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Abstract
In this thesis, the compression of a material microstructure by means of Wang

tilings is investigated. This approach can be understood as an extension to the
widely utilized Statistically Equivalent Periodic Unit Cell approach to modelling of
heterogeneous materials. Substituting the single cell with multiple tiles allows to
reduce the repetitive nature of periodic compressions.

The central idea of the concept of aperiodic tilings along with the smallest set of
Wang tiles permitting only the strictly aperiodic tiling is outlined first. This part
of the thesis also covers the concept of stochastic tile sets as well as the extension
of the tiling concept to three dimensions by means of Wang cubes.

The subsequent part of the thesis is dedicated to the automatic tile morphology
design based on the idea of fusing samples of the reference microstructure. Alter-
native fusion methods to the original Image Quilting algorithm are proposed and
their capabilities assessed. With respect to the intended reduction of long-range
order artefacts in the reconstructed microstructure a tile patch enhancement is in-
troduced. A considerable part of the thesis is devoted to the sensitivity analysis of
the input parameters of the automatic design with respect to the efforts of preserv-
ing microstructural information between reference and synthesized microstructures.
Its proximity is quantified by means of spatial statistics, namely the two-point prob-
ability function and the two-point cluster function, which are both introduced in the
first chapter.

The last part of the thesis presents an application of the tiling concept in ho-
mogenization procedures. Making use of the sensitivity analysis outputs the micro-
structure of the Alporas R© aluminium foam is compressed within a set of Wang tiles.
The microstructure is then modelled with a wired mesh consisting of beam elements
defined on each tile. Employing the stochastic tiling algorithm allows to produce
computational models of arbitrary sizes in a very efficient manner, thereby allow-
ing to quickly investigate bounds to apparent material properties. Two numerical
homogenization strategies are employed. The effect of the wired model geometry
on the homogenized properties is discussed in order to compare results with other
papers.

Keywords
Wang tilings, automatic tile design, microstructure compression and reconstruc-

tion, modelling of heterogeneous materials, numerical homogenization, Alporas R©

foam

iv



Abstrakt
Tématem práce je komprese materiálové mikrostruktury založená na konceptu

Wangova dláždění. Tuto kompresi lze chápat jako rozšíření způsobu modelování
heterogenních materiálů využívajícího statisticky ekvivalentní periodickou buňku.
Nahrazení jedné buňky sadou dlaždic umožňuje redukovat periodickou podstatu
komprimované reprezentace.

Základní myšlenka aperiodického dláždění spolu s dosud nejmenší množinou
Wangových dlaždic dovolující aperiodické dláždění roviny je popsána v první části
práce. Zde je také uveden princip stochastického dláždění a jeho rozšíření do třetího
rozměru ve formě Wangových krychlí.

Druhá část práce je věnována automatické tvorbě Wangových dlaždic založené na
metodách syntézy vzorků referenční mikrostrutkury. V rámci práce jsou zkoumány
alternativní metody syntézy, jejichž vliv je dále kvantifikován. S ohledem na re-
dukci periodicit je navrženo obohacení sady dlaždic ve formě dodatečné „záplaty“.
Podstatnou součástní práce je citlivostní analýza vstupních parametrů automatické
tvorby dlaždic, a to s ohledem na zachování výstižnosti komprimované mikrostruk-
tury. Porovnání je založeno na statistických deskriptorech, jmenovitě dvou-bodové
pravděpodobnostní funkci a dvou-bodové funkci agregátů, které jsou představeny
v první kapitole.

Poslední část práce se věnuje aplikaci konceptu dláždění v homogenizačních
úlohách. V rámci práce jsou představeny dvě numerické homogenizační metody
vhodné pro diskretizovanou reprezentaci zkoumaného materiálu. S využitím op-
timálních parametrů získaných z citlivostní analýzy je mikrostruktura Alporas R©

hliníkově pěny komprimována do množiny Wangových dlaždic. Mikrostruktura
je pak nahrazena prutovým modelem na úrovni jednotlivých dlaždic. S využitím
stochastického dlaždicího algoritmu je pak možné efektivně vytvářet výpočetní do-
mény libovolných velikostí, což umožňuje přesnější studii vhodné velikosti této do-
mény ve smyslu její výstižnosti. Za účelem srovnání s dostupnými zdroji je zkoumán
vliv geometrie prutového modelu na výsledné materiálové vlastosti.

Klíčová slova
Wangova dláždění, automatický návrh dlaždic, komprese a rekonstrukce mikrostruk-
tury, modelování heterogenních materiálů, numerická homogenizace, Alporas R© pěna
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Introduction

Continuously improving knowledge on material behaviour walking in line with
fast development of computational methods has allowed breathtaking structures
to be designed. Designers effort is to create complex structures daring in sense
of large dimensions, subtle load-bearing components and irregularity of shapes, all
together in order to draw customers’ attention. However this is in contradiction with
nowadays emphasis on optimizing the production costs and the energy efficiency
complying with worldwide race towards reducing the carbon dioxide footprint.

New materials exhibiting supreme thermo-mechanical properties, e.g. ultimate
strength, high yield stress, desired Young’s modulus or lower conductivity, are thus
on demand in order to meet above mentioned socio-economic requirements [1]. From
a wide range of possible scenarios composite materials may represent an appealing
solution as their behaviour can be controlled by the optimal utilization of con-
stituents’ properties in the context of the geometry and applied loads.

Employing optimization techniques in design of material microstructures calls
for a suitable model to couple macroscopic properties of a composite with the prop-
erties and spatial distribution of constituents. Optimization based on experimental
testing of each microstructure realization would by enormously time consuming and
expensive. A possible, less expensive, solution rests on mathematical modelling, nu-
merical, analytical or empirical, and physical verification of a favourite composition.
This approach is referred to as the Microstructure Sensitive Design [2]. Another
related term the Simulation-based Engineering was proposed by The Blue Ribbon
Panel on Simulation-Based Engineering Sciences which concluded that in silico1 ex-
perimentation is a key factor in engineering and science of the 21st century and that
employing simulations in general allows for faster design cycle and ensure the ability
of U.S. industry to keep up with world competitors [3]. The later conclusion has
a general validity for any country based on industrial society.

Moreover, The Blue Ribbon Panel named multi-scale modelling, i.e. “methods
for computing macroscopic phenomena, such as material properties and manufac-
turing processes, in terms of subscale behaviour”, as one of the top challenges that
would allow “link models of different scales, such as models of micromechanics or
even quantum mechanics to models of macroscale behaviour” [3]. The so called
tyranny of scales has been identified as the principle obstacle in current simulation
methods incorporating range of scales (both spatial and temporal).

1in sense of computer aided
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The impact of computer aided modelling of various physical phenomena in the
multi-scale framework has been also emphasized by the Nobel Committee for Chem-
istry and the Royal Swedish Academy of Sciences. The 2013 Nobel Prize laureates
in Chemistry, Martin Karplus, Michael Levitt and Arieh Warshel, were awarded “for
the development of multi-scale models for complex chemical systems” [4]. The dis-
tinguished contribution lies in coupling classical physics with quantum mechanics in
multi-scale framework. The work of the laureates allows to decompose large systems
into three domains with different levels of accuracy governed by different theories:
quantum physics at the level of electrons and atomic nuclei, classical physics at
the scale of individual atoms and groups of atoms and the theory of dielectric con-
tinuum. This allows for modelling of highly complex systems such as biomolecules
and is utilized e.g. in drugs development or solar cells designs [4, 5].

To place the topic of the present thesis in the context of aforementioned state-
ments, incorporating a knowledge of underlying material microstructure into stan-
dard finite element analyses is of great interest. Widely utilized approach rests on
the concept of Statistically Equivalent Periodic Unit Cell (SEPUC) [6], in which
SEPUC of underlying microstructure represents an integration point in upper scale
model . This approach is often called FE2 method.

The tiling concept can be understood as an extension of the SEPUC approach.
It has been proved that incorporating Wang tiles to compression of microstructures
leads to substantial reduction of long-range order artefacts of reconstructed media,
thereby overcoming the periodic nature of SEPUC [7]. Despite the fact that the
tiling concept in this work is used only for compressing and reconstructing the micro-
structure, it may be utilized for the assembly of complex, microstructure-informed,
enrichment functions in the Generalized Finite Element Methods [8]. Thus, the
tiling approach can contribute to overcome the tyranny of scales.

In [7] textures of Wang tiles were designed by means of optimization procedures.
In this work the automatic design of Wang tiles presented by Cohen [9] is inves-
tigated with respect to long range order artefacts. An idea of tile patch as [10] is
implemented and its impact on the magnitude of long range order artefacts is re-
viewed. The original automatic design employs the Image Quilting Algorithm [11],
which is very efficient but certain limitations. Therefore modifications of this al-
gorithm are examined. As the automatic design inputs are numerous, a sensitivity
analysis of those inputs with respect to microstructure descriptors is performed.

The present master thesis builds on the topic of the author’s bachelor thesis. In
order to keep the exposition self-contained, some parts of the bachelor thesis are
reintroduced and extended. The work is structured as follows. The first chapter
discusses the question of microstructure representation and introduces descriptors
for its quantification purposes. In the second chapter, the main idea of Wang tiling is
presented. A construction of the smallest aperiodic sets of Wang tiles that has been
discovered to this time is described in detail along with the stochastic non-periodic
tiling. Chapter 3 covers the topic of tile morphology with emphasis on its automatic
design. The fourth chapter introduces two homogenization strategies, that are then
employed within the topics of chapter 5, in which the concept of tiling is applied to
homogenization of elastic properties of Alporas R© aluminium foam.



Chapter 1

Microstructure representation

Homogenization methods based on numerical modelling require a suitable com-
putational model that captures the whole microstructural information. The exis-
tence of such a model is determined by the ergodicity of a medium under investiga-
tion.

Ergodic hypothesis. Assume a set A of microstructure samples α with a proba-
bility of occurrence p(α) each occupying a domain Ωα. Define the ensemble average
F (x) of quantity F (x, α) as

F (x) =
∫
A
F (x, α)p(α) dα (1.1)

and the spatial average 〈F (x, α)〉 over a single media sample α

〈F (x, α)〉 = 1
|Ωα|

∫
Ωα
F (x+ y, α) dy . (1.2)

Ergodic hypothesis assumes that the spatial average is independent of a choice
of the representation α and is equal to the ensemble average F (x), i.e.

F (x) = 〈F (x, α)〉 , for ∀α ∈ A , (1.3)

if |Ωα| → ∞.
It has been shown [1] that in the case of a periodic medium the infinite domain

can be substituted with a periodic part of the domain. For a generally non-periodic
media the relation (1.3) may hold if the sample domain Ωα is large enough to be
representative in the sense of desired quantity F (x, α) [1]. From this point onwards
the microstructure is regarded ergodic.

Representative volume element. The notion of the Representative Volume
Element (RVE) has been introduced to address the question of representativeness of
a computational model/domain. Various definitions of the RVE exist, an overview
of these definitions can be found in [6, 12]. In general, the RVE is such a domain
whose apparent properties equal to the effective properties of a microstructure with
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a defined precision. On the one hand the RVE has to be large enough to incorporate
the whole variety of microstructure, on the other hand it has to be small enough
to represent a material point in continuum mechanics, upper scale model [13]. The
latter yields the condition of the clear separation of scales, necessary in multi-scale
modelling approach.

The size of the RVE depends mainly on the distribution of constituents volume
fraction, phase properties contrast, and on the phenomenon that is concerned. In
other words, for the same microstructure the size of the RVE does not need to be
the same for e.g. thermal conductivity and linear elasticity [13, 14, 15]. Especially
in the case of the infinite contrast of phases properties the size of the RVE can easily
become computationally infeasible [14].

To overcome this, a concept of the Statistical Volume Elements (SVEs) was
proposed in [15]. Instead of considering a single RVE, a set of smaller samples is
assumed and the effective property is obtained as an average over the set of these
[2, 13, 15], recall (1.1). Another advantage of this approach is that calculations can
be easily distributed among computational nodes and parallelized.

The concepts of the RVE and SVEs are always related to physical response of
the microstructure. On the contrary, the presented Wang tiling approach involves
only the spatial distribution of constituents, however, allows to efficiently produce
RVEs of arbitrary size. So once the microstructure is compressed within the set
of Wang tiles, analysis of the optimal size of the RVE can be easily performed for
an arbitrary phenomenon. If the size of the RVE turns out to be too large anyway,
the tiling approach can produce a set of the SVEs as well.

1.1 Statistical description of microstructure
The interior of Wang tiles is designed to morphologically resemble the reference

microstructure. To achieve this task methods to quantify the microstructure mor-
phology has to be introduced. The most common family of statistical descriptors
is represented by correlation functions. Those can be further divided into auto-
correlation and cross-correlation functions depending whether the correlation is de-
termined for the same or different phases [2].

Define characteristic function χi(x) of the i-th phase as

χi(x) =
{

1 , for x ∈ Di ,
0 , otherwise , (1.4)

where Di denotes a portion of domain Ω occupied with the i-th phase.
A definition of the general n-point probability function reads [6, 16]

Sr1,r2,...rn(x1,x2, . . .xn) = 1
|Ω|

∫
Ω

n∏
i=1

χrn(xi) dΩ . (1.5)

The microstructure can be determinately described only if the infinite number
of the n-point probability function is assumed [17]. Nevertheless, incorporating only
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Table 1.1: Relation among two-point correlation function for binary media [6]

Sii(x) Sij(x) Sjj(x)
Sii(x) Sii(x) φi − Sij(x) φi − φj + Sjj(x)
Sij(x) φi − Sii(x) Sij(x) φj − Sjj(x)
Sjj(x) φj − φi + Sii(x) φj − Sij(x) Sjj(x)

a limited set of those functions still yields very good results [18]. The most frequently
utilized spatial descriptors are presented in this chapter.

1.1.1 Two-point probability function
As the investigated microstructure is assumed to be ergodic, the first order corre-

lation function (i.e. n = 1) of a phase is a constant function and equals the volume
fraction of the phase. Computing high-order n-point probability functions is not
only cumbersome but it is also hard to visualize it and interpret [2], see Fig. 1.1.
Therefore the most common descriptor is the two-point probability function.

If the assumption of homogeneous material is accepted, the expression (1.5) can
be further simplified to

Sij(x1,x2) = Sij(x1 − x2) = Sij(x) = 1
|Ω|

∫
Ω
χi(y)χj(x+ y) dy . (1.6)

In the case of a two-phase media with phases i and j and corresponding volume
fractions φi and φj, respectively, a relation between the auto-correlation functions
regarding each phase and the cross-correlation function is summarized in Tab. 1.1,
see e.g. [6]. Because of the existence of these deterministic relations the auto-
correlation and two-point probability functions are considered identical and denoted
as S2(x).

Since S2(x) function may be qualified as giving the probability of finding two
points at distance x in the same phase. If |x| → 0 the two-point probability function
degenerates to one-point probability function, hence it gives the phase volume frac-
tion φ. If |x| → ∞ the states of the two points become uncorrelated and the value of
S2(x) approaches φ2. The latter allows to define a coherence (also called correlation)
length rc as a characteristic of the material [2]

S2(|x| ≥ rc) ≈ φ2 . (1.7)

1.1.2 Two-point cluster function
Previously introduced S2(x) function gives an appreciation of the long-range spa-

tial distribution of phases, nevertheless it does not include information of inclusion
clustering. As the connectivity of clusters has a great influence on properties such
as conductivity or elastic stiffness [16], a statistics that would describe clustering is
required.
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(a) (b)

(c) (d)

Figure 1.1: Visualization of raw micro CT-scan data and corresponding S2(x) statis-
tics: (a) Sandstone pores, with courtesy of Adnan Sufian and Adrian R. Russel [19],
(b) Alporas R© foam with courtesy of Ondřej Jiroušek [20]

Torquato [16] defines a cluster as “a part of phase i which can be reached from
a point in phase i without passing through phase j”. Hence the domain of the i-th
phase Di can be decomposed into a disjoint set of n clusters d(k)

i ,

Di =
n⋃
k=1

d
(k)
i . (1.8)

By analogy to (1.4), a cluster characteristic function can be defined as

χ
(k)
i (x) =

{
1 , for x ∈ d(k)

i ,
0 , otherwise . (1.9)

The expression for the two-point cluster function Cii(x) then reads as

Cii(x) = 1
n

n∑
k=1

1
|Ω|

∫
Ω
χ

(k)
i (y)χ(k)

i (x+ y) dy . (1.10)

Author is not aware of any universal relation between the Cii(x) functions for
different phases as exists in the case of the Sii(x). Obviously no cross-correlation
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cluster function can be defined, moreover in the case of two-phase medium with
inclusions embedded in the matrix, two-point cluster function of the matrix phase
matches S2(x) function of the matrix. Therefore if not stated otherwise, the two-
point cluster function is assumed to be a function of the inclusion phase and is
denoted C2(x).

The two-point cluster function C2(x) can be understood as a special case of
S2(x) function as it gives the probability of finding the two points at distance x
not only in the same phase but also in the same cluster of that phase. C2(x) is
thus a short-range order statistics that describes shapes of inclusions rather than
their distribution within a domain. The superior nature of the C2(x) function when
applied in microstructure reconstruction algorithms (especially when combined with
S2(x)) was reported e.g. in [18].

The limit case |x| → 0 of the Cii(x) yields the same result as for the S2(x) due
to the definition (1.9). The reciprocal limit case |x| → ∞ is not unambiguous and
depends on the nature of the composite (e.g. percolation properties). For the matrix
phase, if distinguished, the infinity limit is of the same value as for the S2(x). On
the other hand for the inclusion phase C2(|x| → ∞) = 0.

Complementary to C2(x) a blocking function B2(x) giving the probability of the
two points being in different clusters can be introduced with relation [16]

S2(x) = C2(x) +B2(x) . (1.11)

Note that to capture the connectedness of a cluster, investigating a planar cross-
section through the material is not sufficient as the in-plane separated clusters can
be connected in out of plane directions [21]. A complete three dimensional analysis
is thus needed. However, C2 function of a planar domain still provides meaningful
description of inclusions shapes.

1.1.3 Lineal path function

Another information of the microstructure spatial composition can be revealed
if the condition imposed formerly on the end points x1 and x2 is expanded on the
whole line segment defined by the vector (x2 − x1).

The lineal path characteristic function χLi yields

χLi (x1,x2) =
{

1 , for (x2 − x1) ⊂ Di ,
0 , otherwise . (1.12)

The quantity describing the probability of finding a randomly thrown straight
segment of a length |x| in the domain portion Di is called the lineal path function
L2(x) [21] and for isotropic media can be calculated as

L2(x) = 1
|Ω|

∫
Ω
χLi (y,y + x) dy . (1.13)
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1.1.4 Notes on numerical evaluation
Evaluation of the aforementioned spatial statistics is usually based on the digital

discretization of material microstructures obtained by various displaying methods,
image scanning, microtomography [19, 20] or backscattered electron imaging to name
a few.

By making use of the convolution character of S2(x) function (1.6) the Fourier
transform can be employed [6]. Then

S2(x) = F−1
n (Fn(χi(x))F∗n(χi(x))) , (1.14)

where Fn denotes n-dimensional Fourier transform (incorporated in Matlab envi-
ronment as the fftn function), F−1 its inverse and ∗ stands for complex conjugate.

The lineal path function L2(x) (1.12), however, does not exhibit the convolution
nature. Its computation is thus cumbersome. The computation can be profitably
distributed among GP- Graphic Processor units utilizing the CUDA programming
library so as to maximally reduce computational overhead [22].

In order to compute C2(x) function, an algorithm that identifies inclusions is
required. The Image Processing Toolbox function bwconncomp included in Matlab
environment, that finds connected components, can be applied [23]. However, since
more flexible version of C2(x) computation that allows for a quick update was desired
for the optimization purposes, a procedure based on flood-fill algorithm (also utilized
in bwconncomp function) was programmed, see Algorithm 1.1.

The algorithm scans the binary image and assigns pixels (i, j) that belong to Di
to clusters d(k)

i , recall Eq. (1.8). When an unsigned pixel (i, j), i.e. a pixel that does
not belong to any previously defined clusters d(j)

i , ∀j ≤ k, is found, a new cluster
d

(k+1)
i is defined and the (i, j) pixel is attributed to it. The four-pixel neighbourhood

of the (i, j) pixel is then searched through and a set S of yet unsigned pixels (a, b) is
defined. All pixels from S are attributed to the latter cluster d(k+1)

i and a new set Sn
of unique pixels from the four-pixel neighbourhood of ∀(a, b) ∈ S is determined, this
process is repeated until an empty set Sn is reached, which means that the whole
cluster d(k+1)

i has been identified. The algorithm then scans for another unsigned
pixel (i, j) until all the pixels are attributed to clusters.

Once all the inclusions are identified, individual S2(x) functions are calculated
for separate inclusions of the given phase and C2(x) is determined as their mean
values.

In the case of swapping states of two pixels in an optimization proceduress, e.g.
simulated annealing [22], there is no need to search for all inclusions again, it is
enough to check the connectivity around the changed pixel and recalculate S2(x)
only for the affected inclusions [16].

For the microstructure comparison purposes all the descriptors but L2(x) were
implemented into a Matlab program. The program has its own graphic user inter-
face, Fig. 1.4, and exploits the Image Processing Toolbox of Matlab environment,
namely regionprops function computing various measures of each identified inclu-
sion. It allows to import microstructure images, convert them into binary media
with prescribed thresholds, clear incidental image faults, calculate scalar spatial
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Figure 1.2: Reference microstructures

(a) (b) (c)

Figure 1.3: Spatial statistics of the reference microstructures from Fig. 1.2 : (a)
S2(x), (b) C2(x), (c) L2(x)
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Algorithm 1.1 Flood-fill algorithm
k ← 0
for ∀(i, j) ∈ Di do

if (i, j) /∈ d(k)
i ,∀j ≤ k ∨ (i, j) ∈ Di then

k ← k + 1
d

(k)
i ← {(i, j)}
S = {(a, b); |(a, b)− (i, j)| ≤ 1 ∨ (a, b) /∈ d(j)

i ,∀j ≤ k ∨ (a, b) ∈ Di}
while S 6= ∅ do
Sn ← ∅
d

(k)
i ← d

(k)
i ∪ S

for ∀(a, b) ∈ S do
S` ← {(c, d); |(c, d)− (a, b)| ≤ 1 ∨ (c, d) /∈ d(j)

i ,∀j ≤ k ∨ (c, d) ∈ Di}
Sn ← Sn ∪

(
S` −

(
Sn ∩ S`

))
end for
S ← Sn

end while
end if

end for

statistics (such as the volume fraction, mean area of inclusions, equivalent diameter
etc.) and higher order descriptors. The outputs are both ASCII and graphical.

Figure 1.4: Matlab GUI program for spatial statistics computations
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1.1.5 Interpreting higher order descriptors
Illustrative examples of the previously introduced microstructure descriptors are

shown in Fig. 1.3.
The information stored within each particular descriptor comes from definitions

made in the previous section. However some information is more visible if the de-
scriptors are compared as in the following list.

• For a phase, C2(x) function converges to S2(x) if the microstructure specimen
is fully percolated by this phase.

• As mentioned, C2(x) approaches S2(x) for the matrix phase of particulate
media, on the other hand L2(x) function may still involve a short-range in-
formation of the matrix composition, namely, in a short-range inter-inclusion
zones.

• The difference between S2(x) and C2(x) may indicate how densely inclusions
are gathered, Fig. 1.5.

• In the case of convex inclusions C2(x) and L2(x) are the same, thus a difference
between the two functions indicates a level of convexity.

(a) (b)
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Figure 1.5: Comparison of S2(x) and C2(x) graphs for (a) loosely and (b) densely
packed inclusions



Chapter 2

Wang tilings

A tiling has been present since the first human dwellings that were supposed
not only to shelter against the climate appeared. The main purpose of tiling was
to please the aesthetic feelings. e.g. ancient mosaics, decorative pavements or wall
ornaments. In the course of time the patterns and shapes have become more sophis-
ticated, however periodic patterns have prevailed [24].

Historically tiling were in the focus of artists and architects. The first docu-
mented mathematical research on tiling is attributed to Johannes Kepler and his
book Harmonice Mundi [24]. A comprehensive survey on tiling and the mathemati-
cal background can be found in classical reference [24] by Grünbaum and Shephard.
Since the nineties of the 20th century the interest in tiling, especially in aperiodic
tiling, has increased as the possible application in physics - namely crystallography
[25, 26], and biology - modelling of DNA assembly [27, 28], emerged.

The focus of this chapter is limited to the tiling made of Wang Tiles. Their
practical application first appeared in Computer Graphics [9, 29]. The main feature
that makes it attractive is its ability to produce non-periodic naturally looking
textures at a low computational and storage cost. From the perspective of Materials
Engineering the appealing features are similar to those of Computer Graphics, the
efficient way of generating microstructured domains of arbitrary sizes [7]. Moreover,
an application of the tiling concept in Generalized Finite Elements Method has been
also proposed [8].

2.1 The concept of Wang Tiles

The idea of Wang tiles is related to the Entscheidungs problem proposed by
David Hilbert, which poses a challenge of proving any mathematical statement with
fundamental axioms of logic, i.e. looking for a general algorithm that can decide
whether the statement is valid or not [30]. The capability of a general comput-
ing machine to model any algorithmizable problem was revealed by Alan Turing
in [31, 32]. He associated the Entscheidungs problem with the question whether
a general Turing machine with rules corresponding to the axioms and the investi-
gated statement will eventually stop or will compute infinitely long. He called this
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the Halting problem. He proved that there is no general solution to this question
and hence a specific machine cannot be decided to halt or run forever.

The contribution of Hao Wang, whom the Wang tiles are named in honor of, lies
in further relating the Halting problem to the Domino problem, a task to decide
whether the given set of square tetraminoe-like tiles with codes assigned to the tiles
edges can tile the infinite plane while matching codes on adjacent edges. He showed
that any Turing machine can be turned into the set of specific tiles and therefore
there is no general procedure that can decide if the given set is capable of tiling
the infinite plane [33]. Still he showed that certain statements of the AEA1 class of
logic statements, that can be directly converted into the domino problem, can be
advantageously proved by means of the solution of infinite tiling [34].

Wang based proving the AEA problem on a fundamental conjecture that if the
infinite plane is to be tiled then it has to be tiled periodically, therefore a periodic
part of the plane must exist. But he was aware that the conjecture had not been
proven, he stated that if the conjecture is wrong, the procedure is only semi decisive
proof, i.e. it cannot serve as a disproof.

2.1.1 Aperiodic Wang tiles sets

The Wang’s fundamental conjecture that only the periodic tiling allows for an in-
finite tiled plane was disapproved by Wang’s student Robert Berger, who in [35] pub-
lished a set containing 20 426 tiles that is capable of tiling infinite domain strictly
aperiodically. He reduced the necessary number of distinct tiles to 104 in his thesis.
The design of these sets was based on superimposing different periodic tilings one
over each other. In the same manner Knuth redesigned the Berger’s 104 set reduc-
ing it to 92 tiles. Another attempts to reduce the number of tiles continued with
Läuchi’s 40 tiles (1966, unpublished till 1975), Robinson’s set of 52 tiles (1967) and
32 tiles (1971), see [24] and references therein for further details.

Meanwhile, Robert Penrose realized that his kite and dart aperiodic tiling can
be converted to a Wang tiling. He recognized that polygons appearing in his tiling
can be transformed into squares in a regular grid, which resulted in a set containing
34 tiles. Another refinement was done in cooperation with Robinson, they found
out that 32 tiles out of the former 34 were enough to tile the plane aperiodically.
Grübaum and Shephard pointed out that originating with the Penrose rhombs in-
stead of the Penrose kites and darts would have resulted in the set of 24 tiles. In 1997
Robinson realized another possible transition, from in that time known aperiodic
tiling of the non-square Amman prototiles introduced by Robert Amman [36], to 32
Wang tiles. Robert Amman himself came up with an idea to combine the Amman
bars with his prototiles leading to 16 tiles.

In 1997 Jarrko Kari came with an utterly different approach to designing aperi-
odic Wang tiles sets. He noticed the affinity of the Mealy machine [37] and the Wang
tiles. On the basis of this observation he designed a set of 14 tiles as a sequential
machine that multiplies a balanced representation of a real number by a certain

1Statements that contain two universal ∀ and one existential ∃ quantifiers.



Wang tilings 14

rational number. Following his idea Karel Čulík managed to reduced the set to 13
tiles with additional trick [38].

The author is not aware of smaller aperiodic set of Wang tiles. Kari and Culik
in [39] proposed that only 12 tiles from the original set of 13 may be able to tile the
whole plane aperiodically, but confess that with the computational power of that
time it was not possible to prove their preliminary conjectures. In 2012 Demain et al.
[40] presented a single polygonal tile that can substitute any tile set and model of
any Turing machine. However, the tile is allowed to rotate and reflect and tiles the
domain with small gaps in the tiling, which does not suit the Materials Engineering
applications.

2.1.2 Aperiodic sets of Kari and Culik
The aperiodic tile sets of Kari and Culik are discussed in this section. The section

summarizes outcomes of Kari and Culik presented in [41, 38, 39].
Let assume a tile set T and a tilling as the mapping f : Z2 → T . The tiling

is called periodic iff ∃(ϑ, ζ) ∈ Z2 \ {(0, 0)} ; f(x + ϑ, y + ζ) = f(x, y);∀(x, y) ∈ Z2.
Moreover, Kari stated in [41] that if the tiling consisting of tiles from T is periodic
with period (ϑ, ζ), then it is also doubly periodic with periods (ϑ, 0) and (0, ζ), i.e.
f(x, y) = f(x + ϑ, y) = f(x, y + ζ). The tile set T is called aperiodic iff (i) it can
produce valid tilings and (ii) none of these valid tilings is periodic.

Beatty sequence. Define bαc as the integer part of an arbitrary real number α.
Beatty sequence A(α) [42, 43] is thus a sequence of A(α)i’s defined as

A(α)i = bi · αc, ∀i ∈ Z . (2.1)

Alternatively, the Beatty sequence A(α) of any arbitrary real number α is a sequence
of iα’s rounded towards the nearest lower integer. An illustrative example can be

A(2.25)i=1...5 = {2, 4, 6, 9, 11} .

Balanced representation. Balanced representation B(α) of any real number α
is defined as the sequence of differences between two consecutive members of the
Beatty sequence [41],

B(α)i = A(α)i − A(α)i−1 . (2.2)

Note that if α /∈ Z the balanced representation B(α) contains only integers k and
k+1 such that k < α < k+1 and obviously B(α)i = α for ∀i ∈ Z iff α ∈ Z. Also note
that the arithmetic average of n consecutive members of B(α) does not differ from
α more then by one and approaches the value of α with n→∞ [41, 38]. Moreover
balanced representation of a rational number α ∈ Q is a bi-infinite2 periodic sequence
[39], see example

B(2.25) = . . . 2, 2, 2, 3, 2, 2, 2, 3 . . . .
2From any element of the sequence, there is a finite sequence to the left and to the right from

this element.
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Mealy machine. A Mealy machine is a concept of sequential machine from the
theory of computation introduced by Mealy in [37] that denotes a deterministic
finite-state automaton with defined initial and final state. The output of each iter-
ation of the machine is determined by the state of the machine at the beginning of
each iteration and by the input symbol (or symbols).

Since the tiling is assumed to be bi-infinite, no initial and final states are to
be defined hence the Mealy machine M without initial and final state is a 4-tuple3

M = (K,Σ,∆, γ), where K is the finite set of states, Σ is the set of admissible
inputs, ∆ is the set of admissible outputs, and γ contains transitions between the
states from K. The transitions (s, a, t, b) ∈ γ are such that s, t ∈ K, a ∈ Σ and
b ∈ ∆ [39]. Sequential machine can be visualized by a labelled directed graph with
initial and final state nodes and transitions as in Fig. 2.1 (a).

We say that a two bi-infinite sequences x and y are in relation defined with the
Mealy machine M if xi ∈ Σ, yi ∈ ∆ and (si−1, xi, si, yi) ∈ γ for ∀i ∈ Z.

Kari [41] constructed the sequential machine M so that it represents multiplica-
tion of balanced representation of α by a rational number q = n

m
;m ∈ Z \ 0;n ∈ Z.

It means that input and output codes Σ and ∆, respectively, contain integers of
B(α) and B(qα) and the states K are defined as

K = {qbiαc − bqiαc} , ∀i ∈ Z . (2.3)

Since the following inequality holds for an arbitrary real number r (and therefore
also for r = iα)

qbrc − 1 ≤ qr − 1 < bqrc ≤ qr < q (brc+ 1) , (2.4)

the bounds on values of states K yields

−q < qbrc − bqrc︸ ︷︷ ︸
K

< 1 . (2.5)

As the difference qbrc − bqrc is always an integer multiple of 1
m

the states of the
sequential machine M are

K = {−n− 1
m

,−n− 2
m

, · · · , m− 2
m

,
m− 1
m
} . (2.6)

Relation between tile set and sequential machine. Each tile from the set
represents a single transition from γ of the Mealy machine Mq. Codes on vertical
edges of tiles represent states K, horizontal codes denote input letters and output
letters4 which belong to Σ and ∆, respectively. The machine should also be bi-
infinite in order to cover up the infinite two dimensional domain, hence Σ = ∆5.

3Originally, the initial and the final state are also part of the definition and the Mealy Machine
is defined with 6-tuple.

4In theory of computation a and b are considered letters of alphabet Σ and ∆
5Outputs form one iteration of the machine can be inputs for the next iteration.



Wang tilings 16

The sequential machine Mq is designed to perform multiplication by a rational
number q over bi-infinite sequence provided by a balanced representation B(α), thus
every tile has a multiplicative character defined as

qa+ s = b+ t , (2.7)

where q is constant for all tiles of the given Mq.
To make the tiling structure more explicit, if the tile set is equal to a sequential

machine Mq, rows in the tiling correspond to one iteration of Mq. If the tile set
consists of more sequential machines, one row always contains tiles only from a subset
related to one Mealy machine. Thus the codes on the upper edges represent a
sequence B(α) while the codes on the bottom are sequence of B(qα). The vertical
edges represent an imbalance between qbiαc and bqαc, see (2.3) and (2.7). This
implies that positions of tiles placed in one row are governed by the choice of real
number α that defines sequences B(α) and B(qα).

s a,b t s
a

b
t

(a) (b)

Figure 2.1: Illustration of (a) transition from γ of Mealy machine and (b) corre-
sponding Wang tile

The set of Kari’s 14 tiles. Based on the previous knowledge Kari designed his
set of tiles as a union of two distinct Mealy machines M2 and M2/3. M2 operates
over B(α) with α ∈

[
1
2 , 1

]
and computes B(2α) with input alphabet Σ2 = {0, 1} and

output alphabet ∆2 = {1, 2}. M2/3 operates over B(α) with α ∈ [1, 2] and computes
B(2

3α) with input alphabet Σ2/3 = {1, 2} and output alphabet ∆2/3 = {0, 1, 2} [41].
Thus after the iteration of M2 at least one but at maximum two iterations of M2/3
follow. The illustration of the Mealy machines and the tile set are depicted in
Fig. 2.2, the state of value 0 for M2/3 is denoted with prime to distinguish it from
the state 0 of the machine M2.

The set of Culik’s 13 tiles. Culik [38] modified the previous set by considering
the inverse values of the multipliers (in the case of M2/3 he took only the inverse of
the denominator of the fraction), i.e. he assumed M3 and M1/2. Moreover he added
an additional condition that the M1/2 machine can be employed maximally in two
following iterations. Therefore, M3 with Σ3 = {0, 1} and ∆3 = {1, 2} is employed if
α ∈

[
1
3 ,

2
3

]
. If α ∈

[
2
3 , 2

]
the M1/2 machine is utilized.

The additional conditions on the input and output alphabets has to be imposed
in spite of the additional condition. After iteration of the M3 machine α ∈ [1, 2]
and the output alphabet ∆3 equals input alphabet Σα∈[1,2]

1/2 = {1, 2}. If α ∈
[
1, 4

3

]
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Figure 2.2: Illustration of Kari’s set of 14 tiles: (a) Mealy machines, (b) Kari’s Wang
tiles, (c) indexed tiles (integer edge codes)

only one iteration of M1/2 follows and therefore ∆α∈[1, 4
3 ]

1/2 = {0, 1}. If α ∈
[

4
3 , 2

]
an iteration of M1/2 machine will be performed twice (after one iteration α ∈

[
2
3 , 1

]
)

with ∆α∈[ 4
3 ,2]

1/2 = {0′, 1} = Σα∈[ 2
3 ,1]

1/2 = {0, 1} and ∆α∈[ 2
3 ,1]

1/2 = {0, 1}.
The corresponding Mealy machines and Wang tiles are shown in Fig. 2.3.

Proof of validity. The proof of validity of the presented tile sets is straightforward
and arises from the nature of Mealy machines that are at the heart of the set design.
As the corresponding Mealy machines are bi-infinite and may perform the underlying
calculation on bi-infinite sequences, an infinite plane can be tiled with those sets.
The first condition can be also expressed as ensuring that the value of α can not get
out of the definition range of the united Mealy machines.

Proof of aperiodicity. Recall again the definition of periodicity of a tiling.
The tiling is said to be periodic iff ∃(ϑ, ζ) ∈ Z2 \ {(0, 0)} ; f(x + ϑ, y + ζ) =
f(x, y);∀(x, y) ∈ Z2. If the tiling is periodic with period (ϑ, ζ), it is also peri-
odic with (ϑ, 0) and (0, ζ) periods. The nomenclature of the tile edges from Fig. 2.1
(c) is recalled. The left code of the tile at position (i, j) is denoted as s(i,j), the
upper code a(i,j), the right code t(i,j) and finally the bottom code b(i,j).

Assume, that the tiling is periodic with period (ϑ, ζ). Due to the multiplicative
nature of tile,

qa(i,j) + s(i,j) = b(i,j) + t(i,j) , (2.8)

and the condition on congruent edges, i.e. t(i,j) = s(i+1,j), along with the fact that
only tiles with the same q are present in a row give rise to the relation between
the sum of the values on the upper edges and the sum of the bottom codes’ values
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Figure 2.3: Illustration of Culik’s set of 13 tiles: (a) Mealy machines, (b) Culik’s
Wang tiles, (c) indexed tiles (integer edge codes)

over the periodic sequence of length ϑ which reads as

q
k+ϑ∑
i=k+1

a(i,j) =
k+ϑ∑
i=k+1

b(i,j), ∀i, j, k ∈ Z . (2.9)

Let the sum of the upper codes values over the periodic sequence in row i be denoted
âi.

From the former equation yields âi+1 = qâi. Since the tiling is assumed periodic,
after ζ iterations the upper edge codes repeat, i.e. a(i,j) = a(i,j+ζ) for ∀i, j ∈ Z. Thus
âi = âi+ζ which yields

âi+ζ = qζ âi . (2.10)

Therefore if the tiling is periodic then the following equation must hold

qζ = 1 . (2.11)

Moreover in ζ iterations m iterations of the first Mealy machine and n iterations
of the second occur with n + m = ζ. Hence in the case of the Kari’s set the
condition expressed in (2.11) results in (2)m(2

3)n = 1, in the case of Culik’s set the
condition reads (3)m(1

2)n = 1. Both conditions can be rewritten in the form 2ι = 3κ.
Since an arbitrary non-zero integer power of 2 is always even and 3 to the power of
an arbitrary non-zero integer is always odd, no combination of ι and κ that would
satisfy the condition exists. Therefore no tiling is periodic.

Getting back to the definition, T is called aperiodic iff (i) it can produce valid
tilings and (ii) none of these valid tilings is periodic. Both of these conditions were
proven in the previous paragraphs, hence the tile sets of Kari and Culik are aperiodic.



Wang tilings 19

Tiling a plane with the aperiodic sets of Kari and Culik. A procedure of
tiling a plane with the tiles of Kari and Culik is briefly described in this paragraph.
Randomly choose real number α from the domain of either tile set. Compute bal-
anced representation of α containing c members, where c is the number of columns
in desired tiling. Accordingly to the rules of the tiling, α determinates value of q,
multiply α with the appropriate q and compute balanced representation of qα. Now,
determine the vertical codes s(i,j) = qAi−1(α)−Ai−1(qα) and t(i,j) = qAi(α)−Ai(qα).
Match the generated codes with individual tiles and place them in the appropriate
positions. Take α = qα and repeat the procedure for the next row

2.1.3 Stochastic Wang tiles sets
The study of aperiodic sets is an interesting branch of mathematics, nevertheless

the Wang tiles as a concept have the potential even in a not strictly aperiodic
setting. As was mentioned in the introduction to this chapter, an appealing feature
of the tiling concept when applied in Computer Graphics is its ability to produce
naturally looking non-repetitive patterns [9]. For these purposes the condition on
exact aperiodicity in the sense of definition from the previous section is pointlessly
strict and the tile sets that are stochastic are sufficient.

In the language of Computer Graphics, the edges of a Wang tile are usually
referred to according to the cardinal directions, i.e. W, N, E and S, Fig. 2.4. All
the conditions imposed on the tiles presented at the beginning of this chapter are
preserved. That means that the tiles are square pieces with codes assigned to their
edges and only valid tiling, where the codes in adjacent edges match, is assumed.

W E
S

N

Figure 2.4: Edge nomenclature of stochastic Wang tiles

The nomenclature for the stochastic Wang tiles sets, proposed in [7], is as follows

Wnt/nc
1 − nc

2 ,

where nt denotes number of tiles in the set and nc
1 and nc

2 stand for the number of
distinct codes on vertical and horizontal edges, respectively.

In the process of creating the tiling, the stochastic tiling algorithm introduced
by Cohen [9] can be utilized. The algorithm works as follows. First of all, an empty
grid of a desired size is created. One tile from the set is randomly chosen and placed
in the upper left corner of the grid, i.t. at the position (1, 1). Then the grid is filled
up in column-by-column, row-by-row order. At each step, the edge constrains given
by the previously placed tiles are determined. Subsequently a tile randomly chosen
from the subset of tiles that satisfy the edge constraints is placed. One step in
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the stochastic tiling algorithm is depicted in Fig. 2.5 (b), in the highlighted position
tiles number 2 or 5 can be placed.
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Figure 2.5: Illustration of: (a) Wang tile set W8/2–2, (b) one loop of the stochastic
tiling algorithm

Such a procedure allows to produce periodic valid tiling if at least a single tile
for every admissible combination of N and W codes is present in the set. The set is
called stochastic if at each step of the tiling algorithm at least two tiles can be placed.
The minimal number of tiles for the stochastic set is thus defined as nt = 2nc

1n
c
2. If

the tiles are fully determined by the codes, i.e. each code combination represents
one unique tile, the maximum number of tiles is nt = (nc

1)2(nc
2)2. Such sets are

usually called full or complete sets.
Stochastic sets are assumed in this work further on, as they give more freedom in

the choice of the number of tiles and codes. Moreover the aperiodic sets of Kari and
Culik have always only two different horizontal codes in a row, therefore they are
not very suitable for the automated tile design presented in the following chapter.

2.2 The concept of Wang Cubes
Logical extension of the concept of Wang tiles into three dimension has been

mentioned already in the paper by Wang [34]. The aperiodic set of Wang cubes
was proposed by Culik [44], applications of the stochastic Wang Cubes in Computer
Graphics were reported in [45, 46].

The extension is rather straightforward. Wang cubes are the basic elements of
the tiling instead of Wang tiles. The tiling is therefore a mapping f : Z3 → T ,
where T is the set of Wang Cubes. A code is assigned to each of the six faces of the
cube and all codes on adjacent faces match each other in valid tiling. The faces can
be referred to as W-west, E-east, N-north, S-south, F-front, B-back as depicted in
Fig. 2.6.
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Figure 2.6: Edge nomenclature of stochastic Wang cubes

For the stochastic set the previous nomenclature can be extended as

Wnt/nc
1 − nc

2 − nc
3 ,

where nt denotes number of Wang cubes and nc
1,nc

2 and nc
3 stand for number of

distinct codes on lateral, horizontal and front-back faces, respectively. The original
Cohen’s tiling algorithm can be easily expanded by one dimension. Similar to the
stochastic tile set, the stochastic cube set should contain at least 2 cubes for each
admissible WNF combination, i.e. it contains at least 2nc

1n
c
2n

c
3 cubes. A complete

Wang cube set consists of (nc
1)2(nc

2)2(nc
3)2 distinct cubes.

Example of a Wang Cubes set and a spatial tiling generated with the set W32/2-2-2
is shown in Fig. 2.7.
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(a)

(b)

Figure 2.7: Example of Wang Cubes: (a) Wang cube set W32/2-2-2, (b) stochastic
spatial tiling 3× 3× 2 cubes



Chapter 3

Tile morphology design

As mentioned in the previous chapter, the concept of tiling is of a vital interest
in Computer Graphics namely for its ability to create homogeneous and naturally
looking patterns without visible repetitive artefacts, e.g. [9]. This inspired the cur-
rent research dealing with a possible utilization of the tiling concept in the area of
Materials Engineering. Since the tiling concept itself is only a process of gather-
ing pieces matching certain rules, microstructural information represented by the
tile morphology has to be attributed to each tile in order to apply this concept in
microstructure compression and reconstruction techniques .

The key issue in the tile morphology design is to ensure the continuity of the
information across the congruent edges. This can be achieved in several ways. For
instance, the tile morphology can be manually designed or optimized to meet the
features of the reference microstructure. While the first is viable only for very simple
microstructures or patterns, the optimization methods seem to be general, see [7].
Nevertheless such an approach is computationally expensive and nearly infeasible in
the case of high resolution tiles.

This chapter investigates an alternative approach allowing for the automatic tile
morphology design introduced by Cohen et al. in [9], which is based on fusing samples
of the reference microstructure. Two modifications of the original Image Quilting
algorithm [11] are presented and their limitations are discussed. Moreover a number
of edge codes is discussed with respect to reducing long-range order artefacts in terms
of secondary peaks of S2(x) statistics. It is compared against the prediction given in
[7]. Finally a sensitivity study of input parameters of the automatic design procedure
is performed on four microstructures (both artificial and natural materials) in the
last section of this chapter.

3.1 Automatic tile morphology design

Cohen et al. presented a very efficient method of automatic Wang tiles’ mor-
phology design that exploits samples of reference microstructure. Thereby produc-
ing tilings that resemble the original microstructure [9]. The procedure works as
follows.
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From the specimen of the reference microstructure, as many equi-sized samples
as the number of distinct edge codes in the set are excised. Each tiles is created as
a diamond shaped cut out of the partially overlapping samples, so called r-samples,
that are placed accordingly to the edge codes of the tile to be produced, see Fig. 3.1.
The samples are fused in the overlapping region seamlessly. The continuity of the
microstructural morphology across the adjacent margins is ensured with the diagonal
cuts in the r-samples. The edge length l of the final tile is thus derived from the
dimension h of the r-samples and the width of the overlap region p as

l = d
√

2(h− p)e , (3.1)

where d·e denotes rounding up to the nearest integer (as the discretized representa-
tion by means of pixels is assumed).
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(a) (b) (c)

Figure 3.1: Automatic tile design: (a) extraction of edge-code samples of side h
from reference specimen (so called r-samples), (b) Wang tile of size l created as
diamond-shaped cut from partially overlapping samples, (c) illustration of Image
Quilting algorithm in overlap p

A similar methodology was introduced also for the Wang cubes [46] making use
of a 3D cutting technique proposed by Kwatra et al. [47].

3.1.1 Image Quilting algorithm
The automatic design rests on procedures that allow fusing the r-samples seam-

lessly, i.e. without any visual artefacts, in the given overlap region. The original
automatic design is based on the Image Quilting algorithm proposed by Efros et al.
[11]. It is designed to find the continuous path in the region that minimizes the sum
of the differences in the coincident pixel values along the path.

Let assume two samples A and B of height h and width p that entirely overlap
each other. The pixel value error e(i, j) is defined as

e(i, j) = [A(i, j)−B(i, j)]2 ∀(i, j) ∈ h× p . (3.2)
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(a) (b)

Figure 3.2: Example of: (a) raw data resulting from Image Quilting Algorithm,
(b) resulting tile

For each pixel a cumulative error E(i, j) can be calculated as

E(i, j) = e(i, j) + max {E(i− 1, j − 1), E(i− 1, j), E(i− 1, j + 1)} . (3.3)

The quilting path is then determined by the lowest cumulative error. The minimal
value of E in the bottom row is found and saved, the procedure moves one row up
and searches for the minimal value of E within the adjacent pixels to the previously
found one. It repeats until the first (top) row is reached, see Algorithm 3.1.

Algorithm 3.1 Image Quilting algorithm
for all (i, j) ∈ [1, h]× [1, p] do

e(i, j)← [A(i, j)−B(i, j)]2
end for
for all (i, j) ∈ [1, h]× [1, p] do

E(i, j)← e(i, j) + max {E(i− 1, j − 1), E(i− 1, j), E(i− 1, j + 1)}
end for
i← h
t(i)← j0, E(i, j0) = min{E(i, j), j ∈ [1, p]}
while i > 1 do

i← i− 1
t(i)← j0, E(i, j0) = min{E(i, j), j ∈ {t(i+ 1)− 1, t(i+ 1), t(i+ 1) + 1}}

end while

The path should originate from the vertex of the designed tile, see Fig. 3.1(b).
This can be achieved by imposing additional penalty to pixels outside the future
tile, for more details consult with the author’s bachelor thesis [48].

The simplicity of the algorithm is redeemed with the limitation that the path
propagates only diagonally or directly upwards, depicted in Fig. 3.1(c). Moreover,
the algorithm does not distinguish whether the path runs through inclusions or
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(a) (b)

Figure 3.3: Effect of preservation of inclusions’ shape due to modified Image Quilting
algorithm: (a) original algorithm, (b) modified algorithm

through a matrix phase, therefore it does not preserve shapes of inclusions. This
disadvantage, tackled namely in the case of binary media, can be partially eliminated
by modifying the definition of the pixel value error in the following manner

e(i, j) =
{

0, for A(i, j) ∈ Dm ∨B(i, j) ∈ Dm ,
1, for A(i, j) /∈ Dm ∧B(i, j) /∈ Dm ,

(3.4)

where Dm denotes the part of the overlap region occupied with the matrix phase.
The result of the modification, in particular that the path prefers the matrix phase,
is shown in Fig. 3.3.

3.1.2 Labyrinth algorithm
Modifying the quilting algorithm helps to preserve the shapes, however the quilt-

ing path still propagates only upwards. To overcome this limitation an alternative
approach to finding a quilting path based on the idea of solving a maze was inves-
tigated. Let us assume two overlapping samples of a microstructure that exhibits
a strong inclusion-matrix character, i.e. fully percolated medium. A binary error
distribution can by calculated making use of Eq. (3.4). The task of the labyrinth
algorithm is then to find a continuous path that connects the top and the bottom
edge of the error image and such that it is entirely comprised in its zero-part. In
other words, it runs only through the matrix phase in the both samples.

One of the basic rules for solving a maze is either the left or the right hand
rule. At the starting point, the preferred side is adopted. Then at each labyrinth
junction the the algorithm chooses the preferred side. If the chosen way turns out
to be a dead-end, the path returns to the last junction and chooses the way next
to the previously selected one. Following this procedure, the algorithm either finds
the path within a maze or returns to the origin if there is no admissible solution.
This algorithm is very easy to implement, however the procedure usually yields a
cumbersome quilting path.

In order to find the shortest path the Flood-fill algorithm, see Algorithm 1.1, can
be utilized with certain modification. The procedure is based on the idea of water
spreading from the origin through the maze. At the beginning, all zero pixels of
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(a) (b) (c)

Figure 3.4: Comparison of image fusion algorithms: (a) original Image Quilting algo-
rithm IQA, (b) modified Image Quilting IQM, (c) Labyrinth algorithm LA (quilting
path can run arbitrarily through highlighted area

the error distribution that belong to the chosen boundary are detected and labelled
with value k = 1. At each following step k all pixels marked k − 1, i.e. marked
in the previous step, are identified. All zero pixels of the error distribution that i)
fall within one-pixel neighbourhood1 of the identified pixels and ii) that has not yet
been signed, are marked with k. The algorithm proceeds until every zero pixel of
the error distribution is marked. Thus in the end, the number of steps in which
water can reach the point from the initial pixels is attributed to every zero pixel.
The quilting path is then again determined by the lowest values. More explicitly,
the lowest attributed value is found at the edge opposite to the initial. The quilting
path then follows the lowest values of adjacent pixels until it reaches the initial edge.

An advantage of the Labyrinth algorithm rests in its ability to find the quilting
path of arbitrary shape. On the other hand an obvious disadvantage of the method
is the narrow definition of the error distribution. Unlike the modified Quilting
Algorithm it can not handle cases in which no interconnected path through the
matrix phases of in both overlapping samples exists. This limitation dominates for
microstructures with higher density of inclusions, not to mention dense packings.

3.2 Patched tiles
Tiling reduces the long-range order artefacts, however the rate of the reduction

is affine to the number of r-samples involved in the tile set design [7]. In the auto-
matic design the entire microstructural information stored in tiles arises from the
edge samples. Even if the minimal stochastic set is assumed, the number of tiles
nt within the set increases with the second power of the number of distinct edge
code samples nc, nt = 2nc

1n
c
2

2. This results in relatively large tile sets to reduce
parasitic long-range orientation orders, which may be in a contradiction with the
intended application in Materials Engineering due to a computational defficiency.
On the grounds of this, the aperiodic sets of Culik and Kari in combination with the
automatic tile design have a limited ability to reduce the long-range order artefacts

1Unlike the four-point neighbourhood for the inclusions detection, the eight-point neighbour-
hood is considered within the Labyrinth algorithm.

2Equal numbers of vertical and horizontal codes are assumed
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Figure 3.5: Illustration of patching procedure: (a) scheme, (b) raw data with high-
lighted overlap and quilting paths

as only two distinct edge codes are present in one row. This arises from the fact,
that the balanced representation of an arbitrary real number consists always of two
integers.

For this reason, additional microstructural information is attached to each tile
by means of a square patch, Fig. 3.6. A similar approach was adopted by Somol and
Haindl [10]. Except the edge code samples there is also a number of unique patch
samples taken from the reference specimen. Number of those patches corresponds
with the number of tiles nt. The patch is then placed at the centre of the tile and
fused with the tile image. The appearance of the final tile is governed by the patch
dimension hp with respect to the length of tile l and width of the overlap region pp.
Any of the quilting path algorithms previously presented can be used.

On the one hand, the presented procedure increases demands on the specimen
of the reference microstructure that has to be large enough to embody sufficient
information, on the other hand the reduction of the repetitiveness is significantly
enhanced.

3.3 Reducing long-range orientation order arte-
facts

The reduction of the periodic nature of the reconstructed image, that has been
stated in many articles from the Computer Graphics community, e.g. [9, 29], was,
however, only qualified. In [7], the reduction was quantified by means of values of
secondary extremes in S2(x) statistics.

The following formula for predicting the magnitude of secondary S2(x) extremes
was introduced by Novák et al. in [7]

ŜP2 ≈
Φt

nt

[
Φ + (nt − 1)Φ2

]
+ max

i

{
Φe

nci

[
Φ + (nci − 1)Φ2

]}
, (3.5)

where Φt and Φe denote the volume fraction of the tile interior and the tile edges,
respectively,Φt = 1−Φe, Φ is the volume fraction of phase for which S2(x) statistics
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Figure 3.6: Comparison of of secondary extremes in S2 statistics obtained from 10
realizations of 10× 10 tiling with prediction ŜP2

is calculated, nt stands for the number of distinct tiles in the set and nci denotes the
number of different edge codes in i-th direction.

While in the case of the optimization process adopted in [7] the actual ratio
between the tile interior and the area associated with edges can not be rigorously
determined, in the case of the patched tiles the ratio of the patch area is straight-
forward. Recall again, that in the case of unpatched tiles all the microstructural
information is attributed solely to edges.

The comparison between the actual reduction of secondary peaks in S2(x) statis-
tics and prediction (3.5) is depicted in Fig. 3.6.

3.4 Sensitivity study
Performance of the automatic tile design process presented in this chapter de-

pends on many variables, see Fig. 3.8. In this section, an example of a sensitivity
analysis, that allows to identify the optimal values of input parameters, is outlined.
Such an analysis should be an integral part of each microstructure compression
techniques of the automatic design of Wang tiles.

The analysis is performed on four different microstructures, Target Systems, see
Fig. 3.7. In particular, microstructures consisting of equi-sized non-permeable [7]
and permeable disks, referred to as hard disks (H-disks) and soft disks (S-disks), re-
spectively, are considered. The third microstructure represents distribution of voids
in a sandstone. Since the single cross-section of the sandstone specimen, Fig. 1.1(a),
turned out not to contain sufficient information, an ensemble of cross-sections is
taken as the reference microstructure. The last investigated microstructure is a pla-
nar scan of the Alporas R© aluminium foam. The microstructures are characterized
by means of morphometrics, Tab. 3.1, obtained by making use of the programmed
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(a) (b)

(c) (d)

Figure 3.7: Reference microstructures for sensitivity analysis: (a) H-disks,
(b) S-disks, (c) sandstone, (d) Alporas R©

GUI, Fig. 1.4, that employs the Image Processing Toolbox of Matlab environment
[23]. The inclusion aspect ratio is calculated as the ratio between major and minor
axis length, i.e. the more the inclusion shape is circular, the closer to one it is.
Inclusion dimensions are also described with respect to the coordinate system by
mean size of the smallest rectangular box that bounds the inclusion.

The analysis is performed in two steps, the first part investigates the optimal
overlap and image fusing methods, while the second part examines the impact of
the number of edge codes and dimensions of the input samples. The tiling outcomes
are quantified in terms of the phase volume fraction and spatial statistics presented
in Chapter 1. For the sake of simplicity, the patched tiles were excluded from the
analysis as it would result in additional variables.

3.4.1 Optimal overlap

The aim of this section is to find the optimal width po of the overlap region in
which the two samples are fused. The three image fusing techniques presented in this
chapter are considered, namely they are Image Quilting algorithm (IQA), modified
Image Quilting algorithm (IQM) and Labyrinth algorithm (LA). For each material
a pair of square samples is randomly taken out of the reference microstructure. The
two samples are placed side by side overlapping by one pixel. The overlap is then
gradually increased to ten times bx, for each width the latter described quantities
are computed. The process is repeated hundred times.
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Table 3.1: Morphometrics of Target Systems

H-disks S-disks Sandstone Alporas R©

Inclusions volume fraction φ [%] σ 26.875 40.243 18.90 79.17
µ - - 1.70 -

Inclusion area [px2] σ 51.861 169.780 426.007 1670.303
µ 1.777 252.139 1243.045 5727.649

Equivalent diameter [px] σ 8.125 12.363 15.281 24.515
µ 0.151 7.958 17.504 39.070

Major axis length [px] σ 8.183 18.271 25.418 34.674
µ 0.165 16.482 32.955 61.314

Minor axis length [px] σ 8.154 10.931 12.991 21.007
µ 0.249 7.835 16.807 35.400

Inclusion aspect ratio [-] σ 1.005 1.572 2.027 1.758
µ 0.057 0.619 0.810 0.957

Bounding box bx [px] σ 7.989 14.952 19.656 30.591
µ 0.194 13.016 25.585 54.275

Bounding box by [px] σ 7.987 14.810 21.482 27.654
µ 0.228 12.809 29.459 47.288

The total cumulative error EIQA of IQA is plotted against the overlap width p
normalized with respect to the bounding box size bx, Fig. 3.9(a). The same graph
is plotted for the IQM algorithm in Fig. 3.9(b). Note that IQM error definition is
modified, see Eq. (3.4). In order to compare both algorithms the total cumulative
error EIQM is a posteriori computed in the same way as EIQA. For H-disks EIQA

falls to zero at the overlap width equal to five or six times the bx, for the other
microstructures the error remains significantly higher even at larger overlap widths.
Moreover, in the case of S-disks and Alporas R© there is no significant improvement
in the error after the width of five times the bx is reached. The very same observation
can be done in the case of IQM. Although IQM seems to be useless from the current
comparison viewpoint, its significance will arise in a later discussion.

Microstructure
specimen

r-samples edge length h

number of distinct r-samples

Wang tile set number of tiles nt
number of edge codes nc

i

Automatic tile
design

choice of fusing algorithm
overlap region width p

stochastic or aperiodic tile set

patched variant of tile design
choice of fusing algorithm
overlap region width pp

patch edge lenght hp

Figure 3.8: Scheme of input variables in automatic tile morphology design (including
patched tile variant)
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Figure 3.9: Overlap error: (a) IQA, (b) IQM

Since the Labyrinth algorithm either finds a zero error quilting path or fails,
its applicability is thus namely determined by the existence of an admissible path.
In Fig. 3.10 the probability of a successful LA performance is plotted. It can be
seen from Fig. 3.10 that the H-disks microstructure yields probability near one at
p/bx. The same behaviour of the Alporas R© foam is due to different definition of
the error image, instead of Eq. (3.4), the error is assumed zero if at least one pixel
belongs to the ligament phase and one otherwise. This results in a quilting path
that propagates within the ligaments. The worst performance of LA is achieved in
the case of S-disks, the probability starts to approach one at the overlap width near
50 times the bx. This is caused by the higher inclusion density.
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Figure 3.10: Probability of Labyrinth algorithm success through overlap region
(polynomial fit: y = −4.2515 · 10−8x4 + 5.3486 · 10−6x3− 4.6924 · 10−4x2 + 0.0333x−
0.2159)
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In Fig. 3.11 the fusing algorithms are compared by means of the normalized
deviation of inclusion phase volume fraction from that of the target system. The
error is defines as

Eφ = |φ− φTS| . (3.6)

Recall again that the error was computed for hundred realizations. The thick
solid line in Fig. 3.11 depicts the mean value of Eφ, dashed thinner lines define the
interval [σ − µ, σ + µ] where µ denotes the standard deviation. Data for the LA
algorithms are displayed only for overlap sizes for which the algorithm succeeded
at least ones. From the curves in Fig. 3.11 no superior algorithm can be identified.
The plotted curves exhibit convergence character beyond p/bx ≈ 5. In the case
of Alporas R© foam, IQM gives better results even for lower overlap widths. The
scatter of values in Fig. 3.11(b) for LA is due to the limited ability of the algorithm
to find a quilting path through S-disks. Relatively higher errors for the sandstone
microstructures are caused by the variance in the input data, see Tab. 3.1.
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Figure 3.11: Deviation of inclusion phase volume fraction of synthesized microstruc-
tures from individual target systems: (a) H-disks, (b) S-disks, (c) sandstone,
(d) Alporas R©

A similar survey was done regarding the shape of inclusions in the fused images.
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A suitable statistics that describes the overall shape of inclusions is the two-point
cluster function C2(x), see Section 1.1.2. In order to exclude the influence of the
inexact inclusion volume fraction on C2(x) a normalized variant Ĉ2(x) of C2(x) was
employed. The Ĉ2(x) is scaled so that the maximal value equals one. This statistics
was evaluated on 5×5 tiling since inclusions may occur on tiles edges and hence the
full shape is revealed only within the tiling. For the very same reason incomplete
inclusions taking place at the boundary of the tiling were filtered out. The relative
error EĈ2 was computed as

EĈ2 =
∫

Ω |Ĉ2(x)− Ĉ2TS(x)| dx∫
Ω Ĉ2TS(x) dx

. (3.7)

By means of this metric the introduction of the Modified Image Quilting al-
gorithm and the Labyrinth algorithm is justified. Conclusions based on a visual
perception in Fig. 3.3 are quantified in Fig. 3.12(a). Both algorithms, IQM and LA,
outperform the original IQA in preserving inclusion shapes. However this holds only
for the case of a medium with identical inclusions. For the remaining microstructures
all the algorithms are equivalent.

With respect to the above figures the optimal value po of the overlap region seems
to be circa five or six times the mean inclusion characteristic length measured in the
direction of the overlap width. Beyond this width, the additional cost of the im-
provement is not out-weighted by the additional improvement. The absolute values
of po are stated in Tab. 3.2. These values are taken as the inputs for the next step
of the analysis. Conclusion regarding the fusing algorithms is that for all cases but
the microstructure consisting of identical inclusions the Labyrinth algorithm brings
no advantage over the remaining two. The original and modified Image Quilting
algorithms seem to be equivalent for all cases except the H-disk microstructure.

Table 3.2: Optimal values of overlap width p and tile dimension l

H-disks S-disks Sandstone Alporas R©

po/bx [-] 5 5 6 6
po [px] 40 75 120 180
lo [px] 227 248 255 312
ho [px] 200 250 300 400

3.4.2 Optimal tile edge length and set diversity
The second part of the analysis investigates the impact of the number of distinct

microstructure samples taken out of the reference specimen and their edge length
h. The number of r-samples is given by the number of edge codes. The sample
edge length h along with the overlap width p then governs the final size l of the
automatically designed tile, recall Eq. (3.1). The overlap width is constant arising
from the previous part, the modified Image Quilting algorithm was employed for
the sample fusion.
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Figure 3.12: Shape error by means of Ĉ2(x): (a) H-disks, (b) S-disks, (c) sandstone,
(d) Alporas R©

For each reference microstructure various tile dimensions l are considered. At
first, for each l a number of complete tile sets is generated, consisting of 2, 3,4
and 5 edge codes on horizontal and vertical edges. From these sets the minimal
stochastic subsets are taken such that the subset’s inclusion volume fraction matches
the target system’s one as closely as possible. For each tile set the spatila statistics
are computed for a tiling consisting of 5×5 tiles. By analogy to the first part of the
sensitivity analysis a hundred tiling realizations were generated but for the two-point
cluster function, for which only the first five were used to reduce the computational
cost.

The volume fraction deviation Eq.(3.6) for different tile sets is plotted against
the tile edge length l in Fig. 3.13. It can be deduced from the graphs that the scatter
in the volume fraction decreases with increasing number of tiles within the set and
the size of input samples. This confirms the natural expectation of the compression
behaviour. Thus desired degree of deviation can be achieved either with increasing
the sample edge length or by incorporating more tiles into the set.

The tile edge length l seems to have a negligible impact on reducing the secondary
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Figure 3.13: Relative error of inclusion phase volume fraction: (a) H-disks,
(b) S-disks, (c) sandstone, (d) Alporas R©

extremes of the two-point probability function, the reduction is governed dominantly
by the number of distinct r-samples. In Fig. 3.14 the reduction is compared with the
prediction given by Eq. (3.5). The secondary peaks were determined in the same
manner as in Section 3.3. Despite some local discrepancies due to a misfit in the
volume fraction or local periodicities the overall trend complies with the prediction
for all microstructures.

Fig. 3.15 depicts the relationship between the shape error EĈ2 defined in the
previous section and the tile edge length l for the optimal stochastic sets. The
graphs indicate a presence of a threshold beyond which only slight improvement is
observed.

Optimal values of l resulting from the analysis are provided in Tab. 3.2 along
with the corresponding r-samples dimension h. However, these values may vary
depending on the desired accuracy. In certain cases minimal tile dimensions can
be desired resulting in higher number of tiles, in other cases the larger tiles can be
accepted in return for smaller sets. Therefore the values should not be understood
as a general rule and a similar sensitivity analysis should be performed any time a
microstructure is to be compressed in Wang tiles making use of the automatic design.
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Figure 3.14: Comparison of reduction in secondary extremes Ŝ2 and prediction (3.5):
(a) H-disks, (b) S-disks, (c) sandstone, (d) Alporas R©
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EĈ
2

Tile edge size l [px]

W8/2-2
W18/3-3
W32/4-4

(c) (d)

Figure 3.15: Shape error by means of EĈ2 : (a) H-disks, (b) S-disks, (c) sandstone,
(d) Alporas R©
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Examples of the reconstructed microstructures arising from the optimal tile sets
are shown in Fig. 3.16. The compressed system W32/4–4 with l = 312px of the
Alporas R© presents also the input for the Chapter 5, see Fig. 5.1.

(a) (b)

(c) (d)

Figure 3.16: Examples of reconstructed microstructures in 3× 3 tiling: (a) H-disks,
(b) S-disks, (c) sandstone, (d) Alporas R©



Chapter 4

Application of Wang tiling concept
to material homogenization

Two approaches to numerical homogenization based on discrete representation of
microstructure are presented in this chapter. An application of the two techniques
to the Alporas R© aluminium foam is the subject of Chapter 5. However, with
respect to the representation of the foam microstructure in form of beams, the
present homogenization procedures are derived specifically for the Stiffness Method.
Nevertheless, the Stiffness Method can be understood as a special case of the Finite
Element Method (FEM) with specific choice of basis functions. Thereby the subject
of this chapter is applicable in any finite element formulation.

To simplify the exposition, the focus is on linear elasticity. In this thesis the
tiling concept is used for an efficient generation of large number of stochastic ho-
mogenization models (RVEs). However, it is worthwhile to note that it could have
a potential to improve numerical homogenization techniques also in terms of less
computational overhead, namely by taking the fact that the RVEs are made up of
repetitive patterns into account. From a broader context tiling-based models benefit
from a link with domain decomposition methods, performed on a limited number of
domains (tiles), which would result in both memory and computer time savings.

4.1 A brief introduction to homogenization
In homogenization theory we deal with the obstacle of substituting a spatially

varying heterogeneous material consisting of phases of different thermo-mechanical
properties with the equivalent averages defined as

〈f〉 = 1
|Ω|

∫
Ω
f(x) dx . (4.1)

A macroscopic uniform strain E applied to an RVE domain results in the local
strain ε(x) and the local stress field σ(x). The two fields are, in the case of linear
elasticity, coupled by the Hooke’s Law

σ(x) = D(x) : ε(x) . (4.2)
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The homogenization process substitutes the material stiffness tensor D(x) with the
spatially invariant tensor Dhom such that

Σ = 〈σ(x)〉 = 〈D(x) : ε(x)〉 = Dhom : 〈ε(x)〉 = Dhom : E . (4.3)

It yields Hill’s lemma [49] coupling the macroscopic (overall) and the microscopic
(local) density of the elastic strain energy υ in the form

〈υ〉 =
〈1

2ε(x) : σ(x)
〉

= 1
2 〈ε(x)〉 : 〈σ(x)〉 = 1

2E : Σ . (4.4)

4.2 Homogenization based on the local strain en-
ergy

The first of the presented homogenization methods makes use of a natural re-
quirement on the strain energy arising from Hill’s lemma (4.4). Integrating the latter
equation of the energy density gives rise to the relation between the macroscopic
strain energy and the integral of local fields over the domain Ω. In other words, the
strain energy Υ stored in a heterogeneous material subjected to macroscopic loads
must be equivalent to the energy stored in a homogeneous material of the same
volume and subjected to the same excitation.

Thus, making use of the constitutive equation (4.2) and taking into account that
Σ and E are constant in Ω yields

Υ = 1
2E : Dhom : E

∫
Ω

1 dx =
∫

Ω

1
2ε(x) : σ(x) dx . (4.5)

4.2.1 Strain energy of wired model
As was mentioned above the intended application of the both homogenization

methods is to provide the overall properties from the beam representation of the
microstructure. Local strain energy would be therefore in terms of axial beam
displacements and internal forces.

Adopting the Timoshenko beam theory, the only stresses taking place at the
cross-section are the axial stress σxx and the transversal shear stress τxz. Hence, the
formula for elastic strain energy of a deformed beam yields

Υ =
∫

Ω

1
2σijεij dΩ =

∫
Ω

1
2σxxεxx + τxzγxz dΩ . (4.6)

The latter equation rewritten in terms of internal forces [50] thus yields

Υ = 1
2

n∑
i

∫
Li

(
N2(x)
EiAi

+ V 2(x)
GikiAi

+ M2(x)
EiIi

)
dx , (4.7)

where E stands for the Young’s modulus of the beam material, A denotes the area
of the cross-section, I is the moment of inertia. The internal forces are denoted as
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follows: N(x) is the axial force, M(x) denotes a bending moment around the y axis
and V (x) stands for a shear force. Parameter k is energy-consistent correction due
to a constant approximation of τxz across the beam cross-section.

Since the external load is applied only at nodes and the beams are assumed
prismatic , normal and shear forces are constant along the length of the beam and
a bending moment is linear. Integrating the above equation, it can be rewritten in
terms of local nodal forces (denoted with subscripts 1 and 2)

Υ = 1
2

n∑
i

( 1
EiAi

(N2
1Li) + 1

EikiAi
(V 2

1 Li) + 1
3EiIi

Li(M2
1 +M1M2 +M2

2 )
)
. (4.8)

The total elastic energy stored within the RVE wired model can be thus computed
as the sum of energy contributions stored within each beam.

4.2.2 Strain energy of homogeneous isotropic material

Recall the equation for the strain energy of a linear elastic homogeneous body
in the form

Υ =
∫

Ω

1
2ε(x) : D : ε(x) dx . (4.9)

In the case of the isotropic material the elastic stiffness tensor D can be expressed
in terms of bulk and shear moduli as

D = 3KIV + 2GID , (4.10)

with projection tensors defined as

IV = 1
31⊗ 1 , (4.11)

IVijkl = 1
3δijδkl , (4.12)

ISijkl = 1
2 (δikδjl + δilδjk) , (4.13)

ID = IS − IV . (4.14)

The symmetric deformation tensor ε can be decomposed into a volumetric εV
and a deviatoric εD part making use of the property (4.14) of the projection tensors
as

ε = IS : ε = (IV + ID) : ε = IV : ε+ ID : ε = εV + εD . (4.15)

Introducing Eq. (4.11) and Eq. (4.14), εV and εD yields

εV = IV : ε = 1
3εV1 , (4.16)

εD = ID : ε , (4.17)
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where tr(εD) = 0. Evidently, the Eq. (4.15) can be recast as

ε = 1
3εV1 + εD . (4.18)

Considering Eq. (4.10), the strain energy density υ can be written in the form

2υ = ε : (3KIV + 2GID) : ε . (4.19)

Introducing Eq. (4.18) into Eq. (4.19) and taking into account the fact that IV : 1 =
1, ID : 1 = 0 and ID : εD = 0 yields

2υ = (1
3εV1 + εD) : (KεV1 + 2GεD) . (4.20)

Furthermore, acknowledging εD : 1 = 0 gives

2υ = Kε2
V

1
31 : 1 + 2GεD : εD . (4.21)

Hence the elastic energy Υ stored in a homogeneous isotropic linear elastic body
reads as

Υ =
∫

Ω

1
2Kε

2
V +GεD : εD dΩ . (4.22)

4.2.3 Numerical implementation

Assume that the finite element model consisting of beams representing the ge-
ometry of analysed material (e.g. foam ligaments) has been generated using Wang
tilling and that the algebraic representation in terms of the global stiffness matrix has
been constructed. All displacements at the boundary Γ are prescribed, i.e. Γ = Γu.
In particular, in the case of kinematic uniform boundary conditions (KUBC), the
boundary displacements are prescribed as

u(x) = x ·E , x ∈ Γ . (4.23)

The volume average of the strain field over the domain Ω is then by definition
equal to prescribed macroscopic strain tensor E

〈ε(x)〉 = E . (4.24)

Furthermore, for any prescribed E the strain energy Υ within the Ω can be
computed by employing Eq. (4.8).

To obtain the effective bulk modulus K the macroscopic strain tensor E can
be prescribed in such a form that εV = 1 and εD = 0. This can be achieved with
tensors E in the form

EV =
[
E11 0
0 E22

]
, such that E11 + E22 = 1 , e.g. EV =

[
1
2 0
0 1

2

]
. (4.25)
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The expression for the macroscopic strain energy in Eq. (4.22) then reduces to

Υ =
∫

Ω

1
2KE

2
V dΩ = 1

2KE
2
V

∫
Ω

dΩ = 1
2K|Ω| , (4.26)

and provides the formula for the effective bulk modulus K in the form

K = 2Υ
|Ω| . (4.27)

By analogy to the previous derivation, the overall shear modulus G can be ob-
tained with the macroscopic strain prescribed in such a form that fullfils εD : εD = 1,
e.g.

ED =
[

0 1√
2

1√
2 0

]
. (4.28)

Introducing the latter equation into Eq. (4.22) yields

Υ =
∫

Ω
GED : ED dΩ = G

∫
Ω

dΩ = G|Ω| , (4.29)

which gives
G = Υ

|Ω| . (4.30)

In summary, the presented homogenization procedure gives the overall isotropic
constants K and G in two steps. A limitation of this approach is that the homo-
geneous material is a priori assumed isotropic. An insight of the correctness of the
isotropy assumption can be achieved by prescribing unequal strain components Eii
in multiple steps and monitoring the sensitivity of K for individual choices.

4.3 Homogenization based on the concept of macro-
scopic degrees of freedom

In the previous homogenization approach the boundary displacements were pre-
scribed along the entire Γ, the local strains and inner forces were computed and the
sum of the strain energy within elements delivered the effective elastic constants. A
natural question arises whether those mid-steps could be omitted and a straightfor-
ward way to homogenized properties applied.

It turned out [6] that the effective properties can be extracted directly from the
global stiffness matrix of the FE model by adding certain degrees of freedom. This
approach is well known among scientists, one of the first papers summarizing this
procedure was due to Michel et al. [51].

4.3.1 Central idea
The main idea of the approach is to decompose the displacement field u(x) in two

parts, the displacement field uE(x) related to the homogeneous macroscopic strain
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tensor E and the filed u∗(x) representing its perturbation (so called fluctuation
part), so that

u(x) = uE(x) + u∗(x) , (4.31)

where
uE(x) = E · x . (4.32)

Substituting equations (4.31) and (4.32) into the geometric strain definition

ε(x) =∇su(x) , (4.33)

where ∇s denotes the symmetric gradient operator defined as

∇s = 1
2
(
∇+∇T

)
, (4.34)

with ∇i = ∂
∂xi

.

Eq. (4.33) along with the decomposition (4.31) yields

ε(x) = E +∇su∗(x) . (4.35)

A traditional expression for the elastic strain energy Υ in terms of the symmetric
gradient of the displacement field u(x) reads as

Υ(u(x)) = 1
2

∫
Ω

(∇su(x) : D : ∇su(x)) dx , (4.36)

which can be recast by introducting Eq. (4.35) to

Υ(E,u∗(x)) = 1
2

∫
Ω

(E +∇su∗(x)) : D : (E +∇su∗(x)) dx . (4.37)

The previous equation is valid for all kinematically admissible fields ũ(x). From
the Lagrange principle of minimum potential energy the actual state u∗(x) can be
identified by minimizing (4.37) with respect to ũ(x) as

∂

∂ũ
Υ(E, ũ(x))|ũ=u∗ = 0 . (4.38)

Note, that all following derivatives are in sense of Gâteaux derivative. Since
the strain energy is a quadratic form in both E and ũ(x), the first derivative with
respect to ũ(x) also consist of both terms, thus the condition (4.38) yields a relation
betweenE and u∗(x). The potential energy can be expressed in terms ofE as Υ (E).

Recall the definition of elastic strain energy density υ

υ (ε(x)) = 1
2σ (ε(x)) : ε(x) . (4.39)
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The total energy potential then reads as

Υ (ε(x)) =
∫

Ω
υ (ε(x)) dx . (4.40)

The volume average of υ thus yields

〈υ〉 = 1
|Ω|

∫
Ω
υ (ε(x)) dx = 1

|Ω|Υ (ε(x)) . (4.41)

By making use of Hill’s lemma [6, 49]

2 〈υ〉 = 〈ε(x) : σ(x)〉 = 〈ε(x)〉 : 〈σ(x)〉 = E : Σ , (4.42)

we arrive at the relation between the potential energy expressed as a function of the
local strain and stress fields and their macroscopic counterparts E and Σ as

2 〈υ〉 = 2
|Ω|Υ(E) = 〈ε(x)〉 : 〈σ(x)〉 = E : Σ . (4.43)

From Eq. (4.43) the macroscopic stress tensor yields the first derivative of the average
density of the total potential energy

Σ = 2
|Ω|

∂Υ(E)
∂E

. (4.44)

Substituting Σ from the following definition

Σ = Dhom : E (4.45)

results in the explicit formula for the homogeneous stiffness tensor as

Dhom = 2
|Ω|

∂2Υ(E)
∂E2 . (4.46)

Recall that the above procedure assumes prescribed kinematic uniform boundary
conditions (KUBC) in the form of Eq. (4.32) on Γ = Γu, thus u∗(x) = 0, ∀x ∈ Γ.
As a consequence, the volume average of a strain perturbation field vanishes

〈ε∗(x)〉 = 〈∇su∗(x)〉 = 1
|Ω|

∫
Ω
∇su∗(x) dx = 1

|Ω|

∮
Γ
n⊗ u∗(x) dx = 0 . (4.47)

This also implies that the work done by 〈σ〉 on 〈ε∗(x)〉 is zero which will arise later
in the special form of the set of linear equations.

It can be shown that in the case of the periodic boundary conditions the volume
average 〈u∗(x)〉 also vanishes, hence the same statement considering zero work done
by the stress volume average holds as well [51].
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4.3.2 Direct Stiffness method

The Stiffness method is an approach to solve the kinematics of beam structures.
From a certain point of view, this approach can be seen as a special case of the
finite element method with a specific choice of approximation functions. In a local
coordinate system the transversal displacements are approximated with fourth-order
polynomials which arise from the solution of differential equation of the Deflection
Curve based on the Timoshenko hypothesis. The Bernouli-Navier hypothesis could
be assumed as well, but in order to to remain energy-consistent the contribution of
shear forces to the total potential energy in Eq. (4.8) would be then neglected.

In the Direct Stiffness method the elements’ nodal forces are related to the end
points’ degrees of freedom (DOFs) as (assuming no loading is applied within the
beam)

fe = Keue , (4.48)

where

ue = {u1, v1, φ1, u2, v2, φ2}T , fe = {N1, V1,M1, N2, V2,M2}T (4.49)

and
Ke = TTK`

eT . (4.50)

The local stiffness matrix K`
e arising from the Timoshenko theory has the form [52]

K`
e =



EA
L

0 0 −EA
L

0 0
0 12

1+Φ
EI
L3 − 6

1+Φ
EI
L2 0 − 12

1+Φ
EI
L3 − 6

1+Φ
EI
L2

0 − 6
1+Φ

EI
L2

4+Φ
1+Φ

EI
L

0 6
1+Φ

EI
L2

2−Φ
1+Φ

EI
L

−EA
L

0 0 EA
L

0 0
0 − 12

1+Φ
EI
L3

6
1+Φ

EI
L2 0 12

1+Φ
EI
L3

6
1+Φ

EI
L2

0 − 6
1+Φ

EI
L2

2−Φ
1+Φ

EI
L

0 6
1+Φ

EI
L2

4+Φ
1+Φ

EI
L


, (4.51)

with Φ = 12EI
GkAL2 . Note that the local stiffness matrix for the Bernoulli-Navier hy-

pothesis can be obtained with Φ = 0. The transformation matrix T reads as

K`
e =



cos(ϕ) sin(ϕ) 0 0 0 0
− sin(ϕ) cos(ϕ) 0 0 0 0

0 0 1 0 0 0
0 0 0 cos(ϕ) sin(ϕ) 0
0 0 0 − sin(ϕ) cos(ϕ) 0
0 0 0 0 0 1


, (4.52)

where ϕ is an angle between the global x axis and a beam axis.

The strain energy Υe stored within a deformed beam (let’s call it an element as
in the case of conventional FEM) reads as

Υe(ue, fe) = 1
2 fTu . (4.53)
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Considering Eq. (4.48) the latter equation can be expressed in the form

Υe(ue) = 1
2uTe Keue , (4.54)

that leads to the total energy of the entire structure as

Υ = 1
2

N∑
e=1

uTe Keue . (4.55)

Adopting the displacement decomposition (4.31) gives

u =
[
I Ae

] {u∗e
E

}
, (4.56)

where I is a unit matrix of 6× 6 entries and

Ae =



x1 0 1
2y1

0 y1
1
2x1

0 0 0
x2 0 1

2y2
0 y2

1
2x2

0 0 0


. (4.57)

A is the matrix coupling the nodal DOFs with the macroscopic deformation E ={
εx, εy, γxy

}
.

Introducing Eq. (4.56) to the local strain energy expression in (4.54) results in

Υe = 1
2

{
u∗e
E

}T [
I Ae

]T
Ke

[
I Ae

]
︸ ︷︷ ︸

Kex
e

{
u∗e
E

}
, (4.58)

where
Kex
e =

[
Ke KeAe

AT
e Ke AT

e KeAe

]
(4.59)

stands for the extended stiffness matrix of an element.
Unknown global perturbation DOFs u∗ can be assembled to a vector of unknowns

r with respect to fixed/prescribed boundary values as

r =
N

A
e=1

(u∗e) , (4.60)

where
N

A
e=1

denotes the assembly operator [6].
The expression for the extended global stiffness matrix Kex takes the form

Kex =
[

K11 K12
K21 K22

]
, (4.61)
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where

K11 =
N

A
e=1

(Ke) , (4.62)

K12 =
N

A
e=1

(KeAe) , (4.63)

K21 =
N

A
e=1

(
AT
e Ke

)
, (4.64)

K22 =
N

A
e=1

(
AT
e KeAe

)
. (4.65)

Equation (4.55) can be expanded for the sake of clarity as

Υ (r,E) = 1
2
(

rTK11r + rTK12E + ETK21r + ETK22E
)
. (4.66)

At this point the procedure introduced in the previous section can be performed.
From all kinematically admissible DOFs r̃, only such a state will take place that
minimizes the potential energy (4.66)

∂

∂ r̃ Υ (̃r,E)|̃r=r = 0 . (4.67)

Noting the symmetry of resulting matrix and the fact that K12 = KT
21, the aforemen-

tioned minimization yields the condition

0 = K11r + K12E . (4.68)

Hence the true state of u is related to E via

r = −K−1
11 K12E . (4.69)

Introducing Eq. (4.69) into Eq. (4.66) and differentiating with respect to E leads to

Σ = 1
|Ω|

(
K22 − KT

21K−1
11 K12

)
E , (4.70)

which finally gives
Dhom = 1

|Ω|
(

K22 − KT
21K−1

11 K12
)
. (4.71)

An alternative approach is to avoid the above substitution and consider Eq. (4.68)
as an additional condition, which can be understood as the Lagrange Multiplier.
Then the expression of the macroscopic stress as the first derivative of Eq. (4.66)
with respect to E reads as

Σ = 1
|Ω| (K21r̃ + K22E) . (4.72)
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Coupling the latter term with Eq. (4.68) then gives{
0
Σ

}
= 1
|Ω|

[
K11 K12
K21 K22

]{
r̃
E

}
. (4.73)

Homogeneous stiffness matrix can be thus derived as the Schur complement of
global stiffness matrix Kex divided by 1

|Ω| , which is equal to the solution of the
second derivative of Υ(E) with respect to E. The zero vector 0 on the left hand side
of Eq. (4.73) can be related to the zero work done by the volume average of the
perturbation DOFs.

4.3.3 Standard Finite Element method

In the case of the finite element method the procedure is similar as above. How-
ever, FEM differs in a different choice of basis functions. In the stiffness method,
bases fulfil both the governing differential equation and the boundary conditions in
an entire element and are zero only in a finite number of points. Basically, these
represent the analytical solution to a particular quantity for unitary nodal impulses.
It means that the basis functions can have larger supports than the standard finite
element bases, thereby making the Stiffness method a special kind of the Ritz ap-
proximation with very special approximation functions specific to strong solutions
for applied loads.

Now, assume a finite element approximation of displacement DOFs in the form

u(x) = N(x)r . (4.74)

The displacement gradient than reads

ε(x) = B(x)r . (4.75)

Considering the above approximations, the strain decomposition yields

ε(x) =
[
B(x) I

] {r∗
E

}
. (4.76)

The strain energy of the element can be computed as

Υe = 1
2

∫
Ωe

{
r∗
E

}T [BTDeB BTDe

DeB De

]{
r∗
E

}
dΩe . (4.77)

Performing the very same localization as in the case of the direct stiffness approach
along with the homogenization process in Eqs. (4.67-4.71) results in{

0
Σ

}
= 1
|Ω|

[
K11 K12
K21 K22

]{
r̃
E

}
. (4.78)
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Note, that the member K22 is equal to the so called Voight upper bound of the
homogenized properties, while the remaining members can be understood as a cor-
rection [6].

4.3.4 Extracting isotropic elastic parameters from homoge-
nized matrices

Unlike the first homogenization procedure described is Section 4.2 the latter ap-
proach yields the homogenized material stiffness matrix. If a degree of anisotropy
is small, it is convenient to describe the constitutive behaviour of a homogenized
material with scalar quantities such as Young’s, bulk and shear moduli. This sim-
plification leads to a priori assumption of isotropy. Although we demonstrate the
intended procedure for planar problems, it is applicable with a minor extension to
a general three-dimensional isotropy.

Energy based extraction

The first method arises from the homogenization approach adopted in Sec-
tion 4.2. Assume homogeneous stiffness matrix of 3×3 elements for a planar problem
(e.q. plane strain) and the Hooke’s law in the form

σx
σy
τxy

 =

D11 D12 D13
D21 D22 D23
D31 D32 D33



εx
εy
γxy

 . (4.79)

The elastic strain energy density υ of a homogenized RVE Ω, understood as an
infinitesimal macroscopic material point loaded by an arbitrary strain vector ε, reads
as

υ = 1
2ε

TDhomε . (4.80)

Considering the Ω isotropic (4.22), the above equation equals υ of an isotropic
material in the form

υ = 1
2Kε

2
V +GεD

T εD . (4.81)

Assuming a unitary deviatoric strain ε =
{

0, 0, 1
}T

substituted to Eq. (4.80) and
comparing the two latter equations directly gives

G = D33 . (4.82)

On the other hand, if the strain vector is assumed such that it yields a unitary
volumetric strains, for instance ε =

{
1
2 ,

1
2 , 0

}T
, it results in

K = 1
4 (D11 +D12 +D21 +D22) . (4.83)
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Engineering parameters such as Young’s modulus E and Poisson’s ratio ν can
be calculated [53] as

ν = 3K − 2G
6K + 2G , E = 9KG

3K +G
. (4.84)

Least square method extraction

The previous approach explicitly assumes isotropic material so that it neglects
members Di3 and D3i even if they are non-zero. In order to account for these com-
ponents the spectral analysis of the stiffness matrix can be performed and effective
parameters determined from the eigenvalues. For a comprehensive discussion on this
topic, see Appendix A.
Considering the plane strain conditions, the material stiffness matrix takes the fol-
lowing form

D(K,G)
hom =

K + 4
3G K − 2

3G 0
K − 2

3G K + 4
3G 0

0 0 G

 . (4.85)

Eigenvalues of the above stiffness matrix are

λ(K,G) =


G
2G

2
3G+ 2K

 . (4.86)

Regarding the overall stiffness matrix obtained from the macroscopic degrees of
freedom’s homogenization approach does not exactly obey the form of Eq. (4.85),
nor the calculated eigenvalues λcal are in relations (4.86). Therefore the Least square
method was employed to adjust the effective elastic properties given by the latter
equation.

As the stiffness matrix D(K,G)
hom takes relatively simple algebraic form, unlike if we

would assume the stiffness matrix expressed in terms of E and ν, the eigenvalues
λ(K,G) can be written as the linear combination of parameters K and G

λ(K,G) =

1 0
2 0
2
3 2

{G
K

}
. (4.87)

For the sake of clarity we abbreviate the expression (4.87) as

λ(K,G) = Ad . (4.88)

The least square method applied to Eq. (4.87) results in minimizing the Euclidean
L2-norm

∥∥∥λ(K,G) − λ(K,G)
cal

∥∥∥. It can be rewritten as

∥∥∥λ(K,G) − λ(K,G)
cal

∥∥∥ =
(
λ(K,G) − λ(K,G)

cal

)T (
λ(K,G) − λ(K,G)

cal

)
. (4.89)
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Substituting Eq. (4.87) into Eq. (4.89) yields∥∥∥Ad− λ(K,G)
cal

∥∥∥ =
(

Ad− λ(K,G)
cal

)T (
Ad− λ(K,G)

cal

)
. (4.90)

Minimizing Eq. (4.90) with respect to d

min
d

∥∥∥Ad− λ(K,G)
cal

∥∥∥ , (4.91)

is equal to solving the equation

∂

∂d

(
Ad− λ(K,G)

cal

)T (
Ad− λ(K,G)

cal

)
= 0 , (4.92)

which yields the cirterion (objective function)

2ATAd− 2ATλ
(K,G)
cal = 0 . (4.93)

Albeit the matrix A is non-square, ATA gives the square matrix, for which the inverse
exists. Thus the parameters K and G can be approximated with the Least square
method as

d =
{
G
K

}
=
(

ATA
)−1

ATλ
(K,G)
cal . (4.94)

Evaluating (4.94) gives {
G
K

}
=
[

1
5

2
5 0

− 2
30 −

4
30

1
2

]
λ

(K,G)
cal . (4.95)

It is worthwhile to note, that when performing numerical computation of eigen-
values of a given stiffness matrix, the result is a sorted sequence of numbers. There-
fore it should be ensured that the largest eigenvalue corresponds to 2

3G+2K and not
to 2G. This requirement leads to the condition of positive Poisson’s ratio, thereby
making the above procedure valid for non-auxetic materials only. If ν < 0 the last
two rows of A has to be swaped.
Applying the above procedure in plane stress conditions we arrive at

D(K,G)
hom =


4G(G+3K)

4G+3K G −2G(2G−3K)
4G+3K 0

−2G(2G−3K)
4G+3K

4G(G+3K)
4G+3K G 0

0 0 G

 , (4.96)

with the eigenvalues

λ(K,G) =


G
2G

18KG
4G+3K

 . (4.97)

Since the relation between the eigenvalues and the elastic parameters is non-linear,
the non-linear variant of the least squares method has to be applied resulting in an
iterative process.



Chapter 5

Homogenization of Alporas R©

closed-cell foam

Porous metals represent a branch of materials with overall properties, which are
highly influenced by the microstructure composition[54]. A proper microstructure
design can thus render materials with properties specific to their application. Cellu-
lar metals feature very attractive combination of relatively high stiffness with respect
to low weight and ability of high energy absorption. In the case of open-cell micro-
structure, metal foams can serve as filters, heat conductors or exchangers, while in
the case of its closed-cell counterpart, vibration, sound absorption or fire protection
govern another applications [55, 56].

A great interest arises from the car and aircraft industries, where cellular met-
als seem to be a hoped-for way to reduce weight mirrored in less fuel consumption
while preserving stiffness of structural members and improving energy absorption
of safety zones or heat dissipation ability of engine blocks [55]. Microporous met-
als could replace commonly used and expensive honeycomb structures. However,
possible applications are not limited to Mechanical Engineering. In Civil Engineer-
ing, cellular metals can serve as self-supported sound barriers in noisy areas, fire
resistance allows the materials to be used as tunnel lining insulators, etc. [55, 56].

From the perspective of Materials Engineering porous materials represent an
extreme case of a composite with an infinite contrast of phases’ properties. That is
why the classical asymptotic homogenization bounds are far apart and the influence
of inner structure is maximized [54]. Characterization of the material behaviour
based on porosity and properties of solid phase is insufficient.

As was mentioned, cellular metals can be divided into two distinct categories,
namely open-cell and closed-cell variant[56]. Both cases are usually referred to as
foams, but as Banhart pointed out [55] only the closed-cell porous metals should be
denoted as foams. For the open-cell variant a sponge would be the correct denomina-
tion. The inner composition is determined by manufacturing process, alternatively
post-processing (Alporas foams can be rolled in order to collapse cell walls and
increase frequency range of sound absorption). The complex description of these
processes can be found in [55, 56].

There is a consensus on the behaviour (or at least its approximation) models,
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open-cell sponges are usually modelled as spatial wired models consisting of beams,
while closed-cell foam might require the addition of membrane elements among the
beams acting as the cell walls [57]. Nevertheless, in the case of very thin walls
even the behaviour of closed-cell foams can be approximated with beam models
[55, 54, 56, 58]. Based on this assumption, Ashby and Gibson presented the spatial
unit cell model [57] and derived equations relating porosity with various thermo-
mechanical parameters.

The idea of porous materials is not purely artificial. Microcellular compositions
are ubiquitous in nature (e.g. bones and wood [55]), thus verified by thousands of
years in operation. Some of the current metal foams can mimic wood and substitute
wood material prone to biodegradation [56]. The production of cellular metals was
preceded by polymers which are easier to manufacture. Interestingly, life cycle of
industrial use of cellular metal follows the curve introduced by Ashby [56]. The
industrial take-up followed the main research interest with a delay of more than
twenty years. According to [55], first porous metal samples were manufacture in
60’s and 70’s but the mass production started in mid 80’s.

The current chapter of the thesis was motivated by the paper of Němeček et al.
[59]. In the paper, nanoindentation and macroscopic experiments were compared
with the two-scale numerical homogenization results. The coarse-scale homogeniza-
tion was performed on a Voronoi mesh arising from an optical scan image of a
material cross-section. The RVE size was therefore limited by the size of the im-
age. The aim is to compress the microstructural information within the set of Wang
tiles and reconstruct computational models of arbitrary sizes in order to arrive at
homogenized properties independent of the RVE size.

5.1 Alporas R© foam
The material to be homogenized is the closed-cell aluminium foam Alporas R©

manufactured by Shinko Wire Company, Ltd.[60]. Alporas R© can be characterised
as a highly porous microcellular metal with the average size of cells (pores) 4.5 mm
[60]. The main field of application of Alporas R© foam lies in sound absorption, e.g.
sound absorption panels coating the bottom side of motorway bridges as has been
reported in [56] and references therein. Ashby, in her Design guide [56], declares
properties of Alporas R© foam stated in Tab. 5.1.

Table 5.1: Properties of Alporas R© foam

porosity 90 - 92 %
Young’s modulus 0,4 - 1,0 GPa
Shear modulus 0,3 - 0,35 GPa
Bulk modulus 0,9 - 1,2 GPa
Poisson’s ratio 0,31 - 0,32

Alporas R© foam is manufactured by a batch casting process with an addition of
a blowing agent into the aluminium molten. When the blowing agent, in particular
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the titanium dihydrate TiH2, is heated up, it releases hydrogen, thereby creating
bubbles within the molten. To prevent the bubbles from popping up to the surface
the viscosity of molten is increased with the calcium thickening agent in amount
of approximately 1,5 % of molten weight. With a precise control of time, pressure,
temperature, amount of the added blowing agent and the calcium thickener the foam
characteristics can be controlled [60].

As a consequence of high porosity, Alporas R© loses the sphere shape of pores, the
pores turn into polyhedra with the bulk material concentrated to the vertices, cell
walls then exhibit a plateau in the middle [60].

5.2 Numerical homogenization
The bulk material of the Alporas R© foam is also non-homogeneous, namely due

to the agent additives. Based on Environmental Scanning Electron Microscope
(ESEM) images and nanoindentation Němeček et al. reported two distinct phases
within the ligaments [59], the aluminium rich phase, and the phase consisting of a
significant amount of titanium and calcium. Homogenization at this level was per-
formed by Němeček et al. and values of effective Young’s modulus E = 70.083 GPa
and Poisson’s ratio ν = 0, 35 were determined by means of analytical micromechan-
ics (Mori-Tanaka method). For further details be referred to [59].

Those values were taken as inputs for the upper-scale homogenization process,
in which the microstructure was represented by a wired model consisting of straight
beams. The geometry of the wired model was obtained by Voronoi tessellation. The
centres of gravity of individual pores were taken as seeds for the Voronoi diagram.
As mentioned above, the size of the wired model was limited with the size of the
scanned image, which was the initial motivation to employ the tilling concept, which,
once again, allows computational domains of arbitrary sizes to be generated.

(a) (b)

Figure 5.1: Compressed Alporas R© microstructure W32/4–4: (a) graphical represen-
tation, (b) corresponding wired model

The same reference microstructure as was used in [59], see Fig. 5.4(a), was sub-
jected to the homogenization procedures introduced above. Making use of the sen-
sitivity analysis presented in Section 3.4 the microstructural information was com-
pressed within the set of W32/4–4.

The volume fraction of the bulk material obtained from the weighing test of
the real specimen does not correspond to fraction of the area of ligaments in the
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reference image. The discrepancy can be particularly attributed to the preparation
procedure, in which the saw cut was not perpendicular to most of the pore walls.
Therefore the apparent ligament fraction is higher than the measured one. For this
reason a wired model was preferred to the planar finite element analysis as the latter
would have required an topological modification in order to achieve the measured
volume fraction. Moreover, the fact that the spatial beam model has been reported
many times, e.g. [57, 56, 58], was convincing as well.

The geometry of each tile was manually meshed employing a specifically designed,
Graphical User Interface (GUI) tool, which was programmed in Matlab environment.
The graphical interface of the tool is shown in Fig. 5.3. The tool enables to main-
tain the mesh compatibility across the adjacent edges. Despite the fact, that the
manual meshing is a tedious work, it allows for correcting faults, such as disrupted
ligaments, which inevitably result from the automatic tile design of such complex
microstructure or may be inherited from the preparation of the reference sample
that involved saw cutting and polishing. The compressed microstructure and the
corresponding wired model are depicted in Fig. 5.1.

Computational domains are generated from meshes defined in tiles. The para-
metric local coordinates of the tile mesh nodes are transformed to the global co-
ordinates by translation and linear scaling. Subsequently, the coincident points of
adjacent tiles are identified on congruent edges and merged. Finally, all nodes are
renumbered. This procedure is illustrated in Fig. 5.2.

The same procedure as in[59] was adopted for determining the cross-section
parameters. The beams are assumed straight and prismatic with a rectangular
cross-section of unitary width. The total length of beams is given by the mesh
geometry, hence the height of the cross-section is governed by the experimentally
obtained volume fraction of the ligament phase. Thus the relation for the height
reads as

H = ρ|Ω|
LΣ

, (5.1)

where ρ stands for the measured volume fraction, |Ω| denotes the size of the tile
domains and LΣ is the total length of beams.

As the width is assumed unity, the expressions for the cross-section area A and
the moment of inertia I yields

A = H , (5.2)

I = 1
12H

3 . (5.3)

The reported value 8.6% of the ligament fraction [59] resulted in cross-section char-
acteristics denoted in Tab. 5.2.

In order to analyse the effect of the geometry, the microstructure has been repre-
sented also with the Voronoi mesh and the mesh that has been manually created in
the GUI tool by making use of the reference image in Fig. 5.4(a). The visual appear-
ance of various geometries can be compared in Fig. 5.4. The beam characteristics
for these representations were derived in the same manner as for the tiling-based
geometry. The obtained values are stated in Tab. 5.2. The height of beams is
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(a) (b) (c)

(d) (e) (f)

Figure 5.2: Illustration of domain generation: (a) example of compressed system
W16/2–2, (b) tiling map consisting of 10×10 tiles, c) reconstructed system according
to (a) and (b), (d) FE mesh in compressed system W16/2–2, (e) corresponding FE
mesh in highlighted portion of tiling map (b), (f) FE mesh in highlighted portion
(merged and renumbered nodes)

Figure 5.3: In-house designed tool to aid manual meshing of Wang tiles

approximately 10% less for the tiling-based geometry than for the remaining two.
This can be attributed to the automatic tile design and corrections that were made
during the manual meshing resulting in a greater total length of beams and hence
lower height.
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Table 5.2: Beam cross-section characteristics

Voronoi mesh Real geometry mesh Tiling-based mesh
A [m2] 1.431e-04 1.469e-04 1.3170e-04
I [m4] 2.443e-13 2.643e-13 1.9038e-13

(a) (b)

(c) (d)

Figure 5.4: Comparison of geometrical representation with reference microstructure:
(a) scanned image of cross-section of Fig. 1.1(b), courtesy of Jiří Němeček [59], (b)
Voronoi mesh, (c) real geometry, (d) tiling-based representation (scale does not
exactly corresponds to (a) due to fixed tile dimensions)

For the numerical homogenization the data of the real-shaped geometry were
chosen as the representation which resembles the reference microstructure the most.
This should result in a stiffer response of the microstructure, nevertheless due to the
linear behaviour of the model the results are expected to differ only by the factor of
the input parameters ratio.
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Prescribed displacements were imposed at the support nodes. Considering the
boundary nodes as supports leads to unrealistic excessive deformations of adjacent
beams. For this reason a script performing topological survey was programmed.
The algorithm identifies nodes at the boundary of the computational domain and
follows the adjacent beams until it reaches a node that belongs to more than two
beams. The procedure is illustrated in Fig. 5.5. The support nodes are marked in
red in Fig. 5.4.

Figure 5.5: Illustration of support search algorithm

All the calculations were implemented in Matlab environment. It turned out
that large computational domains are necessary to capture the convergence of the
overall elastic constants. Therefore, the code was optimized by making use of the
sparsity and the symmetry of the stiffness matrix and by reducing all repetitive
processes.

5.3 Results
The two homogenization strategies outlined in Chapter 4 were employed. The

homogenized properties of all three geometric representation are given in Tab. 5.3.
The size of the tiling-based domains varied from 5 × 5 to 55 × 55 tiles. For each
tiling size, ten realizations were generated. The relation between values of the
homogenized elastic parameters and the size of the computational domain is depicted
in Fig. 5.6.

As the kinematic uniform boundary conditions (KUBC) were prescribed, the
computed values should represent upper bounds [61]. This complies with the con-
vergence character of the graphs in Fig. 5.6. Note that the homogenization procedure
based on energetic reasoning and the approach involving the macroscopic degrees of
freedom along with the isotropy assumption coincide as expected. From Tab. 5.3,
the tiling representation seems to be stiffer than the real-shaped geometry despite
the fact that the real-shaped geometry domain is significantly smaller. This is be-
cause the stiffer cross-section parameters of the real-shaped geometry were assumed
also for the tiling representation. If the characteristics from Tab. 5.2 were used,
the homogenized properties would be K ≈ 100MPa, E ≈ 40MPa and G ≈ 14MPa,
hence the real-shaped geometry response would be stiffer as expected.
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Figure 5.6: Relationship between homogenized elastic parameters and dimensions
of computational domains: (a) Bulk modulus K, (b) Young’s modulus E, (c) Shear
modulus G, (d) Poisson’s ratio ν

5.4 Discussion and conclusions
Based on Fig. 5.6, it seems that RVE should be about hundreds of the char-

acteristic pore diameter length in dimensions. This finding corresponds with [15]
regarding the minimal size of RVE in the case of infinite contrast of phase prop-
erties. On the other hand, it contradicts the recommendation of Ashby et al. [56]
that proposes RVE size of approximately seven times the mean of pore diameters.
However, this recommendation is given for three-dimensional samples and thus it
does not need to be valid for the planar case.

Comparing the homogenized results with the reference values reported by Ashby et al.
[56], see Tab. 5.1 and Tab. 5.3, leads to an unambiguous conclusion. Despite
the fact, that the aptness of the spatial wired model has been reported several
times [56, 57, 58], it can be conjectured that planar beam representation due to
Němeček et al. [59] has a limited capability in predicting the complex behaviour of
Alporas R© foam. Possibly, it lacks the stiffness contribution from the out-of-plane
beams and membranes of cell walls parallel to the investigated plane. However,
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Table 5.3: Homogenization results

K E G ν
[MPa] [MPa] [MPa] [-]

Voronoi
Energy 1291.647 86.840 29.165 0.489
MDF-Energy 1291.647 86.840 29.165 0.489
MDF-LSQ 1280.910 95.839 32.214 0.488

Real
Energy 92.066 48.193 17.056 0.413
MDF-Energy 92.066 48.193 17.056 0.413
MDF-LSQ 87.048 55.349 19.852 0.394

Tiling

Energy µ 140.099 56.657 19.774 0.433
Energy σ 0.879 0.238 0.087 0.0005
MDF-Energy µ 140.099 56.657 19.774 0.433
MDF-Energy σ 0.879 0.238 0.087 0.0005
MDF-LSQ µ 134.843 54.498 19.020 0.433
MDF-LSQ σ 0.848 0.222 0.079 0.0004

the membrane contribution of cell walls was reported negligible in the case of high-
porosity foams [58].

The analysis of the geometry influence clearly shows that the Voronoi mesh leads
to the overestimated value of the bulk modulus. Assuming only volumetric deforma-
tion the axial stiffness of beams is dominant contribution in the case of Voronoi mesh
whereas in the case of real geometry axial and bending stiffness contribute equally.
This explains the result of Němeček et al. [59] as they considered only the volumet-
ric load case. They assumed near zero Poisson’s ratio (based on their experimental
observations) which allowed them to declare the apparent oedometric moduls to be
the homogenized Young’s modulus. However, if the whole homogenization proce-
dure was performed they would arrive at similar results as in Tab. 5.3. Moreover,
the zero Poisson’s ratio is in contradiction with the characteristics reported in [56],
see Tab. 5.1. The above mentioned facts along with the limited size of the Voronoi
mesh, which corresponds to a 4×4 tiling in Fig. 5.6, rise a question of validity of the
computational model proposed in [59] for predicting the effective elastic properties
of Alporas R© foam.



Summary

The topic of microstructure representation along with the common two-point
spatial statistics have been presented in Chapter 1. This chapters also contains a
procedure for computing C2(x) statistics based on the flood-fill algorithm and the
Fourier transform. A Matlab tool with GUI was programmed to compute micro-
structure characteristics, Fig. 1.4. Some observations regarding interpretation of
higher order descriptors are stated in Section 1.1.5.

The motivation behind the original idea of Wang tiles is outlined in the second
chapter. A historical development of the aperiodic tile sets is presented and the con-
struction of the smallest aperiodic sets of Culik and Kari is described. A description
of tiling a plane with those sets is provided. The concept of stochastic tile sets and
its extension to the third dimension by means of Wang cubes is presented.

The third chapter investigates the potential of the automatic tile morphology
design. Modified Image Quilting and Labyrinth algorithm, an alternatives to the
original Image Quilting algorithm, are proposed and investigated. The enhancement
of the periodicity reduction by adopting the concept of tile patches is quantified by
means of secondary extremes in S2(x) and reported in Section 3.2. A sensitiv-
ity analysis of the automatic design was performed, the objective of the analysis
was to determine the optimal values of the design inputs such that the compressed
microstructure arising from those inputs would contain maximum microstructural
information of the reference microstructure and yet be small enough to be prac-
tical for further utilization. The comparison of the compressed and the reference
microstructures was quantified by means of the spatial statistics presented in the
first chapter, namely the volume fraction φ, the two-point probability S2(x) and the
normalized two-point cluster Ĉ2(x) functions.

From the analysis we can conclude that the width of the overlapping region
equal to approximately six times the mean inclusion size was suitable for all four
investigated microstructures. No other general rule regarding the input values was
observed, thus an analogous sensitivity study is recommended if compression based
on Wang tilings is desired. From the results it seems that the Labyrinth algorithm
performs better only for the case of microstructure with loosely packed identical
inclusions.

Two distinct homogenization strategies are presented in Chapter 4. The first
approach is based on energetic assumptions comparing the strain energy density
of homogeneous media and strain energy of the discrete beam model. The second
approach is based on the idea of macroscopic degrees of freedom resulting in for-
mulation of extended global stiffness matrix of the FE problem. The homogenized
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stiffness matrix is then computed directly as the Schur complement of the extended
global stiffness matrix.

An application of the tiling concept is illustrated in Chapter 5 with homogeniza-
tion of elastic properties of Alporas R© foam. The microstructure was compressed
within the set of Wang tiles making use of the outcomes from the sensitivity anal-
ysis, Section 3.4. The microstructure was represented with wired model consisting
of uniform beams with cross-section characteristics obtained in the same manner
as in [59]. The tiling concept allowed the study of the necessary RVE size. Both
homogenization methods introduced in Chapter 4 were applied and compared. The
results of the homogenization contradict the conclusions of [59], the size of RVE
was found to be about hundreds multiples of the mean inclusion diameter, values
of homogenized elastic properties differ from the reported values by two-orders of
magnitude. Therefore the model proposed in [59] seems to be incapable to represent
the Alporas R© foam.

Despite the latter, rather, negative conclusion Wang tiling proved to be very
efficient tool for microstructure compression. The potential of the tiling is not limited
to effective computational domain generation and investigation of the appropriate
size of RVE. As was mentioned, domain decomposition strategies benefiting from
the repetitive nature of a tiling may enhance computational performance of analyses
based on tiled domains. Moreover, microstructure-informed enrichment functions
can be formulated on a similar basis as well [8].



Appendix A

Isotropic stiffness matrices

For the sake of keeping the thesis self-contained the spectral properties of stiff-
ness matrices for a linear isotropic material are stated in this section. Relations
between characteristic vectors and eigenvalues are derived. If not stated otherwise
engineering notation is denoted by curly brackets for vectors (stress and strain vec-
tors) and square brackets for matrices (stiffness or compliance matrix). Tensors are
written in bold face font and individual components are denoted with lower case
indices.

Starting with the Hooke’s law for one dimensional problem

σ = Eε , (A.1)

where E is Young’s modulus, we write for its inverse

ε = 1
E
σ . (A.2)

Contrary to (A.2), in multiple dimensions the strain in a principal direction is con-
strained by transversal stresses, which yields

εii = 1
E
σii − ν

1
E
σjj − ν

1
E
σkk . (A.3)

Furthemore, for a linear isotropic material the relation coupling shear stress and
strain reads as

τij = Gγij , (A.4)

where G stands for the shear modulus.
Thus the inverse of the Hooke’s law for three dimensions reads as

εx
εy
εz
γyz
γxz
γyz


= 1
E



1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 2(1 + ν) 0 0
0 0 0 0 2(1 + ν) 0
0 0 0 0 0 2(1 + ν)





σx
σy
σz
τyz
τxz
τyz


, (A.5)
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which can be recast to compact

{ε} = [C] [σ] , (A.6)

where [C] is the compliance matrix.
Inverting Eq. (A.6) results in the classical form of the Hooke’s law

{σ} = [D] {ε} , (A.7)

where stiffness matrix [D] has the following form

[D] = E

(1− 2ν)(1 + ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2


. (A.8)

Spectral analysis of the stiffness matrix Eq. (A.8) gives the following eigenvalues
λi and the related eigenvectors {vi}

λ1 = E

1− 2ν = 3K ,
{
v1
}

=
{

1 1 1 0 0 0
}T

,

λ2 = E

ν + 1 = 2G ,
{
v2
}

=
{
−1 1 0 0 0 0

}T
,

λ3 = E

ν + 1 = 2G ,
{
v3
}

=
{
−1 0 1 0 0 0

}T
,

λ4 = E

2(ν + 1) = G ,
{
v4
}

=
{

0 0 0 1 0 0
}T

,

λ5 = E

2(ν + 1) = G ,
{
v5
}

=
{

0 0 0 0 1 0
}T

,

λ6 = E

2(ν + 1) = G ,
{
v6
}

=
{

0 0 0 0 0 1
}T

.

(A.9)

Sometimes, it is more convenient to work with stiffness matrices expressed in
terms of bulk modulus K and shear modulus G. It results in a more conceivable
form of stiffness matrix and straightforward interpretation of eigenvalues. Recall
the strain decomposition into the volumetric and the deviatoric part

ε = 1
3εV1 + εD (A.10)

and related stress decomposition by means of the mean stress σm and deviatoric
stress tensor σD

σ = σm1 + σD . (A.11)

It holds
σm = KεV , (A.12)
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and
σD = 2GεD . (A.13)

The Hooke’s law then reads as

σ = KεV1 + 2GεD . (A.14)

Using the latter expression recast to maintain Eq. (A.7) gives the stifness matrix
[D] as

[D] =



K + 4
3G K − 2

3G K − 2
3G 0 0 0

K − 2
3G K + 4

3G K − 2
3G 0 0 0

K − 2
3G K − 2

3G K + 4
3G 0 0 0

0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G


. (A.15)

Note that the meaning of the eigenvalues (stated in the second column in (A.9))
of the latter matrix are the same as for the matrix (A.8), it only appears to be
more evident. The first eigenvector represents the three times the unitary volumet-
ric deformation and is related to the largest eigenvalue of 3K. The following two
eigenvectors {v2} and {v3} represent the bi-axial excitation, one in pressure, other
in tension, which results in the zero volumetric strain and yields twice the unitary
deviatoric strain, see Fig. A.2(b). Therefore the corresponding eigenvalues are 2G.
The last three eigenvectors representing a consecutive unitary shear deformation in
three perpendicular planes are connected with shear modulus G.

The relation between Young’s and shear moduli. Relation between Young’s
modulus E and shear modulus G can be derived from the following example. Let
assume an infinitesimal material point subjected to the stress load {σ} =

{
−σ̂, σ̂, 0

}
in the x-y coordinate system. The same load case can be described in the x′-y′ co-
ordinate system rotated by π/4 with the stress vector {σ}′ =

{
0, 0, σ̂

}
, see Fig. A.1.

This yields from the transformation rule, which can be visualized with the Mohr’s
circle, Fig. A.2(a). Since only the description of the stress state has changed, the
strain energy density

υ = {σ}{ε}T (A.16)

must be the same for both cases, i.e. υ = υ′. Considering Eq. (A.3) and (A.4) along
with the stress vector gives

υ = σxεx + σyεy = −σ̂(1 + ν)−σ̂
E

+ σ̂(1 + ν) σ̂
E

= 2(1 + ν) σ̂
2

E
, (A.17)

and
υ′ = τxyγxy = σ̂2

G
. (A.18)
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Eqs. (A.17, A.18) finally yield the formula

2(1 + ν) σ̂
2

E
= σ̂2

G
, (A.19)

G = E

2(1 + ν) . (A.20)

x

y

σxσx

σy

σy

x′y′ τx′y′τy′x′

τy′x′τx′y′

(a) (b)

Figure A.1: Transform of principal normal stresses to maximum shear stress in order
to derive shear modulus

σ

τ
τx′y′ = τy′x′

σyσx

ε

γ

γx′y′ = 2

εy = 1εx = −1

(a) (b)

Figure A.2: Mohr’s circles for (a) stress vector and (b) strain vector (due to dis-
crepancy between tensorial and vector representation y-axis scale is twice x-axis
scale)

Plane strain. For the two dimensional analysis some hypothesis regarding the
stress/strain state of a material point has to be adopted. In the plane strain hy-
pothesis all deformations realize only in the x-y plane, the out-of-plane deformations
are a priori zero, i.e. εz and γxz = γyz = 0. This assumption is valid especially for
structures such as long pipes, reservoir dams or retaining walls [50]. Introducing
this assumption into Eq. (A.8) gives

[D] = E

(1− 2ν)(1 + ν)

1− ν ν 0
ν 1− ν 0
0 0 1−2ν

2

 . (A.21)
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It remains to add that, unlike the tangential out-of-plane stresses τxz and τyz, the
out-of-plane normal stress σz is in general non-zero and can be determined as

σz = 2Eν
(1− 2ν)(1 + ν)(εx + εy) . (A.22)

The eigenvalues, expressed in terms of E, ν, K and G, and the eigenvectors of
the latter matrix are

λ1 = − E

2ν2 + ν − 1 = 2(G3 +K) ,
{
v1
}

=
{

1 1 0
}T

,

λ2 = E

ν + 1 = 2G ,
{
v2
}

=
{
−1 1 0

}T
,

λ3 = E

2(ν + 1) = G ,
{
v3
}

=
{

0 0 1
}T

.

(A.23)

Plane stress. Conversely, the plane stress hypothesis presumes that only the in-
plane stresses are non-zero. That is σz = 0 and τxz = τyz = 0. Adopting these
assumptions in Eq. (A.6) and inverting the relation yields

[D] = E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 . (A.24)

The spectral analysis of the matrix (A.24) provides the following characteristics:

λ1 = E

1− ν = 2 9GK
4G+ 3K ,

{
v1
}

=
{

1 1 0
}T

,

λ2 = E

ν + 1 = 2G ,
{
v2
}

=
{
−1 1 0

}T
,

λ3 = E

2(ν + 1) = G ,
{
v3
}

=
{

0 0 1
}T

.

(A.25)

The remaining shear strains τxz and τyz are zero since the vanishing shear stress,
the relation for the out-of-plane strain εz reads as

εz = − ν
E

(σx + σy) . (A.26)

Dimensionless definition of the stiffness tensor. A general form [17] of the
isotropic stiffness tensor disregarding any a priori assumptions on dimension d of
the problem reads

D = dK(d)I(d)
V + 2G(d)I(d)

D . (A.27)
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This formulation requires the dimension dependant elastic parameters K(d) and G(d)

and the projection tensors

I(d)
V = 1

d
1⊗ 1 , (A.28)

I(d)
D = IS − I(d)

V . (A.29)

The relation between the two-dimensional and three-dimensional elastic parame-
ters can be with advantage read form the spectral analysis. For the two dimensional
case d = 2, regardless the plane strain or plane stress assumption, the general stiff-
ness tensor in matrix form reads as

[D] =

K
(2) +G(2) K(2) −G(2) 0

K(2) −G(2) K(2) +G(2) 0
0 0 G(2)

 (A.30)

and the connected spectral parameters are

λ1 = 2K(2) ,
{
v1
}

=
{

1 1 0
}T

,

λ2 = 2G(2) ,
{
v2
}

=
{
−1 1 0

}T
,

λ3 = G(2) ,
{
v3
}

=
{

0 0 1
}T

.

(A.31)

Comparing (A.31) either with (A.23) for the plane strain or with (A.25) for the
plane stress assumptions directly yields the relationship between the parameters.
For the plane strain case it gives

K(2) = G

3 +K , G(2) = G , (A.32)

while for the plane stress state the following formulae hold

K(2) = 9GK
4G+ 3K , G(2) = G . (A.33)

Correspondingly, the dimension-dependant definition of the Young’s modulus and
the Poison’s ratio can be found in [17].
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