
Applying genetic algorithms to optimization of
reinforced concrete beam

Matěj Lepš
advisor Zdeněk Bittnar
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Abstract

This paper outlines application of genetic algorithms (GAs) to a class of optimization
problems associated with various design tasks. In particular, we attempt to minimize a cost of
a steel reinforced concrete beam. We search for a configuration characterized by a minimum
price, which yet satisfies all strength and serviceability requirements for a given level of the
applied load.
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1 Introduction

A wide spread of concrete materials in structural engineering in recent decades has led
to many different optimization problems improving the design and overall performance of
concrete structures. In most applications the aim has been at finding an optimum weight of a
structure for given design conditions. To further enhance our problem we add the total price
of a structure into the gambling pool. Therefore, a standard task of designing structures for
their maximum strength/weight ratio becomes a part of a more general picture.

To introduce the subject, consider a steel reinforced concrete beam. The steel is usually
characterized by its high strength and ductility, while concrete marks out by an advantageous
pressure/strength ratio and price. When combining these two materials in a proper way a
comparatively inexpensive structure can be obtained. Thus, we are after the less expensive
configuration that yet satisfies all strength and serviceability requirements.

When carefully examining this problem it becomes evident that an efficient and robust
algorithm capable of handling a number of variable functions with discontinuities and non-
linearities is required. To tackle such a problem we may now rely on various stochastic
algorithms with a genetic algorithm occupying an important place among them.

The paper is organised as follows. Formulation of the design problem is investigated
in Section 2. Some techniques used for optimization are described in Section 3. Section 4
presents description of two genetic algorithms. The next Section contains example results
showing the power of genetic algorithms in effective search for the desired solution.

2 Objective function

Before proceeding with the actual description of a simple genetic algorithm and its mod-
ifications we first formulate the desired objective function including penalty terms for incor-
porating various constraints.



One of the key quantities each design engineer takes into consideration is the price of a
structure. Since an effective design of a structure can substantially reduce this quantity, we
selected price as the objective function

f(X) = VcPc + WsPs , (1)

subjected to following constraints

δi ≤ δlim =
l

250
, (2)

MSd ≤ MRd . (3)

In Eq. (1) Vc is the volume of concrete and Ws is the weight of steel; Pc and Ps are the
price of concrete per unit volume and steel per kilogram, respectively. Inqs. (2) and (3)
express selected design criteria according to EURODODE 2 standard (EC2) [7] for reinforced
concrete (RC) structures. In particular, Inq. (2) represents the serviceability requirement,
where l is the span and δlim is the maximum permissible deflection of a beam. Condition
for the cross-section bearing capacity, Inq. (3), given in terms of moments deserves more
attention.

Consider a representative cross-section of reinforcement concrete beam shown in Fig. 1
with given dimensions b and h. Internal forces acting on the cross-section, which are necessary
for the design, are usually obtained using the finite element method [3].

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

αfcd

Fc

FsAs

b

hd

1d

z

x

Figure 1: RC beam with lower reinforcement

According to [7] the required steel area is provided by

AS = bd
αfcd

fyd

(
1−

√
1− 2MSd

bd2αfcd

)
, (4)

where MSd is the moment of internal forces. The ultimate moment MRd is then given by

MRd = ASfyd(d− 0.416x), x =
ASfyd

0.81 b αfcd

. (5)

To handle inequalities (2) and (3) one may adopt a standard approach based on the penalty
method. In such a case the original objective function (1) is augmented by including penalties
for all constraint violations

f(X) = VcPc + WsPs +
2∑

i=1

pfi . (6)
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Figure 2: Penalty function

In our present approach the penalty functions pfi assume in general the form displayed
in Fig. 2. Consider a parameter χ

Fi ≤ Fi,max , χ =
Fi

Fi,max

. (7)

Then in a closed interval < 0, 1 > the form pfi is equal to zero, in interval < 1 + α,∞ >
pfi is assigned to the user defined parameter L and in interval < 1, 1 + α > this function is
provided by

pfi = K
(χ− 1

α

)β
, (8)

where α, β and K are the user defined parameters of the proposed penalty function. Usu-
ally a large number is assigned to parameter β whereas α approaches near zero. Parameter
K is lower than or equal to L.

At this point, however, we should warn the reader against perceiving the above approach
as a general one for solving a constrained media problem. Although for a moderate number
of constraints the approach, which includes penalties in the function evaluation, may prove to
be reliable and efficient, the same might not be true when the number of constraints increases.
In case of a larger number of constraints (shear strength requirements, and various other
design criteria recommended by strandards) it appears reasonable to follow for example an
approach outlined in [6].

3 Optimization techniques

When designing an evolutionary program one has first to square up to the principle
question: Binary or float-point representation of searched variables. To shed a light on this
subject, we point out that most of the search variables in the above problem are either directly
represented by integer numbers or as pointers to components of a discrete set of real numbers.
Consequently, a binary alphabet appears as a natural choice for our representation space.
Mapping between the representation and search spaces is described in the next Section.

3.1 Data coding

To clearly understand the binary coding devised for this problem we first introduce the
data structure for individual design parameters. From the genetic algorithm (GA) point of
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view, the only real-valued design parameters are the cross-sectional dimensions of a beam
displayed in Fig. 3,

Figure 3: Beam cross-section

where h and b represent the height and width of the cross-section, respectively. Table 1 lists
upper and lower bounds for each dimension together with the desirable precision. When
implementing the GA we further assume that each dimension can either acquire discrete
values spread 0.025m apart or it can change continuously.

Table 1: Dimensions of the cross-section

Variable Units Minimum Maximum Precision Comment
h [m] 0.15 0.85 0.025 Discrete values

0.15 0.85 0.001 Continuous values
b [m] 0.15 0.45 0.025 Discrete values

0.15 0.45 0.001 Continuous values

To introduce additional design variables recall Eq. 1 suggesting that steel reinforcement
should be considered as important as concrete when attempting to reduce the cost of a
structure. Table 2 stores the remaining ten parameters selected to control an amount and
location of the bending steel reinforcement. Note that all variables are treated as integer
numbers.

Table 2: Parameters of steel reinforcement

Variable Minimum Maximum Precision Comment
pru, prb 1 16 1 Indexes of vector of real numbers

nbI − nbIII 0 31 1
nuI − nuIII 0 31 1

lI , lII 0 127 1 No. of elements in a given interval

In Table 2 pru and prb represent upper and lower reinforcement along the whole span of a
beam, see Fig. 4. Parameters nbI−nbIII then correspond to the number of steel reinforcement
bars located at the bottom of the beam cross-section within individual sections and nuI−nuIII

stand for the number of bars located at the top of a beam, Fig. 4. For the design purposes,
the beam is subdivided into a certain number of elements, where the internal forces are
presumed to be constant. Parameters lI and lII are then associated with the number of
elements derived for sections I and II. lIII follows from a simple algebra. The above
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parameters can be stored in vector X, Eq. 1, which in our particular case represents a
vector of 12 variables.

Figure 4: Beam sections

We now proceed to construct a general mapping between the representation space and the
search space, common for both integer and real numbers. In general, we consider a function
f(X) = f(x1, x2, . . . , xn), where X is a vector of n variables, integer or real numbers xi,
defined on a closed interval

mini ≤ xi ≤ maxi , (9)

where mini and maxi are bounds assigned to each variable xi taken from a domain Di of
either real or integer numbers. Further assume that each variable xi is represented with
some required precision pi, defined as the smallest unit the number xi can attain. Suppose
that five decimal points for the real variable’s precision is desirable, then pi = 0.00001. If
Di ⊆ N0 (initeger numbers including zero) then pi = 1. Provided that pi = 2, the integer
number xi acquires either even or odd number depending on a given minimum, see Eq. 11.
Each variable xi can be transformed into a nonnegative integer number yi ∈ N0 as

yi =
[
xi −mini

pi

]
. (10)

An inverse transformation is given by

xi = yi pi + mini . (11)

Ultimately, the number yi is represented as a binary string of length k such that

maxi −mini

pi

≤ 2k . (12)

An integer number k is provided by

k =

[ ln
(maxi −mini

pi

)

ln 2

]
, (13)

where operator [z] denotes the integer part of z. It can be easily recognized that length of a
binary string depends quite substantially on the required precision. For example, coding a
high-precision real number may lead to binary strings of size which essentially prevents the
GA from successful implementation. In our study, however, such a weakness of GAs creates
no obstacles.

Note that a binary form of vector X is often referred to as a chromosome, while individual
variables xi are termed genes. Thus, if our vector X was composed of two variables x, y,
each represented by 8-bit binary number, then our chromosome would store two genes and
consist of 16 binary digits. How chromosomes enter the GA procedure is discussed in the
next Section.
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4 Genetic algorithms

Genetic algorithms are formulated using a direct analogy with evolution processes ob-
served in nature, a source of fundamental difference between traditional optimizers and GAs.
Genetic algorithms, in contrast to traditional methods, work simultaneously with a popu-
lation of individuals, exploring a number of new areas in the search space in parallel, thus
reducing a probability of being trapped in a local minimum. As in nature, individuals in a
population compete with each other for surviving so that fitter individuals tend to progress
into new generations, while the poor ones usually die out. This process is briefly described
in Algorithm 1.

1 t = 0
2 generate P0, evaluate P0

3 while (not termination-condition) {
4 t = t + 1
5 select Mt from Pt−1 (apply sampling mechanism)
6 alter Mt (apply genetic operators)
7 create Pt from Mt and evaluate Pt (insert new individuals into Pt)
8 }

Algorithm 1: Principle of genetic algorithm

Algorithm 1. provides basic steps of a single GA cycle; reproduction phase (#5), re-
combination (#6), and selection of a new population (#7). In the next paragraph we first
explore basic operators controling the step 6. Steps 5 and 7 will be explained in more details
when formulating various algorithms we tested.
Genetic operators

Breeding is the essential force driving evolution of each species. Mating process, in
which two parents combine their (we hope) good characteristics to produce (we hope) a
better offspring, is accomplished in GAs through various “cross-breeding” and “mutating”
operators. Detailed exposition to these operators is given in [4]. Here, we limit our attention
to basic crossover and mutation operators we employed in the present study.

We begin with uniform crossover. When two idividuals are selected for mating this
operator works in accord with Fig. 5.

Figure 5: Uniform crossover

First, a random mask of the same length as the parents is generated. To create offspring−1
we proceede as follows. When the bit in the mask is 1 then the corresponding bit from
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parent−1 is copied to offspring−1 and when there is a 0 in the mask then the corresponding
bit in parent−2 is passed to offspring−1. To create offspring−2 we simply exchange the
order of parents. In addition, when randomly generating sets of ones and zeros, as shown
in Fig. 6, we may arrive at single-point and two-point crossover operators, respectively. In
other words, when applying single-point crossover for example, we first randomly select a
crossover point after which parents exchange their tails. Crossover operator is usualy applied
with only a certain probability pc. Therefore, not all pairs of individuals selected for mating
are modified by the crossover step.

Figure 6: a) Single-point crossover mask, b) Two-point crossover mask

However, they still are bound to be disrupted by mutation operator. The mutation
operator randomly introduces new information, either positive or negative, into a population.
It provides a very good job particularly in the first exploration stage. However, its role in
the recombination step should gradually decrease in the exploitation stage as the solution
converges to the “global” minimum. On contrary, when a population gets trapped, over a
certain number of GAs cycles, in a local minimum, the mutation operator might be the only
source of a new information to drag the solution uphill to continue the search for the global
minimum. The GA algorithm should be able to adaptively react to these contradictory
effects. On the other hand, there exist several other perhaps more appealing approaches,
which deal with this so called “premature convergence” towards a local minimum [5].

In general, the mutation operator is applied to each new offspring created in the crossover
step. For the binary algorithm, it just randomly changes bits from zeros to ones or vice versa
with a small probabillity, Fig. 7.

Figure 7: Mutation
It is generally accepted that mutation plays a secondary role in a process of recombination,

and as in nature the likelihood of its appearence is usually much smaller (pm = 0.001−0.01)
than that of crossover (pc = 0.6− 1). In what follows these operators will be placed within
the framework of two simple versions of Algorithm 1. examined in our study.

Genetic algorithm I (GAB I)

To keep our promise given in the introductory part we start with a simple genetic al-
gorithm described in [4] with only a minor difference related to sampling mechanism. This
algorithm can be placed into the category of preservative, generational and pure selection
procedures. It assumes non-zero selection probabilities for each individual. It carries out
generational population replacement forcing each parent to reproduce in one generation only.
To put this algorithm within the context of Algorithm 1 we now review the important steps
in more details:

Step 5 Individuals selected for reproduction are copied to the “mating” pool according to
their relative performance reffered to as their “fitness”, or “figure of merit”. In our case
of function optimization it is simply equal to the function value or rather its inverse

7



when solving minimization problem. An expected number of copies each individual
should receive in the mating pool Mt is given by

ei =
si∑N
1 si

N, si =
1

δ + fi

, fi ≥ 0

where N is the number of individuals in a population and fi is the function value asso-
ciated with the ith individual; si = fi when solving maximization problem. Parameter
δ is a small positive number. To select individuals for recombination phase we imple-
mented a commonly used sampling mechanism called Remainder stochastic sampling
without replacement (RSSwoR) [1], [4], [6]. This method allocates individuals accord-
ing to their integer part of ei. The remaing places in a population are then sampled
according to their fractional part using a spinning roullete wheel. The fractional parts
represent a succes probability of selection. After each spin, the expected value of the
selected individuals is set equal to zero.

Usually it is not desirable to sample individuals according to their raw fitness. In
such a case the best individuals may receive a large number of copies in a single
generation, so after a small number GA cycles all individuals start to look alike and
the algorithm converges prematurely to a local minimum. In other words, increasing
the selection pressure decreases the population diversity. To compress the range of
fitnesses we incorporated a linear scaling (shifting) of the fitness function into our
sampling procedure. For more details see for example [4]. However, care must be
taken to avoid overcompression, which not only slows down the GA performance but
may result in the loss of the global minimum [2].

Steps 6&7 Randomly select pairs of individuals from the mating pool Mt and perform
recombination using genetic operators described in the previous paragraphs. Make
sure that each individual is used only once. Replace individulas in Pt−1 by a new
offspring to create a new generation Pt.

Genetic Algorithm II (GAB II)

A number of GA confessors favor so called Steady state algorithms, when only a few
members of population are changed. A simple version of this approach is again outlined
through individual steps of Algorithm 1:

Step 5 Reproduction phase employs the most simple sampling mechanism called Stochastic
sampling with replacement or simply the Roulette wheel selection. Details regarding
its implementation are given in [4], Chapter 3. In particular, by spinning the roulette
wheel select two individuals from population Pt−1 for mating. These individuals are
temporarily stored in the mating pool Mt.

Step 6 Alter Mt by applying both the crossover and mutation operators, each with a pre-
scribed probability.

Step 7 Using the inverse roulette wheel select two individuals from Pt−1 marked to die
out. Insert new offspring in Pt−1 only if their relative performance is better then those
selected for dying. Otherwise, there are no changes introduced in population Pt−1.
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5 Examples

As an example we selected a continuous beam subjected to a uniformly distributed load
according to Fig. 8. Due to symmetry, only one half of the beam was analysed. Distribution
of internal forces (bending moment and shear force) were found using the finite elemet
method [3]. The required amount of steel then follows from Eq. 4. The price Pc = 1350.0
Kč/m3 for concrete and Ps =50.0 Kč/kg for steel was assumed.

Figure 8: Continuous beam subjected to uniform loading

To test applicability of both algorithms we explored two example problems. In the first
example we attempted to reduce the price of a construction by merely modifying its shape.
The steel remained unaffected. The second example dealt with the shape and bending
reinforcement optimization simultaneously.

In each case an initial population of 200 individuals was randomly generated. Probabil-
ities of crossover pc = 1 and mutation pm = 0.03 were kept constant through out the GA
run. Optimization process was terminated when there was no change in the best individual
fitness observed over a certain number GA cycles. Results appear in Tables 3-5.

Table 3: Example 1

Values b [mm] h [mm] Price [Kč]
Continuous 150 294 898.48

Discrete 150 300 906.39

Table 3 lists optimal dimensions of the beam cross-section together with corresponding
price assuming both continuous and discrete change of cross-sectional dimensions during the
optimization run. Both algorithms managed to find the exact minimum displayed in Fig. 9
(hollow circle). Function f(b, h) in Fig. 9 is normalized with respect to a given price f0.
Here, f0 represents the price derived from EC2 (f0 = 1002.65 Kč, b = 200, h = 300 mm).
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Figure 9: Distribution of the objective function
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Results derived for the second example are stored in Table 4 showing the minimum,
maximum, and average price associated with the best chromosome in a population. Standard
deviation is added to complete the basic chromosome statistics. It is evident from Table 4
that a proper arrangement of the bending reinforcement bars can provide further reduction
in the overall price. An additional improvement might be expected when considering the
shear reinforcement as a part of the optimization process. This is subject of the current
investigation.

Although we tested all algorithms on one example only, results in table 4 further suggest
superiority of steady state genetic algorithm GAB II over more traditional genetic lgorithm
GAB I, particularly when allowing only a discrete change of cross-sectional dimensions in
the course of optimization. An absence of convergence observed in this case is attributed to
a problem of having the population average fitness close to the population best fitness. Re-
gardless of sufficient diversity within the population, both average and the best individuals
reproduce in such a case with a similar number of copies in next generations, which essen-
tily reduces an oportunity for additional improvement. To remedy this situation, we may
introduce a new source of information through randomly generated individuals to refresh
a portion of the current population. However, we did not experiment with this approach.
Fig. 10 displays convergence characteristics of both algorithms.

Table 4: Example 2 - Characteristics of the best individual

Algorithm Values Price [Kč]
min avg. max std. dev.

GAB I Continuous 851.27 866.24 880.83 9.01
Discrete 959.07 977.09 1024.12 17.10

GAB II Continuous 837.22 844.39 859.15 7.89
Discrete 824.43 829.48 834.22 3.23

0 10000 20000 30000 40000
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GAB I - best individual

GAB I - population average
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Figure 10: Distribution of the objective function

Finally, Table 5 summarises results obtained from five independent runs using the steady
state genetic algorithm. It shows variation in both dimensions and profiles of the lower
(section A-A) and upper (section B-B) reinforcement bars, which yet manifests the discrete
nature of the problem.
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Table 5: Example 2 - results from 5 independent runs using GAB II

Values Section Dimensions Price [Kč]
A− A B −B b [mm] h [mm]

Continuous 6 ø 6.0 10 ø 6.5 151 385 837.22
5 ø 6.5 10 ø 6.5 150 393 842.21
7 ø 5.5 12 ø 6.0 150 388 838.16
6 ø 6.0 11 ø 6.0 150 408 859.15
6 ø 6.0 10 ø 6.5 150 388 838.91

Discrete 5 ø 7.0 10 ø 7.0 150 350 824.43
6 ø 6.5 10 ø 7.0 150 350 830.30
7 ø 6.0 12 ø 6.5 150 350 833.18
6 ø 6.5 12 ø 6.5 150 350 834.22
7 ø 6.0 10 ø 7.0 150 350 829.27

To conclude, we have shown ability of both algorithms to solve a simple design problem
with only a few constraints. The above results, though encouraging when comparing the
optimal price with the one from EC2, should not be overestimated as we avoided various
design criteria recommended by standars. Complying with additional design requirements
just increases a number of constrains, which eventualy prevents the presented algorithms
from working. Our early experiments, however, suggest the so called Augmented simulated
annealing is the right method of attack [5]. Another possibility is to let genetic algorithms
to do the hard work when exploring promissing areas in the solution space initially and then
call the local optimizer to descent individual hills in search for the best solution. Those are
two routs we are currently pursuing.
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