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Abstract-This paper contains a study of the linear theory of elasticity in which the potential energy-density 
depends on the gradient of the strain in addition to the strain. 

In the first part of the paper, three forms of the theory are compared and the relations connecting the 
stresses in the three forms and the boundary conditions in the three forms are derived. In the second part of 
the paper, ambiguities in the form of the moment-equation of equilibrium and the definition of couple-stress 
are resolved by a derivation based on conservation principles rather than the variational principles employed 
previously. 

INTRODUCTION 

THE purpose of this paper is to clarify certain aspects of the linear theory of elasticity in 
which the potential energy of deformation is a function of the six components of the 
strain and the eighteen components of the gradient of the strain. 

Stress-equations of equilibrium, constitutive equations and boundary conditions of 
the “strain-gradient theory” were first given in a general, non-linear form by Toupin 
[l, $71. Subsequently [2], linear versions of the theory were given in three forms-dis- 
tinguished by different groupings of the eighteen additional variables in the potential 
energy-density: I, the eighteen components of the second gradient of the displacement; 
II, the eighteen components of the first gradient of the strain; III, the eight components 
of the gradient of the rotation and the ten components of the fully symmetric part of the 
second gradient of the displacement (or of the gradient of the strain). The components in 
the second and third sets are simply linear combinations of those in the first. The third 
form of the theory is the most convenient one for reduction to the theory in which the 
potential energy-density is a function of the strain and the gradient of the rotation 
[l, 3-61. 

In [2], the three forms of the strain-gradient theory were shown to lead to the same 
displacement-equations of motion for isotropic materials. However, the general identity 
of the stress-equations of motion and the general relations among the stresses in the three 
forms and among the traction boundary conditions for the three forms were not exhibited. 
These results are derived in the first part of the present paper. 

The second part of the paper is concerned with the moment equation and the couple- 
stress. In the derivation of the equations of the strain-gradient theory by the variational 
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methods employed previously, the moment equation does not appear explicitly. Although 
a moment equation can be deduced subsequently from the condition of invariance of the 
potential energy-density in a rigid rotation of the deformed body [7], the equation can 
be produced in a variety of forms. As a result, the identification of the couple-stress is 
uncertain to a constant factor. To clarify the situation, the complete equations of the 
linear strain-gradient theory are rederived, here, starting from principles of conservation 
of linear momentum, angular momentum and energy. The moment equation and couple- 
stress thereby are displayed without ambiguity. A theorem of uniqueness of solutions 
leaves the spherical part of the couple-stress undetermined just as in the theory in which 
the potential energy-density depends on the strain and the gradient of the rotation. 

1. KINEMATIC VARIABLES 

The kinematic variables to be employed are defined in terms of derivatives of 
components of displacement as follows : 

Eii = 

oij = 

wi = 

lZijk = 

Rijk = 

tij = 

Fijrc = 

$(uj i + ui j) = uoiI = aji = strain, . . 

$(u~,~- u~,~) = uIj,il = -wji = rotation, 

+eijkulr,j = vector rotation, 

u,,~~ = Ejik = second gradient of displacement, 

$(Uk,ji+Uj,ki) = ‘(k,j)i = Qikj = gradient of strain, 

YlejlkUk,h = gradient of rotation (Kii = 0), 

!dUk.ij+ Ui,jk+Uj,ki) = u(k,ij) 

Ejki = Tkij = Pkji = symmetric part of Cijk or Rijk, 

(1.1) 

where eijk is the alternator. 
The following relations among the variables are found by eliminating the displacement 

from the definitions (1.1) : 

wij = eijkwk, 

1 wi = Teijkcojk, (1.2) 

ic"ijk = fiijk + gjki - i?kij = ?ijk + $iileljk + @jlelik, 

f?ijk = Tijk -$ijlekil - $kklejil = $(iiYijk + Rikj), 

l- 
Kij = Wj,i = $f?jk&Okl,i = ycinejrk = 

A 

K,ikejaT 
(1.3) 

2. EULER EQUATIONS AND NATURAL BOUNDARY CONDITIONS 

The derivations of the three forms of the strain-gradient theory, given in [2], are 
summarized, here, with some minor alterations. 
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Hamilton’s principle is written for independent variations 6ui between fixed limits of 
ui at times t, and t, : 

(2.1) 

where F and w are the total kinetic and potential energies in a volume V : 

F = 
s 

TdV, YY- = WdV 
V s V 

and SW1 is the variation of work done by external forces. 
The kinetic energy-density is taken to be 

T = $&. (2.2) 

In [2], velocity-gradient terms were included in the kinetic energy-density. Such terms 
are appropriate if the strain-gradient equations are r,egarded as a low frequency approxima- 
tion to the equations of a certain elastic material with a deformable micro-structure [2]. 
However, if the strain-gradient equations are viewed as a moderately long wavelength 
limit of the finite difference equations of a simple, crystal lattice, the velocity-gradient 
terms must be omitted. The latter view is adopted, here, in order to avoid carrying along 
complicated terms which are not germane to the present study. 

Three forms are considered for the potential energy-density : 

W = jir(&ij, Fiji) = ~(Eij, a,) = W(&ij, ~ij, ~ijk) (2.3) 

-all for the same displacement field. In the case of isotropic materials, 

w = +A&ii&jj+ pEij +a’,K”ii$~jj + a’&j$ikk 

+ d3~ii~jjk + a^,Kij~ijk+ d,RijLKkji, 

~ = ~~ZEiiEjj +~Ei,~ij+ B*RiiklZkjj+CiZlZijjlZikk 

+ ci,rZi,Rjj~ + B,rZij,Izij~ +Ci5iZijkRlrji, 

where 

B, = 2a’,-4a”,, ci, = -d,+&+d,, 

cij = 4ii3, (id = 3a”,-ii,, ci, = -2ii,+2ii,, 

(2.4) 

(2.5) 

(2.6) 

and 

where 

(2.7) 

18& = -2Et,+4&+&+6B,-3ri,, 18& = 2ri,-4&-ci3, 

3& = 2(ri,+ci,+(i3), 5, = ci,+(i,, 3f= ci,+4&--2ci3, 
(2.8) 
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The variation of the work done by external forces is given a separate form for each 
form of W : 

cJ*; = &g; = si; = &jq (2.9) 

where, for W, 

SK= 
s 

F,du,dV + 
s 

(&6u, + i?,DGu,)dS + 
I 

@u,ds ; (2.10) 
V s c 

for W, 

&; = 
s 

F,Su,dV + 
V s 

(&BuL + &DGu,)dS + 
Y! 

&bu,ds ; (2.11) 
S C 

and, for W, 

S%= 
s 

F,Gu,dV + 
s 

[&Yu, + Qk(Bkj - n,nj)bwj + R&,,]dS + 
P 

E,Gu,ds; (2.12) 
V s C 

where S is the bounding surface, ni are the components of the outward unit normal to S, 
C is an edge of S, s is the coordinate along C, D is the normal derivative : 

DV = ni(D,i; (2.13) 

and 

E nn = ninj&ij, 
(2.14) 

In (2.12), Qk(Bkj- n,nj)6wj replaces Qkn,Jwieijk which was employed inadvertently in 
[2, (12.12)]. The change constitutes a rotation of ninety degrees about the normal to S. 

As shown in [2], the three forms of the variational principle lead to the following 
three sets of Euler equations (stress-equations of motion) and natural (traction) boundary 
conditions : 

I: ?jk.j- ~ijk,ij + F, = Pii,, (2.15) 

Pk = nj(z”jk - fiijk,i) - Dj(ni &j/J + (Dln&injbijk 9 

d, = nin+Tiijk, (2.16) 

where the components of stress, Ti> and double stress, iiijk, are defined by 

i7W _ 
‘ij = G = ‘jil 

(2.18) 

the Di are the components of the surface gradient : 

DiV = V,i-niDp, 

the sP are the components of the unit vector tangent to C and the bold face brackets in 
the third of (2.16) indicate that the enclosed quantity is the difference of its values, at C, 

(2.17) 
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on the two portions of S that intersect at C. Equations (2.15H2.18), without the acceleration 
term, are linear forms of Toupin’s results [l, 571. 

II : 

Pk = 

It,= 

8, = 

Qjk,j-fiijk,ij+ Fk = pii,, 

nj(?jk -Pijk,J - Dj(ni@ijk) + (Dln,)ninjfiijk 3 

WjPijk, 

where 

a% 
&k = aeijk __ = fiikjr 

III : ijk,j-~~i,,ije,jk-~ijk,ij+ Fk = pQ& 

q = nj[fjk +$fili,l -&&jik -&jk,il -(Dj - njDFJ(Gjk + npnqnk&jh 

Qk = ni jiij(6,, - njnk) + 2n,?l$tj&jpe,,k, 

R = ninjnk&jk, 

where 

f.. = ?E = i.. 
11 

c7eij 

11' 

- 

aw = = = 
pijk = - = 

a;z,, 
pjki = pkij = pkji 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

and p,, = ninj& 
In [2], ,Gij was designated the “deviator of the couple-stress”. If u~k,ij) is set equal to 

zero in w, fiij does, in fact, reduce to the deviator of the couple-stress tensor ~ij which 
was defined in [6] by means of the angular momentum principle and appears in the 
angular momentum equation [6, (1.9)]. That kij remains the deviator of the couple-stress 
when w depends on utk,ij, is verified in Section 5. 

3. RELATIONS AMONG THE THREE FORMS 

From (2.3) and the definitions (2.17), (2.21) and (2.2% it follows that the stresses, in’ 
the three forms of the theory, are the same : 

fij = Qij = fij (3.1) 
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To find the relations among the double stresses, we first form the relations 

ati ac,,, _ aw a&. aW aK,, 
kik = aR,,, G - 

__~ 
aEp,,, aiqjk +G aqjk‘ 

(3.2) 

Then we replace the derivatives of the energy, in (3.2), with the definitions (2.18), (2.22), 
(2.26) and (2.27) and we use the relations (1.3) in evaluating the derivatives of the kinematic 
quantities. The results are 

hjk = #ijk +$jik) = &jk ++&$,jk+$lijleCk, 

bijk = fiijk+fikij-fijki = fiijkf+fljle)ik++Pklelijr 

@ii = %ipqejp~ = Sip* +PpiJejpp 

iijk = !dhjk+?jki+bkij) = !dflijk+bjki+@kij). 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

A useful, alternative form of the second of (3.3) is 

~ijk = $ijk ++i_i$,jk +-&&,ij 

From (3.7) and the first of (3.3) we find 

L?ijk,ij = fiijk,ij = $&ijeljk +Lijk,ij 

(3.7) 

(3.8) 

Accordingly, the three stress-equations of motion, (2.15), (2.19) and (2.23), are the same 
and they lead to the same displacement-equations of motion-as shown in [2] for 
isotropic materials. 

The relations among the boundary conditions may be obtained by equating coefficients 
of like variations in (2.10) (2.11) and (2.12). From (2.10) and (2.1 l), it follows immediately 
that 

Pk = Pk, R, = R,, Ek = I?,. (3.9) 

To find the corresponding relations between the first and third forms, we can proceed 
by noting that, in (2.10), 

&D&k = 2&nJdw,e,jk i- W,njD&j -I- iikn&&,,,,, 

2R,nJ6w,e,j, = 2njRk(dli - nl?li)dWielj,, 

and 

s 
ii,njD,GuJdS = [D,(&nJSuj)- D&nj)Guj]dS 

S 5 

= ’ [(D,n,)n,&nj- D,(i?,nj)]GuJdS + $ s,[niWjn,]e,,,6u,ds 
s C 
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by the surface divergence theorem. Thus, (2.10) takes the form 

SR= 
s 

F,Gu,dV + [& - (Dj - njD,n,)(~jn,)]Gu,dS 
V s 

+ 
s 

s 

2nj&e,j,(6,i - n,n,)6w,dS + 
s 

&&,,dS 
s s 

+ 
L! 

(E, + sI[niBjn,]e,ij)Gu,ds. 
C 

Equating coefficients of like variations in (3.10) and (2.12), we have 

s = p,-(Dj_njDini)(8jnk), 

QI, = 2niR,eijk, 

R = niR, 

E, = E,+ S,[?liRj?l&,ij 

or, in vector notation, 

P = B-n.Vx(nxftn), 

0 = 2nxR, 

iTi = R-n, 

E = E+s.[nxfin]. 

(3.10) 

(3.11) 

(3.12) 

Conversely, 

P = P++nqVx(Qn) = B, 

B(= nxWxn+n.Rn) = +Qxn+Rn = 8, (3.13) 

E=E-+s.[Qn]=& 

The formulas (3.12) and (3.13) show how the same traction boundary conditions can be 
set in each of the three forms of the theory. The same results may also be found by 
substituting (3.3H3.8) in (2.16), (2.20) and (2.24). 

4. MOMENT EQUATIONS 

The assumption that the first gradient of the displacement enters the potential energy- 
density only in the symmetric form .sij makes W ab initio invariant in a rigid rotation of 
the deformed body and, in the variational derivation, precludes the display of a differential 
equation expressing the equilibrium of moments. Toupin [7] has shown how a moment 
equation can be found by assuming an energy function 

w = W’(Uj$ lzijk) (4.1) 

and applying the requirement of rotational invariance subsequently. It is shown, here, 
how such a procedure can lead to a variety of equivalent forms of the moment equation. 
To exhibit this result in a simple context, we shall omit time dependence and edges. 
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Hamilton’s principle then reduces to 

s GW’dV = 
V s 

F,& dV + 
V s 

(&u, + ii;DGu,) dS. 
s 

(4.2) 

Starting with 

we find 

s V GW’dV = -~v[(g),i-(g),ijl~ukdv 

after application of the chain rule and the divergence theorem. 
Define 

-, SW’ _, 
@ijk = G = pjik? 

iiW’ 
Sjk = ----&jk,i. 

“k,j 

(4.4) 

(4.5) 

Then 

I GW’dV = - 
V s 

~)k,j&k dV + njzJksUk dS + 
V s 

nifi:j&k,j dS. 
S 

Now, 

nififj&k,j dS = ni &jkDJ&dk dS + 
s 

ninj/IijkD>sUk dS 
s 

and 

Also, 

nijI;jkDj&k dS = 
I 

Dj(ni~:jkSUk) dS - Dj(ni~:i,)6Uk dS. 
s s S 

s Dj(niPIjkduk) dS = (Dlnl)ninjb:jkbuk dS 
s 

by the surface divergence theorem for a smooth surface. Assembling these results, we have 

s 
8W’dV = - 7;ksJ&kdV+ ninj~lj,DGUk dS 

V s V s S 

+ 

s 

s [nj+ - Dj(ni$ijJ + (D,n&injfi~jk]hUk dS . (4.6) 
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Upon equating coefficients of like variations in (4.6) and (4.2), we find 

Tjk,j+ Fk = 0, (4.7) 

PA = nj+ - Dj(nipijJ + (D&rinj&, 

R; = ninjjiijk, (4.8) 

which are equivalent to Toupin’s results (10.13) and (10.14) in [7]. 
The conditions of invariance of the potential energy-density in a rigid rotation of the 

deformed body are, in the present linear case, 

ZW’ 
___ = 0. 
%j,il 

(4.9) 

With (4.9) ,Eijk becomes iiijk and the definition (4.5) yields 

‘;jk] +Pi[jk],i = 0, (4.10) 

which, allowing for differences in notation, is Toupin’s moment equation (10.20) in [7]. 
Now, return to the definition (4.5) and replace it with 

(4.11) 

where A is a constant, and note that jIktijl,ij = 0. Then, instead of (4.7) and (4.8) we have 

T;k.j+ F, = 0, (4.12) 

P; = nj(‘+ - 2A~;,ij,,i) - Dj(ni&jk) + (D$l&linj&jk, 

I?; = ninjjijjk. 
(4.13) 

In terms of W’, (4.12) and (4.13) are the same as (4.7) and (4.8). The invariance conditions 
(4.9), applied to the definition (4.1 l), produce 

T;;kl+ (1 + A)~i2iIjkl,i = 0. (4.14) 

Again, (4.14)and (4.10) are equivalent equations; but derivatives of the potential energy- 
density are distributed differently between the two terms in each equation. 

By the first of (3.5) 

3- 
pi[jk] = #ifejkl. (4.15) 

Hence (4.14) can be written as 

T;Jk] + ~ 1 + A)~i~,iejk~ = 0. (4.16) 

This is to be compared with the moment equation derived from the principle of angular 
momentum [6, (1.9)] : 

T[jk] +hil,iejkr = 0. (4.17) 

Noting that A is arbitrary and that bij is a deviator whereas pij is not, it is apparent that 
the invariance conditions (4.9) do not contribute to the identification of the couple-stress. 
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5. DERIVATION BASED ON CONSERVATION PRINCIPLES 

In this section, principles of conservation of linear and angular momentum and of 
energy are employed in the derivation of the equations of strain-gradient theory. For 
completeness, body double forces, with and without moment, are included along with 
body forces, edges and time dependence. 

Let ti and rni be the components of force and couple, per unit area, acting on the 
surface S of a body occupying a volume V ; and let Fi and Ci be the components of force 
and couple, per unit volume. in V. Then principles of linear and angular momentum are 
expressed by 

IsridS +S,&dV = j-v&dV, (5.1) 

s (xjt,eijk + ~1;) dS + (xjFkeijk + Ci) dV = pXjiike,j~ dV. 
s s V s V 

(5.2) 

Application of (5.1) to an elementary tetrahedron leads, in the limit as the tetrahedron 
shrinks to zero, to the definition of stress, r, such that 

tj = nirij (5.3) 

Substitution of (5.3) into (5.1) and application of the divergence theorem lead to the 
stress-equations of motion : 

sjk,j+ F, = pii,. (5.4) 

Similarly, application of (5.2) to an elementary tetrahedron leads to the definition of 
couple-stress, p, such that 

mj = nipij (5.5) 

which, with (5.2). yields the moment-equation 

pij.i + rkieijk + Cj = 0 (5.6) 

or 

(5.7) 

Now, in (5.4), write ~~~ = rcjk,+ttjkl Then, with (5.7), (5.4) becomes 

In (5.8), separate pij into its deviatoric and spherical parts : 

~ij = ~~+S~ij~kk. 

But the curl of the divergence of a spherical tensor vanishes. Hence (5.8) is 

(5.9) 

(5.10) 

As for energy densities, we suppose, again, that the kinetic energy-density is 

Then 

T = &xiilii. 

i- = piiiici. 

(5.11) 

(5.12) 
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For the potential energy-density, we assume, again, 

w = W(Eij, Rij, rijk); 

so that 

VL = ?i,iij + jlijkij + Fijkftijk, 

where ii, bij and Pijk are defined, as before, by (2.25), (2.26) and (2.27). 
We now adopt the following principle of conservation of energy : 

(5.13) 

s (~+~)dV = (Fjlij+Cj~j++~ij,~ij)dV+ (tjlij+mj~tj+ni~ijk~jk)dS, (5.14) 
V s V s s 

where the symmetric components @‘cij, are the densities of body double forces without 
moment. The antisymmetric part @tiJ1 is the body couple per unit volume: ieijkC,. 

With (5.3), (5.5), the divergence theorem and the chain rule, the surface integral in 
(5.14) becomes 

s v (Tij,i~j+~ij,i\ifj+Fijn,i~j~ + 7ijtij.i +pijGj.i+fiij#jk,i) dV. (5.15) 

But 

and 

7ij~j,i = 7cij,fi,j,i,+ 7~ijli41j,il = 7cij+ij+ zkieijktij 

so that (5.15) becomes 

s [rij,#j + bij,i + r,ieij&tj + @ok, + Fij~,i)~j~ + ~~kij + Fijti?ijk] dV. 
V 

Hence, with (5.4), (5.6) and (5.12), the principle of conservation of energy (5.14) is converted 
to 

(5.16) 

Finally, inserting (5.13) in the left hand side of (5.16) and equating coefficients of like 
kinematic variables on both sides of the equation, we find 

7(jk) = fjk -Fijk.i - @(jk) 

,u; = /iij 

(5.17) 

(5.18) 

Thus, bij is indeed the deviator of the couple-stress. 
Upon substituting (5.17) and (5.18) into (5.10), we recover (with the addition of body 

double forces) the stress-equations of motion (2.23) which were obtained from Hamilton’s 
principle : 

(5.19) 
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In the case of an isotropic material, F;i is given by (2.7). Then, from (2.25), (2.26), (2.27) 
and (5.18) 

%r = E.S,,E,, + Zeus,,, (5.20) 

P Fq = 4&?,,+4d,ri,,+~e .7.- 
Pql IJl? 

(5.21) 
= 

fiLpqr = Si*(ziirhpq + F;iipaqr + iziiq6,p) + 2Zi*Zpqr 

+ Sf~ij(Spqeij, + Sqr@ijp + b‘,peijq). (5.22) 

[Note that, in (5.21) Zijijk contributes to the couple-stress-contrary to the statement in 
[2] following (12. l)]. 

When (5.20), (5.21) and (5.22) are inserted in (5.19) and sij, kij and Fijk are replaced by 
their expressions in terms of ui, we find the displacement-equation of motion 

@+2~)(1-I:V’)VV. u-~(l-I;V2)VxVxu+F+)VxC-V.@ = pii, (5.23) 

where 

1: = (3ti, +2ti2)/(E,+2p), 1: = (32, +a, +2ti2 -f)/3~. (5.24) 

Necessary and sufficient conditions for positive definiteness of W are 

jl > 0, 31.+2~ > 0, -2, < d2 < d,, 

6, > 0, 5U, +2ti, > 0, 5f2 < 6(d, -d2)(5ti, +2&,), 
(5.25) 

which replace (12.18) of [2]. From (5.25) it follows immediately that I: > 0. To show that 
1: > 0, note first that 

[2(c(, +2ti2)-3& -;f]‘+&J6(d, -d,)(5& +2ti2)-5f2]+yd1ti2 

++&f,+d2)(5ti,+2L12) = (3d,+ti,+2ti2-f)(3d,+4ti,+8ti2+2f). (5.26) 

Since, by (5.25), the left hand side of (5.26) is the sum of positive terms, the right hand 
side is positive. The two factors on the right must both be positive because, if they were 
negative, the sum of the second factor and twice the first would be negative-in violation 
of (5.25). Hence 

3d,+ti,+2G2-f > 0 

and, consequently, 1: > 0. 

6. UNIQUENESS OF SOLUTIONS 

As deduced from conservation principles in the preceding section, the equations of 
the strain-gradient theory for isotropic materials are sixty-three in number: 

(3) 

(31 

(6; 

(6: 

(31 

tij.i + Fj = /liij, 

jjij.i + T&?ijk + cj = O, 

= 

‘(jk) = rjk -pijk,i -@‘(jk)v 

&ij = u(j,i), 

wj = iUf,,cjk[? 

(6.1) 

(6.2) 

(6.3) 

(6.4) 

(6.5) 
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Kij = Wj$ 

Kijk = ‘(k,ij), 

sij = Ui,ckk+2/fsij, 

& = 4d,Kij+4d,Kji+ feijBTpg4, 

jijk = 7i,(Eppk6ij+ ~~,,,~jk + zppp,dki)+2z2k?ijijk 

+3fKJBijep,k + djke,,i +  akie,,j). 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

Whereas there are sixty-three equations, there are sixty-four dependent variables : 3 of 
Ui, 3 of wi, 6 of Eij, 8 of Rij, 10 of rijk, 9 of rij, 9 of pij, 6 of fij and 10 of Fijk. The additional 
variable is the spherical part of the couple-stress which, because it does not contribute to 
the change of potential energy-density (5.13), is indeterminate within the framework of 
the theory as represented by the sixty-three equations. With this understanding, we proceed 
to the proof of a theorem of uniqueness of solutions in the usual manner. 

Consider two sets of the sixty-four dependent variables ui . . . and uy . . . (with ,L& and 
,ui\ arbitrary) and their differences ui = u; - u:’ . . . Similarly, define body force and body 
double force differences : Fi = F; - 8’; . . . If each set of variables and body forces is a 
solution of (6.1H6.10), so is the difference set and, from (6.1), we may form the equation f s s dt (Ti,i+Fj-ptij)tijdV = 0, 

10 V 

(6.11) 

where t, is an initial time and V is a volume bounded by a surface S with an edge C. Now 

Hence, with (6.2) and (6.3), 

‘ij,i’j = (Tijtij),i++eijk@[k,l+ ck)ib,i] - (zij-Fkij,k - @~ij&j,iJ ; 

or, with (6.4) and (6.Q 

Further, 

or, with (6.6) and (6.7), 

~(lk,l~k+~kij,k~ij = (Clij~j+Fijkgjk),i-~~kij-Pijk~ijk, 

where we have used cii = 0 and the symmetry of Fijk. Also, by (6.8), (6.9) and (6.10), 

Qij + ,L@, + FijkZijk = W, 
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where W is defined by the same form as (2.7) but in terms of the difference variables. Thus, 
the integrand of (6.11) becomes 

where T is given by (2.2). Accordingly, application of the divergence theorem and an 
integration with respect to time convert (6.11) to 

(Fjtij+ CjWj + @~ij,&j) dV 

t 

+ 

s s 

dt ni(Tijtij + pij@j + /Gijkijk) dS. 
10 s 

(6.12) 

Thus, starting with the system of sixty-three equations (6.1)-(6.10), we have recovered 
the principle of conservation of energy for the difference system. We have now to reduce 
the twelve variables icj, tij, ijk, in the surface integral of (6.12), to six as only six are in- 
dependent of each other on S. For example, if the uj are known on S, so is the normal 
component, njwj, of wj; and, if the uj and the tangential component, (aij-ninj)wj, of wj 
are known on S, so are all the components of &ij except the normal component ninjcij 
It is also convenient to express the coefficients of ti, (dij--ninj)tij and ninjtij in forms that 
are independent of tfij, and pii so that the coefficients can be computed directly from the 
constitutive equations (6.8W6.10). 

From (6.2) and (6.3), 

- 1 = 
zjk = tjk-~~li,leijk-~ijk,i -$Cieijk - OcjkJ (6.13) 

Also, 

and 

s nkeki,(pnntij),i dS = 
S P 

c by,]sjtij ds. 

Hence 

(njtjktik + nipi@j) dS = nj[fjk +%& -,&,i)eja -Pijk,J~k dS 
s 

+ nj+ciejik - @(jk))hk dS 

+ ni,$(djk - njnk)tik dS + +jj~;~-Js~ti~ ds, (6.14) 
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in which we have used 

PijCBjkwnjnk) = P~lbjk-njnk)3 Pli,l-P(nn,i = Pk-P!h 

As for the last term in (6.12), we write 

ni&Ejk = ni,Gijktik,j = nibijkDjzik + ninj&+Dtik. 

But 

Hence 

Dir, = 2ti,n,qjk + njD,lij + nkknn 

ni&ijk = (niF+ + n,n,fi,jn,)Djtik + 2n,ninj&jpe,,kG~ + ninjnk Fijk~nn 

= Dj[(ni& + npn4 Fpqjn&] - Dj(ni Eijk + nf14 &,,&k 

+ 2n,n$Ij~ijpe,,~kk + ninjnkFij& 

Then, with the surface divergence theorem, 

ni&j&jk dS = [(njDlnr - Dj)(nicijk + n,n,~,,jnk)]tik dS 

+ n,nj( 2n,Fijpeqp~+t, + ,&j~n&,,) dS 

+ P s,[n,ej,(ni,iiijk + nlnink&ij)Jrik ds. 
C 

(6.15) 

Upon inserting (6.14) and (6.15) in (6.12), we obtain, finally, 

s 
[T+W]:OdV= ’ ’ * ’ 

s s 
dt (FjUj + CjWj + ~‘cij,~ij) dV 

V f0 V 

-+ 
s s 

’ dt [Is,@, + Qk(Bkj - n,nj)ij+ I&,,,] dS 
10 S 

+ E,ir, ds, (6.16) 

where 

pk = nj[?jk +it/& -&,i kja - Fij/c,J - Pj - njDlnJ(niPijk + np,pk !pqj) + n&$iejik - @tj/c))r 

Qk = ?li&{6j, - nj&) + 2n$Ijn,&jpeqpk, (6.17) 

R = ninjn,jiijk, 

It will be observed that (6.17) have the same form as (2.24) with the addition of the 
body double forces. Note that the body couple C has been placed in the expression for 
P, following Koiter [S]. 
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Conditions sufficient for a unique solution of (6.1H6.10) are now obtained from (6.16) 
in the usual manner-based on the assumption of positive definiteness of T and W : 

1. At each point in V: F, C, Q, and initial values of u and ti. 
2. At each point on S : (a) a component of u (or p), in any direction, and the resultant 

of P (or u) in the plane at right angles; (b) in the tangent plane, a component of w (or Q) 
and the component of 0 (or w) at right angles; (c) E,, or R. 

3. At each point on C: a component of u (or E), in any direction, and the resultant of 
i? (or u) in the plane at right angles. 

Note that, according to the linear momentum principle, nj~jk and not P, are the 
components of force per unit area. Also, by the angular momentum principle, nipij6jk - njn,) 
and not Q, are the components of tangential couple per unit area. 

As in classical elasticity, the uniqueness theorem is subject to the regularity restrictions 
implied by the forms of the divergence theorems employed in the proof. In particular, if 
a singularity is present, an additional condition, generally obtained through a limit process, 
is required. Sternberg and Muki [9] have shown how failure to observe such a requirement 
can lead to physically irrelevant “pseudo-solutions”. 
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A~cTIBBHT-B pa6ore UCClleJlj’eTCB J%iHe%HaR TeOpUB yflpyrOCTU, B KOTOpOti rIJlOTHOCTb nOTeH4UaSlbHOk 
3HCpTAK 38BHCHT OT rpaJJHeHTa .I&OSlM~Wf H OT ,l&OXMaUHH. 

B IlCpBOti YilcTH @OTbI CpaBlViBFiWTCSl TpH BHAtl TeOPHH &i BbIBOAIlTCX SSLBHCHMOCTH, KacaroujWecR 
HNIPXXKeHH# M rPaHHqHblX YCJIOBHti B 3TWX TWX BHABX. 

Bo BTOpOfi WCTH pemaIOTCB HeOAH03HaSHOCTH BbdpBXeHHI )WB MOhIeHTHOrO ypaBHeHHn H OnpeAen- 
xemx Moraemme HanpmrceHne, Hcnonb3yr BALBOA OCHOB~~B~WU&~C~I B 6onbmeft creneBH Ha npwHqHnax 
COXpaHeHWI, ‘IeM Ha ISipHaUEiOHHbIX llpl?HIUKIaX, KOTOPble HCIlOJIb30BaHbI palI,%. 


