boundary condition:

T(x,t)—T(x,t) =0, € I'p,
n'(z)q(x,t) — g(z,t) =0, € Ty, (2.14)
g(x,t) = a(x) (T(:c,t) — To(m,t)) ,x €'p,

CHAPTER 2. METHODOLOGY 8

and the whole domain 2 must have prescribed initial condition at time ¢ = 0:

T(x,t) — Tip(x,t) =0,z € Q. (2.15)

In the general case, for both steady-heat state and non-stationary heat conduction we
are not able to obtain a closed-form solution. We are therefore using numerical methods
to obtain an approximate solution. One of the most used methods is the finite element
method, which will be also used for this thesis. The results obtained by it will be used

for the training of physics-informed neural networks and for evaluation of the results.

2.2 Finite element method

The finite element method (FEM) is perhaps the most popular method for numerically
solving PDE “s. The name of this method comes from the methodology itself when the
domain on which a PDE is solved is divided into small parts called elements by a generated
appropriate mesh. This way the continuum is discretized and converted to a system, that
has a finite number of points. The solution is then approximated by assembling individual
functions, that model the behavior of particular elements. All of this is done in such a

way, that converts the PDE into a system of algebraic equations.

2.2.1 FEM for steady-state heat conduction

The typical first step in finite element analysis involves creating a so-called weak formu-
lation of the original PDE. The weak formulation allows us to reduce demands for the
solution. The equilibrium enforced in the PDE does not need to be maintained absolutely,
but instead applies for only certain test functions satisfying the equation 2.16. Such a
solution is called a weak solution. The original PDE is called strong formulation and its
solution is strong solution. To obtain a weak formulation, we multiply both sides of the

original equation by the test function, and do the integral over the entire domain:
/ 5T (@)(=V T (@) + Q())dz — 0, (2.16)
Q

, where 07T is the test function. If we are able to satisfy this equation for any test function,
it means that we have a strong solution. But if we are only able to satisfy it for a certain
set of test functions, we have a weak solution. So the operation performed in equation
2.16 does not itself make the original equation a weak solution, but the fact that we do

not require that this equality be satisfied for every test function does.

CHAPTER 2. METHODOLOGY 9

Now we can apply the Gauss theorem to convert this to a more favorable form:

0= — /F 5T (@)n(z)T q(@)de + /Q (VoT (@) T () da

+ / 0T (x)Q(x)dx = — [6T(x)n(x)" q(x)dx
Q (2.17)

I'p
- 5T (x)n(x) " q(x)dx — 5T (x)n(x) " q(x)dx
I'n T'r

] -
+ [(VoT(@) Ta@ite + [5T(0)Q(w)de

We specify the weak solution in such a way, that 47" = 0 on the boundary I'y. This way

T

we don "t have to consider the term fFD 0T (x)n(x)' g(x)dx, since it equals zero. After

inserting the constitutive equation and the corresponding boundary conditions, we get:

/Q(VéT(m))T)\(w)VT(a:)dw—i- . 0T (x)a(x)T (x)dx

_ / ST(2)7(x)de + / 5T(2)a(e)To(z)de. (2.18)
'y I'r

+ /Q 0T (x)Q(x)dx

Now we can discretize the domain to create finite elements using the Galerkin method.
The Galerkin method is based on the principle of weighted residuals, where the residual is
orthogonal to the chosen finite-dimensional subspace. This method ensures that the error
between the exact solution and the approximate solution is minimized in a well-defined
mathematical sense, see [1]. Using the Galerkin method, we approximate the solution as

a linear combination of n basis function:

Tl-
T(@)~ 3 Ni(@)ri = [Ni@) No(@) ... Na(@)] | | =N, (219)
1=1 :

where r is a vector of unknown coefficients. And the test functions are chosen with the

same shape as the basis functions:
0T (x) ~ N(x)dr, (2.20)

where d7 is again a vector of coefficients independent of 7. The number of basis functions n
corresponds to the number of degrees of freedom, or the number of nodes in the network

discretising the domain. For the derivative of the temperature function and the test

CHAPTER 2. METHODOLOGY 10

function, we can write:

VT(x)=VN(x)r=B(x)r,

(2.21)
VT (x) = VN (x)ér = B(x)dr.
After substituting these approximations to the equation 2.18 we get:
/ (B(x)d7) " A(z)B(z)rdz + / (N (2)67) o) N (z)rde
Q I'r
= — / (N (x)ér) " g(x)dx + / (N (2)d7) " a(2)To(z)de. (2.22)
I'n I'r
T—=
+ /Q(N(a:)ér) Q(x)dx

The vector dr can be put in front of the integral since it is not a function of x. And
because it appear in every term, the equation 2.22 will be automatically satisfied for

every or, if:

Kr=fn+fr+tfo=1,

K — / B(z)TA(@)B(@)rdz + | N(z)Ta(z)N(z)rdz,
Q0 Ir

== N(z)'q(z)dz, (2.23)
fr= /F N(z)T a(a)Ty(x)de,
fQI/QN(w)TQ(m)d:c.

K is the conductivity matrix and f is the load vector. In the finite element method, these
terms are determined by localization from the individual elements. It is a common practice
to choose the basis functions as continuous piece-wise differentiable in such a way that
they are equal to one at the corresponding node, decrease to zero at neighboring nodes
on the common elements, and are zero everywhere else. Choosing basis functions with
these properties allows us to calculate the increments from individual elements simply.
We calculate the local conductivity matrix and local load vector on each element and
then localize this increment in K and f. In this work, only a simple mesh composed
of rectangular bilinear elements will be used, where basis functions on each element are

described by the following equations:

1 1
= (- a)y—b), No(@) = T(z +a)(b), (2.24)

Na(@) = 7o+ a)(y +), Na(@) = (o —)y +0),

CHAPTER 2. METHODOLOGY 11

where a and b are the dimensions of the rectangle. Local basis function and its derivative

corresponding to the particular element are in matrix form written as:

N@) == [e-aw -0 @rab-u) @ray+b @-+b),

1 y—b b—y y+b y+0b
~ 4ab '

(2.25)
B(x)

r—a r+a r+a a—x

Since we approximate the solution as a linear combination of basis functions, after evalu-
ating the integrals obtained by localizing the contributions from the individual elements,
the expression Kr = f leads to a system of linear equations. Solving this system we

obtain an approximate solution of the original differential equation.

2.2.2 FEM for non-stationary heat conduction

To obtain a finite element solution for the non-stationary problem, we will follow the same
steps as in the case of steady-state conduction. We begin by multiplying the equation

with the test function and integrating it over the entire domain:

/Q(?T(a:,t) (—VTq(:v,t) —I—@(m,t)) dx = /QéT(:I:,t) (p(m)cv(m)%) dx. (2.26)

Applying Gauss theorem, we get:

0= /Fm T (@), t)d +/Q<vm)T gl 1)d

a) ol (x,t)
+ | 5@ Q. e~ | 5T (p<w>cv<m>T) iz
:—/ 5T(az,t)n(a:)Tq(a:,t)dw—/ 6T (x,t)q(x, t)dx (2.27)

_ / O (x, t)a() (T (x, 1) — To(, 1)) dz + / (VST (1) gl)z
T o
' /Q(ST(CC’ HQ(x, t)dz - /Q(ST(CU’ t) (P(:B)CU(:I:)%) dx

Further, we define a weak formulation by choosing 67" = 0 on the boundary I'p, which
ensures that the integral on this boundary is zero and we use the Galerkin method to

discretize the solution in space. The discretized solution, the test function, and their

CHAPTER 2. METHODOLOGY 12

derivatives are expressed in the form:

T(x,t) = N(x)r(t),
0T (x,t) = N(x)dr(t), (2.98)
VT (x,t) = VN (x)r(t) = B(x)r(t),
VoT (x,t) = VN (x)dr(t) = B(x)dr(t)

By substituting the approximations 2.28 into the equation 2.27 we get:

| B@sr) A@B@r e + [(V@) (sl @ N@ 5) da
+ / (N ()87 (1) a(x)N (z)r(t)dz = — / (N(z)or(t)Tq(w, t)da
T'r T'n

+ / (N (x)ér(t) T o(@)To(, t)da + / (N (x)ér(t)TQ(x, t)dx
b ¢ (2.29)

Since d7(t) is independent on @ and again appears in every integral, we can factor it out,

and the equation is satisfied for every dr(t) if:

/ B(z)TA(@)B(@)r(t)dz + / col@)N (@) T g
Q

-] NTa(x)N(z)r(t)de = — A N(z)"g(z, t)dx (2.30)

+ [N(x)To(x)Ty(x, t)do + / N(z)"Q(x, t)dx
I'r Q

Equation 2.30 can be further rewritten in matrix form:

ke + 02— e >+fR<t>+fQ<t> ~ f(0),
N
K= / (x)dx + FRN a(x)N(x)dx,
/N co(x) N (x)dx,
(2.31)
In=- . N(z) gz, t)de,
Tr= - N(z)"a(z)Ty(z, t)de,

fo = /Q N (@) O, t)dz

where K is the conductivity matrix, C is the capacity matrix, and f is the load vector.

We can see, that on the left-hand side, we have the derivative of unknown coefficients

CHAPTER 2. METHODOLOGY 13

with respect to time and moreover both » and f are the functions of time. In general,
there are two fundamental approaches to address this issue. We can apply the finite
element discretization and create finite elements in both space and time or discretize the
time separately using the time discretization method representing the classical approach,
which is also applied here to our problem. The time discretization method starts with
dividing the time interval for which we solve the equation into n intervals At. The solution

in time ¢ + 1 is then linearly approximated as:

r(t) = (1 —7)r' + 't
ot (2.32)
T = At .

Similarly we approximate the load vector f:

FO) = (1 =7)f' (@) +7F, (2.33)
and the derivative of temperature with respect to time is approximated as:

or(t 1 - :
ai) ~ N (MH - 'rz) . (2.34)

With discretized time we can rewrite the equation 2.31 as:

(TK+iC) rtl =1 -n)f (.

N ;C- - T)K> r, (2.35)

which leads again to a system of linear equations (SLE). First r’ is set as the initial
condition and each subsequent 7 is obtained by solving SLE composed of contributions
from previous steps and boundary conditions. The choice of parameter 7 affects the

stability of the calculation and the accuracy of the obtained solution.

2.3 Neural network

To introduce neural networks, it is a good idea to first describe what is machine learning
since neural networks are part of it. Machine learning is a paradigm of so-called ’artificial
intelligence’, Which is a term that first appeared in this context in the 1950s. Back then,
a group of computer scientists wondered whether computers could think and replace
humans in processes that require human intelligence, and more or less concluded that it
is possible. Artificial intelligence (AI) therefore means everything that replaces humans
in their intellectual actions and there are two main paradigms of how to achieve this

intelligence [13].

CHAPTER 2. METHODOLOGY 14

The First paradigm is symbolic artificial intelligence. Here we are trying to create a
computer program by manually defining the instructions and logical rules for the computer
to follow, and based on that, it should provide us demanded results. However it turned
out that there are many activities that the human brain can perform on a daily basis, but
at the same time is not able to create a sufficient amount of explicit rules that a computer
could follow to execute the same thing, and thus replace it. This applies for example to
language translation, converting speech to text, or computer vision.

For such tasks, the second paradigm has proven to be much more effective, and it is
none other than machine learning. In machine learning, we are trying to develop some
kind of statistical algorithm that is capable of finding its own parameters and recognizing
patterns based on labeled data, specified metrics, or some kind of score system. This pro-
cess of finding the best parameters without any explicit rules is called learning or training
- therefore the name machine learning. It has many subcategories, but perhaps the most
popular one today is neural networks. Their name has been inspired by neurobiology and
neurons in the human nervous system. A neural network consists of artificial neurons
that are in a certain way connected, and their purpose is to transform the data that are
passed through them. Typical and perhaps the simplest scheme of neuron connection, is
to stack neurons in layers and then connect these layers one on top of the other, see figure
2.2. The first layer of a network is called the input layer. It represents the input and this
layer itself does not do any transformation of the data. The last layer is called the output
layer, producing the final output of the whole network. Each layer between these two is
called a hidden layer. In the previous chapter 1 we introduced the term ’deep learning’.
There are many definitions, nevertheless, it can be defined as training of a neural network
with 2 or more hidden layers [13]. Although the name ’artificial neuron’ itself seems to be
complicated, it simply denotes a mathematical function. It has an input value in the form
of a scalar or tensor (convolutional neural network), predefined mathematical operations,

and an output value, again in the form of a scalar or tensor.

2.3.1 Simple neural network

The simplest neural network has an architecture consisting only of densely connected
sometimes called fully connected layers. In these layers, every neuron in a particular layer
has a connection to every neuron from the previous layer. Regarding individual neurons,
they are composed of a bias and an activation function, with both the input and the
output taking the form of real scalar values. Mathematically, the behavior of a neuron

located inside the neural network can be described by the following equation:

y=a(r —b), (2.36)

CHAPTER 2. METHODOLOGY 15

Hidden layers

Figure 2.2: Neural network scheme

where y is the output of the neuron, z is the input of the neuron, b is the bias value
and a is some non-linear activation function. Since neurons have connections with each
other, the input to the neuron z is in general assembled from the output of other neurons
and weights of connections between them. In general, the bias value can be zero, i.e.
the neuron does not have to contain this parameter. Nevertheless, in most cases, we
operate with neurons, where bias is included. The activation function on the other hand
is very important because it basically defines the behavior of the neuron. Perhaps, the
most common functions, see figure 2.3, are sigmoid, hyperbolic tangent, and today very
popular ReLU (rectified linear unit). Although ReLU is frequently used in all kinds of
models for its efficiency, it is unsuitable for usage in PINNs, as we will explain in the
section 2.4.

As stated above, in the densely connected layer, each neuron is connected to each
neuron in the previous layer. Each connection has a certain weight scaling the increment
from the particular neuron. So the output of the i-th neuron from [-th layer can be written

as:

K
vi=a Y w0 |, (2.37)
k=1

where wj, is the weight of the connection, and y]lc_l the output from k-th neuron of the
previous layer, b; is the bias of i-th layer, and K is the number of neurons in the previous

layer. By following this logic, if we look at the layer as a whole, the output from the [-th

CHAPTER 2. METHODOLOGY 16

5.00
1.00
4.
00 0.80
3.00 0.60
> >
2,001 0.40
).20
1.00 1 (
0.00
0.00
—4) 0 2 4 —4) 0 2 4
x xT
(a) ReLU (b) sigmoid
1.00
0.50
= 0.00
-0.50
-1.00
—4) 0 2 4

x

(c) hyperbolic tangent

Figure 2.3: Activation functions

layer can be written in matrix form as:

w1 w12 ... WK yllfl bll
. . . -1 l
w : b
y =a ?1 yQ. - ‘2 =a (lel_l - bl> : (2.38)
-1 l
_w_rl wIK_ _yK | _bI_

Where w;j, is the weight of the connection between the i-th neuron in the current layer
and the k-th neuron in the previous layer, y]lf_l is the output of the k-th neuron in the
previous layer, b; is the i-th neuron bias, and K and I are the numbers of neurons in
the previous and current layer respectively. The symbol [denoting the layer number can
take the values from 2 to L, where L is the total number of layers and [= 1 represents
the input layer. Activation function a() is written as a tensor, representing the piece-wise
application of a() to each element of the tensor. This may not seem so sophisticated, but
if you consider that input and output to this simple neural network can be a vector of

any length, it is clear that the network can perform a variety of different tasks related to

CHAPTER 2. METHODOLOGY 17

the classification [11] or regression [15] problems. The purpose of the network is mostly
determined by the activation function and the type of the last layer. With all of this,
the fully connected network can perform challenging tasks, but to achieve this we need
to find proper weights and biases in the process called training. An integral part of the

training process is to define the appropriate loss function.

2.3.2 Loss function

The loss function, also called the cost function, is something that is absolutely crucial for
model training. With this function, we define how the weights? of the model should be
changed to provide better performance by minimizing it during training.

When we are using a neural network as a classifier or as a regression tool, perhaps the
easiest way how to measure the network “s loss, is to compare its results with the correct
values that it should return. This requires a dataset of inputs together with labeled
outputs, ensuring several features, such as relevance, quality, diversity, or consistency to be
effective for training models. The approach utilizing a labeled dataset for model training
is called supervised learning. The simplest loss functions that are used for evaluating
the differences between the model prediction and labeled output are mean squared error
(MSE) and mean absolute error (MAFE):

I
1 L true)?
MSE=73-3" (vF = i), (2.39)
i=1
L J
L.t
MAE = <~ Z; v =y (2.40)
1=

Where ylL is the output of the i-th neuron in the last layer, y/"“¢

i is a correct value that

the model should return and I is the number of neurons in the last layer. Using these
error metrics, one can measure the discrepancy in the model predictions and determine

whether the model has been trained sufficiently.

2.3.3 Training of the model

Training of a model is a process, where one tries to find the best parameters for model
predictions. During the training model makes predictions that are passed as an argument
to a loss function and a particular loss value is calculated. The goal is to minimize the

loss value, as a smaller loss indicates better model performance on the given task. The

2In many publications and articles, the weights of the model refer to all parameters of the model, that
could be changed during training, i.e. also biases in our case.

CHAPTER 2. METHODOLOGY 18

most common technique today in NN training is to use some kind of optimizer based on
stochastic gradient descent.
In calculus, the gradient is a vector whose components are obtained by deriving a

function f: R"™ — R at point p = [x1, ..., zy]| with respect to its variables

Vip)=1| : |- (2.41)

The gradient is pointing to the direction of the largest increment of the function value.
This is very frequently used in optimization wherever possible because if we take the
negative value of the gradient, we will get the direction of the largest decrease. This
capability has proven really efficient in finding the local minima of a function, and in our
case, it can be used to minimize the loss function. We just need to calculate the derivative
of the loss function with respect to model weights, and then adjust the weights in the
direction of the gradient.

If we look at equation 2.38, we can see that the dense neural network is a composite
function that consists of individual layers because the output from one layer serves as the
input for the next layer. The equation of the whole network with L layers can be then

written as:
YL =al (Whal ™! (WElal =2 (La? (W2 - 62)) - BL_1> - BL) L (2.42)

where index L denotes the last layer, index 2 denotes first hidden layer and I is input
to the network. Notice that input I as well as output YL are written with the capital
letter as matrices. It is contradictory to our definition of dense network input and output
as vectors. And technically it is true. One training example is indeed represented by
a vector, but in real-world computation, it would be inefficient to send each training
example through the network individually. In practice, we instead send data in groups
called batches. However, if we store each input example in a column of a matrix, we
can see from Equation 2.38 that the behavior of the network remains unchanged by this
representation. The only difference is that output from each layer is not a vector of size
corresponding to the number of neurons I, but it is a matrix with the number of rows

corresponding to the number of neurons 7, and the number of columns corresponding to

CHAPTER 2. METHODOLOGY 19

the batch size b:

wip w12 --. WiK | Y Y1p by bé
L : -1 -1 ! !
w T : Y T by ... b B N
Y —a ?1 | 21 2| |72 2 :a(lel 1—b>.
-1 -1 l l
‘wrr - o WIK | YK Yo | |01 b |

(2.43)
The f)l is a matrix that is created by copying the same vector b’ column-wise, because
each neuron only has one bias, but the dimensions must match with the batch size. The
~ symbol represents such an operation. In modern tensor libraries such as NumPy, Ten-
sorFlow, or PyTorch this broadcasting is done automatically, but for manually expressing
the derivatives of the loss function with respect to network weights we need to be aware
of this fact.

Considering that any neural network can contain a large number of hidden layers,
computing the derivatives of the loss function with respect to each weight individually
can be computationally demanding. What we can do instead is take advantage of the
chain rule properties, calculate the derivative of the loss function with respect to the last
layer of the network, and then propagate it back to compute derivatives with respect to
all layers. This process is called back propagation. When we calculate the derivatives
with backpropagation, we are calculating the effect of each network parameter on the loss
function, therefore it is often read that the network error is backpropagated.

In the context of working with tensors and calculating their derivatives, Einstein no-
tation is applied to ensure the formulas remain simple. Einstein notation denotes tensors
as lowercase letters with indices and implies that if one index appears more than once
in one term, it denotes summation over all possible values of that index. For example,

matrix multiplication in Einstein notation can be written as:

k

As mentioned, the chain rule is used to backpropagate the derivatives of the loss function,
so the first term that must be calculated is the derivative with respect to output from the
last layer YL, For the demonstration of this process, the mean squared error is considered
as the loss metric, see equation 2.39. With Einstein notation, it can be written as:
Lo 9
l=—1;us.,
n Y (2.45)

_ L true
Wi = Yi5 — Yij

The 1;; is a second-order tensor full of ones with dimensions ij corresponding to the

CHAPTER 2. METHODOLOGY 20

number of neurons in the last layer and batch sizer. It is there to denote the fact that [
is computed by summation of square differences on all possible elements. The derivative

of [with respect to yZLj is then:

ol ol Ouj; 1 ou; ; 1 1
1] Ty _ - zjuljdlp(sjq 2pqupq, (2.46)

= = u
8y2§q Ouij 8y}/}q n T aypq

The 0;;, and the d;, symbols are the Kronecker delta tensors that are equal to one when

their indices match and zero otherwise:

1, if a =0,
O = (2.47)
0, ifa #b.

With Einstein notation the term %2ijuij6ip5jq means Z Zj ijUij0ipdjq, and thanks
to Kronecker delta tensors, only combinations that are not equal to zero are if i = p and
j = q, therefore it can be simplified to %quupq. From this result, it is clear that the
derivative of the loss with respect to the output of the last layer can be written in matrix

form as:

o 2/ 1 oy

After obtaining a@—lL we can apply the chain rule further to get the derivatives with respect
to weights and biases of the last layer and output of the previous layer. And since the
formula of each densely connected layer has the same shape, this principle is applicable to
every layer of the model, not just the last one. So the labeling is changed from a capital
L to a lowercase [to obtain those equations for the general layer.

Using the equation 2.43, with the 'weighted input’ as 7! = why!-1 —BZ, the derivative
with respect to layer weights can be written as:

ol ol 3y§j azf'j

I l l l
Owp,. Oy, ; 0z Owpy

~

o o kykj “bii ol N
= —a' (z = a’ |z 040 (2.49)
ayéj (z]) awpr 3y§j < z]) Yij OipOkr

= ()l =g () ()

Where a''() is the derivative of the activation function. This can be rewritten in matrix

[

form as:

CHAPTER 2. METHODOLOGY 21

where the ® symbol denotes the Hadamard product (element-wise multiplication).

To calculate the derivative with respect to bias, we must first express the broadcasting
of the vector to the matrix. With Einstein notation, we can write it as l;i] = b;1;. The
derivative with respect to layer bias is then:

ol ol 83/53' 3Z§j ai’éj

al Al 9.l a7 l
by, dy; Oz abgj obl,

ol (1 o (.1
= —q Zi. (_1)16 = ——qa 2. 1
aygj (z]) J7p 8y;l)j (D) J

(2.51)

In the matrix form, the equation is expressed as:
== (S eal (7)) 2.52
obl (aYl (2:52)

where 1 is a column vector full of ones with the size j correspond to the batch size.
For propagating the derivatives back to previous layers, we must calculate the deriva-

tive with respect to the output from the previous layer.

ol B ol ayzl'j azllj

kg Oul; 021 9gry!

(ANl s s — O (Y. 1
a (ZU> wz’kék?”‘sjq_@a (qu> w;, (2.53)

iq

= (15) g ()

_a
8y£j

which in matrix form is rewritten as:

= (W) (eat (7)), (2.51)

With those four equations, we are able to compute derivatives of loss with respect to any
weights and biases for model that consist of densely connected layers. The only equation
that would be case-dependent, is the derivative of the loss function with respect to the
output from the last layer since it is specifically derived for the mean squared error metric.
Nevertheless, the shape of the derivative remains the same—a matrix of the same size as
the output from the last layer, so the remaining three equations and principles behind

them are universally applicable. We simply calculate the derivative of loss with respect to

CHAPTER 2. METHODOLOGY 22
output from the last layer and then propagate it back using these three general equations:

A~ oot (@) ()
b e) | s

= (W) (o (#)

After obtaining the necessary derivatives, we can adjust the network weights in the

negative direction of the gradient, which should reduce the loss function. Therefore,
individual batches are sent through the network during training, and after finishing the
calculation of each batch, the weights are adjusted. The problem is, how much we should
move in the way of the negative gradient direction. Because if we would just change the
weights by the size of the whole gradient, i.e. w!t! = w! — %, for the majority of the
real world problems the change in the weights would be simply too large, and it would
not result in reducing the loss function. Therefore parameter called learning rate 7 is
employed to determine how much of the gradient size is applied: wfT! = w! — n%. The
learning rate parameter is used in some form in virtually all modern optimizers based on
stochastic gradient descent, such as AdaGrad, RMSprop, or Adam, which is used for the
purposes of this thesis. If the value is too small, convergence can be slow or the optimizer
can freeze in some local minima of the loss function. Oppositely, the convergence is
also problematic for large values of learning rate, because the optimizer never gets to
the minima of the loss function. The default learning rate for the Adam optimizer in
TensorFlow and Pytorch is 1le — 3, however, you can never predict the optimal learning
rate with certainty. Sometimes it is not possible to find the learning rate for which the
model would converge, since the convergence is also dependent on the model architecture,
loss function, size and generality of the dataset, initialization of the weights, and batch
size and composition of each batch. So in general case convergence is not guaranteed and
therefore the design and the training of the network is rather a heuristic process.

To explain more why the batch size affects model convergence, we must clarify what
stochastic gradient descent is. When we are training the model, we are trying to minimize
the loss function defined by the properties mentioned above. This means that the shape of
the loss function is affected, among other things by all the data from the training dataset,
hence the true gradient we are trying to use for minimization would need to be computed
on the whole dataset, not on just one batch. This is however in most cases not feasible
simply because computers often do not have the memory capacity to send the whole
dataset through the network at once. On the other hand, if we compute the gradient
only on one training example, the probability that it will have the same direction as the

true gradient defined by the whole dataset is rather low. Therefore the main idea behind

CHAPTER 2. METHODOLOGY 23

stochastic gradient descent is to randomly scramble examples in the training dataset and
then create batches from it. And if those randomly scrambled batches are large enough,
there is a good chance that the gradient calculated from those does not differ so much
from the true gradient computed for the whole dataset. It explains why batch size also
affects the convergence of the model.

During the training, an epoch refers to the process where the model passes through all
the training data and adjusts its weights. This is one of the parameters that need to be
set. We can either set the fixed number of epochs for which the model is trained or specify
some conditions that stop the training, such as a desired value of loss function. However,
the loss value on the training dataset itself is not a sufficient metric for evaluation of the
model’s true capabilities, since we can not determine if the training dataset is general
enough. The model may exhibit good loss values on the training dataset, but predictions
on unseen data can be significantly worse. This phenomenon is referred to as overfitting
and takes place when the model adjusts its weights to perfectly match the training data,
which are not sufficiently general. As the number of weights in the model increases, so
does the risk of overfitting, due to the model’s enhanced capacity to approximate more
complex functions. It can be said in some sense that larger models in general require
larger datasets.

In deep learning, there is therefore a common practice to divide available data into
three groups. The first group is the training dataset that is used for training the model
and adjusting its weights. The second group is the validation dataset, which is not
used for model training (adjusting model weights), but after completing each epoch, the
model will make predictions that are compared against this data. This approach allows
tracking the model’s prediction ability on non-training data during training to determine
if overfitting/underfitting is occurring. And the third group is the testing dataset. This
dataset is used post-training to evaluate the model’s prediction ability on an independent
dataset, as adjusting hyperparameters during training might lead to overfitting to the
training and validation datasets, resulting in poorer general prediction performance. The
hyperparameter of the model is basically anything that can be set before the training,
except trainable parameters like weights and biases. The term hyperparameter can refer
to the number of hidden layers, number of neurons in each layer, activation function,
batch size, number of epochs, loss function and its possible parameters, learning rate,
optimizer, etc.

Previously we derived formulas for backpropagation which we can use for training
the network, but this is not how it is typically done in practice. In modern libraries
like TensorFlow or PyTorch, there is no manual derivation required, instead, automatic

differentiation is used during the training process. It is based on the idea that every

CHAPTER 2. METHODOLOGY 24

algorithm, no matter how complex it may be, is only performing a series of basic math-
ematical operations, i.e. addition, subtraction, multiplication, division, etc., and simple
mathematical functions like sins, cos, exp, root, etc.. Automatic differentiation is taking
advantage of this fact. These libraries are then able to record every operation that is
done with a variable and use the chain rule to efficiently compute required derivatives.
This is highly beneficial as it only requires creating a variable, utilizing it in a function,
requesting its derivatives, and these libraries can automatically provide them, including
derivatives of intermediate results and higher-order derivatives, see [16]. With automatic
differentiation, we can use basically any model architecture, define custom layers and loss

functions, and the derivatives are always automatically provided for us.

2.3.4 Optimizer

By optimizer, we refer to the algorithm that is updating model weights after each batch.
In most cases, we use optimizers that are based on stochastic gradient descent (SGD). In
this thesis, we use a SG'D-based optimizer called Adam. The first paragraph is devoted
to the concept of the stochastic gradient descent algorithm followed by the description of

Adam optimizer.

Stochastic gradient descent

As the name suggests, this algorithm uses the gradient to optimize a given quantity. In
our case, it is the loss function of a model with its weights as variables. After obtaining

the necessary derivatives, we can simply adjust the weights with particular learning rate

as: o1
t+1 t

w =w —nN—>y, 2.56

where w! is general weight of a model in ¢-th iteration, 7 is the learning rate, % is the

gradient of [with respect to weights and w!*! is the new updated weight. Although this
algorithm is relatively effective, it does not contain any mechanisms for dealing with local
minima, other than the learning rate. An additional problem is that as the algorithm
approaches the desired minimum, the gradient’s magnitude decreases, resulting in an
unnecessary extension of the convergence time. Adam tries to solve these shortcomings

with the following measures.

Adam

The name Adam stands for adaptive moment estimation and is a combination of two

optimizers, SGD with momentum and RMSprop.

CHAPTER 2. METHODOLOGY 25

Stochastic gradient descent with momentum tries to resolve the issue of freezing in the
local minima by simulating the moment of inertia, similar to how a marble rolling from
a hill would behave - if the marble has enough inertia, it does not stop in local valleys.

The momentum is realized by using an exponential moving average:

witl = Wt — pmy,
al (2.57)

my = Brmy—1 + (1 — 51)@

where my is momentum, m;_1 is momentum from previous step and (] is a chosen con-
stant. The default value of 1 is 0.9 in both TensorFlow and PyTorch. By multiplying
previous momentum with parameter 1 smaller than 1 it is assured that the influence of
the previous gradients is smaller with each step while keeping the momentum.

RMSprop enriches stochastic gradient descent by adaptively changing the learning rate
for each weight separately during training. It achieves this again using an exponential

moving average:
1t n_ ol

- N
ol

2
vt = Povi—1 + (1 — o) (w) :

where v¢ is the weighted sum of squares of past gradients, v;_1 is this sum from the

(2.58)

previous step, (9 is a constant with default value 0.999 in TensorFlow and PyTorch and €
is also a small constant added for numerical stability that is by default equal to 1-10~7 and
1-1078 in TensorFlow and PyTorch, respectively. When we divide the learning rate with
the square root of v¢, we normalize individual derivatives with respect to their history. If
the derivative with respect to a certain weight tends to be small, it automatically increases
in size because the denominator will be smaller, and similarly, it automatically decreases
in size if it tends to be large. This is useful, for example, when the neighborhood of the
minimum of a function in some direction is very mild compared to other directions. The
derivative in this direction will be automatically scaled, making convergence faster, and
the optimizer is also able to move in the direction corresponding to the minimum. Since
the moving average is used, it helps to keep the stability of the convergence.

The Adam optimizer combines both those approaches and adjusts the weights as

follows: .
wit! = ot — 77Amt ’
\/Ut + €
A my
mg = ; 2.59
g (259)
~ Ut
Ut =

1—pBL

CHAPTER 2. METHODOLOGY 26

Constants (1, (2, and € in Adam optimizer have the default values specified above and
the default learning rate is 0.001. The my and vy modify ms and v; because both of
these values are initialized as zero, which in early steps causes unconditional scaling of
the gradient that can eventually deflect the algorithm. Thanks to these modifications
Adam in the first iteration corresponds to a SG'D algorithm. With growing exponents in
the calculation of the hat terms, the impact of the momentum and the weighted sum of
squares of the previous gradient is increasing, and as a result of that the m; and vy more
and more correspond to m; and v;. In normal use cases, the default constants 31, (o,
and € are not changed and the only modified parameter is the learning rate 7. It applies
also to this thesis, the only optimizer parameter changed during experimentation for this

thesis, is the learning rate.

2.4 Physics-informed neural network - PINN

Neural networks have been shown to be effective tools for finding correlations between
data and also as approximators. Therefore, there are tendencies to incorporate them into
engineering practice in solving various physical problems. Difficulties arise due to the size
of the labeled dataset, needed for successful training of the model. In civil engineering
problems, we usually have access to only small datasets, which is in contrast to typical
deep-learning tasks. However, compared to the standard neural network applications such
as image classification, speech-to-text conversion, language translation, etc., applications
in engineering tasks have one major advantage. The relations between our data and phys-
ical quantities are known to us in advance. Those relations are expressed in formulas and
differential equations mostly as equilibrium equations. Physics physics-informed neural
network is something built on this knowledge and it is defined as a neural network that
has the physical law of the given problem incorporated into its loss function.

There are many applications of PINNs and one of them is the focus of this work,
namely the use of a neural network for obtaining an approximate solution of a partial
differential equation. For our purpose, the incorporation can be done in several ways.
The first way is to create some kind of residuum obtained by the finite difference method,
finite element method, etc. We can for example use the fact that these methods lead to
a system of equations in a form Kr = f. Left side matrix K can be then multiplied with

a solution predicted by the neural network and compared to a right side vector f:
L 2
[= HKy —fH . (2.60)

By minimizing this loss function, the neural network learns the physical laws indirectly

CHAPTER 2. METHODOLOGY 27

from the approximation defined by a particular method. This approach can then be
combined with data from other simulations or experiments.

The second approach, which we also use in this thesis, is to use automatic differenti-
ation to create residuum directly from the network itself. Since the automatic differen-
tiation is already implemented by most modern machine learning libraries, this strategy
is easy to deploy and perhaps more natural than the first approach. As mentioned, with
automatic differentiation we are able to quickly obtain the derivatives based on the op-
erations that are done with a variable. This is very useful, because if we choose network
architecture in a way, so that it approximates the solution of the differential equation, i.e.
it has the same input and output as the solution, we can easily calculate its derivatives,
from whose the residuum is composed.

To demonstrate this strategy further, we focus on the stationary heat conduction
problem defined by equation 2.4. Here the solution is a function that takes x and y
coordinates as arguments and returns the temperature value 7" at a point determined by
these coordinates. To approximate it, we set our neural network to have two neurons in
the input layer and one neuron in the output layer, to be able to predict the temperature
based on the spatial coordinates. This way we also retrieve the derivatives of any degree
of temperature with respect to particular coordinates, after each prediction by automatic
differentiation. With this ability, we can assemble the differential equation for a given
point, and check if the imposed balance is maintained. We simply take the first derivative
of the temperature with respect to each coordinate, multiply it with —A\ to get the heat
fluxes, differentiate them again by the appropriate coordinate, and together with the
eventual heat source we can construct the original PDE, see the figure 2.4. If the term
is equal to zero, the PDE at this point is satisfied. Naturally, adding more points during
the training process ensures better fitted neural network model with higher capability
of approaching the exact solution. Therefore, we create a dataset of points within the
domain and evaluate the PDE at each of them. To measure the deviation, we can simply

take the mean squared error of the residuum at each point:

NppE 2
B O (TN, 0 ([T, ~
'rpE = NppE ; (3932' (Az@%‘) * dyi (Azayz’) +QZ) ’ (2.61)

where T; and @Q; are the predicted temperature and prescribed heat source at a given
point, A; is thermal conductivity at a given point, and Nppg is the number of points in
the domain, on which we are evaluating the loss.

Evaluating the [ppp however is not enough, as we must also impose the boundary
condition, to be able to approach a specific desired solution. Therefore, a typical approach

to training this type of PINN is to create a dataset of points located on the boundaries and

CHAPTER 2. METHODOLOGY 28

PDE Loss

0(,0TY . o(,0T
ox <_>\5:17 > +Eiy <)\6y > "

Ql
I
[en}

T-T =0, for xin T'p
an—Q:O7 for z in T'y
q=a(T-T,), for zinTp

Figure 2.4: PINN scheme

then simply check whether the network prediction matches the given boundary condition.
We split the boundary points in the dataset based on the type of the condition, and

enforce those conditions by minimizing the following loss function:

lpc = lI‘D + lFN + lFR7

1 Np 9
Ip, = — T,—T;), xelp,
I'p Np;(1 z) D

Ny

! B (2.62)
ZFN:N_NZ-;(TJ%_%) ,