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Chapter 23

Linear elasticity with microstructure
and size effects

G. Exadaktylos
School of Mineral Resources Engineering, Technical University of Crete, Chania, Greece

Abstract: The revisiting of some fundamental problems of rock mechanics, such as
cracks in stressed rocks, propagation of surface waves, beam bending and axial split-
ting among others, viewed in the light of a strain gradient elasticity theory, reveals the
necessity of enriching elasticity of rockswith length parameters tomodel surface energy
of free surfaces and predict non-classical dispersion phenomena and size effects. After a
brief review of the formalism and applications of a linear elasticity theory with micro-
structure for the study of static and dynamic problems, two problems are further
presented here, namely the bending of beams and the axial splitting of deep geological
layers. It is demonstrated in both studied problems, that the consideration of internal
length scales are responsible for the manifestation of size effects.

1 INTRODUCTION

1.1 Brief notes on the size effects of strength of materials

The size effect exhibited by the strength of solids for otherwise geometrically similar
specimens, is not new in the context of the strength of brittle materials. Long before
Griffith (1921) presented his theory, Karmarsch1 in 1858 has proposed an empirical
size effect law based on a best-fitting procedure of experimental data of tension tests on
cylindrical metal wires with different diameters. This size effect is mentioned in the
celebrated Griffith’s paper and was applied successfully by him to fit experimental data
referring to tension tests of glass fibers presented in Table V of his paper, namely

σt ¼ 154:44þ 17:27
d

ð1Þ

in which the diameter of the rods d is expressed in 0.001 mm and the tensile strength σt
in MPa. The best-fitted size-effect law given by Equation 1 on the experimental data is
shown in Figure 1.

In most technical brittle materials, such as rocks, concretes and ceramics, the domains
in the vicinity of the highly stress point participate in the force transmission more
intensively than according to the local linear theory of elasticity (the term ‘local’ is
explained below), during the endangered point itself is somewhat relieved; this self-

1 “Mittheilungen des gew. Ver. Für Hannover”, 1858, pp. 138–155.
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support-effect of a stress raiser is taken into account by the stress-mean-value theory and
the more elegant gradient elasticity theory with surface energy that is presented later.

First, let us make a remark on the averaging procedure that is inherent in all local
continuummechanics theories. A simple example is to consider an one-dimensional case
of a field, y=f(x), whose mean value is computed over a small but finite averaging length
L – corresponding to the representative elementary volume – around a point x, that is

〈y〉 ¼ 1
L

ðL=2

�L=2

f ðxþ ξÞdξ ð2Þ

If the field f(x) varies linearly in the considered region around x, then it is approximated
locally by a linear function, using an 1-term Taylor series expansion of the function f
around point x, i.e.

f ðxþ ξÞ ≈ f ðxÞ þ ξ f
0 ðxÞ ð3Þ

In the trivial case of a constant field, then the first and all higher derivatives vanish and
indeed the local value coincides with the average value. Also it is true in case when the
field varies locally linearly. Indeed we may then identify the field with its mean value
over the considered averaging length, because by following the ‘trapezoidal’ integration
rule, the value of a linearly varying field in themidpoint of the sampling interval is equal
to its mean value in that interval
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Figure 1 Size effect exhibited by the tensile strength of glass fibers (circles) tested by Griffith (1921) and
best-fitted inverse diameter relationship (continuous line).
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y ¼ 〈y〉 ð4Þ
that is to say, in this case the ‘local’ value y and the ‘non-local’ value 〈y〉 coincide. In the
classical theories of elasticity, plasticity and damage mechanics, the failure criterion is
expressed in terms of stresses and strains, and no characteristic length scale L is present.
Hence, they are all “local theories”. However, for quadratically varying fields, we have
to approximate the stress function at least by a two-term Taylor series expansion
around point x, i.e.

f ðxþ ξÞ ≈ f ðxÞ þ f
0 ðxÞξ þ 1

2
f
00 ðxÞξ2 þ 1

6
f
000 ðxÞξ3 þ o ξ4

� � ð5Þ

We notice that in the midpoint integration rule the effect of the first derivative is null.
Thus for ‘quadratically’ varying fields, computational rule described by Equation 4
must be enhanced, so as to incorporate the effect of the curvature

y ¼ 〈y〉� L2

24
d2y
dx2

�����
x

þOðL4Þ ð6Þ

Field theories which are based on averaging rules that include the effect of higher
gradients are called higher gradient or ‘nonlocal’ theories. In particular, the above
rule of Equation 6 represents a 2nd gradient or grade-2 rule, and can be readily
generalized in two and three dimensions. One of the first researchers who proposed a
gradient theory based on the mean value of the nominal stress along the potential
fracture path was Neuber (1936). More specifically Neuber proposed a stress-mean-
value taken over a finite length L normal to the surface within the range of high stress
concentration. This so-called ‘fictive’ length of the elastic material represents an addi-
tional material constant apart say, from the two elasticity constants for a linear elastic
and isotropic material. According to this argument the nominal stress σn can be found
from the formula

σn ¼ 1
L

ðRþL

r¼R

σdr ð7Þ

in which r denotes the radial distance from the notch tip, r=R is the notch boundary,
and σ is the so-called ‘comparison’ stress that enters a suitable strength hypothesis.

In the case of mode-III (anti-plane shear) crack the nominal stress is derived by the
following formulae according to definition of Equation 7 and the valid asymptotic
expression for the comparison stress σyz

σn ¼ 1
L

ðL

r¼0

σyz r; 0ð Þdr; σyz ¼ KIII

2πrð Þ1=2
cos

θ
2

ð8Þ

where KIII denotes the mode-III Stress Intensity Factor (SIF) andOrθ the polar coordi-
nate system with origin at the crack tip. The direct evaluation of the above integral for
θ ¼ 0o gives the result
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σ¼
ffiffiffi
2
π

r
KIIIffiffiffiffi
L

p þ o
ffiffiffiffi
L

p� �
ð9Þ

On the other hand, the exact expression for the comparison stress by employing the
Westergaard stress function reads as follows

σyz ¼ Re ZIIIð Þ; ZIII ¼ τ∞ zþ αð Þ
½ αþ zð Þ2 � α2�1=2

; z ¼ reiθ ð10Þ

and consequently the exact stress along the Ox-axis is given by the expression

σyz
���
θ¼0

¼ τ∞ rþ αð Þ
r2 þ 2αrð Þ1=2

ð11Þ

where τ∞ represents the far-field shear stress. In turn, the nominal stress in this case may
be found to be

σn ¼ 1
L

ðL

r¼0

σyz
���
θ¼0

dr ¼ τ∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

α
L

r
ð12Þ

By requiring that both approaches should lead to the same result, i.e.

Lim
r!0

ffiffiffi
2
π

r
KIIIffiffiffiffi
L

p ¼ τ∞

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

α
L

r" #
ð13Þ

there results

K̂IIIC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2 α=Lð Þ

s
; KIIIC ¼ τ∞

ffiffiffiffiffiffi
πα

p ð14Þ

where K̂IIIC represents the normalized fracture toughness that is derived by dividing the
expression for the critical stress intensity factor with the fracture toughness KIIIC

predicted by the classical theory. The variation of the normalized fracture toughness
K̂IIIC with the ratio α/L – i.e. the size effect exhibited by fracture toughness - is
illustrated in Figure 2. This means that for long cracks relative to the scale length L
one gets the result of Linear Elastic FractureMechanics (LEFM); on the other hand, for
relatively short cracks the fracture toughness is larger than that predicted by classical
LEFM.

1.2 Brief historical remarks on non-local elasticity theories

The classical theory of elasticity requires that the forces between the atoms to fulfill a
very strong condition, namely that the range of these forces must be small enough so
that the stress (strain) measured at a point depends in the desired approximation only
on the stress (strain) in the volume element around this point; hence the term ‘local’
theory. Obviously, if interatomic forces did not reach farther than one atomic distance,
a reaction against micro-deformation gradient would not exist and the theory does not
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have an intrinsic length scale; this in turn leads to the undesirable result that a 10 cm
slab behaves the same as a 10 m geological bed, and there is no difference between a
microcrack and a geological fault. However, since interatomic forces do, in principle,
reach farther than one atomic distance, a resistance against micro-deformation gradi-
ent will be present, and therefore it is of no question whether gradient-dependent
elasticity exists or not. The question is rather how large this effect might be.

The fundamental idea of considering not only the first, but also the higher gradients
of the displacement field in the expression for the strain energy function of an elastic
solid, can be traced back to J. Bernoulli (1654–1705) and L. Euler (1707–1783) in
connection with their work on beam theory. In elementary beam theory there are
associated two sets of kinematical quantities (a deformation vector and a rotation
vector) and two sets of surface loads (tractions and bending couples) with a section
of the bar. In plate theory the situation is similar. With the noticeable monograph of
Cosserat brothers, Eugéne and François (1909), this concept was extended to a 3D
continuum, where each point of the continuum is supplied with a set of mutually
perpendicular rigid vectors (triad). Generalization of elasticity theory by incorporating
the effect of higher gradients of the displacement field into the strain energy density
function was systematically studied by them. The novel feature of their theory was the
appearance of couple stresses in the equations ofmotion. An oriented continuumof this
type was noted earlier by Voigt (1887) in connection with polar molecules in crystal-
lography. Higher-order gradient and oriented media theories were rediscovered fifty
years later in various special forms and degree of complexity. Fifty years after the first
publication of the original work of the Cosserat brothers, the basic kinematic and static
concepts of the ‘Cosserat’ continuum were reworked in a milestone paper by Guenther
(1958). Guenther’s paper marks the rebirth of continuum micro-mechanics in the late
50’s and early 60’s. Following this publication, several hundred papers were published
all over the world on that subject. A variety of names have been invented and given to
theories of various degrees of rigor and complexity: Cosserat continua or micro-polar
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Figure 2 Size effect of the normalized fracture toughness K̂IIIC predicted by the stress-mean-value
theory.
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media, oriented media, continuum theories with directors, multi-polar continua,
micro-structured or micro-morphic or non-local continua and others. A systematic
treatment of elasticity with gradients was given in milestone papers by Mindlin &
Tiersten (1962), Mindlin (1964) and Mindlin & Eshel (1968). The common feature of
all these studies is that they relate the higher gradients of the displacement field to
higher order stresses. Mindlin’s work is noteworthy in that his aim was specifically
targeted at understanding phenomenologically the effect of microstructure on the
deformation of solids. Mindlin’s cohesive elasticity theory accounts in a phenomen-
ological manner for molecular forces of cohesion acting upon a body - which are not
considered by the classical linear elasticity theory - by including in the potential energy
density of an elastic solid the ‘modulus of cohesion’, which is essentially an initial,
homogeneous, self-equilibrating triple stress. However, Mindlin’s isotropic grade-3,
linear elasticity theory with surface energy, which was further explored, as far as its
mathematical potential is concerned, in a comprehensive paper byWu (1992), includes
sixteen material constants plus the classical Lamè’s constants. The state-of-the-art at
this time was reflected in the collection of papers presented at the historical IUTAM
Symposium on the “Mechanics of Generalized Continua”, in Freudenstadt and Stuttgart
in 1967. At the same time practically of publication of the pioneering papers byMindlin,
Professor Germain has encouraged the communication to the French Academy of
Sciences of the ideas of Casal (1961) which in turn seem to have inspired Germain’s
(1973a,b) fundamental papers on the continuum mechanics structure of the grade-2 or
higher grade theories. In our paper we want to give full credit to Casal’s original idea,
who was first to see the connection between surface tension effects and the anisotropic
gradient elasticity theory. For this reason we provide here the simplest possible general-
ization of Casal’s constitutive theory that accounts for only two additional material
constants having the dimension of length: One, say ℓ, responsible for volumetric energy
strain-gradient terms, and another, ℓ0, responsible for surface energy strain-gradient
terms. Casal considered the effect of the granular, polycrystalline and atomic nature of
materials on their macroscopic response through the concept of internal and superficial
capillarity expressed by the material lengths ℓ, ℓ0, respectively, rather than through
intractable statistical mechanics concepts. The concept that the surfaces of liquids are
in a state of tension is a familiar one, and it is widely utilized. Actually it is known that no
skin or thin foreign surface really is in existence at the surface, and that the interaction of
surface molecules causes a condition analogous to a surface subjected to tension. The
surface tension concept is therefore an analogy, but it explains the surface behavior in
such satisfactory manner that the actual molecular phenomena need not be invoked. Of
course such ideas are amenable to generalizations of various degrees of complexity.
However, one should keep in mind that already the determination of the two material
lengths ℓ and ℓ0 constitutes a formidable experimental challenge.

The Casal-Mindlin grade-2 theory has been applied for the revisit of several static
and dynamic boundary-value problems in Rock Mechanics (Vardoulakis & Sulem,
1995; Vardoulakis et al., 1996; Exadaktylos et al., 1996; Exadaktylos & Vardoulakis,
1998; Exadaktylos, 1998; Exadaktylos & Vardoulakis, 2001a; Aravas, 2011 among
others). The consideration of the surface energy in this theory, leads to a constitutive
character of the boundary conditions. This strengthens Aifantis’ (1992) conjecture of
the constitutive character of boundary constraints in materials with microstructure.
Hence, the problem of constitutive boundary conditions deserves further attention
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from the theoretical, as well as the experimental point of view. Exadaktylos &
Vardoulakis (2001a) have shown that the proposed theory is capable: (a) to capture
scale effects in indentation and uniaxial tension testing of rocks, and (b) to predict
cusping of cracks without recourse to extra assumptions. The present anisotropic
gradient elasticity theory although it is basically a grade-2 theory gives rise to surface
tension phenomena similar to those captured by Mindlin’s (1964; 1965) grade-3
theory. This is demonstrated in Paragraph 1.5.

1.3 Formalism of the Casal-Mindlin microelasticity theory

In this sequel the basic formalism of the grade-2 theory of elasticity are outlined. With
respect to a fixed Cartesian coordinate system Ox1x2x3, the following ansatz for the
elastic strain energy density with respect to three kinematic quantities is assumed in an
ad hoc manner

υ ¼ υðεqr; γqr; κqrsÞ ð15Þ

where εqr ≡ ð1=2Þð∂ruq þ ∂qurÞ is the usual symmetric infinitesimal macro-strain tensor
defined in terms of the displacement vector uq, ∂s ≡ ∂=∂xs, the indices (q,r,s) span the
range (1,2,3), γqr ≡ ∂qur � ψqr is the relative deformation with ψqr denoting the micro-
deformation of a particle in the form of a grain or crystal for a granular or crystalline
rock, respectively, (Figures 3a, b), and κqrs ≡ ∂qψrs is the micro-deformation gradient.
Then, appropriate definitions for the stresses follow from the variation of v, i.e.

τqr ≡
∂υ
∂εqr

; αqr ≡
∂υ
∂γqr

; μqrs ≡
∂υ

∂κqrs
; ð16Þ

in which τqr; αqr; μqrs denote the Cauchy stress (symmetric), relative stress (asymmetric),
and double stress tensors, respectively. The twenty-seven components μkij have the
character of double forces per unit area. The first subscript of a double stress μkij
designates the normal to the surface across which the component acts; the second
and third subscripts have the same significance as the two subscripts of σij. The eight
components of the deviator of the couple-stress or couples per unit area formed by the
combinations ð1=2Þðμpqr � μprqÞ are all equal to zero in the present gradient dependent
elasticity theory, whereas all the remaining ten independent combinations
ð1=2Þðμpqr þ μprqÞ are self-equilibrating (Mindlin, 1964). Double force systemswithout
moments are stress systems equivalent to two oppositely directed forces at the same
point; such systems have direction but not net force and no resulting moment.

In particular, the theory utilized here can be considered as one of the simplest
versions of Casal-Mindlin theory corresponding to the following elastic strain energy
density function (Exadaktylos & Vardoulakis, 1998)

υ ¼ 1
2
λεiiεjj þGεijεji þGℓ

2∂kεij∂kεji þGℓk∂kðεijεjiÞ ð17Þ

where λ ¼ E�=ð1� 2�Þð1þ �Þ and G ¼ E=2ð1þ �Þ are the standard constants of
Lame, E, v denote the Young’s modulus and Poisson’s ratio, and as was mentioned
already, ℓ, ℓ0 are additional characteristic lengths of the material, where
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ℓk ¼ ℓ
0
�k; �k�k ¼ 1 ð18Þ

is a director. The last term in Equation 17 has the meaning of surface energy, since by
using the divergence theorem we getð

V

∂rðℓrεpqεqpÞdV ¼ ℓ
0
ð
∂V

ðεpqεqpÞðvrnrÞdS ð19Þ

wherein nk is the outward unit normal on the boundary ∂V.

1.3 Stress equations of equilibrium

Germain (1973a, b) suggested a general framework for the foundation of consistent
higher grade continuum theories on the basis of the virtual work principle. This
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Figure 3 (a) Typical components of relative stress αij ðαij ≡ σij � τijÞ displacement gradient ∂iuj, and
micro-deformation ψij for the simple case of uniaxial tension of a flat plate, and (b) various
forms of micro-deformation gradients and associated double stresses.
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approach starts from the definition of the variation of the total potential energy in a
volume V of the body with arbitrary variation of the macro-strain εij. A restricted
Mindlin continuum, is a micro-homogeneous material for which the macroscopic
strain coincides with themicro-deformation, γqr = 0which in turn leads to the following
relations

ψqr ≡ ∂qur; κ̂qrs ≡ ∂qεrs ¼ ð1=2Þ ∂q∂rus þ ∂q∂kur
� � ¼ κ̂qsr ð20Þ

and

μqrs ≡ ∂υ=∂κ̂qrs ¼ μqsr ð21Þ

In the particular case the variation of the strain energy potential is defined as follows
(Mindlin, 1964)

δ
ð
V

υdV ¼
ð
V

ðτijδεij þ μijk∂iδεjkÞdV ð22Þ

where

τij ¼ ∂υ
∂εij

; μijk ¼ ∂υ
∂ð∂iεjkÞ

ð23Þ

The second order stress tensor τij, is dual in energy to the macroscopic strain and
is symmetric (i.e. τij ¼ τji ), whereas the third order stress tensor μijk, is dual in energy to
the strain-gradient. To prepare for the formulation of a variational principle, we
apply the chain rule of differentiation and the divergence theorem; furthermore, we
resolve ∂iuj on the boundary ∂V of V into a plane – gradient and a normal-gradient as
follows

∂iδuj ≡Diδuj þ niDδuj; Di ≡ ðδik � ninkÞ∂k; D≡nk∂k; ð24Þ
where δij is the Kronecker delta. The final expression for the variation in potential
energy of a smooth boundary ∂V reads

δU ¼
ð
V

δυdV ¼ �
ð
V

∂jðτjk � ∂iμijkÞδukdVþ
ð
∂V

njðτjk � ∂iμijkÞδukdS

þ
ð
∂V

1
R1

þ 1
R2

� 	
nj �Dj


 �
niμijkδukdSþ

ð
∂V

ninjμijkDδukdS
ð25Þ

where 1=R1 þ 1=R2ð Þ is the mean curvature of the bounding surface. Looking at the
structure of Equation 25we now postulate the following form for the variation of work
Ue done by external forces

δUe ¼
ð
V

fkδukdV þ
ð
∂V

ðePkδuk þ eRkDδukÞdS ð26Þ
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where fk is the body force per unit volume, ePk; eRk are the specified tractions and double
tractions, respectively, on the smooth surface ∂V. Then, from the variational principle,
the stress-equilibrium equations in the volume V is found in the following manner

∂iðτij � ∂kμijkÞ þ fj ¼ 0 ð27Þ

The workless second order relative stress tensor αij in a restrictedMindlin continuum is
in equilibrium with the double stress (Mindlin, 1964)

αjk þ ∂iμijk ¼ 0 ð28Þ

Next, by defining the ‘total stress tensor’ σij

σij ¼ τij þ αij ¼ τij � ∂kμijk ð29Þ

the stress-equilibrium Equation 27 takes the following final form in the volume V

∂jσij þ fi ¼ 0 ð30Þ
One may notice that according to Equation 30 the total stress tensor is identified with
the common (macroscopic) equilibrium stress tensor. Although the above results are
obtained for static cases, there is no essential difficulty to derive their dynamic
counterpart.

1.4 Boundary conditions

The surface ∂V of the considered volume V is divided into two complementary parts
∂Vu and ∂Vσ such that on ∂Vu kinematic data whereas on ∂Vσ static data are pre-
scribed. In classical continua these are constraints on displacements and tractions,
respectively. For the stresses the following set of boundary conditions on a smooth
surface ∂Vσ is also derived from the virtual work principle (Wu, 1992; Exadaktylos &
Vardoulakis, 2001a)

njτjk � nj∂iμijk þ
1
R1

þ 1
R2

� 	
nj �Dj


 �
niμijk ¼ ePk ð31Þ

ninjμijk ¼ eRk ð32Þ

Since second-grade or grade-2 models introduce second strain gradients into the con-
stitutive description, additional kinematic data must be prescribed on ∂Vu. With the
displacement already given in ∂Vu, only its normal derivative with respect to that
boundary is unrestricted. This means that on ∂Vu the normal derivative of the displace-
ment should also be given, i.e.

ui ¼ wi on ∂Vu1 and Dui ¼ ri on ∂Vu2 ð33Þ

1.4 Constitutive relations

From Equations 17 and 23 follow the constitutive relations for the total stress, Cauchy
stress and double stress tensors, respectively
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σij ¼ λδijεkk þ 2Gðεij � ℓ
2r2εijÞ

τij ¼ λδijεkk þ 2Gεij þ 2Gℓk∂kεij

μkij ¼ 2Gℓkεij þ 2Gℓ
2∂kεij

9>>=
>>;

ð34Þ

From the last of the above relations we may note that the double stress is symmetric in
the last two indices as is also depicted by Equation 21.

In closing this exposition of basic notions and relations, we may prove that positive
definiteness of the strain-energy density is valid provided the following restrictions of
the material constants hold true

3λþ 2Gð Þ > 0; G > 0; ℓ
2 > 0; �1 <

ℓ
0

ℓ
< 1 ð35Þ

The third inequality simply means that ℓ should be a real and not imaginary number.

1.5 Skin effect and surface free energy

Our purpose here is to show that a basic feature of the present strain gradient elasticity
theory with surface energy is the appearance of a skin effect associated with the volume
energy parameter ℓ. Furthermore, it will be shown that the effect of the relative surface
energy parameter ℓ0/ℓ is equivalent to the effect of initial stresses in presence of an
infinite, plane boundary.

The deformation of an isotropic semi-infinite body x1 ≥0 due to a large uniform tensile
stress σ22 ¼ σ; ðσ > 0Þ, parallel with the surface with outward unit normal vector (n1 n2
n3)=(−100) with the Cartesian coordinates be x1, x2, and x3, is considered as was done
in (Exadaktylos & Vardoulakis, 1998). Starting from a stress-free configuration, C0,
the body is stressed uniaxially under plane strain conditions, and C is the resultant
configuration. Then, the pre-stressed body is incrementally deformed and let its current
configuration state to be that of C’. The problem under consideration is formulated in
terms of the first Piola-Kirchhoff stress πij with respect to current configuration C’, with
Δπij being its increment referred to the deformed initially stressed state C. Assuming
infinitesimal strain elasticity, the Jaumann stress increments Δ° σij of the total stress are
related directly to the strain increments through constitutive Equations 34. For the trac-
tion-free surface of the half-space the following inceremetal boundary conditions are valid

Dπ11 ¼ Dπ21 ¼ μ111 ¼ μ112 ¼ 0 on x1 ¼ 0 ð36Þ
It is possible to assume, without loss of generality (it can be shown that, in this problem,
the quantities u1, u3 do not couple with u2; these quantities satisfy homogeneous
equations with homogeneous boundary conditions and therefore vanish identically)
the following displacement field

u2 ¼ u2 x1ð Þ; u1 ¼ u3 ¼ 0 ð37Þ
and the only non-zero initial stress σ22 to act along x2-axis. Upon substituting the
strain-displacement relation into the stress-strain relations and the resulting expres-
sions for the stresses into the stress-equation of equilibrium ∂jΔπij ¼ 0, we find only the
following surviving displacement equation of equilibrium
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1� ℓ
2

ð1þ ξÞ
d2

dx21

 !
d2

dx21
u2 ¼ 0 ð38Þ

where we have set ξ ¼ �σ22=2G. The solution of Equation 38, vanishing at infinity, is

u2ðx1Þ ¼ cexpð�
ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p
ℓ

x1Þ ð39Þ

where c denotes an integration constant. The first three boundary conditions described
by Equations 36 are satisfied identically, whereas the only remaining boundary condi-
tion along x1 ¼ 0 takes the form

μ112 ¼ 2G ℓ
0 d
dx1

þ ℓ
2 d2

dx21

� 

u2 ¼ 0 on x1 ¼ 0 ð40Þ

which holds true for �r ≡ � nr and gives the following equation

c � ℓ
0

ℓ
þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p" #
¼ 0 ð41Þ

From Equation 41 one may deduce that the only case which gives non-zero and
exponentially decaying displacement with distance from the surface of the solid, that
is c ≠ 0, is the following

ℓ
0

ℓ
¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p
⇔ ξ ¼ � 1� ℓ

0

ℓ

 !2
2
4

3
5 ð42Þ

The above relation elucidates the importance of the surface strain gradient term ℓ0 in
determining surface effects. Equation 42 depicts that the effect of the surface energy
parameter is equivalent to the effect of an initial stress. The dependence of initial stress ξ
on the relative surface energy parameter ℓ0/ℓ is shown in Figure 4. From this figure it may
be seen that if ℓ0/ℓ = 0 the half-space is under surface tension, with this surface tension to
bemaximum. As ℓ0/ℓ increases from the value of zero the initial tension or in other words
the surface tension of the medium decreases reaching the value of zero for ℓ

0
=ℓ ¼ 1. At

ℓ
0
=ℓ ¼ 1 the initial stress changes sign and for ℓ

0
=ℓ > 1 becomes compressive in nature.

That is, for values of the relative surface energy parameter higher than the value of one,
the medium is under surface compression and it is no longer in a state of elastic
equilibrium, or in other words as it is also shown by the inequality of Equation 35 its
strain energy density function is negative definite.

The elastic strain energy density of the considered 1D configuration is given by

υ ¼ G ε2 þ ℓ
2rεrεþ 2ℓ

0
εrε

n o
; r≡ d=dx1 ð43Þ

Substituting in Equation 43 the values for the strain and the strain-gradient, we find

υ̂ ¼ 1� ℓ
0

ℓ

 !2
8<
:

9=
;

ℓ
0

ℓ

 !2
c
ℓ

� �2
exp �2

ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p
ℓ

x1


 �
; υ̂ ¼ υ=G ð44Þ
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By adopting the following definition for the average surface stress (or surface free
energy)

γse ¼
ð
V

υdV=A ð45Þ

where A is the area of the free surface, we may find after some manipulations

γse ¼
G
2

1� ℓ
0

ℓ

 !2
8<
:

9=
;

ℓ
0
c2

ℓ
2 ð46Þ

This is also, for each surface, the energy per unit area required to separate the
body along a plane and γse > 0 if inequality described by the last of Equations 35
holds true.

1.6 Anti-plane shear (SH) surface waves

There are a number of cases in Rock Mechanics where stresses and strains are of
dynamic nature – as in the case of earthquakes, rock blasting and rock bursting - and
the propagation of these stresses and strains through the rock mass should be studied
(Jaeger et al., 2007). In this context the propagation and interaction of elastic waves
with interfaces in the rock mass (like joints, interfaces of geological layers etc) are
important. When an incident wave is a shear wave whose displacement vector is
parallel to the interface then there are produced anti-plane shear or SH waves since
for the case of an interface that is horizontal these waves are polarized in the horizontal
plane (Jaeger et al., 2007).

0.5

0ξ

–0.5

–1.0
0.2 0.4 0.6

I’/I

ξ < 0

ξ > 0

0.8 1.0 1.2

1.0

Figure 4 Graphical representation of the relation of the dimensionless pre-stress ξ with the relative
surface energy parameter ℓ0/ℓ (Exadaktylos & Vardoulakis, 1998).
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In the nextwe consider SHmotions in a gradient elastic half-spacewith surface energy.
With respect to a fixed Cartesian coordinate system Oxyz, the half-space occupies the
region (�∞ < x < ∞; y ≥0) and is thick enough in the z-direction to allow an anti-
plane shear state when the loading acts in the same direction. In this case and
assuming additionally a time-harmonic steady state, any problem can be described by
the displacement field ux ¼ uy ¼ 0; uz ≡wðx; y; tÞ ¼ wðx; yÞ ⋅ expð�iω tÞ≠0, with
i≡ ð�1Þ1=2 is the unit imaginary number and ω being the frequency. In the case of SH
waves, the only surviving equations of motion are one written for the total stresses
ðσxz; σyzÞ that are given by the constitutive Equations 34a and two written for the
double stresses ðμxxz; μxyz; μyxz; μyyzÞ that are given by constitutive Equations 34c.
Vardoulakis & Georgiadis (1997) have shown that the field equation for such a state
in terms of displacements is

ℓ
2r4w� gr2w� k2w ¼ 0; ð47Þ

where r2 and r4 are the Laplace and biharmonic operators, g ¼ 1� ðω2Î=GÞ;
k ¼ ω=V; V ¼ G=ρð Þ1=2 is the shear wave velocity in the absence of gradient effects,
Î ¼ ð1=3Þρh2 is the micro-inertia coefficient, ρ is the mass density, and h is the half-
length of the crystal (e.g. Figure 3a). Further, operating with the two-sided Laplace
transform on Equation 47 yields an o.d.e. for the transformed displacement w�ðp; yÞ.
The general solution of the latter equation that is bounded at infinity is

w�ðp; yÞ ¼ BðpÞ ⋅ expð�βyÞ þ CðpÞ ⋅ expð�γyÞ;
βðpÞ≡ β ¼ iðp2 þ σ2Þ1=2; γðpÞ≡ γ ¼ ðτ2 � p2Þ1=2;

σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4ℓ2k2

q
� g

2ℓ2

vuut
; τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 þ 4ℓ2k2

q
þ g

2ℓ2

vuut
; ð48Þ

where p is the Laplace-transform variable and B,C are obtainable through enforcement
of the boundary conditions.

As is well known, the criterion for surface waves is that the displacement decays
exponentially with distance from the free surface (Achenbach, 1973). Thus, if we
consider plane-wave solutions of the form exp½iðqx� ω tÞ� with a dispersion relation
ω ¼ ωðqÞ, a distinct harmonic component of propagation of the SH surface wave
satisfying the equations for a grade-2 continuum in the half-space y ≥0 will be
expressed as

wsðx; y; tÞ ¼ ½BðqÞ ⋅ expð�jβjyÞ þ CðqÞ ⋅ expð�jγjyÞ� ⋅ exp½iqðx� CphtÞ�
Cph ¼ ω

q
; ð49Þ

where Cph is the phase velocity, q≡ ðp=iÞ is the wave number which should be a real
quantity such that �∞〈q〈� σ or σ〈q〈∞ in order for surface waves to exist, jβj ¼
q2 � σ2
� �1=2

and jγj ¼ q2 þ τ2
� �1=2

. Next, the appropriate dispersion (or frequency)
equation can be obtained by enforcing the pertinent boundary conditions at the half-
space surface. These are zero traction conditions which in the transform domain
provide a linear homogeneous system. This has a nontrivial solution if and only if
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�ðσ2dðq2d � σ2dÞ1=2 þ τ2dðq2d þ τ2dÞ1=2Þ þmα2d ¼ 0; σd < jqdj < ∞;

qd ¼ ℓq; σd ¼ ℓσ; τd ¼ ℓτ;m ¼ ℓ
0
=ℓ; α2d ¼ ℓ

2α2 ¼ ðg2 þ 4ℓ2k2Þ1=2: ð50Þ
Equation 50 constitutes the dispersion relation for surface waves. Since this is an
irrational algebraic equation, a single mode of SH waves may exist that is directly
related to the parameterm. Another immediate observation is that SH surface waves do
exist only when ℓ ≠0 and m > 0. This finding means that the inclusion of the surface
energy strain gradient term ℓ

0
, that expresses an anisotropy in the microscale, is

necessary for predicting surface SH waves. In order to obtain numerical results for
the relation between the phase velocityCph and thewavenumber q (or, equivalently, the
wavelength λ ¼ 2π=q), one has generally to numerically solve Equation 50. Here,
however, we chose to work in a different manner and obtain some representative
exact results, which can be obtained for the particular case ℓ ¼ ð1= ffiffiffi

3
p Þ h. The latter

is equivalent to the relation ω2
d ¼ ℓ

2k2.Then, Equation 50 takes the form

�ω2
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2d � ω2

d

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2d þ 1

q
þmð1þ ω2

dÞ ¼ 0; ð51Þ

whereωd
2 ¼ 1� g: Further, the above irrational equation possesses four roots, three of

which are extraneous and, therefore, possess no physical meaning. Also, the appear-
ance of complex roots marks cut-off frequencies. It can be shown that the following
root is the only one satisfying the original Equation 51,

qd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω6

d � 2ω4
d þ 2ω2

d � 1þm2ð1þ ω4
dÞ � 2mω2

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

d þ ðm2 � 1Þ
qr

j1� ω2
dj

; ωd ≠1

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m4

p

m
;ωd ¼ 1

8>>>>><
>>>>>:

ð52Þ
For high frequencies the first of the Equation 52 assumes the asymptotic expansion
qd ¼ ωd þ ð1=2Þm2ðω�1

d Þ þOðω�2
d Þ;ωd ! ∞, whereas the following relations are gen-

erally valid for the particular case ℓ ¼ ð1= ffiffiffi
3

p Þh
Cph

V
¼ ωd

qd
;

λ
h
¼ 2πffiffiffi

3
p 1

qd
ð53Þ

and facilitate the creation of the graphs illustrated in Figure 5. From these curves it can
be seen that there is a minimum velocity. We also note that the graphical form of the
dispersion relation reminds the one found by Coulson (1958) for surface waves in
liquids that possess surface tension.

1.7 Rayleigh waves in grade-2 elastic solids

The possibility of a wave traveling along the free surface of an elastic half-space, under
conditions of plane stress or plane strain, such that the disturbance is largely confined to
the neighborhood of the boundary was first considered by Lord Rayleigh (1887). The
classical theory of linear elasticity does not predict any dispersion for these motions;
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only by including viscoelastic (Currie et al., 1977) or thermoelastic (Georgiadis et al.,
1998) effects in the constitutive behavior leads to dispersiveRayleighwaves. In order to
explain the occurrence of dispersion of Rayleigh waves, Vardoulakis (1981) has
considered a graded half-space, that is a material with stiffness increasing with depth.
Here, we take another point of view and consider the propagation of Rayleigh waves in
a gradient-elastic, macrohomogeneous and isotropic half-space x2 ≥0 (Figure 6) having
as an objective examining the possibility of dispersive behavior.

In particular, the theory utilized here can be considered one of the simplest versions
of Mindlin’s theory containing only the volumetric length scale corresponding to the
following strain-energy density function

υ ¼ ð1=2Þλεqqεrr þGεqrεrq þGℓ
2ð∂sεqrÞð∂sεrqÞ ð54Þ
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Figure 5 Dispersion curves for the propagation of SH surface waves showing the variation of the
normalized phase velocity Cph=V with the normalized wavelength λ=h.
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Figure 6 Half-space and coordinates.
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The displacement equation ofmotion in the absence of body forcemay be derived in the
following manner

GD
2r2uþ ðλþGD

2Þrr ⋅ u ¼ ρ€u� 1
3
ρh2r2€u ð55Þ

where we have used the operator D
2
≡1� ℓ

2r2. The boundary conditions for the
problem at hand, for h=ℓ ! 0 and for the two cases of boundary conditions (Case I
refers to the approximate and II to the exact boundary conditions, respectively) take the
form

σ22 ¼ σ21 ¼ 0 ðCase IÞ

σ22 � ∂μ221
∂x1

¼ 0; σ21 � ∂μ211
∂x1

¼ 0 ðCase IIÞ;

μ222 ¼ μ221 ¼ 0 ðCase I; IIÞ; �∞ < x1 < ∞; x2 ¼ 0 ð56Þ
Then we fix the wave numbers, as well as Poisson’s ratio, and we construct the equation
for the characteristic determinant of the problem at hand as an equation for the dimen-
sionless frequency Ω ¼ ω ℓ=cT (Stavropoulou et al., 2003). It is not difficult to verify
that for ℓ ¼ 0, the determinant equation reduces to the classical Rayleigh functionwhose
roots are given by Eringen & Suhubi (1975) for various Poisson’s ratios ν. It is also clear
that the root of the determinant equation is a function of ℓ, consequently in contrast to
the classical theory the Rayleigh wave velocity predicted by the proposed gradient
elasticity theory is dispersive. Figure 7 illustrates the relation exhibited between the
normalized phase velocity of Rayleigh wave with the normalized frequency in the frame-
work of the present theory for the case of rock with small grain size, i.e. h/ℓ<<1.
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Figure 7 Dispersion curve for the propagation of Rayleigh surface waves showing the variation of the
normalized phase velocity with the normalized frequency for h/ℓ tending to zero and � ¼ 0:3
(Stavropoulou et al., 2003).
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The following conclusions can be drawn from the analysis given above:

– If the volumetric gradient length scale ℓ is small compared to the characteristic
wavelength of the Rayleigh wave then the results obtained from gradient and
classical elasticity theories coincide.

– For increasing relative frequencies the gradient theory predicts larger Rayleigh
wave velocities than the classical theory in a monotonic manner. This property -
which is due to the fact that h=ℓ << 1 – may be used to establish the gradient
parameter ℓ through carefully performed Rayleigh wave propagation experiments.
This has been demonstrated with the analysis of Rayleigh wave experiments in
Pentelikon marble used for the construction of Parthenon monument in Athens
(Stavropoulou et al., 2003).

– A new material parameter may be defined as the product Gℓ with dimensions of
½FL�1�, where F denotes force and L denotes length. This new parameter is called
‘crack stiffness’ and influences the magnitude of mode-I, -II and –III crack defor-
mation under given stress in rocks. It was demonstrated (Stavropoulou et al., 2003)
that this parameter may be experimentally determined through carefully per-
formed in situ Rayleigh wave measurements.

– The results obtained by applying the two types of boundary conditions do not
differ appreciably in the whole range of normalized frequencies of Rayleigh waves.

1.8 Size effect of the fracture toughness of the pressurized crack

The possible size effect exhibited by hydraulic fractures – i.e. the dependence of the
resistance of fracture to propagation with increasing crack length – is a very important
problem in hydraulic fracturing of rocks. Exadaktylos (1998) has postulated the
following criterion for mode-I fracture propagation subjected to constant internal
pressure (assuming zero diffusivity of the rock)

Ψ α� η; σ0; ℓ; ℓ
0� �
≥ β; Ψ α� η; ℓ; ℓ

0� �
¼ πα

8
σ20
G

ψ^ α� ηð Þ ¼ K2
I

8G
ψ^ α� ηð Þ ð57Þ

where the function Ψ depends on the applied pressure on the crack lips σ0, and the two
strain gradient length scales. The quantity β has the dimensions of specific volume
energy or stress [FL−2], that was called ‘modulus of cohesion’ and is assumed to be a
constant material parameter. The symbol η is a small length with respect to the semi-
crack length α, in order to remove the weak logarithmic singularity of the function ψ̂ tð Þ
at t ¼ α; the latter function is given in closed form. This criterion was applied after the
solution of the relevant boundary value problem in the frame of grade-2 Casal-Mindlin
theory. This solution revealed that the crack shape is no longer elliptical as is predicted
by the classical theory but the crack lips take a cusp shape such as shown in Figure 8a.

By setting KI ¼ KIC in the above criterion of Equation 57 we obtain the following
expression for the fracture toughness

KIC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8βG

ψ̂ α� ηð Þ

s
ð58Þ
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The size-effect of the fracture toughness is demonstrated in Figure 8b for the various
values of the relative surface energy parameter k ¼ ℓ

0
=ℓ. It may be observed that:

(a) that as the surface energy length scale increases the fracture toughness increases
due to the surface tension effect mentioned in Paragraph 1.5 above, and (b) the size

3
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Figure 8 (a) Deformed mode-I crack with tips in the form of cusps of first kind, and (b) size effect of the
normalized mode-I fracture toughness KIC for three values of the material length ratio k ¼
ℓ
0
=ℓ and for Poisson’s ratio of the material � ¼ 1=4 (Exadaktylos, 1998).
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effect resembles that of the simple stress-mean-value theory presented in Paragraph 1.1
(e.g. Figure 2).

2 A GRADE-2 ENGINEERING BEAM THEORY WITH SURFACE
ENERGY

2.1 Introductory remarks

The experimental analysis for mechanical parameters identification like modulus of
elasticity and tensile strength of rocks and other brittle structural materials, as well as
theoretical models of the deformability and strength of beams, beams-columns and
plates, are of great practical interest in many applications in rock and structural
engineering. They depict the serviceability and strength of such types of engineering
structures. Beam elements occupy awide range of technological applications and length
scales. For example, in Civil Engineering applications beams from timber, steel, con-
crete, aluminum etc are used as structural elements in buildings and bridges, at the scale
of several meters to several tenths of meters. In Monumental Constructions and
restoration works one may mention marble or limestone beams in temples resting on
marble columnswith spans of the order of several meters. InMining and Tunneling one
may encounter artificial span support beams (from timber, cast iron, concrete etc) or
beams and plates overhanging above underground openings in mines, tunnels and
caverns. For example a beam may be formed by a rock layer at tunnel’s roof with
one end free (entrance) and the other hinged (tunnel’s face). Beams are also encountered
in biomechanical applications: e.g. micro-cantilever sensors at the scale of 1÷10 μm,
and in nanomechanical applications in thin films technology, biosensors and atomic
force microscopes at the scale of 10÷100 nm. For this purpose, there is a growing
interest of proper theories incorporating additional to the characteristic macroscale
also smaller length scales (these are called micromechanical theories and they include
discrete and distinct element theories among others).

Here, Timoshenko’s engineering beam bending theory of linear elastic materials is
extended by considering surface energy effects that have been discussed in Section 1. A
beam bending micromechanical theory with surface energy is formulated that is based
on a modified strain energy function of a material with microstructure that includes the
classical Bernoulli-Euler term, the shape correction length scale ℓv introduced by
Timoshenko to account for the effect of shear forces, and another extra new length
scale ℓs introduced here, that is associated with surface energy effects.

2.2 Fundamentals of the technical beam theory

The longitudinal section of the beam is referred to a Cartesian coordinate systemΟ(x,y,
z) positioned on the neutral axis –which is the locus of centroids of cross-sections - with
its origin at mid-span and with the Ox-axis directed along the neutral axis of the beam
while Oz-axis extending vertically downwards. Deformation quantities are assumed as
infinitesimal, and the corresponding displacements of points in a cross-section along
Ox and Oz directions are denoted by the symbols u; w respectively. Let the infinitesi-
mal normal strains εxx; εzz and the engineering shear strain γxz in the plane xOz to be
defined as follows
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εxx ¼ ε ¼ u;x; εzz ¼ w;z; γxz ¼ γ ¼ u;z þw;x ð59Þ
where ψ denotes the rotation (considered to be a small quantity) of the cross-section A
of the beam at position x (Figure 9) and the comma denotes differentiation w.r.t. the
variable after the comma. It may be easily shown that the representation of the strain
energy density (potential) of the beam in the context of Timoshenko’s beam bending
theory is given by the following ansatz

υT ¼ 1
2
EI κ2 þ γ2

ℓ
2
v

 !
ð60Þ

where the term EI denotes the flexural rigidity or stiffness of the beam, I denotes the
moment of inertia of the cross-section A of the beam, ℓv stands for a microstructural
length scale of the beam material that considers the effect of the transverse shear stress
contributing to the deflection w ¼ wðxÞ of the beam, the symbol κ we denote the
gradient of the rotation angle (bending curvature) of the cross-section, that is

κ≡ψ;x ð61Þ
In the frame of this technical theory the horizontal strain is simplified as follows

ε ¼ κz ð62Þ
Also, the bending curvature κ ¼ 1=R is found as ∂ε=∂z ¼ ψ;x.

The following constitutive relationships for the bending moment and transverse
shear force may be deduced

M ¼ ∂υT
∂κ

¼ EIκ; Q ¼ ∂υT
∂γ

¼ EI
γ

ℓ
2
v

ð63Þ

where the shear forces and bending moments, are denoted as Q, M, respectively, The
first of Equations 63 forms the Bernoulli-Euler theorem depicting the analogy of the
bending moment with the bending curvature of the beam, while the second is due to
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Figure 9 Deformations of vertical and horizontal beam sections.
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Timoshenko that considers the effect of the transverse shear forces on the beam
deflection. The characteristic length scale ℓv is related to the dimensionless quantity
ℓT in the following manner

ℓ
2
v ¼ ℓTLð Þ2 ð64Þ

For example for a rectangular cross-section with height H, we get that ℓT essentially
compares with the inverse of the aperture ratio of the beam, that is to say for a
rectangular cross-section of the beam, Τimoshenko (1921) found that ℓT compares
with the inverse of the length to height ratio

ℓ
2
T ¼ 1

5
ð1þ �Þ H

L


 �2

<< 1 for H < L ð65Þ

Accordingly for long prismatic beams ðℓT << 1Þ or ðH=L << 1Þ Bernoulli-Euler ele-
mentary beam theory is recovered.

2.3 Formulation of the kappa-gamma beam technical theory

Herein an engineering beam bending theory that has been previously presented by
Vardoulakis et al. (1998) containing twomaterial length scales and aiming at capturing
the size effect exhibited by beams in bending, is reformulated. In fact we change the
strain energy density (or elastic potential energy density) ansatz for an elastic material
with microstructure initially proposed in our previous work, with the following
straightforward expression

υE ¼ 1
2
EI κ2 þ 1

ℓ
2
v

γ2 þ 2
ℓs
κγ

 !
ð66Þ

So, Bernoulli-Euler theory which leads to the proportionality of the bending moment with
curvature kappa ðκÞ, is expressed only by the first term, whereas Timoshenko’s beam
bending theory that explains the effect of shear forces (gamma) on beam deflection and
bending curvature of the beam is expressed by the first two terms. The third term in the
above strain energy density function has not been obtained arbitrarily, but rather on the
simple and straightforward argument, namely that since the curvature and shear strain
are already included by Bernoulli-Euler and Timoshenko, respectively, then their
product should be also included for completeness of the representation. This argument
introduces an additional material length scale ℓs. It may be easily shown that the
positive-definiteness of the strain energy density is guaranteed if the following inequal-
ities are valid

�1 <
ℓv

ℓs
< 1 ð67Þ

wherein from Equations 64 & 65

ℓ
2
v ¼ ℓTLð Þ2 ¼ 1

5
ð1þ �ÞH2 ð68Þ

that is, for positive strain energy density Timoshenko’s shape factor ℓv must not vanish
if surface or scale effects are going to be taken into account. The above ansatz described
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by Equation 66 contains the last term that considers surface energy effects through the
microstructural length scale ℓS, and also contains as a special case Timoshenko’s beam
bending theory through the length scale ℓv as may be observed from Equation 60. In
fact, by applying Gauss’ divergence theorem the total elastic strain energy of the beam
takes the form

UE ¼ 1
2
EI
ðL

0

κ2 þ 1

ℓ
2
v

γ2 þ 2
ℓs
κγ

 !
dx

¼ 1
2
EI
ðL

0

κ2 þ 1

ℓ
2
v

γ2 þ 2
ℓs
κw

0
 !

dxþ 1
2ℓs

EI
ðL

0

rψ2dx

¼ 1
2
EI
ðL

0

κ2 þ 1

ℓ
2
v

γ2 þ 2
ℓs
κw

0
 !

dxþ 1
2ℓs

EI½ψ2�L0

ð69Þ

where we have set ⋅ð Þ0 ≡r ⋅ð Þ≡ d=dx. The constitutive equations for the shear force Q
and bending moment M, are also easily derived from the potential of Equation 66 as
follows

Q≡
∂υE
∂γ

¼ EI
1

ℓ
2
v

γþ 1
ℓs
κ

 !
¼ EI

1

ℓ
2
v

w
0 þ ψ

h i
þ 1
ℓs
ψ

0
 !

ð70Þ

M≡
∂υE
∂κ

¼ EI κ þ 1
ℓs
γ


 �
¼ EI ψ

0 þ 1
ℓs

w
0 þ ψ

h i
 �
ð71Þ

Vardoulakis et al. (1998) who studied the size effect exhibited by the flexural strength
of marble beams in laboratory tests employed the following ansatz

υVE ¼ 1
2
EI½κ2 þ ℓ

2
v rκð Þ2 þ ℓsr κ2

� �� ð72Þ

This is a gradient almost B-E theory enhanced with two length-scales where the second
term accounts for the shear strain effect

γ ≈ ℓ2vrκ ð73Þ
Papargyri-Beskou et al. (2003) assumed only one surviving surface length scale ℓx ¼
ℓ
0
�x along the axial direction of long beams (very small height to span ratio) according

to Casal’s theory, and a volumetric length scale denoted in their paper by the symbol g,
and made the reasonable assumption of null transverse normal strain εzz ¼ 0 of the
technical beam theory, according to the notation used in the present paper

υPB ¼ 1
2
EI w

00
� �2

þ g2 w
000

� �2
þ 2ℓxw

00
w

000
� 	

; ℓx << 1 ð74Þ

Our kappa-gamma model for long beams (i.e. B-E theory) such that the following
approximations to be valid
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κ ¼ dψ
dx

≈ � d2w
dx2

; γ ¼ dw
dx

þ ψ ≈ � ℓ
2
T
d3w
dx3

ð75Þ

gives

υPB ≈
1
2
EI w

00
� �2

þ ℓ
2
T

ℓv

 !2

w
000

� �2
þ 2ℓ2T

ℓs
w

00
w

000

2
4

3
5 ¼ υb; ℓ

2
T << 1 ð76Þ

that is exactly the same to the elastic potential proposed by Papargyri-Beskou et al. (2003).
Later on, Vardoulakis & Giannakopoulos (2006) have proposed the following

potential or strain energy density (energy per unit beam length) for the beam

υVG ¼ 1
2
EI κ2 þ 1

ℓ
2
v

γ2 þ 2
ℓs

κ
0

� �2 !
ð77Þ

It may be noted that the first two terms of the kappa-gamma potential have the same
form with those appearing in the ansatz given by Equation 77, although they differ in
the last term.

2.4 Generalization of the gradient beam theory with surface
energy

A general expression of the elastic strain energy density of a gradient elastic solid with
surface energy with two additional length scales has been given by Equation 17.
Applying the following simplifications

εxx ¼ κz; εxz ¼ 1
2
γ ð78Þ

and elaborating on the expressions, the final expression of the strain energy density for
the beam is composed from three distinct parts. Firstly, the classical part of the elastic
potential energy may be found in the following manner,

υclas ¼
ðð
A

1
2
½λþ 2G�z2


 �
κ2 þ 1

2
Gγ2

� 	
dA ¼ 1

2
½λþ 2G�Iκ2 þ 1

2
Gγ2A;

I ¼
ðð
A

z2dA
ð79Þ

where A denotes the cross-sectional area of the beam. This expression is composed
from two terms appearing also in the elastic potential energy Equations 66, 72, 76 and
77. Secondly, one may find a volumetric part that is associated with the volumetric
length scale which does not give a scale effect, namely

υvol�grad ¼ Gℓ
2
ðð
A

z2
∂κ
∂x


 �2

þ 1
2

w;xx þ κ
� �2 þ κ2

" #
dA ⇔

υvol�grad ¼ Gℓ
2 I

∂κ
∂x


 �2

þ 1
2
Arγrγþ Aκ2

" # ð80Þ
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One may note that the first term of the last expression is the same used by Vardoulakis
& Giannakopoulos (2006), and that is why their model does not predict a scale effect.
Finally, it may be found a surface energy part associated with the only surviving surface
energy length scale ℓx ¼ ℓ

0
�x that gives a size effect, i.e.

υsurf�grad ¼ 2Gℓ
0
ðð
A

z2κ
∂κ
∂x

þ 1
2

κ þw;xx
� �

γ

� 	
dA⇔

υsurf�grad ¼ 2Gℓ
0
Iκ

∂κ
∂x

þ A
2
κγþ A

2
w;xxγ

� 	 ð81Þ

The first term of the expression above κrκ has been adopted by Vardoulakis et al.
(1998), while the second term of the expression above is the third term of the kappa-
gamma beam theory. In Vardoulakis et al. (1998) and in the present publication it is
demonstrated that both technical theories are capable to predict scale effects of beams.

The transverse shear force and bending moment expressions resulting from the 3D
gradient theory may be formally derived in the following manner and are equivalent
with Equations 70 and 71, respectively,

Q ¼ ∂υ2ndgr

∂γ
¼ G γþ ℓ

0
κ þ ℓ

0
w;xx

� �ðð
A

dA; ð82Þ

M ¼ ∂υ2ndgr

∂κ
¼ 2½λþ 2G�κ

ðð
A

z2dAþGℓ
0
γ
ðð
A

dAþ

þGℓ
2 ∂γ

∂x
þ 2κ


 �ðð
A

dAþþ2Gℓ
0 ∂κ
∂x

ðð
A

z2dA
ð83Þ

By comparing the above two sets of relationships 82 & 70 it may be observed that the
kappa-gamma theory does not contain the kinematical term wxx in the expression for
the transverse shear force, and the terms ∂γ=∂x; ∂κ=∂x in the expression for the bending
moment (e.g. compare Equations 83 & 71).

2.5 Closed-form solution of 3PB simply supported beam

Next we proceed with the solution of the 3PB configuration employing the simpler
engineering beam theory. It may be shown that the equilibrium equations for the beam

dQ
dx

¼ 0; �Qþ dM
dx

¼ 0 ð84Þ

are automatically satisfied, with the following expressions for the bending moment and
transverse shear force along the beam subjected to concentrated loading P at its mid-
span (natural boundary condition

M ¼ PL
4

1� 2x
L


 �
; Q ¼ �P

2
0 ≤ x ≤

L
2

ð85Þ

Substituting the values of Q,Μ given by the above Equations 85 into Equations 84 the
following system of linear odes is obtained
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ℓr w
0 þ ψ

� �þ ψ
0 ¼ �λ;

ℓsψ
0 þw

0 þ ψ ¼ λL
4

1� 2
x
L

� �
;

9=
; 0 ≤ x ≤

L
2

ð86Þ

wherein we have set the following normalized variables with units [L−1]

λ ¼ Pℓs
EI

; ℓr ¼ ℓs

ℓ
2
v

ð87Þ

The closed form solution of the above system of ode’s has as follows

ψ ¼ 1
4 1� ℓrℓsð Þ ½λ Lþ 4ℓsð Þ þ 4C2 ℓrℓs � 1ð Þ� λ 4þ ℓrLð Þxþ λℓrx2�;

w ¼ 1
24 ℓrℓs � 1ð Þ ½24C1 ℓrℓs � 1ð Þ þ 24C2 ℓrℓs � 1ð Þx� 3λ 2þ ℓrLð Þx2 þ 2λℓrx3�

0 ≤x ≤
L
2

ð88Þ

in which C1; C2 are integration constants to be found from appropriate boundary
conditions. The essential boundary conditions refer to the vertical displacement at the
supported end of the beam, as well as the rotation at the mid-span; both of them should
vanish, i.e.

w ¼ 0; x ¼ L
2

ψ ¼ 0; x ¼ 0

ð89Þ

Substituting the deflection from Equation 882 and the rotation from Equation 881 into
the two kinematical conditions described by Equations 89 we may easily obtain the
expressions for the two constants in the following manner

C1 ¼ λL2

48

Lℓr þ 12
ℓs

L
þ 6


 �

η2 � 1
; C2 ¼ 0

ð90Þ

where we have set the dimensionless parameter

η2 ¼ ℓrℓs ¼ ℓs

ℓv


 �2

; η2 > 1 ð91Þ

Subsequently, the expression for the deflection may be found from Equation 882 and
the above expressions for the constants, that is to say

w ¼ wc

η2 � 1
6ℓ̂s 1þ 2ℓ̂s
� �

þ η2�12ℓ̂s 1þ 2ℓ̂s
� �

ξ � 6η2ξ2 þ 4η2ξ3
n o

;

0 ≤ ξ ≤
1
2

ð92Þ
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where we have used the following dimensionless quantity

wc ¼ PL3

48EI
ð93Þ

wc represents the maximum (i.e. mid-span) deflection derived from Bernoulli-Euler
beam theory. Also, the rotation of the initially vertical cross-section of the beam could
be found from Equations 851 and 90, i.e.

ψ ¼ λ
η2 � 1

ξ 2ℓ̂s þ η2 � η2ξ
n o

; 0 ≤ ξ ≤
1
2

ð94Þ

wherein

λ ¼ PL2

4EI
; ℓ̂s ¼ ℓs

L
ð95Þ

The engineering shearing strain could be also found in the following manner

γ ¼ w
0 þ ψ ¼ λ

η2 � 1
�ℓ̂s½1þ 2ℓ̂s� þ 2ℓ̂sξ
n o

; 0 ≤ ξ ≤
1
2

ð96Þ

In addition, the bending curvature of the beam may be found by formal differentiation
of Equation 94 as follows

κ ¼ λ
L

1
η2 � 1

2ℓ̂s þ η2 � 2η2ξ
n o

; 0 ≤ ξ ≤
1
2

ð97Þ

As, it may be seen fromEquation 97, in contrast to classical theory, the present gradient
theory with surface energy predicts always for any value of η2 a finite and larger value
of the beam curvature at its supporting ends (i.e. for ξ ¼ 1=2 ). This is due to the
presence of the surface energy term 2ℓ̂s in the expression for the curvature that also is
responsible for the inequality κ ≠� ∂2w=∂x2.

2.6 Numerical results

Various beam deflection curves obtained from the theory are shown in Figures 10 a÷c.
For this purpose use was made of Equation 92 and of the following expression

η2 ¼ ℓs

ℓv


 �2

¼ 5ℓ̂
2
s

ð1þ �Þ H
L


 �2 ; η2 > 1 ð98Þ

As was expected the gradient theory, i.e. for the relative length scale η comparable to
unity, predicts always larger beam deflections compared to the classical B-E theory for
η >> 1. This is clearly illustrated in Figure 10a. According to Equation 98 the latter
case is approached for beams of very large span (L) compared to their height (H) and
vanishing surface energy length scale. The effect of Poisson’s ratio on beam deflection
for vanishing surface energy term and H/L=1/10 is displayed in Figure 10b. Finally,
the effect of the surface energy length on the beam’s deflection for constant H/L=1/10
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and Poisson’s ratio of 0.3 is shown in Figure 10c. It is clear from Figure 10c that as
the relative surface energy length increases, the beam deflection decreases w.r.t.
that predicted by Timoshenko’s beam theory, which is an indication of a “beam
rigidity effect”. This effect is attributed to the surface energy term that as in the case of
the half-space problem treated in Paragraph 1.5 gives rise to a pre-tensioning of the
beam.

2.7 Size effect of beam strength

Assuming that the Poncelet - Saint Venant (PSV) failure hypothesis is valid for granular
brittle materials, then the fracture of the beamwill occur when the horizontal extension
strain at the mid-span of the bottom face of the beam denoted here as εmax

xx , reaches the
limit strain εf

εmax
xx ≥ εf at ξ ¼ 0; z ¼ H

2
ð99Þ

where H is the height of the beam. Considering that εxx ¼ κz, then substituting the
value of the bending curvature at mid-span found by Equation 97 andmultiplying with
the modulus of elasticity E, the failure stress at the lower fiber of the beam is found as
follows

σbu ¼ Eεf ¼ E
H
2
κð0Þ ¼ σB�E

bu
η2

η2 � 1
1þ 2ℓs

η2
1
L

� 

ð100Þ

wherein σB�E
bu denotes the well-known quantity ofModulus of Rupture of the beam that

is given by the formula of the classical Bernoulli-Euler beam bending theory by assum-
ing again the validity of the PSV failure hypothesis

σB�E
bu ¼ Eεmax

xx ¼ PfLH
8I

ð101Þ

In the formula above, Pf denotes the value of the concentrated load at failure. For
constant beam aperture ratio L=H, the following three observations could be made
from Equation 100, i.e.: (i) Timoshenko’s theory does not predict a size effect and
simply modifies the modulus of rupture, (ii) the extended beam bending theory
accounting for surface effects, predicts a (−1)- power of the beam length dependence
of the flexural strength of the beam, and (iii) this size effect law resembles Karmarsch’s
empirical law also used later by Griffith (i.e. Equation 1).

The above size effect law was investigated with a series of 3PB experiments with
prismatic marble beams with square cross-section (i.e. B=H) of Dionysos marble of the
same aperture L=Hffi4 but with various spans L ranging from 7.4 cm up to 1 m. This
range is considered to be significant for standard rock mechanics tests. Strains at
various locations on the beams including their lower surface at the mid-span, were
recorded by virtue of electrical strain-gages. More data referring to 3PB experiments
on Dionysos marble are provided in Exadaktylos et al. (2001b). As is illustrated in
Figure 11, the rupture strength calculated according to Equation 101, apart from some
dispersion of results for a given aperture ratio that is expected for crystalline brittle
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Figure 10 Distribution of beam deflection in 3PB; (a) effect of (H/L) on beam deflection curve for
constant Poisson’s ratio and surface energy term (i.e. H/L=1/10 for the continuous line and
H/L=1/1000 for the dashed line), (b) effect of Poisson’s ratio on beam deflection curve for
constant (H/L=1/10) and surface energy term, and (c) effect of surface energy term on beam
deflection curve for constant (H/L) and Poisson’s ratio.
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materials, was found to be independent of the length of the beamwith an average value
of σB�E

bu ¼ 17:4MPa.
Then using Equation 97 and with an elastic modulus of Dionysos marble

E ¼ 85GPa (Exadaktylos et al., 2001b), the best-fitted curve on the experimental
data assuming the validity of the inverse length of the beam size effect law, was
found to have the following form

σbu ffi 17:4þ 0:84
L=m

;
X11
1

σa � σmð Þ2 ¼ 0:21041 ð102Þ

in which the length of the beam is expressed in m and σbu in MPa, and the sum in the
right indicates the sum of squared differences between the “actual” data (subscript “a”)
and the “model” predictions (subscript “m”).

From Figure 12 it may be seen that the above size effect law fits well the experimental
results apart from some overestimation of the relative strength in particular of one of
the two tests at L=1 m that gives σbu=σB�E

bu ffi0:7. This may be attributed to the lower
value of σB�E

bu ¼ 16MPa found in this test compared to the mean value of σbu ¼
17:4MPa assumed for the whole size range. However, even this correction gives
σbu=σ

B�E
bu ffi0:8, which is much lower than the predicted value of σbu=σB�E

bu ffi1:0.

3 FORMATION OF AXIAL SPLITTING CRACKS IN A DEEP ROCK
LAYER

3.1 Introduction

Axial splitting phenomena in rocks, i.e. tensile fractures, also called joints, which run
parallel to the major compression axis, are important in mining and petroleum
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[M

P
a]

18

20

22

0.2 0.4 0.6
L[m]

0.8 1

Test data

Mean value

1.2

Figure 11 Variation of the modulus of rupture of Dionysos marble for various beam lengths for
constant beam aspect ratio L=Hffi4.
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engineering practices. For example one may mention that deep underground mining
results occasionally to explosive “rock bursts” at stope faces in the form of longwall or
room and pillar etc. In geological setting, on the other hand, limestone deposits
embedded between thin shale layers are characterized by periodic axial splitting, the
spatial frequency or spacing of which is very important for permeability estimates.
From joint mapping in the field (Βock, 1971, 1980) there are evidences that joints in a
geological layer display some kind of periodicity. These layers are transected usually by
two main (haupt) joint sets that are mutually orthogonal to each other and with
spacings exhibiting periodicity. Depending on the case the ratio of the spacing of joints,
S, to the thickness of the layer, T, is constant, which means that these two geometrical
quantities obey a certain relationship. This ratio S/T varies in most of the cases around
the value of two (Βock, 1971, 1980).

In this chapter we consider this problem using two approaches. One refers to the
LEFM, and the other refers to the application of bifurcation theory to internal buckling
of geological layers under initial stress (Βiot, 1965; Vardoulakis & Sulem, 1995). The
latter approach is based on the assumption that the critical buckling stress of a contin-
uous medium is that which causes a radical change of the deformational field without a
change of the boundary conditions. It is assumed that brittle fracture is affected by strain
gradients. The corresponding bifurcation problem is formulated and solved numerically
for a rock layer with anisotropic macrostructure and microstructure.

3.2 LEFM model of axial splitting joints in an isolated rock layer

It is assumed that a deep rock layer is uniaxially compressed under the action of in situ
vertical stress σV as is illustrated in Figure 13. If the layer behaves in a linear elastic
fashion and is situated far from free surfaces (like mountain slopes, workings, caverns,
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Figure 12 Size effect exhibited by the modulus of rupture of Dionysos marble for constant beam aspect
ratio L=H ¼ 4.
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holes etc) deformations in the horizontal directions cannot be realized; therefore the
deformation is a constrained uniaxial compression with zero lateral strain i.e.

εH ≈ 0; σH ¼ KσV ; K ¼ �

1� �
ð103Þ

where K denotes the lateral stress ratio.
Based on micromechanical experimental evidences it may be said that in polycrystal-

line or granular materials like rocks the nonhydrostatic compressive loads generate
locally tensile stresses. These local tensile stresses arise from material property mis-
matches and grain boundary irregularities (Tapponnier & Brace, 1976). In turn, these
tensile stresses cause the initiation and propagation of mode-I cracks that are aligned
with the major compressive principal stress i.e. along Ox2 axis as is shown in Figure 13
(compressive stresses are considered positive quantities unless stated otherwise). In the
configuration of the rock bed subjected to geostatic stresses the mean stress may be
found as follows

p ¼ 1þ �

1� �

σV
3

ð104Þ

Then it may be shown that the principal deviatoric stresses along the horizontal Ox1
and the vertical Ox2 axes are given by the following formulae, respectively

s1 ¼ � 1
3
1� 2�
1� �

σV ; s2 ¼ 2
3
1� 2�
1� �

σV ð105Þ

It may be observed that the horizontal deviatoric stress is tensile, while the vertical
deviatoric stress is compressive, which could explain the alignment of the axial splitting
cracks along Ox2-axis based on the above consideration of local stress concentrations
at grain scale.

As is shown in Figure 14a, for the periodic parallel crack problem the mode-I SIF KI

is assumed to be the superposition of the tensile deviatoric stress s1 properly amplified
and of the all-around uniform compression p in the following fashion (from now onwe
consider tensile stresses and extensional strains as positive quantities)

X2X2

σHσH σHσH

σvσv

σvσv

SS

TT

X1X1
OO

Figure 13 Sketch of a system of parallel periodic axial joints in a horizontal rock layer and Cartesian
system of coordinates.
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KI ¼ Y
S
T
;
2a
T


 �
½A ⋅ s1 þ p� ffiffiffiffiffiffiπa

p ð106Þ

where Y is a configuration correction factor that is a function of the spacing-to-
thickness and crack length-to-thickness ratios, and A is an amplification factor between
the local tensile stress and the applied deviatoric stress s1 (Costin, 1983) that is assumed
to be a constant in this model. The SIF due to the deviatoric stress s2 that acts in a
direction parallel with the cracks is obviously null. Chen (2004) has solved the stress
boundary value problem of an infinite strip weakened by an array of periodic parallel
cracks and has presented numerical values of the mode-I SIF acting on the crack tips of
the axial cracks for various values of the ratios S/T and 2a/T. The regression analysis of
his results performed herein has been accomplished by using the following interpola-
tion function for the configuration correction factor Y

Y
S
T
;
2a
T


 �
¼ x1

2α
T


 �2

þ x2
2α
T


 �
þ x3

2α
T


 �
S
T


 �
þ x4

S
T


 �
þ x5

S
T


 �2

þ x6

ð107Þ

X2X2

SS

(a)(a)

(b)(b)
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As1As1pp
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ppTT 2a2a
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LL

TT 2a2a

X1X1
OO

Figure 14 Plane strain model of the infinite layer weakened by parallel periodic axial splitting cracks; (a)
Array of periodic and parallel cracks in an elastic layer, and (b) array of parallel joints in a layer
of length L with fixed boundaries.
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The regression analysis showed that the following values of the constant coefficients
result in a mean error of 3% in the range of values of the two ratios also used to find the
numerical values by Chen, i.e. S=T2½0:4; 2� and 2α=T 2 ½0:1; 0:8�,

x1 ¼ 2:4369; x2 ¼ �1:4272; x3 ¼ 0:1497;
x4 ¼ 0:5390; x5 ¼ �0:2058; x6 ¼ 0:8533

ð108Þ

The above solution is not representative for the bed that lies at great depth below the
free surface. Instead the most appropriate boundary conditions for the bed are fixed
displacements as is shown in Figure 14b. The compliance of the cracked layer with
clamped boundaries is depicted partly from the cracks and partly from the intact
rock,

ε ¼ Cσ þ 1
E
σ; σ ¼ As1 þ p ð109Þ

where C is the compliance of the cracked bed. The additional strain energy due to N
cracks is given by the formula below

ΔUa ¼ TL
2

σε ¼ TL
2

Cσ2 ð110Þ

Irwin (1957) has proved the following relationship that is valid under fixed grips, plane
strain conditions and mode-I cracks

∂ΔUa

∂α
¼ 1� �2
� �

E
K2

I ð111Þ

By virtue of Equations 110 and 111 and integrating we get the expression for the
compliance of the elastic layer due to N ¼ L

�
S cracks

C ¼ 2π 1� �2
� �

N
TLE

�A
1
3
1� 2�
1� �

þ 1
3
1þ �

1� �


 �2ðα

0

αY2da ð112Þ

Subsequently from Equation 109 the stress-strain relationship may be derived as
follows

σ ¼ Eε

1þ 2π 1� �2
� �

N
TL

�A
1
3
1� 2�
1� �

þ 1
3
1þ �

1� �


 �2ðα

0

αY2da

ð113Þ

The definite integral appearing in the above expressionmay be easily computed in closed
form from the polynomial Equation 109 of the configuration correction factor. Finally,
the SIF may be derived from Equations 106 and 113 in the following manner

KI ¼ Y
ffiffiffiffiffiffi
πa

p �
� Eε

1þ 2π 1� �2
� �

N
TL

�A
1
3
1� 2�
1� �

þ 1
3
1þ �

1� �


 �2ðα

0

αY2da
ð114Þ
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A dimensionless SIF may be defined by setting σ0 ¼ Eε in the following fashion
KI=σ0

ffiffiffiffiffiffiffi
πT

p
. Using Equation 110 the elastic strain energy of the cracked geological

layer with N joints of length 2α under certain macro-strain ε becomes

Ua ¼ 1
2

ELTε2

1þ 2π 1� �2
� �

N
TL

�A
1
3
1� 2�
1� �

þ 1
3
1þ �

1� �


 �2ðα

0

αY2da

ð115Þ

The determination of the equilibrium crack length in the elastic bed with fixed dis-
placement is then based on the following three criteria proposed by Kemeny & Cook
(1985),

KI ¼ KIC;

∂KI

∂α
< 0;

minUα

ð116Þ

The third ad hoc criterion postulated by Kemeny & Cook (1985) and is shown in
Equation 116 means that for a given strain ε applied to the rock layer, rock parameters
�; A; KIC and bed thickness T, the optimum configuration will be such that minimizes
the stored elastic strain energy Ua. Figure 15 illustrates the variation of the dimension-
less SIF with the crack semi-length to bed thickness ratio for various values of crack
spacing to bed thickness ratios and for a constant Poisson’s ratio � ¼ 1=3 and ampli-
fication factor A ¼ 20. As was expected the SIF under fixed-grips conditions is initially
increasing with crack length, reaches a peak and then decreases monotonically since the
stress is released due to increasing crack length. As it may be seen from Figure 15 below
as the number N of cracks increases – for fixed bed length L this means a decreasing S/T
ratio – the equilibrium crack length decreases. According to the second crack propaga-
tion criterion the equilibrium crack length is found by the intersection of the respective
curve with the fracture toughness line that is parallel to the horizontal axis. Employing
the third criterion of the minimization of the stored strain energy then as may be seen in
Table 1. it turns out that the optimum configuration is established for S=Tffi 2:2 as is
also observed in reality and crack length comparable to bed thickness. It is remarked
here that this model does not predict a size effect, that is to say dependence of the
critical strain or stress on the bed thickness, for fixed S/T ratio.

3.3 Internal buckling of a single layer of rock under initial stress

The same problem is considered here as a non-homogeneous, plane-strain deformation
of a horizontal layer of thickness T and very large horizontal extent, due to constant
vertical compression σv as shown in Figure 13. The theory used in this alternative
analysis is based on incremental plane strain deformations superimposed on the large
strain of a uniform compression. For the considered non-homogeneous deformation
mode, we seek such a displacement field that displays certain periodicity along Ox1 and
Ox2 axes. An appropriate periodical deformation field would be such that: a) along the
vertical axis Ox2 the joints open, b) the deformations attenuate until the middle of the
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distance to the neighboring cracks, c) it corresponds to the locations of the joints, and d) it
is given in terms of two unknown amplitude functions of the dimensionless coordinate x2,

The sine and cosine functions are the most appropriate to describe the deformational
field prescribed above (Biot, 1965), that is essentially the deformational pattern of a
“standing wave”. Hence the following expressions for the displacement components
are employed

V1 ¼ Δu1 ¼ Asin anx1ð Þcos bmx2ð Þ
V2 ¼ Δu1 ¼ Bcos anx1ð Þsin bmx2ð Þ ð117Þ

where we have set

an ¼ π
n
S
; bm ¼ π

m
T

ð118Þ

with n, m being even natural numbers, and the dimensionless coefficients A, B denoting
the displacement amplitudes. Figures 16a illustrate the deformation modes of the
geological layer weakened by periodic parallel axial splitting joints for the cases n=1,

Table 1 Dependence of the dimensionless elastic strain energy for the
various values of crack spacing to bed thickness and crack length to
bed thickness ratios.

S/T 2α=T Ua=Eε2T2

0.4 0.15 0.918
1 0.36 1.326
2 0.82 0.972
2.2 0.92 0.876
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Figure 15 Dependence of the dimensionless SIF on the crack length to bed thickness ratio for various
number of cracks or crack spacing to bed thickness ratio for � ¼ 0:3, A=20 and
KIC=σ0

ffiffiffiffiffiffiffi
πT

p ¼ 0:2.
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m=1 and για n=2, m=2. Figure 16b shows the deformation field around each vertical
axial joint.

It is assumed that the elasticity of the geological layer displays a cubic symmetry that
is described with three elasticity constants instead of the usual two constants of
isotropic elasticity (Landau & Lifshitz, 1975). Cubic materials posses a shear modulus
denoted here with the symbol G that is not related to the Young’s modulus and
Poisson’s ratio with the usual relation of isotropic elasticity. The ratio G=G� is used
here as a measure of anisotropy of the geological material, i.e.

2 1þ vð Þ
E

G ¼ G
G� ¼ ξ2 ð119Þ

This anisotropy of the macrostructure is essential for the modeling of the axial splitting
fracture of the layer, as is the deviatoric stresses with large enough amplification factor
A assumed in the frame of the LEFM approach presented previously. Assuming
infinitesimal strain elasticity, the Jaumann stress increments D� σij of the total stress
are related directly to the strain increments Δεij through the constitutive relations of
linear elastic materials, perturbated properly in order to account for higher order strain
gradients and anisotropy in the microstructure (Exadaktylos & Vardoulakis, 1998)
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Figure 16 (a) Deformational modes of the geological layer for n=1, m=1(left) and n=2, m=2 (right), and
(b) lines of equal horizontal strain around the joint.
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D
�
σ11 ¼ 2G�

1� 2v
1� vð ÞDε11 þ vDε22f g � 2Gℓ

2r2Dε11

D
�
σ22 ¼ 2G�

1� 2v
vDε11 þ 1� vð ÞDε22f g � 2Gℓ

2r2Dε22

D
�
σ12 ¼ D

�
σ21 ¼ 2G Dε12 � ℓ

2r2Dε12
� �

ð120Þ

In this first attempt we simplify considerably the problem at hand by assuming that the
strain gradients affect only the horizontal stress increment in the following manner,

D
�
σ11 ¼ 2G�

1� 2v
1� vð ÞDε11 þ vDε22f g �Gℓ

2Dε11;11

D
�
σ22 ¼ 2G�

1� 2v
vDε11 þ 1� vð ÞDε22gf

D
�
σ12 ¼ D

�
σ21 ¼ 2GDε12 ð121Þ

where ℓ is an internal length scale that is used for the consideration of the strain gradient
only in the horizontal component of stress, and Dεij designates the incremental infini-
tesimal strain tensor

Dεij ¼ 1
2

Dui;j þ Duj;i
� � ð122Þ

Considering that the layer of infinite lateral extent has fixed upper and lower bound-
aries (internal buckling problem) while the horizontal displacements along the cracks
cancel out, plus the symmetry conditions, then the boundary conditions of the internal
buckling problem are imposed in the following fashion,

V1 ¼ 0; Dε12 ¼ 0 8x2 and x1 ¼ �l=2

V2 ¼ 0; Dε12 ¼ 0 8x1 and x2 ¼ �h=2 ð123Þ
The model given be Equation 117 satisfies the boundary conditions for n=2 and m=2,

V1 �l=2; x2ð Þ ¼ Asin �πð Þcos bmx2ð Þ ¼ 0

Δε12 �l=2; x2ð Þ ¼ � 1
2

Ban þ Abmð Þsin �πð Þsin bmx2ð Þ ¼ 0 ð124Þ

and

u2 x1;�h=2ð Þ ¼ Bcos anx1ð Þsin �πð Þ ¼ 0

ε12 x1;�h=2ð Þ ¼ � 1
2

Ban þ Abmð Þsin anx1ð Þsin �πð Þ ¼ 0 ð125Þ

For continuing linear equilibrium in plane strain conditions (i.e. ∂3 ¼ 0 ) and in the
coordinate system of principal axes of initial stress σij in the plane of the deformation,
the stress equilibrium equations take the following form (Biot, 1963)

D
�
σ11;1 þ D

�
σ12;2 þ σvDω21;2 ¼ 0

D
�
σ21;1 þ D

�
σ22;2 þ σvDω21;1 ¼ 0

ð126Þ
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where D _ω being the incremental rotation (spin) tensor

Dωij ¼ 1
2

Dui;j � Duj;i
� � ð127Þ

Substituting Equations 121 & 117 in the equilibrium Equations 126 the following
equations are obtained

C11Dε11;1 þ C12Dε22;1 �Gℓ
2Dε11;111 þ 2GDε12;2 þ σvDω;2 ¼ 0

2GDε12;1 þ C21Dε11;2 þ C22Dε22;2 þ σvDω;1 ¼ 0
ð128Þ

where we have set

C11 ¼ C22 ¼ 2G� 1� vð Þ
1� 2v

; C12 ¼ C21 ¼ 2G�v
1� 2v

ð129Þ

Finally, by employing the strain-displacement and the rotation-displacement Equations
122 and 127, respectively, we obtain the following system of algebraic equations

� A Gℓ
2a4n þ C11a2n �

σv
2
�G

� �
b2m

� �
þ B C12 þGþ σv

2

� �
anbm

� �
¼ 0

� A C21 þG� σv
2

� �
anbm þ B C22b2m þ Gþ σv

2

� �
a2n

� �� �
¼ 0

8>><
>>:

ð130Þ

The above system of Equations 130 is further simplified by dividing both equations
with the term a2n and with the shear modulus G�, that is

A ℓ
2
a þ c11 � ξ1 � ξ2ð Þr2

� �
þ B c12 þ ξ1 þ ξ2ð Þ

� �
r

� �
¼ 0

A c12 � ξ1 � ξ2ð Þ
� �

rþ B c11r2 þ ξ1 þ ξ2ð Þ
� �� �

¼ 0

8><
>: ð131Þ

where we have set

c11 ¼ C11=G� ¼ C22=G�; c12 ¼ C12=G� ¼ C21=G�;

ξ1 ¼ σv
2G� ; ξ2 ¼ G

G� ð132Þ

ℓ
2
a ¼ ℓ

2ξ2a
2
n; r ¼

bm
an

¼ S
n
m
T

¼ S
T

For non-trivial solution in terms of A and B, the determinant of the system of
Equations 131 must vanish. This leads to the following biquadratic equation for
the aspect ratio of axial joints r, i.e.

r4 þ 2mr2 þ k2 ¼ 0;

2m ¼ p2
p4

¼ c11ℓ
2
a þ c211 � c212 � 2c12ξ2

c11 ξ2 � ξ1ð Þ ;

k2 ¼ p0
p4

¼ ðℓ2a þ c11Þ ξ2 þ ξ1ð Þ
c11 ξ2 � ξ1ð Þ

ð133Þ
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The roots of Equation 133 are

r21 ¼ �mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � k2

p
;

r22 ¼ �m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � k2

p ð134Þ

A solution is possible if there exists a real root ri; that is, if either r21 or r22 or both are
positive. This occurs in the following cases: (Case 1)m > 0; k2 < 0 in which the root r21
is positive and r1 is real; (Case 2) m < 0; m2 > k2 > 0 in which both r21 and r22 are
positive and so r1 and r2 are real.

The critical internal buckling stress is then found as the minimum load ξ1 for which
Equation 133 has real roots. This is illustrated in Figure 17 that presents the depen-
dence of the buckling load on the aspect ratio of the jointed layer for four cases of
anisotropy, namely ξ2 ¼ G=G� equal to 2.5, 3, 5, and 7, a constant Poisson’s ratio � ¼
0:49 – since rock masses at great depths behave in an almost incompressible manner –
and a dimensionless microstructural length scale ℓa ¼ 0:1. It may be observed that as
the macroscopic anisotropy of the layer becomes more pronounced, then both the
crack spacing to bed thickness ratio and the buckling load decrease. In general, both the
aspect ratio of axial splitting cracks and of the buckling load decrease with the increase
of the macrostructural anisotropy of the bed or equivalently with the amplification
factor A of the tensile stresses acting on the crack tips.

Plots of several spectra of the buckling stress with aspect ratio for various values of the
dimensionless microstructural length scale ℓa are illustrated in Figure 18a. From these
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Figure 17 Dependence of the dimensionless buckling load on the aspect ratio of the crack spacing to
bed thickness for v=0.49 and for four shear moduli ξ2 ¼ G=G� equal to 2.5, 3, 5, and 7,
respectively and constant internal length scale. The global minima represented by the circles
are moving toward the left of the diagram as ξ2 increases.
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plots it may be drawn the interesting result referring to the dependence of the buckling
load on the crack spacing to bed thickness ratio for any specified degree of anisotropy of
the macrostructure, shown in Figure 18b, that is a manifestation of a size effect.

Indeed, a size effect law of the following form was best-fitted on the numerical data
presented in Figure 18b,

ξ1 ¼ C1
r
ℓa


 ��β

þ C0 ð135Þ

whereC1; C0; β are constant factors. In factC0 is the buckling load for ℓa ! 0. Then by
combining Equation 135 and the third of Equation 132, it may be seen that the size
effect of the buckling load on the spacing of cracks for constant aspect ratio, anisotropy
ratio and internal length scale takes the form

ξ1 ¼ C1
S
T


 ��β

4π
ffiffiffiffiffi
ξ2

p
L

� �β" #
S�β þ C0 ð136Þ

The regression analysis of the numerical data by using the power-law given by
Equation 135 gave the following values of the constant coefficients

C1 ¼ 1:4476; β ¼ 2:1748; C0 ¼ 6:048 ð137Þ
It may be seen that the exponent is relative large and explains the fact that in real
situations it is very rare that the ratio of axial splitting joints spacing relatively to the
bed thickness is less than unity.

4 SUMMARY

After a brief overview of some applications of the Casal-Mindlin microelasticity or
grade-2 or second gradient of strain theory with surface energy, for the study of
fundamental static and dynamic problems, two problems are thoroughly presented
here, namely the bending of beams and the axial splitting of deep geological layers. In
all cases that were reviewed and examined, it is demonstrated that the consideration of
internal length scales are responsible for the manifestation of size effects in static
problems and non-classical dispersion phenomena in dynamic problems.

More specifically, it was illustrated that the surface energy term of the technical beam
theory is responsible for a size effect exhibited by the flexural strength of beams in
three-point bending, namely the dependence of the flexural strength on the inverse
length of the beam for the same aspect ratio. Based on the assumption that the failure
extensional strain in bending is equal to the failure extensional strain in direct or
indirect tension, and the assumption of a linear elastic behavior of the brittle material
up to failure, then also a L−1 size effect of the tensile strength of quasi-brittle solids in
direct as well as in indirect tensile tests, has been derived. The size effect predicted by
the proposed theory is validated against experimental results of beam bending of
Dionysos marble.

It has been also found the interesting result referring to the dependence of the
buckling load of a rock bed transected by periodic system of axial splitting cracks on
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the bed thickness, for fixed crack spacing to bed thickness ratio and a specified degree of
anisotropy of the macrostructure.

Hence, there is ample space for further applications of this theory both for the
development of computational codes and new experimental techniques that could

1 1.5 2 2.5 3 3.5 4 4.5 5
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Aspect ratio, r = S/T
(a)

(b)

ξ 1
/ξ

2
 = 

σ v
/2

/G

ξ2 = 10

Numerical data

0

D
im

en
si

on
le

ss
 b

uc
kl

in
g 

lo
ad

, ξ
1

5

5.5

6

6.5

7

7.5

8

8.5

9

1

v = 0.49, ξ
2 

= 10

2

S/T/Ia

3 4

Power law

Figure 18 (a) Dependence of the dimensionless buckling load represented by the circles on the aspect
ratio of joints for various microstructural length scales (as the microstructural scale para-
meter increases the critical buckling load decreases) for ξ2 ¼ 10 and Poisson’s ratio
� ¼ 0:49, and (b) size effect exhibited by the buckling load for � ¼ 0:49 and ξ2 ¼ 10.
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take into account the effect of rock microstructure on rock behavior. For example in a
series of papers Exadaktylos & Xiroudakis (2009, 2010a,b) have developed a special
grade 2 constant displacement discontinuity method – i.e. with one collocation point
per element − for the accurate solution of plane crack problems. Furthermore, it is
important to further develop this theory in the context of nonlinear elasticity and
plasticity theories and the development of new failure theories of rocks. Other techno-
logically important problems that may be considered in the frame of the present theory,
are the elastic wave propagation in earthquakes and seismic wave characterization of
rock masses, and modeling of the mechanical behavior of rock joints and size effects
among many others.
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