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Abstract

Title: Preliminaries to analysis of heterogeneous materials using meshless methods
The aim of thesis: In the field of engineering design many complex problems are

solved with numerical techniques. Beside Finite Element Methods that is a very powerfull
tool and mesh-based methods in general, the meshless methods can be used. This project
is based on onalysing two meshless methods in one dimensional space. The first method
is called the Boundary Point Method (BPM) that uses function approximation with basis
function. The second one is named the Fast Fourier Transform (FFT) Based Method. In
the contrary to previous method, it uses iteration algorithm to obtain solution.

Method: The algorithm of each method is implemented into the software MATLAB and
subsequently the parameters of the methods are analysed. The goal of methods analysing
is to explore the algorithm behaviour applied to one dimensional rod and consequently
find the optimal values of parameters for best convergence.

Results: Boundary Point Method mostly depends on ability to approximate de-
manded deformation with basis function ϕ(x). The parameters of this method are the
number of discretizing nodes N and the parameter H determining the “hat” shape of
basis function ϕ(x). While the increasing number of discretizing nodes N causes better
approximation, the parameter H is rather complicated. Nevertheless the optimal value for
observed function was found in interval 〈0.4, 3.3〉. The problem of function approximation
and consequently BPM is Gibb’s effect.

Fast Fourier Transform Based Method is determined, similarly as in previous case, with
the number of discretizing nodes N . The second parameter is Eref that is usually put into
the relation with E0 and E1 stiffnesses. The number of iteration does not depened on the
value N . The increasing number of discretizing nodes N just better specifies deformation
along the rod. For the ratio E0+E1

E0

greater than approximately 5, the optimal value of

Eref is close to value
(

E0 + E1

2

)

.
Key words: Heterogeneous materials, Boundary Point method, discretization, ap-

proximation, Fast Fourier Transform



Chapter 1

Theory

1.1 Introduction

In the field of engineering design we come across many complex problems, the mathe-
matical formulation of which is tedious and usually not possible by analytical methods.
At such instants we resort to the use of numerical techniques. Here lies the importance
of Finite Element Method (FEM), which is a very powerful tool for getting the numeri-
cal solution of a wide range of engineering problems. The basic concept is that a body
or structure may be divided into smaller elements of finite dimensions called as Finite
Elements [?].

Contrary to FEM and mesh-based methods in general there exist situations where
some of the meshless methods is convenient to use. This project is based on analysing
two meshless methods in one dimension and this Chapter provides theoretical information
about them.

The first method described in Section 1.2 is based on discretisation using the Gauss
approximation functions. The method itself produces the Toeplitz structured matrices due
to the regular discretisation grid and even approximation functions. Hence the systems
can be advantageously solved using iterative solvers based on Fast Fourier Transform
(FFT) technique. On the other hand there are problems with setting parameters in order
to avoid less efficiency or even divergence.

The second method described in Section 1.3 is based on iteration algorithm at the
regular discretisation grid of periodically repeating medium.

In the next Chapter 2 the algorithms used for analysing those methods are provided.
Finally the last Chapter 3 discuss the results obtained from analysing the both methods.

1.2 Boundary Point Method

The Boundary Point Method (BPM) is a quite new numerical approach designed for
a solution of various problems of applied mathematics and physics. It was introduced
by Russian mathematican Maz’ya in the 90’s of the last century. Contrary to a very
popular Finite Element Method discretising differential equations, the BPM is based on
the discretisation of integral equations.

This Section provides various information about this method on the simplest one-
dimensional case. The first part at Section 1.2.1 starts with problem discretization, the
second part at Section 1.2.2 covers function approximation that is used in the BPM. That
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approximation is used in Section 1.2.3 where the finalization of BPM is provided. The
information about the theory of BPM is drawn up from Novák [?].

1.2.1 Problem Discretization

This Section provides theoretical introduction to analyzing one dimensional rod with
heterogeneities. It is necessary to note that the rod has unit cross-section hence it is
not included in the formulas. In general the solution of deformation consist of setting
equilibrium equation at the rod:

d

dx

(

E(x)
du(x)

dx

)

+ g(x) = 0 (1.1)

where E(x) is Young’s modulus and g(x) is load function causing u(x) displacement.
In this method the infinite one dimensional rod with heterogeneities is considered.

The rod is loaded at infinity with deformation ε0. The material data is described with
stiffness function E(x), which is separated into two components:

E(x) = E0 + E1(x) (1.2)

where E0 is Young’s modulus of material of matrix, E1(x) is its complement to real
stiffness. The BPM method assumes that E1(x) function has a nonzero values only on a
finite interval 〈a, b〉. identically equal to zero. For the use of the method, the deformation
du(x)

dx
= ε(x) is separated into two components as stated below:

ε(x) = ε0 + ε1(x) (1.3)

where ε1(x) deformation is complement to real deformation.
Hence the general problem, Equation (1.1), can be rewritten into the following form:

d

dx

[(

E0 + E1(x)
)(

ε0 + ε1(x)
)]

= 0 (1.4)

d

dx

(

E0ε0 + E0ε1(x) + E1(x)ε0 + E1(x)ε1(x)
)

= 0 (1.5)

After several algebraic emendations and using d
dx

(E0ε0) = 0, it follows:

d

dx

(

E0ε1(x)
)

= − d

dx

[

E1(x)ε0 + E1(x)ε1(x)
]

(1.6)

The left side of Equation (1.6) can be interpret as homogeneous rod with stiffness E0

and deformation ε1(x). Hence, the right side of the Equation (1.6) can be interpret as
generalized load f(x) causing that ε1(x) deformation:

f(x) = − d

dx

(

E1(x)ε(x)
)

(1.7)

Now we can take a look at displacement using Green function. It is defined as follows:

u1(x) =

∞
∫

−∞

G(x, y)f(y)dy (1.8)

2



The derivation of Equation (1.8) and using expression for f(x) from Equation (1.7)
leads to:

du1(x)

dx
= ε1(x) = −

∞
∫

−∞

∂G(x, y)

∂x

d

dy

(

E1(y)ε(y)
)

dy (1.9)

Integration by parts leads to:

ε1(x)
P.P.
=

∞
∫

−∞

∂2G(x, y)

∂x∂y
E1(y)ε(y)dy − ∂G(x, y)

∂x
E1(y)ε(y)

∣

∣

∣

∣

∞

−∞

(1.10)

The second term in Equation (1.10) is equal to zero as limx→±∞ E1(y) = 0. Noting

that the variables x and y in function ∂G(x,y)
∂x∂y

depends just on their difference it can be

simplified as follows ∂G(x,y)
∂x∂y

= K∞(x − y). Hence, Equation (1.10) leads to:

ε1(x) =

∞
∫

−∞

K∞(x − y)E1(y)ε(y)dy (1.11)

To solve the last equation it is necessary to know something about the function K∞(x−
y). It could be proved using Fourier Transform that equals to:

K∞(x − y) = − 1

E0
δ(x − y) (1.12)

where function δ is the unitary impulse and it is called the Dirac distribution.
Using (1.12), Equation (1.11) leads to:

ε1(x) = − 1

E0

∞
∫

−∞

δ(x − y)E1(y)ε(y)dy (1.13)

The convolution theorem states that
∞
∫

−∞

f(x)δ(x − a) = f(a) [?]. Therefore, adding

ε0(x) to both sides of equation, Equation 1.11 can be modified to following form:

ε0(x) + ε1(x) = −E1(x)

E0(x)
ε(x) + ε0(x) (1.14)

Finally, after some simple algebraic manipulations, it leads to:

E0(x) + E1(x)

E0(x)
ε(x) = ε0(x) (1.15)

which can be declared as the exact solution of the problem stated at the beginning of this
Section [?].
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1.2.2 Function approximation

This Section provides information about function approximation that is used in this BPM
with great benefit due to basis function qualities. In the contrary to FEM, where the
medium is being decomposed into elements, the BPM depends only on the position of
finite number of boundary points and the values at these points.

Following Figure 1.1 shows one dimensional discretization with regular grid in the
interval 〈a, b〉 evenly divided into N nodes. The first point is set at the beginning of the
interval (x1 = a) and the last point at the end of the interval (xN = b). The rest of the
nodes are regularly distributed into the interval. So the difference between two adjacent
points is h = b−a

N−1
.

Figure 1.1: Discretization of one dimensional rod into regular grid

For approximation, the following function is being used:

ϕ(x) =
1√
πH

e−
|x|2

Hh2 (1.16)

where h is a difference between coordinates of two adjacent points as stated above and
H is the dimensionless operator regulating the Gauss ”hat” opening (corresponding with
variance parameter in the case of Gauss probability function). Figure 1.2 shows the
influence of H parameter on basis function ϕ(x) while value h = 0.2 is kept constant. For
comparison, next Figure 1.3 shows the influence of h value on basis function ϕ(x) while
parameter H = 1 is kept constant

Figure 1.2: Influence of H parameter on basis function ϕ(x), h = 0.2

Figure 1.3: Influence of h value on basis function ϕ(x), H = 1

The function f(x) that is being approximated is expressed at an interval 〈a, b〉 as a
linear combination of basis function ϕ(x). The formulation is expressed as follows:

f(x) ≈
N

∑

i=1

αiϕ(x − xi) (1.17)
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where αi ∈ R are coefficients of approximation.
The function approximation consist in finding the coefficients αi. As we have N

unknown variables we need to set N linear equations that are linearly independent. To
obtain these equations the equality at each point of discretization grid is required. Hence
the jth point determines the jth equation that can be described as follows:

N
∑

i=1

αiϕ(xj − xi) = f(xj) (1.18)

There is a possibility to rewrite all of the equations for determining αi coefficients in
matrix notation:

Ax
T = b

T (1.19)

where A ∈ R
N×N is matrix that is determined as follows A = A(j, i) = ϕ(xj −xi), for

i, j = 1, 2, 3, . . . , N and x, b ∈ R
N are both vectors with entries x = (α1, α2, α3, . . . , αN),

b =
(

f(x1), f(x2), f(x3), . . . , f(xN)
)

. The full form of matrix equation is written here:











ϕ(x1 − x1) ϕ(x1 − x2) . . . ϕ(x1 − xN )
ϕ(x2 − x1) ϕ(x2 − x2) . . . ϕ(x2 − xN )

...
...

. . .
...

ϕ(xN − x1) ϕ(xN − x2) . . . ϕ(xN − xN )





















α1

α2
...

αN











=











f(x1)
f(x2)

...
f(xN )











(1.20)

Noting that ϕ(x) is even function1 and at the interval 〈0,∞) the function is descending,
the matrix A possesses a specific structure:

A =















a1 a2 . . . aN−1 aN

a2 a1 . . . aN−2 aN−1
...

...
. . .

...
...

aN−1 aN−2 . . . a1 a2

aN aN−1 . . . a2 a1















(1.21)

where A(j, i) = a|i−j|+1 = ϕ(xi − xj). This matrix is symetric Toeplitz matrix with a
property:

∀i, j = 1, 2, 3, . . . , N ; i < j ⇒ ai > aj .

1.2.3 Problem solution

This Section provides finallization of the BPM description using function approximation
from Section 1.2.2. To complete this method we have to continue with last Equation
(1.15) from Section 1.2.1. For lucidity the equation is rewritten here:

E0(x) + E1(x)

E0(x)
ε(x) = ε0(x) (1.22)

To solve this equation the unknown function ε(x) is approximated using approximation
function ϕ(x) as in the Section 1.2.2. The rewritten Equation (1.22) now looks as follows:

1Even function is defined as follows: ∀x ∈ R, ϕ(−x) = ϕ(x).
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E0(x) + E1(x)

E0(x)

N
∑

i=1

αiϕ(x − xi) = ε0(x) (1.23)

It is apparent that the equilibrium at each point with coordinate xj , for j = 1, 2, 3, . . . , N
leads to N equations. The jth row of the system can be written as:

E0(xj) + E1(xj)

E0(xj)

N
∑

i=1

αiϕ(xj − xi) = ε0(xj) (1.24)

Hence it can be recast in the matrix form:

(

CA
)

x
T = b

T (1.25)

where individual matrices are written below:

C =













E0+E1(x1)
E0

0 . . . 0

0 E0+E1(x2)
E0

. . . 0
...

...
. . .

...

0 0 . . . E0+E1(xN )
E0













(1.26)

A =











ϕ(x1 − x1) ϕ(x1 − x2) . . . ϕ(x1 − xN )
ϕ(x2 − x1) ϕ(x2 − x2) . . . ϕ(x2 − xN )

...
...

. . .
...

ϕ(xN − x1) ϕ(xN − x2) . . . ϕ(xN − xN)











(1.27)

x =
(

α1 α2 . . . αN

)

(1.28)

b =
(

ε0(x1) ε0(x2) . . . ε0(xN)
)

(1.29)

The last equation can be written in slightly different way:

Ax
T = Cb

T (1.30)

Ax
T = (c � b)T (1.31)

where all of the notation is the same except binary operator � meaning product by
product matrix multiplication (for A, B ∈ T n×m, AB = C = C(i, j) = A(i, j)B(i, j), for
i = 1, 2, . . . , n and j = 1, 2, . . . , m) and the array c ∈ R

1×N written below:

c =
(

E0

E0+E1(x1)
E0

E0+E1(x2)
. . . E0

E0+E1(xN )

)

(1.32)

1.3 Fast Fourier Transform Based Method

This Section provides theoretical approach to the Fast Fourier Transform Based Method.
Information about this method are gained from Michel [?]. It is based on analyzing
periodically repeating medium with heterogeneities. In this thesis one dimensional case
is considered and similarly to previous BPM the cross-section is unitary and thus it is not
included in the formulas. The medium is composed from basic cell which is characterized
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with E(x) stiffness defined at the interval 〈a, b〉 (a, b are boundary points of the cell) and
the boundary condition for deformation have to be satisfied. It means that:

ε(a) = ε(b) (1.33)

The infinite one dimensional rod is loaded with average deformation ε0. For the needs
of the FFT based method the deformation along the rod ε(x) is decomposed into:

ε(x) = ε0 + ε1(x) (1.34)

where ε1(x) is a complement to ε(x) deformation along the rod. It is necessary to note
that the deformations ε0, ε1(x) have different sense than in the BPM.

To obtain some information about ε1(x) deformation the equation ε1(x) = d
dx

u1(x) is
adjusted using integration by parts:

ε1(x) =
d

dx
u1(x) ⇒

b
∫

a

ε1(x)dx =

b
∫

a

d

dx
u1(x)dx =

[

u1(x)
]b

a
= u1(b) − u1(a) (1.35)

Moreover, noting that the term
(

u1(b) − u1(a)
)

has to be equal to zero due to boundary
condition at basic cell boundaries. Hence, the everage ε1(x) deformation at the cell is
equal to zero.

To analyse one dimensional rod with FFT based method, the approach with the Green
function is used similarly to the case of the BPM. Hence, the equilibrium state is described
with the following equation:

d

dx

(

E(x)ε(x)
)

= 0 (1.36)

For the use of the method the (EH −EH) term is added to the equation. The stiffness
EH is an auxiliary value of the analogical homogeneous problem with same deformations
ε0, ε1(x) and the same boundary condition. Hence Equation (1.36) follows:

d

dx

[(

EH − EH + E(x)
)

ε(x)
]

= 0 (1.37)

d

dx

(

EHε(x)
)

= − d

dx

[(

E(x) − EH

)

ε(x)
]

(1.38)

The ε(x) at the left side of the last equation can be decomposed. Next we can notice
that d

dx

(

EHε0

)

= 0 as it is derivation of constant. Hence Equation (1.38) leads to:

d

dx

(

EHε1(x)
)

= − d

dx

[(

E(x) − EH

)

ε(x)
]

(1.39)

The left side of the equation can be interpreted as homogeneous rod deformed with
ε1(x) deformation. Hence, the right side of the equation can be interpreted as generalized
load f(x) causing that ε1(x) deformation:

f(x) = − d

dx

[(

E(x) − EH

)

ε(x)
]

(1.40)

Now we can take a look at u1(x) displacement using Green function. In the case of
the FFT based method an integral is defined at interval 〈a, b〉, hence:

u1(x) =

b
∫

a

G(x, y)f(y)dy (1.41)

7



After derivation and substitution with Equation (1.40), it leads to:

ε1(x) = −
b

∫

a

∂G(x, y)

∂x

d

dy

[(

E(y) − EH

)

ε(y)
]

dy (1.42)

Integration by parts heads to:

ε1(x)
P.P.
=

b
∫

a

∂2G(x, y)

∂x∂y

(

E(y) − EH

)

ε(y)dy − ∂G(x, y)

∂x

(

E(y) − EH

)

ε(y)

∣

∣

∣

∣

b

a

(1.43)

the second term at the right side of equation is equal to zero due to identical deformation
at cell boundaries.

Next we can rewrite term ∂2G(x,y)
∂x∂y

noting that the variables x and y depends just on

their difference, we can say that ∂2G(x,y)
∂x∂y

= Kper(x − y). Hence, it follows as:

ε1(x) =

b
∫

a

Kper(x − y)
(

E(y) − EH

)

ε(y)dy (1.44)

The interpretation of function Kper(x− y) using Fourier Transform has to satisfy two
conditions. The first condition says that Kper(x − y) = 1

EH
δ(x − y) and the second one

declare that the average ε1(x) deformation is equal to zero:

b
∫

a

ε1(x)dx = 0

Both conditions can be proved using the Fourier Transform.
Hence, we can rewrite Equation (1.44) to the following form satisfying both conditions:

ε1(x) =
E(x) − EH

EH

ε(x) − 1

b − a

b
∫

a

E(y) − EH

EH

ε(y)dy (1.45)

To apply this equation to practical use it is necessary to provide some other emen-
dations. Firstly we have to discretize the interval into N nodes that change the integral
over continuous field into the sum. It is necessary to note that the discretization leads
to a loss in exactness over the continuous field. The same approach of discretization as
in the case of BPM is being used. Hence the first point is set at the beginning of the
interval (x1 = a) and the last point at the end of the interval (xN = b). The rest of the
nodes are regularly distributed into the interval, so the difference between coordinates of
two adjacent points is h = b−a

N−1
. This discretization change Equation (1.45) to:

ε1(xj) =
E(xj) − EH

EH

ε(xj) −
1

N

N
∑

i=1

E(xi) − EH

EH

ε(xi), for j = 1, 2, . . . , N (1.46)

The second modification has to be done with the stiffness EH as it is auxiliary value of
imaginary case of homogeneous rod it cannot be known until the deformation of the rod
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is calculated. Hence the EH stiffness is estimated with some reference stiffness Eref . The
inaccurate estimation of this Eref value leads to inexact solution of the deformation thus
the iteration approach to solution has to be applied. The appropriate setting of the Eref

value is the main point of the efficiency or even successfulness of the iteration method.
Using Equation (1.46) the kth iteration of the algorithm can be written as:

εk+1
1 (xj) =

E(xj) − Eref

Eref

εk(xj)−
1

N

N
∑

i=1

E(xi) − Eref

Eref

εk(xi), for j = 1, 2, . . . , N (1.47)

It is necessary to note that the initial ε0
1(x) deformation is set to:

ε0
1(x) = 0

The convergence of the iteration method is not the aim of this project hence it is
not provided. The practical algorithm used for the analysis of the method is provided in
Section 2.2.
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Chapter 2

Methodology

This Chapter provides information about procedure of analysis of individual methods.
The division into sections is done accordingly to Chapter 1 Theory and Chapter 3 Results.
Hence, firstly the Boundary Point Method is discussed in Section 2.1 and after that Fast
Fourier Transform Based Method in Section 2.2. Each section provides information about
parameters of method that are analysed, about the algorithm that is used for calculation
and the functions that are analysed. It is necessary to note that all of the calculation
were done in MATLAB R2007a.

2.1 Boundary Point Method

Similarly to Chapter 1, the discussion about the BPM method is divided into Section
2.1.1 dealing with function approximation and Section 2.1.2 dealing with deformation of
one dimensional rod with heterogeneities.

2.1.1 Function approximation

This part provides information about the method that is used in this project to approxi-
mate some particular function with base functions. Firstly, the inputs to the method are
summarized. All of the inputs are divided into internal parameters:

• N — number of nodes used for discretization of the interval 〈a, b〉

• H — the parameter of approximation function ϕ(x)

and other inputs that are following:

• f(x) — function that is being approximated with constant a and b as the end points
of the interval where the function is defined

• ϕ(x) — base function that is used for approximation

• s — parameter for norm calculation determining the step between two adjacent
points were the norm is calculated

Algorithm used for approximation is described in individual steps:

10



1. definition of the approximation function f(x) at interval 〈a, b〉, defining the base
function ϕ(x) and setting of parameters N, H, s

2. calculation of h = b−a
N−1

3. discretizing the definitional interval 〈a, b〉 into N nodes, each node is assigned to

coordinate with transform N
g−→ 〈a, b〉 that is described as g(i) = xi = hi, for i =

1, 2, 3, . . . , N

4. determination of the array b =
(

f(x1), f(x2), . . . , f(xN)
)

5. determination of matrix A = A(j, i) = ϕ(xi−xj) = ϕ(hi−hj) for i, j = 1, 2, 3, . . . , N

6. calculation of the matrix equation AxT = bT for unknown array x = (α1, α2, . . . , αN)

7. interpretation of the data consisting of calculation approximation function f̄ at

arbitrary point x, f̄(x) =
N
∑

i=1

αiϕ(x − hi)

8. calculation of differences between the function f(x) and the function f̄(x) using `2

norm (2.1) and maximal norm (2.2).

The `2 norm and maximal norm is calculated at interval 〈a, b〉 as follows:

∥

∥f(x) − f̄(x)
∥

∥

2
=

∑

x∈G

(

f(x) − f̄(x)
)2

b−a
s

(2.1)

∥

∥f(x) − f̄(x)
∥

∥

max
=

max
x∈G

∣

∣f(x) − f̄(x)
∣

∣

max
x∈G

∣

∣f(x)
∣

∣

(2.2)

where G =
{

x ∈ 〈a, b〉; x = a + sn, n ∈ Z
}

is a set for norm calculation (Z is the set of
all integer numbers). To increase the accuracy of the norm it is necessary to decrease the
parameter s. In the case of this project the s parameter was set to value 0.0005. This
value means that the norm is calculated in at least 5 points between two adjacent nodes
of discretization grid hence it guarantees the sufficient accuracy.

Here we provides information about the concrete values used in this project. For the
parametric study the functions that are shown in Figure 2.1 is chosen. The functions
fi(x), i = 1, 2, 3 are defined at interval 〈−1, 2〉. All of the functions fi(x) are equal to zero
at set 〈−1, 2)

⋃

(−1, 2〉 and at the interval 〈0, 1〉 there is defined some particular nonzero
function. As the first type of function is used constant function f1(x) = 0 (dashed line),
the second type is a function f2(x) = sin(πx) (full line) and finally the third function is
piecewise constant defined as follows (dash-and-dot line):

f3(x) = 1, at the set 〈0.11, 0.22)
⋃

〈0.33, 0.44)
⋃

⋃

〈0.55, 0.66)
⋃

〈0.70, 0.78)
⋃

〈0.82, 0.95)

f3(x) = 0, otherwise.

The same type of lines for particular functions are used also in Section 3.1.1 where the
results of the analysis are provided.

11



Figure 2.1: Graph of functions that are being approximated

2.1.2 Deformation analysis of one dimensional rod

This part provides information about the algorithm based on the BPM. First we have
to specify what inputs to the method. We can divide all of the inputs into internal
parameters of the method:

• N — number of nodes used for discretization of the interval 〈a, b〉

• H — the parameter of approximation function ϕ(x)

and other inputs that are following:

• E0(x), E1(x) — the stiffnesses of analyzed medium at interval 〈a, b〉, E0(x) = const.,

E1(x) 6= const. (in the algorithm the ratio p = maxx∈〈a,b〉
E1(x)
E0(x)

is analysed)

• ϕ(x) — basis function used for approximation

• s — parameter for norm calculation determining the step between two adjacent
points were the norm is calculated

Algorithm used for analysing one dimensional rod with BPM is written below in
individual steps:

1. definition of the stiffness and initial deformation functions E0(x), E1(x) resp. ε0(x),
ε0(x) at interval 〈a, b〉

2. setting N, H, s parameters and defining the basis function for approximation ϕ(x)

3. calculation of h = b−a
N−1

4. discretizing the definitional interval 〈a, b〉 into N nodes, each node is assigned to

coordinate with transform N
g−→ 〈a, b〉 that is described as g(i) = xi = hi, for i =

1, 2, 3, . . . , N

5. determination of matrix A = A(j, i) = E0(xi)+E1(xi)
E0(xi)

ϕ(xi−xj) for i, j = 1, 2, 3, . . . , N

6. calculation of the matrix equation AxT = bT for unknown array x = (α1, α2, . . . , αN)

7. interpretation of the data consisting of calculation deformation ε̄(x) approximated

with base functions at arbitrary point x, ε̄(x) =
N
∑

i=1

αiϕ(x − hi)

8. calculation of the real deformation εreal(x) using analytical solution, hence εreal(x) =
E0(x)ε0(x)

E0(x)+E1(x)
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9. calculation of differences between the function ε̄(x) obtained from BPM algorithm
and the function ε(x) gained from analytical solution using `2 norm (2.3).

∥

∥ε(x) − ε̄(x)
∥

∥

2
=

∑

x∈G

(

ε(x) − ε̄(x)
)2

b−a
s

(2.3)

where G =
{

x ∈ 〈a, b〉; x = a + sn, n ∈ Z
}

is a set for norm calculation (Z is the set of
all integer numbers).

Here we provide information about the concrete values used in this project. To analyse
this method we have chosen the following parameters:

• the stiffness of periodic medium is defined as E(x) = E0 + E1(x), where the func-
tion E0 = 10 is stiffness of matrix and E1(x) is the complement to heterogeneities
stiffness. The function E1(x) is defined as follows: E1(x) = pE0fi(x), where fi(x),
i = 1, 2, 3 are functions defined in Section 2.1.1, p = 5, 100, the functions E(x) used
for the analysis are provided in Section 3 Results

• the rod described with the stiffness is discretized at interval 〈−1, 2〉

• number of nodes N used for discretization was set to values N = 64, 256

• the s parameter for convergence calculation is set to value 0.0005 as in the case of
function approximation

• setting of initial deformations ε0 = 1 at the infinity points of the rod

2.2 Fast Fourier Transform Based Method

This section provide information about the algorithm of the FFT-Based Method. The
structure of this section follows the previous sections, hence first we define the internal
input parameters of the method that are:

• N — number of nodes using for discretization of the medium

• Eref — the value of reference stiffness

• ζ — the parameter of convergence - the iteration algorithm continue until the con-
vergence criterium is satisfied

• ζmax — the parameter of divergence - the iteration algorithm continue until the
divergence criterium is satisfied

and other inputs are:

• E(x) — the Young modulus of periodic cell

• ε0(x), ε1(x) — deformations of periodic cell

Algorithm used for approximation is written below in individual steps:

1. defining the E(x) stiffnesses at interval 〈a, b〉
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2. setting the k = 0 meaning the number of iterations

3. setting the initial deformation ε0(x) and ε0
1(x) at interval 〈a, b〉

4. setting of internal parameters N and Eref

5. calculation of h = b−a
N−1

6. discretizing the definitional interval 〈a, b〉 into N nodes, each node is assigned to

coordinate with transform N
g−→ 〈a, b〉 that is described as g(i) = xi = hi, for i =

1, 2, 3, . . . , N

7. setting k = k + 1

8. calculation of polarization stress in each point of discretization grid using following
formula: σpol(xi) =

(

E(xi) − Eref

)(

ε0(xi) + εk
1(xi)

)

, for i = 1, 2, 3, . . . , N

9. calculation primal deformation using following formula: ε1prim
(xi) =

σpol(xi)

Eref

10. calculation mean of primal deformation ε̄1prim
= 1

N

∑N

i=1 ε1prim
(xi)

11. calculation εk
1(xi) = ε1prim

(xi) − ε̄1prim

12. calculation of the convergence using max norm:
∥

∥εk
1(x)−εk−1

1

∥

∥

max
=

max
x=x1,x2,...,xN

∣

∣εk
1
(x)−εk−1

1

∣

∣

ε0(x)

13. if the condition
∥

∥εk
1(x) − εk−1

1

∥

∥

max
> ζmax is satisfied the algorithm stops and it is

declared as divergence (hence the algorithm has to be launched again with more
appropriate value of parameter Eref)

14. if the condition
∥

∥εk
1(x) − εk−1

1

∥

∥

max
< ζ is not satisfied the algorithm go back to the

step 7., otherwise the algorithm continue with next step as usual

15. calculation of total deformation ε(xi) = ε0(xi) + εk
1(xi), for i = 1, 2, 3, . . . , N

16. calculation of total stress σ(xi) = E(xi)ε(xi), for i = 1, 2, 3, . . . , N

Here we provide information about the concrete values used in this project. To analyse
this method we have chosen the following parameters:

• the stiffness of periodic medium is defined as E(x) = E0 + E1(x), where the func-
tion E0 = 10 is stiffness of matrix and E1(x) is the complement to heterogeneities
stiffness. The function E1(x) is defined as E1(x) = pE0fi(x), where fi(x), i = 1, 2, 3
are functions defined in Section 2.1.1, p = 5, 100, the functions E(x) are plotted for
each case in the Section 3 Results

• the one dimensional rod was discretized at interval 〈−1, 2〉

• the parameter s determining the step of convergence was set to 0.0005

• number of nodes N used for basic cell discretization was set to values N = 64, 256

• setting of initial deformations, in our case ε0(x) = 1 and ε1(x) = 0 are taken into
the algorithm
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Chapter 3

Results

This chapter summarizes information obtained when analysing both meshless methods.
Section 3.1 provides information about the Boundary Point Method and Section 3.2 about
the Fast Fourier Transform Based Method.

3.1 Boundary Point Method

This section, providing information about the BPM, is divided into Section 3.1.1 de-
scribing the approximation of functions and into Section 3.1.2 dealing with deformation
analysis of a one dimensional rod.

3.1.1 Function approximation

This section deals with function approximation that plays the main role in deformation
analysing of one dimensional rod. The function approximation is based on replacement
of linear combination of the basis functions

ϕ(x) =
1√
πH

e−
|x|2

Hh2

as it is described in Section 1.2.2 in detail. The main role in function approximation plays
the parameter H and the number of dicretization points N .

The approximation was tested on three particular functions f1(x), f2(x) and f3(x)
that are described in Section 2.1.1. As a accuracy criterion of approximation the `2 and
maximal norm were used. Thus following Figures 3.1, 3.2 and 3.3 show the accuracy of
approximation for 64, 256 and 1024 discretization nodes respectively.

It is necessary to note that the accuracy increase with the decreasing norm. Focusing
on upper part of figures with `2 norm we can notice that the norm dramatically decreases
with increasing H parameter approximately up to the value 0.4-0.5 regardless the tested
functions f1(x), f2(x) and f3(x). The next increase in the H parameter does not change
the `2 norm significantly however the very slight increase in the norm could be observed.
The only one significant increase can be noticed for f3(x) function discretized on the
investigated interval into 64 nodes. It is caused by rapidly oscillating function values in
combination with insufficient number of discretizing nodes.

The best H parameter for individual functions with regard to number of nodes N is
shown in Figure 3.4 - the values for generation of this graph are provided in Table 3.1.
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Figure 3.1: Norm of functions f1(x), f2(x) and f3(x) vs. H parameter, N = 64

The functions f1(x) and f3(x) have the optimal H parameter in the range 0.4-0.7 whereas
the optimal value for function f3(x) varies between 0.8 and 3.3. It can be said that H
parameter is not so significant for the accuracy of approximation for this function f3(x)
as the norm is kept on similar value.

Figure 3.2: Norm of functions f1(x), f2(x) and f3(x) vs. H parameter, N = 256

While `2 norm provides information about overall approximation of individual func-
tions at the interval the maximal norm provides information about the maximal absolute
difference between the function and its approximation. We can notice that the maximal
norm of functions f1(x) and f3(x) is kept a quite close to value 1 regardless the H pa-
rameter and the number of discretizing nodes N as well. Whereas the curve of maximal
norm of function f2(x) follows the waveform of `2 norm. This phenomenon is caused by
discontinuity of functions f1(x) and f3(x). For those functions the diference of one-sided
limits at the points of discontinuity is just the value 1 that is why the maximal norm is
close the value 1 as the function approximation is continuous and it cannot fit the func-
tion very well at points of discontinuity. On the contrary the function f3(x) is continuous
hence the maximal norm goes to zero.

Figure 3.3: Norm of functions f1(x), f2(x) and f3(x) vs. H parameter, N = 1024

Figure 3.4: Graph of optimal H parameter vs. number of nodes N

Now we can take a look at functions being approximated with their approximations
for best fit H values and different number of discretizing nodes N . For the number of
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number of discretizing nodes N 32 64 128 256 512 768 1024

optimal H parameter for f1(x) 0.5 0.5 0.6 0.6 0.7 0.7 0.7
optimal H parameter for f2(x) 3.3 0.8 3.2 1.0 3.2 3.2 3.2
optimal H parameter for f3(x) 0.3 0.4 0.5 0.5 0.6 0.6 0.6

Table 3.1: Values of optimal H parameter using `2 norm

nodes N = 64 the graph of individual base functions is also provided in the bottom part
of each figure.

Figure 3.5 shows the approximation of function f1(x) for N = 64. It can be noticed
that the function is not properly approximated at the points of discontinuity x = 0 and
x = 1. This imperfection shown at the graph causes the maximal value being close to the
value 1.

Figure 3.6 shows the approximation of function f2(x) for N = 64. It can be seen that
even the small number of discretization points can provide sufficient results of function
approximation. Hence the graph of function approximation is not provided for the greater
number of discretization points as the function and its approximation fit together very
well.

Figure 3.7 shows the approximation of function f3(x) for N = 64 with the base func-
tions. In comparison with the previous graph of function f2(x) we can notice plenty
of imperfections due to character of f3(x) in combination with insufficient number of
discretizing points N .

Following Figures 3.8 and 3.9 show the approximation of function f1(x) for N = 256
and N = 1024 respectively. With the aid of Figure 3.5 we can study the progress of
function approximation with increase number of discretizing points. The approximation
works pretty good except the points of discontinuity. The particular view of that point
is shown at Figure 3.10. The oscillation close to point of discontinuity is called Gibb’s
effect.

Analogically as the three previous figures following Figures 3.11 and 3.12 shows the
approximation of function f3(x) for N = 256 and N = 1024 respectively and Figure 3.13
shows the Gibb’s effect that is significant even with the increasing number of discretizing
points.

Figure 3.5: Approximated function f̄1(x), N = 64
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Figure 3.6: Approximated function f̄2(x), N = 64

Figure 3.7: Approximated function f̄3(x), N = 64

Figure 3.8: Approximated function f̄1(x), N = 256

Figure 3.9: Approximated function f̄1(x), N = 1024

Figure 3.10: Gibb’s effect of function f̄1(x), N = 1024

Figure 3.11: Approximated function f̄3(x), N = 256

Figure 3.12: Approximated function f̄3(x), N = 1024
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3.1.2 Deformation Analysis

This section provides information about one dimensional rod analysis using BPM. One
dimensional problem is principally based on function approximation that is described in
Section 3.1.1. Thus the basic illustration of this method is only shown.

Following Figures 3.14, 3.15 and 3.16 show deformation with various stiffness E(x). All
those graphs were discretized using 64 nodes at interval 〈−1, 2〉, p = 5 and the parameter
H was set to optimal value. Similarly to the problem of function approximation, the
Gibb’s effect can be observed at those figures, especially in Figure 3.14 at values x = −1,
x = 0, x = 1 and x = 2 corresponding to the points of discontinuity.. The deformation
outside that interval is equal to zero due to discretization of ϕ(x) deformation just on this
interval.

It can be noticed that deformation shown in Figure 3.16 does not provide sufficient
accuracy, hence the surveyed interval was discretized using 256 nodes leading to strain
profiles shown in Figure 3.17.

Finally, the BPM method was tested with parameter p = 100 that is provided in Figure
3.18. In comparison with previous Figure 3.17 it can be concluded that the parameter p
does not influence a deformation distribution.
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Figure 3.13: Gibb’s effect of function f̄3(x), N = 1024

Figure 3.14: Graph of stiffness E(x) and deformation ε(x), N = 64, p = 5, H = 0.7

Figure 3.15: Graph of stiffness E(x) and deformation ε(x), N = 64, p = 5, H = 0.6

Figure 3.16: Graph of stiffness E(x) and deformation ε(x), N = 64, p = 5, H = 0.5

Figure 3.17: Graph of stiffness E(x) and deformation ε(x), N = 256, p = 5, H = 0.6

Figure 3.18: Graph of stiffness E(x) and deformation ε(x), N = 256, p = 100, H = 0.6
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3.2 Fast Fourier Transform Based Method

This section provides information about Fast Fourier Transform Based Method. This
method is based on analysing the medium that is made from periodically repeating cell
as stated previously in Section 1.3. The cell is unambiguously described with the stiffness
function E(x) at interval 〈a, b). Without the loss of generality we can assume that the
interval is 〈0, 1). This section will provide information about this method using the
particular basic cell with its p parameter along that interval.

First, we can take a look at the situation when we increase in number of nodes while
the rest of parameters is kept constant. This condition is met in Figure 3.19 that provides
information about number of iterations with regard to number of nodes. The graph is
almost constant (the same trend can be observed for various inputs of E1 stiffness) thus
it means that the number of iteration does not depend on the number of nodes involved.
Hence the number of nodes just increases the deformation accuracy of the medium that
is analysed.

Figure 3.19: Number of iterations vs. number of nodes

Next we can provide some information about the parameter symbolised as Eref . This
parameter is very important for the convergence of the method. The unsuitable value can
cause the slow rate of convergence and so the inefficiency of the method or even divergence
of the method.

Figure 3.20 shows graphs where the number of iterations versus the value
Eref

E0

is shown

for different ratio pmax = E1

E0

. It is necessary to note that all of the graphs were calculate
for particular value of nodes N = 1024. We can notice that the values of Eref that are
close to E0 stiffness cause the inefficiency or even divergence of the method. An increase
in Eref parameter leads to very fast convergence. The optimal behaviour is observed
somewhere between E0 and E1 stiffness. Finally, the next increase in Eref over E1 leads
to the growth in number of iteration thus the method becomes ineffective again.

Figure 3.20: The number of iterations vs the value of Eref/E0

Next we are going to show information about the value of Eref parameter in relation
to E0 and E1 stiffness. It is shown in Figure 3.21 where the vertical axis provides values
of (Eref −E0)/(E1 −E0) meaning that the value 0 represents E0 stiffness and the value 1
represents E1 stiffness. The best fit value Eref is plot against the pmax ratio. In order to
get a better readable graph the horizontal axis is log scaled. The exact values for graph
generation are provided in Table 3.2.
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Figure 3.21: Best fit value of Eref versus the pmax ratio

p = E1/E0 2 5 10 20 50 100 500 1000
(Eref − E0)/(E1 − E0) 0.900 0.575 0.511 0.484 0.469 0.465 0.4609 0.4605

Table 3.2: The determination of Eref with regard to E1 and E0 value

Finally Figure 3.22 shows overall solution using 1024 nodes and concrete values that
are following: E0 = 10, pmax = 5 and the basic cell is set on interval 〈0, 1) as usual. The
top left graph shows both E0 and E1 stiffness of the medium. The top right graph shows
the ε1 deformation. The bottom left graph provide information about stress along the
basic cell. The small deviation from constant function can be suppressed by increasing in
the number of iterations.

Figure 3.22: Overall solution using 1024 nodes
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3.3 Conclusion

Primarily, this section provides a summary of the methods involved and subsequently the
brief discussion on future work.

The analysing of one dimensional rod using Boundary Point Method is mostly based
on accuracy of function approximation with basis function

ϕ(x) =
1√
πH

e−
|x|2

Hh2

.
The most important for approximation is H parameter and the number N of dis-

cretizing nodes. The information about the method can be summarized into following
items:

• the increase in the discretizing nodes N leads to a better approximation

• the optimal value of H is rather complicated, the setting of this parameter mostly
depends on function properties, especially its continuity

• for observed functions, the optimal value of H parameter using `2 norm lies in inter-
val 〈0.4, 3.3〉, the fast varying functions have smaller optimal value of H parameter

• maximal norm is not suitable for discontinuous functions

• the main problem of approximation is called Gibb’s effect causing oscillation of
approximated functions at the points of discontinuity

The Fast Fourier Transform-Based Method convergence is mainly based on the Eref

value and the number of discretizing nodes N and the results about them are summarized
in following items:

• the increase in the discretizing nodes N does not influence the number of iterations,
it just specifies the observed interval while the iterations is kept the same

• the optimal value of Eref lies between E0 and (E0 +E1) value; for the close values of
matrix and heterogeneity stiffness, the optimal Eref lies close to (E0 +E1) stiffness;
for the ratio E0+E1

E0

greater than approximately 5, the optimal value of Eref is close

to value
(

E0 + E1

2

)

Future work dealing with these methods could be focused on following problems:

• the Gibb’s effect caused by function approximation in BPM could be explored and
possibly diminished

• the analytical solution of one dimensional problem using FFT-Based Method could
be obtained

• the methods could be expanded into two dimensional or even into three dimensional
spaces

• the speed of calculation of both methods should be investigated and consequently
improved
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