
Czech Technical University in Prague
Faculty of Civil Engineering
Department of Mechanics

Deep Learning-Based Modeling and Simulation of Heat
Conduction

Master’s thesis

Onďrej Šperl

Study programme: Civil Engineering
Branch of study: Structural Engineering of Buildings

Supervisor: doc. Ing. Jan Sýkora, Ph.D.

Prague, January 2025

ii

Thesis Supervisor:
doc. Ing. Jan Sýkora, Ph.D.
Department of Mechanics
Faculty of Civil Engineering
Czech Technical University in Prague
Thákurova 7
160 00 Prague 6
Czech Republic

Copyright © January 2025 Ondřej Šperl

Declaration

I hereby declare I have written this master’s thesis independently and quoted all the
sources of information used in accordance with methodological instructions on ethical
principles for writing an academic thesis. Moreover, I state that this thesis has neither
been submitted nor accepted for any other degree.

In Prague, January 2025

..
Ondřej Šperl

iii

iv

v

Master’s Thesis Assignment

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

495069 Osobní �íslo:Ond�ej Jméno:Šperl P�íjmení:

Fakulta stavební Fakulta/ústav:

Zadávající katedra/ústav: Katedra mechaniky

Stavební inženýrství - pozemní stavby Studijní program:

Statika pozemních staveb Specializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Hluboké u�ení jako nástroj pro modelování a simulaci vedení tepla

Název diplomové práce anglicky:

Deep Learning-Based Modeling and Simulation of Heat Conduction

Pokyny pro vypracování:

Cílem magisterské práce je konstrukce náhradní modelu problému vedení tepla pomocí hlubokých neuronových sítí.
Hluboké u�ení je podoblast strojového u�ení, která využívá um�lé neuronové sít� k tomu, aby se získávání složitých
vzorc� a vztah� z dat. Tyto sít�
se skládají z n�kolika vrstev vzájemn� propojených uzl�, které umož�ují
automatické u�ení hierarchických reprezentací dat. Student se v rámci svojí práce zam��í na testování r�zných architektur
neuronové sít�. V práci by se m�ly rovn�ž zkoumat metody, které kombinují velmi malé soubory dat s fyzikálními rovnicemi.
Práce bude napsána v anglickém jazyku.

Seznam doporu�ené literatury:

[1] Karniadakis, George Em, et al. "Physics-informed machine learning." Nature Reviews Physics 3.6 (2021): 422-440.
[2] Lu, Lu, et al. "DeepXDE: A deep learning library for solving differential equations." SIAM review 63.1 (2021): 208-228.
[3] Chollet, Francois. Deep learning with Python. Simon and Schuster, 2021.

Jméno a pracovišt	 vedoucí(ho) diplomové práce:

doc. Ing. Jan Sýkora, Ph.D. katedra mechaniky FSv

Jméno a pracovišt	 druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 06.01.2025 Datum zadání diplomové práce: 01.10.2024

Platnost zadání diplomové práce: _____________

prof. Ing. Ji
í Máca, CSc.

podpis d�kana(ky)
prof. Ing. Ji
í Máca, CSc.
podpis vedoucí(ho) ústavu/katedry

doc. Ing. Jan Sýkora, Ph.D.
podpis vedoucí(ho) práce

III. P�EVZETÍ ZADÁNÍ

Diplomant bere na v
domí, že je povinen vypracovat diplomovou práci samostatn
, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramen� a jmen konzultant� je t�eba uvést v diplomové práci.

.
Datum p�evzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Abstract

This Master’s thesis deals with implementing deep neural networks for the simulation
and modeling of heat conduction. It studies the application of deep neural networks
in searching for approximate solutions of partial differential equations and their use in
constructing surrogate models. To avoid the relatively common problem of insufficient
dataset size for model training, a physics-informed neural network is introduced in this
work, which exploits the physical laws represented by partial differential equations in the
evaluation of the loss function. This approach leads to a reduction in the size of the
training data. The proposed methods and models are assessed with a classical solution
based on the finite element method. In a particular case, the comparison is made with
the traditional method using polynomial chaos to construct the surrogate model. The
effectiveness and limitations of this approach are investigated using various examples
simulating the heat conduction problem with varying boundary conditions and thermal
properties of the domain under study.

Keywords: Deep neural networks; Physics-informed neural network; Surro-
gate modeling; Finite element method; Heat conduction

vi

Abstrakt

Tato diplomová práce se zabývá využit́ım hlubokých neuronových śıt́ı pro simulaci a
modelováńı vedeńı tepla. Práce studuje aplikaci hlubokých neuronových śıt́ı při hledáńı
přibližného řešeńı parciálńıch diferenciálńıch rovnic a jejich využit́ı ve stavbě náhradńıch
model̊u. Aby se předešlo poměrně běžnému problému, kterým je nedostatečná velikost
datového souboru pro trénováńı modelu, je v této práci implementována fyzikálně infor-
movaná neuronová śı̌t, která využ́ıvá fyzikálńı zákony reprezentované parciálńımi difer-
enciálńımi rovnicemi ve vyhodnoceńı ztrátové funkce. Tento př́ıstup vede ke sńıžeńı ve-
likost trénovaćıch dat. Navržené metody a modely jsou vyhodnoceny s klasickým řešeńım,
které je založené na metodě konečných prvk̊u. V konkrétńım př́ıpadu je porovnáńı prove-
deno s tradičńı metodou využ́ıvaj́ıćı ke stavbě náhradńıho modelu polynomiálńı chaos.
Efektivita a limity tohoto konceptu jsou zkoumány na r̊uzných př́ıkladech simuluj́ıćıch
problém vedeńı tepla s měńıćımi se okrajovými podmı́nky a tepelnými vlastnostmi zk-
oumané domény.

Kĺıčová slova: Hluboká neuronová śı̌t; Fyzikálně informovaná neuronová śı̌t;
Náhradńı model; Metoda konečných prvk̊u; Vedeńı tepla

vii

Acknowledgments

I would like to thank my supervisor doc. Ing. Jan Sýkora, Ph.D. for his guidance, support,
and also patience. When we started working together two years ago, he put his trust in
me and supported me all the time, and in the process, I learned things that I thought
were way beyond my capabilities. Our collaboration had a great influence on my life and
I’ll always be grateful to him for everything.

I would like to express my gratitude to prof. Pierre Feissel, my French supervisor. I
would like to thank him for his valuable advice, inspiring insights, and last but not least for
the opportunity to participate in the scientific internship at the University of Technology
of Compiègne. That half a year there gave me a lot.

I would also like to thank my girlfriend Kate and my family, for their support and trust
in me. Without them, I would never have finished my studies or this work.

This work was supported by the Student Grant Competition of the Czech Technical
University in Prague, project No. SGS23/152/OHK1/3T/11, and the research project
DEEMA: Design and Optimisation Open Innovation Hub for Composites Modeling and
Design, TACR M-ERA.NET 2, project no. TH75020002.

viii

List of Tables

3.1 Summary of Results. 34
3.2 Summary of Results. 37
3.3 Results for various learning rates. The tables above show the loss value

and the mean absolute error calculated for the prediction and the finite
element method. 37

3.4 Random uniform. 40
3.5 Sobol´s sequences. 40
3.6 Latin hypercube sampling. 41
3.7 Latin hypercube sampling with additional data 43
3.8 Comparison of surrogate models. 45
3.9 Error metric computed for different numbers of NT 47

ix

List of Figures

2.1 Infinitesimal square . 5
2.2 Neural network scheme . 15
2.3 Activation functions . 16
2.4 PINN scheme . 28

3.1 Thermal conductivity parabolic function 32
3.2 Evolution of training loss as a function of epoch - Example 1 33
3.3 Temperature for error field computed for thermal conductivity defined as

a paraboloid function . 35
3.4 Thermal conductivity defined as a wave function. 36
3.5 The evolution of training loss as a function of epoch - Example 2 36
3.6 The loss value inspection. This figure displays the evolution of the loss

function and its parts during training of the Latin hypercube sampling for
NT = 50 case. 42

3.7 Average error maps. 42
3.8 The evolution of loss computed for the example with additional data. . . . 44
3.9 Amplitude of the thermal conductivity . 46
3.10 Average error maps . 47

x

Contents

Abstract (English) vi

Abstrakt (Czech) vii

Acknowledgments viii

List of Tables ix

List of Figures x

1 Introduction 1

2 Methodology 3
2.1 Heat conduction . 3

2.1.1 Steady-state heat conduction . 4
2.1.2 Non-stationary heat conduction . 6

2.2 Finite element method . 8
2.2.1 FEM for steady-state heat conduction 8
2.2.2 FEM for non-stationary heat conduction 11

2.3 Neural network . 13
2.3.1 Simple neural network . 14
2.3.2 Loss function . 17
2.3.3 Training of the model . 17
2.3.4 Optimizer . 24

2.4 Physics-informed neural network - PINN 26

3 Examples 30
3.1 PINN as an approximation of the solution 31

3.1.1 Example 1 - Thermal conductivity defined as a paraboloid function 31
3.1.2 Example 2 - Thermal conductivity defined as a wave function . . . 35

3.2 PINN as a surrogate model . 38
3.2.1 Example 3 - Surrogate model with changing Dirichlet BC 38
3.2.2 Example 4 - Surrogate model constructed for changing Dirichlet BC

and thermal conductivity . 45

4 Conclusion 48
4.1 Future works . 49

Bibliography 50

xi

Chapter 1

Introduction

With the modeling of physical processes, we try to solve problems described by partial

differential equation (PDE). Due to the complicated nature (shape of domain, load, non-

linear response of material) in most engineering applications, finding an exact solution of

PDE is impossible. In engineering practice, we usually solve such a problem by finding an

approximate solution. There are many methods for finding an approximate solution, e.g.

the finite element method (FEM) [1], the finite difference method [2], the finite volume

method [2], etc. In recent years, however, a considerable amount of research has also been

devoted to the deployment of neural networks to solve engineering problems [3]–[5]. It

was demonstrated not only that neural networks can be used to obtain an approximate

solution of PDE´s [6], but also that they can solve inverse problems [7], be used as

surrogate models [8], and even as surrogate model without any additional data [9], i.e

data-free approach. This makes neural networks promising for the future and in any case

a subject worthy of further research.

In the presented master’s thesis we are using deep learning and neural networks for

modeling of physical processes. To investigate these, the neural network is used to find

an approximate solution of the heat equation, use it as a surrogate model both with

and without additional data, and the prediction is compared with traditional established

approaches, such as finite elements method and polynomial chaos approximation.

Deep learning models in general usually require a lot of data to be trained. Never-

theless, in practice, we often do not have such a dataset, due to expensive measurements

and computationally exhaustive FEM simulations. This issue can be resolved by imple-

menting the scheme called physics-informed neural network (PINN), naturally reducing

the required size of the labeled dataset to even a zero. The main idea behind this con-

cept is to incorporate known physics represented by PDEs directly into a loss function

of the network. This could be done in several ways: 1) Loss function is assembled based

on the unbalanced forces obtained from FD/FEM scheme. 2) We can use automatic

1

CHAPTER 1. INTRODUCTION 2

differentiation (AD) for direct evaluation of PDE.

The first approach with applying numerical approximation methods is feasible, and has

been done [5], but for complicated problems, it can be demanding. Automatic differenti-

ation however can be applied to almost any problem, is fast, and is already implemented

and used for neural networks training in most modern machine learning libraries, such as

TensorFlow [10], PyTorch [11] or Theano [12]. Therefore, using AD is quite straightfor-

ward and can be applied to different problems with minimal changes to the code.

This thesis is structured as follows: Section 2 describes the methodology and concepts.

First, we address the heat conduction modeling, with emphasis on the derivation of the

heat balance equation and then we describe the common method used for its solving -

FEM. Subsequently, we briefly introduce an artificial neural network, and in more detail,

we describe the PINN concept on top of it. Section 3 deals with the practical exam-

ples of heat conduction using PINNs and explains their performances. The last section

4 summarizes conclusions from the presented examples and discusses the benefits and

drawbacks.

The neural networks and PINNs have significantly grown in popularity in recent years.

Therefore the main objective of this work is: i) To study and learn about this concept

of incorporating the physical laws into the calculation. ii) Implement PINNs for testing

their capabilities as well as shortcomings, iii) and determine whether there is a potential

for utilization of PINNs in computational mechanics.

Chapter 2

Methodology

2.1 Heat conduction

Heat conduction is one of three possibilities of heat spreading through an environment,

alongside convection and radiation. It is a direct result of collisions between atoms in

solid materials that oscillate around their equilibrium position due to kinetic energy. Heat

conduction is an important transport phenomenon for civil engineering and it is essential

to be able to calculate the related quantities, such as diffusion and condensation of water

vapor. We use the modeling of this phenomenon to calculate the thermal performance

of the civil engineering structures, and the thermal efficiency of construction details, but

also to calculate diffusion phenomena that are directly related to the temperature inside

the structure. Heat conduction is usually modeled in three dimensions, but within this

thesis, we will only model conduction in two dimensions (2D).

When modeling the 2D heat conduction, we consider the real physical body as a 2D

continuum (domain) Ω with its boundary Γ, which, in terms of thermal conductivity, has

the properties described by a λ
[

W
mK

]
matrix. In the continuum, there is a heat flux vector

q
[
W
m2

]
expressing with its components the direction of the energy flow, and magnitude of

this vector is determined by gradient of temperature ∇T
[
◦K
m

]
. This behavior is described

by Fourier´s law, which postulates that heat flux is equal to the product of the thermal

conductivity of the environment and negative temperature gradient:

q = −λ∇T. (2.1)

Please note that matrices are denoted by bold upright letters (A) and vectors by bold italic

letters (a). In practice, we divide heat conduction modeling into two types, depending

on the state of the structure. The first type is steady-state heat conduction, where the

temperature does not change throughout the structure. In this state, we don´t need to

3

CHAPTER 2. METHODOLOGY 4

consider the time dependence of the temperature and therefore it is easier to solve. When

we deal with real-world scenarios, it is quite rare for buildings to appear in this state, since

it requires temperatures to not change for a period of a couple hours. Nevertheless, it is

still frequently used to design the thermal envelope of buildings. We consider unfavorable

conditions and calculate the results as a steady state because it is easy, fast, and in most

cases provides a sufficient reserve.

The second type is non-stationary heat conduction. In this state, the temperature

changes throughout the structure in time, so we need to calculate with the time depen-

dence of the temperature. Solving such problems is more difficult, because to calculate

a particular state of construction, we need to know all the previous ones. On the other

hand, this approach is more accurate according to reality and in some cases, it is necessary

to calculate with this approach.

2.1.1 Steady-state heat conduction

We start with the expression for the steady state and then expand it to a non-stationary

state. For the 2D continuum, Fourier´s law is described as:[
qx(x)

qy(y)

]
= −

[
λxx(x) λxy(x)

λxx(x) λxy(x)

][
∂T (x)
∂x

∂T (x)
∂y

]
q(x) = −λ∇T (x)

. (2.2)

where x is a coordinate vector (x, y).

In thermal analysis, our goal is to calculate temperature distribution on the whole

domain. To achieve this, we need to solve a differential equation based on the energy

balance, that must be satisfied at each point of it. To derive such an equation, we start

from the balance on a square extracted from it, see figure 2.1. And then we scale it down

to infinitesimal dimensions, which will provide the equilibrium condition at each point of

the domain. The continuum can also have internal heat source Q(x)1, which is used in

engineering practice to model heat increments from heating systems inside constructions,

chemical reactions, etc. If we denote the thickness of the continuum by b [m], the energy

1Please note, that Q is marked by symbol. It is because the internal heat source is a prescribed
quantity and we are viewing it as a load. Everything denoted with . symbol is also viewed as a prescribed
quantity

CHAPTER 2. METHODOLOGY 5

Figure 2.1: Infinitesimal square

The heat symbol labeled by Q(x, y) symbolizes the internal heat source. The depicted
quantities are functions of coordinate vector x, but the increments are only in particular

coordinate ∆x and ∆y.

balance of the extracted square can be written as:

qx(x)b∆y + qy(x)b∆x+Q(x)b∆x∆y = qx(x+∆x)b∆y + qy(x+∆y)b∆x

qx(x)

∆x
+

qy(x)

∆y
+Q(x) =

qx(x+∆x)

∆x
+

qy(x+∆y)

∆y

−qx(x+∆x)− qx(x)

∆x
−

qy(x+∆y)− qy(x)

∆y
+Q(x) = 0

. (2.3)

After the infinitesimal transition, i.e. ∆x and ∆y approach zero in the limit, we convert

this condition for a point in the domain Ω as:

−∂qx(x)

∂x
−

∂qy(x)

∂y
+Q(x) = 0

−
[
∂
∂x

∂
∂y

] [qx(x)
qy(x)

]
+Q(x) = 0,x ∈ Ω.

−∇Tq(x) +Q(x) = 0

(2.4)

Since q(x) = −λ(x)∇T (x), we can see that energy balance condition leads to a differen-

tial equation, where the solution is the temperature distribution on the domain T (x). To

obtain the unique solution, each point of the domain boundary Γ must have a prescribed

boundary condition. For the purpose of this thesis, we consider three types of boundary

CHAPTER 2. METHODOLOGY 6

conditions, that are typically applied.

The first type is the Dirichlet boundary condition. This condition applied to heat

conduction has the form of a prescribed temperature:

T (x)− T (x) = 0,x ∈ ΓD. (2.5)

The second is the Neumann boundary condition or the second type boundary con-

dition. For heat conduction it can have a form of prescribed heat flux in the normal

direction: [
nx(x) ny(x)

] [qx(x)
qy(y)

]
− q(x) = 0

nT(x)q(x)− q(x) = 0

,x ∈ ΓN . (2.6)

And the third is the Robin boundary condition, which can be applied as heat transfer

due to laminar airflow in the boundary layer around the domain as:

q(x) = α(x)
(
T (x)− T 0(x)

)
,x ∈ ΓR, (2.7)

where α
[

J
m2Ks

]
is the heat transfer coefficient, and T 0(x) is the temperature in the

boundary layer. Another typical Robin condition could be the radiation boundary con-

dition, where the heat is emitted to the environment due to the radiation. However, this

BC is not used in this thesis.

2.1.2 Non-stationary heat conduction

When the temperature of the domain is changing in time, we have to consider the tem-

perature as its function:

T = T (x, y, t) = T (x, t). (2.8)

Given this, the constitutive equation defined by Fourier´s law is expressed as:[
qx(x, t)

qy(y, t)

]
= −

[
λxx(x) λxy(x)

λxx(x) λxy(x)

][
∂T (x),t

∂x
∂T (x),t

∂y

]
q(x, t) = −λ∇T (x, t)

. (2.9)

To compute the temperature distribution, we again need to solve a differential equation

based on the energy balance of the infinitesimal square of the domain. We will use the

same approach as in the case of steady-state conduction, but since the temperature is

changing in time, we need to take into account energy accumulation inside the matter of

the domain Ω. Each physical material has its thermal capacity cv

[
J

kgK

]
, which indicates

CHAPTER 2. METHODOLOGY 7

how much heat we must supply to one kilogram of material to raise its temperature by

one temperature degree. With this quantity, we can create a term that will include heat

accumulation in the energy balance:

Qc = ∆mcv(x)∆T, (2.10)

where ∆m [kg] is the weight of the extracted square from the domain and ∆T is the

average temperature change of this square. If the domain has thickness b [m], then the

average energy balance on it during time ∆t [s] has the form:

qx(x, t)b∆y∆t+ qy(x, t)b∆x∆t+Q(x, t)b∆x∆y∆t = ∆mcv(x)∆T (x, t)∆t

+ qx(x+∆x, t)b∆y∆t+ qy(x+∆y, t)b∆x∆t

qx(x, t)

∆x
+

qy(x, t)

∆y
+Q(x, t) =

∆m

b∆x∆y
cv(x)

∆T (x, t)

∆t
+

qx(x+∆x, t)

∆x
+

qy(x+∆y, t)

∆y

−qx(x+∆x, t)− qx(x, t)

∆x
−

qy(x+∆y, t)− qy(x, t)

∆y
− ∆m

b∆x∆y
cv(x)

∆T (x, t)

∆t
+Q(x, t) = 0

.

(2.11)

After the limit transition ∆x → 0, ∆y → 0, ∆t → 0, we get the energy balance for a

point in domain Ω:

−∂qx(x, t)

∂x
−

∂qy(x, t)

∂
− ρ̂(x)

b
cv(x)

∂T (x, t)

∂t
+Q(x, t) = 0

−∇Tq(x, t)− ρ̂(x)

b
cv(x)

∂T (x, t)

∂t
+Q(x, t) = 0

,x ∈ Ω. (2.12)

Due to the limit transition, the term ∆m
∆x∆y was transformed to ρ̂(x)

[
kg
m2

]
, which has

physical meaning of areal density. And since it applies that ρ = ρ̂
b , we can write:

−∇Tq(x, t) +Q(x, t) = ρ(x)cv(x)
∂T (x, t)

∂t
,x ∈ Ω. (2.13)

The solution to this equation is a function of temperature distribution in space and time

T (x, t). To obtain a unique solution, each point of domain boundary Γ at each time t

must have a prescribed boundary condition:

T (x, t)− T (x, t) = 0,x ∈ ΓD,

nT(x)q(x, t)− q(x, t) = 0,x ∈ ΓN ,

q(x, t) = α(x)
(
T (x, t)− T 0(x, t)

)
,x ∈ ΓR,

(2.14)

CHAPTER 2. METHODOLOGY 8

and the whole domain Ω must have prescribed initial condition at time t = 0:

T (x, t)− T in(x, t) = 0, x ∈ Ω. (2.15)

In the general case, for both steady-heat state and non-stationary heat conduction we

are not able to obtain a closed-form solution. We are therefore using numerical methods

to obtain an approximate solution. One of the most used methods is the finite element

method, which will be also used for this thesis. The results obtained by it will be used

for the training of physics-informed neural networks and for evaluation of the results.

2.2 Finite element method

The finite element method (FEM) is perhaps the most popular method for numerically

solving PDE´s. The name of this method comes from the methodology itself when the

domain on which a PDE is solved is divided into small parts called elements by a generated

appropriate mesh. This way the continuum is discretized and converted to a system, that

has a finite number of points. The solution is then approximated by assembling individual

functions, that model the behavior of particular elements. All of this is done in such a

way, that converts the PDE into a system of algebraic equations.

2.2.1 FEM for steady-state heat conduction

The typical first step in finite element analysis involves creating a so-called weak formu-

lation of the original PDE. The weak formulation allows us to reduce demands for the

solution. The equilibrium enforced in the PDE does not need to be maintained absolutely,

but instead applies for only certain test functions satisfying the equation 2.16. Such a

solution is called a weak solution. The original PDE is called strong formulation and its

solution is strong solution. To obtain a weak formulation, we multiply both sides of the

original equation by the test function, and do the integral over the entire domain:∫
Ω
δT (x)(−∇Tq(x) +Q(x))dx = 0, (2.16)

, where δT is the test function. If we are able to satisfy this equation for any test function,

it means that we have a strong solution. But if we are only able to satisfy it for a certain

set of test functions, we have a weak solution. So the operation performed in equation

2.16 does not itself make the original equation a weak solution, but the fact that we do

not require that this equality be satisfied for every test function does.

CHAPTER 2. METHODOLOGY 9

Now we can apply the Gauss theorem to convert this to a more favorable form:

0 = −
∫
Γ
δT (x)n(x)Tq(x)dx+

∫
Ω
(∇δT (x))Tq(x)dx

+

∫
Ω
δT (x)Q(x)dx = −

∫
ΓD

δT (x)n(x)Tq(x)dx

−
∫
ΓN

δT (x)n(x)Tq(x)dx−
∫
ΓR

δT (x)n(x)Tq(x)dx

+

∫
Ω
(∇δT (x))Tq(x)dx+

∫
Ω
δT (x)Q(x)dx

(2.17)

We specify the weak solution in such a way, that δT = 0 on the boundary ΓD. This way

we don´t have to consider the term
∫
ΓD

δT (x)n(x)Tq(x)dx, since it equals zero. After

inserting the constitutive equation and the corresponding boundary conditions, we get:∫
Ω
(∇δT (x))Tλ(x)∇T (x)dx+

∫
ΓR

δT (x)α(x)T (x)dx

= −
∫
ΓN

δT (x)q(x)dx+

∫
ΓR

δT (x)α(x)T 0(x)dx

+

∫
Ω
δT (x)Q(x)dx

. (2.18)

Now we can discretize the domain to create finite elements using the Galerkin method.

The Galerkin method is based on the principle of weighted residuals, where the residual is

orthogonal to the chosen finite-dimensional subspace. This method ensures that the error

between the exact solution and the approximate solution is minimized in a well-defined

mathematical sense, see [1]. Using the Galerkin method, we approximate the solution as

a linear combination of n basis function:

T (x) ≈
n∑

i=1

Ni(x)ri =
[
N1(x) N2(x) . . . Nn(x)

]

r1

r2
...

rn

 = N (x)r, (2.19)

where r is a vector of unknown coefficients. And the test functions are chosen with the

same shape as the basis functions:

δT (x) ≈ N (x)δr, (2.20)

where δr is again a vector of coefficients independent of r. The number of basis functions n

corresponds to the number of degrees of freedom, or the number of nodes in the network

discretising the domain. For the derivative of the temperature function and the test

CHAPTER 2. METHODOLOGY 10

function, we can write:

∇T (x) = ∇N (x)r = B(x)r,

∇δT (x) = ∇N (x)δr = B(x)δr.
(2.21)

After substituting these approximations to the equation 2.18 we get:∫
Ω
(B(x)δr)Tλ(x)B(x)rdx+

∫
ΓR

(N (x)δr)Tα(x)N (x)rdx

= −
∫
ΓN

(N (x)δr)Tq(x)dx+

∫
ΓR

(N (x)δr)Tα(x)T 0(x)dx

+

∫
Ω
(N (x)δr)TQ(x)dx

. (2.22)

The vector δr can be put in front of the integral since it is not a function of x. And

because it appear in every term, the equation 2.22 will be automatically satisfied for

every δr, if:

Kr = fN + fR + fQ = f ,

K =

∫
Ω
B(x)Tλ(x)B(x)rdx+

∫
ΓR

N (x)Tα(x)N (x)rdx,

fN = −
∫
ΓN

N (x)Tq(x)dx,

fR =

∫
ΓR

N (x)Tα(x)T 0(x)dx,

fQ =

∫
Ω
N (x)TQ(x)dx.

(2.23)

K is the conductivity matrix and f is the load vector. In the finite element method, these

terms are determined by localization from the individual elements. It is a common practice

to choose the basis functions as continuous piece-wise differentiable in such a way that

they are equal to one at the corresponding node, decrease to zero at neighboring nodes

on the common elements, and are zero everywhere else. Choosing basis functions with

these properties allows us to calculate the increments from individual elements simply.

We calculate the local conductivity matrix and local load vector on each element and

then localize this increment in K and f . In this work, only a simple mesh composed

of rectangular bilinear elements will be used, where basis functions on each element are

described by the following equations:

N1(x) =
1

4ab
(x− a)(y − b), N2(x) =

1

4ab
(x+ a)(b− y),

N3(x) =
1

4ab
(x+ a)(y + b), N4(x) =

1

4ab
(a− x)(y + b),

(2.24)

CHAPTER 2. METHODOLOGY 11

where a and b are the dimensions of the rectangle. Local basis function and its derivative

corresponding to the particular element are in matrix form written as:

N (x) =
1

4ab

[
(x− a)(y − b) (x+ a)(b− y) (x+ a)(y + b) (a− x)(y + b)

]
,

B(x) =
1

4ab

[
y − b b− y y + b y + b

x− a x+ a x+ a a− x

]
.

(2.25)

Since we approximate the solution as a linear combination of basis functions, after evalu-

ating the integrals obtained by localizing the contributions from the individual elements,

the expression Kr = f leads to a system of linear equations. Solving this system we

obtain an approximate solution of the original differential equation.

2.2.2 FEM for non-stationary heat conduction

To obtain a finite element solution for the non-stationary problem, we will follow the same

steps as in the case of steady-state conduction. We begin by multiplying the equation

with the test function and integrating it over the entire domain:∫
Ω
δT (x, t)

(
−∇Tq(x, t) +Q(x, t)

)
dx =

∫
Ω
δT (x, t)

(
ρ(x)cv(x)

∂T (x, t)

∂t

)
dx. (2.26)

Applying Gauss theorem, we get:

0 = −
∫
Γ
δT (x, t)nT(x)q(x, t)dx+

∫
Ω
(∇δT (x, t))T q(x, t)dx

+

∫
Ω
δT (x, t)Q(x, t)dx−

∫
Ω
δT (x, t)

(
ρ(x)cv(x)

∂T (x, t)

∂t

)
dx

= −
∫
ΓD

δT (x, t)n(x)Tq(x, t)dx−
∫
ΓN

δT (x, t)q(x, t)dx

−
∫
ΓR

δT (x, t)α(x)
(
T (x, t)− T 0(x, t)

)
dx+

∫
Ω
(∇δT (x, t))Tq(x, t)dx

+

∫
Ω
δT (x, t)Q(x, t)dx−

∫
Ω
δT (x, t)

(
ρ(x)cv(x)

∂T (x, t)

∂t

)
dx

(2.27)

Further, we define a weak formulation by choosing δT = 0 on the boundary ΓD, which

ensures that the integral on this boundary is zero and we use the Galerkin method to

discretize the solution in space. The discretized solution, the test function, and their

CHAPTER 2. METHODOLOGY 12

derivatives are expressed in the form:

T (x, t) = N (x)r(t),

δT (x, t) = N (x)δr(t),

∇T (x, t) = ∇N (x)r(t) = B(x)r(t),

∇δT (x, t) = ∇N (x)δr(t) = B(x)δr(t).

(2.28)

By substituting the approximations 2.28 into the equation 2.27 we get:∫
Ω
(B(x)δr(t))Tλ(x)B(x)r(t)dx+

∫
Ω
(N (x)δr(t))T

(
ρ(x)cv(x)N (x)

∂r(t)

∂t

)
dx

+

∫
ΓR

(N (x)δr(t))Tα(x)N (x)r(t)dx = −
∫
ΓN

(N (x)δr(t))Tq(x, t)dx

+

∫
ΓR

(N (x)δr(t))Tα(x)T 0(x, t)dx+

∫
Ω
(N (x)δr(t))TQ(x, t)dx.

(2.29)

Since δr(t) is independent on x and again appears in every integral, we can factor it out,

and the equation is satisfied for every δr(t) if:∫
Ω
B(x)Tλ(x)B(x)r(t)dx+

∫
Ω
N (x)Tρ(x)cv(x)N (x)

∂r(t)

∂t
dx

+

∫
ΓR

NTα(x)N (x)r(t)dx = −
∫
ΓN

N (x)Tq(x, t)dx

+

∫
ΓR

N (x)Tα(x)T 0(x, t)dx+

∫
Ω
N (x)TQ(x, t)dx.

(2.30)

Equation 2.30 can be further rewritten in matrix form:

Kr(t) +C
∂r(t)

∂t
= fN (t) + fR(t) + fQ(t) = f(t),

K =

∫
Ω
B(x)Tλ(x)B(x)dx+

∫
ΓR

NTα(x)N (x)dx,

C =

∫
Ω
N (x)Tρ(x)cv(x)N (x)dx,

fN = −
∫
ΓN

N (x)Tq(x, t)dx,

fR =

∫
ΓR

N (x)Tα(x)T 0(x, t)dx,

fQ =

∫
Ω
N (x)TQ(x, t)dx,

(2.31)

where K is the conductivity matrix, C is the capacity matrix, and f is the load vector.

We can see, that on the left-hand side, we have the derivative of unknown coefficients

CHAPTER 2. METHODOLOGY 13

with respect to time and moreover both r and f are the functions of time. In general,

there are two fundamental approaches to address this issue. We can apply the finite

element discretization and create finite elements in both space and time or discretize the

time separately using the time discretization method representing the classical approach,

which is also applied here to our problem. The time discretization method starts with

dividing the time interval for which we solve the equation into n intervals ∆t. The solution

in time i+ 1 is then linearly approximated as:

r(t) = (1− τ)ri + τri+1,

τ =
t− ti
∆t

.
(2.32)

Similarly we approximate the load vector f :

f(t) ≈ (1− τ)f i(x) + τf i+1, (2.33)

and the derivative of temperature with respect to time is approximated as:

∂r(t)

∂t
≈ 1

∆t

(
ri+1 − ri

)
. (2.34)

With discretized time we can rewrite the equation 2.31 as:(
τK+

1

∆t
C

)
ri+1 = (1− τ)f i + τf i+1 +

(
1

∆t
C− (1− τ)K

)
ri, (2.35)

which leads again to a system of linear equations (SLE). First ri is set as the initial

condition and each subsequent ri is obtained by solving SLE composed of contributions

from previous steps and boundary conditions. The choice of parameter τ affects the

stability of the calculation and the accuracy of the obtained solution.

2.3 Neural network

To introduce neural networks, it is a good idea to first describe what is machine learning

since neural networks are part of it. Machine learning is a paradigm of so-called ’artificial

intelligence’, Which is a term that first appeared in this context in the 1950s. Back then,

a group of computer scientists wondered whether computers could think and replace

humans in processes that require human intelligence, and more or less concluded that it

is possible. Artificial intelligence (AI) therefore means everything that replaces humans

in their intellectual actions and there are two main paradigms of how to achieve this

intelligence [13].

CHAPTER 2. METHODOLOGY 14

The First paradigm is symbolic artificial intelligence. Here we are trying to create a

computer program by manually defining the instructions and logical rules for the computer

to follow, and based on that, it should provide us demanded results. However it turned

out that there are many activities that the human brain can perform on a daily basis, but

at the same time is not able to create a sufficient amount of explicit rules that a computer

could follow to execute the same thing, and thus replace it. This applies for example to

language translation, converting speech to text, or computer vision.

For such tasks, the second paradigm has proven to be much more effective, and it is

none other than machine learning. In machine learning, we are trying to develop some

kind of statistical algorithm that is capable of finding its own parameters and recognizing

patterns based on labeled data, specified metrics, or some kind of score system. This pro-

cess of finding the best parameters without any explicit rules is called learning or training

- therefore the name machine learning. It has many subcategories, but perhaps the most

popular one today is neural networks. Their name has been inspired by neurobiology and

neurons in the human nervous system. A neural network consists of artificial neurons

that are in a certain way connected, and their purpose is to transform the data that are

passed through them. Typical and perhaps the simplest scheme of neuron connection, is

to stack neurons in layers and then connect these layers one on top of the other, see figure

2.2. The first layer of a network is called the input layer. It represents the input and this

layer itself does not do any transformation of the data. The last layer is called the output

layer, producing the final output of the whole network. Each layer between these two is

called a hidden layer. In the previous chapter 1 we introduced the term ’deep learning’.

There are many definitions, nevertheless, it can be defined as training of a neural network

with 2 or more hidden layers [13]. Although the name ’artificial neuron’ itself seems to be

complicated, it simply denotes a mathematical function. It has an input value in the form

of a scalar or tensor (convolutional neural network), predefined mathematical operations,

and an output value, again in the form of a scalar or tensor.

2.3.1 Simple neural network

The simplest neural network has an architecture consisting only of densely connected

sometimes called fully connected layers. In these layers, every neuron in a particular layer

has a connection to every neuron from the previous layer. Regarding individual neurons,

they are composed of a bias and an activation function, with both the input and the

output taking the form of real scalar values. Mathematically, the behavior of a neuron

located inside the neural network can be described by the following equation:

y = a(x− b), (2.36)

CHAPTER 2. METHODOLOGY 15

Figure 2.2: Neural network scheme

where y is the output of the neuron, x is the input of the neuron, b is the bias value

and a is some non-linear activation function. Since neurons have connections with each

other, the input to the neuron x is in general assembled from the output of other neurons

and weights of connections between them. In general, the bias value can be zero, i.e.

the neuron does not have to contain this parameter. Nevertheless, in most cases, we

operate with neurons, where bias is included. The activation function on the other hand

is very important because it basically defines the behavior of the neuron. Perhaps, the

most common functions, see figure 2.3, are sigmoid, hyperbolic tangent, and today very

popular ReLU (rectified linear unit). Although ReLU is frequently used in all kinds of

models for its efficiency, it is unsuitable for usage in PINNs, as we will explain in the

section 2.4.

As stated above, in the densely connected layer, each neuron is connected to each

neuron in the previous layer. Each connection has a certain weight scaling the increment

from the particular neuron. So the output of the i-th neuron from l-th layer can be written

as:

yli = a

 K∑
k=1

wk · yl−1
k − bi

 , (2.37)

where wk is the weight of the connection, and yl−1
k the output from k-th neuron of the

previous layer, bi is the bias of i-th layer, and K is the number of neurons in the previous

layer. By following this logic, if we look at the layer as a whole, the output from the l-th

CHAPTER 2. METHODOLOGY 16

(a) ReLU (b) sigmoid

(c) hyperbolic tangent

Figure 2.3: Activation functions

layer can be written in matrix form as:

yl = a




w11 w12 . . . w1K

w21
.

...
...

.
...

wI1 wIK




yl−1
1

yl−1
2
...

yl−1
K

−


bl1
bl2
...

blI



 = a
(
Wlyl−1 − bl

)
. (2.38)

Where wik is the weight of the connection between the i-th neuron in the current layer

and the k-th neuron in the previous layer, yl−1
k is the output of the k-th neuron in the

previous layer, bi is the i-th neuron bias, and K and I are the numbers of neurons in

the previous and current layer respectively. The symbol l denoting the layer number can

take the values from 2 to L, where L is the total number of layers and l = 1 represents

the input layer. Activation function a() is written as a tensor, representing the piece-wise

application of a() to each element of the tensor. This may not seem so sophisticated, but

if you consider that input and output to this simple neural network can be a vector of

any length, it is clear that the network can perform a variety of different tasks related to

CHAPTER 2. METHODOLOGY 17

the classification [14] or regression [15] problems. The purpose of the network is mostly

determined by the activation function and the type of the last layer. With all of this,

the fully connected network can perform challenging tasks, but to achieve this we need

to find proper weights and biases in the process called training. An integral part of the

training process is to define the appropriate loss function.

2.3.2 Loss function

The loss function, also called the cost function, is something that is absolutely crucial for

model training. With this function, we define how the weights2 of the model should be

changed to provide better performance by minimizing it during training.

When we are using a neural network as a classifier or as a regression tool, perhaps the

easiest way how to measure the network´s loss, is to compare its results with the correct

values that it should return. This requires a dataset of inputs together with labeled

outputs, ensuring several features, such as relevance, quality, diversity, or consistency to be

effective for training models. The approach utilizing a labeled dataset for model training

is called supervised learning. The simplest loss functions that are used for evaluating

the differences between the model prediction and labeled output are mean squared error

(MSE) and mean absolute error (MAE):

MSE =
1

I
·

I∑
i=1

(
yLi − ytruei

)2
, (2.39)

MAE =
1

I
·

I∑
i=1

∣∣∣yLi − ytruei

∣∣∣. (2.40)

Where yLi is the output of the i-th neuron in the last layer, ytruei is a correct value that

the model should return and I is the number of neurons in the last layer. Using these

error metrics, one can measure the discrepancy in the model predictions and determine

whether the model has been trained sufficiently.

2.3.3 Training of the model

Training of a model is a process, where one tries to find the best parameters for model

predictions. During the training model makes predictions that are passed as an argument

to a loss function and a particular loss value is calculated. The goal is to minimize the

loss value, as a smaller loss indicates better model performance on the given task. The

2In many publications and articles, the weights of the model refer to all parameters of the model, that
could be changed during training, i.e. also biases in our case.

CHAPTER 2. METHODOLOGY 18

most common technique today in NN training is to use some kind of optimizer based on

stochastic gradient descent.

In calculus, the gradient is a vector whose components are obtained by deriving a

function f : Rn → R at point p = [x1, ..., xn] with respect to its variables

∇f(p) =


∂f(p)
∂x1
...

∂f(p)
∂xn

 . (2.41)

The gradient is pointing to the direction of the largest increment of the function value.

This is very frequently used in optimization wherever possible because if we take the

negative value of the gradient, we will get the direction of the largest decrease. This

capability has proven really efficient in finding the local minima of a function, and in our

case, it can be used to minimize the loss function. We just need to calculate the derivative

of the loss function with respect to model weights, and then adjust the weights in the

direction of the gradient.

If we look at equation 2.38, we can see that the dense neural network is a composite

function that consists of individual layers because the output from one layer serves as the

input for the next layer. The equation of the whole network with L layers can be then

written as:

YL = aL
(
WLaL−1

(
WL−1aL−2

(
...a2

(
W2I− b̂

2
)
...
)
− b̂

L−1
)
− b̂

L
)
, (2.42)

where index L denotes the last layer, index 2 denotes first hidden layer and I is input

to the network. Notice that input I as well as output YL are written with the capital

letter as matrices. It is contradictory to our definition of dense network input and output

as vectors. And technically it is true. One training example is indeed represented by

a vector, but in real-world computation, it would be inefficient to send each training

example through the network individually. In practice, we instead send data in groups

called batches. However, if we store each input example in a column of a matrix, we

can see from Equation 2.38 that the behavior of the network remains unchanged by this

representation. The only difference is that output from each layer is not a vector of size

corresponding to the number of neurons I, but it is a matrix with the number of rows

corresponding to the number of neurons I, and the number of columns corresponding to

CHAPTER 2. METHODOLOGY 19

the batch size b:

yl = a




w11 w12 . . . w1K

w21
.

...
...

.
...

wI1 wIK




yl−1
11 yl−1

1b

yl−1
21 . . . yl−1

2b
...

...

yl−1
K1 yl−1

Kb

−


bl1 bl1
bl2 . . . bl2
...

...

blI blI



 = a
(
Wlyl−1 − b̂

l
)
.

(2.43)

The b̂
l
is a matrix that is created by copying the same vector bl column-wise, because

each neuron only has one bias, but the dimensions must match with the batch size. The

.̂ symbol represents such an operation. In modern tensor libraries such as NumPy, Ten-

sorFlow, or PyTorch this broadcasting is done automatically, but for manually expressing

the derivatives of the loss function with respect to network weights we need to be aware

of this fact.

Considering that any neural network can contain a large number of hidden layers,

computing the derivatives of the loss function with respect to each weight individually

can be computationally demanding. What we can do instead is take advantage of the

chain rule properties, calculate the derivative of the loss function with respect to the last

layer of the network, and then propagate it back to compute derivatives with respect to

all layers. This process is called back propagation. When we calculate the derivatives

with backpropagation, we are calculating the effect of each network parameter on the loss

function, therefore it is often read that the network error is backpropagated.

In the context of working with tensors and calculating their derivatives, Einstein no-

tation is applied to ensure the formulas remain simple. Einstein notation denotes tensors

as lowercase letters with indices and implies that if one index appears more than once

in one term, it denotes summation over all possible values of that index. For example,

matrix multiplication in Einstein notation can be written as:

cij = aikbkj =
∑
k

aikbkj = AB. (2.44)

As mentioned, the chain rule is used to backpropagate the derivatives of the loss function,

so the first term that must be calculated is the derivative with respect to output from the

last layer YL. For the demonstration of this process, the mean squared error is considered

as the loss metric, see equation 2.39. With Einstein notation, it can be written as:

l =
1

n
1iju

2
ij ,

uij = yLij − ytrueij

(2.45)

The 1ij is a second-order tensor full of ones with dimensions ij corresponding to the

CHAPTER 2. METHODOLOGY 20

number of neurons in the last layer and batch sizer. It is there to denote the fact that l

is computed by summation of square differences on all possible elements. The derivative

of l with respect to yLij is then:

∂l

∂yLpq
=

∂l

∂uij

∂uij

∂yLpq
=

1

n
2ijuij

∂uij

∂yLpq
=

1

n
2ijuijδipδjq =

1

n
2pqupq. (2.46)

The δip and the δjq symbols are the Kronecker delta tensors that are equal to one when

their indices match and zero otherwise:

δab =

1, if a = b,

0, if a ̸= b.
(2.47)

With Einstein notation the term 1
n2ijuijδipδjq means 1

n

∑
i

∑
j 2ijuijδipδjq, and thanks

to Kronecker delta tensors, only combinations that are not equal to zero are if i = p and

j = q, therefore it can be simplified to 1
n2pqupq. From this result, it is clear that the

derivative of the loss with respect to the output of the last layer can be written in matrix

form as:
∂l

∂YL
=

2

n

(
YL −Ytrue

)
. (2.48)

After obtaining ∂l
∂YL we can apply the chain rule further to get the derivatives with respect

to weights and biases of the last layer and output of the previous layer. And since the

formula of each densely connected layer has the same shape, this principle is applicable to

every layer of the model, not just the last one. So the labeling is changed from a capital

L to a lowercase l to obtain those equations for the general layer.

Using the equation 2.43, with the ’weighted input’ as Zl = WlYl−1−b̂
l
, the derivative

with respect to layer weights can be written as:

∂l

∂wl
pr

=
∂l

∂ylij

∂ylij

∂zlij

∂zlij

∂wl
pr

=
∂l

∂ylij
a′l

(
zlij

) ∂wl
iky

l−1
kj − b̂ij

∂wl
pr

=
∂l

∂ylij
a′l

(
zlij

)
yl−1
kj δipδkr

=
∂l

∂ylpj
a′l

(
zlpj

)
yl−1
rj =

∂l

∂ylpj
a′l

(
zlpj

)(
yljr

)T
,

(2.49)

Where a′l() is the derivative of the activation function. This can be rewritten in matrix

form as:
∂l

∂Wl
=

(
∂l

∂Yl
⊙ a′l

(
Zl
))(

Yl−1
)T

, (2.50)

CHAPTER 2. METHODOLOGY 21

where the ⊙ symbol denotes the Hadamard product (element-wise multiplication).

To calculate the derivative with respect to bias, we must first express the broadcasting

of the vector to the matrix. With Einstein notation, we can write it as b̂lij = bi1j . The

derivative with respect to layer bias is then:

∂l

∂blp
=

∂l

∂ylij

∂ylij

∂zlij

∂zlij

∂b̂lij

∂b̂lij

∂blp

=
∂l

∂ylij
a′l

(
zlij

)
(−1) 1jδip = − ∂l

∂ylpj
a′l

(
zlpj

)
1j .

(2.51)

In the matrix form, the equation is expressed as:

∂l

∂bl
= −

(
∂l

∂Yl
⊙ a′l

(
Zl
))

1, (2.52)

where 1 is a column vector full of ones with the size j correspond to the batch size.

For propagating the derivatives back to previous layers, we must calculate the deriva-

tive with respect to the output from the previous layer.

∂l

∂yl−1
rq

=
∂l

∂ylij

∂ylij

∂zlij

∂zlij

∂ŷl−1
rq

=
∂l

∂ylij
a′l

(
zlij

)
wl
ikδkrδjq =

∂l

∂yliq
a′l

(
zliq

)
wl
ir

=
(
wl
ri

)T ∂l

∂yliq
a′l

(
zliq

)
,

(2.53)

which in matrix form is rewritten as:

∂l

∂Yl−1
=

(
Wl

)T(
∂l

∂Yl
⊙ a′l

(
Zl
))

. (2.54)

With those four equations, we are able to compute derivatives of loss with respect to any

weights and biases for model that consist of densely connected layers. The only equation

that would be case-dependent, is the derivative of the loss function with respect to the

output from the last layer since it is specifically derived for the mean squared error metric.

Nevertheless, the shape of the derivative remains the same—a matrix of the same size as

the output from the last layer, so the remaining three equations and principles behind

them are universally applicable. We simply calculate the derivative of loss with respect to

CHAPTER 2. METHODOLOGY 22

output from the last layer and then propagate it back using these three general equations:

∂l
∂Wl =

(
∂l
∂Yl ⊙ a′l

(
Zl
))(

Yl−1
)T

∂l
∂bl

= −
(

∂l
∂Yl ⊙ a′l

(
Zl
))

1

∂l
∂Yl−1 =

(
Wl

)T (
∂l
∂Yl ⊙ a′l

(
Zl
)) . (2.55)

After obtaining the necessary derivatives, we can adjust the network weights in the

negative direction of the gradient, which should reduce the loss function. Therefore,

individual batches are sent through the network during training, and after finishing the

calculation of each batch, the weights are adjusted. The problem is, how much we should

move in the way of the negative gradient direction. Because if we would just change the

weights by the size of the whole gradient, i.e. wt+1 = wt − ∂l
∂wt , for the majority of the

real world problems the change in the weights would be simply too large, and it would

not result in reducing the loss function. Therefore parameter called learning rate η is

employed to determine how much of the gradient size is applied: wt+1 = wt− η ∂l
∂wt . The

learning rate parameter is used in some form in virtually all modern optimizers based on

stochastic gradient descent, such as AdaGrad, RMSprop, or Adam, which is used for the

purposes of this thesis. If the value is too small, convergence can be slow or the optimizer

can freeze in some local minima of the loss function. Oppositely, the convergence is

also problematic for large values of learning rate, because the optimizer never gets to

the minima of the loss function. The default learning rate for the Adam optimizer in

TensorFlow and Pytorch is 1e − 3, however, you can never predict the optimal learning

rate with certainty. Sometimes it is not possible to find the learning rate for which the

model would converge, since the convergence is also dependent on the model architecture,

loss function, size and generality of the dataset, initialization of the weights, and batch

size and composition of each batch. So in general case convergence is not guaranteed and

therefore the design and the training of the network is rather a heuristic process.

To explain more why the batch size affects model convergence, we must clarify what

stochastic gradient descent is. When we are training the model, we are trying to minimize

the loss function defined by the properties mentioned above. This means that the shape of

the loss function is affected, among other things by all the data from the training dataset,

hence the true gradient we are trying to use for minimization would need to be computed

on the whole dataset, not on just one batch. This is however in most cases not feasible

simply because computers often do not have the memory capacity to send the whole

dataset through the network at once. On the other hand, if we compute the gradient

only on one training example, the probability that it will have the same direction as the

true gradient defined by the whole dataset is rather low. Therefore the main idea behind

CHAPTER 2. METHODOLOGY 23

stochastic gradient descent is to randomly scramble examples in the training dataset and

then create batches from it. And if those randomly scrambled batches are large enough,

there is a good chance that the gradient calculated from those does not differ so much

from the true gradient computed for the whole dataset. It explains why batch size also

affects the convergence of the model.

During the training, an epoch refers to the process where the model passes through all

the training data and adjusts its weights. This is one of the parameters that need to be

set. We can either set the fixed number of epochs for which the model is trained or specify

some conditions that stop the training, such as a desired value of loss function. However,

the loss value on the training dataset itself is not a sufficient metric for evaluation of the

model’s true capabilities, since we can not determine if the training dataset is general

enough. The model may exhibit good loss values on the training dataset, but predictions

on unseen data can be significantly worse. This phenomenon is referred to as overfitting

and takes place when the model adjusts its weights to perfectly match the training data,

which are not sufficiently general. As the number of weights in the model increases, so

does the risk of overfitting, due to the model’s enhanced capacity to approximate more

complex functions. It can be said in some sense that larger models in general require

larger datasets.

In deep learning, there is therefore a common practice to divide available data into

three groups. The first group is the training dataset that is used for training the model

and adjusting its weights. The second group is the validation dataset, which is not

used for model training (adjusting model weights), but after completing each epoch, the

model will make predictions that are compared against this data. This approach allows

tracking the model’s prediction ability on non-training data during training to determine

if overfitting/underfitting is occurring. And the third group is the testing dataset. This

dataset is used post-training to evaluate the model’s prediction ability on an independent

dataset, as adjusting hyperparameters during training might lead to overfitting to the

training and validation datasets, resulting in poorer general prediction performance. The

hyperparameter of the model is basically anything that can be set before the training,

except trainable parameters like weights and biases. The term hyperparameter can refer

to the number of hidden layers, number of neurons in each layer, activation function,

batch size, number of epochs, loss function and its possible parameters, learning rate,

optimizer, etc.

Previously we derived formulas for backpropagation which we can use for training

the network, but this is not how it is typically done in practice. In modern libraries

like TensorFlow or PyTorch, there is no manual derivation required, instead, automatic

differentiation is used during the training process. It is based on the idea that every

CHAPTER 2. METHODOLOGY 24

algorithm, no matter how complex it may be, is only performing a series of basic math-

ematical operations, i.e. addition, subtraction, multiplication, division, etc., and simple

mathematical functions like sins, cos, exp, root, etc.. Automatic differentiation is taking

advantage of this fact. These libraries are then able to record every operation that is

done with a variable and use the chain rule to efficiently compute required derivatives.

This is highly beneficial as it only requires creating a variable, utilizing it in a function,

requesting its derivatives, and these libraries can automatically provide them, including

derivatives of intermediate results and higher-order derivatives, see [16]. With automatic

differentiation, we can use basically any model architecture, define custom layers and loss

functions, and the derivatives are always automatically provided for us.

2.3.4 Optimizer

By optimizer, we refer to the algorithm that is updating model weights after each batch.

In most cases, we use optimizers that are based on stochastic gradient descent (SGD). In

this thesis, we use a SGD-based optimizer called Adam. The first paragraph is devoted

to the concept of the stochastic gradient descent algorithm followed by the description of

Adam optimizer.

Stochastic gradient descent

As the name suggests, this algorithm uses the gradient to optimize a given quantity. In

our case, it is the loss function of a model with its weights as variables. After obtaining

the necessary derivatives, we can simply adjust the weights with particular learning rate

as:

wt+1 = wt − η
∂l

∂wt , (2.56)

where wt is general weight of a model in t-th iteration, η is the learning rate, ∂l
∂wt is the

gradient of l with respect to weights and wt+1 is the new updated weight. Although this

algorithm is relatively effective, it does not contain any mechanisms for dealing with local

minima, other than the learning rate. An additional problem is that as the algorithm

approaches the desired minimum, the gradient’s magnitude decreases, resulting in an

unnecessary extension of the convergence time. Adam tries to solve these shortcomings

with the following measures.

Adam

The name Adam stands for adaptive moment estimation and is a combination of two

optimizers, SGD with momentum and RMSprop.

CHAPTER 2. METHODOLOGY 25

Stochastic gradient descent with momentum tries to resolve the issue of freezing in the

local minima by simulating the moment of inertia, similar to how a marble rolling from

a hill would behave - if the marble has enough inertia, it does not stop in local valleys.

The momentum is realized by using an exponential moving average:

wt+1 = wt − ηmt,

mt = β1mt−1 + (1− β1)
∂l

∂wt

(2.57)

where mt is momentum, mt−1 is momentum from previous step and β1 is a chosen con-

stant. The default value of β1 is 0.9 in both TensorFlow and PyTorch. By multiplying

previous momentum with parameter β1 smaller than 1 it is assured that the influence of

the previous gradients is smaller with each step while keeping the momentum.

RMSprop enriches stochastic gradient descent by adaptively changing the learning rate

for each weight separately during training. It achieves this again using an exponential

moving average:

wt+1 = wt − η√
vt + ϵ

∂l

∂wt ,

vt = β2vt−1 + (1− β2)

(
∂l

∂wt

)2

,

(2.58)

where vt is the weighted sum of squares of past gradients, vt−1 is this sum from the

previous step, β2 is a constant with default value 0.999 in TensorFlow and PyTorch and ϵ

is also a small constant added for numerical stability that is by default equal to 1·10−7 and

1 · 10−8 in TensorFlow and PyTorch, respectively. When we divide the learning rate with

the square root of vt, we normalize individual derivatives with respect to their history. If

the derivative with respect to a certain weight tends to be small, it automatically increases

in size because the denominator will be smaller, and similarly, it automatically decreases

in size if it tends to be large. This is useful, for example, when the neighborhood of the

minimum of a function in some direction is very mild compared to other directions. The

derivative in this direction will be automatically scaled, making convergence faster, and

the optimizer is also able to move in the direction corresponding to the minimum. Since

the moving average is used, it helps to keep the stability of the convergence.

The Adam optimizer combines both those approaches and adjusts the weights as

follows:

wt+1 = wt − ηm̂t
√
v̂t + ϵ

,

m̂t =
mt

1− βt1
,

v̂t =
vt

1− βt2
.

(2.59)

CHAPTER 2. METHODOLOGY 26

Constants β1, β2, and ϵ in Adam optimizer have the default values specified above and

the default learning rate is 0.001. The m̂t and v̂t modify mt and vt because both of

these values are initialized as zero, which in early steps causes unconditional scaling of

the gradient that can eventually deflect the algorithm. Thanks to these modifications

Adam in the first iteration corresponds to a SGD algorithm. With growing exponents in

the calculation of the hat terms, the impact of the momentum and the weighted sum of

squares of the previous gradient is increasing, and as a result of that the m̂t and v̂t more

and more correspond to mt and vt. In normal use cases, the default constants β1, β2,

and ϵ are not changed and the only modified parameter is the learning rate η. It applies

also to this thesis, the only optimizer parameter changed during experimentation for this

thesis, is the learning rate.

2.4 Physics-informed neural network - PINN

Neural networks have been shown to be effective tools for finding correlations between

data and also as approximators. Therefore, there are tendencies to incorporate them into

engineering practice in solving various physical problems. Difficulties arise due to the size

of the labeled dataset, needed for successful training of the model. In civil engineering

problems, we usually have access to only small datasets, which is in contrast to typical

deep-learning tasks. However, compared to the standard neural network applications such

as image classification, speech-to-text conversion, language translation, etc., applications

in engineering tasks have one major advantage. The relations between our data and phys-

ical quantities are known to us in advance. Those relations are expressed in formulas and

differential equations mostly as equilibrium equations. Physics physics-informed neural

network is something built on this knowledge and it is defined as a neural network that

has the physical law of the given problem incorporated into its loss function.

There are many applications of PINNs and one of them is the focus of this work,

namely the use of a neural network for obtaining an approximate solution of a partial

differential equation. For our purpose, the incorporation can be done in several ways.

The first way is to create some kind of residuum obtained by the finite difference method,

finite element method, etc. We can for example use the fact that these methods lead to

a system of equations in a form Kr = f . Left side matrix K can be then multiplied with

a solution predicted by the neural network and compared to a right side vector f :

l =
∥∥∥KyL − f

∥∥∥2 . (2.60)

By minimizing this loss function, the neural network learns the physical laws indirectly

CHAPTER 2. METHODOLOGY 27

from the approximation defined by a particular method. This approach can then be

combined with data from other simulations or experiments.

The second approach, which we also use in this thesis, is to use automatic differenti-

ation to create residuum directly from the network itself. Since the automatic differen-

tiation is already implemented by most modern machine learning libraries, this strategy

is easy to deploy and perhaps more natural than the first approach. As mentioned, with

automatic differentiation we are able to quickly obtain the derivatives based on the op-

erations that are done with a variable. This is very useful, because if we choose network

architecture in a way, so that it approximates the solution of the differential equation, i.e.

it has the same input and output as the solution, we can easily calculate its derivatives,

from whose the residuum is composed.

To demonstrate this strategy further, we focus on the stationary heat conduction

problem defined by equation 2.4. Here the solution is a function that takes x and y

coordinates as arguments and returns the temperature value T at a point determined by

these coordinates. To approximate it, we set our neural network to have two neurons in

the input layer and one neuron in the output layer, to be able to predict the temperature

based on the spatial coordinates. This way we also retrieve the derivatives of any degree

of temperature with respect to particular coordinates, after each prediction by automatic

differentiation. With this ability, we can assemble the differential equation for a given

point, and check if the imposed balance is maintained. We simply take the first derivative

of the temperature with respect to each coordinate, multiply it with −λ to get the heat

fluxes, differentiate them again by the appropriate coordinate, and together with the

eventual heat source we can construct the original PDE, see the figure 2.4. If the term

is equal to zero, the PDE at this point is satisfied. Naturally, adding more points during

the training process ensures better fitted neural network model with higher capability

of approaching the exact solution. Therefore, we create a dataset of points within the

domain and evaluate the PDE at each of them. To measure the deviation, we can simply

take the mean squared error of the residuum at each point:

lPDE =
1

NPDE

NPDE∑
i=1

(
∂

∂xi

(
−λi

Ti
∂xi

)
+

∂

∂yi

(
−λi

Ti
∂yi

)
+Qi

)2

, (2.61)

where Ti and Qi are the predicted temperature and prescribed heat source at a given

point, λi is thermal conductivity at a given point, and NPDE is the number of points in

the domain, on which we are evaluating the loss.

Evaluating the lPDE however is not enough, as we must also impose the boundary

condition, to be able to approach a specific desired solution. Therefore, a typical approach

to training this type of PINN is to create a dataset of points located on the boundaries and

CHAPTER 2. METHODOLOGY 28

x

y

T

∂T
∂x

-λ∂
∂x

∂T
∂y

-λ∂
∂y

+ Q+ = 0

T-T=0,
nTq-q=0,
q=α(T-T0),

 for x in ΓD
 for x in ΓN
 for x in ΓR

Loss

PDE Loss

BC Loss

Figure 2.4: PINN scheme

then simply check whether the network prediction matches the given boundary condition.

We split the boundary points in the dataset based on the type of the condition, and

enforce those conditions by minimizing the following loss function:

lBC = lΓD
+ lΓN

+ lΓR
,

lΓD
=

1

ND

ND∑
i=1

(
Ti − T i

)2
, x ∈ ΓD,

lΓN
=

1

NN

NN∑
i=1

(
nT
i qi − qi

)2
, x ∈ ΓN ,

lΓR
=

1

NR

NR∑
i=1

(
αi

(
Ti − T 0,i

)
− qi

)2
, x ∈ ΓR.

(2.62)

ND, NN and NR are the number of points on the boundary, where Dirichlet, Neumann

and Robin BC´s are prescribed, Ti is the predicted temperature, qi is the predicted heat-

flux obtained by automatic differentiation, αi is the heat transfer coefficient, and T i, T 0,i

and qi are prescribed temperature, prescribed temperature in the boundary layer, and

prescribed heat-flux in the normal direction.

Minimizing both lPDE and lBC ensures that the neural network approaches the exact

CHAPTER 2. METHODOLOGY 29

solution. Consequently, these loss functions are combined into a single objective:

l = cPDE lPDE + cBC lBC , (2.63)

where cPDE and cBC are the coefficients scaling the increments from the losses if needed.

In this thesis, we consider both equal to one, since the models are able to converge even

if the values from the beginning of the training differ by several orders of magnitude. As

already outlined, the error between the exact solution and the the model prediction is not

only specified by the value of the loss function l, but also by the quality of the dataset

utilized during the training. Here it is mostly affected by the number of points, which are

defined by some sort of mesh similar to the FEM or randomly generated. If we provide

a sufficient number of points and successfully minimize the loss function, we obtain the

approximate solution of the strong form directly. We demonstrate the approach on the 2D

steady-state heat conduction, but it is applicable for any PDE and again can be further

combined with data from experiments or different simulations. This direct evaluation by

automatic differentiation is not only limited for finding the approximate solution, but for

almost any problem, where NN is predicting some physics based quantity, like inverse

problems, etc.

In the subsection 2.3.1 it has been mentioned that the ReLU activation function is

not suitable for usage in the PINNs. The ReLU is only differentiable at most once since

it is a constant for x < 0 and a linear function for x ≥ 0. The second derivative of the

network output with respect to its input would always be zero and we would not be able

to train the network.

Chapter 3

Examples

This section focuses on evaluating the proposed methods and models against a classical

finite element method solution. The effectiveness and limitations of the PINN concept are

explored through various examples that simulate heat conduction problems with different

boundary conditions and thermal properties of the studied domain. Additionally, in one

specific case, a comparison is made with the traditional method that employs polynomial

chaos to build the surrogate model. All code used in the examples is available as a GitHub

repository at [17].

In this thesis, the following examples are realized with the help of the TensorFlow

library. We work with default dense layers, optimizers, and activation functions provided

by the Keras framework. The Glorot uniform implemented in KERAS is a default ini-

tializer of weights for dense layers, which is here used to start the initialization from the

random uniform distribution. [−l, l]. The limit l is calculated as:

l =

√
6

fin + fout
, (3.1)

where the fin and fout are the number of input and output units to the particular layer,

respectively. For a network that consists purely of dense layers, these numbers are equal

to the number of neurons in the previous and the next layer.

In the following examples, we consider a rectangle domain Ω with the boundaries

defined as:
Ω = {(x, y) ∈ R2 | 0 ≤ x ≤ 0.5, 0 ≤ y ≤ 0.25},

ΓD = {(0, y) | y ∈ [0, 0.25]} ∪ {(0.5, y) | y ∈ [0, 0.25]},

ΓN = {(x, 0) | x ∈ [0, 0.5]} ∪ {(x, 0.25) | x ∈ [0, 0.5]}.

(3.2)

30

CHAPTER 3. EXAMPLES 31

The thermal conductivity within this geometric domain has the following shape:

λ(x) =

[
λ(x) 0

0 λ(x)

]
= λ(x), (3.3)

i.e. it is a scalar function of x.

3.1 PINN as an approximation of the solution

In this section, we will provide a few examples to obtain particular results and assess

the limitations of the procedure explaining how to obtain an approximate solution for 2D

stationary heat conduction.

For the evaluation of the prediction capability, we compare the computed results with

the FEM. To achieve this, we use uniform mesh with bilinear rectangular elements de-

scribed in the subsection 2.2.1. The mesh contains 100 nodes in the x direction and 50

nodes in the y direction, which in total makes 5000 nodes and 4851 finite elements. The

nodes also serve as a training dataset for the neural network, so the total number of

nodes in the domain NPDE is 5000 and the number of nodes on boundaries related to

the Dirichlet ND and Neumann NN boundary conditions is 100 and 200, respectively.

3.1.1 Example 1 - Thermal conductivity defined as a paraboloid

function

In this example, we consider λ to be a parabolic function:

λ(x) = 5x2 + 5y2 + xy + 0.05. (3.4)

The thermal conductivity is the lowest in the left bottom corner and gradually increases

in the right top corner. The constant 0.05 is here introduced since the zero thermal

conductivity does not have any physical meaning. The boundary conditions are set as

follows:
T (0, y) = −5, y ∈ [0, 0.25],

T (0.5, y) = 15, y ∈ [0, 0.25],

q(x, 0) = 0, x ∈ [0, 0.5],

q(x, 0.25) = 0, x ∈ [0, 0.5].

(3.5)

CHAPTER 3. EXAMPLES 32

Figure 3.1: Thermal conductivity parabolic function

In accordance with these BCs and also with the fact, that we do not consider any internal

heat source Q, the loss function for this particular problem is expressed as:

l = cPDE lPDE + cBC lΓD
+ cBC lΓN

,

lPDE =
1

NPDE

NPDE∑
i=1

(
∂

∂xi

(
−λi

Ti
∂xi

)
+

∂

∂yi

(
−λi

Ti
∂yi

))2

, x ∈ Ω,

lΓD
=

1

ND

ND∑
i=1

(
Ti − T i

)2
, x ∈ ΓD,

lΓN
=

1

NN

NN∑
i=1

(
nT
i qi − qi

)2
, x ∈ ΓN ,

cPDE = 1,

cBC = 1.

(3.6)

In order to find an approximate solution, we analyze the multiple model architectures

for a better understanding of the relations between the model capabilities and its weights.

We test the model architecture with 2 and 3 hidden layers with the number of neurons

varying from 2 to 128. For every part of the loss function lPDE , lΓD
, lΓN

separate datasets

of dimensions NPDE = 5000, ND = 100, and NN = 200 are created according to the rules

described above. The other hyperparameters of the model are set as follows: We train

the model for 20000 epochs with batch sizes equal to the sizes of particular datasets, and

we use the Adam optimizer with the learning rate η = 0.001. As an activation function

for each layer hyperbolic tangent is used.

CHAPTER 3. EXAMPLES 33

(a) Models with 2 hidden layers (b) Models with 3 hidden layers

Figure 3.2: Evolution of training loss as a function of epoch - Example 1

The results in the figure 3.2 and the table 3.1 show, that even for the architecture

with 2 layers and 4 neurons, the model is capable to minimize the loss function to the

point, where the mean absolute error between the model prediction and the FEM is only

0.071396◦C, which is a decent result for model with only 37 parameters. The best results

are achieved for the models with 128 neurons since they have the highest number of

trainable parameters. Models with more parameters in general have faster convergence

and better results, which implies that the usage of smaller models capable of similar

results is not necessarily beneficial. Smaller models indeed take less time to process

the calculation of one epoch, but if the convergence is significantly slower, this benefit is

negligible, which is our case. The convergence for the 128-neuron models is more beneficial

than the time spent for one epoch favoring models with fewer neurons. Although the

results are evaluated only for one run of training and the algorithm is stochastic, we

further use the architecture with 128 neurons.

CHAPTER 3. EXAMPLES 34

Table 3.1: Summary of Results.

Architecture Nw Loss MAE MSE STD MAX MIN

2 x 2 neurons 15 15.405536 0.863279 0.988423 0.493125 2.014402 3.35176e-04
2 x 4 neurons 37 0.666370 0.071396 0.007065 0.044361 0.445415 6.51665e-05
2 x 8 neurons 105 0.045101 0.017088 0.000505 0.014611 0.144072 1.09409e-05
2 x 16 neurons 337 0.029583 0.019831 0.000535 0.011922 0.076662 3.18487e-07
2 x 32 neurons 1185 0.013648 0.009718 0.000143 0.006997 0.043492 8.56302e-06
2 x 64 neurons 4417 0.068095 0.008944 0.000153 0.008518 0.057491 4.33780e-06
2 x 128 neurons 17025 0.018064 0.009611 0.000141 0.006948 0.045999 4.73365e-06

3 x 2 neurons 21 27.818975 2.099816 5.172948 0.873911 5.458745 9.56127e-04
3 x 4 neurons 57 0.199080 0.020547 0.000760 0.018382 0.164325 9.26590e-06
3 x 8 neurons 177 0.050924 0.035022 0.001685 0.021421 0.170085 4.93061e-06
3 x 16 neurons 609 0.043996 0.013871 0.000347 0.012421 0.153034 2.03154e-06
3 x 32 neurons 2241 0.082613 0.009133 0.000169 0.009227 0.045073 1.28970e-06
3 x 64 neurons 8577 0.120965 0.018484 0.000429 0.009365 0.055541 9.59330e-06
3 x 128 neurons 33537 0.007554 0.007968 0.000110 0.006784 0.041994 1.22507e-06

The Architecture describes how many layers and neurons are used in the particular
model. For example, 2 x 4 neurons means 2 hidden with 4 neurons each. The symbol
Nw indicates how many weights (trainable parameters) contain each model, the term
Loss is the value of the loss function after 20000 epochs and the remaining columns
contain statistics calculated on the difference between the model prediction and the

FEM. The differences are calculated directly in the temperature degrees ◦C, MAE is the
mean absolute error, MSE is the mean squared error, STD is the standard deviation,
and MAX and MIN state the maximum and minimum values of error achieved. The

results are evaluated only for one run of training for each architecture.

CHAPTER 3. EXAMPLES 35

(a) PINN result - 3 x 2 neurons (b) PINN result - 3 x 128 neurons

(c) Error map - 3 x 2 neurons (d) Error map - 3 x 128 neurons

(e) FEM result

Figure 3.3: Temperature for error field computed for thermal conductivity defined as a
paraboloid function

Visualizations of the results for the worst model (3 x 2 neurons) and the best model (3 x

128 neurons).

3.1.2 Example 2 - Thermal conductivity defined as a wave func-

tion

To discuss more the limits, we consider a similar example as in the previous subsection

with a more complicated thermal conductivity function:

λ(x) =
1

15

(∣∣∣5 + 3x2 + 2y − yx− 5y sin
(x

0.075

)
+ 10x cos(10y)

∣∣∣+ 10
)
. (3.7)

As you can see in the figure 3.4, it is a function that models wave shape. The modeled

CHAPTER 3. EXAMPLES 36

Figure 3.4: Thermal conductivity defined as a wave function.

problem has similar boundary conditions as before:

T (0, y) = 20, y ∈ [0, 0.25],

T (0.5, y) = −15, y ∈ [0, 0.25],

q(x, 0) = 0, x ∈ [0, 0.5],

q(x, 0.25) = 0, x ∈ [0, 0.5].

(3.8)

We again train the model for 20000 epochs, we use the Adam optimizer with the learning

rate η = 0.001, batch sizes are equal to the sizes of particular datasets, and the loss func-

tion is defined by the equation 3.6. The used model contains 2 hidden 128-neuron layers

with the hyperbolic tangent as an activation function. The table 3.2 contains computed

(a) Loss function (b) Loss function - zoom after 1000 epochs

Figure 3.5: The evolution of training loss as a function of epoch - Example 2
We can see the loss rapidly decreases from the beginning and then slows down with
oscillations until the epoch 20000.

results. The model is again able to minimize the loss function successfully. However,

CHAPTER 3. EXAMPLES 37

Table 3.2: Summary of Results.

Architecture Nw loss MAE MSE STD MAX MIN

2 x 128 neurons 17025 0.068722 0.035624 0.002550 0.035797 0.189495 6.49811e-07

compared to a similar example with parabolic thermal conductivity 3.1.1, the value of

error is one order of magnitude higher, even though the thermal conductivity in this ex-

ample varies from 0.78 to 1.38 W
m◦K only. It is probably caused by the noncontinuous

derivatives of the wave function since the formula contains the absolute value. Therefore,

in the next sub-subsection, we modify the conductivity function to obtain larger extremes,

which results in sharper gradients and more complicated temperature distribution.

Sharper wave function

To test the limits of the following algorithm, we take the same boundary condition as in

the previous example. However, we modify the thermal conductivity function according

to the following shape:

λ(x) =
1

15

(∣∣∣5 + 50x2 + 100y − 50yx− 100y sin
(x

0.075

)
+ 500x cos(10y)

∣∣∣+ 10
)
. (3.9)

The modifications cause fluctuations in thermal conductivity values varying from 0.67 to

18.5 W
m◦K . This function changes the values of the thermal conductivity more radically

than the previous one, resulting in a more complicated temperature distribution with

sharper gradients as a response. We use the Adam optimizer and we train the models for

10000 epochs.

The following tables summarize the achieved values of the loss function at the end of

the training process as a function of the learning rate. The tested architectures contain 2

and 3 hidden layers with 128 neurons.

Table 3.3: Results for various learning rates. The tables above show the loss value and
the mean absolute error calculated for the prediction and the finite element method.

Learning rate 1e-06 5e-06 1e-05 5e-05 0.0001 0.0005 0.001 0.005 0.01

Loss - 2 x 128 311.278 307.165 306.207 306.015 306.029 305.882 305.928 305.778 305.859

MAE - 2 x 128 8.891 9.488 9.850 9.855 9.856 9.853 9.854 9.852 9.852

Loss value - 3 x 128 310.459 306.335 306.065 305.979 305.964 305.891 305.799 305.931 306.186

MAE - 3 x 128 8.962 9.818 9.857 9.855 9.855 9.853 9.851 9.854 9.858

From the table 3.3 we can see that we have not successfully trained the model for any

learning rate. Every time the training progress freezes around the loss value of 300, which

corresponds to the mean absolute error between model prediction and FEM approximately

CHAPTER 3. EXAMPLES 38

equal to 10. Even if more complex models with more hidden layers and parameters are

employed, the results remain similar. This is due to a well-known shortcoming of PINNs,

namely that PINNs cannot approximate functions with sharp gradients and strong non-

linearities. A common practice to resolve this issue is to apply the technique called

distributed physics-informed neural network (DPINN), where we divide the entire domain

into smaller subdomains, and for each, we apply a separate neural network approximating

the solution on the subdomain only. And similarly to the finite volume method, on the

boundaries between each subdomain, conditions of continuity are prescribed, see [18], and

[19]. However, the implementation of DPINN is not part of this thesis.

3.2 PINN as a surrogate model

In this section, we further elaborate on the PINN concept from the previous section so that

the trained model can predict multiple solutions based on varying boundary conditions or

thermal conductivity. For the evaluation as well as for the training procedure, we again

use FEM. To discretize the domain defined by equation 3.2 we use coarse finite element

mesh with 50 nodes in the x direction and 25 nodes in the y direction only. The mesh

contains 1176 bilinear rectangular elements. The number of nodes in the domain and on

the boundaries are NPDE = 1250, ND = 100, and NN = 50.

To serve as a surrogate model, we change the shape of the network input as follows:

x and y coordinates, and the parameters determining the particular solution like the

prescribed temperature on the boundaries, or some parameters influencing the thermal

conductivity function.

3.2.1 Example 3 - Surrogate model with changing Dirichlet BC

As a first example, we formulate a model in a way so that it can predict the solution

based on the prescribed temperature on the Dirichlet boundary ΓD. The prescribed

temperature varies from −20◦K to 20◦K, while the heat fluxes in the normal direction

on the Neumann boundary ΓN remain zero:

T (0, y) = T1, y ∈ [0, 0.25], T1 ∈ [−20, 20],

T (0.5, y) = T2, y ∈ [0, 0.25], T2 ∈ [−20, 20],

q(x, 0) = 0, x ∈ [0, 0.5],

q(x, 0.25) = 0, x ∈ [0, 0.5].

(3.10)

For such a case, the inputs to the model are the coordinates x and y, and the prescribed

temperatures T1 and T2. The thermal conductivity on the domain is defined by the

CHAPTER 3. EXAMPLES 39

equation 3.15. For the training dataset, we again use the mesh nodes specified above and a

certain number of prescribed temperature combinations. First, we generate the prescribed

temperature combinations, and for each combination, every node in the mesh is used to

create one data sample as (x, y, T1, T2). The total numbers of points for particular datasets

are then NT
PDE = NPDENT for the evaluation of PDE loss in the entire domain lPDE ,

NT
D = NDNT for the evaluation of boundary condition loss on the Dirichlet boundary

lΓD
, and NT

N = NNNT for the boundary condition loss on the Neumann boundary lΓN
,

where NT is the number of the prescribed temperature combinations. The loss function

is composed the same according to equation 2.63:

l = cPDE lPDE + cBC lΓD
+ cBC lΓN

,

lPDE =
1

NT
PDE

NT
PDE∑
i=1

(
∂

∂xi

(
−λi

Ti
∂xi

)
+

∂

∂yi

(
−λi

Ti
∂yi

))2

, x ∈ Ω,

lΓD
=

1

NT
D

NT
D∑

i=1

(
Ti − T i

)2
, x ∈ ΓD,

lΓN
=

1

NT
N

NT
N∑

i=1

(
nT
i qi − qi

)2
, x ∈ ΓN ,

cPDE = 1,

cBC = 1.

(3.11)

The only difference is in the count of points used to calculate the error. Automatic

differentiation determines the derivatives exclusively with respect to x and y, omitting

the derivatives with respect to the input parameters T1 and T2 since they do not contribute

to the loss function

For the generation of prescribed temperature combinations, we test three statistical

methods for various numbers of samples. The first method is random generation from

the uniform distribution, the second method is generation using Sobol´s sequences and

the third one is the Latin hypercube sampling. We use the architecture with two hidden

layers with 128 neurons. As the optimizer, Adam with the learning rate η = 0.001 is used.

Batch sizes for particular datasets are equal to 5000 for lPDE , 100 for lΓD
, and 200 for

lΓN
, and the individual data in each dataset are randomly scrambled to more accurately

reflect the true gradient, as was explained in the subsection 2.3.3. The models are trained

for 1000 epochs with a validation dataset (described below). If the validation loss value

after a particular epoch is smaller than 0.005, the model is considered trained and the

training process is stopped. The following tables display the results for all three sampling

methods.

CHAPTER 3. EXAMPLES 40

Table 3.4: Random uniform.

NT Epochs Train loss Val loss MAE MSE STD MAX MIN

1 1000 3.774943 34.063988 4.654212 34.063988 3.521690 21.325756 1.335e-05

2 1000 0.509748 54.040901 5.915277 54.040901 4.364676 22.640238 1.049e-05

5 1000 0.890595 99.277161 7.283341 99.277161 6.799272 32.910744 1.478e-05

10 1000 1.079337 79.621719 6.305774 79.621719 6.313394 36.031082 3.815e-06

20 1000 1.239672 23.900618 3.684005 23.900618 3.213833 21.085701 1.335e-05

30 1000 0.830663 7.113817 1.891686 7.113817 1.880250 14.574469 4.947e-06

50 1000 0.516627 0.647840 0.520723 0.647840 0.613749 5.415449 2.861e-06

100 1000 0.332348 0.105506 0.198922 0.105506 0.256779 2.770552 9.537e-07

200 1000 0.187373 0.012604 0.074679 0.012604 0.083830 1.331676 0.000e+00

500 475 0.189282 0.005157 0.048719 0.005157 0.052762 0.704285 0.000e+00

Table 3.5: Sobol´s sequences.

NT Epochs Train loss Val loss MAE MSE STD MAX MIN

1 1000 0.879237 85.339752 7.316768 85.339752 5.639561 25.567598 9.894e-06

2 1000 0.810116 38.564598 4.818148 38.564598 3.917914 26.837009 4.292e-05

5 1000 3.599277 73.592392 6.260838 73.592392 5.864666 46.895874 1.907e-06

10 1000 1.692223 20.841707 3.657211 20.841707 2.732492 14.581657 9.537e-07

20 1000 1.552725 3.275407 1.230261 3.275407 1.327352 10.242945 0.000e+00

30 1000 0.954964 0.510728 0.465147 0.510728 0.542555 4.593925 1.669e-06

50 1000 0.520235 0.134904 0.253009 0.134904 0.266252 2.279523 4.768e-07

100 1000 0.306546 0.019302 0.094918 0.019302 0.101452 0.972975 0.000e+00

200 534 0.270542 0.005906 0.047591 0.005906 0.060341 0.639710 0.000e+00

500 219 0.235817 0.005223 0.043194 0.005223 0.057943 0.555103 0.000e+00

CHAPTER 3. EXAMPLES 41

Table 3.6: Latin hypercube sampling.

NT Epochs Train loss Val loss MAE MSE STD MAX MIN

1 1000 1.771804 175.738617 10.685577 175.738617 7.845831 36.227482 8.678e-05

2 1000 0.810276 35.806599 4.782364 35.806599 3.596609 26.645348 5.531e-05

5 1000 1.876327 152.403137 9.617827 152.403137 7.739543 43.682590 2.432e-05

10 1000 0.791286 10.411078 2.328101 10.411078 2.234061 13.039709 5.722e-06

20 1000 1.213744 2.923914 1.209685 2.923914 1.208543 10.267759 2.384e-06

30 1000 0.741756 0.152917 0.265530 0.152917 0.287073 2.000020 2.384e-07

50 1000 0.348275 0.032570 0.104262 0.032570 0.147308 1.277060 0.000e+00

100 1000 0.234512 0.009830 0.066331 0.009830 0.073687 0.707731 4.321e-07

200 955 0.143667 0.003456 0.042607 0.003456 0.040500 0.511026 0.000e+00

500 452 0.117360 0.002524 0.033812 0.002524 0.037156 0.651495 3.576e-07

The NT in tables 3.4, 3.5, and 3.6 is the number of prescribed temperature combi-

nations used for model training, Train loss is the value of the training loss after the last

epoch, and Val loss is the value of the validation loss after the last epoch calculated as the

mean square error between model prediction and validation dataset of 250 temperature

combinations computed by FEM. The remaining columns have the same meaning as those

in the previous tables and are calculated also on the validation dataset after the training.

The 250 validation combinations were generated with the Latin hypercube sampling. The

combinations are provided in the GitHub repository [17].

As expected, the random uniform distribution achieves the worst results of all com-

pared methods. The Latin hypercube sampling and Sobol´s sequence exhibit similar

values. However, for the results utilizing the Latin hypercube sampling method, we ob-

tained the best results, especially for the higher number of temperature combinations.

Sobol´s sequencing achieves better results for several combinations varying from 1 to 10.

However, none of these values can be considered satisfiable for a surrogate model. The

smallest number of combinations for which we obtain the MAE value smaller than 1◦C

is equal to 30, for both Latin hypercube sampling and Sobol´s sequences. Although the

results are evaluated only for one run we decide to use the Latin hypercube sampling in

the next examples.

On the figure 3.6 we can see the typical progress of particular loss functions during

the training process. From the beginning, the highest value belongs to the lΓD
, and the

optimizer practically minimizes only this loss itself. As the loss on the Dirichlet boundary

decreases, the lPDE and lΓD
start to play a role, and all three losses are minimized equally

until the end of the training process.

To visualize the performance of the models, we take the validation combinations and

calculate the mean absolute error between the model prediction and FEM for all 250

CHAPTER 3. EXAMPLES 42

Figure 3.6: The loss value inspection. This figure displays the evolution of the loss function
and its parts during training of the Latin hypercube sampling for NT = 50 case.

combinations resulting in the average error maps in figure 3.7.

(a) LHS (NT = 30) (b) LHS (NT = 500)

Figure 3.7: Average error maps.

Influence of additional data

This subsection discusses the influence of the additional data on the training. We ex-

pand the previous example by adding the training dataset of 100 FEM simulations. To

incorporate such a dataset in the loss function, additional loss ldata along with its scaling

CHAPTER 3. EXAMPLES 43

coefficient cdata (which is again considered as 1 is introduced:

l = cPDE lPDE + cBC lΓD
+ cBC lΓN

+ cdataldata,

lPDE =
1

NT
PDE

NT
PDE∑
i=1

(
∂

∂xi

(
−λi

Ti
∂xi

)
+

∂

∂yi

(
−λi

Ti
∂yi

))2

, x ∈ Ω,

lΓD
=

1

NT
D

NT
D∑

i=1

(
Ti − T i

)2
, x ∈ ΓD,

lΓN
=

1

NT
N

NT
N∑

i=1

(
nT
i qi − qi

)2
, x ∈ ΓN ,

ldata =
1

Ndata

Ndata∑
i=1

(
Ti − Td,i

)2
,

cPDE = 1,

cBC = 1,

cData = 1,

(3.12)

where Ndata is the number of points in the additional dataset and Td,i is the particular

temperature in the dataset. The batch size for the additional dataset is set to 1250. The

remaining hyperparameters are the same as in the previous example. The generation of

the prescribed temperature combinations is done via the LHS method.

Table 3.7: Latin hypercube sampling with additional data

NT Epochs Train loss Val loss MAE MSE STD MAX MIN

1 1000 0.942911 66.412666 6.406090 66.412666 5.037328 23.897648 1.335e-05

2 1000 3.140736 55.363750 6.006547 55.363750 4.391486 22.222092 2.384e-05

5 1000 2.920565 123.502281 7.826291 123.502281 7.889961 46.502453 9.537e-06

10 1000 1.023740 30.931248 4.007959 30.931248 3.855841 24.351902 2.718e-05

20 1000 1.599458 1.851657 0.896976 1.851657 1.023275 8.410130 9.537e-06

30 1000 1.651856 0.461668 0.454308 0.461668 0.505244 3.651707 3.815e-06

50 1000 0.502627 0.115929 0.233377 0.115929 0.247920 1.792378 0.000e+00

100 1000 0.491345 0.051310 0.147572 0.051310 0.171850 3.571630 3.576e-07

200 1000 0.272304 0.007897 0.060866 0.007897 0.064751 0.681201 0.000e+00

500 407 0.246598 0.004431 0.051792 0.004431 0.041816 0.620075 0.000e+00

The results in the table 3.7 imply that the additional data of 100 FEM simulations

with cdata do not improve the results at all. The evolution of loss with the number of

combinations NT = 50 is depicted to investigate such behavior from the figure, we can

CHAPTER 3. EXAMPLES 44

see that the ldata is minimized in the beginning and further contributes negligibly to the

overall value of the loss. Therefore, the optimization is driven mainly by the other types

of losses.

Figure 3.8: The evolution of loss computed for the example with additional data.

Comparison with the polynomial chaos-based surrogate models

This study comparatively evaluates the classical approach to surrogate model construction

and the proposed methodology based on the PINN concept. There are various types

of surrogate models, each characterized by distinct advantages and tailored to specific

application domains. This comparison focuses on polynomial chaos expansions (PCE),

prominent in probabilistic uncertainty quantification, as the most suitable candidate for

benchmarking.

With a certain degree of simplification, the PCE-based approximation TPCE(ξ(ω)) of

the model response T (ξ(ω)) be written as

TPCE(ξ(ω)) =
∑
α∈A

TαPα(ξ(ω)), (3.13)

where Tα is a vector of PC coefficients, Pα(ξ(ω)) represents the multivariate Legendre

polynomials, and the index set A is a finite set of non-negative integer sequences with

CHAPTER 3. EXAMPLES 45

only finitely many non-zero terms, i.e., multi-indices. For this specific example, ξ(ω) is

the set of four independent standard uniform variables representing the variability in the

model inputs, i.e. spatial coordinates x, y, and the prescribed boundary temperatures T1,

T2. The number of PC terms |A|, representing the model complexity, is given as

|A| =
(np + ns)!

np!ns!
, (3.14)

where np is the polynomial degree and ns is the number of input variables, here ns = 4.

The estimation of PC coefficients Tα is performed via least-squares minimization, with

sampling points selected using Latin Hypercube Sampling. For further details, readers

are directed to the journal paper that discusses these issues, see [20].

table 3.8 presents a comparison of surrogate models, with metrics and error values

computed using a common validation dataset comprising 250 samples. One particular

PINN model has been selected for this comparison, see the last row of table 3.6, NT = 500.

To enable straightforward visual matching, the obtained values are duplicated in the first

row of table 3.8. For the surrogate model based on polynomial chaos expansion, selecting

the polynomial degree np, in addition to the size of the training dataset NT , determines

the total number of unknowns |A|. Here the the polynomial degree varies from 1 to 6.

As evidenced by the presented results, the values obtained from both methodologies are

similar, indicating that the PINN concept merits further study.

Table 3.8: Comparison of surrogate models.

NT Model description MAE MSE STD MAX

500 PINN 0.03381 0.00252 0.03716 0.65150

500 PCE np = 1 |A| = 5 3.10339 20.15579 3.25069 19.02546

500 PCE np = 2 |A| = 15 0.98853 2.09106 1.05751 6.91909

500 PCE np = 3 |A| = 35 0.26910 0.17301 0.31781 2.19298

500 PCE np = 4 |A| = 70 0.08135 0.02353 0.13032 1.23824

500 PCE np = 5 |A| = 126 0.04205 0.00640 0.06819 0.61712

500 PCE np = 6 |A| = 210 0.02138 0.00176 0.03611 0.34305

3.2.2 Example 4 - Surrogate model constructed for changing

Dirichlet BC and thermal conductivity

We further test the PINN concept to serve as a surrogate model, by adding two other pa-

rameters affecting the thermal conductivity field. This means that the model should pre-

dict the solution as a function of spatial coordinates by considering prescribed boundary

CHAPTER 3. EXAMPLES 46

temperatures and the thermal conductivity function as inputs. We consider the boundary

conditions defined by equation 3.10, and the thermal conductivity field is defined by the

following equation:

λ(x) = p15x
2 + p25y

2 + xy + 0.05, p1, p2 ∈ [0.05, 2]. (3.15)

The parameters p1 and p2 modify the original equation 3.15 and can take values from

0.05 to 2. Practically speaking the limits of the the thermal conductivity on the domain

values can now vary from 0.05 to 3.3 with amplitudes in each point displayed in the

figure 3.9 The input to the neural network is a vector of 6 with the following compo-

Figure 3.9: Amplitude of the thermal conductivity

nents (x, y, T1, T2, p1, p2). The loss function is calculated the same way as in subsection

3.2.1, see equation 3.10. The datasets for training are created from the given number of

combinations - T1, T2, p1, p2 generated by Latin hypercube sampling.

Similarly, we train the model for 1000 epochs with a validation dataset of 250 combi-

nations of temperatures and parameters p1, and p2. If the validation loss after a particular

epoch, calculated as the mean square between the model prediction and FEM, is smaller

than 0.005, the training process i stopped. The optimizer is Adam with the learning rate

η = 0.001. The batch sizes used for the calculation of each loss term are set as follows:

lPDE - 5000, lΓD
- 100, and lΓN

- 200.

CHAPTER 3. EXAMPLES 47

Table 3.9: Error metric computed for different numbers of NT .

NT Epochs Train loss Val loss MAE MSE STD MAX MIN

1 1000 0.253600 45.412998 5.565204 45.412998 3.800197 23.624317 1.559e-04

2 1000 8.252272 42.727272 5.310050 42.727272 3.811907 18.368614 1.240e-05

5 1000 10.084234 174.884430 10.252326 174.884430 8.353098 44.148556 4.816e-05

10 1000 1.689702 83.350510 6.862163 83.350510 6.021730 39.621708 1.907e-06

20 1000 1.674614 17.475906 3.306230 17.475906 2.558270 14.063549 1.431e-05

30 1000 1.341758 7.573429 2.128058 7.573429 1.744935 12.191624 2.193e-05

50 1000 1.282806 2.448461 1.139659 2.448461 1.072212 11.289648 2.861e-06

100 1000 0.445469 0.609402 0.522769 0.609402 0.579753 4.526513 1.431e-06

200 1000 0.438859 0.126222 0.231569 0.126222 0.269439 2.155493 4.768e-07

500 1000 0.237113 0.009826 0.068405 0.009826 0.071743 1.028811 0.000e+00

From the result in the table 3.9 we can see that even for a number of combinations

NT = 500 the models do not achieve value of validation loss smaller than 0.005. In

comparison to the table 3.6, the model performance is lower. This is expected since the

LHS-filled space now has four dimensions rather than the two in the earlier example, and

mostly the loss function is probably more difficult to approximate. Nevertheless, with the

number of combinations of 100, 200, and 500, we obtain the values of MAE smaller than

1◦C. The following figure shows the average error maps for the NT = 100 and NT = 500.

(a) LHS (NT = 100) (b) LHS (NT = 500)

Figure 3.10: Average error maps

Chapter 4

Conclusion

In this thesis, we implemented the concept of a physics-informed neural network to ap-

proximate a solution to the heat conduction equation, both in the case of a single solution

of a partial differential equation and in the case of multiple solutions, depending on the

input parameters - the surrogate model. The solutions are found by minimizing the loss

function with incorporated physical laws utilizing automatic differentiation.

For the scenario involving a single solution, we experimented with various architec-

tures to establish a balance between model robustness and effectiveness. Our goal was

to determine whether employing simple models could be advantageous due to their faster

prediction and loss assessment capabilities. Almost all of the architectures were capable of

finding satisfactory solutions. However, the fastest convergence was observed for the com-

plex models with the most parameters. Therefore further experiments were carried out

for these architectures. We demonstrated that a simple physical-informed neural network

implemented in this thesis is capable of finding the solution for the gradually changing

thermal conductivity field. However, if the thermal conductivity field is more compli-

cated or the response field exhibits sharp gradients, the algorithm does not satisfactorily

converge.

For the case of surrogate modeling, we successfully trained the models that can predict

the solution based on boundary temperatures and thermal conductivity inside the domain

as inputs.

Even though physics-informed neural networks have certain shortcomings and dis-

advantages, we conclude that further research can bring interesting results and reveal

significant potential. Neural networks have proven their versatility across different fields.

They can either combine architectures and pre-trained models to develop large, sophis-

ticated systems for complex tasks, or use smaller models to efficiently perform simple

tasks.

48

CHAPTER 4. CONCLUSION 49

4.1 Future works

The work could be improved by conducting further investigations into how additional data

impacts the accuracy of the surrogate model, as this aspect has only been briefly discussed.

Additionally, we aim to enhance the numerical studies by incorporating internal heat

sources, a wider variety of boundary conditions, and potentially more complex geometries.

We would also like to test the physical-informed neural network capabilities on non-

stationary problems. It would be interesting to see the model behavior if the time deriva-

tive is incorporated into the loss function. Another potential experiment is to implement

the distributed physic-informed neural network and observe its behavior.

Bibliography

[1] O. C. Zienkiewicz and R. L. Taylor, The finite element method for solid and struc-
tural mechanics. Elsevier, 2005.

[2] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.

[3] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang,
“Physics-informed machine learning,” Nature Reviews Physics, vol. 3, no. 6, pp. 422–
440, 2021.

[4] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving non-
linear partial differential equations,” Journal of Computational physics, vol. 378,
pp. 686–707, 2019.

[5] K. Bao, W. Yao, X. Zhang, W. Peng, and Y. Li, “A physics and data co-driven
surrogate modeling approach for temperature field prediction on irregular geometric
domain,” Structural and Multidisciplinary Optimization, vol. 65, no. 10, p. 302, 2022.

[6] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, “Deepxde: A deep learning library
for solving differential equations,” SIAM review, vol. 63, no. 1, pp. 208–228, 2021.

[7] Y. Wei, Q. Serra, G. Lubineau, and E. Florentin, “Coupling physics-informed neural
networks and constitutive relation error concept to solve a parameter identification
problem,” Computers & Structures, vol. 283, p. 107 054, 2023.

[8] Y. Wang, J. Zhou, Q. Ren, Y. Li, and D. Su, “3-d steady heat conduction solver
via deep learning,” IEEE Journal on Multiscale and Multiphysics Computational
Techniques, vol. 6, pp. 100–108, 2021.

[9] T. Würth, C. Krauß, C. Zimmerling, and L. Kärger, “Physics-informed neural net-
works for data-free surrogate modelling and engineering optimization–an example
from composite manufacturing,” Materials & Design, vol. 231, p. 112 034, 2023.

[10] M. Abadi, A. Agarwal, P. Barham, et al., TensorFlow: Large-scale machine learning
on heterogeneous systems, Software available from tensorflow.org, 2015. [Online].
Available: https://www.tensorflow.org/.

[11] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-performance
deep learning library,” Advances in neural information processing systems, vol. 32,
2019.

[12] R. Al-Rfou, G. Alain, A. Almahairi, et al., “Theano: A python framework for fast
computation of mathematical expressions,” arXiv e-prints, arXiv–1605, 2016.

[13] F. Chollet, Deep learning v jazyku Python: knihovny Keras, Tensorflow. Grada Pub-
lishing, 2019.

50

https://www.tensorflow.org/

BIBLIOGRAPHY 51

[14] Basic classification: Classify images of clothing — TensorFlow Core — tensor-
flow.org, https://www.tensorflow.org/tutorials/keras/classification,
[Accessed 11-11-2024].

[15] Basic regression: Predict fuel efficiency — TensorFlow Core — tensorflow.org,
https://www.tensorflow.org/tutorials/keras/regression, [Accessed 11-11-
2024].

[16] Introduction to gradients and automatic differentiation — TensorFlow Core —
tensorflow.org, https://www.tensorflow.org/guide/autodiff, [Accessed 26-11-
2024].

[17] GitHub - sperlon/Deep-Learning-Based-Modeling-and-Simulation-of-Heat-Conduction
— github.com, https://github.com/sperlon/Deep-Learning-Based-Modeling-
and-Simulation-of-Heat-Conduction, [Accessed 06-01-2025].

[18] V. Dwivedi, N. Parashar, and B. Srinivasan, “Distributed physics informed neural
network for data-efficient solution to partial differential equations,” arXiv preprint
arXiv:1907.08967, 2019.

[19] S. Rout, V. Dwivedi, and B. Srinivasan, “Numerical approximation in cfd problems
using physics informed machine learning,” arXiv preprint arXiv:2111.02987, 2021.

[20] A. Kučerová, J. Sýkora, P. Havlásek, D. Jarušková, and M. Jirásek, “Efficient prob-
abilistic multi-fidelity calibration of a damage-plastic model for confined concrete,”
Computer Methods in Applied Mechanics and Engineering, vol. 412, p. 116 099, 2023.

https://www.tensorflow.org/tutorials/keras/classification
https://www.tensorflow.org/tutorials/keras/regression
https://www.tensorflow.org/guide/autodiff
https://github.com/sperlon/Deep-Learning-Based-Modeling-and-Simulation-of-Heat-Conduction
https://github.com/sperlon/Deep-Learning-Based-Modeling-and-Simulation-of-Heat-Conduction

	Abstract (English)
	Abstrakt (Czech)
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Methodology
	Heat conduction
	Steady-state heat conduction
	Non-stationary heat conduction

	Finite element method
	FEM for steady-state heat conduction
	FEM for non-stationary heat conduction

	Neural network
	Simple neural network
	Loss function
	Training of the model
	Optimizer

	Physics-informed neural network - PINN

	Examples
	PINN as an approximation of the solution
	Example 1 - Thermal conductivity defined as a paraboloid function
	Example 2 - Thermal conductivity defined as a wave function

	PINN as a surrogate model
	Example 3 - Surrogate model with changing Dirichlet BC
	Example 4 - Surrogate model constructed for changing Dirichlet BC and thermal conductivity

	Conclusion
	Future works

	Bibliography

