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Abstract—This paper contains a study of the linear theory of elasticity in which the potential energy-density
depends on the gradient of the strain in addition to the strain.

In the first part of the paper, three forms of the theory are compared and the relations connecting the
stresses in the three forms and the boundary conditions in the three forms are derived. In the second part of
the paper, ambiguities in the form of the moment-equation of equilibrium and the definition of couple-stress
are resolved by a derivation based on conservation principles rather than the variational principles employed
previously.

INTRODUCTION

THE purpose of this paper is to clarify certain aspects of the linear theory of elasticity in
which the potential energy of deformation is a function of the six components of the
strain and the eighteen components of the gradient of the strain.

Stress-equations of equilibrium, constitutive equations and boundary conditions of
the “‘strain-gradient theory” were first given in a general, non-linear form by Toupin
[1, §7]. Subsequently [2], linear versions of the theory were given in three forms—dis-
tinguished by different groupings of the eighteen additional variables in the potential
energy-density: I, the eighteen components of the second gradient of the displacement;
I1, the eighteen components of the first gradient of the strain; III, the eight components
of the gradient of the rotation and the ten components of the fully symmetric part of the
second gradient of the displacement (or of the gradient of the strain). The components in
the second and third sets are simply linear combinations of those in the first. The third
form of the theory is the most convenient one for reduction to the theory in which the
potential energy-density is a function of the strain and the gradient of the rotation
[1, 3-6].

In [2], the three forms of the strain-gradient theory were shown to lead to the same
displacement-equations of motion for isotropic materials. However, the general identity
of the stress-equations of motion and the general relations among the stresses in the three
forms and among the traction boundary conditions for the three forms were not exhibited.
These results are derived in the first part of the present paper.

The second part of the paper is concerned with the moment equation and the couple-
stress. In the derivation of the equations of the strain-gradient theory by the variational
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methods employed previously, the moment equation does not appear explicitly. Although
a moment equation can be deduced subsequently from the condition of invariance of the
potential energy-density in a rigid rotation of the deformed body [7], the equation can
be produced in a variety of forms. As a result, the identification of the couple-stress is
uncertain to a constant factor. To clarify the situation, the complete equations of the
linear strain-gradient theory are rederived, here, starting from principles of conservation
of linear momentum, angular momentum and energy. The moment equation and couple-
stress thereby are displayed without ambiguity. A theorem of uniqueness of solutions
leaves the spherical part of the couple-stress undetermined just as in the theory in which
the potential energy-density depends on the strain and the gradient of the rotation.

1. KINEMATIC VARIABLES

The kinematic variables to be employed are defined in terms of derivatives of
components of displacement as follows:

1 _ .
& = i{uj,i+ui_j) = Uy = &; = strain,

1 .
w;; = 3{u;;—u; ;) = U, = —wj = rotation,
W; = 3e,,l, ; = Vector rotation,

Rijx = Uy;; = Ky = second gradient of displacement,
N . . 1.1
= Juy ;i +u;,5) = Uy = Ry, = gradient of strain, (L1
= e, ; = gradient of rotation (x; = 0),
Kig = %(uk,ij+ W et Uiki) = Ugip
= Kju = Ku; = Ry = symmetric part of &, or <,

where e;;, is the alternator.

The following relations among the variables are found by eliminating the displacement
from the definitions (1.1):

Wy = €Wy,
1 (1.2)

Wi = 2€;35W jp»

~ o4 . N = 2 2=

Kijk = K+ Kjg — Kigj = Kt 3Ku€ 5 + 5K €0

- = 1o, - Y g

Rijk = K= 3K j€uis— 3Ku€;n = 2K+ K,

K=w,. =1 0, =R e, = Ry,e (1.3)
= Wi = 2P0 = K = K€

= 1/s - ~ _ A N ~

K = 3K+ K +Kyyj) = 3(Kijp+ R+ Ry

2. EULER EQUATIONS AND NATURAL BOUNDARY CONDITIONS

The derivations of the three forms of the strain-gradient theory, given in [2], are
summarized, here, with some minor alterations.
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Hamilton’s principle is written for independent variations du; between fixed limits of
u; at times t, and ¢, :

where 7

6J‘ W)dt+j‘ oW, dt =

and ¥ are the total kinetic and potential energies in a volume V:

= JTdV, W =j wdv
v

v

and 6% is the variation of work done by external forces.
The kinetic energy-density is taken to be

T = %paii“'.

2.1)

(2.2)

In [2], velocity-gradient terms were included in the kinetic energy-density. Such terms
are appropriate if the strain-gradient equations are regarded as a low frequency approxima-
tion to the equations of a certain elastic material with a deformable micro-structure [2].
However, if the strain-gradient equations are viewed as a moderately long wavelength
limit of the finite difference equations of a simple, crystal lattice, the velocity-gradient
terms must be omitted. The latter view is adopted, here, in order to avoid carrying along
complicated terms which are not germane to the present study.

Three forms are considered for the potential energy-density :

W= W(si_u uk) = W(sua Uk) - W(SU’ u’ ijk)

—all for the same displacement field. In the case of isotropic materials,

where

and

where

_ . o

W = jAe;e;;+ pe;+ a1 Kiaky;+ 3K K
+ Q3K K jjx T+ G4k pk g+ Q5K pKy i

Vo= 1

w - 21£u£u+#£u u+a1 ukKk“+a2Ku]K|kk

+ ARk i+ Aok + GsR Ry jis

W= %l ll ”+'l18 8]+231E,ﬁu+232ﬁ,}ﬁ1,

3_ ed —_ - — -‘
+3 lxiij'ckkj"'azxijkkijk+feijkxij"kllv

183, = —28,+44,+d;+6d,—3ds, 183, = 24,—44,—4,,

361 = 2(&1 +d2+d3)’ a2 = d4+ds, 3f= dl +4dz—2d3,

(2.3)

(2.4)

(2.5)

(2.6)

@.7)

2.8)
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The variation of the work done by external forces is given a separate form for each
form of W:

W, = O, = W, = oW, (2.9)
where, for W,
6%¥i{HMMV+J@@W+EDMMB+§E@WM; (2.10)
v S C
for W,
oW, = j Fou,dV +j (P,0u, + R, Dou)dS + Eﬁ E,ouds; (2.11)
v S C
and, for W,

oW, = j Fk(Sude+§ [P0, + 043, —nen;)ow; + Rée,,]dS + # Eduds; (2.12)
v S C

where S is the bounding surface, n; are the components of the outward unit normal to S,
C is an edge of S, s is the coordinate along C, D is the normal derivative:

Do =no,; (2.13)

and

Eun = MNE, (2.14)
In (2.12), QS;;,—mn)ow; replaces Qunodwe,; which was employed inadvertently in
[2.(12.12)]. The change constitutes a rotation of ninety degrees about the normal to S.

As shown in [2], the three forms of the variational principle lead to the following
three sets of Euler equations (stress-equations of motion) and natural (traction) boundary

conditions:

I: T = Bijugj+ Fio = pli, (2.15)
P = (T 5 — Hije,) — Dyl i) + (Dyngngn i
Rk = nng (2.16)
E = solmmidip e,

where the components of stress, 7, and double stress, /i, are defined by

ij

W
Tij = 6£ij = Tji’ (2.17)
W
Hite = B, How (2.18)

the D, are the components of the surface gradient:

D¢ = ¢,—nDy,

the s, are the components of the unit vector tangent to C and the bold face brackets in
the third of (2.16) indicate that the enclosed quantity is the difference of its values, at C,
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on the two portions of S that intersect at C. Equations (2.15)+2.18), without the acceleration
term, are linear forms of Toupin’s results [1, §7].

I £ =i+ F = Py 2.19)
P = (% — Bije.)) — Dy i) +(Dmdnin i
Rk = M f;jus (2.20)

Ek = Sp["t"iﬁijk]epzj )

where
2= ‘_g’_ —1, @21
ﬁijk = % = ﬁikj’ (2.22)
HI: Tie— 2hiifere— Hijeij+ Fie = Pl (2.23)
I—)k = nj[fjk""%(ﬁli,l —.ann,i)ejik _ﬁijk,i] _(Dj - nlenl)(niﬁijk +npnn ﬁqu)v
Or = nfiy (85— nn)+2n 0 i o (2.24)
R = nnngfij,
E, = 5,150 pc finn + g+ 1ty e 0,
where
7= %‘Y =%, (225)
_ AW
iy = E*_;C_;’ i =0, (2.26)
- oW - -
Hijp = éﬁ = Hpi = Mrij = HPaji (2.27)

and ﬁnn = ninjﬁij'

In [2], f; was designated the “deviator of the couple-stress™. If uy ;) is set equal to
zero in W, ji;; does, in fact, reduce to the deviator of the couple-stress tensor y;; which
was defined in [6] by means of the angular momentum principle and appears in the
angular momentum equation [6, (1.9)]. That z;; remains the deviator of the couple-stress
when W depends on u, ;;, is verified in Section 5.

3. RELATIONS AMONG THE THREE FORMS

From (2.3) and the definitions (2.17), (2.21) and (2.25), it follows that the stresses, in’
the three forms of the theory, are the same:

T, = T =T 3.1
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To find the relations among the double stresses, we first form the relations
W R, OW 0K, W 0k,
B Ry ORige  Oipyy Oy ORpg Ry
oW 0%, OW iy W R,

ijk = Am T A= ~ = ~
OR g OR OK pqr ORij 0K, OR

oW ok, AW aky, .2
Hi™ op ok, Oy 0Ky
i - OW Rpy _ AW 3Ry
KT OR gy 0K ORpgy 0Ky

Then we replace the derivatives of the energy, in (3.2), with the definitions (2.18), (2.22),
(2.26) and (2.27) and we use the relations (1.3) in evaluating the derivatives of the kinematic
quantities. The results are

Aije = i+ ju) = ﬁijk'*'%ﬁileljk"'%ﬁﬂeuk’ (3.3)
Bije = Bipet By — Ay = ﬁijk+%ﬁjlelik+%ﬁklelija (34)
Hij = %ﬂipqequ = %(ﬁipq'*'ﬁpiq)equ’ (3.5)
i = 3B+ B+ ) = 5 Qg+ B+ A (3.6)

A useful, alternative form of the second of (3.3) is
ije = Hijk +%/2ileljk + ey (3.7
From (3.7) and the first of (3.3), we find
Bijeij = Bijrij = i€kt i (3.8)

Accordingly, the three stress-equations of motion, (2.15), (2.19) and (2.23), are the same
and they lead to the same displacement-equations of motion—as shown in [2] for
isotropic materials.

The relations among the boundary conditions may be obtained by equating coefficients
of like variations in (2.10), (2.11) and (2.12). From (2.10) and (2.11), it follows immediately
that

P =B, R =R, E =E. (3.9)
To find the corresponding relations between the first and third forms, we can proceed
by noting that, in (2.10),
R,Ddu, = 2R,ndwee ; + Rn D, du;+ Rinyde,,
2I~{,‘nﬁw,e,jk = 2nj1~{,‘(6,,~——n,n,~)5w,-e,jk,
and
L Ryn,D,oudsS = L [DyRyndu;) — DyRyn )ou,1dS

- j [(D,n,)n,f{knj—Dk(ﬁknj)]éujds+§ s.[n:R 1y e Ouyds
S C
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by the surface divergence theorem. Thus, (2.10) takes the form
oW, = j FoudV + j [P,—(D;—n,Dn)R;n,)]oudS
\4 S

+ S R0 —nin)ow dS +5 R,n,d¢,,dS
S S

+ é (Ei+ s[n.R nJey)ou,ds. (3.10)
C

Equating coefficients of like variations in (3.10) and (2.12), we have

ke (3.11)

E, = E+snR ey,

or, in vector notation,

P=P-n.Vx(nxRn),

Q =2nxR,

R—Ron (3.12)
E=E+s-[nxRn].

Conversely,
P=P+in-Vx(Qn) =P,
R(=nxRxn+n-Rn) =1Qxn+Rn =R, (3.13)
E=E—1.[Qn] = E.
The formulas (3.12) and (3.13) show how the same traction boundary conditions can be

set in each of the three forms of the theory. The same results may also be found by
substituting (3.3}{3.8) in (2.16), (2.20) and (2.24).

4. MOMENT EQUATIONS

The assumption that the first gradient of the displacement enters the potential energy-
density only in the symmetric form ¢; makes W ab initio invariant in a rigid rotation of
the deformed body and, in the variational derivation, precludes the display of a differential
equation expressing the equilibrium of moments. Toupin [7] has shown how a moment
equation can be found by assuming an energy function

W= wl(uj,ia ’Eijk) (4.1
and applying the requirement of rotational invariance subsequently. It is shown, here,

how such a procedure can lead to a variety of equivalent forms of the moment equation.
To exhibit this result in a simple context, we shall omit time dependence and edges.
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Hamilton’s principle then reduces to

J W' dV = J F,éu, dV + j (P,6u, + R, Ddu,) dS.
v v S

Starting with

. oW’ 6W
oW —«6“—]'(5 6~ o K
we find
W/ ’
j W' dV = —j [(i__) — 6YV :|5ude
v v \Cu aKijk Jij
W' [OW' oW’
; ds ——ou, ;dS
+jv nj[auk J 81c ijk 1}51“‘ +j‘ C‘;Kijhr ukd

after application of the chain rule and the divergence theorem.
Define

» oW’
Hijp = ﬁ’zfjk = i
! aw’ ~r
Jjk = ﬁuk ,uijk,l
W
Then
v v S S
Now,
f n; fi; j éu, ;dS = f n; i 5 D 0uy dS+f nn; i3 Douy dS
s s s
and
| miaD, 08 = [ D) 45 - [ Dm0, 0.
s s s
Also,

f Dj(niﬁ:'jkéuk) ds = j (Dlnl)ninjﬁ:'jkéuk ds
) s

4.2)

(4.3)

by the surface divergence theorem for a smooth surface. Assembling these results, we have

j' SW'dV = —j ' 5ude+j nan; i Déu, dS
v S

J‘ [n T}k n Hljk)+(Dlnl nn; l‘luk]éuk ds.

(4.6)
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Upon equating coefficients of like variations in (4.6) and (4.2), we find
Tyt F =0, 4.7
P = "jT}k_Dj("i.a:‘jk)+(D1n1)ninjﬁ:'jk,

R, = ninjﬁ:'jk’ (“48)
which are equivalent to Toupin’s results (10.13) and (10.14) in [7].
The conditions of invariance of the potential energy-density in a rigid rotation of the

deformed body are, in the present linear case,
W'
duyyy

0. (4.9)

With (4.9), i;; becomes j;  and the definition (4.5) yields
T+ A = 0, 4.10)

which, allowing for differences in notation, is Toupin’s moment equation (10.20) in [7].
Now, return to the definition (4.5) and replace it with

oW’ -
Th = v —Hijei+ 240050 (4.11)
Uy

where A is a constant, and note that g, ;; = 0. Then, instead of (4.7) and (4.8), we have

e+ Fo =0, (4.12)

J
ﬁ;‘ — nj("'-;'lk _ 2Aﬁ;c[ij],i) - Dj(niﬁ;jk) + (D,nz)ninj/‘l;‘jk, (@ 13)

R, = nn; i e
In terms of W', (4.12) and (4.13) are the same as (4.7) and (4.8). The invariance conditions
(4.9), applied to the definition (4.11), produce
Tt (1 + Ay = 0. (4.14)

Again, (4.14) and (4.10) are equivalent equations; but derivatives of the potential energy-
density are distributed differently between the two terms in each equation.
By the first of (3.5),

Ay = 348 ja- (4.15)
Hence (4.14) can be written as
Tf’jk]‘*‘%(l + Ay €0 = 0. (4.16)
This is to be compared with the moment equation derived from the principle of angular
momentum [6, (1.9)]:
T+ 38 = 0. (4.17)

Noting that A is arbitrary and that ;; is a deviator whereas y,; is not, it is apparent that
the invariance conditions (4.9) do not contribute to the identification of the couple-stress.
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5. DERIVATION BASED ON CONSERVATION PRINCIPLES

In this section, principles of conservation of linear and angular momentum and of
energy are employed in the derivation of the equations of strain-gradient theory. For
completeness, body double forces, with and without moment, are included along with
body forces, edges and time dependence.

Let ¢, and m; be the components of force and couple, per unit area, acting on the
surface S of a body occupying a volume V; and let F, and C; be the components of force
and couple, per unit volume, in V. Then principles of linear and angular momentum are
expressed by

j t;dS +J. F,dV :J pii, dV, (5.1)
S v v
j (xjtkeijk+i71i)dS+J (x;Fyeip+C)dV = J' pXjlige; ; dV. (5.2)
S v v
Application of (5.1) to an elementary tetrahedron leads, in the limit as the tetrahedron
shrinks to zero, to the definition of stress, t, such that
t; = nz;; (5.3)

Substitution of (5.3) into (5.1) and application of the divergence theorem lead to the
stress-equations of motion:

i+ Fi = piig (5.4)

Similarly, application of (5.2) to an elementary tetrahedron leads to the definition of
couple-stress, g, such that

m; = n;l;; (5.5)
which, with (5.2), yields the moment-equation
Mijit e+ C; =0 (5.6)
or
T+ i€+ 3C8 5 = 0. (5.7)

Now, in (5.4), write 7 = 7+ T Then, with (5.7), (5.4) becomes
Tt~ i€+ Fe=3C1 g0 = piiy (5.8)
In (5.8), separate y;; into its deviatoric and spherical parts:
My = i)+ 30 ke (5.9)
But the curl of the divergence of a spherical tensor vanishes. Hence (5.8) is
T(jk),j_%ﬂg,ijejkl'*_Fk—%cl,jejkl = pli. {5.10)
As for energy densities, we suppose, again, that the kinetic energy-density is
T = Lpii,. (5.11)
Then
T = piii,. (5.12)
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For the potential energy-density, we assume, again,
W = W(£ij9 Kijp Eijk);
so that

W= fi}'éij+ﬁij'—éij+ﬁijk%ijk’ (5.13)

where 7, z1;; and j;;, are defined, as before, by (2.25), (2.26) and (2.27).
We now adopt the following principle of conservation of energy:

f(T’+W)dV=J' (F,.a,.+cjw,.+q>(,.,.,é,.,.)dv+f(rjuj+mjw,.+ni,‘zijkéjk)ds, (5.14)
v v S

where the symmetric components @, are the densities of body double forces without
moment. The antisymmetric part ®;; is the body couple per unit volume: le,;,C,.

With (5.3), (5.5), the divergence theorem and the chain rule, the surface integral in
(5.14) becomes

L (Taj i+ iy W+ B i+ T+ W5+ €y ) AV (5.15)
But

TiMji = Taphn T Tuabya = Tapsi T TV,

and
BijWji = #3’_&.' o ﬁl‘jké ki = B jkzijk ;
so that (5.15) becomes
J Loty + (g + i)W+ Ty + i, D+ Hg'?.-,- + K] V.
\s

Hence, with (5.4), (5.6) and (5.12), the principle of conservation of energy (5.14) is converted
to

j Wdv = j [(T(jk)+ﬁijk.i+q)(jk))éjk+/"3’éij+ﬁijk;a’jk] dv. (5.16)
v v

Finally, inserting (5.13) in the left hand side of (5.16) and equating coefficients of like
kinematic variables on both sides of the equation, we find

T = Tin— Bijiei — Py (5.17)
,UB' = fij (5.18)

Thus, 4;; is indeed the deviator of the couple-stress.
Upon substituting (5.17) and (5.18) into (5.10), we recover (with the addition of body

double forces) the stress-equations of motion (2.23) which were obtained from Hamilton’s
principle:

fjk,j-%ﬂg,ijejkt—ﬁijh,iﬂ' Fk“%ct.jeju_(buk),j = ply. (5.19)
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In the case of an isotropic material, W is given by (2.7). Then, from (2.25), (2.26), (2.27)
and (5.18),

Tpg = A0pgfi,+ 204 g (5.20)

Moy = 4d K g+ 4d oKy + [0, (5.21)
ﬁpqr = al(Kuré +hup6 +Kuq5rp)+2a27pqr

RO g+ Opijp+ Oriie) (5.22)

[Note that, in (5.21), ¥;; contributes to the couple-stress—contrary to the statement in
[2] following (12.1)].

When (5.20), (5.21) and (5.22) are inserted in (5.19) and ¢;;, «;; and K, are replaced by
their expressions in terms of u;, we find the displacement- equatlon of motion

(A+2w)(1 —BV)VV. u— (1 - BEVHIVXVxu+F+1VxC-V.® = pu, (5.23)
where

B = (3a,+2a,)/(A+2u), B =3d, +a,+2a,— f)/3u (5.24)

Necessary and sufficient conditions for positive definiteness of W are
u>0, 3i+2u>0, —d, <d,<d,,

a, >0, 5a,+2a, >0, 5f%<6(d,—d,)5a,+2a,)
which replace (12.18) of [2]. From (5.25), it follows immediately that /2 > 0. To show that
I3 > 0, note first that

(2(d, +2d5) = 3d, =3/ 1 + 55 6(d, —d, )5, +24,) = 5 /*] + 245, a,

+2d, +d,)N5a, +2d,) = (3d, +a, +2d,— f)3d, +4a, +8a,+2f). (5.26)
Since, by (5.25), the left hand side of (5.26) is the sum of positive terms, the right hand
side is positive. The two factors on the right must both be positive because, if they were

negative, the sum of the second factor and twice the first would be negative—in violation
of (5.25). Hence

(5.25)

3d,+a,+2a,— f >0

and, consequently, /3 > 0.

6. UNIQUENESS OF SOLUTIONS

As deduced from conservation principles in the preceding section, the equations of
the strain-gradient theory for isotropic materials are sixty-three in number:

{3} t+ F; = piij, (6.1)
{3} Mijit T+ Ci =0, 6.2)
{6} Ty = Tie ™ Aijii — Py (6.3)
{6} i = Ugip (6.4)

134 Wi = TU € (6.5)
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ol Kij = Wi (6.6)
{10} Kijk = Ugijy (6.7)
{6} Ty = A0 e+ 218, (6.8)
{8} 10 = 4d K+ 4K i+ Sy R e (6.9)
{10} i = 81Ky a0+ K ppif i+ K Od) + 28,5

F 3SR 011 pase + 048 pgi + i€ ) (6.10)

Whereas there are sixty-three equations, there are sixty-four dependent variables: 3 of
u, 3 of w, 6 of g;;, 8 of K, 10 of K4, 9 of 7,5, 9 of p;;, 6 of 7;; and 10 of ;. The additional

ij» ij ij»
varlable 1s the spherical part of the couple-stress which, because it does not contribute to

the change of potential energy-density (5.13), is indeterminate within the framework of
the theory as represented by the sixty-three equations. With this understanding, we proceed
to the proof of a theorem of uniqueness of solutions in the usual manner.

Consider two sets of the sixty-four dependent variables u;... and u; ... (with 4; and
ui; arbitrary) and their differences u; = u;—u; ... Similarly, define body force and body
double force differences: F; = F;—F; ... If each set of variables and body forces is a
solution of (6.1)}6.10), so is the difference set and, from (6.1), we may form the equation

1
J' dtj (ty4+ F— pii i, dV = 0, 6.11)
v
where ¢, is an initial time and V is a volume bounded by a surface S with an edge C. Now
Tty = (i) — Tt = (Tah) i — Tapbhy,n = Tapt.r

Hence, with (6.2) and (6.3),

T = (T4) ; +2euk(ﬂtkt+ck)“[] 0= Ti— fiju— Puphitg,iy s

or, with (6.4) and (6.5),

Tt = (@) i+ (i i+ Cowe = (T3 = B — P )iy
Further,

P Wit Hijaiy = (W s+ B ) i — W0 — a5
or, with (6.6) and (6.7),
B, Wi+ Biij by = (”ijwj"'ﬁijkéjk),i_ﬂgéij—ﬁijk'?.ijka
where we have used x;; = 0 and the symmetry of j;;. Also, by (6.8), (6.9) and (6.10),

1] 11+“UKU+ﬂukkuk = W
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where W is defined by the same form as (2.7) but in terms of the difference variables. Thus,
the integrand of (6.11) becomes

F iyt C o+ @y + (it 4 pi Wi+ i) i — T— W,
where T is given by (2.2). Accordingly, application of the divergence theorem and an
integration with respect to time convert (6.11) to

t
jv [T+ W], dv =j, dt jv (Fjiaj+ C b+ @gpéy) dV
to

t
+ j dr j Ty + b+ e ) . (6.12)
0 )

t

Thus, starting with the system of sixty-three equations (6.1)-6.10), we have recovered
the principle of conservation of energy for the difference system. We have now to reduce
the twelve variables u;, w;, £,, in the surface integral of (6.12), to six as only six are in-
dependent of each other on S. For example, if the u; are known on §, so is the normal

component, nw;, of w;; and, if the u; and the tangential component, (;;,—n;n)w; of w;
are known on 8§, so are all the components of ¢; except the normal component nn ;.
It is also convenient to express the coefficients of , (6;;—nn)w; and nn;,; in forms that
are independent of 7;;, and y; so that the coefficients can be computed directly from the
constitutive equations (6.8)-(6.10).

From (6.2) and (6.3),
T = fjk - %ﬂli,leijk _/jijk,i “%Cieijk - (D(jh)’ (6.13)
Also,
M jW; = AW+ g 140 — nm)w,
= Ty i+ 1 AO i — W,

_ 1 - 1 - »
= 3L Mnnth}) i — ZCki fmm, iU+ Ml O o — M)Wy

and

"\ nkekij(ﬂnnaj),i ds = § D‘?n]sjaj ds.
S C

Hence
L (T iy + "i#ijw,-) ds =j ”j[fjk +%(/‘3,l - /‘?n,i)ejik _ﬁijk,i]ak ds
s

+ J‘ nf3C.eu— O )iy dS
S

+ j n, w0 j—nm)w, dS + § B Jsui ds,  (6.14)
s I
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in which we have used

.Ui,(‘sjk‘ njnk) = /‘B(ij" ni), My~ P = #g.l“ﬂnDn,i'

As for the last term in (6.12), we write

Ml e = M Byt = D +ngn; i p Dty

But

Diy = 2wpne y+n Dy +né,,

Hence

Ml = (3 e+ Mol g D i+ 200, 1Ly g puoWic+ M Ty i
= Dyf[(m; i+ 1y g iy ] — Dy i+ g fhpg i

+2nn0 ;0,08 Wi+ P G e

Then, with the surface divergence theorem,

s s
+ f (20 [y €0 Wi+ i jhilnn) A5
s

+ ﬁ 8 p114€pg(i i+ Py )1ty ds.
c

Upon inserting (6.14) and (6.15) in (6.12), we obtain, finally,
1
j [T+WI, dV =_[ dt_( (F jity+ C o+ By, ) AV
v to A\
t _ _ _
+ J dt J [Pyt + OB, myn, ), + RE, ] dS
to S

t —
+j dtj E., ds,
to C

where
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(6.15)

(6.16)

P = "j[fjk + %(#B,t - ﬂ.?n,i)ejik - ﬁijk.i] —(D;—- nlenl)(niﬁijk +nnn, ﬁqu) + nj(%ciejik ~ @)

~ b _
Qi = muif0u—nm)+2nnn, i€,
R =nnmn iz,

E. =s, 30 i it + Bl + my iy )e ).

(6.17)

It will be observed that (6.17) have the same form as (2.24) with the addition of the
body double forces. Note that the body couple C has been placed in the expression for

P, following Koiter [8].
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Conditions sufficient for a unique solution of (6.1)-{6.10) are now obtained from (6.16)
in the usual manner—based on the assumption of positive definiteness of T and W:

1. At each point in V: F, C, ® and initial values of u and 4.

2. At each point on S: (a) a component of u (or P), in any direction, and the resultant
of P (or u) in the plane at right angles; (b) in the tangent plane, a component of w (or Q)
and the component of Q (or w) at right angles; (c) ¢,, or R.

3. At each point on C: a component of u (or E), in any direction, and the resultant of
E (or u) in the plane at right angles.

Note that, according to the linear momentum principle, n;7,; and not P, are the
components of force per unit area. Also, by the angular momentum principle, n; ;6 ;, —n;n,)
and not Q, are the components of tangential couple per unit area.

As in classical elasticity, the uniqueness theorem is subject to the regularity restrictions
implied by the forms of the divergence theorems employed in the proof. In particular, if
a singularity is present, an additional condition, generally obtained through a limit process,
is required. Sternberg and Muki [9] have shown how failure to observe such a requirement
can lead to physically irrelevant ‘‘pseudo-solutions’.
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AGcrpakT—B pabote uccneayerca JMHERHAs TEOpMs YNPYrOoCTH, B KOTOPOM IIOTHOCTh MOTEHUUAIBHOM!
JHEPrHH 3aBHCHT OT TPAOMEHTA JedOoAMalMKU | OT nedoamarun.

B nepsoit yacTH paGoThl CPaBHMBAIOTCA TPH BHIA TEOPHH H BHIBOAATCS 3aBHCHMOCTH, KacaroLMecs
HaANIPAXECHHM ¥ TPAaHUYHBIX YCIOBHH B 3THX TpeX BMIaX.

Bo BTOpO# YacTH peuraroTci HEOOHOZHAYHOCTM BBIPAXKEHMs! OJI1 MOMEHTHOTO YDABHEHMA H ONpejer-
SETCS MOMEHTHOE HANPMKEHHE, HCNONL3Ys BHIBOA OCHOBBLIBAIOWMIACH B GonblieRt cTeneHy Ha NPHHUMOAX
COXPaHEeHHUs, YeM Ha BAPHAUMOHHBIX IPHHLIMIIAX, KOTOPbIE HCMOIb30OBAHBI PaHee.



