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Abstract	
	

This	 work	 presents		
a	 computational	 method	 used	 in	 the	
static	analysis	of	cable	structures.	The	
Dynamic	 Relaxation	 Method	 is	
explained	 and	 a	 sample	 design	 is	
solved	 to	 prove	 its	 utility	 for	 non-
linear	 analysis.	 Rapid	 convergence	 of	
less	 than	120	 iterations	was	achieved	
using	 kinetic	 damping.	 Finally,	 small	
numerical	errors	were	obtained	in	the	
final	 comparison	 of	 the	 example	
solved.	
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Introduction	
	

The	 cables,	 as	 structural	
elements,	 are	 known	 for	 their	
excellent	flexibility,	their	zero	bending	
moments	 and,	 strength.	 This	 strength	
enables	 them	 to	 span	 very	 long	
distances	 with	 minimal	 cross-	
sectional	 area	 [8].	The	 cables	become	
excellent	 constructional	 elements	 for	
overarching	 long-span	 capabilities.	
Cabled-truss	 structures	 are	

constructed	 using	 two	 types	 of	
elements:	 (i)	 cables	and	 (ii)	bars.	The	
formers	 are	 able	 to	 exert	 tension	
forces,	 while	 the	 later	 ones	 able	 to	
exert	 both	 tension	 as	 well	 as	
compression	forces.  
 

The	 analysis	 of	 this	 kind	 of	
structures	 is	 complex	 due	 to	 their	
geometrically	nonlinear	behavior.	The	
aims	 of	 this	 work	 are	 to	 review	 The	
Dynamic	 Relaxation	 Method	 as		
a	possible	 	solution	for	the	analysis	of	
these	 kind	 of	 structures.	 And	 finally,	
solve	 a	 numerical	 model	 example	
using	 the	 afore	 mentioned	 method.	
This	 example	 is	 implemented	 and	
tested	 using	 MATLAB	 scripts,	 in	
which,	 the	 linear	 and	 geometric	
stiffness	 are	 considered	 for	 each	
element.		

	
The	first	part	of	the	work	aims	

to	 explain	 the	 main	 philosophy	 of	
Dynamic	 Relaxation	 Method	 (DRM).	
Basic	 theory	 and	 equations	 are	
introduced,	 as	 well	 as,	 initial	 and	
boundary	 conditions.	 After	 that,		
a	 section	 of	 the	 work	 is	 dedicated	 to	
explain	 how	 to	 set	 the	 fictitious	
masses.	Then,	 the	general	 iteration	of	
the	 method	 and	 kinetic	 damping	
technique	 are	 presented.	 Finally,	 the	
second	 part	 of	 the	 work	 is	 dedicated	
to	solved	a	cabled-truss	structure	and	
comparison	is	done	between	DRM	and	
the	 non-linear	 finite	 element	 analysis	
with	Newton-Raphson	 approach	 used	
in	[6].	
	
Dynamic	Relaxation	Method	
	

The	 DRM	 is	 a	 numerical	
method	for	solving	non-linear	analysis	
of	 cable-membrane	 and	 cabled-truss	
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structures.	 This	 numerical	 method	
evaluates	 the	 response	 of	 the	
structure	 from	 the	 loading	 stage	until	
the	 equilibrium	 position	 (form	
finding),	 achieved	 by	 the	 damping	
effects.	 	 Even	 though,	 the	 method	 is	
based	 on	 classical	 dynamics,	 this	
technique	 is	 used	 for	 static	 structural	
analysis.	 It	was	developed	 in	1965	by	
Day	 [2-5]	 for	 the	 analysis	 of	 concrete	
vessels	and	Wood	[10]	has	modified	it	
in	2002.	 	The	DRM	extracts	 the	 static	
solution	 of	 the	 structure	 by	 vibration	
analysis.	 It	 traces	 the	 temporal	
response	 of	 the	 structure	 caused	 by	
the	 excitation	 of	 the	 external	 forces	
until	it	finds	the	steady	state	solution.		

	
The	importance	of	this	method	

is	 related	 to	 the	 computationally	
efficiency	 and	 rapid	 convergence	 of	
the	 algorithm.	 The	 final	 state,	 i.e.	 the	
geometry	that	satisfied	equilibrium	of	
the	 structure,	 is	 the	main	objective	of	
the	 method.	 One	 of	 the	 most	
important	 advantages	 of	 this	
procedure	 is	 that	 no	 assembled	
structural	stiffness	matrix	 is	required.	
Hence,	 it	 is	suitable	 for	 large	complex	
non-linear	problems	[9].		
	

The	 main	 idea	 of	 the	 method	
can	 be	 explained	 with	 an	 analogy	 of		
a	 simple	 mass	 spring	 system.	 In	 the	
mentioned	 system,	 the	 static	 steady	
solution	 after	 an	 excitation,	 is	 found	
when	 the	 structure	 is	 placed	 in		
a	position	where	(i)	the	kinetic	energy	
is	 equal	 to	 zero	 and	 (ii)	 the	 sum	 of	
external	 and	 internal	 forces	 in	 all	
directions	 is	 equal	 to	 zero	 in	 each	
node.	 Finally,	 this	 is	 exactly	what	 the	
method	 aims,	 to	 find	 the	 static	
solution	of	a	loaded	structure.	
	

Basic	theory	
	

The	 method	 is	 a	 direct	
application	 of	 Newton’s	 second		
law	[5]	
	

𝐹 = 𝑀 ∗ 𝑎 = 𝑀 ∗ 𝑣,		 (1)	
	
where,	
	

𝐹 	𝑖𝑠	𝑎	𝑠𝑢𝑚	𝑜𝑓	𝑎𝑙𝑙		𝑓𝑜𝑟𝑐𝑒𝑠	
	𝑖𝑛	𝑡ℎ𝑒	𝑠𝑦𝑠𝑡𝑒𝑚,	

	
𝑀	𝑖𝑠	𝑡ℎ𝑒	𝑚𝑎𝑠𝑠	𝑜𝑓	𝑡ℎ𝑒	𝑠𝑦𝑠𝑡𝑒𝑚,	

	
𝑎	𝑖𝑠	𝑡ℎ𝑒	𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑠𝑦𝑠𝑡𝑒𝑚,		
	
𝑣	𝑖𝑠	𝑎	𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒	𝑜𝑓	𝑡ℎ𝑒	𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦	

	𝑟𝑒𝑠𝑝𝑒𝑐𝑡	𝑡𝑜	𝑡𝑖𝑚𝑒				
	

The	 motion,	 the	 masses,	 and	
even	the	damping	are	all	fictitious.	All	
these	 parameters	 are	 assigned	 in	 a	
way	 that	 shortens	 the	 transient	
response,	so	that	the	static	state	of	the	
structure	 is	 found	 efficiently.	 Mass	 is	
assumed	 to	 be	 concentrated	 at	 the	
joints	 and	 assigned	 in	 each	 degree	 of	
freedom	 to	 improve	 the	path	 through	
the	solution.	The	motion	on	each	node	
is	analyzed	as	 translation.	That	 is,	 the	
motion	 on	 each	 axis1 	is	 calculated	
independently	 from	 each	 other.		
Finally,	 discrete-time	 analysis	 is	 done	
sampling	 uniformly	 at	∆𝑡.	 During	 the	
mentioned	 time	 step	 the	 acceleration	
is	 thus	 considered	 as	 constant,	 i.e.,	 a	
linear	 changed	 of	 velocity	 is		
assumed	[5].	

	
	

																																																								
1	Each	axis	x,	y	and	z.	
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Basic	Equations	
	

Newton’s	 law	 describes	 at	 any	
time	step	∆𝑡	the	out	of	balance	force	in	
𝑥 	coordinate	 direction	 (same	 for	
𝑦	𝑎𝑛𝑑	𝑧 	direction)	 at	 any	 joint	 𝑖.	
Adding	an	additional	viscous	damping	
term	 proportional	 to	 the	 velocity	 of	
the	joint	the	formulation	follows	as	
	

𝑅>?@ = 𝑀>? ∗ 𝑣>?@ + 𝐶>? ∗ 𝑣>?@ ,		 (2)	
	
where,	
	
𝑅>?@ 	𝑖𝑠	𝑎	𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙	𝑓𝑜𝑟𝑐𝑒	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡		
𝑎𝑡	𝑎	𝑗𝑜𝑖𝑛𝑡	𝑖	𝑖𝑛	𝑡ℎ𝑒	𝑥	𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛,	

	
𝑀>?	𝑖𝑠	𝑎	𝑓𝑖𝑐𝑡𝑖𝑡𝑖𝑜𝑢𝑠	𝑚𝑎𝑠𝑠	𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑	𝑡𝑜	

	𝑡ℎ𝑒	𝑗𝑜𝑖𝑛𝑡	𝑖	𝑖𝑛	𝑡ℎ𝑒	𝑥	𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛,	
	
𝐶>?		𝑖𝑠	𝑎	𝑣𝑖𝑠𝑐𝑜𝑢𝑠	𝑑𝑎𝑚𝑝𝑖𝑛𝑔	𝑓𝑎𝑐𝑡𝑜𝑟	

	𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑	𝑡𝑜𝑡ℎ𝑒	𝑗𝑜𝑖𝑛𝑡	𝑖	𝑖𝑛		
𝑡ℎ𝑒	𝑥	𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛,	

	
𝑣>?@ 	, 𝑣>?@ 	𝑎𝑟𝑒	𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛	𝑎𝑛𝑑	𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦	

	𝑎𝑡	𝑡𝑖𝑚𝑒	𝑡	𝑎𝑡	𝑡ℎ𝑒	𝑗𝑜𝑖𝑛𝑡	𝑖	𝑖𝑛		
𝑡ℎ𝑒	𝑥	𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛.	

	
As	 the	 iterative	 process	 goes,	

each	iteration	updates	the	coordinates	
of	 the	 joints	 of	 the	 structure,	 i.e.,	 the	
geometry	 is	 changed.	 Leapgrog	 and	
Velocity	 Verlet	 integration	 are		
used	[11]	as	follows:	the	residuals	are	
calculated	 at	 the	 end	 of	 the	 time	
intervals	 of	 0,∆𝑡,	2∆𝑡	…	 and	 velocities	
are	calculated	at	the	mid	point	of	time	
intervals	 as	∆𝑡 2,	3∆𝑡 2,	5∆𝑡 2…	 The	
final	expression	of	the	velocity	at	each	
node	in	each	direction	is	
	

𝑣>?
@H∆@/J = 𝐴 ∗ 𝑣>?

@L∆MN +	𝐵>? ∗ 𝑅>?@ ,		 (3)	
	

𝐴 =
𝑀>? ∆𝑡 − 𝐶>? 2
𝑀>? ∆𝑡 + 𝐶>? 2 	,	

	

𝐵>? =
1

𝑀>? ∆𝑡 + 𝐶>? 2 .	

	
The	 current	 coordinates	 of	 the	

joint	 𝑖 	at	 the	 time	 𝑡 + ∆𝑡 	in	 the	
𝑥	direction2	can	be	updated	as	follows	
	

𝑥>@H∆@ = 𝑥>@ + ∆𝑡 ∗ 𝑣>?
@H∆MN 	.		 (4)	

	
Once	 the	 current	 coordinates	

are	 determined,	 the	 contribution	 of	
each	 element	 connected	 to	 the	node	𝑖	
is	 summed	with	 the	external	 force,	 to	
obtain	 the	 residual	 force		
at	 time	(𝑡 + ∆𝑡) .	 The	 residuals	 are	
recalculated	as	
	

𝑅>?@H∆@ = 𝐹>? + 𝑇>?U@H∆@V
UWX ,		 (5)	

	
𝑇>?U@H∆@ = 𝑇U@H∆@ ∗

?Y
MZ∆ML?[

MZ∆M

\]
MZ∆M ,		 (6)	

	
𝑇U@H∆@ =

^]_]
\]
` 𝑙U@H∆@ − 𝑙Ua + 𝑇Ua,		 (7)	

	
where,	
	
𝐹>?			𝑖𝑠	𝑎𝑛	𝑎𝑝𝑝𝑙𝑖𝑒𝑑	𝑓𝑜𝑟𝑐𝑒	𝑎𝑡	𝑡ℎ𝑒	𝑗𝑜𝑖𝑛𝑡	𝑖	𝑖𝑛		

𝑡ℎ𝑒	𝑥	𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛,	
	
𝑇>?U@H∆@		𝑖𝑠	𝑎	𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙	𝑓𝑜𝑟𝑐𝑒	𝑜𝑓		
𝑡ℎ𝑒	𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑗	𝑙𝑖𝑛𝑘𝑒𝑑	𝑡𝑜	𝑡ℎ𝑒	𝑗𝑜𝑖𝑛𝑡	𝑖		

𝑖𝑛	𝑡ℎ𝑒	𝑥	𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛,	
	
𝑇U@H∆@	𝑖𝑠	𝑎	𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙	𝑓𝑜𝑟𝑐𝑒	𝑜𝑓	

𝑡ℎ𝑒	𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑗,	
	

𝐸U	𝑖𝑠	𝑎	𝑒𝑙𝑎𝑠𝑡𝑖𝑐	𝑚𝑜𝑑𝑢𝑙𝑢𝑠	𝑜𝑓	
	𝑡ℎ𝑒	𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑗,	

																																																								
2	Also	for	the	y	and	z	direction.	
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𝐴U	𝑖𝑠	𝑎	𝑐𝑟𝑜𝑠𝑠	𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙	𝑎𝑟𝑒𝑎	𝑜𝑓	

	𝑡ℎ𝑒	𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑗,	
	

𝑙Ua		𝑖𝑠	𝑎	𝑖𝑛𝑖𝑡𝑖𝑎𝑙	𝑙𝑒𝑛𝑔ℎ𝑡	𝑜𝑓	𝑡ℎ𝑒		
𝑙𝑖𝑛𝑘𝑖𝑛𝑔	𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑗,	

	
𝑙U@H∆@	𝑖𝑠	𝑡ℎ𝑒	𝑐𝑢𝑟𝑟𝑒𝑛𝑡	𝑙𝑒𝑛𝑔ℎ𝑡	𝑜𝑓		
𝑡ℎ𝑒	𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑗	𝑎𝑡	𝑡ℎ𝑒	𝑡𝑖𝑚𝑒	𝑡 + ∆𝑡,	

	
𝑇Ua	𝑖𝑠	𝑡ℎ𝑒	𝑖𝑛𝑖𝑡𝑖𝑎𝑙	𝑝𝑟𝑒𝑠𝑡𝑟𝑒𝑠𝑠	𝑖𝑛	𝑡ℎ𝑒	

𝑙𝑖𝑛𝑘𝑖𝑛𝑔	𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑗,	
	

𝑚	𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠	𝑡ℎ𝑒	𝑡𝑜𝑡𝑎𝑙	𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠		
𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑	𝑡𝑜	𝑡ℎ𝑒	𝑗𝑜𝑖𝑛𝑡	𝑖,	

	
𝑥d@H∆@ − 𝑥>@H∆@

𝑙U@H∆@
		𝑤𝑖𝑙𝑙	𝑔𝑖𝑣𝑒	𝑡ℎ𝑒		

𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑓𝑜𝑟𝑐𝑒	𝑎𝑡		
𝑗𝑜𝑖𝑛𝑡	𝑖, 𝑤ℎ𝑒𝑟𝑒	𝑡ℎ𝑒	𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑖𝑠		
𝑙𝑖𝑛𝑘𝑖𝑛𝑔	𝑡ℎ𝑒	𝑗𝑜𝑖𝑛𝑡𝑠	𝑘	𝑎𝑛𝑑	𝑖.	

	
Note	 that	 all	 the	 previous	

expressions	 can	 be	 formulated	 for	 y	
and	 z	 directions.	 	 If	 the	 linking	
element	 is	 a	 cable	 and	 the	 internal	
force	 	𝑇V@H∆@ 	is	 less	 than	 zero	 then	
𝑇V@H∆@	must	be	set	equal	to	zero	[9].	

	
Finally,	 the	 stopping	 criteria	 is	

set	up	by	the	residuals	and	the	kinetic	
energy	of	the	structure	
	
𝑈d = 𝑀>U ∗ 𝑣>UJUW ?,g,h

i
>WX ,		 (8)	

	
where,	
	

𝑈d	𝑖𝑠	𝑡ℎ𝑒	𝑘𝑖𝑛𝑒𝑡𝑖𝑐	𝑒𝑛𝑒𝑟𝑔𝑦		
𝑜𝑓	𝑡ℎ𝑒	𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒	

	
𝑛	𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑠	𝑡𝑜	𝑡ℎ𝑒	𝑛𝑢𝑚𝑒𝑟	𝑜𝑓	𝑛𝑜𝑑𝑒𝑠,		
	

𝑀>U	𝑖𝑠	𝑎	𝑚𝑎𝑠𝑠	𝑜𝑓	𝑡ℎ𝑒	𝑗𝑜𝑖𝑛𝑡		𝑖	𝑖𝑛	
	𝑡ℎ𝑒	𝑗	𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛	𝑎𝑛𝑑	

	
𝑣>U	𝑖𝑠	𝑡ℎ𝑒		𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦	𝑜𝑓	𝑡ℎ𝑒	𝑗𝑜𝑖𝑛𝑡	𝑖	𝑖𝑛		

𝑡ℎ𝑒	𝑗	𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛.	

Initial	and	Boundary	Conditions	
	

To	ensure	that	at	the	time	zero	
(i)	the	velocity	is	equal	to	zero		𝑣>?a = 0	
and	 (ii)	 the	 residuals	are	equal	 to	 the	
external	 forces	 applied	𝑅>?a = 𝐹>?	,	 the	
initial	 velocity	 at	 the	 time	∆𝑡/2		must	
be	calculated	as	
	

𝑣>?
∆@/J = 	 ∆@

Jk[l
∗ 𝐹>? .		 (9)	

	
Boundary	 conditions	 are	

imposed	assigning	large	masses	to	the	
fixed	 joints,	 in	 the	 direction	 on	 the	
degree	 of	 freedom	 of	 interest,	 as	
follows	
	

𝑀>i = 10mn,	
where,	
	
𝑀>i	𝑖𝑠	𝑡ℎ𝑒	𝑚𝑎𝑠𝑠	𝑜𝑓	𝑡ℎ𝑒	𝑗𝑜𝑖𝑛𝑡	𝑖	𝑖𝑛	𝑡ℎ𝑒		

𝑛	𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛.	
	

Also,	it	is	possible	to	set	to	zero	
the	 residuals	 forces,	 velocities	 or	
displacements	 of	 the	 fixed	 degrees	 of	
freedom	of	the	particular	joint	𝑖	[9].	

Fictitious	Masses	
	

It	 was	 shown	 by	 Barnes	 [1]	
that,	 for	 any	 time	 step	 ∆𝑡 ,	 the	
convergence	 is	 ensured	 using	 the	
following	 equation	 for	 the	 fictitious	
masses	
	

𝑀>? =
∆@
J
∗ 𝑆>? ,		 (10)	

	
𝑆V = ^p∗_p

\p`
+ qpMZ∆M

\pMZ∆M
,		 (11)	
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where,	
	
𝑆>?		𝑖𝑠	𝑡ℎ𝑒	𝑙𝑎𝑟𝑔𝑒𝑠𝑡	𝑑𝑖𝑟𝑒𝑐𝑡	𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠	𝑜𝑓	𝑎𝑛	

	𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑙𝑖𝑛𝑘𝑒𝑑	𝑡𝑜	𝑡ℎ𝑒	𝑗𝑜𝑖𝑛𝑡	𝑖	
	𝑖𝑛	𝑡ℎ𝑒	𝑥	𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛	𝑎𝑛𝑑		

	
𝑆V	𝑖𝑠	𝑡ℎ𝑒		𝑒𝑙𝑎𝑠𝑡𝑖𝑐	𝑎𝑛𝑑	𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐		
𝑠𝑡𝑖𝑓𝑓𝑛𝑒𝑠𝑠	𝑜𝑓	𝑡ℎ𝑒	𝑙𝑖𝑛𝑘𝑖𝑛𝑔	𝑐𝑎𝑏𝑙𝑒	

	𝑜𝑟	𝑡𝑟𝑢𝑠𝑠	𝑒𝑙𝑒𝑚𝑒𝑛𝑡	𝑚.	

General	Iteration	
	

The	 general	 procedure	 can	 be	
shown	 in	 Figure	 1	 reproduced		
from	[9]	
	

	
Figure	1:	General	Procedure	

Kinetic	Damping	
	

The	 kinetic	 damping	 is	 an	
alternative	 to	 viscous	 damping.	 The	
whole	 structure	 is	 analyzed	 while	
undamped	 oscillations	 are	 done.	 The	
objective	 is	 to	 measure	 the	 kinetic	
energy	 in	 each	 iteration	 and	 look	 for		
a	 peak	 of	 energy.	 When	 an	 energy	
peak	is	detected	the	static	equilibrium	
condition	has	just	been	passed.			Then,	
all	the	velocities	are	reset	to	zero	and	
the	 current	 coordinates	 at	 the	 time	

𝑡 + ∆𝑡 2 	of	 the	nodes	 are	 set	 to	 the	
position	 in	 𝑡 − ∆𝑡 2 	to	 achieve	
convergence	 [9].	 Further	 iterations	
must	 be	done	 through	 further	 falls	 of	
the	 kinetic	 energy,	 till	 stopping	
criteria	 is	 fulfilled.	Then,	 the	equation	
(3)	is	changed	as	
	

	𝑣>?
@H∆@/J = 𝐴 ∗ 𝑣>?

@L∆MN +	𝐵>? ∗ 𝑅>?@ ,	(12)	
	
where,	
	

𝐴 = 1,	
	

𝐵>? =
∆𝑡
𝑀>?

.	

	
To	 return	 to	 the	position	of	an	

equilibrium,	 the	 coordinates3	must	 be	
updated	as	follows	
	

𝑥>
@L∆@/J = 𝑥>

@H∆@/J −
3∆𝑡 ∗ 𝑣>?

@H∆@J

2
+
∆𝑡J𝑅>?@

2𝑀>?
	.	

(13)	
	

When	 restarting	 the	 analysis,	
the	velocities	 in	 the	 fist	 time	 step	are	
calculated	as	
	

𝑣>?
∆M
N = 	 ∆@

Jk[l
∗ 𝑅>?@∗,		 (14)	

	
where,	

					
𝑅>?@∗		𝑎𝑟𝑒	𝑡ℎ𝑒	𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠		𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑		

𝑓𝑟𝑜𝑚	𝑡ℎ𝑒	𝑥𝑖
𝑡−∆𝑡/2	𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠.			

Control	Criteria	
	

The	 Dynamic	 Relaxation	
Method	has	two	main	control	criteria:	
(i)	kinetic	energy	level	and	(ii)	the	size	

																																																								
3	In	x,	y	and	z	direction.	
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of	 the	 residuals,	 i.e.,	 the	 difference	
between	 applied	 external	 forces	 and	
internal	 reaction	 forces.	 	 With	 the	
mentioned	 criteria,	 it	 can	 be	
guaranteed	 that	 the	 solution	 found	
corresponds	 to	 the	 steady	 static	
solution.	

Example	
	

The	 example	 solved	 in	 this	
work	 is	 taken	 from	 the	 optimized	
cable	 truss	 structure	 from	 GS10	
published	 in	 [6].	 Figure	 2	 shows	 the	
topology	 of	 the	 cable-truss	 structure	
(dash	line	represents	a	cable)	and	the	
load	 condition.	 We	 will	 analyze	 the	
response	 of	 the	 structure	 in	 two	
different	 cases:	 (i)	with	prestress	and	
(ii)	 without	 prestress.	 In	 both	 cases,	
we	 will	 make	 the	 comparison	 of	
stresses	and	deflections	between	DRM	
and	 the	 non-linear	 finite	 element	
analysis	 with	 Newton-Raphson	
approach	 used	 in	 [6].	 Table	 1	 shows	
the	 materials	 and	 properties	 used.	
Table	 2	 shows	 the	 cross-sectioned	
areas	of	each	element.		
	

	
Figure	2:	Optimized	cabled-truss	obtained	from	
GS10	
	
Table	1:	Geometric	and	material	parameters	

Parameter	 Value	
Structural	Height	 𝑳𝒚 ; 𝒔𝒍 = 𝟏	 9.144	m	
Loading	force	(𝑭𝒆)	 448.2	kN	

Initial	cable	strain	(𝒊𝒔𝒕𝒓𝒏)	 8x10-4	
Admissible	areas	(𝑨𝒂𝒅)	 From	645.16	to	

19359.00	with	
increment	
645.16	mm2	

Elasticity	modulus	(𝑬𝑨𝒍𝒂 )	 6.895x104	MPa	
Material	density	(𝝆𝒂𝒍)	 2.768	g/cm3	
Tensile	Modulus	(𝝉𝒄𝒇𝒃 )	 20.685x104MPa	

Material	density	(𝝆𝒄𝒇)	 0.4613	g/cm3	

Max.	Allowable	stress	(𝝈𝒋𝒎𝒂𝒙)	 1.724x102MPa	
Max.	Allowable	displacement	
(𝒒𝒘𝒎𝒂𝒙)	

50.8	mm	

a	Aluminum	
b	Carbon	–	nanotube	fibers	

	
	

	
Table	2:	Areas	obtained	for	the	optimized	
solution	using	S10	

Ai	(mm2)	 Cable-truss	
A1	 13548.36	
A2	 10322.56	
A3	 12258.04	
A4	 12903.20	
A5	 13548.36	
A6	 2580.64	
A7	 18064.48	
	

The	 load	 condition	 is	 a	 force	
	𝐹� = 448.2	𝑘𝑁	applied	on	the	nodes	3	
and	5		as	depicted	in	Figure	2.	

Results	and	Discussion	
	
Case	(i)	Structure	with	prestress	
	

The	 typical	 behavior	 of	 the	
DRM	 used	 with	 kinetic	 damping	 is	
obtained.	 It	 is	 shown	 in	 Figure	 3	 and	
Figure	4	with	 the	 logarithmic	scale.	 It	
is	 appreciable	 one	 large	 peak	 of	
energy,	 related	 with	 high	 frequency	
modes	caused	by	 large	out-of-balance	
forces	 and,	 a	 fast	 convergence	 with	
slight	and	rapid	energy	peaks	near	the	
equilibrium	state.			
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Figure	3:	Kinetic	Damping	

	
Figure	4	Kinetic	Damping	(Logarithmic	Scale)	

The	 final	 displacements	 of	 the		
nodes	 3,	 4	 and	 5	 are	 depicted	 in	
Figures	5	and	6.		Numerical	values	are	
shown	in	Table	3.	All	of	the	values		are	
inside	 the	 allowable	 limits.	 The	 signs	
follow	 the	 convention:	 (i)	 to	 the	 right		
direction	is	positive	(+)	and	(ii)	to	top	
direction	is	positive	(+).	
	

	
Figure	5:	Displacement	in	the	x	direction	

	

	
Figure	6:	Displacement	in	the	y	direction	

	
Table	3:	Final	displacements	per	node	

Node	 x		(mm)	 y	(mm)	
1	 0	 0	
2	 0	 0	
3	 -10.6386	 -2.5497	
4	 5.1313	 -12.5353	
5	 -16.4674	 -46.4213	
	

As	 nodes	 1	 and	 2	 are	 fixed	 in	
the	 x	 and	 y	 direction,	 no	
displacements	were	expected.	
	

The	forces	and	stresses	of	each	
member	are	shown	in	Figures	6	and	7.	
Tension	in	the	member	is	positive	(+).	
Cable	 member	 3	 is	 in	 tension	 as	
expected.	Numerical	values	are	shown	
in	the	Tables	4	and	5.	

	
Figure	7:	Forces	in	each	Member	
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Figure	8:	Stresses	in	each	Member	

Table	4:	Forces	in	each	member	

	
	

	

	

	

	

Table	5:	Stresses	in	each	member	

Member	 Stress	(MPa)	
1	 -80.2172	
2	 -43.1575	
3	 74.0428	
4	 -27.8825	
5	 46.6431	
6	 -75.1936	
7	 38.7575	

	
Finally,	 in	 Table	 6	 we	 see	 the	

comparison	 between	 DRM	 and	 the	
non-linear	finite	element	analysis	with	
Newton-Raphson	 approach	 used		
in	[6].	
	
Table	6:	Comparison	of	Stresses	

Stresses	(MPa)	

Member	 ANSYS	
Dynamic	
Relaxation	
Method	

Ect	
(%)	

1	 -80.5650	 -80.2172	 0.4336	
2	 -43.0920	 -43.1575	 0.1517	
3	 74.6110	 74.0428	 0.7674	
4	 -26.6260	 -27.8825	 4.5063	

5	 46.4310	 46.6431	 0.4546	
6	 -78.2320	 -75.1936	 4.0408	
7	 38.0720	 38.7575	 1.7687	

	
Only	 in	 members	 4	 and	 6	 it	 can	 be	
seen	an	error	near	4.50%	
	
Case	(ii)	Structure	without	
prestress	
	

The	 typical	 behavior	 of	 the	
DRM	 used	 with	 kinetic	 damping	 is	
obtained.	 It	 is	 shown	 in	 Figure	 9	 and	
Figure	 10;	 note	 the	 logarithmic	 scale.	
Also,	 it	 is	 appreciable	 one	 large	 peak	
of	 energy,	 and	 rapid	 energy	 peaks	
near	the	equilibrium	state.	
	
	

	
Figure	9:	Kinetic	Damping	

	
Figure	10:	Kinetic	Damping	(Logarithmic	Scale)	
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1	 -1.0868	x103	
2	 -0.4455	x103	
3	 0.9076	x103	
4	 -0.3598	x103	
5	 0.6319	x103	
6	 -0.1940	x103	
7	 0.7001	x103	
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The	 final	 displacements	 of	 the		
nodes	 3,	 4	 and	 5	 are	 depicted	 in	
Figures	 11	 and	12.	 	Numerical	 values	
are	shown	in	Table	6.	All	of	the	values		
are	 inside	 the	 allowable	 limits.	 The	
signs	 follow	the	convention:	 (i)	 to	 the		
right	 	direction	 is	positive	(+)	and	(ii)	
to	the	top	direction	is	positive	(+).	
	

	
Figure	11:	Displacement	in	the	x	direction	

	
Figure	12	Displacement	in	the	y	direction	

	
Table	7:	Final	displacements	per	node	

Node	 x		(mm)	 y	(mm)	
1	 0	 0	
2	 0	 0	
3	 -9.3190	 -14.4649	
4	 6.1227	 -17.4824	
5	 -15.1160	 -51.0110	
	

The	forces	and	stresses	of	each	
member	are	shown	 in	Figures	13	and	
14.	Tension	in	the	member	is	positive	
(+).	 Cable	 member	 3	 is	 in	 tension	 as	
expected.	Numerical	values	are	shown	
in	the	Tables	7	and	8.	
	

	
Figure	13:	Forces	in	each	member	

	
Figure	14:	Stresses	in	each	member	

	

Table	8:	Forces	in	each	member	

Member	 Force	(kN)	
1	 -950.8715	
2	 -445.5277	
3	 715.5994	
4	 -551.8836	
5	 631.9612	
6	 -58.4631	
7	 836.2706	
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Table	9:	Stresses	in	each	member	

Member	 Stress	(MPa)	
1	 -70.1835	
2	 -43.1606	
3	 58.3780	
4	 -42.7711	
5	 46.6449	
6	 -22.6545	
7	 46.2946	

	
Comparing	case	(i)	and	(ii),	it	is	

appreciable	 that	 the	 use	 of	 prestress	
made	 a	 redistribution	 of	 forces	 and	
stresses	in	the	whole	structure.	This	is	
even	 more	 evident	 looking	 into	 the	
displacements	 between	 these	 two	
cases.	
	

Finally,	 the	 comparison	 of	
displacements	 between	 Dynamic	
Relaxation	 Method	 and	 the	 ones	
obtained	 in	 [6]	without	prestress,	 are	
depicted	in	Table	10	and	11.	
	
Table	10:	Comparison	of	displacements	in	
horizontal	direction		

Displacement	x	(mm)	

Node	 ANSYS	
Dynamic	
Relaxation	
Method	

Ect	(%)	

3	 -9.2724	 -9.3190	 0.5001	
4	 6.1077	 6.1227	 0.2450	
5	 -14.9874	 -15.1160	 0.8508	

	
Table	11:	Comparison	of	displacements		in	
vertical		direction	

Displacement	y	(mm)	

Node	 ANSYS	
Dynamic	
Relaxation	
Method	

	 Ect	(%)	

3	 -14.3981	 -14.4649	 	 0.4618	

4	 -17.3621	 -17.4824	 	 0.6881	
5	 -50.7732	 -51.0110	 	 0.4662	

	
The	 numerical	 error	 is	 less	

than	0.90%,	validating	the	results	and	
the	methodology	used.		

Conclusions	
	

In	 this	 work,	 the	 DRM	 was	
implemented	 and	 tested.	 The	method	
reviewed	 is	 based	 on	 the	 application	
of	 Newton’s	 second	 law	 and,		
a	 fictitious	 mass-damping	 model.	
Kinetic	 damping	was	 used	 to	 achieve		
a	 stable	 and	 rapid	 convergence,	 with	
less	 than	 120	 iterations	 in	 each	 case	
studied.			
	

Finally,	 the	 method	 was	
evaluated	 by	 a	 typical	 example,	 with	
and	without	 prestress.	 The	numerical	
error	 obtained	 in	 the	 first	 case,	 was	
negligible	 in	 comparison	 to	 the	 non-
linear	finite	element	analysis	using	the	
Newton-Raphson	 approach	 proposed	
in	 [6].	 The	 Dynamic	 Relaxation	
Method,	 had	 only	 and	 error	 near	
4.50%	 in	 two	 of	 the	 members	 of	 the	
structure.	 On	 the	 other	 hand,	 in	 the	
second	 case,	 the	 numerical	 error	was	
less	 than	 0.90%,	 proving	 the	 validity	
and	 applicability	 of	 Dynamic	
Relaxation	 Method	 to	 cabled-truss	
structures.	
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