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Abstract

This dissertation is devoted to an FFT-based homogenization scheme, a numer-
ical method for the evaluation of the effective (homogenized) matrix of periodic
linear heterogeneous materials. A problem is explained and demonstrated on a
scalar problem modeling electric conduction, heat conduction, or diffusion.

Originally, FFT-based homogenization, that was proposed by Moulinec and
Suquet in [32], is a numerical algorithm derived from Lippmann-Schwinger equa-
tion. Its equivalence to a corresponding weak formulation is shown; it eliminates
a reference homogeneous material, a parameter of Lippmann-Schwinger equation.
Next, Galerkin approximation with numerical integration is introduced to produce
Moulinec-Suquet algorithm; trigonometric polynomials are taken as the trial space
[47]. Convergence of approximate solutions to the solution of weak formulation
is provided using a standard finite element approach together with approximation
properties of trigonometric polynomials stated in [43].

Then, the solution of assembled non-symmetric linear system by Conjugate gra-
dients, proposed by Zeman et al. in [57], is clarified.

Next, we study arbitrary accurate guaranteed bounds of homogenized matrix
introduced by Dvořák in [12, 13] for a scalar problem and later independently by
Wieçkowski in [55] for linear elasticity. This approach is also applicable for FFT-
based homogenization. A general technique is proposed to allow for efficient calcu-
lation by FFT algorithm and to maintain the upper-lower bound structure. Dual
formulation is employed to obtain lower bounds — for odd number of discretiza-
tion points, the solution of dual formulation can be avoided. A general number of
discretization points leads to a more complicated theory in both discretization and
numerical treatment.

Finally, applications of FFT-based homogenization to real-world problems are
demonstrated. The method is used to calculate homogenized matrix for cement
paste, gypsum and aluminum alloy with local data obtained from nanoindentation.
Next, it is employed as a part of two-step homogenization for a highly porous alu-
minium foam.

Keywords: homogenization, Fourier transform, FFT, discretization, finite ele-
ment method, convergence, guaranteed bounds
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Abstrakt

Tato práce je věnována homogenizačńı metodě založené na FFT, metodě poč́ıta-
j́ıćı efektivńı (homogenizovanou) matici periodického heterogenńıho materiálu. Pro-
blematika je vysvětlena a demonstrována na skalárńım problému modeluj́ıćım elek-
trickou vodivost, tepelnou vodivost nebo difúzi.

Původně byla FFT homogenizace založena na řešeńı Lippmannovy-Schwingerovy
rovnice a z něho navrženého numerického algoritmu podle Moulineca a Suqueta v
[32].

Ukazujeme, že Lippmannova-Schwingerova rovnice je ekvivalentńı př́ıslušné slabé
formulaci; to umožňuje eliminovat referenčńı homogenńı materiálovou hodnotu,
parametr rovnice. Dále jsme navrhli Galerkinovskou aproximaci s numerickou inte-
graćı tak, aby produkovala Moulinec̊uv-Suquet̊uv algoritmus; trigonometrické poly-
nomy jsou použity jako konečně dimenzionálńı prostor [47]. Dokazujeme konvergenci
přibližných řešeńı k řešeńı slabé formulace pomoćı klasického př́ıstupu z konečných
prvk̊u s využit́ım odhad̊u podle [43].

Dále je vysvětleno řešeńı vzniklé nesymetrické soustavy lineárńıch rovnic pomoćı
sdružených gradient̊u, které bylo navrženo Zemanem et al. v [57].

Věnujeme se libovolně přesným zaručeným meźım efektivńı matice, jak byly
navrženy Dvořákem v [12, 13] pro skalárńı problém a nezávisle Wieçkowskim v [55]
pro lineárńı elasticitu. Tato metoda je využitelná i pro homogenizaci založenou na
FFT. Navrhujeme obecnou metodu pro výpočet meźı tak, aby bylo možno využ́ıt
efektivńıho algoritmu FFT a aby byla zachována struktura dolńıch a horńıch meźı.
Duálńı formulace problému je využita pro dolńı mez — ukazujeme, že pro lichý
počet diskretizačńıch bod̊u se lze vyhnout řešeńı duálńı ǔlohy.

Nakonec je ukázána aplikace FFT homogenizace na lineárńı elasticitu. Metoda je
využita k poč́ıtáńı efektivńı matice pro cementovou pastu, sádru a hlińıkovou slitinu
s lokálńımi daty źıskanými z nanoindentace. Metoda je dále využita v dvoustupňové
homogenizaci pro výpočet efektivńıch materiálových parametr̊u vysoce porézńı hlińı-
kové pěny.

Kĺıčová slova: homogenizace, Fourierova transformace, FFT, diskretizace, me-
toda konečných prvk̊u, konvergence, zaručené meze
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“The mathematical facts worthy of being studied
are those which, by their analogy with other facts,
are capable of leading us to the knowledge of a
physical law.” (Henri Poincare)

“Empirical evidence can never establish mathematical
existence — nor can the mathematician’s demand for
existence be dismissed by the physicist as useless rigor.
Only a mathematical existence proof can ensure that
the mathematical description of a physical phenomenon
is meaningful.” (Richard Courant)



page vi

Content

I Integrating text 1

1 Motivation 1

2 State of the art 2
2.1 Variational formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Formulation based on the Lippmann-Schwinger equation . . . . . . . 5
2.3 Guaranteed bounds on homogenized matrix . . . . . . . . . . . . . . 7

3 Methodology 8

4 Results 8
4.1 Weak formulation and Lippmann-Schwinger equation . . . . . . . . . 9
4.2 Discretization via trigonometric polynomials . . . . . . . . . . . . . . 10

4.2.1 Trigonometric polynomials . . . . . . . . . . . . . . . . . . . . 10
4.2.2 Galerkin approximation with numerical integration . . . . . . 13

4.3 Guaranteed bounds by FFT-based homogenization . . . . . . . . . . 14
4.3.1 Connection of primal and dual formulation . . . . . . . . . . . 15
4.3.2 Calculation of bounds . . . . . . . . . . . . . . . . . . . . . . 15

4.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.4.1 Acceleration by Conjugate gradients . . . . . . . . . . . . . . 17
4.4.2 Guaranteed bounds . . . . . . . . . . . . . . . . . . . . . . . . 19

4.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Conclusions 20

6 References 21

7 List of thesis papers 26

II Paper 1 27

III Paper 2 35

IV Paper 3 44

V Paper 4 53

VI Paper 5 91

VII Paper 6 120



1 MOTIVATION page 1

Part I

Integrating text

1 Motivation

In the recent decades, the computational mechanics — together with its tremendous
development, increase in computer performance and hardware availability — has
delivered extensive societal benefits. Simulations, replaced with computer models,
have dramatically reduced the cost of the engineering design process, reduced design
cycle times, and have made it possible to address scientific and engineering questions
beyond the capabilities of experiments, [39, 2].

Nevertheless, the extensive engineering problems and their modeling, treated all
in one with its complexity, promptly reach the limit of accessible computer capacity,
particularly for heterogeneous materials with fully resolved microstructure. For ex-
ample, concrete — the basic construction material in civil engineering structures —
looks and behaves as a homogeneous substance at a macroscale, the scale of design
object. However, a closer investigation into microscale discovers aggregates, sand,
and binder; under another closer investigation, they are still heterogeneous. Concur-
rently, the heterogeneities are crucial, for example, in crack propagation problems;
thus the design difficulty lies in a detail that is required. This justifies the develop-
ment of new effective and reliable computational models, methods, and algorithms
dealing with heterogeneities.

This work is dedicated to numerical homogenization of linear periodic mate-
rials or to the problem of finding effective (homogenized) material properties —
electric conductivity, heat conductivity, or stiffness — by taking into account the
heterogeneities at microscale. It consists of the calculation of microscale fields sat-
isfying linear elliptic partial differential equation. Contrary to well-established h,
p, hp-versions of Finite Element Method (FEM) based on weak formulation, see
e.g. [1, 12, 13, 55, 58], they can be found by a method based on the Fourier Trans-
form — Fast Fourier Transform homogenization (FFTH) — introduced in the form
of numerical algorithm in [32]. The latter method is based on the solution of the
Lippmann-Schwinger type of integral equation incorporating the Green function of
an auxiliary homogeneous problem with a reference material property, the parameter
of the method.

The method has become, next to analytical homogenizations [31, 8, 16] and al-
ready mentioned FEM, broadly used by engineers — especially for its simplicity in
implementation, efficiency resulting from the application of the FFT algorithm, and
direct usage of material geometry defined as pixel or voxel images. Although it is
a rather special topic of interest, it has a wide area of applications; among others,
recent relevant examples are listed: evaluation of effective properties for real struc-
tures [45, 54, 48] with data from nanoindentation [37, 38], microstructure modeling
with visco-elastic [17, 53] and visco-plastic [21, 23, 44] material, conductivity with
imperfect interfaces [20], micromechanical behavior of polycrystals [22, 21, 44], per-
meability of porous medium [30], non-local fracture (damage) models [24, 25], and
microstructure reconstruction with Wang tilings [36].

In addition, for the last two decades, FFTH method has gone through extensive
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investigation. The convergence of numerical scheme, based on the Neumann expan-
sion, has been proposed in [33]. The accelerated schemes have emerged in [15, 49].
The algorithm has been extended for voided materials by augmented Lagrangians
in [27, 28] and by application of the dual formulation in [29]; some of the methods
were compared in [34]. Recently, the discretization of Lippmann-Schwinger equation,
based on piecewise constant basis functions, with convergence results was suggested
in [6, 7]. Another approach is based on approximation of the Green function with a
FEM solution in [56].

Nevertheless, no rigorous theory — providing the resolvability of Lippmann-
Schwinger equation for various parameters, comparing the Lippmann-Schwinger
equation to variational formulation, establishing discretization and convergence of
approximate solutions to the continuous one — has been published. It is the role of
this work allowing the additional research within the standard mathematical instru-
ments and contributing to reliability and confidence in engineering design, especially
with guaranteed bounds of homogenized material properties.

Note that this dissertation is based on the compilation of six papers [57, 50, 37,
38, 51, 52] that are attached as Parts II–VII in the chronological order, see also
Section 7 List of thesis paper. Paper 1 has been published in ISI journal, then
Paper 2 was published as a peer-reviewed conference paper. Paper 3 is accepted for
publication, while Paper 4 is in peer review stage. Finally, Papers 5 and 6, that are
fundamental for the thesis, are to be sent for publication. Since each paper needs
to be self-contained, the dissertation may contain repetitions.

2 State of the art

This section briefly overviews the state of the art of numerical homogenization of
linear elliptic partial differential equation, namely the evaluation of homogenized
matrix by FFT-based homogenization method. A scalar problem of electric conduc-
tivity, equally to diffusion or heat transfer, is chosen as a model case.

The variational formulation of homogenization problem is described in Sec-
tion 2.1, followed by an alternative formulation with Lippmann-Schwinger equation
including Moulinec-Suquet numerical solution [32] in Section 2.2 and the theory for
guaranteed bounds [12, 13] in Section 2.3 are summarized.

For the later use in this dissertation, the following notation is introduced. Note
that some articles can differ in some details, nevertheless, the most recent two [51, 52]
should be consistent.

The letter d denotes the dimension of the problem, assuming d = 2, 3; the Greek
letters α, β are reserved to indices relating dimension, thus ranging 1, . . . , d (the
range is for simplicity often omitted).

The sets Cd and Rd are spaces of complex and real vectors with canonical basis
{ǫα} and are equipped with the Lebesgue measure dx. We denote by |Ω|d the d-
dimensional Lebesgue measure of a measurable set Ω ⊂ Rd. The norm ‖ · ‖2 on Cd

is induced by scalar product
(
u, v

)Cd =
∑

α uαvα for u, v ∈ Cd.

The set Rd×d
spd denotes the space of symmetric positive definite matrices of size

d× d with norm ‖C‖2 = maxx∈Rd,‖x‖=1 ‖Cx‖2 that equals to a largest eigenvalue.
A function f : Rd 7→ R is Y -periodic (with period Y ∈ Rd) if f(x + Y ⊙

k) = f(x) for arbitrary x ∈ Rd,k ∈ Zd, where operator ⊙ denotes element-wise
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multiplication. The Y -periodic functions are sufficient to define only on a periodic
unit cell (PUC), set to Y := (−Yα, Yα)

d
α=1 ⊂ Rd. Two integrable functions which are

almost everywhere equal are identified. The mean value of function v ∈ L2
per(Y ;Rd)

over periodic unit cell Y is denoted as 〈v〉 := 1
|Y|d

∫
Y
v(x) dx ∈ Rd.

We define space Cper(Y ;X) of continuous Y -periodic functions Rd 7→ X, where X
is some finite dimensional vector space, e.g. C, R, Cd, or Rd. Vector valued functions,
for X = Cd or X = Rd, are denoted with small bold letters, e.g. v with components
vα.

The spaces L2
per(Y ;X) or L∞

per(Y ;Rd×d
spd ) are composed of functions v : Rd 7→ X or

A : Rd 7→ Rd×d
spd having Y -periodic, measurable components vα or Aαβ and having

finite norm, i.e. ‖v‖L2
per(Y ;X) <∞ or ‖A‖L∞

per(Y ;Rd×d
spd

) <∞; the first norm is generated

by scalar product
(
u, v

)
L2
per(Y ;X) = 1

|Y|d

∫
Y

(
u(x), v(x)

)X dx while the second norm is

defined as ‖A‖L∞

per(Y ;Rd×d
spd

) = esssupx∈Y ‖A(x)‖2. If there is no ambiguity, both the

norms and the scalar products are denoted with subscript L2
per or L

∞
per rather than

L2
per(Y ;X) or L∞

per(Y ;Rd×d
spd ).

Next, we introduce the Helmholtz decomposition L2
per(Y ;Rd) = U ⊕⊥ E ⊕⊥ J

to the spaces of constant, curl-free with zero mean, and divergence free with zero
mean fields

U = {v ∈ L2
per(Y ;Rd) : v(x) = const.}, (2.1a)

E = {v ∈ L2
per(Y ;Rd) : ∇× v = 0, 〈v〉 = 0}, (2.1b)

J = {v ∈ L2
per(Y ;Rd) : ∇ · v = 0, 〈v〉 = 0}, (2.1c)

where differential operator ∇ = ( ∂
∂xα

)dα=1 is meant in the distributional sense. For

dimension d 6= 3, the curl-free condition in (2.1b) means (∇×v)αβ := ∂vα
∂xβ

−
∂vβ
∂xα

= 0.

Since space U consists of constant functions, we identify the space U with Rd; this
validates the operations such as E + v ∈ L2

per(Y ;Rd) for E ∈ Rd, v ∈ L2
per(Y ;Rd)

and CJ ∈ Rd for C ∈ Rd×d and J ∈ U .

2.1 Variational formulation

This section begins with a homogenization problem defining a homogenized or effec-
tive matrix for a scalar linear elliptic problem, particularly the problem of electric
conductivity.

Here and in the sequel, A ∈ L∞
per(Y ,Rd×d

spd ) denotes symmetric1 and uniformly
elliptic2 material coefficients of electric conductivity, e ∈ E and  ∈ J pertur-
bation of electric field and electric current, and E,J ∈ U are their macroscopic
counterparts.

Definition 2.1 (Homogenization problem). The primal and dual homogenization
problem states: find homogenized matrix Aeff ∈ Rd×d satisfying for arbitrary fixed

1For almost all x ∈ Y, equality A(x) = A(x)T holds.
2There exists positive constant cA > 0 such that for almost all x ∈ Y and all nonzero u ∈ Rd,

inequality cA‖u‖
2
2 ≤

(
A(x)u,u

)Rd
holds.
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macroscopic quantities E ∈ Rd

(
AeffE,E

)Rd = inf
e∈E

(
A(E + e),E + e

)
L2
per

(2.2a)
(
A−1

eff J ,J
)Rd = inf

∈J

(
A−1(J + ),J + 

)
L2
per

(2.2b)

Remark 2.2. For particular macroscopic load E, a minimizer in previous defini-
tion exists and is unique according to the direct method in the calculus of variation
since material coefficients A are bounded and uniformly elliptic, cf Rem. 2.5. Next,
homogenized matrix Aeff coincide in both formulations, is symmetric and positive
definite, see e.g. [3, 11].

Remark 2.3. Space E contains curl-free functions — such function e possess po-
tential U such that ∇U = e. The reformulation of homogenization problem with
potentials avoids a trouble with constructing finite element spaces with curl-free basis
functions, however, FFT-based FEM naturally overcome this difficulty by employing
a certain projection operators, see Lem. 4.2.

Remark 2.4. The previous homogenization formulas in Eq. (2.2) are obtained from
an asymptotic behavior as ε → 0 of a linear elliptic problem: for ε > 0, find uε ∈
H1

0 (Ω) := {v ∈ L2(Ω), v|∂Ω = 0, ∂vα
∂xα

∈ L2(Ω)} such that3

(
Aε∇uε,∇v

)
L2(Ω)

= F (v), ∀v ∈ H1
0 (Ω) (2.3)

where Ω is a bounded open set in Rd with the Lipschitz boundary ∂Ω. Oscillating ma-
terial coefficients are defined as Aε(x) := A

(
x
ε

)
for prescribed material coefficients

A and linear functional F contains boundary conditions and source terms.
Since the material coefficients are uniformly elliptic and bounded, the unique

solutions uε of weak formulation (2.3) exists, are uniformly bounded for ε, and thus
weakly converges in H1

0 (Ω) to some function ueff ∈ H1
0 (Ω) representing the averaged

field of oscillating solutions uε.
Various methods, see e.g. the notion of H-convergence in [11, 46] or formal

method of asymptotic expansion [3], reveal that weak limit ueff satisfies variational
formulation

(
Aeff∇ueff ,∇v

)
L2(Ω)

= F (v), ∀v ∈ H1
0 (Ω) (2.4)

with homogeneous material coefficients Aeff obtained by homogenization formula
(2.2a).

Hence the homogenized matrix represents a limit state, however, in reality it is a
reliable value if the periodic unit cell is sufficiently small compared to the macroscale
of a designed object.

The necessity for homogenization theories is observed from Eq. (2.3); a direct
discretization, for some small ε, is inappropriate because of highly oscillating solu-
tions — it requires huge number of degrees of freedom. The homogenization thus
splits elliptic problem (2.3) to the evaluation of homogenized matrix (2.2a) and to
the solution of Eq. (2.4) without the oscillatory part.

3The values on boundary v|∂Ω are meant in the sense of trace operator, partial derivatives ∂vα
∂xα

are meant in the sense of distributional derivatives.
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In the sequel, an attention is focused on the primal homogenization problem in
Def. 2.1; the dual homogenization problem is only utilized later in Sec. 4.3 for the
guaranteed bounds of the homogenized matrix.

Remark 2.5. Since material coefficients A are symmetric, the homogenization
problem in Eq. 2.2a is equivalent to a weak formulation4

(
Aẽ(E), v

)
L2
per

= −
(
AE, v

)
L2
per

, ∀v ∈ E (2.5)

describing the minimizer point. Since it has a linear structure, minimizer ẽE ∈ E
for macroscopic field E ∈ Rd is obtained from unitary minimizers ẽ(α), see the next
definition, as

ẽE =
∑

α

Eαẽ
(α).

Definition 2.6 (auxiliary problems). We say that ẽ(α) ∈ E are unitary minimizers
if they satisfy the weak formulations with unitary macroscopic loads ǫα, i.e.

(
Aẽ(α), v

)
L2
per

= −
(
Aǫα, v

)
L2
per

, ∀v ∈ E , (2.6)

Unitary microscopic fields are noted without tilde, i.e. e(α) := ǫα + ẽ(α) ∈ U ⊕⊥ E .

Remark 2.7. The unitary minimizers also serve to evaluate the components of the
homogenized matrix; formula

Aeff ,αβ =
(
A(ǫβ + ẽ(β)), (ǫα + ẽ(α))

)
L2
per
. (2.7)

follows from the linear structure.

2.2 Formulation based on the Lippmann-Schwinger equa-

tion

This section is dedicated to an alternative formulation of the auxiliary problems
in Def. 2.6, namely to the Lippmann-Schwinger equation incorporating the Green
function for a reference homogeneous problem.

Definition 2.8 (Lippmann-Schwinger equation). Let parameter A0 ∈ Rd×d
spd be a

symmetric positive definite matrix. We say that e
(E)
LS ∈ L2

per(Y ;Rd) is the solution
of Lippmann-Schwinger equation if it satisfies

e
(E)
LS (x) +

∫

Y

Γ0(x− y)(A(y)−A0)e
(E)
LS (y) dy = E, for almost all x ∈ Y (2.8)

where the convolution integral is defined with the help of the Fourier series
∫

Y

Γ0(x− y)v(y) dy :=
∑

k∈Zd\{0}

ξ(k)⊗ ξ(k)(
A0ξ(k), ξ(k)

)Rd

v̂(k)ϕk(x) (2.9)

4Left-hand side represents continuous symmetric uniformly elliptic bilinear form for ẽ(E) and v.
Right-hand side represents continuous linear functional for v. The existence of an unique solution
is provided by Lax-Milgram lemma or simply by Riesz representation theorem.



2 STATE OF THE ART page 6

where ξ(k) ∈ Rd is a vector with components ξα(k) = kα
Yα
, operator ⊗ denotes the

tensor product5, and v̂(k) are the Fourier coefficients with components v̂α(k) :=(
vα, ϕk

)
L2
per

for trigonometric polynomial ϕk = exp(iπ
∑

α
xαkα
Yα

).

Lippmann-Schwinger equation is formulated for microscopic field e
(E)
LS contrary

to weak formulation (2.5) written for the perturbation part ẽ(E) = e(E) −E; both

of the solutions, if coincide, differ by constant E as 〈e
(E)
LS 〉 = E and 〈ẽ(E)〉 = 0.

Remark 2.9. Lippmann-Schwinger equation is deduced from a strong formulation6:
for prescribed macroscopic load E ∈ Rd, find ẽ with continuous partial derivatives
satisfying

∇ · [A(E + ẽ)] = 0, ∇× ẽ = 0, 〈ẽ〉 = 0. (2.10)

The problem is reformulated for a reference homogeneous material A0 ∈ Rd×d
spd ,

the parameter of Lippmann-Schwinger equation, to a homogeneous problem

∇ ·
[
A0e(x)

]
= f (x)

where f (x) = −∇·
[(
A(x)−A0

)
e(x)

]
is called a divergence of polarization current

and e = E + ẽ is microscopic field with ẽ satisfying the curl-free and zero mean
condition. It is then transformed with the technique of the Fourier transform7 to
the system of algebraic equations, whose solution yields the Lippmann-Schwinger
equation (2.8).

The resulting equation is already defined in a way to have a good sense and to be
easily analyzed, see Sec. 4.1 and particularly Theorem 4.1. It will become apparent
that the detailed derivation of Lippmann-Schwinger equation can be omitted; the only
important part is the convolution integral providing projection on curl-free fields with
zero mean, see Lem. 4.2.

Remark 2.10 (Solution of Lippmann-Schwinger equation). Lippmann-Schwinger

equation (2.8) can be written in operator form (I + B)e
(E)
LS = E with the obvious

definition of operators I and B. The inverse of (I + B) is then expressed using
Neumann series expansion (I + B)−1 =

∑∞
k=0 B

k as ‖B‖ < 1 for the special choice
of parameter A0 := 1

2
(‖A−1‖L∞

per
+ ‖A‖L∞

per
)I, see [28].

Remark 2.11 (FFT-based method according to Moulinec and Suquet in [32]). The

solution of Lippmann-Schwinger equation obtained from Neumann series e
(E)
LS =∑∞

k=0 B
k[E] is the limit in L2

per norm as k → ∞ of iteration algorithm e(k+1) =
B[e(k)] +E with initial value e(0) := E. The iteration algorithm serves as a foun-
dation for the numerical algorithm proposed by Moulinec and Suquet in [32, 33]

5The tensor product of two vectors u,v ∈ Rd defines matrix u ⊗ v ∈ Rd×d with components
(u⊗ v)αβ = uαvβ .

6The solution of the strong formulation also satisfies the weak formulation in Eq. (2.5); it is
shown by the multiplication of a test function, by integration over PUC Y, and by application of
Green’s theorem (boundary term vanishes because of periodicity).

7The most important properties are: derivative is transformed to the multiplication with a
Fourier variable and the convolution of two functions is transformed to their multiplication. The
inverse Fourier transform is provided with an analogical formula.
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who approximated solution e with the function values at a regular grid correspond-
ing to pixels or voxels in the images of periodic unit cell. The convolution integral
of Lippmann-Schwinger equation is then replaced with the Discrete Fourier Trans-
form8, its inverse, and the multiplication by the integral kernel at the Fourier space;
in a detail, the algorithm is described in Paper 1.

2.3 Guaranteed bounds on homogenized matrix

The upper-lower bounds obtained from a posteriori error estimates were introduced
by Dvořák [12, 13] for a scalar problem and independently by Wieçkowski [55] for
linear elasticity. This section provides a summary of results in [12]. In this section,
we work with some conforming approximations of unitary minimizers ẽ(α) and ̃(α),
namely ẽ

(α)
N = (e

(α)
N − ǫα) ∈ E and ̃

(α)
N = (

(α)
N − ǫα) ∈ J ; parameter N represents

the inverse of discretization size of FEM or the number of discretization points
in the case of FFT-based method, for details see Sec. 4.2 or Papers 5 and 6. In
what follows, relation C � D between symmetric and positive definite matrices
C,D ∈ Rd×d

spd stands for ordering in the sense of quadratic forms; it is equivalent to

E ·CE ≤ E ·DE for all E ∈ Rd. Upper bound of homogenized matrix is obtained
from the primal homogenization problem (2.2a). The replacement of minimizers
with approximate minimizers leads to an increase in the value of the quadratic form
with the homogenized matrix

(
AeffE,E

)Rd = inf
e∈E

(
A(E + e),E + e

)
L2
per

≤
(
A(E + e

(E)
N ),E + e

(E)
N

)
L2
per

.

The last term then defines the upper bound of the homogenized matrix.

Definition 2.12. We say that matrix Aeff ,N ∈ Rd×d defined as

(Aeff ,N)αβ =
(
A(ǫβ + ẽ

(β)
N ), ǫα + ẽ

(α)
N

)
L2
per

is the upper bound on homogenized matrix Aeff .

The upper bound of homogenized matrix Aeff � Aeff ,N can be completed with
the upper bound of inverse homogenized matrix A−1

eff � A−1
eff ,N obtained from dual

formulation (2.2b). Both relations lead to the upper-lower bound structure of the
homogenized matrix

Aeff ,N � Aeff � Aeff ,N . (2.11)

Remark 2.13 (Element-wise upper-lower bounds). Upper-lower bounds (2.11) im-
ply element-wise bounds, the bounds on components of the homogenized matrix.

The mean of upper-lower bounds Aeff ,N = 1
2
(Aeff,N +Aeff ,N ) is a more reliable

approximation of homogenized matrix with guaranteed error DN = 1
2
(Aeff ,N −

Aeff ,N ). Following lemma provides the convergence9 of the error to zero if the
approximates minimizers converge to minimizers as minαNα → ∞.

8Numerically, it is realized with FFT algorithm, for details see [9].
9The trace of a matrix is a norm on the set of positive definite matrices, particularly on DN

for N ∈ Nd.
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Lemma 2.14 (Rate of convergence of homogenized properties). Guaranteed error
DN satisfies following inequality

trDN ≤ C1

∑

α

‖ẽ(α) − ẽ
(α)
N ‖2L2

per
+ C2

∑

α

‖̃(α) − ̃
(α)
N ‖2L2

per

where constants C1, C2 are independent of N .

3 Methodology

The goal of this dissertation consists of analysis of Lippmann-Schwinger equation
(2.8) and particularly to Moulinec-Suquet algorithm [32], see Rem. 2.11. The rele-
vant questions arising in the analysis can be summarized as:

1. Is there the unique solution of Lippmann-Schwinger equation for various pa-
rameters A0; the existence has been shown only for particular choice of param-
eter A0, see Rem. 2.10. Does the solution of Lippmann-Schwinger equation
equal to the solution of weak formulation (2.5)? Do the solutions coincide for
various parameters A0?

2. (a) Is there some consistent approximation of weak formulation (2.5) or
of Lippmann-Schwinger equation (2.8) that is equivalent to Moulinec-
Suquet numerical algorithm? Do approximate solutions, if exist, converge
to the solution of weak formulation?

(b) It has been observed by Zeman et al. in [57] that Moulinec-Suquet al-
gorithm, Rem. 2.11, is equivalent to the solution of a system of linear
equations. It appears that this non-symmetric system can be success-
fully solved using Conjugate gradient algorithm. What is the reason for
that?

3. In [12, 13] and later independently in [55], the guaranteed bounds of the ho-
mogenized matrix were calculated using the standard Finite element methods.
Is the approach applicable to the FFT-based homogenization?

The analysis of the method is provided with standard mathematical instruments
and techniques. Namely, it is based on the following subjects with the list of lit-
erature: homogenization theory [11, 40, 18, 3], mathematical analysis [41, 42, 26],
modern theory of partial differential equations [19, 5, 35], finite element method
[10, 4], and trigonometric collocation method [43].

Numerical calculations stated in Sec. 4.4, 4.5 and attached papers were provided
with the own software written in Matlab

R© and Python programming language;
it is available at http://mech.fsv.cvut.cz/~vondrejc/publications.php#SW.

4 Results

This section provides the summary of the results obtained in six papers [57, 50, 37,
38, 51, 52], referenced as Papers 1-6, that are attached in the chronological order in
Parts II–VII. The section is split into five subsections; The first three correspond to
the tasks in Methodology Sec. 3 while the last two contain numerical examples and
applications of FFT-based method to linear elasticity.

http://mech.fsv.cvut.cz/~vondrejc/publications.php#SW
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4.1 Weak formulation and Lippmann-Schwinger equation

This section start with theorem describing solvability of Lippmann-Schwinger equa-
tion, the main theorem about continuous formulation of homogenization problem.

Theorem 4.1 (Equivalence of weak formulation and Lippmann-Schwinger equation,
Theorem 2.29 in Paper 5). Let A0 ∈ Rd×d

spd be symmetric and positive definite, then
weak formulation (2.5) and Lippmann-Schwinger equation (2.8) are equivalent in
the sense that the solution coincide in both formulations.

The theorem shows that the unique solution of weak formulation (2.5) is the
solution of Lippmann-Schwinger equation and contrary. It reveals the existence of
the unique solution of Lippmann-Schwinger equation for various parameters A0.

The proof is based on a next lemma providing a projection on E , the space
of curl-free with zero mean fields that is both a trial space and the space of test
functions in weak formulation (2.5).

Lemma 4.2 (Lem. 2.28 in Paper 5). Operator G[·] : L2
per(Y ;Rd) → L2

per(Y ;Rd)
defined as

G[f ](x) =

∫

Y

Γ0(x− y)A0f (y) dy (4.1)

is a projection on E and orthogonal for A0 = λI with λ > 0.

The proof is based on the expression of convolution integral in the Fourier space,
cf. Def. 2.8. It is shown that the operator is continuous and real valued. Since
matrix ξ(k)⊗ξ(k)

A0ξ(k)·ξ(k)
A0 is simply a projection, it shows that operator G is. Besides, we

show that it is the projection on E with the help of a potential that exists in this
case as the periodic unit cell is simply connected.

Proof outline of Theorem 4.1. The proof is outlined for a special choice of parameter
A0 equal to the identity matrix A0 = I. First, we show that the solution of the
weak formulation is the solution of Lippmann-Schwinger equation. We enlarge space
E in the weak formulation by adding the projection operator

(
Aẽ,G[v]

)
L2
per

= −
(
AE,G[v]

)
L2
per

, ∀v ∈ L2
per(Y ;Rd).

In this special case, operator G is self-adjoint leading to

(
G[Aẽ], v

)
L2
per

= −
(
G[AE], v

)
L2
per
, ∀v ∈ L2

per(Y ;Rd).

Finally, a following equation is deduced

G[Aẽ] = −G[AE], for almost all x ∈ Y

by removing the testing functions and the rest is the consequence of elementary
algebra and properties of projection G.

The opposite implication is done analogically by splitting the solution e
(E)
LS with

projection operator G. The general case for A0 ∈ Rd×d
spd follows similar ideas.
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4.2 Discretization via trigonometric polynomials

This section is dedicated to the discretization of the homogenization problem (2.2)
in a way to produce the identical linear system like in Moulinec-Suquet algorithm
[32], cf. Rem. 2.11.

The space of trigonometric polynomials is used as a finite dimensional space
for discretization. Relating definitions and properties are summarized in Sec. 4.2.1
according to [47, 43], however, a slight modification is performed for the non-odd
number of discretization points to assure conforming approximations that are re-
quired for guaranteed bounds of the homogenized matrix, see Sec. 4.3 or Papers 5-6
for more details.

Then, approximate solutions are defined through Galerkin approximation (GA)
and Galerkin approximation with numerical integration (GAwNI). Together with
their convergence to the minimizers and the numerical solution of the linear system,
it is described in Sec. 4.2.2 and in a detail in Papers 5 and 6.

Notation 4.3. In the sequel, let N ∈ Nd be reserved for a number of discretization
points with the number of degrees of freedom |N |Π :=

∏
αNα; if Nα is odd (even)

for all α we talk about odd (even) number of discretization points, otherwise about
non-odd ones. The reduced and full index set state forZd

N =

{
k ∈ Zd : |kα| <

Nα

2

}
, Zd

N =

{
k ∈ Zd : −

Nα

2
≤ kα <

Nα

2

}
. (4.2)

A multi-index notation is employed, in which RN represents RN1×···×Nd. Set XN

represents the space of vectors v with components v
n
α and X2

N the space of matrices
A with components A

nm
αβ for α, β and n,m ∈ Zd

N . Next, vn ∈ Rd for n ∈ Zd
N

and vα ∈ RN for α represent subvectors of v with components v
n
α ; analogically the

submatrices Anm ∈ Rd×d and Aαβ ∈ RN×N can be defined. A scalar product on XN

is defined as
(
u, v
)XN

:=
∑

α

∑
n∈Zd

N

u
n
αv

n
α and matrix A by vector v multiplication

as (Av)nα :=
∑

β

∑
m∈Zd

N

A
nm
αβ v

m
β . Matrix A is symmetric positive definite if Amn

αβ =

A
nm
βα holds for all components and

(
Av, v

)XN

> 0 applies for arbitrary v ∈ XN . We

use a serif font for vectors v and matrices A to distinguish from vectors E ∈ Rd and
matrices Aeff ∈ Rd×d and from vector valued functions v ∈ L2

per(Y ;Rd). In order to
distinguish vectors and matrices for different number of discretization points N , we
write them with subscript, i.e. vN and AN .

Operator ⊕⊥ denotes the direct sum of mutually orthogonal subspaces, e.g. Rd =
ǫ1 ⊕

⊥ ǫ2 ⊕
⊥ . . .⊕⊥ ǫd.

4.2.1 Trigonometric polynomials

This section presents the trigonometric polynomials with their properties; it is also
well described in Paper 5 for the odd number of discretization points and in Paper 6
for the general number of discretization points, see also [43].

First, the trigonometric polynomials can be expressed as the linear combination
of the Fourier coefficients and the Fourier basis functions, see Eq. (4.3) and (4.5).
Second, they can be expressed as the linear combination of function values at nodal
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points and shape basis functions, see Def. 4.5 and Eq. (4.6); Fig. 1 shows the exam-
ples of the nodal points and the shape basis function. Both formulations are related
through the Discrete Fourier Transform (DFT) see Rem. 4.12.

Dirac delta property of shape basis functions ϕN ,m(xn
N ) = δmn ensures the

uniqueness of trigonometric polynomials representation and allows us to define an
interpolation operator through the nodal points, see Def. 4.8 and 4.5.

Both definitions of trigonometric polynomials TN and T̃N in Def. 4.7 coincide
if the number of discretization points N is odd for all components, cf. Rem. 4.13.
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Figure 1: Nodal values for d = 2 and shape basis function for d = 1

Notation 4.4 (DFT). For N ∈ Nd we define, up to constant, unitary matrices
FN ,F

−1
N ∈ Cd×d×N×N of the Discrete Fourier transform (DFT) and its inverse

(iDFT) as

FN =
1

|N |Π

(
δαβω

−mn
N

)m,n∈Zd
N

α,β=1,...,d
F−1
N =

(
δαβω

mn
N

)m,n∈Zd
N

α,β=1,...,d
.

where δαβ is Kronecker delta and ωmn
N = exp

(
2πi
∑d

α=1
mαnα

Nα

)
with m,n ∈ Zd.

Definition 4.5 (nodal points, basis functions). Let N ∈ Nd. For n ∈ Zd
N , we

define nodal points of the periodic unit cell xn
N =

∑
α

2Yαnα

Nα
ǫα and the Fourier and

shape basis functions

ϕn(x) = exp

(
πi
∑

α

nαxα

Yα

)
, ϕN ,n(x) =

1

|N |Π

∑

m∈Zd
N

ω−mn
N ϕm(x). (4.3)

Lemma 4.6 (Properties of ϕm and ϕN ,m). Let m,n ∈ Zd
N , then

(
ϕm, ϕn

)
L2
per

= δmn ϕn(x
m
N ) = ωmn

N (4.4a)

ϕN ,m(xn
N ) = δmn

(
ϕN ,m, ϕN ,n

)
L2
per

=
δmn

|N |Π
(4.4b)
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Definition 4.7 (Trigonometric polynomials). For N ∈ Nd, we define the spaces of
trigonometric polynomials TN , T̃N and their vector valued versions T d

N ,T̃ d
N as

TN =
{ ∑

n∈Zd
N

v̂
nϕn : v̂n ∈ C, v̂n = (v̂−n)

}
, T d

N =
{
v : vα ∈ TN

}
. (4.5)

T̃N =
{ ∑

n∈Zd
N

v
nϕN ,n : vn ∈ R}, T̃ d

N =
{
v : vα ∈ T̃N

}
. (4.6)

where the index sets are given byZd
N =

{
k ∈ Zd : |kα| <

Nα

2

}
, Zd

N =

{
k ∈ Zd : −

Nα

2
≤ kα <

Nα

2

}
. (4.7)

Definition 4.8 (Interpolation projection). We define interpolation operator QN :
Cper(Y ;Rd) → L2

per(Y ;Cd) as

QN [f ] =
∑

m∈Zd
N

f(xm
N )ϕN ,m.

Lemma 4.9. Interpolation operator QN is projection and its image is T̃ d
N .

Definition 4.10. The operator IN : T̃ d
N → Rd×N stocks the values of trigonometric

polynomials at nodal points to a vector IN [vN ] =
(
vN ,α(x

n
N )
)n∈Zd

N

α=1,...,d
.

Lemma 4.11. The operator IN from previous definition is isomorphism.

Remark 4.12 (Connection of representations). The trigonometric polynomial vN ∈
T̃ d

N can be uniquely expressed using both the Fourier coefficients and the function
values at nodal points

vN =
∑

m∈Zd
N

vN(xm
N )ϕN ,m =

∑

n∈Zd
N

v̂N(n)ϕn (4.8)

with connection through the DFT v̂N = FNvN , where vN = IN [vN ] and v̂N =(
v̂N ,α(m)

)m∈Zd
N

α=1,...,d
. Thus, space T̃ d

N can be possibly characterized with the Fourier

coefficients as T̃ d
N = {

∑
m∈Zd

N

v̂
m
Nϕm : v̂N ∈ FN (Rd×N )}.

Remark 4.13. The trigonometric polynomials are real valued if the Fourier coeffi-
cients obey conjugate symmetry v̂(n) = v̂(−n), n ∈ Zd; from definition, it is valid
for the trigonometric polynomials T d

N ⊂ L2
per(Y ;Rd).

The peculiar situation occurs for the space T̃ d
N . If N is odd, both spaces coincide

T d
N = T̃ d

N as the index sets do Zd
N = Zd

N ; generally, the inclusion T d
N ⊆ T̃ d

N holds.
Unfortunately, the space T̃ d

N fails to be real valued T̃ d
N * L2

per(Y ;Rd) because the

Fourier coefficients with frequencies n ∈ Zd
N \ Zd

N miss opposite counterpart with
frequencies −n.
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4.2.2 Galerkin approximation with numerical integration

Approximate solutions are gained from Galerkin approximation (GA) and Galerkin
approximation with numerical integration (GAwNI); both methods can be defined
either for weak formulation (2.5) or minimization formulation (2.2). In all cases,
formulations are based on trial space E or J in the primal or dual formulation
resp. The following remark clarifies their finite dimensional relatives.

Remark 4.14. We confine the description to the problem for the odd number of
discretization points N for which trigonometric polynomials T̃ d

N and T d
N coincide;

thus it is possible to directly follow the results in Paper 5. The case of general number
of discretization points can be found in Section 3.2 in Paper 6.

Hence, we define a conforming finite dimensional spaces as EN ; = T d
N

⋂
E and

JN := T d
N

⋂
J that satisfy the finite dimensional Helmholtz decomposition

T̃ d
N = U ⊕⊥ EN ⊕⊥ JN .

Fully discrete spaces defined as UN = IN [U ], EN = IN [EN ], JN = IN [JN ], with
isomorphism from Def. 4.10, are their associates and thus satisfy an analogue

IN [T̃ d
N ] = Rd×N = UN ⊕⊥ EN ⊕⊥ JN . (4.9)

Definition 4.15 (Galerkin approximation, Def. 3.20 in Paper 5). Galerkin approx-
imation of the auxiliary problems in Def. 2.6 states: for unitary macroscopic load
ǫα, find minimizer ẽ

(α)
N satisfying

(
Aẽ

(α)
N , vN

)
L2
per

= −
(
Aǫα, vN

)
L2
per

, ∀vN ∈ EN . (4.10)

Remark 4.16 (Solution and convergence). The unique approximate solutions of
Galerkin approximation are provided by Lax-Milgram lemma as material coefficients
A are uniformly elliptic and bounded. The convergence of the approximate solutions
to the minimizers is provided by Cea’s lemma

‖e(α) − e
(α)
N ‖L2

per
≤ C inf

vN∈EN

‖e(α) − vN‖L2
per

(4.11)

together with density of trigonometric polynomials in space L2
per. Although, the con-

vergence can be arbitrarily slow, more regular minimizers permit the order of con-
vergence, see Sec. 3.4 in Paper 5.

Approximate solutions from Galerkin approximation behaves meaningfully, un-
fortunately, the linear systems determined by GA cannot be obtained in the closed
form for general coefficients A. Thus, the need for numerical integration arises.

Definition 4.17 (GAwNI). Let the material coefficients A be continuous. Galerkin
approximation with numerical integration of the primal homogenization problem,
Def. 2.1, states as: for arbitrary fixed macroscopic load E ∈ Rd, find discrete ho-
mogenized matrix AFFTH

eff ,N ∈ Rd×d satisfying

(
AFFTH

eff ,N E,E
)Rd = inf

eN∈EN

(
QN [A(E + eN )],E + eN

)
L2
per

. (4.12)
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It is shown in Lem. 3.28 in Paper 5 and in Lem. 3.22 in Paper 6, that GAwNI is
equivalent to the fully discrete formulation.

Definition 4.18 (Fully discrete formulation of GAwNI). Find AFFTH
eff ,N ∈ Rd×d such

that for arbitrary fixed E ∈ Rd holds

(
AFFTH

eff ,N E,E
)Rd =

1

|N |Π
inf

eN∈EN

(
AN (EN + eN ),EN + eN

)Rd×N
(4.13)

where EN = IN [E] ∈ UN and AN ∈ Rd×d×N×N with components assembled as
Amn

N ,αβ = Aαβ(x
m
N )δmn for α, β and m,n ∈ Zd

N .

Remark 4.19 (Solution of GAwNI by Conjugate gradients). In Papers 2 and 5, it
is explained that the minimizers of fully discrete formulation can be obtained by Con-
jugate gradients that minimize a quadratic functional on a subspace EN = IN [EN ].
It is equivalent to the solution of linear system Cx = b defined for particular α as

G1
0AN︸ ︷︷ ︸
C

e
(α)
N︸︷︷︸
x

= −G1
0ANE

(α)
N︸ ︷︷ ︸

b

for the initial approximation x(0) ∈ EN from the appropriate subspace. Matrix G1
0 is

an orthogonal projection on EN . It follows from continuous projection (4.2) on E ,
see Sec. 3.2 in Paper 6 providing the scheme of subspaces for both of the primal and
the dual formulations.

Remark 4.20 (Convergence of discrete minimizers). In Paper 5, the convergence
of the approximate solutions of GAwNI to the minimizers of homogenization prob-
lem (2.2) is provided for sufficiently regular material coefficients A. It incorporates
first Strang’s lemma — the standard approach in the finite element method — and
the estimates of interpolation operator, Def. (4.8), provided in [43] for one and
two-dimensional setting, see also Sec. 3.2 in Paper 5 for d-dimensional setting. Nu-
merical examples confirming the rates of convergence can be found in Paper 6 in
Sec. 4.2.

Remark 4.21. Regularity of material coefficients A principally influences the rates
of convergence. For rough coefficients, arbitrary slow convergence can be observed
for GA. However, GAwNI is even difficult to define as interpolation operator QN

requires function values — it requires some type of continuity. In Paper 5, we remedy
this trouble by smoothing of the material coefficients.

4.3 Guaranteed bounds by FFT-based homogenization

This section summarizes results obtained in Paper 6 for guaranteed bounds on the
homogenized matrix, see summary in Sec. 4.3, that were introduced by Dvořák in
[12, 13] for a scalar problem and later independently by Wieçkowski [55] for linear
elasticity.

The upper-lower bounds are based on the primal and dual formulations of ho-
mogenization problem in Def. 2.1. In Sec. 4.3.1, the connection of the primal and
dual formulations is investigated in fully discrete setting. Then in Sec. 4.3.2, the
method for an effective evaluation of the upper-lower bounds is provided.
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Galerkin approximation with numerical integration of the homogenization prob-
lem in Def. (2.1) leads to a fully discrete homogenization problem in both primal
and dual setting

(
Ã

FFTH

eff,N E,E
)Rd =

1

|N |Π
inf

eN∈EN

(
AN (EN + eN ),EN + eN

)Rd×N
, (4.14a)

(
(Ã

FFTH

eff,D,N )−1J ,J
)Rd =

1

|N |Π
inf

jN∈JN

(
A−1

N (JN + jN), JN + jN
)Rd×N

, (4.14b)

compare to Def. 4.18. Minimizers e
(α)
N := I−1

N [e
(α)
N ] and 

(α)
N := I−1

N [j
(α)
N ] are then

used to evaluate the upper-lower bounds of the homogenized matrix.

4.3.1 Connection of primal and dual formulation

The connection between formulations in (4.14) is summarized for odd number of
discretization points.

Theorem 4.22 (Primal-dual formulation for odd number of discretization points,
Corollary 3.27 in Paper 6). Let the number of discretization points N ∈ Nd be odd.
Then, the fully discrete formulations satisfy:

1. Both primal and dual homogenized matrices coincide AFFTH
eff ,N = AFFTH

eff,D,N .

2. Primal and dual discrete minimizers ẽ
(α)
N and j̃

(α)

N are related as

ǫβ + j̃
(β)

N = AN

∑

α

Eα(ǫα + ẽ
(α)
N ) (4.15)

where E = (AFFTH
eff,N )−1ǫβ.

This enables to avoid the solution of the dual formulation in order to obtain the
dual minimizers. The proof is the consequence of perturbation duality theorem [14],
that is mentioned for a discrete setting in Lem. 3.26 in Paper 6, and discrete version
of the Helmholtz decomposition (4.9).

Unfortunately, the previous theorem fails to hold for the general number of dis-
cretization points as the discrete version of the Helmholtz decomposition (4.9) is no
longer valid. A general theorem is provided in Cor. 3.27 in Paper 6.

4.3.2 Calculation of bounds

The calculation of the upper-lower bounds of the homogenized matrix consists of
the integral evaluation of type

(
Ae

(α)
N , e

(β)
N

)
L2
per

occurring in Def. 2.12.Generally,

the integral cannot be evaluated in a closed form because of non-specific material
coefficients. The idea is to adjust the material coefficients to calculate the integrals
accurately and efficiently and simultaneously keep the upper-lower bounds structure.

For an easier orientation among various homogenized matrices, we refer to their
scheme in Fig. 2. The matrices Aeff , Aeff ,N , Aeff ,N , Aeff ,N , and DN already intro-

duced in Sec. 4.3 are in no relation to matrices AFFTH
eff ,N , AFFTH

eff,D,N from fully discrete
formulation (4.14) because of the variational crime caused by numerical integration
in Def. 4.17.
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AFFTH
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equality if N is odd
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Aeff,N Aeff Aeff ,N A
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Aeff ,N −DN � Aeff,N �Aeff ,N +DN

≈ ≈

= =

Figure 2: The overview of homogenized material bounds

In Paper 6 in Sec. 3.5, we introduce the approximation of upper-lower bounds

Ã
lin,M

eff ,D,N , Ã
lin,M

eff ,N based on piecewise bilinear material coefficients. Next, piecewise
constant material coefficients defined in a way to guaranty bounds produce upper-

lower bounds of homogenized matrix, i.e. Acon,M

eff,N
, A

con,M

eff,N . The next lemma shows

sufficient condition to guaranty bounds with adjusted material coefficients.

Lemma 4.23 (Sufficient condition for the upper-lower bound structure, Lem. 3.31
in Paper 6). Let A ∈ L∞

per(Y ;Rd×d) be material coefficients and A,A ∈ L∞
per(Y ;Rd×d)

its upper and lower approximations satisfying

A(x) � A(x) � A(x), for almost all x ∈ Y . (4.16)

Let ẽ
(α)
N ∈ EN and ̃

(α)
N ∈ JN be unitary minimizers for material coefficients A,

cf. Def. 2.6. Then matrices Aeff ,Aeff
∈ Rd×d, defined as

(Aeff ,N)αβ =
(
A(ǫβ + ẽ

(β)
N ), ǫα + ẽ

(α)
N

)
L2
per
, (4.17a)

(A−1

eff ,N
)αβ =

(
A−1(ǫβ + ̃

(β)
N ), ǫα + ̃

(α)
N

)
L2
per

, (4.17b)

comply with the upper-lower bound structure, i.e.

A
eff ,N

� Aeff ,N � Aeff � Aeff ,N � Aeff ,N .

A special situation occurs when the material coefficients are expressed as the
linear combination of some functions placed at nodal points of regular grid. Then
the integrals required for evaluating upper-lower bounds can be calculated by FFT
algorithm, see Eq. (4.19) in next lemma and Lem. 3.33 in Paper 6.

Lemma 4.24 (Calculation of homogenized matrices, Lem. 3.32 in Paper 6). Let
uN , vN ∈ T d

N be trigonometric polynomials and AM ∈ L∞
per(Y ;Rd×d

spd ) for M ∈ Nd

be function explicitly expressed as

AM(x) =
∑

n∈Zd
M

ψ(x+ xn
M)An, x ∈ Y

where ψ ∈ L∞
per(Y ;R) is some basis function and A ∈ Rd×d×M . Then the integrals

of the type occurring in Eq. (4.17) can be calculated as

(
AMuN , vN

)
L2
per

=
1

|Y|d

∑

α,β

∑

m∈Zd
2N

w(m)ûvmN ,α,βÂ
m
αβ (4.18)
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where the integration weight w(m) is defined as w(m) :=
∫
Y
ψ(x)ϕm(x) and factors

ûv
m
N ,β,α, Â

m
αβ are defined as

ûv
m
N ,β,α =

1

2|N |Π

∑

k∈Zd
2N

uN ,β(x
k
2N )vN ,α(x

k
2N )ω−mk

2N (4.19a)

Â
m
αβ =

∑

n∈Zd
M

A
n
αβω

−mn
M (4.19b)

Investigation of previous lemma reveals that functions ψ are chosen to have
analytical expression of integral weights w(m) :=

∫
Y
ψ(x)ϕm(x). A reasonable

choice is a constant and a bilinear function

χN (x) =

{
1, |xα| <

Yα

Mα
for all α

0, otherwise
, triN (x) =

∏

α

max{1− |
xαMα

2Yα
|, 0},

leading to the weights

w0
N (m) :=

∏

α

2Yα
Mα

sinc

(
mα

Mα

)
w1

N(m) :=
∏

α

2Yα
Mα

sinc2
(
mα

Mα

)

with function sinc(x) :=

{
1, x = 0
sin(πx)

πx
, x 6= 0

. Another example of the function with

the analytical expression of the weight is a circle function with the weight based on
the Bessel function.

More details about calculation of upper-lower bounds can be found in Sec. 3.5
in Paper 6.

4.4 Numerical experiments

In this section, numerical experiments presented in Papers 1,2, and 6 are summa-
rized. Sec. 4.4.1 is dedicated to the acceleration of the FFT-based homogenization
by Conjugate gradients, while Sec. 4.4.2 is dedicated to the guaranteed bounds of
the homogenized matrix.

4.4.1 Acceleration by Conjugate gradients

In this section, the theoretical result about the acceleration of the original FFT-
based homogenization by Conjugate gradients is validated. We show that Conjugate
gradients are independent on reference conductivityA0, the parameter of Lippmann-
Schwinger equation. Moreover, both methods, the original and accelerated one, are
compared in terms of computational times.

From Paper 2, a three-dimensional electric conduction in a cubic periodic unit
cell Y =

∏3
α=1(−

1
2
, 1
2
) is chosen as a model problem. The conductivity parameters

are defined as

A(x) =





ρI, ‖x‖2 < ( 3
16π

)
1
3


1 0.2 0.2

0.2 1 0.2

0.2 0.2 1


 , otherwise
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where ρ > 0 denotes the contrast of phase conductivities; it represents a two-phase
medium with spherical inclusions of 25% volume fraction. We consider the macro-
scopic field E := ǫ1 and discretize the unit cell with N = [n, n, n] nodes10. The
conductivity of the homogeneous reference medium A0 ∈ Rd×d is parametrized as

A0 = λI, λ = 1− ω + ρω, (4.20)

where ω ≈ 0.5 delivers the optimal convergence of the original Moulinec-Suquet
Fast-Fourier Transform-based Homogenization (FFTH) algorithm [32].

We first investigate the sensitivity of Conjugate Gradients (CG) to the choice of
the reference medium. The results appear in Fig. 3(a) plotting the relative number of
iterations for CG against the conductivity of the reference medium parametrized by
ω, recall Eq. (4.20). As expected, CG solver achieve a significant improvement over
FFTH method as it requires about 40% iterations of FFTH for a mildly-contrasted
composite down to 4% for ̺ = 103. The minor differences visible especially for
ρ = 103 can be therefore attributed to accumulation of round-off errors.
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Figure 3: (a) Relative number of iterations as a function of the reference medium
parameter ω and (b) computational time as a function of the number of unknowns.

In Fig. 3(b), we present the total computational time11 as a function of the
number of degrees of freedom and the phase ratio ρ. The results confirm that the
computational times scales linearly with the increasing number of degrees of freedom
for both schemes for fixed phase ratio ρ [57]. The ratio of the computational time
for CG and FFTH algorithms remains almost constant, which indicates that the
cost of a single iteration of CG and FFTH method is comparable.

In addition, the memory requirements of both schemes are also comparable. This
aspect emphasized the major advantage of the short-recurrence CG-based scheme
over alternative schemes for non-symmetric systems, such as GMRES. Finally, we
note that finer discretizations can be treated by a straightforward parallel imple-
mentation.

10In particular, n was taken consequently as 16, 32, 64, 128 and 160 leading up to 3 · 1603
.
=

12.2× 106 unknowns
11The problem was solved with a Matlab

R© in-house code on a machine Intel R© CoreTM2 Duo
3 GHz CPU, 3.28 GB computing memory with Debian linux 5.0 operating system.
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4.4.2 Guaranteed bounds

In this section, the properties of the upper-lower bounds of the homogenized matrices
are validated. We consider 2-dimensional model problem from Paper 6 with material
coefficients defined on a periodic unit cell Y = Π2

α=1(−1, 1) ⊂ R2 as

A(x) = I[1 + 10f(x)], x ∈ Y ,

where I ∈ Rd×d is identity matrix and f : Y → R is a scalar nonnegative function
defined explicitly as

f(x) =

{
1, ‖x‖∞ < 3

4

0, otherwise
.

The problem is discretized with odd number of discretization points N = (n, n)
where n ∈ {5, 15, 45, 135, 405, 1215}.

Fig. 4(a) shows the periodic unit cell with the interface between phases and the
nodal points sets, {xn

N ∈ Y : n ∈ Zd
N}, for particular N . Next in Fig. 4(b), we

demonstrate the properties of the homogenized matrices for their particular diagonal
component. The inequality Aeff ,N � Aeff,N stated in (2.11) is satisfied and the error,
difference between them, is approaching zero supporting Lem. 2.14.
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Figure 4: Periodic unit cell with nodal points and guaranteed bounds of homogenized
material coefficient

In this case, approximate homogenized matrix AFFTH
eff ,N resembles the real ho-

mogenized coefficients Aeff properly even for small N compared to the mean value
Aeff ,N = 1

2
(Aeff ,N + Aeff ,N) that overestimates. It is the consequence of good ap-

proximation of inclusion topology by nodal points, see Fig. 4(a); the interface lies
exactly between the nodes. Generally, the approximate homogenized matrix AFFTH

eff ,N

can be located either over or under the bounds — for a more detail, see Sec. 4.1
in Paper 6.

4.5 Applications

In this section, applications of FFT-based homogenization to linear elasticity are
discussed according to Papers 3 and 4.
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Linear elasticity is certainly more complicated than the scalar problem presented
so far, however, the similar structure is observed. The complexity consists of more
complicated material law between second order tensors, strain and stress, through
fourth order stiffness tensor. Moreover, Green function and derived projection op-
erator to admissible fields — analogue to (2.9) and (4.1) — are more complicated as
it naturally splits into two parts, one corresponding to volumetric fields and second
to deviatoric fields.

Paper 3 deals with FFT-based homogenization in the framework of representative
volume element to produce homogenized stiffness matrix of cement paste, gypsum,
and aluminum alloy. A grid nanoindentation is used for the determination of phase
properties in grid points at microscale; the direct utilization of grid data simplifies
the numerical evaluation and contributes to its efficiency. The method is compared
to some simple analytical homogenization procedures with material phases obtained
by a statistical deconvolution.

Paper 4 describes a technique to homogenize highly porous aluminium foam —
porosity causes the violation of uniform ellipticity. Although, some modifications
of FFT-based homogenization were proposed [27, 29] to overcome this difficulty, no
rigorous convergence theory has been provided yet. Thus, the FFT-based homoge-
nization is used as a part of two step homogenization, particularly, it is incorporated
at a lower scale composed of aluminum melt with admixtures. A higher scale con-
taining significant volume fraction of air voids exceeding 90% is homogenized using
two-dimensional Finite element method.

5 Conclusions

The most important results addressing the questions in Sec. 3 are summarized:

1. It has been shown that Lippmann-Schwinger equation is equivalent, in the
sense the unique solution coincide, to the corresponding weak formulation for
an arbitrary parameter A0 ∈ Rd×d

spd .

2. The discretization of weak formulation (2.5) has been proposed to reproduce
the original Moulinec-Suquet numerical algorithm, Rem 2.11; it can be newly
considered as the Finite element method with trigonometric polynomials basis
functions. Convergence of approximate solutions to continous one has been
proven. Moreover, the successful application of Conjugate gradients to non-
symmetric linear system has been explained.

3. The method for guaranteed bounds of the homogenized matrix has been used
for FFT-based homogenization; FFT algorithm can be utilized for the evalu-
ation. The solution of the dual formulation, that is required for lower bound,
can be avoided for the odd number of discretization points.

The presented results clarify FFT-based homogenization in a way to be further
analyzed by standard mathematical instruments. Main areas of investigation and
employment of results are:

• preconditioning of linear system coming from discretization,
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• providing theory for linear elasticity,

• providing theory for porous materials,

• generalization to another physical problems (Stokes problem),

• validation of other homogenization methods with the help of reliable guaran-
teed bounds.
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J. Vondřejc, J. Zeman, and I. Marek, FFT-based finite element method homog-
enization, (2013), In preparation.

Paper 6 : In preparation for ISI journal
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Jan Zeman, Jaroslav Vondřejc, Jan Novák, and Ivo Marek

Title:
Accelerating a FFT-based solver for numerical homogenization of periodic me-
dia by conjugate gradients

Source:
JOURNAL OF COMPUTATIONAL PHYSICS

Volume:
229

Issue:
21

Pages:
8065–8071

DOI:
10.1016/j.jcp.2010.07.010

Accession number:
WOS:000282118500001

Published:
20th October 2010



Short note

Accelerating a FFT-based solver for numerical homogenization of
periodic media by conjugate gradients
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a b s t r a c t

In this short note, we present a new technique to accelerate the convergence of a FFT-based
solver for numerical homogenization of complex periodic media proposed by Moulinec and
Suquet [1]. The approach proceeds from discretization of the governing integral equation
by the trigonometric collocation method due to Vainikko [2], to give a linear system which
can be efficiently solved by conjugate gradient methods. Computational experiments con-
firm robustness of the algorithm with respect to its internal parameters and demonstrate
significant increase of the convergence rate for problems with high-contrast coefficients at
a low overhead per iteration.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

A majority of computational homogenization algorithms rely on the solution of the unit cell problem, which concerns the
determination of local fields in a representative sample of a heterogeneous material under periodic boundary conditions.
Currently, the most efficient numerical solvers of this problem are based on discretization of integral equations. In the case
of particulate composites with smooth bounded inclusions embedded in a matrix phase, the problem can be reduced to
internal interfaces and solved with remarkable accuracy and efficiency by the fast multipole method, see [3, and references
therein]. An alternative method has been proposed by Moulinec and Suquet [1] to treat problems with general microstruc-
tures supplied in the form of digital images. The algorithm is based on the Neumann series expansion of the inverse to an
operator arising in the associated Lippmann–Schwinger equation and exploits the Fast Fourier Transform (FFT) to evaluate
the action of the operator efficiently.

The major disadvantage of the FFT-based method consists in its poor convergence for composites exhibiting large jumps
in material coefficients. To overcome this difficulty, Eyre and Milton proposed in [4] an accelerated scheme derived from a
modified integral equation treated by means of the series expansion approach. In addition, Michel et al. [5] introduced an
equivalent saddle-point formulation solved by the Augmented Lagrangian method. As clearly demonstrated in a numerical
study by Moulinec and Suquet [6], both methods converge considerably faster than the original variant; the number of iter-
ations is proportional to the square root of the phase contrast instead of the linear increase for the basic scheme. However,
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this comes at the expense of increased computational cost per iteration and the sensitivity of the Augmented Lagrangian
algorithm to the setting of its internal parameters.

In this short note, we introduce yet another approach to improve the convergence of the original FFT-based scheme [1]
based on the trigonometric collocation method [7] and its application to the Helmholtz equation as introduced by Vainikko
[2]. We observe that the discretization results in a system of linear equations with a structured dense matrix, for which a
matrix–vector product can be computed efficiently using FFT (cf. Section 2). It is then natural to treat the resulting system
by standard iterative solvers, such as the Krylov subspace methods, instead of the series expansion technique. In Section 3,
the potential of such approach is demonstrated by means of a numerical study comparing the performance of the original
scheme and the conjugate- and biconjugate-gradient methods for two-dimensional scalar electrostatics.

2. Methodology

In this section, we briefly summarize the essential steps of the trigonometric collocation-based solution to the unit cell
problem by adapting the original exposition of Vainikko [2] to the setting of electrical conduction in periodic composites. In
what follows, a, a and A denote scalar, vector and second-order tensor quantities with Greek subscripts used when referring
to the corresponding components, e.g. Aab. Matrices are denoted by a serif font (e.g. A) and a multi-index notation is em-
ployed, in which RN with N = (N1, . . . ,Nd) represents RN1�����Nd and Ak stands for the (k1, . . . ,kd)-th element of the matrix
A 2 RN .

2.1. Problem setting

We consider a composite material represented by a periodic unit cell Y ¼
Qd

a¼1ð�Ya;YaÞ � Rd. In the context of linear
electrostatics, the associated unit cell problem reads as

$� eðxÞ ¼ 0; $ � jðxÞ ¼ 0; jðxÞ ¼ LðxÞ � eðxÞ; x 2 Y ð1Þ

where e is a Y-periodic vectorial electric field, j denotes the corresponding vector of electric current and L is a second-order
positive-definite tensor of electric conductivity. In addition, the field e is subject to a constraint

e0 ¼ 1
jYj

Z
Y

eðxÞ dx; ð2Þ

where e0 denotes a prescribed macroscopic electric field and jYj represents the d-dimensional measure of Y.
Next, we introduce a homogeneous reference medium with constant conductivity L0, leading to a decomposition of the

electric current field in the form

jðxÞ ¼ L0 � eðxÞ þ dLðxÞ � eðxÞ; dLðxÞ ¼ LðxÞ � L0: ð3Þ

The original problem (1)–(2) is then equivalent to the periodic Lippmann–Schwinger integral equation, formally written as

eðxÞ þ
Z
Y

C0ðx� yÞ � ðdLðyÞ � eðyÞÞ dy ¼ e0; x 2 Y; ð4Þ

where the C0 operator is derived from the Green’s function of the problem (1)–(2) with L(x) = L0 and e0 = 0. Making use of the
convolution theorem, Eq. (4) attains a local form in the Fourier space:

êðkÞ ¼ jYj
1
2e0; k ¼ 0;

�bC0ðkÞ � dðdL � eÞðkÞ; k 2 Zd n f0g;

(
ð5Þ

where f̂ ðkÞ denotes the Fourier coefficient of f(x) for the kth frequency given by

f̂ ðkÞ ¼
Z
Y

f ðxÞu�kðxÞ dx; ukðxÞ ¼ jYj
�1

2 exp ip
Xd

a¼1

xaka

Ya

 !
; ð6Þ

”i” is the imaginary unit and

bC0ðkÞ ¼
0; k ¼ 0;

k�k
k�L0 �k ; k 2 Zd n f0g;

(
ð7Þ

Here, we refer to [4,8] for additional details.
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2.2. Discretization via trigonometric collocation

Numerical solution of the Lippmann–Schwinger equation is based on a discretization of a unit cell Y into a regular peri-
odic grid with N1 � � � � � Nd nodal points and grid spacings h = (2Y1/N1, . . . ,2Yd/Nd). The searched field e in (4) is approxi-
mated by a trigonometric polynomial eN in the form (cf. [2])

eðxÞ � eNðxÞ ¼
X
k2ZN

êðkÞukðxÞ; x 2 Y; ð8Þ

where N ¼ ðN1; . . . ;NdÞ; ê designates the Fourier coefficients defined in (6) and

ZN ¼ k 2 Zd : �Na

2
< ka 6

Na

2
;a ¼ 1; . . . ;d

� �
: ð9Þ

We recall, e.g. from [2], that the ath component of the trigonometric polynomial expansion eN
a admits two equivalent finite-

dimensional representations. The first one is based on a matrix êa 2 CN of the Fourier coefficients of the ath component and
equation (8) with êaðkÞ ¼ êk

a. Second, the data can be entirely determined by interpolation of nodal values

eN
a ðxÞ ¼

X
k2ZN

ek
au

N
k ðxÞ; a ¼ 1; . . . ;d ð10Þ

where ea 2 RN is a matrix storing electric field values at grid points, ek
a ¼ eN

a ðxkÞ is the corresponding value at the kth node
with coordinates xk = (k1h1, . . . ,kdhd) and basis functions

uN
k ðxÞ ¼ jNj

�1
X

m2ZN

exp ip
Xd

a¼1

ma
xa

Y a
� 2ka

Na

� �( )
ð11Þ

satisfy the Dirac delta property uN
k ðxmÞ ¼ dmk with jNj ¼

Qd
a¼1Na. Both representations can be directly related to each other by

êa ¼ Fea; ea ¼ F�1êa; ð12Þ

where the Vandermonde matrices F 2 CN�N and F�1 2 CN�N

Fkm ¼ jYj�
1
2 exp �

Xd

a¼1

2pi
kama

Na

 !
; ð13Þ

ðF�1Þkm ¼ jYj
1
2jNj�1 exp

Xd

a¼1

2pi
kama

Na

 !
; ð14Þ

implement the forward and inverse Fourier transform, respectively, e.g. [9, Section 4.6].
The trigonometric collocation method is based on the projection of the Lippmann–Schwinger equation (4) to the space of

the trigonometric polynomials of the form
P

k2ZN ckuk; ck 2 C
� �

(cf. [7,2]). In view of Eq. (10), this is equivalent to the collo-
cation at grid points, with the action of C0 operator evaluated from the Fourier space expression (5) converted to the nodal
representation by (12)2. The resulting system of collocation equations reads

ðIþ BÞe ¼ e0; ð15Þ
where e 2 Rd�N and e0 2 Rd�N store the corresponding components of the solution and of the macroscopic field, respectively.
Furthermore, I is the d � d � N � N unit matrix and the non-symmetric matrix B can be expressed, for the two-dimensional
setting, in the partitioned format as

B ¼ F�1 0

0 F�1

" # b¡0
11

b¡0
12b¡0

21
b¡0

22

" #
F 0

0 F

� 	
dL11 dL12

dL21 dL22

� 	
; ð16Þ

with an obvious generalization to an arbitrary dimension. Here, b¡0
ab 2 RN�N and dLab 2 RN�N are diagonal matrices storing the

corresponding grid values, for which it holds

b¡0
ab


 �kk
¼ bC0

abðkÞ; dLkk
ab ¼ dLabðxkÞ; a; b ¼ 1; . . . ;d and k 2 ZN : ð17Þ

2.3. Iterative solution of collocation equations

It follows from Eq. (16) that the cost of the multiplication by B or by BT is driven by the forward and inverse Fourier trans-
forms, which can be performed in O(jNjlogjNj) operations by FFT techniques. This makes the resulting system (15) ideally
suited for iterative solvers.

In particular, the original Fast Fourier Transform-based Homogenization (FFTH) scheme formulated by Moulinec and Su-
quet in [1] is based on the Neumann expansion of the matrix inverse (I + B)�1, so as to yield the mth iterate in the form
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eðmÞ ¼
Xm

j¼0

ð�BÞje0: ð18Þ

Convergence of the series (18) was comprehensively studied in [4,8], where it was shown that the optimal rate of conver-
gence is achieved for

L0 ¼ kmin þ kmax

2
I; ð19Þ

with kmin and kmax denoting the minimum and maximum eigenvalues of L(x) on Y and I being the identity tensor.
Here, we propose to solve the non-symmetric system (15) by well-established Krylov subspace methods, in particular,

exploiting the classical Conjugate Gradient (CG) method [10] and the biconjugate gradient (BiCG) algorithm [11]. Even
though that CG algorithm is generally applicable to symmetric and positive-definite systems only, its convergence in the
one-dimensional setting has been proven by Vondřejc [12, Section 6.2]. A successful application of CG method to a general-
ized Eshelby inhomogeneity problem has also been recently reported by Novák [13] and Kanaun [14].

3. Results

To assess the performance of the conjugate gradient algorithms, we consider a model problem of the transverse electric
conduction in a square array of identical circular particles with 50% volume fraction. A uniform macroscopic field e0 = (1,0)
is imposed on the corresponding single-particle unit cell, discretized by N = (255,255) nodes1 and the phases are considered
to be isotropic with the conductivities set to L = I for the matrix phase and to L = .I for the particle.

The conductivity of the homogeneous reference medium is parameterized as

L0ðxÞ ¼ ð1�xþ .xÞI; ð20Þ

where x = 0.5 corresponds to the optimal convergence of FFTH algorithm (19). All conjugate gradient-related results have
been obtained using the implementations according to [16] and referred to as Algorithm 6.18 (CG method) and Algorithm
7.3 (BiCG scheme). Two termination criteria are considered. The first one is defined for the mth iteration as [15]

gðmÞe

� 
2 ¼
P

k2ZN ðk � ĵkðmÞÞ2

k̂j0ðmÞk2
2

6 e2; ð21Þ

and provides the test of the equilibrium condition (1)2 in the Fourier space. An alternative expression, related to the standard
residual norm for iterative solvers, has been proposed by Vinogradov and Milton in [8] and admits the form

gðmÞr ¼ kL
0ðeðmþ1Þ � eðmÞÞk2

ke0k2
6 e; ð22Þ

with the additional L0 term ensuring the proportionality to (21) at convergence. From the numerical point of view, the latter
criterion is more efficient than the equilibrium variant, which requires additional operations per iteration. From the theoret-
ical point of view, its usage is justified only when supported by a convergence result for the iterative algorithm. In the oppo-
site case, the equilibrium norm appears to be more appropriate, in order to avoid spurious non-physical solutions.

3.1. Choice of reference medium and norm

Since no results for the optimal choice of the reference medium are known for (Bi)CG-based solvers, we first estimate
their sensitivity to this aspect numerically. The results appear in Fig. 1(a), plotting the relative number of iterations for
CG and BiCG solvers against the conductivity of the reference medium parameterized by x, recall Eq. (20).

As expected, both CG and BiCG solvers achieve a significant improvement over FFTH method in terms of the number of
iterations, ranging from 50% for a mildly-contrasted composite down to 2% for . = 104. Moreover, contrary to all other avail-
able methods, the number of iterations is almost independent of the choice of the reference medium. We also observe, in
agreement with results in [12, Section 6.2] for the one-dimensional setting, that CG and BiCG algorithms generate identical
sequences of iterates; the minor differences visible for x > 1 or . = 104 can be therefore attributed to accumulation of round-
off errors. These conclusions hold for both equilibrium- and residual-based norms, which appear to be roughly proportional
for the considered range of the phase contrasts (cf. Fig. 1(b)). Therefore, the residual criterion (22) will mostly be used in
what follows.

In Fig. 2, we supplement the comparison by considering the total CPU time required to achieve a convergence. The data
indicate that the cost of one iteration is governed by the matrix–vector multiplication, recall Eq. (16): the overhead of CG
scheme is about 10% with respect to FFTH method, while the application of BiCG algorithm, which involves B and BT prod-
ucts per iteration [11], is about twice as demanding. As a result, CG algorithm significantly reduces the overall computational

1 Note that the odd number of discretization points is used to eliminate artificial high-frequency oscillations of the solution in the Fourier space, as reported
in [15, Section 2.4].
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time in the whole range of contrasts, whereas a similar effect has been reported for the candidate schemes only for . P 103

(cf. [6]).

3.2. Influence of phase contrast

As confirmed by all previous works, the phase contrast . is the critical parameter influencing the convergence of FFT-
based iterative solvers. In Fig. 3, we compare the scaling of the total number of iterations with respect to phase contrast
for CG and FFTH methods, respectively. The results clearly show that the number of iterations grows as

ffiffiffi.p instead of the
linear increase for FFTH method. This follows from error bounds

gðmÞr 6 cmgð0Þr ; cFFTH ¼ .� 1
.þ 1

; cCG ¼
ffiffiffi.p � 1ffiffiffi.p þ 1

: ð23Þ

The first estimate was proven in [4], whereas the second expression is a direct consequence of the condition number of
matrix B being proportional to . and a well-known result for the conjugate gradient method, e.g. [16, Section 6.11.3]. The
CG-based method, however, failed to converge for the infinite contrast limit. Such behavior is equivalent to the Eyre-Milton
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scheme [4]. It is, however, inferior to the Augmented Lagrangian algorithm, for which the convergence rate improves with
increasing q and the method converges even as q ?1. Nonetheless, such results are obtained for optimal, but not always
straightforward, choice of the parameters [5].

3.3. Convergence progress

The final illustration of the CG-based algorithm is provided by Fig. 4, displaying a detailed convergence behavior for both
low- and high-contrast cases. The results in Fig. 4(a) correspond well with estimates (23) for both residual and equilibrium-
based norms. Influence of a higher phase contrast is visible from Fig. 4(b), plotted in the full logarithmic scale. For FFTH
algorithm, two regimes can be clearly distinguished. In the first few iterations, the residual error rapidly decreases, but
the iterates tend to deviate from equilibrium. Then, both residuals are simultaneously reduced. For CG scheme, the increase
of the equilibrium residual appears only in the first iteration and then the method rapidly converges to the correct solution.
However, its convergence curve is irregular and the algorithm repeatedly stagnates in two consecutive iterations. Further
analysis of this phenomenon remains a subject of future work.
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4. Conclusions

In this short note, we have presented a conjugate gradient-based acceleration of the FFT-based homogenization solver
originally proposed by Moulinec and Suquet [1] and illustrated its performance on a problem of electric conduction in a peri-
odic two-phase composite with isotropic phases. On the basis of obtained results, we conjecture that:

(i) the non-symmetric system of linear equations (15), arising from discretization by the trigonometric collocation
method [2], can be solved using the standard conjugate gradient algorithm,

(ii) the convergence rate of the method is proportional to the square root of the phase contrast,
(iii) the methods fails to converge in the infinite contrast limit,
(iv) contrary to available improvements of the original FFT-solver [4,5], the cost of one iteration remains comparable to the

basic scheme and the method is insensitive to the choice of auxiliary reference medium.

The presented computational experiments provide the first step towards further improvements of the method, including
a rigorous analysis of its convergence properties, acceleration by multi-grid solvers and preconditioning and the extension to
non-linear problems.
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GAČR 103/09/1748, No. GAČR 103/09/P490 and No. GAČR 201/09/1544, and by the Grant Agency of the Czech Technical Uni-
versity in Prague through project No. SGS10/124/OHK1/2T/11.

References

[1] H. Moulinec, P. Suquet, A fast numerical method for computing the linear and nonlinear mechanical properties of composites, Comptes rendus de
l’Académie des sciences. Série II, Mécanique, physique, chimie, astronomie 318 (11) (1994) 1417–1423.

[2] G. Vainikko, Fast solvers of the Lippmann–Schwinger equation, in: R.P. Gilbert, J. Kajiwara, Y.S. Xu (Eds.), Direct and Inverse Problems of Mathematical
Physics, International Society for Analysis Applications and Computation, vol. 5, Kluwer Academic Publishers., Dordrecht, The Netherlands, 2000, pp.
423–440.

[3] L. Greengard, J. Lee, Electrostatics and heat conduction in high contrast composite materials, Journal of Computational Physics 211 (1) (2006) 64–76.
[4] D.J. Eyre, G.W. Milton, A fast numerical scheme for computing the response of composites using grid refinement, The European Physical Journal

Applied Physics 6 (1) (1999) 41–47.
[5] J.C. Michel, H. Moulinec, P. Suquet, A computational method based on augmented Lagrangians and fast Fourier transforms for composites with high

contrast, CMES-Computer Modeling in Engineering and Sciences 1 (2) (2000) 79–88.
[6] H. Moulinec, P. Suquet, Comparison of FFT-based methods for computing the response of composites with highly contrasted mechanical properties,

Physica B: Condensed Matter 338 (1–4) (2003) 58–60.
[7] J. Saranen, G. Vainikko, Trigonometric collocation methods with product integration for boundary integral equations on closed curves, SIAM Journal on

Numerical Analysis 33 (4) (1996) 1577–1596.
[8] V. Vinogradov, G.W. Milton, An accelerated FFT algorithm for thermoelastic and non-linear composites, International Journal for Numerical Methods in

Engineering 76 (11) (2008) 1678–1695.
[9] G. Golub, C.F. Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore and London, 1996.

[10] M.R. Hestenes, E. Stiefel, Methods of conjugate gradients for solving linear systems, Journal of Research of the National Bureau of Standards 49 (6)
(1952) 409–463.

[11] R. Fletcher, Conjugate gradient methods for indefinite systems, in: G. Watson (Ed.), Numerical Analysis, Proceedings of the Dundee Conference on
Numerical Analysis, 1975, Lecture Notes in Mathematics, vol. 506, Springer-Verlag, New York, 1976, pp. 73–89.
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Abstract. The focus of this paper is on the analysis of the Conjugate
Gradient method applied to a non-symmetric system of linear equations,
arising from a Fast Fourier Transform-based homogenization method
due to Moulinec and Suquet [1]. Convergence of the method is proven
by exploiting a certain projection operator reflecting physics of the un-
derlying problem. These results are supported by a numerical example,
demonstrating significant improvement of the Conjugate Gradient-based
scheme over the original Moulinec-Suquet algorithm.

Keywords: Homogenization, Fast Fourier Transform, Conjugate Gra-
dients

1 Introduction

The last decade has witnessed a rapid development in advanced experimen-
tal techniques and modeling tools for microstructural characterization, typically
provided in the form of pixel- or voxel-based geometry. Such data now allow
for the design of bottom-up predictive models of the overall behavior for a wide
range of engineering materials. Of course, such step necessitates the develop-
ment of specialized algorithms, capable of handling large-scale voxel-based data
in an efficient manner. In the engineering community, perhaps the most success-
ful solver meeting these criteria was proposed by Moulinec and Suquet in [1].
The algorithm is based on the Neumann series expansion of the inverse of an
operator arising in the associated Lippmann-Schwinger equation and exploits
the Fast Fourier Transform to evaluate the action of the operator efficiently for
voxel-based data. In our recent work [2], we have offered a new approach to the
Moulinec-Suquet scheme, by exploiting the trigonometric collocation method due
to Saranen and Vainikko [3]. Here, the Lippman-Schwinger equation is projected
to a space of trigonometric polynomials to yield a non-symmetric system of lin-
ear equations, see Section 2 below. Quite surprisingly, numerical experiments
revealed that the system can be efficiently solved using the standard Conjugate
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Gradient algorithm. The analysis of this phenomenon, as presented in Section 3,
is at the heart of this contribution. The obtained results are further supported
by a numerical example in Section 4 and summarized in Section 5.

The following notation is used throughout the paper. Symbols a, a and A

denote scalar, vector and second-order tensor quantities, respectively, with Greek
subscripts used when referring to the corresponding components, e.g. Aαβ . The
outer product of two vectors is denoted as aba, whereas a �b or A �b represents
the single contraction between vectors (or tensors). A multi-index notation is
employed, in which RN with N � pN1, . . . , Ndq represents RN1�����Nd and |N |
abbreviates

±d
α�1

Nα. Block matrices are denoted by capital letters typeset in a
bold serif font, e.g. A P Rd�d�N�N , and the superscript and subscript indexes

are used to refer to the components, such that A � rAkm

αβ sk,mPsZN

α,β�1,...,d withsZN � "
k P Z

d : �Nα

2
  kα ¤ Nα

2
, α � 1, . . . , d

*
.

Sub-matrices of A are denoted as

Aαβ � �
A
km

αβ

�k,mPsZN P R
N�N , Akm � �

A
km

αβ

�
α,β�1,...,d

P R
d�d

for α, β � 1, . . . , d and k,m P sZN . Analogously, the block vectors are denoted
by lower case letters, e.g. e P Rd�N and the matrix-by-vector multiplication is
defined as rAeskα � ḑ

β�1 m̧PsZN

A
km

αβ e
m

β P R
d�N , (1)

with α � 1, . . . , d and k P sZN .

2 Problem setting

Consider a composite material represented by a periodic unit cell

Y � d¹
α�1

p�Yα, Yαq � R
d.

In the context of linear electrostatics, the associated unit cell problem reads as

∇� epxq � 0, ∇ � jpxq � 0, jpxq � Lpxq � epxq, x P Y (2)

where e is a Y-periodic vectorial electric field, j denotes the corresponding vector
of electric current and L is a second-order positive-definite tensor of electric
conductivity. In addition, the field e is subject to a constraintxepxqy :� 1

|Y|

»
Y

epxq dx � e0, (3)
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where |Y| denotes the d-dimensional measure of Y and e0 � 0 a prescribed
macroscopic electric field.

The original problem (2)–(3) is then equivalent to the periodic Lippmann-
Schwinger integral equation, formally written as

epxq � »
Y

Γ px� y;L0q � �Lpyq �L0

	 � epyq dy � e0, x P Y, (4)

where L0 P Rd�d denotes a homogeneous reference medium. The operator
Γ px,L0q is derived from the Green’s function of the problem (2)–(3) with
Lpxq � L0 and can be simply expressed in the Fourier space

Γ̂ pk;L0q � $&%0 k � 0

ξ b ξ

ξ �L0 � ξ ξpkq � �
kα

Yα

	d

α�1

;k P Zdz0. (5)

Operator pf � pfpkq stands for the Fourier coefficient of fpxq for the k-th fre-
quency given bypfpkq � »

Y

fpxqϕ�kpxq dx, ϕkpxq � |Y|� 1

2 exp

�
iπ

ḑ

α�1

xαkα
Yα

�
, (6)

”i” is the imaginary unit (i2 � �1). We refer to [2,4] for additional details.
Note that the linear electrostatics serves here as a model problem; the frame-
work can be directly extended to e.g. elasticity [5], (visco-)plasticity [6] or to
multiferroics [7].

2.1 Discretization via trigonometric collocation

The numerical solution of the Lippmann-Schwinger equation is based on a dis-
cretization of a unit cell Y into a regular periodic grid with N1� � � � �Nd nodal
points and grid spacings h � p2Y1{N1, . . . , 2Yd{Ndq. The searched field e in (4)
is approximated by a trigonometric polynomial eN in the form (cf. [3, Chapter
10])

epxq � eN pxq � ¸
kPsZN

ê
kϕkpxq, x P Y, (7)

where ê
k � pêkαqα�1,...,d designates the Fourier coefficients defined in (6). No-

tice that the trigonometrical polynomials are uniquely determined by a regular
grid data, which makes them well-suited to problems with pixel- or voxel-based
computations.

The trigonometric collocation method is based on the projection of the
Lippmann-Schwinger equation (4) onto the space of the trigonometric polyno-
mials

T N � ! ¸
kPsZN

ckϕk, ck P C

)
, (8)
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leading to a to linear system in the form, cf. [2]pI�Bqe � e0, B � F
�1

Γ̂FpL� L0q, (9)

where e � �
e
k
α

�kPsZN

α�1,...,d
P Rd�N is the unknown vector, I � rδαβδkmskmPsZN

α,β�1,...,d
P

Rd�d�N�N is the identity matrix, expressed as the product of the Kronecker

delta functions δαβ and δkm, and e0 � pe0αqkPsZN

α�1,...,d P Rd�N .
All the matrices in (9) exhibit a block-diagonal structure. In particular,

Γ̂ � �
δkmΓ̂

km

αβ

�k,mPsZN

α,β�1,...,d
, L � �

δkmL
km

αβ

�k,mPsZN

α,β�1,...,d
, L0 � �

δkmL
0
αβ

�k,mPsZN

α,β�1,...,d
,

with Γ̂
kk

αβ � Γ̂αβpk;L0q, Lkkαβ � Lαβpkq and pL0qαβ � L0

αβ . The matrix F imple-
ments the Discrete Fourier Transform and is defined as

F � �
δαβF

km
�k,mPsZN

α,β�1,...,d
, F

km � |Y| 12±d

α�1
Nα

exp

�� ḑ

α�1

2πi
kαmα

Nα

�
, (10)

with F�1 representing the inverse transform.
It follows from Eq. (1) that the cost of multiplication by B is dominated by

the action of F and F�1, which can be performed in Op|N | log |N |q operations
by the Fast Fourier Transform techniques. This makes the system (9) well-suited
for applying some iterative solution technique. In particular, the original Fast
Fourier Transform-based Homogenization scheme formulated by Moulinec and
Suquet in [1] is based on the Neumann expansion of the matrix inverse pI�Bq�1,
so as to yield the m-th iterate in the form

epmq � m̧

j�0

p�Bqj e0. (11)

As indicated earlier, our numerical experiments [2] suggest that the system can
be efficiently solved using the Conjugate Gradient method, despite the non-
symmetry of B evident from (9). This observation is studied in more detail in
the next Section.

3 Solution by the Conjugate Gradient method

We start our analysis with recasting the system (9) into a more convenient form,
by employing a certain operator and the associated sub-space introduced later.
Note that for simplicity, the reference conductivity is taken as L0 � λI.

Definition 1. Given λ ¡ 0, we define operator PE � λF�1Γ̂F and associated
sub-space as

E �  
PEx for x P R

d�N
( � R

d�N .

Lemma 1. The operator PE is an orthogonal projection.
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Proof. First, we will prove that PE is projection, i.e. P2

E � PE . Since F is a
unitary matrix, it is easy to see that

P
2

E � pλF�1
Γ̂FqpλF�1

Γ̂Fq � F
�1pλΓ̂q2F. (12)

Hence, in view of the block-diagonal character of Γ̂, it it sufficient to prove the
projection property of sub-matrices pλΓ̂qkk only. This follows using a simple
algebra, recall Eq. (5):pλΓ̂qkkpλΓ̂qkk � ξpkq b ξpkq

ξpkq � ξpkq � ξpkq b ξpkq
ξpkq � ξpkq � ξpkq b ξpkq

ξpkq � ξpkq � pλΓ̂qkk.
The orthogonality of PE now follows from

P�E � �
λF�1Γ̂F

	� � λF�Γ̂� �F�1
�� � λF�1Γ̂F � PE ,

according to a well-known result of linear algebra, e.g. Proposition 1.8 in [8]. [\
Remark 1. It follows from the previous results that the subspace E collects the
non-zero coefficients of trigonometric polynomials T N with zero rotation, which
represent admissible solutions to the unit cell problem defined by (2). Note that
the orthogonal space EK contains the trigonometric representation of constant
fields, cf. [4, Section 12.7].

Lemma 2. The solution e to the linear system (9) admits the decomposition
e � e0 � eE , with eE P E satisfying

PELeE � PELe
0 � 0. (13)

Proof. As e P Rd�N , Lemma 1 ensures that it can be decomposed into two
orthogonal parts eE � PEe and eEK � pI � PEqe. Substituting this expression
into (9), and using the identity B � λF�1Γ̂F

�
L
λ
� I

�
, we arrive at

1

λ
PELeE � eEK � 1

λ
PELeEK � e0. (14)

Since e0 P EK, we have eEK � e0 and the proof is complete. [\
With these auxiliary results in hand, we are in the position to present our

main result.

Proposition 1. The non-symmetric system of linear equations (9) is solvable
by the Conjugate Gradient method for an initial vector ep0q � e0 � re with re P E.
Moreover, the sequence of iterates is independent of the parameter λ.

Proof (outline). It follows from Lemma 2 that the solution to (9) admits yet
another, optimization-based, characterization in the form

e � e0 � argmin
ēPE �

1

2

�
Lē, ē

�
Rd�N

� �
Le0, ē

�
Rd�N

�
. (15)
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The residual corresponding to the initial vector ep0q equals to
rp0q � e0 � pI�Bq �e0 � re� � � 1

λ
PELe

0 � 1

λ
PELre P E .

It can be verified that the subspace E is B-invariant, thus pI�BqE � E . Therefore,
the Krylov subspace

KmpI�B, rp0qq � span
 
rp0q, pI�Bqrp0q, . . . , pI�Bqmrp0q( � E

for arbitrary m P N. This implies that the residual rpmq and the Conjugate Gra-
dient search direction ppmq at the m-th iteration satisfy rpmq P E and ppmq P E .
Since B is symmetric and positive-definite on E , the convergence of CG algo-
rithm now follows from standard arguments, e.g. Theorem 6.6 in [8]. Observe
that different choices of λ generate identical Krylov subspaces, thus the sequence
of iterates is independent of λ. [\
Remark 2. Note that it is possible to show, using direct calculations based on the
projection properties of PE , that the Biconjugate Gradient algorithm produces
exactly the same sequence of vectors as the Conjugate Gradient method, see [9].

4 Numerical example

To support our theoretical results, we consider a three-dimensional model prob-
lem of electric conduction in a cubic periodic unit cell Y � ±

3

α�1
p� 1

2
, 1

2
q, rep-

resenting a two-phase medium with spherical inclusions of 25% volume fraction.
The conductivity parameters are defined as

Lpxq � $'''&'''%ρI, }x}2   p 3

16π
q 1

3��� 1 0.2 0.2

0.2 1 0.2

0.2 0.2 1

�Æ
, otherwise

where ρ ¡ 0 denotes the contrast of phase conductivities. We consider the
macroscopic field e0 � r1, 0, 0s and discretize the unit cell with N � rn, n, ns
nodes3. The conductivity of the homogeneous reference medium L0 P Rd�d is
parametrized as

L0 � λI, λ � 1� ω � ρω, (16)

where ω � 0.5 delivers the optimal convergence of the original Moulinec-Suquet
Fast-Fourier Transform-based Homogenization (FFTH) algorithm [1].

We first investigate the sensitivity of Conjugate Gradient (CG) algorithm to
the choice of reference medium. The results appear in Fig. 1(a), plotting the

3 In particular, n was taken consequently as 16, 32, 64, 128 and 160 leading up to
3 � 1603 .� 12.2 � 106 unknowns
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relative number of iterations for CG against the conductivity of the reference
medium parametrized by ω, recall Eq. (16). As expected, CG solver achieve a
significant improvement over FFTH method as it requires about 40% iterations
of FFTH for a mildly-contrasted composite down to 4% for ̺ � 103. The minor
differences visible especially for ρ � 103 can be therefore attributed to accumula-
tion of round-off errors. These observations fully confirm our theoretical results
presented earlier in Section 3.
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Fig. 1. (a) Relative number of iterations as a function of the reference medium param-
eter ω and (b) computational time as a function of the number of unknowns.

In Fig. 1(b), we present the total computational time4 as a function of the
number of degrees of freedom and the phase ratio ρ. The results confirm that
the computational times scales linearly with the increasing number of degrees of
freedom for both schemes for a fixed ρ [2]. The ratio of the computational time
for CG and FFTH algorithms remains almost constant, which indicates that the
cost of a single iteration of CG and FFTH method is comparable.

In addition, the memory requirements of both schemes are also comparable.
This aspect represents the major advantage of the short-recurrence CG-based
scheme over alternative schemes for non-symmetric systems, such as GMRES.
Finally note that finer discretizations can be treated by a straightforward parallel
implementation.

5 Conclusions

In this work, we have proven the convergence of Conjugate Gradient method for
a non-symmetric system of linear equations arising from periodic unit cell ho-

4 The problem was solved with a Matlab
R© in-house code on a machine IntelR©

CoreTM2 Duo 3 GHz CPU, 3.28 GB computing memory with Debian linux 5.0
operating system.
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mogenization problem and confirmed it by numerical experiment. The important
conclusions to be pointed out are as follows:

1. The success of the Conjugate Gradient method follows from the projection
properties of operator PE introduced in Definition 1, which reflect the struc-
ture of the underlying physical problem.

2. Contrary to all available extensions of the FFTH scheme, the performance
of the Conjugate Gradient-based method is independent of the choice of
reference medium. This offers an important starting point for further im-
provements of the method.

Apart from the already mentioned parallelization, performance of the scheme
can further be improved by a suitable preconditioning procedure. This topic is
currently under investigation.
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Jiří Němeček ⇑, Vlastimil Králík, Jaroslav Vondřejc
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a b s t r a c t

This paper shows an efficient methodology based on micromechanical framework and grid nanoindenta-
tion for the assessment of effective elastic properties on several types of microscopically heterogeneous
structural materials. Such task is a prerequisite for successful nano- and micro-structural material char-
acterization, development and optimization. The grid nanoindentation and statistical deconvolution
methods previously described in the literature e.g. for cementitious materials [1,2], alkali activated mate-
rials [3] or high-performance concretes [4] have been employed. In this paper we demonstrate their uti-
lization also for other types of structural composites with crystalline nature and we validate the results
by using enhanced numerical method based on fast Fourier transform (FFT). The direct procedure of using
grid nanoindentation data in the FFT method simplifies the evaluation of effective composite properties
and leads to the assemblage of the full stiffness matrix compared to simple analytical approaches.

The paper deals namely with cement paste, gypsum and aluminum alloy. Nanoindentation is used for
the determination of phase properties in grid points at the scale below one micrometer. Statistical
approach and deconvolution methods are applied to assess intrinsic phase properties. Elastic properties
obtained by nanoindentation are homogenized in the frame of the representative volume element (RVE)
by means of analytical and numerical FFT-based schemes. Good correlation of the results from all meth-
ods was found for the tested materials due to the close-to-isotropic nature of the composites in the RVE
having dimensions �100–200 lm. Results were also verified against macroscopic experimental results.
The proposed and validated numerical approach can be successively used for the material modeling in
finite element software or for optimization of materials with inhomogeneous microstructures.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Structural composites such as concrete, gypsum, metals and oth-
ers are often characterized by a heterogeneous microstructure at dif-
ferent length scales (nm to m). Traditionally, their mechanical
properties are assessed from macroscopic tests on samples with
cm to m dimensions that can only describe overall (averaged) prop-
erties like overall Young’s modulus or strength. Nowadays, nanoin-
dentation [5] can be successfully applied to access the nanometer
scale and to assess individual phase properties like C–S–H gels, Port-
landite or clinker. However, the properties extracted from nanoin-
dentation are measured for small material volumes (nm to lm).
The large gap between the scales can be crossed by using multiscale
models and micromechanical framework which uses the concept of
the representative volume element (RVE) [6] defined for each mate-
rial level. Homogenization of individual contributions of the RVE
microstructural components is provided by multiple micromechan-
ical approaches that search for effective properties by solving

matrix-inclusion problems. There is a variety of analytical methods
and estimates (Voigt, Reuss or Hashin–Strikmann bounds, Mori–Ta-
naka method, self-consistent scheme and others [6]) that usually
need to assess phase properties and their volume fractions prior to
the analysis. Such assessment is not straightforward in the case of
structural composites whose microstructure develops in space and
time during their lifetime. Therefore, statistical estimates obtained
from grid nanoindentation need to be employed. The grid nanoin-
dentation and statistical deconvolution methods have been de-
scribed and used e.g. by Ulm and coworkers [1,2] for cement based
materials, Němeček et al. [3] for alkali activated materials or Sorelli
et al. [4] for high performance concrete.

In the case of numerical methods (e.g. finite elements or FFT
based methods), homogenization can be much easier due to the di-
rect use of grid point mechanical data as will be demonstrated later
in the paper.

2. Methods

In this paper, we first deal with the evaluation of nanoindenta-
tion data received from large statistical sets (hundreds of indents)
on the scale of several hundreds of micrometers which is a scale
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Please cite this article in press as: Němeček J et al. Micromechanical analysis of heterogeneous structural materials. Cement Concrete Comp (2012), http://
dx.doi.org/10.1016/j.cemconcomp.2012.06.015

Paper 3 page 45

http://dx.doi.org/10.1016/j.cemconcomp.2012.06.015
mailto:jiri.nemecek@fsv.cvut.cz
mailto:vlastimil.kralik@fsv.cvut.cz
mailto:vlastimil.kralik@fsv.cvut.cz
mailto:jaroslav.vondrejc@fsv.cvut.cz
http://dx.doi.org/10.1016/j.cemconcomp.2012.06.015
http://www.sciencedirect.com/science/journal/09589465
http://www.elsevier.com/locate/cemconcomp
http://dx.doi.org/10.1016/j.cemconcomp.2012.06.015
http://dx.doi.org/10.1016/j.cemconcomp.2012.06.015


that includes all material phases within RVE in a sufficient content.
Since the microstructure of the composites is very complex in this
scale and the determination of pure individual micromechanically
distinct phases is not straightforward, we assess the individual
properties by using grid indentation technique [2] with subse-
quent statistical deconvolution method [2–4]. Mathematically,
the deconvolution is an ill-posed problem that can be regularized
by a prior setting of the number of mechanically different phases
that are determined. Therefore, we link this number with the num-
ber of chemically different phases or groups of mechanically simi-
lar constituents as described in Section 6. We also adapt the
originally proposed deconvolution method [2] by using different
minimizing criteria and modified Monte Carlo simulations as de-
scribed in Němeček et al. [3]. Such methodology gives us mean
phase properties together with the estimation of their volume frac-
tions based on the experimental dataset from the whole grid.

After setting the RVE size and receiving phase properties, effec-
tive elastic properties are determined by both analytical and
numerical homogenization schemes. The comparison of the meth-
ods is provided by comparing the differences between the output
stiffness matrices. As mentioned earlier, the application of the
numerical scheme does not require the knowledge of intrinsic
phase properties and the direct use of grid data is utilized.

3. Tested materials and test setup

3.1. Cement paste

Selected heterogeneous structural materials were chosen for
this study. At first, cement paste samples were prepared from Port-
land cement CEM-I 42,5 R (locality Mokrá, CZ) with water to ce-
ment weight ratio equal to 0.5 [7]. Samples were stored in water
for two years. Therefore, high degree of hydration (over 90%) can
be anticipated in the samples. The microstructure of cement paste
in the tested volume includes several chemical phases known from
cement chemistry, namely low- and high- density calcium–silica
hydrates (LD and HD C–S–H), calcium hydroxide Ca(OH)2, residual
clinker, porosity and some other minor phases. The cement paste
microstructure is shown in Fig. 1a. Very light areas in Fig. 1a can
be attributed to the residual clinker, light grey areas are rich of
Ca(OH)2, dark grey zone belongs to C–S–H gels and black color rep-
resents very low density regions or capillary porosity. Note, that C–
S–H gel and Ca(OH)2 zones are spatially intermixed in small vol-
umes (<<10 lm) and the resolution of SEM–BSE images does not
allow for a direct separation of these phases from the image. The
majority of the material volume mostly consists of poorly crystal-
line or amorphous phases (C–S–H) and partly of crystalline phases
(Ca(OH)2). Portlandite crystals are known for their anisotropy.
Since their size and volume is not large in the sample and they
can be mixed with C–S–H, all phases will be supposed to be
mechanically isotropic for simplification in the analysis.

Cement paste includes also wide distribution of pores. Majority
of pores lies in the nanometer range (<100 nm, as checked with He/
Hg-porosimetry) and, on the other hand, large capillary pores are
present in the scale above the indentation level (i.e. >>1 lm).
Therefore, the indentation depth was chosen so that the nanopo-
rosity was included in the tested volume but the large capillary
porosity was not. The depth range �100–300 nm was suitable for
the analysis.

Cement paste was indented by a grid consisting of
20 � 20 = 400 indents with 10 lm spacing which yields the RVE
size �200 lm. The indents were prescribed as load controlled
(maximum force 2 mN, loading/unloading rate 12 mN/min, hold-
ing for 30 s). Examples of load-penetration diagrams for different

constituents are shown in Fig. 2a. The final penetration depths vary
for the phases depending on their stiffness.

3.2. Gypsum

Secondly, dental gypsum (Interdent
�
) was chosen as a model

representative for gypsum based materials. Samples were prepared
with water to gypsum ratio 0.2 and matured in ambient conditions
for two months. From the chemistry point of view, every gypsum
binder is composed of three main components – calcium sulfate
anhydrite (CaSO4), calcium sulfate hemihydrate (CaSO4�½H2O) in
two modifications: a- or b-hemihydrate, and calcium sulfate dihy-
drate (CaSO4�2H2O). The gypsum binder includes also some impu-
rities and additives in the case of natural sources. The Interdent
gypsum is a low-porosity purified a-hemihydrate used for dental
purposes.

The hardened gypsum mass is a porous material with a rela-
tively large internal surface consisting of interlocking crystals in
the form of plates and needles (Singh and Middendorf [8]). Note

Fig. 1. Microstructures of (a) cement paste, (b) gypsum and (c) Al-alloy.
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that in the case of b-hemihydrate hydration, the resulting sample
porosity is typically very large (more than 50% for higher water
to binder ratii) and crystals are interlocked very weakly. Therefore,
ordinary gypsum systems used for building purposes which are
based on b-hemihydrate are characterized with relatively low
strengths (<10 MPa in compression). In contrast, hydration of our
samples based on a-hemihydrate produced a dense matrix with
total sample porosity just 19%. The majority of pores lay in the
nano-range 0–300 nm (0–100 nm 7%, 100–300 nm 4%, 300–
1000 nm 1%) and virtually no pores appeared between 1 and
100 lm (<0.5%). Due to the very low porosity, the strength of this
material is much higher (>50 MPa in compression). The gypsum
microstructure is depicted in Fig. 1b in which dark areas can be
attributed to the porosity, very light areas belong to low hydrated
CaSO4 grains or carbonates. The majority of the sample volume in
Fig. 1b composes of hydrated crystalline mass.

Two locations were tested on gypsum samples. Each place was
covered by 15 � 12 = 180 indents with 15 lm spacing. Similar
loading as in the case of cement was used (load controlled test to
maximum force 5 mN). Typical loading diagrams are depicted in
Fig. 2b. A bit wider range of final depths on indented phases
(200–800 nm) was obtained due to larger differences in the phase
stiffness. However, the majority of indents were performed to the
mean final depths around 400–500 nm. The RVE size defined by
the tested area is again �200 lm in this case.

3.3. Aluminum alloy

For the sake of comparison with different kind of material, an
aluminum alloy used for the production of lightweight aluminum
foams Alporas

�
was also studied [9,10]. The material is produced

from an aluminum intermixed with 1.5 wt.% of Ca and 1.6 wt.%

TiH2. Ca/Ti-rich discrete precipitates and diffuse Al4Ca areas devel-
op in the metal solid [11] that can be seen as lighter areas in Fig. 1c.
Therefore, two distinct phases denoted as Al-rich and Ca/Ti-rich
were separated in this study.

Nanoindentation was applied to the cell walls of the foam.
Loading to maximum force 1 mN was used. Final depths arrived
at �100–200 nm. Typical differences between the loading dia-
grams of different phases obtained from nanoindentation are
shown in Fig. 2c. Results from 200 indents (two locations
10 � 10 indents) with 10 lm spacing were evaluated. The RVE size
related to the tested region is �100 lm in this case.

4. Nanoindentation, sample preparation and evaluation of
phase properties

As mentioned above, nanoindentation has been applied to re-
ceive elastic constants of individual material phases. Nanoindenter
(Nanohardness tester, CSM Instruments) located in Prague’s labo-
ratory at the Czech Technical University was employed in our mea-
surements. The apparatus was equipped with a diamond
pyramidal Berkovich tip with the apex radius �100 nm.

The already well-known principle of nanoindentation lies in
bringing a very small tip (Berkovich in our case) to the surface of
the material to make an imprint. Material constants are deduced
from the measured load–displacement curves performed on flat
surfaces.

For our measurements, the depth of penetration was kept
around �300 nm for cement paste, �500 nm for gypsum and
�200 nm for aluminum in order to capture each material phase
on one hand and to minimize phase interactions on the other hand.
The depth of the affected volume under the indenter tip can be
estimated as 3� the penetration depth [2], i.e. around 0.63–

Fig. 2. Nanoindentation load–time and load–depth diagrams for (a) cement paste, (b) gypsum and (c) Al-alloy.
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1.53 lm3 for the studied cases. Such size roughly corresponds to
1/10 of most of the grains or single phase areas which justifies
the use of phase devonvolution [1,2]. The indentation volume con-
tains also a part of nanoporosity that is naturally included in phase
results.

All samples were mechanically polished prior to the testing in
order to achieve smooth and flat surface with substantially smaller
roughness compared to indentation depths. The surface roughness
(evaluated as root-mean-square on the scanned area of
10 � 10 lm) was checked with AFM. It was found to be �25 nm
on cement paste, �38 nm on gypsum and �12 nm on Al-alloy.
Therefore, the sample roughness was acceptable in relation to
the awaited indentation depths.

The indentation loading history contained three segments:
loading, holding and unloading periods. The holding period was in-
cluded in order to minimize creep effects on the elastic unloading
[7]. Elastic properties were evaluated for individual indents using
analytical formulae derived by Oliver and Pharr [12], which ac-
count for an elasto-plastic contact of a conical indenter with an iso-
tropic half-space. The reduced (combined) elastic modulus is then
defined as:

Er ¼
1

2b

ffiffiffiffi
p
p
ffiffiffi
A
p dP

dh
ð1Þ

in which A is the projected contact area of the indenter at the peak
load, b is geometrical constant (b = 1.034 for the used Berkovich tip)
and dP/dh is a slope of the unloading branch evaluated at the peak.
Elastic modulus E of the measured sample can be found using con-
tact mechanics which accounts for the effect of non-rigid indenter
as:

1
Er
¼ ð1� m2Þ

E
þ ð1� m2

i Þ
Ei

ð2Þ

in which m is the Poisson’s ratio of the tested material, Ei a mi are
known elastic modulus and Poisson’s ratio of the indenter.

The solution of the contact problem for anisotropic materials
can be found in [13,14]. In this work, all material phases were trea-
ted as elastically isotropic. Such simplification was adopted due to
the following reasons. In cement paste, the degree of crystallinity is
poor in the majority of specimen volume (e.g. in C–S–H gel). The
content of crystalline Ca(OH)2 phases is low and due to the limited
space for the crystal growth the degree of crystallinity decreases.

On the other hand, gypsum is composed of a polycrystalline
matter with locally anisotropic character. However, the response
in grid nanoindentation is measured on differently oriented crys-
tals and also on a combination of differently oriented crystals lo-
cated under the indenter in the affected volume �1.53 lm3. The
tested location can be viewed as a set of mechanically different
phases that are physically averaged by an indenter. Apparent iso-
tropic elasticity constants associated with the tested indentation
volume can be derived in this case. Similarly, isotropic estimates
were derived for the measured volume in case of Al-alloy disre-
garding the local anisotropy on a crystalline level.

The distinction of the chemically and/or mechanically different
material phases is often not possible on the microlevel (<1 lm)
even with the use of SEM–EDX images. In order to receive statisti-
cally relevant data from all material phases, we applied grid inden-
tation over the tested RVE (Fig. 1). Large matrices containing
hundreds of indents have been performed on tested samples (see
Section 3). To assess individual phase properties, statistical decon-
volution was employed [2,3]. In this method, experimental data are
analyzed from the frequency plots. Mean elastic properties as well
as phase volume fraction are estimated based on the best fit of the
experimental data with a limited number of Gauss distributions
(Fig. 3).

5. Micromechanical homogenization

5.1. Analytical and numerical schemes

In general, homogenization methods search for effective mate-
rial properties. The previously mentioned concept of RVE which
includes all microstructural inhomogeneities that should be sub-
stantially smaller than the RVE size is utilized. The homogeniza-
tion problem can be solved either by analytical methods or by
numerical approximations. Analytical schemes often rely on sim-
plified assumptions concerning inclusion geometry, boundary
conditions or isotropy. More complex results can be obtained
from numerical methods that are based on finite element solution
or fast Fourier transformation (Moulinec and Suquet [17]), for
instance.
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Fig. 3. Deconvolution of modulus of elasticity frequency plots into mechanical
phases on (a) cement paste, (b) gypsum three phases fit (c) gypsum single phase fit
and (d) Al-alloy.
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The classical analytical solution based on constant stress/strain
fields in individual microscale components for an ellipsoidal inclu-
sion embedded in an infinite body was derived by Eshelby [15].
Effective elastic properties are then obtained through averaging
over the local contributions. Various estimates considering differ-
ent geometrical constraints or special choices of the reference
medium such as the Mori–Tanaka method or the self-consistent
scheme [6,16] can be used. For the case of a composite material
with prevailing matrix and spherical inclusions the Mori–Tanaka
method [16] was previously found to be a simple but powerful tool
to estimate effective composite properties also for structural mate-
rials [2] and, therefore, it was used in this work. In the Mori–Tana-
ka method, the homogenized isotropic bulk and shear moduli of an
r-phase composite are assessed as follows:

khom ¼
P

rfrkr 1þ a0
kr
k0
� 1

� �� ��1

P
rfr 1þ a0

kr
k0
� 1

� �� ��1 ð3Þ

lhom ¼
P

rfrlr 1þ b0
lr
l0
� 1

� �� ��1

P
rfr 1þ b0

lr
l0
� 1

� �� ��1 ð4Þ

a0 ¼
3k0

3k0 þ 4l0
; b0 ¼

6k0 þ 12l0

15k0 þ 20l0
ð5Þ

where the subscript 0 corresponds to the reference medium and r
corresponds to a particulate inclusion. Thus, k0 and l0 are the bulk
and shear moduli of the reference medium, while kr and lr refer to
the inclusion phases. Further, bulk and shear moduli can be recom-
puted to engineering values of elastic modulus and Poisson’s ratio
as:

E ¼ 9kl
3kþ l

; m ¼ 3k� 2l
6kþ 2l

ð6Þ

Materials with no preference of matrix phase (e.g. polycrystalline
metals) are usually modeled with the self-consistent scheme [6].
It is an implicit scheme, similar to the Mori–Tanaka method, in
which the reference medium points back to the homogenized med-
ium itself.

Local strain and stress fields in a RVE can also be found by
numerical methods like finite element method or a method based
on fast Fourier transformation (FFT). The later one was proven to
be a reliable and computationally inexpensive method which only
utilizes mechanical data in the regular grid (i.e. equidistant discret-
ization points). Such a concept perfectly matches with the concept
of the grid nanoindentation. Therefore, the FFT method was chosen
for our purposes. The numerical scheme used here solves the prob-
lem of finding the effective elasticity tensor with a periodically
repeating RVE by using discretization of an integral Lippmann–
Schwinger equation:

eðxÞ ¼ e0 �
Z

X
C0ðx� yÞ : ðLðyÞ � L0Þ : eðyÞdy ð7Þ

in which e and L stand for the local strain and stiffness tensor,
respectively, and e0 is the homogenized strain defined as a spatial
average over RVE domain X as

e0 ¼ hei ¼ 1
X

Z
X
eðxÞdx ð8Þ

C0 is the periodic Green operator associated with the reference
elasticity tensor L0 which is a parameter of the method [17,18].
The problem is further discretized using trigonometric collocation
method [19,20] which leads to the assemblage of a nonsymmetrical
linear system of equations:

½I þ F�1ĈFðL� L0Þ�e ¼ e0 ð9Þ

where the vector e stores a strain field at discretization points and
e0 the macroscopic strain, L and L0 stores the material coefficients
at discretization points and reference elasticity tensor respec-
tively, I denotes the identity matrix, Ĉ stores the values corre-
sponding to the integral kernel in the Fourier space, and F (F�1)
stores the (inverse) discrete Fourier transform matrices that can
be provided by fast Fourier transform algorithm. The possibility
to solve the nonsymmetric linear system by the conjugate gradi-
ent method (CG) is proposed by Zeman et al. in [21], where also
the particular expression of individual matrices can be found for
the problem of electric conductivity or heat transfer. The linear
system (Eq. (9)) depends only on stiffness coefficients at grid
points that can be obtained using nanoindentation and thus the
homogenized (effective) tensor (further denoted as LFFT

eff ) can be
calculated.

In practice, the homogenization procedure includes several
steps:

(1) Definition of a periodic unit cell (PUC) with discretization
points corresponding to indents’ locations (a regular grid).

(2) Assessment of Young’s moduli E and Poisson’s ratii m with
the help of nanoindentation in grid points (Oliver and Pharr
method [12] was used for the extraction of Young’s moduli
from load–displacement indentation curves).

(3) Assemblage of local elastic stiffness tensors in grid points
(plane strain assumption used) which in Mandel’s notation
reads:

L ¼ E
ð1þ mÞð1� 2mÞ

1� m m 0
m 1� m 0
0 0 1� 2m

2
64

3
75 ð10Þ

(4) Calculation of local strain (from a linear system, Eq. (9),
using CG algorithm [21]) and stress fields (r = L:e) in grid
points when applying homogeneous macroscopic strain
(unit loads e0) to the PUC domain.

(5) Calculation of an average stress in the PUC by integration
over its volume

hri ¼ 1
X

Z
X
rdx ð11Þ

(6) Calculation of the homogenized elasticity tensor for PUC
from average stress and prescribed macroscopic strain

LFFT
eff : e0 ¼ hri ð12Þ

The resulting homogenized stiffness matrix for PUC must be
symmetric, positive definite, but generally anisotropic. The result-
ing anisotropy of the matrix depends on the topology of inclusions
in PUC regardless of the fact that the individual points are treated
as locally isotropic. Note also, that the FFT homogenization takes
no assumptions on the morphology of the phases as in the case
of analytical schemes. It works only with the stiffness coefficients
distributed within the PUC and its accuracy depends only on the
density of the grid points.

5.2. Comparison of analytical and numerical schemes

The simple analytical methods used in this work (Mori–Tana-
ka, self-consistent) operate with the assumption of isotropic effec-
tive properties. Such assumption is usually acceptable for
disordered structural materials. In this case, the isotropic stiffness
matrix and plane strain conditions takes the form (in Mandel’s
notation):
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LA
eff ¼

Eeff

ð1þ meff Þð1� 2meff Þ

1� meff m 0
m 1� meff 0
0 0 1� 2meff

2
64

3
75

¼
kþ 4

3 l k� 2
3 l 0

k� 2
3 l kþ 4

3 l 0
0 0 2l

2
64

3
75 ð13Þ

in which Eeff and meff are analytically computed effective Young’s
modulus and Poisson’s ratio, respectively. Alternatively, effective
bulk and shear moduli k and l can be used for the calculation.
The difference between this stiffness matrix and that received from
FFT homogenization can be expressed using a stiffness error norm:

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LFFT

eff � LA
eff

� �
:: LFFT

eff � LA
eff

� �

LFFT
eff ::LFFT

eff

� �
vuuut ð14Þ

in which LFFT
eff is the (anisotropic) effective stiffness matrix computed

by the FFT method.
To assess the degree of anisotropy of the LFFT

eff matrix, one can use
different measures. Here, we define the degree of anisotropy as:

dISO ¼ inf
LISO

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LFFT

eff � LISO

� �
:: LFFT

eff � LISO

� �

LFFT
eff ::LISO

� �
vuuut ð15Þ

where the infimum is taken over all isotropic positive definite
matrices. We simply calculate the upper estimate dFFT

ISO P dISO:

dFFT
ISO ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LFFT

eff � LFFT
ISO

� �
:: LFFT

eff � LFFT
ISO

� �

LFFT
eff :: LFFT

ISO

� �
vuuut ð16Þ

by a particular choice of an isotropic matrix:

LFFT
ISO ¼

kISO þ 4
3 lISO kISO � 2

3 lISO 0
kISO � 2

3 lISO kISO þ 4
3 lISO 0

0 0 2lISO

2
64

3
75 ð17Þ

with

lISO ¼
LFFT

eff ;33

2
; kISO ¼

LFFT
eff ;11 þ LFFT

eff ;22

2
� 4

3
lISO:

6. Results and discussion

The resulting frequency plot of elastic moduli measured on ce-
ment paste merged from all positions (400 indents) was deconvo-
luted into five mechanical phases (that correspond to chemical
ones) as specified in Table 1. Note, that the values in Table 1
(and similarly in Tables 2 and 3) were found as the best fit in the
minimization problem solved by the deconvolution algorithm.
The bin size was set to 1 GPa in the construction of probability den-
sity functions (PDFs). Ulm et al. [1] suggested the use of cumulative
density function (CDF) in the deconvolution rather than PDF. Using
CDF does not require the choice of a bin size. On the other hand,
using PDF is more physically intuitive and in the case of large data-
set leads to similar results.

The deconvoluted phases on cement paste correspond to the
peaks shown in Fig. 3a. They are denoted as A = low stiffness phase,
B = low density C–S–H, C = high density C–S–H, D = Ca(OH)2,
E = clinker. In this case, the notation of mechanically distinct
phases matches well with the cement chemistry. Note, that the
stiffest microstructural component, the clinker, is not captured
well by nanoindentation since the stiffness contrast with respect
to other components is too high [2,7]. However, the content of
residual clinker is very low in the case of matured paste and it does

not significantly influence the rest of the results. Nevertheless, the
proper value of elastic modulus for homogenization was taken
from ex situ measurements of clinker [7,22].

Two-step homogenization was used in the case of cement paste.
Firstly, homogenized properties for the C–S–H level were obtained
from low- and high-density C–S–H phases (RVE �1 lm). Upper le-
vel homogenization for RVE (�200 lm) was performed in the sec-
ond step in which homogenized C–S–H properties were considered
together with the rest of the phases (i.e. low stiffness phase, Port-
landite and clinker). Results for cement paste are summarized in
Table 1. Very similar estimates have been obtained with the
Mori–Tanaka and the self-consistent schemes.

Nanoindentation data received on gypsum samples (two loca-
tions with 180 indents each) revealed the polycrystalline nature
of the composite with an anisotropic character. Since the gypsum
crystals are dispersed in the sample volume in a random manner,
surface measurements by nanoindentation show high scatter. As
mentioned earlier, apparent isotropic moduli associated with the
indentation volume �1.53 lm3 were assessed. The scatter in re-
ceived results (Fig. 3b) can be treated as a set of mechanically dif-
ferent responses from different crystal orientations. As such, we

Table 3
Data received from statistical deconvolution and homogenized values on Al-alloy.

Deconvoluted phase E (GPa) Poisson’s ratio Volume fraction

Al-rich zone 61.88 0.35 0.64
Ca/Ti-rich zone 87.40 0.35 0.36

Homogenization method
M–T 70.09 0.35 1.0
SCS 70.15 0.35 1.0

Note: M–T stands for the Mori–Tanaka scheme, SCS stands for the self-consistent
scheme.

Table 1
Data received from statistical deconvolution and homogenized values on cement
paste.

Deconvoluted phase E (GPa) Poisson’s
ratio

Volume
fraction

Low stiffness phase (A) 7.45 0.2 0.011
Low density C–S–H (B) 20.09 0.2 0.632
High density C–S–H (C) 33.93 0.2 0.263
Portlandite (D) 43.88 0.3 0.046
Clinker (E) 121.0a 0.3 0.048

Homogenization
C–S–H level (B + C) by M–T 23.36 0.2
C–S–H level (B + C) by SCS 23.41 0.2
Cement paste level (B + C) + A + D + E by M–T 25.39 0.207 1.0
Cement paste level (B + C) + A + D + E by SCS 25.44 0.208 1.0

M–T stands for the Mori–Tanaka scheme; SCS stands for the self-consistent scheme.
a Note: Clinker value was adjusted to 121 GPa according to [7].

Table 2
Data received from statistical deconvolution to the three phases and homogenized
values on gypsum.

Deconvoluted phase E (GPa) Poisson’s ratio Volume fraction

#1 28.36 0.32 0.663
#2 43.46 0.32 0.310
#3 59.89 0.32 0.027

Homogenization method
M–T 32.96 0.32 1.0
SCS 33.02 0.32 1.0

Note: M–T stands for the Mori–Tanaka scheme; SCS stands for the self-consistent
scheme.
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can either use deconvolution to separate mechanically significant
groups of these orientations (further denoted as phases) or com-
pute apparent elastic moduli of isotropic solid from all responses
in an ensemble (i.e. compute average value from all results). Both
approaches have been tested.

The physical motivation for identifying the mechanical phases
lies in the fact that gypsum crystallizes in the monoclinic system
which is characterized with three significant crystallographic ori-
entations. Therefore, derivation of the three significant peaks by
deconvolution of frequency plot was tested (Fig. 3b). Numerical re-
sults from this deconvolution are summarized in Table 2.

On the other hand, further simplification based on the assess-
ment of only a single apparent isotropic phase is possible. Then,
only one Gaussian distribution is assumed in the calculation. Such
fit is depicted in Fig. 3c. The mean value derived from the histo-
gram (E = 33.90 GPa) can be interpreted as an effective gypsum
Young’s modulus valid for the RVE (�100 lm) which includes also
intrinsic nanoporosity.

The difference between the two solutions in terms of an error
computed as a sum of squared differences between the experimen-
tal and theoretical curves in the deconvolution analysis [3] is very
small (�3%). Thus, both fits are almost equally good as indicated in
Fig. 3b and c. Also, the comparison of the resulting effective
Young’s moduli computed by the self-consistent scheme or the
Mori–Tanaka method in the case of the three phase medium (Ta-
ble 2) with an apparent Young’s modulus in the case of a single
phase (E = 33.90 GPa) shows small differences (�2.7%).

Two mechanically distinct phases were found by the statistical
deconvolution (from 200 indents) on Al-alloy sample (Fig. 3c and
Table 3). According to the SEM–EDX studies, the dominant phase
was denoted as Al-rich zone, whereas the lower stiffness phase
as Ca/Ti-rich area. The bin size in the frequency plots was set again
to 1 GPa in both cases of gypsum and Al-alloy.

Based on the nanoindentation data analytical homogenization
were employed for the assessment of effective RVE elastic proper-
ties at first (Tables 1–3). Very similar results have been produced
by the Mori–Tanaka method or the self-consistent scheme.

At second, the comparison of stiffness matrices (Eq. (13)) de-
rived from analytical results (Mori–Tanaka scheme was considered
for cement pastes and Al-alloy; self-consistent scheme for gyp-
sum), and those from FFT homogenization was performed. Results
are specified in the following equations 18–20. The stiffness values
are given in GPa. Respective error norms are computed in Eq. (21).

cement : LA
eff ¼

28:44 7:43 0

7:43 28:44 0

0 0 21:02

2
664

3
775

LFFT
eff ¼

26:177 6:778 0:068

6:778 26:224 0:014

0:068 0:014 19:818

2
664

3
775 ð18Þ

Gypsum : 3 phase fit : LA
eff ¼

47:25 22:24 0

22:24 47:25 0

0 0 25:02

2
64

3
75

1phase fit : LA
eff ¼

48:51 22:84 0

22:84 48:51 0

0 0 25:69

2
64

3
75

LFFT
eff ¼

45:302 21:185 0:101

21:185 45:497 �0:008

0:101 �0:008 24:396

2
64

3
75 ð19Þ

Al-alloy : LA
eff ¼

112:479 60:566 0
60:566 112:479 0

0 0 51:913

2
64

3
75

LFFT
eff ¼

117:130 62:741 �0:163
62:741 117:106 �0:143
�0:163 �0:143 54:313

2
64

3
75 ð20Þ

Errors : cementd ¼ 0:08; gypsumd ¼ 0:07; Al-alloyd ¼ 0:04 ð21Þ

It is clear from the above equations that both simple analytical
and advanced FFT-based method give comparable results in our
case. The differences given by error norms for cement and gypsum
(7–8%) are acceptable and show good agreement of the results re-
ceived from different methods. The best agreement of the methods
was reached on Al-alloy (error 4%) which can be attributed to the
fact that both material phases (Al-rich, and Ca/Ti-rich zones) are
even more homogeneously dispersed at microscale RVE compared
to the phases that appear in cement paste or gypsum.

The upper bound of the degree of anisotropy for the FFT-based
stiffness matrices was assessed by an index defined in Eq. (16) with
the following results:

cementdISO ¼ 0:0132; gypsumdISO ¼ 0:0043; Al-alloydISO ¼ 0:0016 ð22Þ

Low values in Eq. (22) (0.1–1.3%) show the close-to-isotropic
nature of the tested materials within the specified RVE. In other
words, microstructural inhomogeneities are uniformly dispersed
in the RVE and consequently it also justifies the usage of analytical
methods producing isotropic effective (homogenized) properties.

It must be emphasized again that although both analytical and
numerical methods give similar results, there is a clear advantage
of the FFT method which works directly with the grid indentation
data compared to analytical Mori–Tanaka method which needs the
assessment of phase properties and volume fractions. Moreover,
the full stiffness matrix including possible anisotropy is captured
by using the FFT method.

Comparison with macroscopic experimental values of elastic
moduli for the given materials also shows good agreement with
model predictions. Hydrated compound of cement paste was stud-
ied e.g. by Němeček [7] (E = 26.4 ± 1.8 GPa), Constantinides and
Ulm [23,24] (E = 22.8 ± 0.5 GPa) or Hughes and Trtik [25]
(E = 26.5 GPa). The values correspond well with our results
(E = 25.4 GPa).

Gypsum elastic properties were studied e.g. by Meille and Gar-
boczi [26,27] who estimated the plane strain values of the Young’s
modulus (computed as an angular average from anisotropic crystal
elastic moduli tensor) as �45.7 GPa. Such value was also reported
for zero crystal porosity by Sanahuja et al. [28]. If one takes into ac-
count an intercrystalline porosity 12% (i.e. the gypsum nanoporos-
ity measured for our specific case; see Section 3.2) the Young’s
modulus drops down to �34 GPa [28] which is in excellent agree-
ment with our homogenized value (E = 32–33.90 GPa).

Homogenized Al-alloy properties (E = 70.1 GPa) agree very well
with experimental values reported e.g. by Jeon et al. [29] or Ashby
et al. [30] (E = 70 GPa).

7. Conclusions

Nanoindentation was successfully used for the assessment of
elastic parameters of intrinsic material constituents at the scale be-
low one micrometer and effective composite properties were eval-
uated with analytical Mori–Tanaka, self-consistent and FFT
numerical schemes for three typical structural composites with
heterogeneous microstructure. Based on the micromechanical ap-
proaches and proposed methodologies we can draw the following
conclusions.
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(1) It has been shown that the use of grid indentation gives
access to both phase properties as well as volume fractions
in the case of testing highly heterogeneous microstructures
of cement paste, gypsum and Al-alloy.

(2) Effective elastic properties of their microstructural RVEs
(100–200 lm) were successfully determined with analytical
Mori–Tanaka or self-consistent schemes. However, such
approach assumes isotropic nature of the composite with
spherical inclusions and several assumptions concerning
mainly the number of mechanically different phases and
bin size need to be made in the deconvolution algorithm.
Therefore, an additional knowledge about the composite
microstructure and its microstructural composition is neces-
sary in this case.

(3) Further, numerical FFT-based method was used for the
assessment of effective elastic composite properties. The
direct use of grid indentation data is employed in this
method. The method provides effective stiffness matrix
and can capture also possible anisotropy.

(4) The performance of both analytical and numerical
approaches was in good agreement for the tested materials
mainly due to the close-to-isotropic nature in their RVEs.

(5) Comparison with macroscopic experimental data also shows
good correlation of measured effective values and the pre-
dicted ones.

(6) The proposed numerical procedure for the estimation of
effective elastic properties can be further applied also to
other nano- or micro-heterogeneous structural composites
in order to assess their anisotropic stiffness matrices or to
optimize their composition.
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Abstract

The main aim of this  paper is to develop and verify simple but effective model for 

assessing elastic properties of a porous aluminium foam system and to compare results 

received from experimental micromechanics with solutions given by simple analytical 

or more advanced numerical methods. The material is characterized by a closed pore 

system with very thin but microscopically inhomogeneous pore walls (~0.1 mm) and 

large air pores (~2.9 mm). Therefore, two material levels can be distinguished. 

The lower level of the proposed model contains inhomogeneous solid matter of the 

foam cell walls produced from aluminium melt with admixtures. Elastic parameters as 

well as volume fractions of microstructural material phases at this level are assessed 

with nanoindentation and effective properties computed via analytical and numerical 

homogenization schemes. The effective Young’s modulus of the cell walls was found 

close to 70 GPa irrespective to the used homogenization procedure.

1

Paper 4 page 54



The higher foam scale contains homogenized cell wall properties and a significant 

volume fraction of air voids (91.4%). Since analytical schemes fail to predict effective 

properties of this highly porous structure, numerical homogenization based on simple 

2-D finite  element  model  is  utilized.  The model  geometry is  based on foam optical 

images and the beam structure is produced using Voronoi tessellation. Effective foam 

Young's modulus was found to be 1.36-1.38 GPa which is in relation with ~1.45 GPa 

obtained from uniaxial compression experiments. The stiffness underestimation in the 

2-D model is caused likely by the lack of the real 3-D confinement that can not be fully 

captured in the simplified model.

Keywords: aluminium  foam,  multi-scale  model,  nanoindentation,  statistical 

deconvolution, elastic properties, image analysis, homogenization.

1 Introduction

Metal foams and especially lightweight aluminium foams belong to the group of up-to-

date engineering materials with high potential to many applications. Metal foam is a 

highly porous hierarchical material with a cellular microstructure. Macroscopically, it 

can  be  characterized  by  attractive  mechanical  and physical  properties  such as  high 

stiffness and strength in conjunction  with very low weight,  excellent  impact  energy 

absorption,  high damping capacity  and good sound absorption capability.  The usual 

source material for the production of metal foams are aluminium and aluminium alloys 

because  of  low specific  density  (~2700 kg/m3),  low melting  point  (~660 °C),  non-

flammability, possibility of recycling and excellent corrosion resistance. Metal foams  
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are  used  in  applications  ranging  from  automotive  and  aerospace  industries  (e.g. 

bumpers, car body sills, motorcycle helmets) to building industry (e.g. sound proofing 

panels).  Our  aim was  to  characterize  and  to  model  a  commercially  available  foam 

Alporas® produced by Shinko Wire Company, Ltd. .

Alporas is characterized with a hierarchical system of pores containing different cell 

morphologies  (in  shape  and  size)  in  dependence  on  the  foam  density  and 

inhomogeneous material properties of the cell walls . A typical cross section of the foam 

can be seen in Figure 1 in which large pores (having typically 1-13 mm in diameter ) 

with detailed view on thin walls (~100 µm thick) is shown.

 

(a)   (b)       (c)

Figure 1: (a) Overall view on a foam structure (further denoted as Level II); (b) ESEM 

image of a cell wall; (c) detailed ESEM image of a cell wall showing Al-rich (dark 

grey) and Ca/Ti-rich areas (light zones; denoted as Level I).

It follows from its hierarchical microstructure that the mechanical properties of metal 

foams are governed by two major factors: 

(i) cell morphology (shape, size and distribution of cells) and 

(ii) material properties of the cell walls .
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Traditionally, mechanical properties of metal foams are obtained using conventional 

macroscopic  testing  techniques  on  large  samples  that  can  give  overall  (effective) 

properties, e.g. -. However, conventional measurements face significant obstacles in the 

form of very small dimensions of cell walls, low local bearing capacity, local yielding 

and bending of the cell walls. These problems can be overcome using micromechanical 

experimental  methods in which the load–displacement  curve is  obtained in the sub-

micrometer range. A few attempts have been carried out in the past, e.g. , .

In this paper, we focused on the prediction of overall foam elastic properties from 

microscopic measurements  and on the model validation against experimental results. 

For  accessing  the  cell  wall  properties  we  employed  statistical  nanoindentation  and 

deconvolution  technique  for  the  phase  separation ,.  Compared  to  traditional 

macroscopic  techniques  nanoindentation  can  distinguish  between  individual 

inhomogeneous microstructural  entities.  The effective cell  wall  properties have been 

obtained  through  analytical  and  numerical  up-scaling  techniques .  Finally,  simple

2-D finite element model for the upper composite scale has been proposed and results 

validated by full-scale experiments.

2 Experimental part

2.1 Materials and sample preparation

Commercial aluminium foam Alporas® (Shinko Wire Company, Ltd) was used in this 

study. The manufacturing process of the Alporas is a batch casting process   in which 

1.5 wt.% of calcium is added to the aluminium molten at 680 °C. Calcium serves as a 
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thickening agent which increases viscosity and stabilizes the air bubbles. The alloy is 

poured into a casting mold and stirred with an admixture of 1.6 wt.% TiH2 that is used 

as  a  blowing  agent.  Then,  the  foamed  molten  material  is  cooled  down.  A  typical 

resulting internal structure of the aluminium foam is shown in Figure 1a. 

Firstly, a large panel of Alporas (160 × 100 × 60 mm) was polished and scanned with 

a high resolution scanner. Acquired images were segmented to binary ones and further 

used in image analyses. Then, a smaller Alporas block was cut into thin slices (~5 mm) 

and embedded into epoxy resin to fill the pores. The surface was mechanically grinded 

and polished to reach minimum surface roughness suitable for nanoindentation. Very 

low roughness  Rq≈10 nm  was achieved on cell  walls.  The sample was investigated 

with electron microscopy (ESEM) and nanoindentation.

2.2 ESEM and microstructural analysis

The microstructure of cell walls was firstly studied in electron microscope (ESEM). It 

was found that a significant inhomogeneity of the microstrutural material phases exists 

on the  level  of  tens  of  micrometers  (Figure 1b,c).  Two distinct  phases,  that  exhibit 

different  color  in  back-scattered  electron  (BSE)  images,  can  be  distinguished.  The 

chemical composition of the two phases was checked with EDX element analysis in 

ESEM. It  was  found that  the  majority  of  the  volume (dark  zone in  Figure  1c,  2a) 

consists of aluminium (~67 wt.%), oxygen (~32 wt.%) and further trace elements (Mg, 

Ti, Fe, Co, Ni, Cu, Si <2 wt.%). Lighter zones in Figure 2 consist of Al (~60 wt.%), 

O (~30 wt.%), Ca (~5 wt.%), Ti (~5 wt.%) and other elements (<1 wt.%). As expected, 

the majority of the volume (dark zone) is composed of aluminum and aluminium oxide 
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Al2O3 (further denoted as Al-rich area).  Lighter  zones contain significant  amount of 

calcium and titanium (further denoted as Ca/Ti-rich area). The non-uniform distribution 

of these zones shows inhomogeneous mixing of the admixtures that are added during 

the production process. 

2.3 Image analysis and porosity

In order to estimate the volume fractions of Al-rich and Ca/Ti-rich areas image analysis 

based on previously taken ESEM images was employed. Ten arbitrarily chosen areas on 

wall  cross  sections  were  explored.  Images  were  segmented  to  two  phases  using  a 

common threshold value of a grey level for all images (Figure 2). The Ca/Ti-rich area 

was estimated to cover 22±4% of the whole area.

 (a)  (b)

Figure 2: An example of (a) ESEM image of the cell wall and (b) processed image 

segmented to two phases (white=Ca/Ti-rich, black=Al-rich area).

The overall  porosity  of the sample was assessed by weighing of a large Alporas 

panel  (knowing  the  sample  dimensions  and  solid  mass  density  2700  kg.m-3).  The 
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porosity reached 91.4% which corresponds to e.g. ,. In other words, solid mass (i.e. cell 

walls) occupied only 8.6% of the total volume in the specimen.

Further, distribution of cell  wall thicknesses and the distribution of the pore sizes 

were studied by means of pore contour detection in the Matlab environment. At first, 

the  contours  were  generated  for  every  pore  in  the  image  and  areal  characteristics 

(centroid,  area,  second  moment  of  inertia)  were  computed  (Figure 3).  The  wall 

thicknesses were calculated as the minimum distance between the neighboring contours. 

The distribution of the thicknesses is shown in Figure 4. It can be seen in Figure 4 that a 

significant peak occurs around ~60 µm which can be understood as a characteristic cell 

wall thickness.

Then, equivalent ellipses were constructed from contour areal characteristics under 

the condition that they have the same area and the same principal second moment of 

inertia. Such assumption led to the evaluation of two main half axes (ai and bi) for each 

equivalent  ellipse.  In order  to  characterize  the shape of  pores,  an equivalent  ellipse 

shape factor was defined as the ratio  
i

i
i b

a
e = . The distribution of the shape factor is 

depicted in Figure 5. It can be concluded that pores have typically a round shape with 

the shape factor lying mostly between 1 and 2. The peak with the highest occurrence in 

Figure 5 appears around ei=1.15.

Due to the round shape of pores it makes sense to compute also an equivalent pore 

diameter using circular pore replacement. The distribution of equivalent circular pores is 

depicted in Figure 6. Wide distribution of pores with diameters 0-6 mm was found. The 

mean equivalent diameter was found to be 2.9±1.5 mm for the specific specimen.
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(a) (b) (c)

Figure 3: (a) Binary image of the polished foam panel. (b) Binary image of ~50×50 mm 
foam cut. (c) Cell contours in the cut (prepared in Matlab).

Figure 4: Distribution of cell wall thicknesses.

Figure 5: Distribution of equivalent ellipse shape factor.

Figure 6: Distribution of equivalent circular pores.
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2.4 Nanoindentation

Micromechanical  properties  of  the  cell  walls  were  measured  by  means  of 

nanoindentation.  The tests  were performed using a Hysitron Tribolab system® at the 

Czech Technical  University in Prague.  This system consists of in-situ SPM imaging 

which was used for scanning the sample surface. Three-sided pyramidal diamond tip 

(Berkovich type) was used for all measurements. Two distant locations were chosen on 

the sample to capture its heterogeneity. Each location was covered by a series of 10×10 

indents  with  10 μm  spacing  (Figure 7).  It  yields  200  indents  in  total  which  was 

considered to give sufficiently large statistical set of data. Standard load controlled test 

of an individual indent consisted of three segments: loading, holding at the peak and 

unloading.  Loading  and  unloading  of  this  trapezoidal  loading  function  lasted  for 

5 seconds, the holding part lasted for 10 seconds. Maximum applied load was 1 mN. 

Maximum indentation depths were ranging between 100 and 300 nm depending on the 

stiffness of the indented phase. Elastic modulus was evaluated for individual indents 

using standard Oliver and Pharr methodology  which accounts for elasto-plastic contact 

of a conical indenter with an isotropic half-space as

dh

dP

A
Er

π
β2

1= (1)

in which  Er is  the reduced modulus  measured  in  an experiment,  A is  the projected 

contact area of the indenter at the peak load, β is geometrical constant (β=1.034 for the 
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used Berkovich tip) and 
dh

dP
 is a slope of the unloading branch evaluated at the peak. 

Elastic modulus E of the measured media can be found using contact mechanics which 

accounts for the effect of non-rigid indenter as

( ) ( )
i

i

r E

ν

E

ν

E

22 111 −+−= (2)

in which ν is the Poisson’s ratio of the tested material, Ei a νi are known elastic modulus 

and Poisson’s ratio of the indenter. In our case, ν=0.35 was taken as an estimate for all 

indents.

Figure 7: Part of the indentation matrix showing 6×6 indents with 10 µm spacing as 

scanned with Hysitron Tribolab.

Results of elastic moduli in the form of histograms have been further analyzed with the 

statistical deconvolution technique , . The technique seeks for parameters of individual 

phases  included  in  overall  results.  It  searches  for  n-Gauss  distributions  in  an 

experimental  Probability  Density  Function  -  PDF  (Figure 9).  Random  seed  and 
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minimizing criteria of the differences between the experimental and theoretical overall 

PDFs (particularly quadratic norm of the differences) are computed in the algorithm to 

find the best fit. Details on the deconvolution technique can be found in . Two-phase 

system (one dominant Al-rich phase and one minor Ca/Ti-rich phase) was assumed in 

our deconvolution. 

3 Numerical part

3.1 Scale separation

In order to describe heterogeneous systems and their effective properties in a statistical 

sense, representative volume element (RVE) have been previously introduced  . RVE 

statistically represents a higher structural level of the material and serves for evaluation 

of the effective  (homogenized)  properties  within the defined volume.  It  includes  all 

microstructural inhomogeneities that should be substantially smaller than the RVE size. 

The  definition  of  the  material  scales  can  be  defined  through  the  scale  separation 

inequality:

DLd <<<< (3)

in which  d is the characteristic size of the largest microstructural inhomogeneity,  L is 

the RVE size and D is a characteristic structural length scale. Knowing the material and 

geometrical properties of the microstructural material phases a homogenization can be 

performed. 

11

Paper 4 page 64



Nanoindentation is able to access intrinsic material properties of individual micro-

scale phases provided the dimension of an indent (h) is small enough, i.e.  h<<d. As a 

rule  of  thumb  h<d/10 is  usually  used  to  access  material  properties  of  individual 

constituents without any dependence on the length scale.

As mentioned above, the metal foam material has a hierarchical microstructure. At 

least two levels need to be considered:

• Level I (the cell wall level) has a characteristic dimension defined by the mean 

midspan wall thickness  LI~60 µm. This level consists of prevailing aluminium 

matrix (Al-rich area) with embedded heterogeneities in the form of Ti/Ca-rich 

areas.  Intrinsic  elastic  properties  of  the  constituents  were  assessed  by 

nanoindentation  at  this  level.  Individual  indent  size  was  prescribed  to  be 

considerably  smaller  (h≈100-300 nm)  than  a  characteristic  size  of  Ca/Ti 

inhomogeneities (~4 µm). 

• Level II (the foam level) has a characteristic dimension of  LII~50 mm. At this 

level,  large  pores  with  an  average  equivalent  diameter  ~2.9 mm  (assuming 

circular pores) occur in the total volume of 91.4%. At level II, cell walls are 

considered as homogeneous having the properties that come from the Level I 

homogenization.

3.2 Analytical homogenizations of Level I

The  RVE  with  substantially  smaller  dimensions  than  the  macroscale  body  allows 

imposing  homogeneous  boundary  conditions  over  the  RVE.  Continuum 

micromechanics  provides  a  framework,  in  which elastic  properties  of heterogeneous 
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microscale phases are homogenized to give overall  effective properties on the upper 

scale . A significant group of analytical homogenization methods relies on the Eshelby’s 

solution  that is derived for ellipsoidal inclusions embedded in an infinite body. Then, 

uniform stress field appears in inclusions when macroscopic load is applied in infinity. 

Effective elastic properties are obtained through averaging over the local contributions. 

From the material point of view, composite materials are usually characterized by a 

prevailing  matrix  phase,  which  serves  as  a  reference  medium  in  homogenization 

methods,  reinforced  with  geometrically  distinguishable  inclusions.  For  example,  the 

Mori-Tanaka method  can be appropriate for these cases.  In this method, the effective 

bulk keff and shear µeff moduli of the composite are computed as follows
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where fr is the volume fraction of the rth phase, kr its bulk modulus and the coefficients 

α0 and  β0 describe bulk and shear properties  of the  0th phase, i.e. the reference 

medium , . The bulk and shear moduli can be directly linked with Young’s modulus E 

and Poisson’s ratio ν used in engineering computations as
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Polycrystalline metals,  in which no preference of matrix phase exists, are usually 

modeled with the self-consistent scheme  in which the reference medium refers back to 

the  homogenized  medium  itself.  Regardless  the  most  suitable  homogenization 

technique,  which would be probably the Mori-Tanaka method in our case,  we used 

multiple  estimates  assuming spherical  inclusions.  Namely,  the Mori-Tanaka method, 

self-consistent  scheme,  Voigt  and  Reuss  bounds  (parallel  or  serial  configuration  of 

phases with perfect bonding). Results from nanoindentation have been used as input 

parameters to the methods.

3.3 Numerical homogenization of Level I based on FFT

In order  to  verify  results  from simple  analytical  schemes  advanced  homogenization 

method based on fast  Fourier  transformation  (FFT)  was  used.  The behavior  of  any 

heterogeneous materials consisting of periodically repeating RVE (occupying domain 

),(=
1= ii

d

i
YY−Ω ∏ , where Yi is the axial size and d  denotes the space dimension) can be 

described with differential equations with periodic boundary conditions and prescribed 

macroscopic load as

0=)(
1

:= εxxεε d∫ΩΩ
〉〈  (9)
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Ω∈x0xσxεxxσ      =)(     )(:)(L=)( div (10)

where  σ  denotes symmetric second order stress tensor,  ε  symmetric second order 

strain tensor and )(L x  the fourth order tensor of elastic stiffness at individual locations 

x . The effective (homogenized) material tensor effL  is such a tensor satisfying 

〉〈〉〈 εσ effL= (11)

for an arbitrary macroscopic strain 0ε . Thus the problem of finding effective material 

tensor is composed of finding corresponding strain field ε  and associated stress field 

σ  for  known  elastic  properties  L  and  prescribed  strain  0ε  using  differential 

Equation 10.

In  addition  to  discretization  of  the  weak  formulation  leading  to  classical  finite 

element method, the problem can be solved by method based on fast Fourier transform, 

proposed by Moulinec  and Suquet  in  ,  based on an integral  (Lippmann–Schwinger) 

equation 

000 =)(:)L)(L(:)(Γ)( εyyεyyxxε d−−+∫Ω (12)

where 0Γ  is  the  periodic  Green's  operator  associated  with  the  reference  elasticity 

tensor L0  which is a parameter of the method. The operator is expressed in the Fourier 

space as

42
0
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Numerical solution of Equation 13 is based on the discretization of a unit cell Ω into a 

regular  periodic  grid  with  dNN ××1  nodal  points  and  grid  spacings 

),2,(2=
1

1

d

d

N

Y

N

Y
h .  The  searched  field  ε  is  approximated  by  a  trigonometric 

polynomial Ne  in the form  

,),()(ˆ=)()( Ω∈≈ ∑
∈

xxkexexe k
k

ϕ
d
N

N
Z

(14)

where ),,(= 1 dNN N , ê  designates the Fourier coefficients and 
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2

<
2

:=
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
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 ≤−∈ d

N
k

Ndd
N αα

α
αZZ k (15)

The discretization leads to a nonsymmetrical linear system of equations 

001 e=e)]LL(FΓ̂FI[ −+ − (16)

where the vector e  stores a strain field at discretization points and 0e  the macroscopic 

strain, L  and 0L  stores the material coefficients at discretization points and reference 

elasticity  tensor  respectively,  I  denotes  the  identity  matrix,  Γ̂  stores  the  values 

corresponding to the integral kernel in the Fourier space,  and  F  ( 1F− ) stores the 
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(inverse)  discrete  Fourier  transform  matrices  that  can  be  provided  by  fast  Fourier 

transform algorithm. The possibility  to solve the nonsymmetric linear system by the 

conjugate gradient method is proposed by Zeman et.al. in  and justified in Vondřejc et 

al. , where also the particular expression of individual matrices can be found for the 

problem  of  electric  conductivity  or  heat  transfer.  The  linear  system  (Equation 16) 

depends  only  on  stiffness  coefficients  at  grid  points  that  can  be  obtained  using 

nanoindentation and thus the homogenized (effective)  tensor  FFT
effL can be calculated 

from Equation 11. The particular case of homogenization of elastic properties received 

from nanoindentation on a sample surface (half-space) also requires an assumption of 

plane strain conditions.

3.4 Comparison of analytical and numerical schemes

The comparison of analytical and FFT schemes includes an assessment of the stiffness 

matrix  (here  in  Mandel’s  notation)  for  isotropic  material  assuming  plane  strain 

conditions (equally with the FFT scheme) as

















−
−

−

−+
=

eff

eff

eff

effeff

effE

ν
νν
νν

νν
2100

01

01

)21)(1(
A
effL . (17)

The difference between the analytical results ( A
effL ) and numerically computed stiffness 

matrix ( FFT
effL ) can be expressed using a stiffness error norm as
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::

:: −−=δ . (18)

4 Results and discussion

4.1 Nanoindentation

Results from nanoindentation clearly showed heterogeneity of the cell  walls, i.e.  the 

presence of mechanically different inclusions. An example of typical loading diagrams 

gained from nanoindentation at Al-rich area (dark zone in Figure 1b,c) and Ca/Ti-rich 

area  (light  zone  in  Figure 1b,c)  are  shown in  Figure 8.  Due  to  the  load  controlled 

nanoindentation test, the final penetration depth varied for differently stiff phases. An 

average maximum depth of penetration reached by the indenter was around ~180 nm. 

Higher values for more compliant Al-rich zone were reached (~190 nm) whereas the 

indentation depths to harder but less frequent Ca/Ti-rich areas were around 100 nm.

Figure 8: Typical loading diagrams for Al-rich and Ca/Ti-rich zones.
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Elastic moduli were evaluated for each individual indent. Overall results are depicted 

in Figure 9a in which histogram of all elastic moduli from two different positions and 

results merged from both positions are shown. No significant differences between the 

positions were found. Therefore, merged results were further used in the deconvolution 

of phase elastic properties. 

Two-phase system (one dominant  Al-rich phase and one minor Ca/Ti-rich phase) 

was assumed in the deconvolution algorithm (Figure 9b).  It can be seen in Figure 9b 

that  a  significant  peak  appears  around  62 GPa.  This  value  can  be  considered  as  a 

dominant  characteristic  of the prevailing  phase (Al-rich).  The rest  of results  can be 

attributed to the minor Ca/Ti-rich phase.  Table 1 contains numerical results from the 

deconvolution with the estimated volume fractions of the phases.

  

(a)   (b)

Figure 9: (a) Probability density functions of elastic moduli from two measured 

positions and (b) merged results with deconvoluted phases.

Table 1: Elastic moduli and volume fractions from deconvolution.

Phase Mean (GPa) St. dev. (GPa) Volume fraction (-)
1 (Al-rich zone) 61.88 4.6 0.638
2 (Ca/Ti-rich zone) 87.40 16.7 0.362

19

Paper 4 page 72



The  characteristic  value  for  the  first  phase  roughly  corresponds  to  the  elastic 

modulus  of  pure  aluminium  (70  GPa,  ref. ).  The  lower  value  obtained  from 

nanoindentation  suggests  that  probably some small-scale  porosity  or  impurities  (Ca) 

added  to  the  molten  are  intrinsically  included  in  the  results  of  this  mechanically 

dominant  phase.  The  determined  elastic  modulus  value  of  Al-rich  zone  is  also  in 

excellent agreement with the value 61.7 GPa measured by Jeon et al.  on melted Al-1.5 

wt.%Ca alloy.

4.2 Level I homogenization

It is clear from ESEM images (Figure 1 and 2) that the Ca/Ti-rich areas occupy much 

larger space of the solid compared to the initial batch volume fractions (Ca and TiH2 

content is less than 1 vol.%).  Chemical  reactions and precipitation during hardening 

form new compounds in the Al matrix. It follows from other studies   that Ca/Ti-rich 

discrete precipitates and diffuse Al4Ca areas develop in the metal solid. These areas are 

denoted as Ca/Ti-rich areas in this study. Based on the color in ESEM images the area is 

estimated as 22±4% by image analysis. Results from statistical nanoindentation (36.2%) 

suggest that a substantially larger part of the matrix is mechanically influenced by the 

Ca/Ti addition and a higher fraction of the volume belongs to this mechanically distinct 

phase.

The homogenized elastic modulus for the two considered microscale phases in the 

cell  wall  (i.e.  Level I)  is  summarized  in  Table 2  for  individual  homogenization 

techniques.  Very  close  bounds  and  insignificant  differences  in  the  elastic  moduli 

estimated by the schemes were found.
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Table  2:  Values  of  the  Level  I  effective  Young’s  modulus  computed  by  different 

homogenization schemes.

Scheme Mori-Tanaka Self-consist. 

scheme

Voigt bound Reuss bound

E (GPa) 70.083 70.135 71.118 69.195

In the following considerations,  we use the result  received from the Mori-Tanaka 

scheme, i.e. we take the homogenized isotropic elastic constants (Young’s modulus and 

Poisson’s ratio) of the Level I as  Eeff,I=70.083 GPa,  νeff,I=0.35. The stiffness matrices 

computed in Mandel’s notation from analytical Mori-Tanaka results (using Equations 4-

8) and from FFT homogenization are:
















=

913.5100

0479.112566.60

0566.60479.112
A
effL  (GPa) (19)
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
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


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





−−
−
−

=
3132.541430.01625.0

1430.01060.1177413.62

1625.07413.621300.117
FFT
effL  (GPa). (20)

It is worth noting that the analytical form of the stiffness matrix  A
effL  as well as 

FFT
effL contains  perfect  symmetry  by  definition.  Further,  low  values  of  off-axis 

components associated with shear strains in FFT
effL  (that are zero in case of A

effL ) show 

close  to  isotropic  nature  of  the  material.  In  other  words,  microstructural 

inhomogeneities are uniformly dispersed in the RVE. Consequently, this finding also 
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justifies the usage of analytical methods producing isotropic effective (homogenized) 

properties.  Also,  the  stiffness  error  evaluated  by  Equation 18  is  δ=0.0393.  The 

difference in schemes less than 4% shows a very good agreement of the methods for the 

studied case.

4.3 Level II homogenization

At this level, cell walls are considered as a homogeneous phase having the properties 

that come from the Level I homogenization. The solid phase is very sparse in the sample 

volume due to its porosity (91.4% of air). The walls create a matrix phase and the large 

air pores can be considered as inclusions in this homogenization.

Since analytical approaches are often used also for extreme cases of large stiffness 

contrast of phases or for large sample porosities (e.g. Šejnoha et al. ), we firstly tried to 

estimate effective elastic properties with the same analytical schemes used at Level I. 

The result is summarized in Table 3. Voigt and Reuss bounds are quite distant in this 

case.  Unfortunately,  simple  analytical  schemes  also  fail  to  predict  correctly  the 

composite  stiffness  due  to  the  extreme  sample  porosity.  The  Mori-Tanaka  method 

approaches the arithmetic mean between the bounds, whereas the self-consistent scheme 

tends to reach the stiffness of the phase with higher occurrence (i.e. the air). 
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Table  3:  Values  of  the  Level  II  effective  Young’s  modulus  computed  by  different 

analytical homogenization schemes.

Scheme Mori-Tanaka Self-consist. 

scheme

Voigt bound Reuss bound

E (GPa) 3.1510 0.0012 6.0200 0.0011

Most of analytical studies on the homogenization of foams are based on models with a 

regular  periodic  microstructure  ,.  Nevertheless,  real  foam  microstructures  are 

characterized with different sizes and shapes and sizes of pores rather than with periodic 

structures as shown in Section 2 of this paper. The solution can be to solve the problem 

of irregular  microstructures  by an analysis  of a large representative volume element 

containing large enough number of pores. Such model can be solved in two or three 

dimensions.

Therefore, more appropriate (but still simple) two dimensional microstructure based 

FEM model was proposed. The model geometry was generated from high resolution 

optical  image  of  polished  foam cross-section  (Figure 10a)  converted  to  binary  one. 

Square domain with 106×106 mm size (i.e. being much larger than average pore size 

~2.9 mm) was extracted from the image. At this domain, pore centroids were detected, 

Delaunay triangulation applied and Voronoi cells created. Then, an equivalent 2D-beam 

structure was generated from Voronoi cell boundaries (Figure 10b). Based on several 

numerical  studies performed for this purpose (but not shown here in details),  it  was 

found that the distribution of cross sectional areas and bending stiffness of individual 

beams do not play a significant role in the evaluation of the homogenized properties.

The overall stiffness is influenced mainly by the sum of the beam cross sectional areas 

and by the beam inclination to the load direction. The contribution of the beam bending 
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stiffness is diminished due to the very large beam length compared to its small cross 

sectional  dimensions.  Therefore,  as  an  approximate  but  sufficient  estimate,  uniform 

cross-sectional area and uniform second moment of inertia were prescribed to all beams. 

The beam cross sectional  area (Abeam)  was computed  from the total  sample porosity 

(ϕ=0.086)  and  the  total  length  of  all  beams  (ltotal)  in  the  RVE  with  rectangular 

dimensions a×b as

total
beam l

ab
A

ϕ= . (21)

Taking into account 2-D case (i.e. unit thickness of the plane) beam height can be set as 

beam
beam

beamz A
A

h ==
1, . (22)

Assuming  rectangular  shape  of  a  cross  section  one  can  readily  obtain  the  second 

moment of inertia as

12
1

12

1 3
3
,,

beam
beamzbeamy

A
hI == . (23)

In the analysis, macroscopic strain 0ε is prescribed to the RVE and microscopic strains 

and  stresses  are  solved.  Volumetric  averaging  of  microscopic  stresses  leads  to  the 

assessment of an average macroscopic stress and finally estimation of effective stiffness 

parameters.  The key issue of the computation is the size of RVE and application of 

boundary conditions around the domain. Since the domain size is always smaller than 

an infinite body, any constraints can strongly influence the results. Application of the 

kinematic boundary conditions leads to the overestimation of effective stiffness and it 

can give an upper bound, whereas the static boundary conditions give a lower bound . 
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The best solution is usually provided by applying periodic boundary conditions to RVE 

which are, however, difficult to implement into commercial codes.

Nevertheless, the influence of the boundary conditions on microscopic strains and 

stresses in the domain decrease in distant points from the boundary. The size of our 

domain  (106×106 mm)  allowed  us  to  solve  the  problem  with  kinematic  boundary 

conditions. For homogenization, considerably smaller region (later found optimum 35-

50 mm) in the central part was used. Microscopic strains and stresses were computed 

inside this smaller area which was assumed to be still sufficiently large to describe the 

material inhomogeneities and to serve as material RVE.

Kinematic constrains were applied on all domain sides. Free beams located around 

the boundary and not connected to any cell were deleted and supports put on the nodes 

located  on  the  closest  cell.  Such arrangement  of  beams and supports  prevented  the 

structure  from unreasonably  large  deformations  of  these  free  boundary  beams.  The 

whole domain (106×106 mm) was subjected to homogeneous macroscopic strain in one 

axial direction ( 0ε ={1,0,0}T) by imposing prescribed displacement to one domain side 

(Figure 10c).  The  test  was  performed  using  commercial  Ansys  FEM  software  and 

microscopic strains and stresses solved in the domain. Strains and stresses (structural 

forces for the case of beams, respectively)  inside the smaller  area (35-50 mm) were 

averaged and used for computation of the homogenized stiffness matrix (one column in 

the matrix, respectively). Assuming material isotropy, the first component (1,1) at the 

material stiffness matrix is given by:

)21)(1(

)1(
11 νν

ν
−+

−= EL
(24)
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in  which  E is  the  Young's  modulus  and  ν Poisson's  ratio,  respectively.  Since  the 

Poisson's  ratio  of  the  whole  foam  is  close  to  zero  (as  confirmed  by  experimental 

measurements) the L11 member coincides with the Young's modulus E. 

For the tension test in x-direction (Figure 10c), the homogenized Young's modulus 

was found to be RVE size dependent. Experimental investigations of the dependence of 

sample size on apparent elastic modulus and strength were conducted e.g. by Ashby et 

al. . They found, the modulus and strength become independent of size when the sample 

dimensions exceeded about seven cell diameters. This would imply minimum RVE size 

20.3 mm for our typical cell size (2.9 mm). On the other hand, the RVE size should not 

exceed roughly 1/3 to 1/2 of the whole domain size not to be influenced by boundary 

conditions which implies maximum RVE width about 35 to 53 mm for our 106 mm 

wide  domain.  To find  an optimum RVE size  a  numerical  study was  conducted  for 

different RVE sizes in the range 20 to 90 mm (see Figure 11). An optimum RVE was 

confirmed to be between 35 and 50 mm for our specific domain. Results for smaller 

RVEs (<35 mm) are influenced by the beam inhomogeneity inside the RVE (in other 

words, such small RVE is not representative enough) whereas larger RVEs (>50 mm) 

are already influenced by the vicinity of boundary conditions. For optimum RVE sizes, 

the effective Young's modulus varied in the range Eeff,II=1.36-1.38 GPa.
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(a) (b)

(c)

Figure 10: (a) Binary image of the foam (106×106 mm). (b) Voronoi tesselation. 

(c) 2-D beam model with boundary constraints (red squares indicate optimum RVE 

sizes from which homogenized properties have been obtained; solid line=35×35 mm, 

dashed line=50×50 mm).

Figure 11: Dependence of effective Level II Young's modulus on RVE size.

The  resulting  homogenized  Young's  modulus  is  comparable  with  the  range  of 

experimental  values  (0.4−1  GPa)  reported  for  Alporas® e.g.  by  Ashby  et.  al. . 

Experimental  measurements  in  uniaxial  compression  performed  on  our  samples 

(30×30×60/90 mm Alporas blocks) indicate  E=1.45±0.15 GPa (see Section 4.4).  The 

slightly lower stiffness obtained from two-dimensional model can be explained by the 

lack of additional confinement appearing in the three-dimensional case. The influence 
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of  the  RVE  size  can  also  play  a  role  as  described  above.  However,  the  obtained 

difference is small (~5%), probably also due to the almost zero foam Poisson's ratio. 

Anyway, results of the simplified 2-D model have to be treated as a relatively close but 

only the first estimate of the Level II material properties which should be refined e.g. by 

using more precise three-dimensional model. 

4.4 Results from macroscopic measurements

Uniaxial  compression  tests  on  30×30×60  and  30×30×90 mm  Alporas  blocks 

(Figure 12a) were performed in an electromechanical press to verify numerical results 

on the Level  II.  Specimens were loaded-unloaded by five to ten cycles at  very low 

strains  and  than  fully  compressed  up  to  ~5%  longitudinal  strain  (Figure 12b,c). 

Longitudinal and transversal (engineering) strains were evaluated by means of digital 

image  correlation  from  CCD  camera  images  taken  during  the  test .  Negligible 

differences  have  been  found  between  the  slopes  of  loading/unloading  cycles 

(Figure 12c) which justifies evaluation of elastic properties from this part of the loading 

diagram. Young's modulus was finally computed as the average slope from all relevant 

cycles (i.e. all cycles except the first and the last one that both can be influenced by non-

linear  effects).  Young's  modulus  was  determined  as  E=1.45±0.15 GPa  on  six  foam 

samples. Poisson's ratio was found to be ν≈0 in the elastic regime.

28

Paper 4 page 81



(a) (b) (c)

Figure 12: Compression test. (a) Foam sample and an image with digital image 

correlation markers, (b) stress strain diagram, (c) detail of loading-unloading cycles at 

low strains.

5 Conclusions

A  simple  but  effective  two-scale  microstructure  based  model  of  closed-cell 

aluminium foam for the assessment of homogenized elastic properties was proposed in 

this paper. The first level characterized by thin cell walls (~60 µm) was successfully 

homogenized  with  several  analytical  continuum  mechanics  schemes.  Two  different 

material phases (Al-rich and Ca/Ti-rich) were detected at this lower scale by ESEM and 

statistical grid nanoindentation. Effective Young's modulus  Eeff,I≈70 GPa was received 

regardless  the  used  scheme.  The  value  was  also  justified  by  numerical  FFT-based 

homogenization with a very good agreement (error less than 4%).

The upper foam level (Level II) contained homogenized walls and large air pores. 

Here, analytical tools were applied without success. Very poor estimates were given by 

the Mori-Tanaka or self-consistent due to extremely high air content in the foam and 

large stiffness contrast. To better describe the real foam microstructure, a FEM model 
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was  proposed  for  the  numerical  homogenization  at  the  second  level.  The  model 

geometry  was  generated  from  large  optical  scan  of  polished  foam  cross  section 

converted to binary image. Delaunay triangulation and Voronoi tessellation have been 

applied and equivalent  beam structure generated.  The dependence of RVE size was 

solved in a large domain (106×106 mm) supported by kinematic boundary conditions. 

An optimum RVE size was found to be in the range 35-50 mm (i.e.  33-47% of the 

domain size) for which effective elastic properties were assessed (Eeff,II=1.36-1.38 GPa).

The model has proven to realistically describe macroscopic elastic properties of the 

foam.  Nevertheless,  two-dimensional  approximation  slightly  underestimated  the 

experimentally  obtained  stiffness  (E≈1.45 GPa).  It  is  likely  due  to  the  inability  to 

capture additional confinement coming from three-dimensional material microstructure 

or due to the RVE size inaccuracy. Further development of the numerical model and 

generation  of  the  model  geometry  from  micro-CT data  (i.e.  extension  to  3-D)  are 

planned as future developments.
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Figure captions

Figure 1: (a) Overall view on a foam structure (further denoted as Level II); (b) ESEM 

image of a cell wall; (c) detailed ESEM image of a cell wall showing Al-rich (dark 

grey) and Ca/Ti-rich areas (light zones; denoted as Level I).

Figure 2: An example of (a) ESEM image of the cell wall and (b) processed image 

segmented to two phases (white=Ca/Ti-rich, black=Al-rich area).

Figure 3: (a) Binary image of the polished foam panel. (b) Binary image of ~50×50 mm 

foam cut. (c) Cell contours in the cut (prepared in Matlab).

Figure 4: Distribution of cell wall thicknesses.

Figure 5: Distribution of equivalent ellipse shape factor.

Figure 6: Distribution of equivalent circular pores.

Figure 7: Part of the indentation matrix showing 6×6 indents with 10 µm spacing as 

scanned with Hysitron Tribolab.

Figure 8: Typical loading diagrams for Al-rich and Ca/Ti-rich zones.
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Figure 9: (a) Probability density functions of elastic moduli from two measured 

positions and (b) merged results with deconvoluted phases.

Figure 10: (a) Binary image of the foam (106×106 mm). (b) Voronoi tesselation. 

(c) 2-D beam model with boundary constraints (red squares indicate optimum RVE 

sizes from which homogenized properties have been obtained; solid line=35×35 mm, 

dashed line=50×50 mm).

Figure 11: Dependence of effective Level II Young's modulus on RVE size.

Figure 12: Compression test. (a) Foam sample and an image with digital image 

correlation markers, (b) stress strain diagram, (c) detail of loading-unloading cycles at 

low strains.
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Tables

Table 1: Elastic moduli and volume fractions from deconvolution.

Phase Mean (GPa) St. dev. (GPa) Volume fraction (-)
1 (Al-rich zone) 61.88 4.6 0.638
2 (Ca/Ti-rich zone) 87.40 16.7 0.362

Table 2: Values of the Level I effective Young’s modulus computed by different 

homogenization schemes.

Scheme Mori-Tanaka Self-consist. 

scheme

Voigt bound Reuss bound

E (GPa) 70.083 70.135 71.118 69.195

Table 3: Values of the Level II effective Young’s modulus computed by different 

analytical homogenization schemes.

Scheme Mori-Tanaka Self-consist. 

scheme

Voigt bound Reuss bound

E (GPa) 3.1510 0.0012 6.0200 0.0011

37

Paper 4 page 90



page 91

Part VI

Paper 5
Authors:

Jaroslav Vondřejc, Jan Zeman, and Ivo Marek

Title:
FFT-based Finite element method for homogenization



FFT-based Finite element method for homogenization
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Abstract

We present a mathematical theory to a FFT-based homogenization, the numerical method in-
troduced by Moulinec and Suquet [14], The method is based on the Lippmann-Schwinger integral
equation including the Green function. We show its equivalence to weak formulation in the sense the
unique solution coincide. Then we provide an unifying concept of the discretization with trigono-
metric polynomials [19] that is applicable for both formulations. Moreover, we explain the solution
of the resulting non-symmetric linear system by Conjugate gradients as proposed in [24]. Finally,
the convergence of discrete solutions to continuous one is provided.

1 Introduction

A majority of computational homogenization techniques rely on the solution to the unite cell problem,
which concerns the determination of local fields in a representative sample of a heterogeneous material
under periodic boundary conditions. In order to show the approach, a scalar problem modeling heat
transfer, diffusion, or electric conductivity (our choice), is considered and formulated as

curl e(x) = 0, div j(x) = 0, j(x) = A(x)e(x), x ∈ Y (1.1)

where Y =
∏d
α=1(−Yα, Yα) ⊂ Rd denotes a periodic unit cell in d-dimensional space, e =

(
eα
)d
α=1

: Y →
Rd a vector valued electric field, j =

(
jα
)d
α=1

: Y → Rd the corresponding vector of electric current,

A =
(
Aαβ

)d
α,β=1

: Y → Rd×d a second-order uniformly elliptic bounded tensor of electric conductivity,

and Ae express the tensor by vector field multiplication, i.e. Ae =
(∑d

β=1Aαβeβ

)d
α=1

. The differential

equation (1.1) is constrained to a periodic boundary condition with period Y ∈ Rd and the prescribed
average load coming from the macroscopic level average electric field E, i.e.

〈e〉 :=
1

|Y|d

∫
Y
e(x) dx = E, (1.2)

where E denotes a prescribed macroscopic electric field and |Y|d represents the d-dimensional measure
of Y.

The solution of initial problem, (1.1) and (1.2), can be very demanding especially for complicated
microstructures and high contrasts in conductivity coefficients in combination with higher-dimensional
problems. There are various works dealing with discretization of weak formulation, Def. 2.20, especially
by Finite Element Method (FEM) with polynomials as the basis functions [1, 6, 7, 22, 25].

Another method based on the Lippmann-Schwinger equation uses discretization with trigonometric
collocation method proposed by Vainikko in [19] and leading to the non-symmetric non-sparse linear
system. The numerical solution based on Neumann series expansion was introduced by Moulinec and
Suquet in [14]. Nowadays, the proposed algorithm is in extensive investigation and some improvements
and modifications were proposed [15, 8, 20, 8, 20, 13, 2, 3, 23], however no rigorous theory has been
published yet.
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2 CONTINUOUS FORMULATION 2

Under the assumption of positive definiteness of material coefficientsA at periodic unit cell Y, we show
in Lemma 2.29 the connection between Lippmann-Schwinger integral equation, Def. (2.23), and weak
formulation, Def. (2.20). The possibility to obtain the equivalent linear systems from both formulations
has been already published in [21]. The discretization via trigonometric polynomials requires the values
of material coefficients A at regular grid, thus it is fitted for data obtained as digital images from e.g.
X-ray tomography [4] or nanoindentation [16, 17].

Since the multiplication with the matrix from the linear system can be efficiently provided using Fast
Fourier Transform (FFT), the solution is appropriate for Krylov subspace methods. Zeman et.al. in
[24] proposed the solution using Conjugate gradients in spite of the absence of positive definiteness and
symmetry of linear system and showed the behavior of the algorithm, its equivalence with Biconjugate
gradient method and especially its independence on reference conductivity A0, the parameter occurring
in the Lippmann-Schwinger type integral formulation.

In Section 3.4, we show the convergence of discrete solution expressed as linear combination of
trigonometric polynomials to the continuous solution and Section 3.6 validates the usage of Conjugate
gradients for suitable initial approximation.

For the later use in this work, the following notation is introduced. The letter d denotes the dimension
of the problem, assuming d = 2, 3; the Greek letters α, β, γ, ζ, θ are reserved to indices relating dimension,
thus ranging 1, . . . , d (the range is for simplicity often omitted).

The set N0 represent natural numbers including zero. The sets Cd and Rd are spaces of complex and
real vectors with canonical basis {εα} and are equipped with the Lebesgue measure dx. We denote by
|Ω|d the d-dimensional Lebesgue measure of a measurable set Ω ⊂ Rd. The norm ‖ · ‖2 on Cd is induced
by scalar product

(
u,v

)
Cd

=
∑
α uαvα for u,v ∈ Cd.

The set Rd×dspd denotes the space of symmetric positive definite matrices of size d × d with norm
‖C‖2 = maxx∈Rd,‖x‖=1 ‖Cx‖2 that equals to a largest eigenvalue.

A function f : Rd 7→ R is Y -periodic (with period Y ∈ Rd) if f(x + Y � k) = f(x) for arbitrary
x ∈ Rd,k ∈ Zd, where operator � denotes element-wise multiplication. The Y -periodic functions are
sufficient to define only on a periodic unit cell (PUC), set to Y := (−Yα, Yα)dα=1 ⊂ Rd. Two integrable
functions which are almost everywhere equal are identified.

Finally, operator ⊕⊥ denotes the direct sum of mutually orthogonal subspaces, e.g. Rd = ε1⊕⊥ ε2⊕⊥
. . .⊕⊥ εd.

2 Continuous formulation

This section describing the continuous solution to initial problem (1.1) and (1.2) is split into two parts.
Sec. 2.1 summarize the well known facts about function spaces and their properties that are used in
Sec. 2.2 defining a weak formulation and describing the Lippmann-Schwinger integral equation and
showing their equivalence.

2.1 Definitions

This section provides some facts about periodic distribution, the periodic L2
per space and its splitting

into subspaces used thorough the work. The facts are well known and can be found in e.g. books of
Saranen and Vainikko [18], Jikov, Kozlov, and Oleinik [9], or in other books dealing with function spaces
and the equations of mathematical physics.

We begin with definitions of fundamental spaces and their properties.

Definition 2.1 (Y -periodic Lpper space). Let p ∈ R with 1 ≤ p ≤ ∞. Define a Y -periodic space of square
integrable functions as

Lpper(Y) =
{
f ∈ Lploc(R

d) : f is Y -periodic a.e.
}
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2 CONTINUOUS FORMULATION 3

where Lploc(Y) denotes{
{f : Rd → C; f measurable :

∫
Ω
fp(x) dx <∞ with Ω ⊂ Rd bounded}, 1 ≤ p <∞{

f : Rd → C; f measurable such that there exists C ∈ R with |f | < C a.e.
}
, p =∞.

unifying the functions equaling one another almost everywhere.

The space L2
per(Y) is a Hilbert space with a scalar product of functions f and g defined as

(
f, g
)
L2

per(Y)
:= |Y|−1

d

∫
Y
f(x)g(x) dx (2.1)

and induced norm
‖f‖L2

per(Y) :=
√(

f, f
)
L2

per(Y)
(2.2)

where |Y|d denotes the d-dimensional measure of the PUC Y ⊂ Rd. The space Lpper(Y) for 1 ≤ p ≤ ∞ is
a Banach space with norm

‖f‖Lpper(Y) =


(∫
Y |f(x)|p dx

) 1
p

, 1 ≤ p <∞
inf{C ∈ R : |f(x)| < C for almost all x}, p =∞.

(2.3)

The powerful method to analyze functions is the technique of Fourier Transform and/or, in the
periodic case, the Fourier series working with trigonometric orthonormal basis of space L2

per(Y) that is
given by the set {ϕk}k∈Zd with ϕk defined as

ϕk(x) = exp

(
iπ
∑
α

kαxα
Yα

)
, k ∈ Zd. (2.4)

Definition 2.2 (Fourier representation of functions). We define the Fourier representation fF ∈ L2
per(Y)

of function f ∈ L2
per(Y) as

fF (x) =
∑
k∈Zd

f̂(k)ϕk(x)

where the numbers f̂(k) ∈ C,k ∈ Zd denotes the Fourier coefficients of function f defined as

f̂(k) :=
(
f, ϕk

)
L2

per(Y)
= |Y|−1

d

∫
Y
f(x)ϕ−k(x) dx.

where ϕk = ϕ−k.

It can be shown that Fourier representation fF equals to the initial function f almost everywhere
thus they can be identified. Moreover function f ∈ C1(Y), function with continuous partial derivatives,
are represented by the Fourier series everywhere. Next, we can alternatively, due to Parseval’s identity,
express the scalar product of functions f, g ∈ L2

per(Y) as(
f, g
)
L2

per(Y)
:=

∑
k∈Zd

f̂(k)ĝ(k) (2.5)

and thus the norm as ‖f‖L2
per(Y) =

(∑
k∈Zd |f̂(k)|2

) 1
2

.

In order to work with derivatives of L2
per functions, we have to weaken the notion of derivative using

distributions, the generalized functions. First, it is necessary to define the periodic test functions being
the linear function space and a proper convergence on it. Next we follow with the Fourier representation
of a derivative.
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Lemma 2.3 (Fourier coefficients for a derivative). For a function f ∈ C1
per(Y) we can express the

Fourier coefficient for a partial derivative as

∂̂f

∂xα
(k) = iπξα(k)f̂(k)

where k ∈ Zd and ξα(k) = kα
Yα

.

Definition 2.4 (Test functions). For d ∈ N and Y ∈ Rd regarding a dimension and a period, we define
spaces D(Rd) and Dper(R

d) of test functions and Y -periodic test functions on Rd as

D(Rd) = {ψ ∈ C∞(Rd) : suppψ is compact}
Dper(R

d) = {ψ ∈ C∞(Rd) : T kY ψ(x) = ψ(x),∀x ∈ Rd∀k ∈ Zd}

where C∞(Rd) denotes the set of infinitely differentiable scalar functions on Rd, operator suppψ denotes

support of a function defined as a set suppψ = {x ∈ Rd : ψ(x) 6= 0}, and operator T kY ψ denotes the
translation of function ψ, i.e. (

T kY ψ
)

(x) = ψ

(
x+

d∑
α=1

kαYαεα

)
with εα = (δαβ)dβ=1 for α = 1, . . . , d being the vectors of the canonical basis of Rd and δαβ denoting the
Kronecker delta.

Definition 2.5 (Convergence in D(Rd)). Having the sequence of test functions, i.e. {ψn}∞n=1, ψn ∈
D(Rd), n ∈ N0, we say that the sequence {ψn}∞n=1 converges to ϕ in D(Rd), and write ψn → ψ in D(R),
if the following properties are valid

• there exists a compact subset Ω of Rd such that suppψn ⊂ Ω for all n ∈ N

• for the arbitrary k1, . . . , kd ∈ N0, the uniform convergence holds

∂kψn(x)

∂xk11 ∂x
k2
2 . . . ∂xkdd

→ ∂kψ(x)

∂xk11 ∂x
k2
2 . . . ∂xkdd

, for n→∞

with k =
∑d
α kα.

Definition 2.6 (distribution). A linear functional T : D(Rd) → R, with T (·) denoted as
〈
T, ·
〉
, is a

distribution on Rd if it is continuous with respect to the convergence of D(Rd), i.e.

ψn → ψ in D(R) ⇒
〈
T, ψn

〉
→
〈
T, ψ

〉
(2.6)

The space of distributions is denoted by D′(Rn).

Definition 2.7 (Y -periodic distribution). Distribution T ∈ D′(Rn) is Y -periodic distribution, if〈
T, T Yn ψ

〉
=
〈
T, ψ

〉
, ∀ψ ∈ D(Rd)

where T kY ψ denotes the translation of function ψ described in Def. (2.4). The space of Y-periodic distri-
butions, i.e. {T ∈ D′(R) : T is Y -periodic}, is denoted as D′per(R

d).

In order to define the derivative of integrable function without any requirement for regularity, the
notions of the derivative of distribution and convergence of distribution are introduced.

Definition 2.8 (derivative of periodic distribution). For a periodic distribution f ∈ D′per(R
d) we define

its partial derivative as distribution ∂f
∂xα
∈ D′per(R

d) satisfying for α = 1, . . . , d

〈 ∂f
∂xα

, ψ
〉

= −
〈
f,

∂ψ

∂xα

〉
, ∀ψ ∈ Dper(R

d). (2.7)
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Definition 2.9 (convergence of periodic distribution). We say that a periodic distributions fn ∈ D′per(R
d)

converge to f ∈ D′per(R
d), and write

lim
n→∞

fn = f,

if
lim
n→∞

〈
fn, ψ

〉
=
〈
f, ψ

〉
, ∀ψ ∈ Dper(R

d). (2.8)

After a definition of Fourier coefficients of periodic distribution we follows with a Lemma about the
representation of periodic distribution by Fourier series.

Definition 2.10 (Fourier coefficients of periodic distribution). We define the Fourier coefficients f̂(k) ∈
Cd for k ∈ Zd of a periodic distribution f ∈ D′per(R

d) as

f̂(k) =
〈
f, ϕk

〉
(2.9)

as ϕk ∈ Dper(R
d).

Lemma 2.11 (Fourier series of distributions). Assume f ∈ D′per(R
d) and ψ ∈ Dper(R

d). Then there
holds

(a) there exists p ∈ N and cr ∈ R such that |f̂(k)| ≤ cp‖k‖p2,∀k ∈ Zd \ 0

(b) there exists cr ∈ R such that for arbitrary r > 0 we have |ψ̂(k)| 6= cr‖k‖r2,∀k ∈ Zd \ 0

(c)
〈
f, ψ

〉
=
∑
k∈Zn f̂(k)ψ̂(−k)

(d) limminN1,...,Nd→∞
∑
k∈ZdN

f̂(k)ϕk(x)→ f(x) in D′per(R
d)

where ZdN =
{
k ∈ Zd : −Nα2 ≤ kα <

Nα
2 , α = 1, . . . , d

}
.

The Lemma and the proof that can be founded in e.g. [18] says in (a) and (b) that the higher the
regularity of a function/distribution the higher the dacay of Fourier coefficients in infinity giving the
sense of expression (c). The property (c) is important especially with the definition of derivative of
distribution, cf. Def. (2.8). The property (d) legitimize the expression of the distribution f ∈ D′per(R

d)
as a Fourier series.

Next notes are dedicated to Sobolev spaces.

Definition 2.12 (Derivative with multiindex notation). Let m ∈ N0, l ∈ Nd0, and u(x) ∈ L2
per(Y), we

define

Dlu(x) =
∂‖l‖1u(x)∏d
α=1 ∂

lαxα

Dmu(x) = {Dlu : ‖l‖1 = m}

with a partial derivative in the sense of distributions.

Definition 2.13 (Sobolev space). Let 1 ≤ p ≤ ∞ and µ ∈ N. Sobolev space Wµ,p
per (Y) of Y -periodic

functions (distributions) is defined as

Wµ,p
per (Y) =

{
f ∈ Lpper(Y);Dlu ∈ Lpper for l ∈ Nd0 : ‖l‖1 ≤ µ

}
.

For a special case p = 2, we define
Hµ

per(Y) := Wµ,2
per (Y).

We define a norm of Sobolev space ‖ · ‖Wµ,p
per (Y) as

‖u‖Wµ,p
per (Y) =


(∑

l∈Nd0 :‖l‖1<µ ‖D
lu‖p

Lpper(Y)

) 1
p

, for 1 ≤ p <∞
maxl∈Nd0 :‖l‖1<µ ‖D

lu‖L∞per(Y), for p =∞.

where norm ‖ · ‖Lpper(Y) is defined in Eq. (2.3).
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Remark 2.14. For a Sobolev space Hµ
per(Y) we also use equivalent norm

‖u‖Hµper(Y) =

∑
k∈Zd

‖ξ(k)‖2µ2 |û(k)|2
 1

2

.

where û(k) denotes Fourier coefficients of function u and

ξ(k) =

1, for k = 0,(
kα
2Yα

)d
α=1

, for 0 6= k ∈ Zd.

Remark 2.15 (vector valued functions). Let µ ∈ N and 1 ≤ p ≤ ∞. We define a space of vector valued
functions as

Lpper(Y;Cd) = {f : Y → C
d|f = (fα)dα=1, fα ∈ Lpper(Y) for α = 1, . . . , d}

Wµ,p
per (Y;Cd) = {f : Y → C

d|f = (fα)dα=1, fα ∈Wµ,p
per (Y) for α = 1, . . . , d}

with norms

‖f‖Lpper(Y;Cd) = ‖(‖f(x)‖p)‖Lpper(Y) ‖f‖Wµ,p
per (Y;Cd) = ‖(‖f(x)‖p)‖Wµ,p

per (Y)

and scalar product (
f , g

)
L2

per(Y;Cd)
=
∑
α

(
fα, gα

)
L2

per(Y)

where ‖v‖p := (
∑
α v

p
α)

1
p denotes the norm on space Rd. The above space naturally inherits the properties

stated in previous parts.
The Fourier representation fF ∈ L2

per(Y;Cd) of the vector valued function f ∈ L2
per(Y;Cd) can be

defined as a Fourier coefficients of its components, i.e.

fF (x) =
∑
k∈Zd

f̂(k)ϕk(x) f̂(k) =
((
fα, ϕk

)
L2

per(Y)

)d
α
.

The matrix valued functions or tensor, i.e. L2
per(Y;Cd×d) and Wµ,p

per (Y;Cd×d), are defined analogically
with norms

‖f‖Lpper(Y;Cd) = ‖
(
‖fαβ‖L2

per(Y)

)d
α,β=1

‖p ‖f‖Wµ,p
per (Y;Cd) = ‖

(
‖fαβ‖Wµ,p

per (Y)

)d
α,β=1

‖p

where ‖ · ‖p denotes a matrix norm on Rd×d defined as

‖A‖p = sup
x∈Rd,x6=0

‖Ax‖p
‖x‖p

.

Now, we will define the differential operators divergence and curl on the space L2
per, i.e. in the sense

of distributions.

Definition 2.16 (divergence and curl). Let f ∈ L2
per(Y;Rd) be vector valued function, then we define

divergence and curl in distributional sense as

div f := (div f , ψ) = −
d∑

α=1

〈
fα,

∂ψ

∂xα

〉
, ∀ψ ∈ Dper(R

d),

curlf := (curlf , ψ) = −
(〈
fα,

∂ψ

∂xβ

〉
−
〈
fβ ,

∂ψ

∂xα

〉)
α,β=1,...,d

, ∀ψ ∈ Dper(R
d).
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Remark 2.17 (Helmholtz decomposition). Next, we introduce Helmholtz decomposition L2
per(Y;Rd) =

U ⊕⊥ E ⊕⊥ J to the spaces of constant, curl-free with zero mean, and divergence free with zero mean
fields

U = {v ∈ L2
per(Y;Rd) : v(x) = const.}, (2.10a)

E = {v ∈ L2
per(Y;Rd) : curlv = 0, 〈v〉 = 0}, (2.10b)

J = {v ∈ L2
per(Y;Rd) : div v = 0, 〈v〉 = 0}, (2.10c)

where 〈v〉 := 1
|Y|d

∫
Y v(x) dx ∈ Rd denotes the mean value of function v over periodic unit cell Y. Since

the space U consists of constant functions, we identify the space U with Rd; this validates the operations
such as E + v ∈ L2

per(Y;Rd) for E ∈ Rd, v ∈ L2
per(Y;Rd) and CJ ∈ Rd for C ∈ Rd×d and J ∈ U .

Lemma 2.18 (Existence of potential). Vector valued function e ∈ E has potential, i.e. there exist scalar
function u ∈ H1

per(Y) := {u ∈ L2
per(Y); |û(0)|2 +

∑
k∈Zd ‖ξ(k)‖22|û(k)|2 <∞}. Moreover, space E can be

alternatively expressed as E = {∇u;u ∈ H1
per(Y)}.

Proof. Vector valued function e ∈ E ⊂ L2
per(Y;Rd) can be expressed using Fourier series

e =
∑

k∈Zd\{0}

f̂α(k)ϕk

noting 〈e〉 = 0. Then we define a scalar function u ∈ L2
per(Y) as

u(x) :=
∑

k∈Zd\{0}

ê1(k)

iπξ1(k)
ϕk(x)

and we show that it is a potential for e.
Next, we show that ∂u

xα
= eα in L2

per(Y;Rd) by testing with function ∂ψ
x1

, i.e.

〈 ∂u
∂xα

− eα,
∂ψ

x1

〉
=
〈 ∂u
∂xα

,
∂ψ

x1

〉
−
〈
e1,

∂ψ

xα

〉
=
∑
k∈Zd

(
iπξα(k)

ê1(k)

iπξ1(k)
iπξ1(k)ψ̂(k)− ê1(k)iπξα(k)ψ̂(k)

)
= 0

where the identity
〈
eα,

ψ
∂x1

〉
=
〈
e1,

ψ
∂xα

〉
was used as the function e is curl free from definition.

The inclusion {∇u;u ∈ H1
per(Y)} ⊆ E follows from

curl∇u := (curl∇u, ψ) = −
(〈 ∂u

∂xα
,
∂ψ

∂xβ

〉
−
〈 ∂u
∂xβ

,
∂ψ

∂xα

〉)
α,β=1,...,d

=

(〈
u,

∂2ψ

∂xα∂xβ

〉
−
〈
u,

∂2ψ

∂xα∂xβ

〉)
α,β=1,...,d

=
(
0
)
α,β=1,...,d

for arbitrary ψ ∈ Dper(R).
Finally, we show that u is from Sobolev space, i.e. u ∈ H1

per(Y). It could be shown that functions

uα ∈ L2
per(Y;Rd) for α = 2, . . . , d defined as

uα(x) :=
∑
k∈Zd

êα(k)

iπξα(k)
ϕk(x)
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are also potentials of function e. Clearly we have ∇uα = e for α = 2, . . . , d and thus ∇uα = ∇u and
consequently even uα = u. Then u ∈ H1

per(Y) as

‖u‖2H1
per

=
∑
k∈Zd

‖ξ(k)‖22|û(k)|2 =
∑

k∈Zd\{0}

‖ξ(k)‖22|û(k)|2

≤
∑

k∈Zd\{0}

|ξ1(k)|2|û(k)|2 + |ξ2(k)|2|û(k)|2 + . . .+ |ξd(k)|2|û(k)|2

=
∑

k∈Zd\{0}

|ξ1(k)|2
∣∣∣∣ ê1(k)

iπξ1(k)

∣∣∣∣2 + |ξ2(k)|2
∣∣∣∣ ê2(k)

iπξ2(k)

∣∣∣∣2 + . . .+ |ξd(k)|2
∣∣∣∣ êd(k)

iπξd(k)

∣∣∣∣2
≤ ‖e‖2L2

per(Y;Rd).

2.2 Integral and weak formulation

In this section, we define weak formulation Def. 2.20 and the formulation based on Lippmann-Schwinger
equation Def. 2.23. In Lemma 2.29 we show the equivalence of both formulations. It is based on
projection operator that is derived from Green function occurring in the Lippmann-Schwinger equation,
see Lem. 2.28.

Notation 2.19. Here and in the sequel, A ∈ L∞per(Y,Rd×dspd ) denotes symmetric1 and uniformly elliptic
material coefficients of electric conductivity. It means that there exists positive constant cA > 0 such that
for almost all x ∈ Y and all nonzero u ∈ Rd, inequality

cA‖u‖22 ≤
(
A(x)u,u

)
Rd

holds. For the next use we define constant of upper bound CA := ‖A‖L∞per
.

Moreover, function e ∈ E denotes perturbation of electric field, and E ∈ U its macroscopic counter-
parts. Then their summation (E + e) ∈ U ⊕⊥ E represents microscopic field.

Weak formulation in the next definition is derived with the multiplication of differential equation (1.1)
by a test function v ∈ Dper(Y), the application of the Green theorem and some algebraic emendation.

Definition 2.20 (Weak formulation). Let A ∈ L∞per(Y,Rd×d) be symmetric positive definite material

coefficients. Then we define bilinear form B[·, ·] : L2
per(Y,Rd)× L2

per(Y,Rd)→ R as

B[e,v] :=
(
Ae,v

)
L2

per(Y,Rd)
(2.11)

and the linear functional f [·] : L2
per(Y,Rd)→ R as

f [v] := −
(
AE,v

)
L2

per(Y,Rd)
. (2.12)

where E ∈ U is a macroscopic load. Function ẽ ∈ E is the weak solution of the differential equation
(1.1) with periodic boundary condition and constraint 〈e〉 = E if

B[ẽ,v] = f [v], ∀v ∈ E . (2.13)

We say that e = E + ẽ is microscopic field for macroscopic load E ∈ U .

Remark 2.21 (Existence of the unique solution). Since the bilinear form from Def. (2.20) is positive
definite cA‖v‖L2

per
≤ B[v,v] and bounded B[u,v] ≤ CA‖u‖L2

per
‖v‖L2

per
for all u,v ∈ E and the linear

functional f is bounded ‖f‖ ≤ CA‖e0‖L2
per

, the well known Lax-Milgram theorem provide the existence
and uniqueness of the solution.

1For almost all x ∈ Y, equality A(x) = A(x)T holds.
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Remark 2.22 (The solution of weak formulation as a minimizer). The bilinear form is symmetric, i.e.
B[u,v] = B[v,u] for all u,v ∈ L2

per, as A is symmetric, thus we can express the solution as a minimizer
of quadratic functional

e = E + ẽ = E + argminv∈E

1

2
B[v,v]− f [v]

In order to formulate Lippmann-Schwinger equation, we introduce a homogeneous reference medium
with constant conductivity A0 ∈ Rd×d that is symmetric and positive definite. Then we can decompose
the electric current from Eq. (1.1) into the form

div
[
A0e(x)

]
= −div

[(
A(x)−A0

)
e(x)

]
(2.14)

that is appropriate for the use of Fourier Transform technique for a homogeneous problem with conduc-
tivity A0; the right-hand side of Eq. (2.14) then represents the sources, the divergence of so called po-
larization field. The original problem (1.1)–(1.2) is then equivalent to the periodic Lippmann-Schwinger
equation with a derivative of Green function as an integral kernel.

Definition 2.23 (Integral formulation). Having the same assumption as in Def. (2.20) and in addition
let A0 ∈ R

d×d
spd be symmetric positive definite matrix. We say that e ∈ L2

per(Y;Rd) is the solution of
Lippmann-Schwinger equation if it satisfies

e(x) +

∫
Y

Γ(x− y;A0)(A(y)−A0)e(y) dy = E, x ∈ Y (2.15)

where the convolution integral f ∈ L2
per(Y;Rd) →

∫
Y Γ(x − y;A0)f(y) dy ∈ L2

per(Y;Rd) is defined with
the help of Fourier series as∫

Y
Γ(x− y;A0)f(y) dy :=

∑
k∈Zd\{0}

ξ(k)⊗ ξ(k)(
A0ξ(k), ξ(k)

)
Rd

f̂(k)ϕk(x) (2.16a)

=
∑

k∈Zd\{0}

 d∑
β=1

kαkβ
YαYβ∑d

µ,ν=1A
0
µν

kµkν
YµYν

f̂β(k)ϕk(x)


α=1,...,d

(2.16b)

where ξ(k) ∈ Rd is a vector with components ξα(k) = kα
Yα

, binary operator ⊗ denotes tensor product and(
A0ξ(k), ξ(k)

)
Rd

is a quadratic form in Rd and f̂(k) for k ∈ Zd are the Fourier coefficients.

Remark 2.24. The definition of convolution integral in Eq. (2.16) is correct, it really maps the function
to the space L2

per(Y;Rd) as

‖
∫
Y

Γ(x− y;A0)f(y) dy‖L2
per(Y;Rd) ≤

1

cA
‖f‖L2

per(Y;Rd)

In order to show the equivalence of both formulations in Def. (2.20) and (2.23), we introduce an
operator G[·] based on convolution integral of Lippmann-Schwinger equation. In the following lemma,
we show that it is a projection on space E , the space of curl-free fields with zero mean.

Definition 2.25. We define an operator G[·] : L2
per(Y;Rd)→ L2

per(Y;Rd) as

G[f ](x) :=

∫
Y

Γ(x− y;A0)A0f(y) dy

where the convolution integral is defined in Def. (2.23).
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Remark 2.26. The operator G can be explicitly expressed as

G[f ](x) =
∑

k∈Zd\{0}

∑
β,γ

ξα(k)ξβ(k)(
A0ξ(k), ξ(k)

)
Rd

A0
βγ f̂γ(k)ϕk(x) (2.17)

where ξα(k) = kα
Yα
∈ R for α = 1, . . . , d as in Def. (2.23).

Remark 2.27 (The adjoint of G). For the next use we also discuss the adjoint operator G∗ to G, i.e.
the operator satisfying

(
Gv,w

)
=
(
v,G∗w

)
for all v,w ∈ L2

per. With the help of previous Remark 2.26
we can easily express the adjoint operator G∗ as

G∗[f ](x) =
∑

k∈Zd\{0}

∑
β,γ

A0
αβ

ξβ(k)ξγ(k)(
A0ξ(k), ξ(k)

)
Rd

f̂γ(k)ϕk(x) (2.18)

leading to a property A0G = G∗A0.

The following lemma provides a projection on space E and it is based on the well known results

about projections of matrices in Fourier space ξ(k)⊗ξ(k)(
ξ(k),ξ(k)

)
Rd

that are used in homogenization theory, see

e.g. [12]. However, the operator G, including parameter A0 and acting on L2
per, has not been presented

yet, to the best of our knowledge.

Lemma 2.28 (Projection on curl-free fields). Operator G[·] : L2
per(Y;Rd) → L2

per(Y;Rd) defined in
Def. (2.25) is a projection on the space E .

Proof. First, we note that Def. (2.25) is correct, i.e. it maps the functions into the space L2
per(Y;Rd) as

‖G[f ]‖L2
per(Y;Rd) ≤ CA

cA
‖f‖L2

per(Y;Rd). The Fourier coefficients of the real functions satisfies the following

symmetry f̂(k) = conj f̂(−k) for all k ∈ Zd. The images of operator G provides such symmetry

conj
(
Ĝf(−k)

)
= conj

 d∑
β,γ=1

ξαξβ(
A0ξ, ξ

)
Rd

A0
βγfγ(−k)

d

α=1

=

 d∑
β,γ=1

ξαξβ(
A0ξ, ξ

)
Rd

A0
βγ conj

(
fγ(−k)

)d

α=1

=

 d∑
β,γ=1

ξαξβ(
A0ξ, ξ

)
Rd

A0
βγfγ(k)

d

α=1

= Ĝf(k)

We show that operator G is the projection by showing G2 = G, hence

G2[f ](x) = G
[
G[f ]

]
(x) = G

 ∑
k∈Z\{0}

ξ(k)⊗ ξ(k)(
A0ξ(k), ξ(k)

)
Rd

A0f̂(k)ϕk(x)


=

∑
k∈Z\{0}

ξ(k)⊗ ξ(k)(
A0ξ(k), ξ(k)

)
Rd

A0 ξ(k)⊗ ξ(k)(
A0ξ(k), ξ(k)

)
Rd

A0f̂(k)ϕk(x)

=
∑

k∈Z\{0}

ξ(k)⊗ ξ(k)(
A0ξ(k), ξ(k)

)
Rd

A0f̂(k)ϕk(x) = G[f ](x)

Next, we prove that it maps into the space E by showing curlG[f ] = 0 and
〈
G[f ]

〉
= 0 for all

f ∈ L2
per(Y,Rd). The later case is trivial as we sum in Eq. (2.17) over the set Zd \ {0}, i.e. the constant
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term is omitted. Hence, the first case follows for arbitrary test function ψ ∈ Dper(R
d) as

curlG[f ] := (curlG[f ], ψ) = −
(〈

(G[f ])α,
∂ψ

∂xβ

〉
−
〈
(G[f ])β ,

∂ψ

∂xα

〉)d
α,β=1

(2.19a)

= −

(∑
k∈Z

(̂G[f ])α(k)
∂̂ψ

∂xβ
(−k)−

∑
k∈Z

(̂G[f ])β(k)
∂̂ψ

∂xα
(−k)

)d
α,β=1

(2.19b)

=

 ∑
k∈Z\{0}

∑
ζ,θ

ξαξζA
0
ζθf̂θ(

A0ξ(k), ξ(k)
)
Rd

iπξβψ̂ −
∑

k∈Z\{0}

∑
ζ,θ

ξβξζA
0
ζθf̂θ(

A0ξ(k), ξ(k)
)
Rd

iπξαψ̂

d

α,β=1

(2.19c)

=
(
0
)d
α,β=1

(2.19d)

where Eq. (2.19a) is just from Def. (2.16), Eq. (2.19b) comes from a property (c) in Lemma 2.11, and
Eq. (2.19c) follows from the definition of operator G and Lemma 2.3.

We show that the projection maps on space E by showing G[f ] = f for all f ∈ E . Using again
property (c) in Lemma 2.11, we can write for an arbitrary test function ψ ∈ Dper(R

d) and arbitrary α

(
fα − G[f ]α, ψ

)
L2

per(Y)
=

∑
k∈Z\{0}

f̂α(k)−
∑
β,γ

ξα(k)ξβ(k)(
A0ξ(k), ξ(k)

)
Rd

A0
βγ f̂γ(k)

 ψ̂(k)

Using Lemma 2.18 giving a potential u ∈ H1
per(Y) such that ∇u = f , we can continue as

=
∑

k∈Z\{0}

 ∂̂u

∂xα
(k)−

∑
β,γ

ξα(k)ξβ(k)(
A0ξ(k), ξ(k)

)
Rd

A0
βγ

∂̂u

∂xγ
(k)

 ψ̂(k)

=
∑

k∈Z\{0}

iπξα(k)û(k)−
∑
β,γ

ξα(k)ξβ(k)(
A0ξ(k), ξ(k)

)
Rd

A0
βγ iπξγ(k)û(k)

 ψ̂(k) = 0

where we have used Lemma 2.3 about the Fourier coefficients of a derivative.

Using previously proven Lemma, we show the connection between both formulations. We notice that
the solutions of both formulations differ by a constant; the unique solution of weak formulation ẽ ∈ E
has zero mean while the solution of Lippmann-Schwinger equation eLS, if exists, has the mean value
equal to macroscopic load 〈eLS〉 = E.

Theorem 2.29. Weak formulation, Def. (2.20), and Lippmann-Schwinger equation, Def. (2.23), are
equivalent in the sense the unique solution coincide.

Proof. The unique microscopic field e = E + ẽ with ẽ ∈ E and E ∈ U coming from a weak formulation
satisfies (

Aẽ,w
)
L2

per(Y;Rd)
= −

(
AE,w

)
L2

per(Y;Rd)
, ∀w ∈ E .

Using the property of operator G, i.e. G[w] = w for all w ∈ E , and the identity A0(A0)−1 noting that
A0 is positive definite and symmetric, we can rewrite the weak formulation into(

A0(A0)−1A(E + ẽ),Gw
)
L2

per(Y;Rd)
= 0, ∀w ∈ L2

per(Y;Rd),(
(A0)−1A(E + ẽ),A0Gw

)
L2

per(Y;Rd)
= 0, ∀w ∈ L2

per(Y;Rd),
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where we have enlarged the space of test functions. Next, using the properties of adjoint operator G∗
stated in Remark 2.27 and the fact that A0(·) : w ∈ L2

per(Y;Rd)→ A0w ∈ L2
per(Y;Rd) is isomorphism,

we write (
(A0)−1A(E + ẽ),G∗A0w

)
L2

per(Y;Rd)
= 0, ∀w ∈ L2

per(Y;Rd)(
G(A0)−1Ae,v

)
L2

per(Y;Rd)
= 0, ∀v ∈ L2

per(Y;Rd)

where v = A0w.
Adding and substracting the terms

(
ẽ,v

)
L2

per(Y;Rd)
and

(
E,v

)
L2

per(Y;Rd)
and using a property GE = 0

heads to(
ẽ,v

)
L2

per
+
(
E,v

)
L2

per
+
(
G(A0)−1Ae,v

)
L2

per
−
(
ẽ,v

)
L2

per
=
(
E,v

)
L2

per
, ∀v ∈ L2

per(Y;Rd)(
e+ G(A0)−1(A−A0)e,v

)
L2(Y;Rd)

=
(
E,v

)
L2(Y;Rd)

, ∀v ∈ L2
per(Y;Rd)

Since it is tested for all test function v ∈ L2
per(Y;Rd), we abandon the scalar product to equation holding

almost everywhere

e(x) + G[(A0)−1(A−A0)e](x) = E, for a.a. x ∈ Y

e(x) +

∫
Y

Γ(x− y)(A(y)−A0)e(y) dy = E, for a.a. x ∈ Y

The functions from L2
per(Y;Rd) equal to each other if they are the same almost everywhere, thus we can

choose an appropriate representative in order to satisfy the equation everywhere and the first implication
is done.

The contrary case can be done by multiplication with a test function v ∈ L2
per(Y;Rd), by integration

over Y, by split of the solution with projection e = Ge + (I − G)e, and by the same arguments about
the projections G and its adjoint G∗ as in the first part of the proof.

3 Discrete solutions

This section is dedicated to the discretization of weak formulation in Def. 2.20. The trigonometric
polynomials are used as the basis functions, see Sec. 3.1, and their approximation properties are stated
in Sec. 3.2.

Next, in Sec. 3.3, we define Galerkin approximation (GA) and Galerkin approximation with numerical
integration (GAwNI) and we show the fully discrete formulation of GAwNI that is appropriate for the
solution by Conjugate gradients. In Sec. 3.4, we provide convergence of discrete solutions to the solution
of weak formulation, then in Sec. 3.5 the convergence is shown for rough material coefficients by their
regularization. Finally, Sec. 3.6 provides information about the numerical solution of a corresponding
linear system by Conjugate gradients.

In the sequel, vector N ∈ Nd is reserved for a number of discretization points, then scalar |N |Π :=∏
αNα denotes the number of degrees of freedom. If Nα is odd for all α we talk about the odd number

of discretization points. We use a simplification in order to make the theory of real valued trigonometric
polynomials uncomplicated — in the sequel, only the odd number of discretization points is considered,
Sec. 3.1.

A multi-index notation is employed, in which RN represents RN1×···×Nd . Set Rd×N denotes the space
of vectors v with components vnα and Rd×d×N×N the space of matrices A with components Anmαβ for

α, β and n,m ∈ Z
d
N . Next, vectors vn ∈ Rd for n ∈ Z

d
N and vα ∈ RN for α represent subvectors

of v with components vnα . Analogically, submatrices Anm ∈ Rd×d and Aαβ ∈ RN×N can be defined.
A scalar product on set Rd×N is defined as

(
u, v
)
Rd×N :=

∑
α

∑
n∈ZdN

unαv
n
α and matrix A by vector

v multiplication as (Av)nα :=
∑
β

∑
m∈ZdN

Anmαβ vmβ . Matrix A is symmetric positive definite if relation
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Amnαβ = Anmβα holds for all components and inequality
(
Av, v

)
Rd×N > 0 applies for arbitrary v ∈ Rd×N .

We use the serif font for vectors v ∈ Rd×N and matrices A ∈ Rd×d×N×N to distinguish from vectors
E ∈ Rd and matrices A(x) ∈ Rd×d and from vector valued functions v ∈ L2

per(Y;Rd). In order to
differentiate vectors and matrices for different number of discretization points N , we often write them
with subscript N , i.e. vN and AN .

3.1 Finite dimensional space of trigonometric polynomials

In this section we define a finite dimensional space of trigonometric polynomials and provide its properties.

Definition 3.1. For odd N , we define the space of trigonometric polynomials as

TN =
{ ∑
k∈ZdN

ĉkϕk(x); ĉk ∈ C, ĉk = (ĉ−k) for k ∈ ZdN
}

(3.1)

where the index set ZdN , already defined in Lemma 2.11, is expressed as

Z
d
N =

{
k ∈ Zd : −Nα

2
≤ kα <

Nα
2
,

}
(3.2)

and ϕk are basis functions defined already in Eq. (2.4), i.e. ϕk(x) = exp
(

iπ
∑d
α=1

kαxα
Yα

)
. The scalar

valued functions from the space TN are denoted with a subscript N , e.g. fN ∈ TN . Analogically, we
define the vector valued trigonometric polynomials as

T d
N =

{
f ∈ L2

per(Y;Rd) : fα ∈ TN for α = 1, . . . , d
}
,

Remark 3.2. The condition ĉk = (ĉ−k) for k ∈ ZdN in previous definition satisfies that trigonometric
polynomials are real valued. The fact that N is odd satisfies that the boundary frequencies Nα

2 do not

occur at all. This assures that the index set ZdN is symmetric around zero, thus all frequencies k ∈ ZdN
has the opposite counterpart −k as well as the Fourier coefficients.

Now, we show two possible representations of trigonometric polynomials and the connection between
them. They can be expressed through their Fourier coefficients and through their function values at
nodal points.

Remark 3.3 (Representation of vN ∈ T d
N through its Fourier coefficients). The function of trigono-

metric polynomials, vN ∈ TN , can be expressed as

vN (x) =
∑
k∈ZdN

v̂N (k)ϕk(x),

where v̂N (k) ∈ Cd are Fourier coefficients defined in Def. (2.2).

Definition 3.4 (nodal points). We define the nodal points of a periodic unit cell Y as points xkN ∈ Y
for k ∈ ZdN explicitly expressed as

xkN :=
∑
α

2Yαkα
Nα

εα =

(
2Y1k1

N1
,

2Y2k2

N2
, . . . ,

2Ydkd
Nd

)
.

Thus each vector k ∈ ZdN points out one point xkN ∈ Y from the regular grid {xkN ∈ Y;k ∈ ZdN}.

Remark 3.5 (Representation of vN ∈ T d
N through its nodal values). The trigonometric polynomials

can be represented through its nodal values as

vN (x) =
∑
m∈ZdN

vN (xmN )ϕN ,m(x)
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where the functions ϕN ,k(x) ∈ T d
N state for

ϕN ,m(x) =
1

|N |Π

∑
k∈ZdN

ϕk(x)ω−mkN =
1

|N |Π

∑
k∈ZdN

exp

{
iπ

d∑
α=1

kα

(
xα
Yα
− 2mα

Nα

)}
(3.3)

The are called shape basis functions and satisfy the Dirac delta property at nodal points

ϕN ,m(xkN ) = δkm, (3.4)

i.e. it is such trigonometric polynomial having the value one in a particular nodal point of regular grid
and value zero in the rest of the nodal points.

Remark 3.6 (Connection of representions). Let vN (x) ∈ TN . Then Fourier coefficients v̂N (k), k ∈ ZdN
can be obtained with the Discrete Fourier Transform from the values at nodal points

(
vN (xmN )

)m∈ZdN .
Hence

v̂(k) =
1

|N |Π

∑
m∈ZdN

v(xmN )ω−kmN , k ∈ ZdN

v(xmN ) =
∑
k∈ZdN

v̂(k)ωkmN , m ∈ ZdN

where ωkmN = exp
(

2πi
∑
α
kαmα
Nα

)
are the coefficients of DFT with the property∑

m∈ZdN

ωkmN ωmnN = δkn|N |Π (3.5)

Remark 3.7 (Orthogonality of ϕN ,k). For shape basis functions, the following holds

(
ϕN ,k, ϕN ,l

)
=

δkl
|N |Π

Proof. (
ϕN ,k, ϕN ,l

)
L2

per
=

1

|N |Π

∑
m∈ZdN

ωmkN
(
ϕm, ϕN ,l

)
L2

per

=

(
1

|N |Π

)2 ∑
m∈ZdN

∑
n∈ZdN

ωmkN ωnlN
(
ϕm, ϕn

)
L2

per

=

(
1

|N |Π

)2 ∑
m∈ZdN

∑
n∈ZdN

ωmkN ωnlN δmn

=

(
1

|N |Π

)2 ∑
m∈ZdN

ωmkN ω−mlN =
δkl
|N |Π

Definition 3.8. Operator IN : T d
N → Rd×N stocks the values of the trigonometric polynomials at the

nodal points to a vector IN [vN ] =
(
vN ,α(xnN )

)n∈ZdN
α=1,...,d

.

Lemma 3.9. Operator IN from the previous definition is an isomorphism.

Proof. The proof is the consequence of its Def. 3.8 and the Dirac delta property (3.4).
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3.2 Orthogonal and Interpolation Projection

This section provides lemmas about trigonometric approximations, i.e. about the estimates of orthog-
onal projection and interpolation projection. In [18, Section 8], this topic is well described for a one-
dimensional setting and partially for a two-dimensional setting with equal number of discretization points
in each direction. Thus we present here the generalization of the estimates for arbitrary dimension and
for arbitrary number of discretization points. However, the proofs follows the same ideas as in [18,
Section 8].

Definition 3.10 (Orthogonal projection). For odd N ∈ N, we define an operator PN [·] : L2
per(Y;Rd)→

T d
N as

PN [v](x) =
∑
k∈ZdN

v̂(k)ϕk(x)

where v̂(k) denotes Fourier coefficients of v.

Remark 3.11. It can be easily shown that operator PN [·] is the orthogonal projection.

The possibility of expression functions as a Fourier series is stated in the following lemma with a proof

that is based on the density of the set of trigonometric polynomials {ϕk}k∈Z
d

in space L2
per, e.g. [11].

Lemma 3.12 (Approximation by orthogonal projection). For a function v ∈ L2
per(Y;Rd), the following

holds

lim
N→∞

‖v − PN [v]‖L2
per(Y;Rd) = 0

where N →∞ means minαNα →∞.

Lemma 3.13 (Approximation by orthogonal projection). For a function v ∈ Hµ
per(Y;Rd) with µ ∈ R

we have

‖v − PN [v]‖Hλper
≤
(

min
α=1,...,d

Nα
2Yα

)(λ−µ)

‖v‖Hµper
(3.6)

where λ ≤ µ and N 6= 0.

Proof. The proof is a consequence of direct calculation.

‖v − PN [v]‖2Hλper
=

∑
Zd\ZdN

‖ξ(k)‖2λ2 ‖v̂(k)‖22

=
∑

Zd\ZdN

‖ξ(k)‖2(λ−µ)
2 ‖ξ(k)‖2µ2 ‖v̂(k)‖22

≤
(

min
α=1,...,d

Nα
2Yα

)2(λ−µ) ∑
Zd\ZdN

‖ξ(k)‖2µ2 ‖v̂(k)‖22

≤
(

min
α=1,...,d

Nα
2Yα

)2(λ−µ)

‖v‖2Hµper

Definition 3.14 (Interpolation projection). For Y -periodic continuous functions Cper(Y;Rd) and odd
N , we define an operator QN [·] : Cper → T d

N with conditions

QN [v] ∈ T d
N QN [v](xkN ) = v(xkN ) for k ∈ ZdN .
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Alternatively, the interpolation operator can be defined as

QN [v] =
∑
k∈ZdN

v(xkN )ϕN ,k.

This is based on two possibilities of trigonometric polynomial representation and their connection
Rem. 3.6.

Remark 3.15. The interpolation projection is well defined for Hµ
per(Y) with µ > d

2 as the space Hµ
per(Y)

is embedded into the space of continuous functions Cper.

Remark 3.16. The mapping QN from previous definition is clearly a projection, nevertheless not or-
thogonal anymore.

Next, we state the lemma about interpolation operator in Fourier space; the lemma is used for the
facts about approximation by interpolation projection.

Lemma 3.17 (Interpolation operator QN in Fourier space). For v ∈ Hµ
per(Y), µ > d

2

QN [v](x) =
∑
k∈ZdN

∑
l∈Zd

v̂(k + l�N)

ϕk(x)

where � denotes element-wise multiplication.

Proof. Using the property of operator QN [·] to being a projection on TN , we have QN [ϕk] = ϕk as
ϕk ∈ TN . Moreover for all k,m ∈ ZdN and l ∈ Zd, the basis functions ϕk(x) and ϕk+l�N (x) equals one

another2 at nodal points xmN =
∑d
α=1

2Yαkα
Nα

εα as

ϕk+l�N (xmN ) = ϕk(xmN ) · exp

(
iπ

d∑
α=1

lαNα2Yαmα

YαNα

)

= ϕk(xmN ) · exp

(
2iπ

d∑
α=1

lαmα

)
= ϕk(xmN )

and thus we even have

QN [ϕk+l�N ] = QN [ϕk] = ϕk, (k ∈ ZdN , l ∈ Zd).

As the operator QN is obviously linear, we can finish the proof

QN [v](x) = QN

 ∑
m∈Zd

v̂(m)ϕm(x)

 (x) = QN

 ∑
k∈ZdN

∑
l∈Zd

v̂(k + l�N)ϕk+l�N (x)

 (x)

=
∑
k∈ZdN

∑
l∈Zd

v̂(k + l�N)

ϕk(x)

Lemma 3.18 (Approximation by interpolation projection). Let v ∈ Hµ
per(Y) with µ > d

2 , then

‖v −QN [v]‖Hλper(Y) ≤ cλ,µ
(

min
α=1,...,d

Nα
2Yα

)λ−µ
‖v‖Hµper(Y) (3.7)

2operator � denotes element-wise multiplication
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for 0 ≤ λ ≤ µ and

cλ,µ =

1 + dλρ2λ
∑

l∈Nd0\{0}

‖l‖−2µ
2

 1
2

ρ =
maxα=1,...,d

Nα
2Yα

minα=1,...,d
Nα
2Yα

.

Proof. The proof generalizes the proof of Theorems 8.2.1 and 8.5.3 in [18]. Using the identity

‖v −QN [v]‖2Hλper(Y) = ‖v − PN [v]‖2Hλper(Y) + ‖PN [v]−QN [v]‖2Hλper(Y)

and Lem. 3.13 about approximation with orthogonal projection, we have to estimate the second term
‖PN [v]−QN [v]‖2Hλper(Y).

Using Lem. 3.17, we can express Fourier coefficients of undergoing term

̂(PN [v]−QN [v])(k) =

{∑
l∈Zd\{0} v̂(k + l�N), for k ∈ ZdN

0, for k ∈ Zd \ ZdN .

Then some algebra with Cauchy inequality yield

‖PN [v]−QN [v]‖2Hλper(Y)
=
∑

k∈Zd
N

‖ξ(k)‖2λ2

∣∣∣∣∣∣
∑

l∈Zd\{0}

v̂(k + l�N)

∣∣∣∣∣∣
2

≤
∑

k∈Zd
N

 ∑
l∈Zd\{0}

‖ξ(k)‖λ2
‖ξ(k + l�N)‖µ2

· ‖ξ(k + l�N)‖µ2 |v̂(k + l�N)|

2

≤
∑

k∈Zd
N

 ∑
l∈Zd\{0}

‖ξ(k)‖2λ2
‖ξ(k + l�N)‖2µ2

 ∑
l∈Zd\{0}

‖ξ(k + l�N)‖2µ2 |v̂(k + l�N)|2


≤ ε2N‖v‖2Hµper
(Y)

where

ε2
N = max

k∈ZdN

 ∑
l∈Zd\{0}

‖ξ(k)‖2λ2
‖ξ(k + l�N)‖2µ2


≤ ‖ξ(N/2)‖2λ2 max

k∈ZdN

 ∑
l∈Zd\{0}

1[∑d
α=1(kα+lαNα

Yα
)2
]µ


= ‖ξ(N/2)‖2λ2 max
k∈ZdN

 ∑
l∈Zd\{0}

1[∑d
α=1( Nα2Yα

)2( kα
2Nα

+ 2lα)2
]µ


= ‖ξ(N/2)‖2λ2

 ∑
l∈Zd\{0}

1[∑d
α=1( Nα2Yα

)2(1 + 2lα)2
]µ


≤ ‖ξ(N/2)‖2λ2
(

min
α=1,...,d

Nα
2Yα

)−2µ
 ∑
l∈Zd\{0}

1[∑d
α=1(1 + 2lα)2

]µ


≤ dλ
(

max
α=1,...,d

Nα
2Yα

)2λ(
min

α=1,...,d

Nα
2Yα

)−2µ
 ∑
l∈Nd0\{0}

1[∑d
α=1 l

2
α

]µ
 .

Paper 5 page 108



3 DISCRETE SOLUTIONS 18

Hence

‖PN [v]−QN [v]‖2Hλper(Y) ≤ d
λρ2λ

∑
l∈Nd0\{0}

1

‖l‖2µ2

(
min

α=1,...,d

Nα
2Yα

)2(λ−µ)

‖v‖2Hµper
(Y)

and together with Eq. (3.6), estimate in Eq. (3.7) follows.

3.3 Galerkin approximation with numerical integration

This section presents Galerkin approximation (GA) and Galerkin approximation with numerical integra-
tion (GAwNI) that leads to a linear system equivalent with Moulinec-Suquet algorithm, cf. [21].

Definition 3.19 (Finite dimensional space). We define the finite dimensional space used for discretiza-
tion EN = T d

N

⋂
E , the space of curl-free trigonometric polynomials with zero mean.

There is no doubt that the space EN is empty. Since we have projection G from Def. 2.25, the
Helmholtz decomposition for the space of trigonometric polynomials can be written down

T d
N = U ⊕⊥ EN ⊕⊥JN . (3.8)

Definition 3.20 (Galerkin approximation). Let EN be a space from Def. 3.19. The function ẽN ∈ EN
is called Galerkin approximation if it satisfies

B[ẽN ,vN ] = f [vN ], ∀vN ∈ EN

Remark 3.21 (Existence of the unique solution). The same arguments (positive definiteness and bound-
edness) with Lax-Milgram lemma as in Remark 2.21 provides the existence of the unique solution.

Lemma 3.22 (Convergence of Galerkin approximation). The solution of Galerkin approximation stated
in Def. 3.20 converges to the solution of weak formulation Def. 2.20.

Proof. Using Cea’s lemma with constants cA and CA from 2.20, we can write

‖e− eN‖L2
per
≤ CA

cA
inf

vN∈EN

‖e− vN‖L2
per

≤ CA
cA
‖e− PN [e]‖L2

per
.

The limit passage with Lemma 3.12 provides the converge result.

Remark 3.23. The better result than in previous lemma can be obtained with Lemma 3.13 for higher
regularity of conductivity coefficients and consequently the higher regularity of the solution.

Definition 3.24 (Galerkin approximation with numerical integration). Let A ∈ L2
per(Y;Rd×dspd )

⋂
Cper

be material coefficients that are additionally continuous. Then the function ẽN ∈ EN is the solution of
GAwNI if it satisfies

BN [ẽN ,vN ] = fN [vN ], ∀vN ∈ EN (3.9)

where

BN [eN ,vN ] :=
(
QN [AeN ],vN

)
L2

per(Y,Rd)
(3.10a)

fN [vN ] :=
(
QN [AE],vN

)
L2

per(Y,Rd)
. (3.10b)

Remark 3.25. The regularity requirement of conductivity coefficients A in previous lemma satisfies that
the function AeN is continuous. Hence, the interpolation operator QN [·] is well defined.
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Next, we define the fully discrete space, the space of function values at regular grid.

Definition 3.26 (Curl-free vectors with zero mean). We define the space of curl-free vectors with zero
mean as EN := IN [EN ] ⊂ Rd×N where operator IN is defined in Def. 3.8.

With the help of isomorphism IN , space Rd×N can be split with Helmholtz decomposition into
Rd×N = UN ⊕⊥ EN ⊕⊥ JN , cf. (3.8). The following definition provides the fully discrete formulation of
GAwNI and the next lemma shows its correctness.

Definition 3.27 (Fully discrete representation of Galerkin approximation with numerical integration).
Let A ∈ Cper be the conductivity coefficients and

AN =
[
δkmAαβ(xkN )

]km∈ZdN
α,β=1,...,d

∈ Rd×d×N×N (3.11)

be the matrix composed of its values at regular grid. Analogically let E be the prescribed macroscopic
electric field and

EN = IN [E] ∈ UN (3.12)

its fully discrete counterpart. Than we define the matrix representation of Galerkin approximation with
numerical integration as the following problem:
find ẽN ∈ EN such that(

AN ẽN , vN
)
Rd×N = −

(
ANEN , vN

)
Rd×N , ∀vN ∈ EN .

Lemma 3.28 (Fully discrete representation of Galerkin approximation with numerical integration). Let
A ∈ Cper be the conductivity coefficients. Then the solution of Galerkin approximation with numerical
integration ẽN ∈ EN from Def. 3.24 is equivalent to the solution of fully discrete representation of
Galerkin approximation with numerical integration ẽN ∈ EN defined in Def. 3.27 as the solutions are
related with isomorphism

ẽN = IN [ẽN ].

Proof. We substitute a function vN expressed as the Fourier series

vN (x) =
∑
k∈ZdN

vN (xkN )ϕN ,k(x)

into the bilinear form to obtain

BN [eN ,vN ] =
∑
k∈ZdN

vN (xkN ) ·
(
QN [AeN ], ϕN ,k

)
L2

per(Y;Rd)
(3.13a)

=
∑
k∈ZdN

vk ·
(
QN [AeN ], ϕN ,k

)
L2

per(Y;Rd)
(3.13b)

where with a term
(
QN [AeN ], ϕN ,k

)
L2

per(Y;Rd)
we understand

((
QN [AeN ]α, ϕN ,k

)
L2

per(Y)

)d
α=1

, operator

’·’ thus denotes the scalar product on Rd, and vector vk ∈ Rd for k ∈ Z
d
N is a subvector of vector

vN := IN [vN ] ∈ Rd×N .
Next, we analogically express the term with interpolation projection QN [AeN ] through its nodal

points

QN [AeN ](x) =
∑
m∈ZdN

A(xmN )eN (xmN )ϕN ,m(x). (3.14)

It can be observed that nodal values A(xmN )eN (xmN ) for m ∈ ZdN can be expressed with matrix

AN =
[
δkmAαβ(xkN )

]km∈ZdN
α,β=1,...,d

∈ Rd×d×N×N
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and vector eN = IN [eN ] as

A(xmN )eN (xmN ) = (ANeN )m ∈ Rd. (3.15)

Substitution of Eq. (3.14) with (3.15) into bilinear form (3.13), we deduce

BN [eN ,vN ] =
∑
k∈ZdN

∑
m∈ZdN

(ANeN )m · vkN
(
ϕN ,m, ϕN ,k

)
L2

per(Y;Rd)
(3.16a)

=
∑
k∈ZdN

∑
m∈ZdN

(ANeN )m · vkN
δmk
|N |Π

(3.16b)

=
∑
k∈ZdN

(ANeN )k · vkN
1

|N |Π
=

(
ANeN , vN

)
Rd×N

|N |Π
. (3.16c)

where we have used the orthogonality property of functions ϕN ,k stated in Remark 3.7.
The formula for a linear functional

fN [vN ] =

(
ANEN , vN

)
Rd×N

|N |Π
. (3.17)

with EN := IN [E] can be deduced accordingly. Using Eq. (3.16) and (3.17), the bilinear form

BN [eN ,vN ] = fN [vN ], ∀vN ∈ EN

can be transformed to (
ANeN , vN

)
Rd×N

|N |Π
=

(
ANEN , vN

)
Rd×N

|N |Π
, ∀vN ∈ EN(

ANeN , vN
)
Rd×N =

(
ANEN , vN

)
Rd×N , ∀vN ∈ EN

where eN and eN are related with isomorphism eN = IN [eN ].

Lemma 3.29 (Existence of the unique solution of GAwNI). The approximated bilinear form (3.10a) is
uniformly elliptic, i.e.

1

cA
‖vN‖2L2

per
≤ BN [vN ,vN ], (3.18)

and bounded

BN [eN ,vN ] ≤ CA‖eN‖L2
per
‖vN‖L2

per
. (3.19)

The linear function is bounded with

fN [vN ] ≤ CA‖e0‖L2
per
‖vN‖L2

per
(3.20)

Moreover, there exists the unique solution of Galerkin approximation with numerical integration.

Proof. The formulas (3.18), (3.19), and (3.20) follow easily from expressions in Remark 3.28.

1

cA
‖vN‖2L2

per
=

1

cA
‖v‖22 ≤

(
Av, v

)
Rd×N = BN [vN ,vN ]

BN [eN ,vN ] =
(
Ae, v

)
Rd×N ≤ ‖A‖∞‖e‖2‖v‖2 = CA‖eN‖L2

per
‖vN‖L2

per

fN [vN ] =
(
AE, v

)
Rd×N ≤ ‖A‖∞‖E‖2‖v‖2 = CA‖E‖L2

per
‖vN‖L2

per

Now, the existence and uniqueness of the solution is provided using Lax-Milgram theorem.
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3.4 Convergence to continuous solution

This section provides convergence of discrete solutions obtained with GAwNI to the solution of weak
formulation. The rate of converge is primarily based on the regularity of the solution; for completeness,
the basic regularity results are also provided.

We start with a definition of difference quotients and Lemma 3.31 that characterizes the Sobolev
space H1

per.

Definition 3.30 (difference quotient). For a function u ∈ L2
per(Y;Rd), the i-th difference quotient of

size h is Dh
i u(x) ∈ Rd defined as

D̄h
i u(x) :=

u(x+ hεi)− u(x)

h
, i = 1, . . . , d

for x ∈ Rd, h ∈ R and εα = (δαβ)dβ=1 being a vector of canonical basis of space Rd. Moreover we note

D̄hu(x) :=
(
D̄h
αu(x)

)d
α=1

.

Lemma 3.31 (Difference quotient and Sobolev space). The following two statements hold:

• Assume 1 < p <∞, u ∈ Lpper(Y;Rd), and there exists constant C independent of h such that

‖D̄hu‖Lpper
≤ C.

Then
u ∈W 1,p

per(Y;Rd)

with ‖D1u‖Lpper
≤ C.

• Assume 1 < p <∞ and u ∈W 1,p
per(Y;Rd). Then

‖D̄hu‖Lpper
≤ ‖D1u‖Lpper

for h ∈ R.

Proof. For proof see Theorem 3 in Section 5.8.2 in [10].

Lemma 3.32 (Regularity result). Let A ∈ W 1,∞
per (Y,Rd×d) and e ∈ L2

per(Y;Rd) be a solution of weak

formulation, c.f. Def. 2.20. Then e ∈ H1
per(Y;Rd) and it satisfies

‖e‖H1
per
≤ 1

cA

(
‖AE‖H1

per
+ ‖A‖W 1,∞

per
‖e‖L2

per

)
≤ 1

cA
‖A‖W 1,∞

per

(
‖E‖L2

per
+ ‖e‖L2

per

)
≤ 1

cA
‖A‖W 1,∞

per
‖E‖L2

per

(
1 +

CA
cA

)
.

Proof. The proof based on Lem. 3.31 can be found for a more general case in Section 6.3.1 in [10] as
Theorem 1. In order to work with difference quotients, we use simple formulas(

v, D̄−hk w
)
L2

per
= −

(
D̄h
kv,w

)
L2

per
(3.21)

D̄h
k (vw) = vhD̄h

kw +wD̄h
kv (3.22)

where vh(x) = v(x+ hεk). Then we start with weak formulation, c.f. Def. 2.20, i.e.(
Ae,v

)
L2

per(Y;Rd)
= −

(
f ,v

)
L2

per(Y;Rd)
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where f := AE ∈ H1
per(Y;Rd), with a special choice of test function v = −D̄−hk

(
D̄h
ke
)

leading to

−
(
Ae,−D̄−hk

(
D̄h
ke
))
L2

per
=
(
f , D̄−hk (D̄h

ke)
)
L2

per(
D̄h
kAe, D̄

h
ke
)
L2

per
= −

(
D̄h
kf , D̄

h
ke
)
L2

per(
Ah(x)D̄h

ke, D̄
h
ke
)
L2

per
= −

(
D̄h
kf , D̄

h
ke
)
L2

per
−
(
D̄h
kAe, D̄

h
ke
)
L2

per
.

The positive definiteness and boundedness of A implies

cA‖D̄h
ke‖2L2

per
≤ ‖D̄h

kf‖L2
per
‖D̄h

ke‖L2
per

+ ‖D̄h
kA‖L∞per

‖e‖L2
per
‖D̄h

ke‖L2
per

‖D̄h
ke‖L2

per
≤ 1

cA
‖D̄h

kf‖L2
per

+ ‖D̄h
kA‖L∞per

‖e‖L2
per

≤ 1

cA
‖f‖H1

per
+ ‖A‖W 1,∞

per
‖e‖L2

per

≤ 1

cA
‖A‖W 1,∞

per

(
‖E‖L2

per
+ ‖e‖L2

per

)
.

The solution of weak formulation e is bounded in L2
per, i.e.

cA‖e‖2L2
per

< B[e, e] = f [e] < CA‖E‖L2
per
‖e‖L2

per
,

the difference quotient ‖D̄h
kL‖L∞per

is bounded due to Lem. 3.31 and thus the required Eq. (3.21) follows.

Lemma 3.33 (Higher regularity result). Let A ∈ Wm,∞
per (Y;Rd×d) for m ∈ N and e ∈ L2

per(Y;Rd) be a
solution of weak formulation, Def. 2.20. Then

e ∈ Hm
per(Y;Rd) (3.23)

and it satisfies

‖e‖Hmper
≤ C(E)‖A‖Wm,∞

per
‖E‖L2

per
(3.24)

where C(E) depends only on E.

Proof. The proof based on Lem. 3.31 can be found for a more general case in Section 6.3.1 in [10] as
Theorem 2.
We will establish (3.23) and estimate (3.24) by induction hypothesis.
Base case: The case m = 1 is proven in Lem. 3.32.
Induction hypothesis: Assume now (3.23) and estimate (3.24) be valid for A ∈Wm,∞

per .

Induction step: Suppose additionally A ∈W (m+1),∞
per to prove e ∈ Hm+1

per (Y;Rd) with estimate

‖e‖Hm+1
per

< C‖A‖Wm+1,∞
per

‖E‖L2
per
.

Let l be any multiindex with ‖l‖1 = m and take any test function ṽ ∈ Dper(Y;Rd) and put v :=
(−1)‖l‖1Dlṽ into the formula of weak formulation

B[e,v] = f [v](
Ae,v

)
L2

per
=
(
AE,v

)
L2

per

Integration by parts leads to

B[ẽ, ṽ] = f̃ [ṽ] (3.25)
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where

ẽ(x) = Dle(x) ∈ L2
per

f̃ [ṽ] =
(
f̃ , ṽ

)
L2

per

f̃(x) = DlA(x)E −
∑

k:k≤l,l 6=k

(
l

k

)
Dl−kA(x)Dke(x).

and x ∈ Rd. Since the test function ṽ is arbitrary, ẽ(x) is a weak solution of

B[ẽ, ṽ] = f̃ [ṽ], ∀ṽ ∈ L2
per(Y;Rd),

Next, we can observe that f̃ ∈ H1
per as

‖f̃‖H1
per
≤ ‖DlA‖W 1,∞

per
‖E‖L2

per
+

∑
k:k≤l,l 6=k

(
l

k

)
‖Dl−kA‖W 1,∞

per
‖Dke‖H1

per

≤ ‖A‖Wm+1,∞
per

‖E‖L2
per

+ C‖A‖Wm+1,∞
per

‖e‖Hmper

≤ C‖A‖Wm+1,∞
per

(
‖E‖L2

per
+ ‖e‖Hmper

)
≤ C‖A(x)‖Wm+1,∞

per
‖E‖L2

per

Using Lem. 3.32 on problem stated in (3.25), we estimate

‖ẽ‖H1
per
≤ C

(
‖f̃‖H1

per
+ ‖A‖W 1,∞

per
‖ẽ‖L2

per

)
≤ C

(
‖A‖Wm+1,∞

per
‖E‖L2

per
+ ‖A‖W 1,∞

per
‖E‖L2

per

)
≤ C‖A‖Wm+1,∞

per
‖E‖L2

per
.

This inequality holds for each multiindex l such that ‖l‖1 = m and ẽ(x) = Dle(x), thus we conclude
e ∈ Hm+1

per with
‖e‖Hm+1

per
≤ C‖A‖Wm+1,∞

per
‖E‖L2

per
.

Lemma 3.34 (Strang). Consider a family of discrete problems whose associated approximate bilinear
forms are uniformly elliptic. Then there exists a constant C independent of the space TN such that

‖e− eN‖L2
per
≤ inf
vN∈EN

{(
CA
cA

+ 1

)
‖e− vN‖L2

per
+

1

cA
sup

wN∈EN

|B[vN ,wN ]−BN [vN ,wN ]|
‖wN‖L2

per

}

+
1

cA
sup

wN∈EN

|f [wN ]− fN [wN ]|
‖wN‖L2

per

where the constants are from Def. 2.20.

Proof. The proof can be found as Theorem 26.1 in [5].

Lemma 3.35 (Convergence of discrete solutions to continuous one). Let the conductivity coefficients
be A ∈ Wµ,∞

per (Y;Rd×d) with µ ∈ N such that Wµ,∞
per is embedded into continuous functions. Then the

sequence of solutions of Galerkin approximation with numerical integration, c.f. Def. 3.24, converge to
the solution of weak formulation, Def. 2.20, in ‖ · ‖L2

per
norm, i.e.

‖e− eN‖L2
per
≤ C

(
min
α

Nα
2Yα

)−µ
→ 0 for min

α

Nα
2Yα

→∞
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where

C =

(
CA
cA

+ 1

)
‖e‖Hµper

+
c0,µ
cA
‖A‖Wµ,∞

per
‖e‖Hµper

+
c0,µ
cA
‖A‖Wµ,∞

per
‖E‖L2

per
.

Proof. We use Lem. 3.34 due to Strang, results about regularization Lem. 3.32 and 3.33, and approxi-
mation by orthogonal projection Lem. 3.13 and by interpolation projection Lem. 3.18.

‖e− eN‖L2
per
≤ inf

vN∈EN


(
CA
cA

+ 1

)
‖e− vN‖L2

per
+

1

cA
sup

wN∈EN

|
(
AvN ,wN

)
L2

per
−
(
QN [AvN ],wN

)
L2

per
|

‖wN‖L2
per


+

1

cA
sup

wN∈EN

|
(
AE,wN

)
L2

per
−
(
QN [AE],wN

)
L2

per
|

‖wN‖L2
per

≤ inf
vN∈EN

{(
CA
cA

+ 1

)
‖e− vN‖L2

per
+

1

cA
‖AvN −QN [AvN ]‖L2

per

}
+

1

cA
‖AE −QN [AE]‖L2

per

≤
(
CA
cA

+ 1

)
‖e− PNe‖L2

per
+

1

cA
‖APNe−QN [APNe]‖L2

per
+

1

cA
‖A−QN [A]‖L2

per
‖E‖L∞per

≤
(
CA
cA

+ 1

)(
min
α

Nα

2Yα

)−µ
‖e‖Hµper

+
c0,µ
cA

(
min
α

Nα

2Yα

)−µ
‖A‖Wµ,∞

per
‖e‖Hµper

+
c0,µ
cA

(
min
α

Nα

2Yα

)−µ
‖A‖Wµ,∞

per
‖E‖L2

per

≤
(
min
α

Nα

2Yα

)−µ [(
CA
cA

+ 1

)
‖e‖Hµper

+
c0,µ
cA
‖A‖Wµ,∞

per
‖e‖Hµper

+
c0,µ
cA
‖A‖Wµ,∞

per
‖E‖L2

per

]
Now, the limit passage reveals the proof.

3.5 Regularization of rough material coefficients

This section provide a method for calculation of discrete solutions if the material coefficients A are
rough, do not possess sufficient regularity. The method is based on regularization of material coefficient.
Although the convergence is provided, the convergence can be arbitrarily slow — we cannot expect any
order of convergence.

Lemma 3.36. Let A ∈ L∞per(Y;Rd×d) be a symmetric and uniformly elliptic material coefficients and
Ah be their regularization such that

Ah ∈ L∞per(Y;Rd×d)

‖A−Ah‖L2
per(Y;Rd×d) → 0 for h→ 0

and be positive definite and bounded with constants cA,h and CA,h, i.e.

cA,h ≤
∑d
α,β=1(Ah)αβ(x)ξαξβ

‖ξ‖2
≤ CA,h, ∀ξ ∈ Rd, and for a.a. x ∈ Y.

Suppose e, eh ∈ L2
per(Y;Rd) be solutions of weak formulation, c.f. Def. 2.20, for material coefficients A

and Ah resp. Then
lim
h→0
‖e− eh‖L2

per(Y;Rd) = 0 (3.26)

Proof. First, define a bilinear form and linear functional for regularized coefficients Ah as

Bh[eh,v] =
(
Aheh,v

)
L2

per(Y;Rd)
fh[v] =

(
AhE,v

)
L2

per(Y;Rd)

and a weak formulation
Bh[eh,v] = fh[v], ∀v ∈ E
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where eh denotes its solution.
We show from positive definiteness and boundedness of A that solutions of regularized problems eh

are uniformly bounded

‖eh‖2L2 ≤
1

cA,h

(
Aheh, eh

)
= − 1

cA,h

(
AhE, eh

)
≤ CA,h

cA,h
‖E‖L2‖eh‖L2 .

Thus using Banach selection principle for sequence {eh} under a reflexive and separable space such as
L2

per, we conclude there exists some subsequence converging weakly to some function ē, i.e.

eh ⇀ ẽ ⇔ lim
h→0

(
eh,v

)
L2

per
=
(
ē,v

)
L2

per
, ∀v ∈ L2

per.

Next, we show that the function ẽ satisfies the weak formulation with coefficients A, hence for
arbitrary v ∈ E (

Aheh,v
)
L2

per
=
(
AhE,v

)
L2

per

h→0−→
(
AE,v

)
L2

per
=
(
Aē,v

)
L2

per

and since
(
Aheh,v

)
L2

per

h→0−→
(
Aẽ,v

)
L2

per
, we can conclude that ẽ = e.

Next we show that the subsequence eh converge even strongly

cA,h‖e− eh‖2L2
per
≤
(
Ah(e− eh), e− eh

)
L2

per

=
(
Ahe, e− eh

)
L2

per
−
(
Aheh, e− eh

)
L2

per
±
(
Ae, e− eh

)
L2

per

=
(
Ae, e− eh

)
L2

per
−
(
Aheh, e− eh

)
L2

per
+
(
Ahe, e− eh

)
L2

per
−
(
Ae, e− eh

)
L2

per

= −
(
(A−Ah)E, e− eh

)
L2

per
+
(
Ahe, e− eh

)
L2

per
−
(
Ae, e− eh

)
L2

per

≤ ‖(A−Ah)‖L∞per

(
E, e− eh

)
L2

per
+ ‖Ah −A‖L∞per

(
e, e− eh

)
concluding that there is a subsequence converging strongly eh → e.
Finally, since every convergent subsequence satisfies the same weak formulation with an unique solution,
all limit points have to equal each other. Thus not only the subsequence but the whole sequence converge
to the unique solution of weak formulation.

Lemma 3.37. Let the assumptions from previous Lem. 3.36 be satisfied. Moreover let eh,N be solution
of Galerkin approximation with numerical integration for regularized conductivity coefficients Ah, c.f.
Def. 3.24. Then for arbitrary ε > 0 there exists h ∈ R and N ∈ Nd (not the other way around) such that

‖e− eh,N‖L2
per
≤ ε

Proof. From the previous Lem. 3.36, we can choose fixed h > 0 sufficiently small such that ‖e−eh‖ < ε
2 .

Next, we can choose N such that

min
α

Nα
2Yα

≥
(

2C

ε

) 1
µ

with constant C from Lem. 3.35. Then Lem. 3.35 implies

‖eh − eh,N‖L2
per
≤ ε

2

and the triangle inequality finishes the proof

‖e− eh,N‖L2
per
≤ ‖e− eh‖L2

per
+ ‖eh − eh,N‖L2

per
≤ ε.
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Remark 3.38 (Example of regularization of conductivity coefficients). The example of regularized data
Ah satisfying conditions in Lem. 3.36 is a standard mollification, i.e.

Ah(x) =

∫
Rd

ηh(x− y)A(y) dy

where ηh(x) = 1
hd
η(xh ),

η(x) =

{
C exp

(
1

|x|2−1

)
, for |x| < 1,

0, otherwise

with constant C chosen so that
∫
Rd
η(x) dx = 1.

3.6 Solution of Linear systems using Conjugate gradients

In this section, we describe the solution of Galerkin approximation with numerical integration by Con-
jugate gradients. The next lemma shows that the solution by Conjugate gradients corresponds to mini-
mization of quadratic functional over subspace EN ⊂ Rd×N . The further definition and lemma provide
an projection on EN . This satisfies Conjugate gradients are working in appropriate space. Moreover in
[21], the relation of fully discrete formulation of GAwNI to Moulinec-Suquet algorithm [14] is provided.

Lemma 3.39. The Galerkin approximation with numerical integration, defined in Def. 3.24, is solvable
by Conjugate gradients.

Proof. In Lemma 3.28, we have shown that Galerkin approximation with numerical integration can be
characterized with the problem: find ẽN ∈ EN such that(

AN ẽN , vN
)
Rd×N = −

(
ANEN , vN

)
Rd×N , ∀vN ∈ EN . (3.27)

where

AN =
[
δkmAαβ(xkN )

]k,m∈ZdN
α,β=1,...,d

∈ Rd×d×N×N EN = IN [E] ∈ Rd×N

being dependent on conductivity A and macroscopic electric field E. Since A is symmetric and positive
definite, the matrix AN is. Then the solution ẽN of Eq. (3.27) can be expressed as

ẽN = argminvN∈EN

1

2

(
ANvN , vN

)
Rd×N +

(
ANEN , vN

)
Rd×N (3.28)

and thus it is solvable by Conjugate gradients.

However, the previous lemma does not show how to effectively minimize the quadratic functional,
Eq. (3.28), on a subspace EN ⊂ Rd×N .

Definition 3.40. We define a matrix composed of integral kernel in Fourier space, c.f. Def. 2.23 and
especially Eq. (2.16), as

Ĝ =

[
δkm

ξα(k)ξβ(k)(
ξ(k), ξ(k)

)
Rd

]k,m∈ZdN
α,β=1,...,d

∈ Rd×d×N×N

where ξ(k) =
(
kα
Yα

)
α=1,...,d

∈ Rd. Next, we define matrices composed of (inverse) Discrete Fourier

Transform

F =

[
δαβω

−km
N

|N |Π

]k,m∈ZdN
α,β=1,...,d

∈ Cd×d×N×N F−1 =
[
δαβω

km
N

]k,m∈ZdN
α,β=1,...,d

∈ Cd×d×N×N .
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where

ωkmN = exp

(
2πi

d∑
α=1

kαmα

Nα

)
, m,k ∈ ZdN .

Finally, we define matrix

G = F−1ĜF ∈ Cd×d×N×N (3.29)

Remark 3.41. Submatrix Fαα is exactly the matrix of Discrete Fourier Transform. Thus the linear
operator F : v ∈ Rd×N → Fv ∈ Cd×N can be treated as the d-dimensional fast Fourier Transform routine
applied on each submatrix vα for α = 1, . . . , d.

Lemma 3.42. The matrix G from Def. 3.40 defining a linear operator G : Rd×N → Cd×N is a projection
on EN .

Proof. The proof is a consequence of the fact that matrix G is defined via continuous projection G
Def. 2.25 and that operator IN from Def. 3.8 is isomorphism.
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Abstract. In this work, the guaranteed bounds of homogenized material coefficients are cal-
culated with an arbitrary precision; primal and dual variational formulations are evaluated with
approximate microscopic (local) solutions to produce the upper-lower bounds. Contrary to Dvořák
[5, 6] and Wieçkowski [32] employing the approach with local solutions from h and p-version of Finite
Element Method (FEM), we utilize the FFT-based FEM using trigonometric polynomials as the basis
functions [31]. The connection between the primal and the dual formulations is investigated in dis-
cretized form; the solution of the dual formulation can be avoided, however, the theory substantially
differs for even and odd number of discretization points. Numerical examples confirm the theoretical
results about the rates of convergence and about the upper-lower bounds of the homogenized matrix.
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1. Introduction. Guaranteed bounds of homogenized (effective) material prop-
erties, with some confidence in its accuracy, is essential for a reliable design [24]; a
special attention is addressed to the upper-lower bounds for linear periodic elliptic
problems, a scalar one or elasticity. The majority of bounds — e.g. Voight and
Reuss bounds [29, 25], Hashin and Shtrikman bounds [9, 10, 11] — are derived for
arbitrary geometry of material phases, only the knowledge of volume fractions is as-
sumed. However, these a priori estimates are rather wide especially for materials with
highly oscillating coefficients.

Besides, assuming material properties are well known, there are a posteriori es-
timates producing reliable and guaranteed homogenized bounds with an arbitrary
precision independently introduced in [6, 32] for a scalar problem and elasticity resp.,
see Sec. 2.2 for a summary.

This approach is based on the primal and the dual variational formulations. Ap-
proximated microscopic fields, satisfying linear second order elliptic partial differential
equations with periodic boundary conditions and prescribed macroscopic (averaged)
values, are calculated and their a posteriori evaluation in both formulations produces
the guaranteed bounds of homogenized properties (matrix).

Contrary to already mentioned works [6, 32] incorporating classical p- and h-
version resp. of Finite Element Method (FEM) for computation of local fields, we
rather employ the FFT-based FEM originated from [19] and theoretically described in
[31], see Sec. 3.3 for its overview. Noting, the method — a widely used in engineering
problems, recently in [22, 23, 14, 28, 12, 15, 21] — has obtained miscellaneous variants
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2 Jaroslav Vondřejc, Jan Zeman, and Ivo Marek

and modifications [8, 16, 2, 3, 18].
In this work, for simplicity, the scalar problem of electric conduction is considered,

however, an extension to elasticity is feasible. Numerical homogenization of a periodic
media with its upper and lower bounds, according to [5, 6], is summarized in Section 2.

Section 3.3 deals with the FFT-based FEM based on the discretization with
trigonometric polynomials. In our previous works [30, 31], only the discretization
with the odd number of points in each direction is considered; the problem with
even number of discretization points was identified and partially solved in [20, section
2.4.2]. We describe the theory for the even number of discretization points in a way
to satisfy the conformity of the method; finite dimensional spaces are subspaces of the
trial space — it is the natural requirement for guaranteed bounds of the homogenized
matrix.

In section 3.4, the connection between discretized primal-dual formulations is
studied. It provides a computational simplification: the solution of the dual formula-
tion, necessary for the lower bound, can be avoided; moreover, for the odd number of
discretization points, it can be fully omitted.

The upper-lower bounds of the homogenized matrix are calculated in Section 3.5.
Although, their exact values, dependent on arbitrary non-regular material coefficients,
are able to exactly evaluate only for some special cases. Hence, we propose their
approximations; moreover, a careful computation still guarantees the upper-lower
bounds structure.

Numerical examples in last Section 4 validate the theory and demonstrate the
upper-lower bounds structure of homogenized matrices.

2. Preliminaries to homogenization and to guaranteed bounds. In this
section, we summarize the well established theory of homogenization of periodic media
and add the part about upper and lower bounds of the homogenized material coeffi-
cients. In the sequel, letter d denotes the dimension of the model problem, assuming
d = 2, 3; Greek letters α, β are reserved to indices relating dimension, thus ranging
1, . . . , d — further, it is for simplicity omitted.

Sets Cd and Rd are the spaces of complex and real vectors with canonical ba-
sis {ǫα} and are equipped with Lebesgue measure dx. We denote by |Ω|d the d-
dimensional Lebesgue measure of a measurable set Ω ⊂ Rd. Standard Euklidean
norm ‖ · ‖2 on Cd is induced by scalar product

(
u,v

)
Cd =

∑
α uαvα for u,v ∈ Cd.

Set Rd×d
spd denotes the space of symmetric positive definite matrices of size d × d

with norm ‖A‖2 = maxx∈Rd,‖x‖=1 ‖Ax‖2 that equals to the largest eigenvalue.

Function f : Rd 7→ R is Y -periodic (with period Y ∈ Rd) if f(x+Y ⊙k) = f(x)
for arbitrary x ∈ Rd,k ∈ Zd, where operator ⊙ denotes the element-wise multiplica-
tion. Then, Y -periodic functions suffice to define only on a periodic unit cell (PUC),
the set defined as Y := (−Yα, Yα)

d
α=1 ⊂ Rd. We will identify two integrable functions

which are equal almost everywhere. The mean value of function v ∈ L2
per(Y;R

d) over

periodic unit cell Y is denoted as 〈v〉 := 1
|Y|d

∫
Y v(x)dx ∈ Rd.

We define space Cper(Y;X) of continuous Y -periodic functions Rd 7→ X, where X
is some finite dimensional vector space, e.g. C,R,Cd,Rd. Vector valued functions, for
X = Cd or X = Rd, are denoted with small bold letters v and have components vα.

Spaces L2
per(Y;X) or L∞

per(Y;R
d×d
spd ) are composed of functions v : Rd 7→ X or

A : Rd 7→ Rd×d
spd having Y -periodic, measurable components vα or Aαβ and having

finite norm, i.e. ‖v‖L2
per(Y;X) <∞ or ‖A‖

L∞
per(Y;Rd×d

spd
) <∞. The first norm is deduced

from scalar product
(
u,v

)
L2

per(Y;X)
= 1

|Y|d
∫
Y
(
u(x),v(x)

)
X
dx while the second norm
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Guaranteed bounds of homogenized periodic media by FFT-based FEM 3

is defined as ‖A‖
L∞

per(Y;Rd×d

spd
) = ess supx∈Y ‖A(x)‖2. If there is no ambiguity, both the

norms and the scalar products are denoted with subscript L2
per or L∞

per rather than

L2
per(Y;X) or L

∞
per(Y;R

d×d
spd ).

Next, we define the spaces of Helmholtz decomposition of L2
per(Y;R

d) = U ⊕⊥

E ⊕⊥ J , i.e. the spaces of constant, curl-free with zero mean, and divergence free
with zero mean fields

U = {v ∈ L2
per(Y;R

d) : v(x) = const}, (2.1a)

E = {v ∈ L2
per(Y;R

d) : ∇× v = 0, 〈v〉 = 0}, (2.1b)

J = {v ∈ L2
per(Y;R

d) : ∇ · v = 0, 〈v〉 = 0}, (2.1c)

where differential operator ∇ = ( ∂
∂xα

)dα=1 is meant in the distributional sense. For

dimension d 6= 3, the curl-free condition in (2.1b) means (∇×v)αβ := ∂vα
∂xβ

−
∂vβ
∂xα

= 0.

Since space U consists of constant functions, we identify spaces U and Rd; it validates
the operation such as E+v ∈ L2

per(Y;R
d) for E ∈ Rd, v ∈ L2

per(Y;R
d) and AJ ∈ Rd

for A ∈ Rd×d
spd and J ∈ U .

2.1. Homogenization in primal and dual formulations. The theory is
demonstrated for a scalar problem modeling: diffusion, stationary heat transfer, or
electric conductivity — our choice. The well established theory of periodic homog-
enization for linear elliptic partial differential equations can be found in [1, 13, 4].
Although, we focus only on the numerical solution of microscopic fields and the con-
sequence evaluation of the homogenized matrix and its bounds.

Notation 2.1. Here and in the sequel, A ∈ L∞
per(Y,R

d×d
spd ) denotes symmetric

and uniformly elliptic1 material coefficients of electric conductivity, e ∈ E and  ∈ J
perturbation of electric field and electric current resp., and E,J ∈ U their macro-
scopic counterparts. Then their summation (E+e) and (J+) represent microscopic
fields.

Remark 2.2. The variables from previous notations, being additionally suffi-
ciently smooth, satisfy the differential equations

J +  = A(E + e) ∇ ·  = 0 ∇× e = 0 (2.2)

that clarify the definition of subspaces U ,E , and J ; the addition of periodic boundary
conditions and prescription of macroscopic loads E,J ∈ Rd sets the homogenization
problem.

Definition 2.3 (Homogenization problem). The primal and the dual homoge-
nization problem states: find homogenized matrices Aeff ,Aeff,D ∈ Rd×d such that for
arbitrary fixed macroscopic quantities E,J ∈ Rd, the following relations hold

(
AeffE,E

)
Rd = inf

e∈E

(
A(E + e),E + e

)
L2

per

(2.3a)

(
A−1

eff,DJ ,J
)
Rd = inf

∈J

(
A−1(J + ),J + 

)
L2

per

(2.3b)

Remark 2.4. The homogenized matrices are symmetric positive definite and
they equal to one another Aeff = Aeff,D — it follows from the perturbation duality

1There exists positive constant cA > 0 such that inequality cA‖u‖2
2
≤

(

A(x)u, u
)

Rd holds for

almost all x ∈ Y and all nonzero u ∈ Rd.
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4 Jaroslav Vondřejc, Jan Zeman, and Ivo Marek

theorem, see e.g. [7, 27, 6] and compare it to Lem. 3.24 and 3.25 for a discrete setting.
The symmetry comes from upcoming Eq. (2.6) and symmetry of A. The positive
definiteness is the consequence of the uniform ellipticity of A and simultaneously
the consequence of Voight

(
AeffE,E

)
Rd ≤

(
AE,E

)
L2

per

and Reuss
(
A−1

eff,DJ ,J
)
Rd ≤

(
A−1J ,J

)
L2

per

bounds according to [29, 25]; the bounds come from (2.3) for e =  ≡

0.
The minimizers of the variational formulations (2.3a) and (2.3b) can also be found
as a solution of weak formulations with existence and uniqueness provided by Lax-
Milgram lemma. Thanks to linearity, the minimizers can be found only for unitary
macroscopic loads.

Definition 2.5 (auxiliary problems). We say that ẽ(α) ∈ E and ̃(α) ∈ J are
unitary minimizers if

(
Aẽ(α),v

)
L2

per

= −
(
Aǫα,v

)
L2

per

, ∀v ∈ E , (2.4)
(
A−1̃(α),v

)
L2

per

= −
(
A−1ǫα,v

)
L2

per

, ∀v ∈ J . (2.5)

Next, we define unitary microscopic fields e(α) := ǫα + ẽ(α) and (α) := ǫα + ̃(α).
Remark 2.6 (Consequences of the linearity). Minimizers ẽ(E) ∈ E and ̃(J) ∈ J

of the homogenization problems for macroscopic fields E,J ∈ Rd can be obtain, due
to linear structure, from unitary minimizers

ẽ(E) =
∑

α

Eαẽ
(α), ̃(J) =

∑

α

Jα̃
(α).

Alike, the components of homogenized material coefficients states

(Aeff)αβ =
(
Ae(β), e(α)

)
L2

per

, (A−1
eff )αβ =

(
A−1(β), (α)

)
L2

per

. (2.6)

Remark 2.7. The dual unitary microscopic fields (β) can be expressed as a
linear combination of primal ones e(α), hence (β) = A

∑d
α=1Eαe

(α) where E =
A−1

eff ǫβ. Similarly to Rem. 2.4, it comes from the perturbation duality theorem, see
e.g. [7, 27, 6] and compare it to Lem. 3.24 and 3.25 for a discrete setting.

2.2. Upper-lower bounds of homogenized matrix. The upper-lower bounds
obtained from a posteriori error estimates were introduced by Dvořák [5, 6] for a
scalar problem and later independently by Wieçkowski [32] for linear elasticity; this
section provides a summary of results in [6]. In what follows, relation C � D be-
tween matrices C,D ∈ Rd×d

spd stands for ordering in the sense of quadratic forms; it

is equivalent to E ·CE ≤ E ·DE for all E ∈ Rd. In this section, we will work with
some conforming approximations of unitary minimizers ẽ(α) and ̃(α), namely with

ẽ
(α)
N = (e

(α)
N − ǫα) ∈ E and ̃

(α)
N = (

(α)
N − ǫα) ∈ J ; parameter N represent inverse

of discretization size of FEM or the number of discretization points in our case of
FFT-based FEM, for detail see 3.3.

Definition 2.8. We say that matrices Aeff,N ,Aeff,N ∈ Rd×d defined as

(Aeff,N )αβ =
(
Ae

(β)
N , e

(α)
N

)
L2

per

, (A−1
eff,N )αβ =

(
A−1

(β)
N , 

(α)
N

)
L2

per

are upper and lower bounds of homogenized properties Aeff .
Correctness of the definition, the fact that they are truly the upper-lower bounds, is
stated in Lem. 2.10 that is based on a following statement.
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Lemma 2.9. Let C,D ∈ Rd×d
spd be such that C � D. Then D−1 � C−1.

Proof. From assumption C � D, we claim that RTCR � RTDR for any regular
matrixR ∈ Rd×d; it comes from (RE)·C(RE) ≤ (RE)·D(RE) holding for arbitrary
E ∈ Rd and the invertibility of matrix R, namely the property R(Rd) = Rd.

Since D is positive definite, matrix D− 1
2 exists. Consequently, the multiplication

of inequality C � D by matrix D− 1
2 produces inequality D− 1

2CD− 1
2 � I. Matrix

D− 1
2CD− 1

2 possesses all eigenvalues real (from symmetry) and smaller or equal to

1. Thus its inverse D
1
2C−1D

1
2 have eigenvalues larger or equal to 1. The next

multiplication of inequality I � D
1
2C−1D

1
2 by matrix D− 1

2 reveals the proof.
Lemma 2.10. The matrices from previous definition 2.8 are symmetric positive

definite and satisfy the upper-lower bound structure

Aeff � Aeff,N , A−1
eff � A−1

eff,N , Aeff,N � Aeff � Aeff,N . (2.7)

Proof. The first two inequalities follow from the minimization problems (2.3)

that are evaluated approximately, for a particular choice of microscopic fields ẽ
(α)
N ,

̃
(α)
N rather than minimizers ẽ(α), ẽ(α). The last inequality is a consequence of previous
Lem. 2.9.

The symmetry of the homogenized matrices comes from their definition 2.8 and
the symmetry of material coefficients A. The positive definiteness is a consequence
of first two inequalities in (2.7) with the positive definiteness of homogenized matrix
Aeff ∈ Rd×d

spd .
Definition 2.11 (Approximate homogenized matrix with guaranteed error).

The mean of the upper-lower bounds from Def. 2.8, Aeff,N = 1
2 (Aeff,N + Aeff,N ),

is called approximate homogenized matrix with guaranteed error DN = 1
2 (Aeff,N −

Aeff,N ).
Lemma 2.12 (Element-wise upper-lower bounds). The upper-lower bounds from

Def. 2.8 imply element-wise bounds, explicitly for diagonal components

Aeff,N ,αα ≤ Aeff,αα ≤ Aeff,N ,αα, (2.8)

and for non-diagonal components, i.e. for α 6= β

Aeff,N ,αβ −Deff,N ,αα −Deff,N ,ββ ≤ Aeff,αβ ≤ Aeff,N ,αβ +Deff,N ,αα +Deff,N ,ββ.

Proof. The proof for the diagonal terms (2.8) comes from the inequality (2.7)
tested with ǫα. The estimates for the non-diagonal terms come from equality

2Aeff,αβ = (ǫα + ǫβ) ·Aeff(ǫα + ǫβ)−Aeff,αα −Aeff,ββ,

the first inequality in (2.7) tested with ǫα + ǫβ , i.e. (ǫα + ǫβ) · Aeff(ǫα + ǫβ) ≤
(ǫα + ǫβ) · Aeff,N (ǫα + ǫβ), and the inequalities for diagonal components (2.8). An
analogy yields the lower bound.

Lemma 2.13 (Properties of trace operator). Let B,C,D ∈ Rd×d
spd . Then

tr(B +C) = trB + trC, tr(BCD) ≤ (trB)(trC)(trD).

Moreover, let C � D, then 0 ≤ tr(D −C) ≤ (trD)2(C−1 −D−1).
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Proof. The proof can be found in [6, Lemmas 4.3 and 4.4].
Lemma 2.14 (The rate of convergence of homogenized properties). The trace of

guaranteed error DN , from Def. 2.11, satisfies following inequality

trDN ≤ ‖A‖L∞
per

∑

α

‖ẽ(α) − ẽ
(α)
N ‖2L2

per
+ (trAeff)

2‖A−1‖L∞
per

∑

α

‖̃(α) − ̃
(α)
N ‖2L2

per
.

Proof. First, we prove two statements

0 ≤ Aeff,N ,αα −Aeff,αα ≤ ‖A‖L∞‖ẽ(α) − ẽ
(α)
N ‖2L2

per
, (2.9a)

0 ≤ A−1
eff,N ,αα −A−1

eff,αα ≤ ‖A−1‖L∞‖̃(α) − ̃
(α)
N ‖2L2

per
. (2.9b)

Both inequalities follow from Lem. 2.10 and Hölder inequality; we demonstrate the
calculation for the first one

0 ≤ Aeff,N ,αα −Aeff,αα = |
(
Ae(α), e(α)

)
L2

per

−
(
Ae

(α)
N , e

(α)
N

)
L2

per

|

≤ |
(
A(ẽ(α) − ẽ

(α)
N ), (ẽ(α) − ẽ

(α)
N )
)
L2

per

|

≤ ‖A‖L∞‖ẽ(α) − ẽ
(α)
N ‖2L2

per
.

Using the properties of the trace operator stated in Lem. 2.13 and previously proven
statements (2.9), we finish the proof with direct calculation

trDN = tr(Aeff,N −Aeff) + tr(Aeff −Aeff,N )

≤ tr(Aeff,N −Aeff) + (trAeff)
2 tr(A−1

eff,N −A−1
eff,N )

≤ ‖A‖L∞
per

∑

α

‖ẽ(α) − ẽ
(α)
N ‖2L2

per
+ (trAeff)

2‖A−1‖L∞
per

∑

α

‖̃(α) − ̃
(α)
N ‖2L2

per
.

Remark 2.15. The trace of DN will converges to zero for minαNα → ∞,
if approximate minimizers ẽαN , ̃αN converge to minimizers ẽα, ẽα for minαNα →
∞. Moreover, the trace operator is a norm on the set of symmetric positive definite
matrices showing the convergence of DN to zero for any matrix norm.

3. Guaranteed bounds using FFT-based FEM. This section is the core of
the work. It provides the theory for the arbitrary precise guaranteed bounds of the
homogenized matrix calculated with local fields provided by the FFT-based FEM.
We start in Sec. 3.1 with the definition of finite dimensional spaces, the spaces of
trigonometric polynomials. Then we follow with fully discrete spaces that are the
analogue to Helmholtz decomposition spaces. The FFT-based FEM is described in
Sec. 3.3; additionally to [31], the theory for the non-odd number of discretization
points is provided. Sec. 3.4 is dedicated to the connection between the primal and
the dual formulations in the fully discrete setting. Finally, the calculation of the
upper-lower bounds is explained in Sec. 3.5.

In the sequel, vector N ∈ Nd is reserved for a number of discretization points,
then scalar |N |Π :=

∏
αNα denotes the number of degrees of freedom. If Nα is

odd (even) for all α we talk about the odd (even) number of discretization points,
otherwise about the non-odd ones. A reduced and a full index sets state for

Zd
N =

{
k ∈ Zd : |kα| <

Nα

2

}
, Zd

N =

{
k ∈ Zd : −

Nα

2
≤ kα <

Nα

2

}
. (3.1)
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A multi-index notation is employed, in which RN represents RN1×···×Nd . Set
Rd×N represents the space of vectors v with components v

n
α and Rd×d×N×N the

space of matrices A with components A
nm
αβ for α, β and n,m ∈ Zd

N . Next, vectors

vn ∈ Rd for n ∈ Zd
N and vα ∈ RN for α represent subvectors of v with components vnα .

Analogically, submatrices Anm ∈ Rd×d and Aαβ ∈ RN×N can be defined. A scalar
product on set Rd×N is defined as

(
u, v
)
Rd×N

:=
∑

α

∑
n∈Zd

N

u
n
αv

n
α and matrix A by

vector v multiplication as (Av)nα :=
∑

β

∑
m∈Zd

N

A
nm
αβ v

m
β . Matrix A is symmetric

positive definite if relation A
mn
αβ = A

nm
βα holds for all components and inequality(

Av, v
)
Rd×N

> 0 applies for arbitrary v ∈ Rd×N . We use the serif font for vectors

v ∈ Rd×N and matrices A ∈ Rd×d×N×N to distinguish from vectors E ∈ Rd and
matrices Aeff ∈ Rd×d and from vector valued functions v ∈ L2

per(Y;R
d). In order to

differentiate vectors and matrices for different number of discretization points N , we
write them with subscript, i.e. vN and AN . Finally, operator ⊕⊥ denotes the direct
sum of mutually orthogonal subspaces, e.g. Rd = ǫ1 ⊕

⊥ ǫ2 ⊕
⊥ . . .⊕⊥ ǫd.

3.1. Trigonometric polynomials and their properties. In this section, we
introduce the finite dimensional space of trigonometric polynomials and their proper-
ties. Definitions and lemmas adopted from [26] are amended for the non-odd number
of discretization points N in order to satisfy the conformity of discretization — the
requirement for the guaranteed upper-lower bounds.

Notation 3.1 (DFT). For N ∈ Nd we define, up to constant, unitary matri-
ces FN ,F

−1
N ∈ Cd×d×N×N of the Discrete Fourier transform (DFT) and its inverse

(iDFT) as

FN =
1

|N |Π

(
δαβω

−mn
N

)m,n∈Z
d
N

α,β=1,...,d
F−1
N =

(
δαβω

mn
N

)m,n∈Z
d
N

α,β=1,...,d
.

where δαβ is Kronecker delta and ωmn
N = exp

(
2πi
∑

α
mαnα

Nα

)
with m,n ∈ Zd are

their components.

Definition 3.2 (nodal points, basis functions). Let N ∈ Nd. We define nodal
points of periodic unit cell xn

N =
∑

α
2Yαnα

Nα
ǫα and Fourier and shape basis functions

ϕn(x) = exp

(
πi
∑

α

nαxα
Yα

)
, ϕN ,n(x) =

1

|N |Π

∑

m∈Zd
N

ω−mn
N ϕm(x), n ∈ Zd

N .

Lemma 3.3 (Properties of ϕm and ϕN ,m). Let m,n ∈ Zd
N , then

(
ϕm, ϕn

)
L2

per

= δmn ϕn(x
m
N ) = ωmn

N (3.2a)

ϕN ,m(xn
N ) = δmn

(
ϕN ,m, ϕN ,n

)
L2

per

=
δmn

|N |Π
(3.2b)

Proof. The proof, which can be also found in [31], is the consequence of direct

calculation; the proof of last equality comes from orthogonality of vectors (ωmn
N )m∈Z

d
N

for n ∈ Zd
N in CN .
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Definition 3.4 (Trigonometric polynomials). For N ∈ Nd, we define the spaces
of trigonometric polynomials TN , T̃N and their vector valued versions T d

N ,T̃ d
N as

TN =
{ ∑

n∈Zd
N

v̂
nϕn : v̂n ∈ C, v̂n = (v̂−n)

}
, T d

N =
{
v : vα ∈ TN

}
.

T̃N =
{ ∑

n∈Zd
N

v
nϕN ,n : vn ∈ R

}
, T̃ d

N =
{
v : vα ∈ T̃N

}
.

Definition 3.5 (Interpolation projection). Interpolation operator QN : Cper(Y;Rd) →
L2
per(Y;C

d) is defined as

QN [f ] =
∑

m∈Zd
N

f(xm
N )ϕN ,m.

Lemma 3.6. Interpolation operator QN is a projection and its image is T̃ d
N .

Proof. It comes from the definition of operator QN in Def. 3.5, space T̃ d
N in

Def. 3.4, and second property in Lem. (3.2b).

Definition 3.7. Operator IN : T̃ d
N → Rd×N stocks the values of the trigono-

metric polynomials at the nodal points to a vector IN [vN ] =
(
vN ,α(x

n
N )
)n∈Z

d
N

α=1,...,d
.

Lemma 3.8. Operator IN from the previous definition is an isomorphism.

Proof. The proof is the consequence of Def. 3.7 and of the second property in
Eq. 3.2a.

Remark 3.9 (Connection of representation). Trigonometric polynomial vN ∈
T̃ d

N can be uniquely expressed using both the Fourier coefficients and the function
values at the nodal points

vN =
∑

m∈Zd
N

vN (xm
N )ϕN ,m =

∑

n∈Zd
N

v̂N (n)ϕn. (3.3)

with a connection through the DFT as v̂N = FNvN , where vN := IN [vN ] and the
vector of Fourier coefficients v̂N has components (v̂N )mα := v̂N ,α(m). Thus, space

T̃ d
N can be alternatively characterized with the Fourier coefficients as

T̃ d
N = {

∑

m∈Zd
N

v̂
m
Nϕm : v̂N ∈ FN (Rd×N )}.

Remark 3.10. The trigonometric polynomials are real valued if the Fourier
coefficients obey conjugate symmetry v̂(n) = v̂(−n) for all n ∈ Zd. In Def. 3.4, it is
valid only for trigonometric polynomials TN ⊂ L2

per(Y) and T d
N ⊂ L2

per(Y;R
d).

A peculiar situation occurs for space T̃ d
N . If N is odd, both spaces coincide

T d
N = T̃ d

N as the index sets do Zd
N = Zd

N ; generally, the inclusion T d
N ⊆ T̃ d

N

holds. Unfortunately, space T̃ d
N fails to be real valued T̃ d

N * L2
per(Y;R

d) because the

Fourier coefficients with frequencies n ∈ Zd
N \Zd

N miss the opposite counterpart with
frequencies −n.
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3.2. Fully discrete spaces. In this section, we define fully discrete spaces —
the spaces storing the values of the trigonometric polynomials at the nodal points.
We show their connection to constant, curl-free, and divergence-free spaces with zero
mean introduced in Eq. (2.1).

Definition 3.11 (Fully discrete projections). Let Γ̂
(i)
(n) for i = 0, 1, 2 and

n ∈ Zd be the Fourier coefficients of integral kernels from Def. A.1. We define block

diagonal matrices Ĝ
(0)

, Ĝ
(i)

0
, Ĝ

(i)

I ∈ Rd×d×N×N for i = 1, 2 as

(Ĝ
(0)

)mn
αβ = Γ̂

(0)

αβ(m)δmn

(Ĝ
(i)

0
)mn
αβ =

{
Γ̂
(i)

αβ(m)δmn,

0,
(Ĝ

(i)

I )mn
αβ =

{
Γ̂
(i)

αβ(m)δmn, for m ∈ ZN

δαβδmn, for m ∈ Zd
N \ ZN

where m,n ∈ Zd
N . Next, we define the matrices without hat as similarity transfor-

mation with matrix of DFT F, i.e. G(0) = F−1Ĝ
(0)

F, G
(i)
0

= F−1Ĝ
(i)

0
F and G

(i)
I =

F−1Ĝ
(i)

I F.

Lemma 3.12. Matrices G(0), G
(i)
0
, G

(i)
I for i = 1, 2, defined in Def. 3.11, are

orthogonal projections.
Proof. From the matrices in Def. 3.11, we deduce

I = G(0) + G
(1)
0

+ G
(2)
I , I = G(0) + G

(1)
I + G

(2)
0
.

with the help of the Fourier coefficients of integral kernels in Def. A.1. Moreover, a

direct calculation shows that both of the triples Ĝ
(0)

,Ĝ
(1)

0
,Ĝ

(2)

I and Ĝ
(0)

,Ĝ
(1)

I , Ĝ
(2)

0
are

mutually orthogonal projections, see also [17].
Definition 3.13 (Finite dimensional subspaces). With the previously defined

projections, we introduce the subspaces of space Rd×N

UN = G(0)Rd×N EN = G
(1)
0 Rd×N JN = G

(2)
0 Rd×N

ĒN = G
(1)
I Rd×N J̄N = G

(2)
I Rd×N

and their trigonometric relatives

UN = I−1
N [UN ] EN = I−1

N [EN ] JN = I−1
N [JN ]

ĒN = I−1
N [ĒN ] J̄N = I−1

N [J̄N ]

In Fig. 3.1, we introduce the relation diagram of subspaces based on the following

⊕⊥

⊕⊥

=

⊕⊥

⊕⊥

=

⊕⊥

⊕⊥

=

==

==

==

==

= =

⊕⊥ ⊕⊥

⊕⊥ ⊕⊥

only for odd N

(

=

(

only for odd N

(

only for odd N

)

=

only for odd N

)

)

L
2
per(Y ;Rd)

U

E

J

T̄ d
N

UN

EN

J̄N

T̄ d
N

UN

ĒN

JN

I−1
N

[Rd×N ]

I−1
N

[UN ]

I−1
N

[ĒN ]

I−1
N

[JN ]

I−1
N

[Rd×N ]

I−1
N

[UN ]

I−1
N

[EN ]

I−1
N

[J̄N ]

Fig. 3.1. The scheme of subspaces
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10 Jaroslav Vondřejc, Jan Zeman, and Ivo Marek

two lemmas. The first one is a base for the fully discrete formulation of GAwNI in
Sec. 3.3 and especially for a treatment with dual formulation Sec. 3.4.

Lemma 3.14. For the subspaces from Def. 3.13, the following three conditions
hold:

(i) Space Rd×N can be split into three mutually orthogonal subspaces

Rd×N = UN ⊕⊥ EN ⊕⊥ J̄N , Rd×N = UN ⊕⊥ ĒN ⊕⊥ JN . (3.4)

(ii) The subspaces with tilde enlarge the original one, i.e. EN ⊆ ĒN , JN ⊆ J̄N .
(iii) If N ∈ Nd is odd (for all elements) it simplifies to EN = ĒN and JN = J̄N .
Proof. The proof is based on Lem. 3.12. Since both properties, constitution of

identity and orthogonality, hold, all subspaces from the lemma are the subsets of set
Rd×N rather than set Cd×N ; decomposition (3.4) thus holds. Finally, if N is odd,

the index sets Zd
N and Zd

N coincide and the same stand for projections, G
(1)
0

= G
(1)
I

and G
(2)
0

= G
(2)
I , see Def. 3.11.

Lemma 3.15. The scheme stated in Fig. 3.1 holds true.
Proof. First, the middle column is the Helmholtz decomposition, in our special

case provided in Lem. A.2.
Next, we utilize previous Lem. 3.14 and isomorphism of operator IN in Lem. 3.8

which prove the rest of the columns.
The equality between spaces in the first two and the last two columns comes from

Def. 3.13, hence the relations between subspaces in second, third, and fourth column
have to be established. Relation T̃ d

N ( L2
per(Y;R

d×N ) holding only for odd N is
discussed in Rem. 3.10. Equality UN = U is trivial as it contains only constant fields
— the Fourier representation is exact.

Relation EN ⊆ E comes as a consequence of projection G
(1)
0 that is deduced from

the kernel Γ̂
(1)

of continuous projection defined in Appendix. A; defective frequencies
n ∈ Zd

N \Zd
N are erased, see Rem. 3.10. The last inclusion JN ⊆ J is an analogue.

Remark 3.16. The previous proof yields the alternative characterization of the
conforming subspaces: EN = E

⋂
T d

N and JN = J
⋂

T d
N .

3.3. FFT-based Finite Element Method. This section provides the overview
of the FFT-based FEM. The theory for odd number of discretization points N is
described in [31] including convergence results. Here, we extend the situation for non-
odd number of discretization pointsN in a way to provide conforming approximations.

Definition 3.17 (GAwNI). Let material coefficients A have continuos coeffi-
cients. Galerkin approximations with numerical integration (GAwNI) of the primal
and the dual homogenization problems, Def. 2.3, state as: find discrete homogenized
matrices AFFTH

eff,N ,AFFTH
eff,D,N ∈ Rd×d satisfying following relations for arbitrary macro-

scopic loads E,J ∈ Rd

(
AFFTH

eff,N E,E
)
Rd = inf

eN∈EN

(
QN [A(E + eN )],E + eN

)
L2

per

, (3.5a)

(
(AFFTH

eff,D,N )−1J ,J
)
Rd = inf


N

∈JN

(
QN [A−1(J + N )],J + N

)
L2

per

. (3.5b)

Remark 3.18. The scalar products on the right-hand side in (3.5) are real valued
and hence the discrete homogenized matrices are. Although, functions QN [A−1(E +
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eN )],QN [A−1(J + N )] ∈ T̃ d
N generally fail to be only real valued, see Rem. 3.10,

the defective Fourier coefficients with frequencies n ∈ Zd
N \ Zd

N are eliminated by the
space of test functions T d

N .

Definition 3.19 (Fully discrete formulations of GAwNI). Find Ã
FFTH

eff,N , Ã
FFTH

eff,D,N ∈

Rd×d satisfying following relations for arbitrary macroscopic loads E,J ∈ Rd

(
Ã

FFTH

eff,N E,E
)
Rd =

1

|N |Π
inf

eN∈EN

(
AN (EN + eN ),EN + eN

)
Rd×N

(3.6a)

(
(Ã

FFTH

eff,D,N )−1J ,J
)
Rd =

1

|N |Π
inf

j
N

∈JN

(
A−1

N (JN + jN ), JN + jN
)
Rd×N

(3.6b)

where EN = IN [E] ∈ UN , JN = IN [J ] ∈ JN , and AN ∈ Rd×d×N×N with compo-
nents Amn

N ,αβ = Aαβ(x
m
N )δmn for α, β and m,n ∈ Zd

N .

Remark 3.20. Minimizers ẽ
(α)
N , ̃

(α)
N , and ẽ

(α)
N , j̃

(α)

N of both formulations corre-
sponding to unitary macroscopic fields ǫα are called discrete unitary minimizers. The
existence and uniqueness is provided in following lemma.

Lemma 3.21. The homogenized matrices of both previous formulations, Def. 3.17

and 3.19, coincide AFFTH
eff,N = Ã

FFTH

eff,N , AFFTH
eff,D,N = Ã

FFTH

eff,D,N . Moreover, discrete min-

imizers ẽ
(α)
N , ̃

(α)
N and ẽ

(α)
N , j̃

(α)

N of both formulations exist, are unique, and are con-

nected to each other IN [ẽN ] = ẽN , IN [̃N ] = j̃N .
Proof. Although, the proof is a generalization of that in [31], it follows the same

ideas: the linearity of scalar product with the definition of interpolation operator QN

and the property of space basis functions ϕN ,k, and the second property in (3.2b).
For completeness, we provide calculation

(
QN [A(E + ẽN )],E + ẽN

)
L2

per

=

=
( ∑

m∈Zd
N

A(xm
N )
[
E + ẽN (xm

N )
]
ϕN ,m,

∑

n∈Zd
N

[
E + ẽN (xn

N )
]
ϕN ,n

)
L2

per

=
∑

m∈Zd
N

∑

n∈Zd
N

A(xm
N )
[
E + ẽN (xm

N )
][
E + ẽN (xn

N )
](
ϕN ,m, ϕN ,n

)
L2

per

=
∑

m∈Zd
N

∑

n∈Zd
N

Am
N

[
Em
N + ẽmN

][
En
N + ẽnN

] δmn

|N |Π
=

1

|N |Π

(
AN [EN + ẽN ],EN + ẽN

)
Rd×N

The existence and the uniqueness of minimizers are provided due to symmetric and
positive definite matrix AN .

Remark 3.22 (Solution of GAwNI by Conjugate gradients). According to [33],
the minimizers of fully discrete formulations are equivalent to weak formulations,
similar to those in Def. 2.5. Moreover, the solutions can be found by the means
of Conjugate gradients applied to linear systems Cx = b and C′x′ = b′ defined for
particular α as

G
(1)
0

AN︸ ︷︷ ︸
C

e
(α)
N︸︷︷︸
x

= −G
(1)
0

ANE
(α)
N︸ ︷︷ ︸

b

G
(2)
0

A−1
N︸ ︷︷ ︸

C′

j
(α)
N︸︷︷︸
x′

= −G
(2)
0

A−1
N J

(α)
N︸ ︷︷ ︸

b′

for initial approximations x0, x′0 that have to belong to the appropriate subspaces,
EN , JN resp. Easily, Conjugate gradients minimizes the quadratic forms in the fully
discrete formulations 3.6.
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Lemma 3.23 (Convergence of discrete minimizers). Let material coefficients A

be continuous and sufficiently regular in order to minimizers e(α), (α), Def. 2.5, be
sufficiently regular — particularly having all weak partial derivatives up to order µ in

the space L2
per(Y;R

d). Then the sequence of discrete minimizers e
(α)
N , 

(α)
N , Def. 3.17,

converge to the minimizers, i.e.

‖e− eN‖L2
per

≤ C
(
min
α
Nα

)−µ

→ 0 for min
α
Nα → ∞

where constant C is independent of N ; it depends only on the material coefficients,
its positive definiteness, norm, and regularity.

3.4. Connection of primal and dual formulations. This section is dedicated
to the connection between the primal and the dual formulations in the fully discrete
setting (3.6). General theory for dual problems can be found for example in [7]. We
start with the statement of general lemma.

Lemma 3.24 (Perturbation duality theorem — page 54 in [7]). Let V and X be
Hilbert spaces and Φ : V × X → R be a continuous functional, convex, coercive for
the first variable (limv∈V,‖v‖→∞ Φ(v, 0) = ∞), and satisfying following property: there
exist v0 ∈ V such that Φ(v0, ·) is finite and continuous around 0 ∈ V. Then the primal
and the dual problems

min
v∈V

Φ(v, 0) max
x∗∈X

−Φ∗(0; x∗) (3.7)

have the solutions and the extremal values are equal to one another. Here Φ∗ is the
usual Fenchel conjugate function defined on V× X as

Φ∗(v∗; x∗) := sup
v∈V,x∈X

[(
v∗, v

)
V
+
(
x∗, x

)
X
− Φ(v, x)

]
. (3.8)

The following lemma is an application of previous lemma on the homogenization
problem in fully discrete setting; it is sufficiently general to apply for arbitrary number
of discretization points. Both the lemma and the proof are analogy to Proposition
2.2 and Corollary 2.3 in [6] that are stated for continuous formulations.

Lemma 3.25 (Transformation to dual formulation). Let AN ∈ Rd×d×N×N be
symmetric positive definite matrix, VN be a proper nontrivial subspace of U⊥

N = {v ∈
Rd×N : v · u = 0 for all u ∈ UN}, and the following primal problem be set: find
Ãeff ∈ Rd satisfying the following relation for arbitrary macroscopic load E ∈ Rd

(
ÃeffE,E

)
Rd =

1

|N |Π
inf

eN∈VN

(
AN (EN + eN ),EN + eN

)
Rd×N

where EN := IN [E] ∈ UN . Then the problem is equivalent to the dual problem: find
Ãeff ∈ Rd satisfying the following relation for arbitrary macroscopic load J ∈ Rd

(
Ã

−1

eff J ,J
)
Rd =

1

|N |Π
inf

j
N

∈WN

(
A−1

N (JN + jN ), JN + jN
)
Rd×N

where JN = IN [J ] ∈ UN and WN = (UN ⊕ VN )⊥. Moreover, between macroscopic

fields E, J and between minimizers ẽ
(E)
N , j̃

(J)

N of the primal and the dual formulations,
the following relations hold

J = ÃeffE, JN + j̃
(J)

N = AN [EN + ẽ
(E)
N ]. (3.9)
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Proof. First, we define a function Φ : VN × Rd×N → R as

Φ(eN , x) :=
1

2

(
AN [EN + eN + x], [EN + eN + x]

)
Rd×N

.

Since matrix AN is symmetric positive definite and the undergoing spaces are finite
dimensional, the assumptions of previous Lem. 3.25 are satisfied. Hence the primal
formulation reformulated with Φ to

(
AeffE,E

)
Rd =

2

|N |Π
inf

eN∈VN

Φ(eN , 0),

is equivalent to the dual formulation

(
AeffE,E

)
Rd =

2

|N |Π
sup

x∗∈Rd×N

−Φ∗(0, x∗)

where 0 ∈ Rd×N is a vector with all components equal to zero and Φ∗ : VN×Rd×N →
R is the Fenchel conjugate function, see Eq. (3.8).

Using substitution x′ = EN + eN + x where x′ covers the whole space Rd×N , we
deduce
(

AeffE,E
)

Rd =
2

|N |Π
sup

x∗
N

∈Rd×N

−Φ
∗(0, x∗)

=
2

|N |Π
sup

x∗∈Rd×N

[

− sup
eN∈VN ,x′∈Rd×N

(

(

x
∗
, x

′ − EN − eN
)

Rd×N
−

1

2

(

ANx
′
, x

′
)

Rd×N

)

]

=
2

|N |Π
sup

x∗∈Rd×N

[

(

x
∗
,EN

)

Rd×N
+ inf

eN∈VN

(

x
∗
, eN

)

Rd×N

− sup
x′∈Rd×N

(

(

x
∗
, x

′
)

Rd×N
−

1

2

(

ANx
′
, x

′
)

Rd×N

)

]

We focus on the supreme in the last equation where the equilibrium point satisfies
ANx′ = x∗. Since AN is symmetric positive definite, we have x′ = A−1

N x∗. Therefore,
the inner supremum is simplified to

sup
x′∈Rd×N

((
x∗, x′

)
Rd×N

−
1

2

(
ANx′, x′

)
Rd×N

)
=

1

2

(
A−1

N x∗, x∗
)
Rd×N

.

The inner infimum equals to minus the indicator function of V ⊥
N , explicitly

inf
eN∈VN

(
x∗, eN

)
Rd×N

=

{
0, for x∗ ∈ V ⊥

N

−∞, otherwise.

Hence, we can omit the inf term while restrict the supremum to space V ⊥
N . It leads

to

(
AeffE,E

)
Rd =

2

|N |Π
sup

x∗∈V⊥

N

[(
x∗,EN

)
Rd×N

−
1

2

(
A−1

N x∗, x∗
)
Rd×N

]
.

Since the following inclusion holds UN ( V ⊥
N , space V ⊥

N can be decomposed V ⊥
N =

UN ⊕⊥ WN where WN = {w ∈ V ⊥
N : w · u = 0 for all u ∈ UN}. Hence, we state

(
AeffE,E

)
Rd =

2

|N |Π
sup

JN∈UN

[(
JN ,EN

)
Rd×N

− inf
j
N

∈WN

1

2

(
A−1

N (JN + jN ), JN + jN
)
Rd×N

]
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where x∗ = JN + jN such that JN ∈ UN , jN ∈ WN . Then we define matrix
Beff ∈ Rd×d satisfying for arbitrary J ∈ Rd

(
BeffJ ,J

)
Rd =

1

|N |Π
inf

j
N

∈VN

(
A−1

N (JN + jN ), JN + jN
)
Rd×N

where JN = IN [J ].

Now, we show Beff = A−1
eff , the first identity in Eq. (3.9). With obvious identity

1

|N |Π

(
JN ,EN

)
Rd×N

=
(
J ,E

)
Rd ,

the dual problem becomes

(
AeffE,E

)
Rd = sup

J∈Rd

[
2
(
J ,E

)
Rd −

(
BeffJ ,J

)
Rd

]

and comply with the equilibrium state BeffJ = E. The matrix Beff is symmetric
positive definite as A−1

N is (see e.g. [4]), whence substition of J = B−1
eff E into the

dual formulation leads to required identity.

The second identity in Eq. (3.9) follows from equations obtained during the proof,
particularly AN (EN+v+x) = x∗ = JN+jN , and the fact that the primal formulation
is obtained for x = 0.

Corollary 3.26 (Special case of the odd number of discretization points N).
Let N ∈ Nd be odd, and the fully discrete formulations 3.6 be defined. Then:

(i) Both the primal and the dual homogenized matrices coincide AFFTH
eff,N = AFFTH

eff,D,N .

(ii) Primal and dual discrete minimizers ẽ
(α)
N , j̃

(α)

N are related

ǫβ + j̃
(β)

N = AN

∑

α

Eα(ǫα + ẽ
(α)
N ) (3.10)

where E = (AFFTH
eff,N )−1ǫβ.

Proof. The proof is the consequence of Lem. 3.25 for VN = EN , WN = JN , and
decomposition Rd×N = UN ⊕ EN ⊕ JN stated in Lem. 3.14.

Corollary 3.27 (General case of the arbitrary number of discretization points

N). Let we have following homogenization problems: find Ã
FFTH

eff,N , Ã
FFTH

eff,D,N ∈ Rd×d

such that

(
(Ã

FFTH

eff,N )−1J ,J
)
Rd =

1

|N |Π
inf

j
N

∈J̄N

(
A−1

N (JN + jN ), JN + jN
)
Rd×N

(3.11a)

(
Ã

FFTH

eff,D,NE,E
)
Rd =

1

|N |Π
inf

eN∈ĒN

(
AN (EN + eN ),EN + eN

)
Rd (3.11b)

and let ẽ
(α)
N and j̃

(α)

N be their approximate unitary minimizers. Then the following
holds:

(i) The fully discrete primal and dual formulations, Eq. 3.6a and 3.6b in Def. 3.19
are equivalent to those here in Eq. (3.11a) and (3.11b) resp. in the sense the

homogenized matrices coincide AFFTH
eff,N = Ã

FFTH

eff,N and AFFTH
eff,D,N = Ã

FFTH

eff,D,N .
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(ii) The discrete unitary minimizers ẽ
(β)
N , j̃

(α)

N of Eq. 3.6 can be expressed as a

linear combination of these minimizers ē
(α)
N , j̄

(α)
N of Eq. (3.11) as

ǫβ + ẽ
(β)
N = A−1

N

∑

α

Jα(ǫα + j̄
(α)
N ) ∈ EN (3.12a)

ǫβ + j̃
(β)

N = AN

∑

α

Eα(ǫα + ē
(α)
N ) ∈ JN (3.12b)

where the macroscopic quantities are set to E := (AFFTH
eff,D,N )−1ǫβ and J :=

AFFTH
eff,N ǫβ.

(iii) The primal and the dual homogenized matrices can be compared

AFFTH
eff,D,N � AFFTH

eff,N . (3.13)

Proof. The proof is mainly the consequence of Lem. 3.25 and 3.14: for the primal
fully discrete formulation with VN = EN , WN = J̄N and for the dual one with
VN = JN , WN = ĒN — see Fig. 3.1 with the scheme of the subspaces. The inequality
in 3.13 comes from relation EN ⊆ ĒN , see Lem. 3.14, and a relation

1

|N |Π
inf

eN∈ĒN

(
AN (EN+eN ),EN+eN

)
Rd×N

≤
1

|N |Π
inf

eN∈EN

(
AN (EN+eN ),EN+eN

)
Rd×N

holding for arbitrary fixed EN ∈ UN .
Remark 3.28. The effective matrices AFFTH

eff,N and AFFTH
eff,D,N can be compared with

relation �, in the sense of quadratic norms, to none of the matrices Aeff Aeff,N , and

Aeff,N as is numerically shown in Sec. 4.1.
Remark 3.29. In engineering literature relating FFT-based homogenization, e.g.

[19, 20, 16], the criterion for the numerical convergence of the primal approximate
minimizers eN is based on an equilibrium condition of the dual fields ANeN con-
trolling to be divergence-free. However, this criterion is reasonable only for the odd-
number of discretization points, cf. Eq. (3.10), as observed in [20]; they also offer a
remedy that exactly corresponds to the formulation in Eq. (3.11a) — the dual fields
(3.12a) are then, if a convergence is reached, in appropriate subspace JN , the space
of divergence-free fields.

3.5. Calculation of upper-lower bounds. The calculation of the upper-lower

bounds of the homogenized matrix consists of the integral evaluation of type
(
Ae

(α)
N , e

(β)
N

)
L2

per

occurring in Def. 2.8. Generally, the integral cannot be evaluated in a closed form
because of non-specific material coefficients. The idea is to adjust material coeffi-
cients to calculate the integrals accurately and efficiently and simultaneously keep the
upper-lower bounds structure.

For an easier orientation among various homogenized matrices, we refer to their
scheme in Fig. 3.2. The matrices Aeff , Aeff,N , Aeff,N , Aeff,N , and DN introduced

in Def. 2.3, 2.8, 2.11 are in no relation to matrices AFFTH
eff,N , AFFTH

eff,D,N from Def. 3.17,
see Rem. 3.28.

In this section, we introduce approximations of upper-lower bounds Ã
lin,M

eff,D,N ,

Ã
lin,M

eff,N based on piecewise bilinear material coefficients and homogenized matrices

Alin,M

eff,N
, A

lin,M

eff,N based on piecewise constant material coefficients defined in a way to

guaranty bounds. All four introduced matrices can be calculated efficiently by FFT
algorithm, see Lem. 3.31 and Lem. 3.32.
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� � � � �

AFFTH
eff,D,N

equality if N is odd

� AFFTH
eff ,N

6= 6=

Ã
lin,M

eff,D,N Ã
lin,M

eff,N

0 Acon,M

eff ,N
Aeff,N Aeff Aeff ,N A

con,M

eff ,N

Aeff ,N −DN � Aeff,N �Aeff ,N +DN

≈ ≈

= =

Fig. 3.2. The overview of homogenized material bounds

Lemma 3.30 (Sufficient condition for the upper-lower bounds). Let A ∈ L∞
per(Y;R

d×d
spd )

be material coefficients and A,A ∈ L∞
per(Y;R

d×d) its upper and lower approximations
satisfying

A(x) � A(x) � A(x), for almost all x ∈ Y. (3.14)

Let ẽ
(α)
N ∈ EN and ̃

(α)
N ∈ JN be unitary minimizers for material coefficients A,

cf. Def. 2.5. Then matrices Aeff ,Aeff
∈ Rd×d, defined as

(Aeff,N )αβ =
(
A(ǫβ + ẽ

(β)
N ), ǫα + ẽ

(α)
N

)
L2

per

, (3.15a)

(A−1

eff,N
)αβ =

(
A−1(ǫβ + ̃

(β)
N ), ǫα + ̃

(α)
N

)
L2

per

, (3.15b)

comply with the upper-lower bound structure, i.e.

A
eff,N

� Aeff,N � Aeff � Aeff,N � Aeff,N .

Proof. The inner inequalities Aeff,N � Aeff � Aeff,N are already proven in
Lem. 2.10; the rest easily arise from assumed inequality (3.14) that is kept under
integration.
Next lemma provides a way for the calculation of the homogenized matrices by the
FFT routine, Lem. 3.32. It requires the material coefficients to be expressed as a
linear combination of some basis functions concentrated on the set of nodal points.

Lemma 3.31 (Calculation of homogenized matrices). Let uN ,vN ∈ T d
N be

trigonometric polynomials and AM ∈ L∞
per(Y;R

d×d) for M ∈ Nd be function explicitly
expressed as

AM (x) =
∑

n∈Zd
M

ψ(x+ xn
M )An

M , x ∈ Y

where ψ ∈ L∞
per(Y;R) is some basis function and AM ∈ Rd×d×M . Then the integrals

of the type occurring in Eq. (3.15) can be calculated as

(
AMuN ,vN

)
L2

per

=
1

|Y|d

∑

α,β

∑

m∈Zd
2N

w(m)ûvmN ,α,βÂ
m
αβ (3.16)

where integration weight w(m) is defined as w(m) :=
∫
Y ψ(x)ϕm(x) and factors
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ûv
m
N ,β,α, Â

m
αβ are defined as

ûv
m
N ,β,α =

1

2|N |Π

∑

k∈Zd
2N

uN ,β(x
k
2N )vN ,α(x

k
2N )ω−mk

2N (3.17a)

Â
m
αβ =

∑

n∈Zd
M

A
n
αβω

−mn
M (3.17b)

Proof. First, we note that
∫
Y ψ(x+ xn

M )ϕm(x)dx =
∫
Y ψ(x)ϕm(x− xn

M )dx =

w(m)ω−mn
M where m,n ∈ Zd. Since uN ,β, vN ,α ∈ TN , for their multiplication holds

uN ,βvN ,α ∈ T2N . Thus, it can be expressed as interpolation through 2N nodal
points

uN ,βvN ,α =
∑

m∈Zd
2N

ûv
m
N ,β,αϕm (3.18)

Then, the direct calculation finish the proof

(
AMuN ,vN

)
L2

per

=
1

|Y|d

∑

α,β

∫

Y
AM ,αβ(x)uN ,β(x)vN ,α(x)dx

=
1

|Y|d

∑

α,β

∑

n∈Zd
M

∑

m∈Zd
2N

A
n
αβ ûv

m
N ,β,α

∫

Y
ψ(x+ xn

M )ϕm(x)dx

=
1

|Y|d

∑

α,β

∑

m∈Zd
2N

ûv
m
N ,β,αw(m)

∑

n∈Zd
M

A
n
αβω

−mn
M .

Lemma 3.32 (Homogenized matrices by FFT algorithm). Let the assumptions
from the previous lemma be satisfied and, in addition, let M ∈ Nd be such that
Mα ≥ 2Nα then the formula in Eq. (3.16) can be calculated using the FFT algorithm
of size 2N and M resp.

Proof. In Eq. (3.17a), the function values of uN ,β , vN ,α at nodal points xk
2N can

be calculated with inverse DFT of size 2N — the Fourier coefficients with frequencies
Zd
2N − Zd

N are completed with nils. Then Eq. (3.17) is, up to a constant, the DFT

on space R2N and RM resp. — compare it to DFT matrix Fd
N in Def. 3.1 acting on

space Rd×N . The Fourier coefficients of ûvmN ,β,α equal to zero for m ∈ Zd \ Zd
2N , it

reveals requirement Mα ≥ 2Nα.
Up to now, we have shown that the homogenized properties can be calculated effec-
tively using the FFT algorithm if the material coefficients are expressed as the linear
combination of basis functions concentrated on the set of nodal points. Now, we show,
in Def. 3.33, some examples of basis functions, to be utilized in Lem. 3.31, that can
be used to calculate the homogenized matrices; the choice depends on the possibility
to analytically express the integral weights, cf. Lem. 3.34.

Definition 3.33 (Constant and bilinear basis functions). Let M ∈ Rd be a
parameter such that Mα > 1. We say that functions χM , triM ∈ L∞

per(Y;R), defined
on Y as

χM (x) =

{
1, |xα| <

Yα

Mα
for all α

0, otherwise
, triM (x) =

∏

α

max{1− |
xαMα

2Yα
|, 0},

Paper 6 page 137



18 Jaroslav Vondřejc, Jan Zeman, and Ivo Marek

are, one by one, a constant and a bilinear basis functions.

Lemma 3.34 (Weights of numerical integration). Let χM and triM be the basis
functions from Def. 3.33. Then for m ∈ Zd we state

w0
M (m) :=

∫

Y
χM (x)ϕm(x)dx =

∏

α

2Yα

Mα

sinc

(
mα

Mα

)

w1
M (m) :=

∫

Y
triM (x)ϕm(x)dx =

∏

α

2Yα

Mα

sinc2
(
mα

Mα

)

where sinc(x) :=

{
1, x = 0
sin(πx)

πx
, x 6= 0

.

Proof. For m ∈ Zd we calculate

∫

Y
χMϕm(x)dx =

∏

α

∫

|xα|< Yα
Mα

exp(iπ
xαmα

Yα
)dxα =

∏

α

[
Yα

iπmα

exp(iπ
xαmα

Yα

)

] Yα
Mα

− Yα
Mα

=
∏

α

[
2Yα
Mα

sin(πmα

Mα
)

πmα

Mα

]
=
∏

α

2Yα
Mα

sinc

(
mα

Mα

)

Integral weights w1
M (m) for bilinear basis functions triM are calculated accordingly.

Remark 3.35. Since we realize that the integral weights can be calculated for the
basis functions shifted by h ∈ Rd, e.g.

∫

Y
χN (x+ h)ϕm(x)dx = w0

N (m)ϕm(−h),

we can calculate the upper and lower bounds exactly if the material coefficients are
expressed as some linear combination of the shifted basis functions from Def. 3.33.
We note that the shifts by particular h enable to calculate the bounds using the FFT
algorithm, cf. Lem. 3.31 and Lem. 3.32.

Next, the basis functions stated in Def. 3.33 are not the only suitable ones, for
example the circle basis function defined for x ∈ Y as

circr(x) =

{
1, ‖x‖2 ≤ r

0, otherwise

produces the integral weight with the Bessel function of the first kind B1, i.e. for
ξα(m) = mα

Yα

wcirc
N (m) :=

∫

Y
circr(x)ϕm(x)dx =

{
πr2, m = 0

r2 B1(2πr‖ξ(m)‖2)
r‖ξ(m)‖2

, otherwise
.

Now, we will define approximations of the guaranteed bounds with the basis func-
tions stated in Def. 3.33; a piecewise constant approximation is defined in a way to
still provide the guaranteed bounds while a piecewise bilinear approximation only
approximate these bounds, see Lem. 3.30.
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Definition 3.36 (Constant and bilinear approximation of material coefficients).
Let A ∈ L∞

per(Y;R
d×d
spd ) be material coefficients and M ∈ N a parameter. Then we

define functions A
con,M

, Bcon,M , Alin,M , Blin,M ∈ L∞
per(Y;R

d×d) for x ∈ Y as

A
con,M

(x) =
∑

n∈Zd
M

χM (x+ xn
M )AM

con,M ,n
,

Bcon,M(x) =
∑

n∈Zd
M

χM (x+ xn
M )Bcon,M ,n,

Alin,M(x) =
∑

n∈Zd
M

triM (x+ xn
M )A(xn

M ),

Blin,M(x) =
∑

n∈Zd
M

triM (x+ xn
M )A−1(xn

M ),

where matrices AM
con,M ,n

,Bcon,M ,n ∈ Rd×d are defined as

AM
con,M ,n

= ‖A(x+ xn
M )‖

L∞(ΩM ;Rd×d

spd
)I, Bcon,M ,n = ‖A−1(x+ xn

M )‖
L∞(ΩM ;Rd×d

spd
)I,

noting that L∞
per-norm is restricted on ΩM =

∏
α

(
− Yα

Mα
, Yα

Mα

)
. The matrices are

called, one by one, upper constant, lower constant, upper bilinear, and lower bilinear
approximation of material coefficients.

Lemma 3.37 (Constant approximation of material coefficients). The constant
approximations of the material coefficients, Def. 3.36, satisfy the sufficient condition
in Lem. 3.30 for guaranteeing bounds.

Proof. It is necessary to show

A(x) � A
con,M

(x), A−1(x) � Bcon,M (x),
(
Bcon,M

)−1
(x) � A(x) � A

con,M
(x),

however, it is a direct consequence of the definition of the approximated material
coefficients.

Definition 3.38 (Bounds and its approximation of homogenized material co-

efficients). Let ẽ
(α)
N ∈ EN and ̃

(α)
N ∈ JN be approximations of unitary mini-

mizers, e.g. from Def. 2.5, and A
con,M

, Bcon,M , Alin,M ,Blin,M for M ∈ Nd be
approximations of material coefficients from Def. 3.36. Then we define the bounds

A
con,M

eff,N , Acon,M

eff,N
, Ã

lin,M

eff,N , Ã
lin,M

eff,D,N ∈ Rd×d of the homogenized matrix as

A
con,M

eff,N ,αβ =
(
A

con,M
e
(β)
N , e

(α)
N

)
L2

per

, (Acon,M

eff,N
)−1
αβ =

(
Bcon,M

(β)
N , 

(α)
N

)
L2

per

,

(3.19a)

Ã
lin,M

eff,N ,αβ =
(
Alin,Me

(β)
N , e

(α)
N

)
L2

per

, (Ã
lin,M

eff,D,N )−1
αβ =

(
Blin,M

(β)
N , 

(α)
N

)
L2

per

. (3.19b)

Theorem 3.39 (Guaranteed bounds for piecewise constant material coefficients).

The bounds Acon,M

eff,N
,A

con,M

eff,N ∈ Rd×d from the previous definition are the guaranteed

bounds, i.e.

Acon,M

eff,N
� Aeff � A

con,M

eff,N , (3.20)
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and can be calculated with the FFT algorithm.

Proof. Relation (3.20) is a corollary of Lem. 3.37. The possibility to caclulate
it using the FFT algorithm is a consequence of formula (3.16) in Lem. 3.31 and
discussion in Lem. 3.32.

Remark 3.40 (Homogenized bounds). The bounds obtained with the bilinear
approximations of the material coefficients are only approximation of the bounds from

Def. 2.8, explicitly Ã
lin,M

eff,N ≈ Aeff,N , Ã
lin,M

eff,D,N ≈ Aeff,N . Nevertheless, it is still
possible to calculate it using the FFT algorithm, cf. Lem. 3.32.

4. Numerical experiments. This section is dedicated to numerical experi-
ments. We discuss the practical aspects of computing the homogenized matrices,
and then verify the theoretical results: the upper-lower bounds structure of homog-
enized matrices in Section 4.1, and the rate of convergence, particularly convergence
of approximate solutions to continuous one and the convergence of the homogenized
matrices, Sec. 4.2.

Finally, the numerical experiments are compared to the p-version of the Finite
Element Method provided in [6], see Sec. 4.3.

Remark 4.1. The calculations are provided for a 2-dimensional problem with
(2, 2)-periodic material coefficients defined on periodic unit cell Y = (−1, 1)×(−1, 1) ⊂
R2 as

A(x) = I[1 + ρf(x)], x ∈ Y,

where I ∈ Rd×d
spd is the identity matrix, ρ corresponds to the phase ratio and is taken

as 10 except Sec. 4.3 where it is taken as (10−3 − 1), and f : Y → R is a scalar
nonnegative function defined explicitly for particular experiment — it controls the
shape of inclusions and the regularity of material coefficients.

Moreover, discrete minimizers e
(α)
N ∈ EN and 

(α)
N ∈ JN from Def. 3.17 are

obtained for both odd and even number of discretization points, namely N = (n, n)
where either n ∈ {5 · 3α|α ∈ N0, 0 ≤ α ≤ 6} or n ∈ {2α|α ∈ N, 2 ≤ α ≤ 10}; both the
sets of numbers are geometric series carrying ratios between succesive terms λ equal
to either 3 or 2.

Logarithm 4.2 (Calculation of guaranteed bounds of homogenized material
properties). Let AM ∈ L∞

per(Y;R
d×d) be material coefficients. The algorithm for

calculation of the homogenized matrices is composed of several steps:

(i) Set the number of discretization points N and assemble matrices AN , A−1
N ,

Ĝ
(1)

0
, Ĝ

(2)

0
∈ Rd×d×N×N defined in Def. 3.19 and 3.11. Since they are block

diagonal, only the diagonals are stored and the matrix by vector multiplication
is provided as element-wise multiplication.

(ii) For α, find discrete minimizers ẽ
(α)
N ∈ EN , j̃

(α)

N ∈ JN as the solutions of
linear systems described in Rem. 3.22 for unitary macroscopic loads ǫα. The
convergence criterion is based on the norm of residuum ‖r‖CG ≤ ε where
‖r‖2CG := |N |−1

Π

(
r, r
)
Rd×N

; the yielding value is set as ε = 10−10 and initial
approximate vectors of CG are set as zeros.

(iii) Calculate, if possible as stated in Rem. 3.35, the exact upper and lower bounds
Aeff,N , Aeff,N , see Def. 2.8. Otherwise, evaluate the approximations of the

upper-lower bounds A
lin,M

eff,N , Alin,M

eff,N
, Ã

con,M

eff,N , Ã
con,M

eff,D,N , Def. 3.38, according to

Lem. 3.31 for some sufficiently large M ∈ Rd, cf. Lem. 3.32.

Paper 6 page 140



Guaranteed bounds of homogenized periodic media by FFT-based FEM 21

Remark 4.3 (Convergence criterion). The norm for residuum ‖r‖CG, due to
Plancherel’s theorem, equals to ‖I−1

N [r]‖L2
per

. The yielding value is set as small as
possible to diminish an error caused by an inaccuracy in the solution of the linear
systems.

Remark 4.4 (Avoiding the solution of dual formulation). If N is odd, the

dual discrete minimizers j̃
(α)

N can be obtained from Eq. 3.10 based on the assumption

that the original minimizers ẽ
(α)
N are the exact solutions of the corresponding linear

systems, see Rem. 3.22. In reality, the linear systems are solved only approximately,

thus it fails the dual minimizers to be from appropriate subspace j̃
(α)

N /∈ JN . It can be

saved with projection operator G
(2)
0

and, in case AN is badly conditioned, by providing
couple of iterations of the dual formulation (3.6b).

Remark 4.5 (Interpolation operator QN for non-continuous functions). The
discrete formulations, Def. 3.17, require the interpolation operator QN to be well
defined; it takes the function values and thus, originally, the operator is well defined,
for example, on continuous functions.

We assume the piecewise constant material coefficients and define the discrete
formulations as it states in Def. 3.19. Generally, it still provides the upper-lower
bounds, however, it can fail to converge. Alternatively, some regularization of material
coefficients, see [31], can be performed to obtain convergence, nevertheless, generally
arbitrary slow.

4.1. The behavior of the bounds of the homogenized matrix. In this
section, we validate the properties of the upper-lower bounds of the homogenized
matrices for two phase materials with three types of inclusions characterized by scalar
functions f , see Rem. 4.1; explicitly, they are defined as

• square (S): f(x) =

{
1, ‖x‖∞ < 3

5

0, otherwise
,

• square (S1): f(x) =

{
1, ‖x‖∞ < 3

4

0, otherwise
,

• square (S2): f(x) =

{
1, ‖x‖∞ ≤ 3

4

0, otherwise
.

Fig. 4.1 depicts the interface between phases and the nodal points sets, {xn
N ∈

Y : n ∈ Zd
N}, for particular N . The squares (S1) and (S2) differ only at the interface

having the 2-dimensional Lebesque’s measure equal to zero, thus insignificant for the
upper and lower bounds, see Def. 2.8.

The square (S) receive the interface exactly between the nodal points — it ap-
proximate well an inclusion contrary to the squares (S1) and (S2) representing the
extreme cases of an inclusion approximation. The nodal points lie exactly on the
boundary causing the difference in the discrete formulation and consequently in dis-

crete minimizers e
(α)
N , 

(α)
N and upper-lower bounds Aeff,N ,Aeff,N .

In Fig. 4.1, we demonstrate the properties of the homogenized matrices for their
particular diagonal component. Inequality Aeff,N � Aeff,N stated in Lem. 2.10
is satisfied and the error, difference between them, is approaching zero supporting
Lem. 2.14.

For odd N in Fig. 4.1(a), the primal and the dual approximate homogenized
matrices coincide AFFTH

eff,N = AFFTH
eff,D,N as stated in Theorem 3.26. Moreover, it approx-

imates properly the real homogenized coefficients Aeff even for small N compared to
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Fig. 4.1. Periodic unit cell with nodal points and interfaces between phases
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Fig. 4.2. The upper-lower bounds of the homogenized matrix for both the odd and the even
number of discretization points

the mean value Aeff,N = 1
2 (Aeff,N +Aeff,N ) that overestimates.

For even N in Fig. 4.1(b), the approximate homogenized matrices satisfy a sharp
inequality AFFTH

eff,D,N ≺ AFFTH
eff,N for both squares (S1) and (S2) confirming (3.13) in

Theorem 3.27. Both the homogenized matrices AFFTH
eff,N , AFFTH

eff,D,N either overestimates
or underestimates even over the upper or the lower bounds. Exception is a case
N = (4, 4) when the material coefficients coincide at the nodal points for both squares
(S1) and (S2).

However, the primal and the dual homogenized matrices, in Eq. (3.6a) and (3.11b),
differ substantially for small N alike subspaces EN and ĒN do. Hence, the mean of
the upper-lower bounds Aeff,N provides the more accurate result. Albeit, from the
design perspective, either the lower or the upper bound is chosen as the most reliable
homogenized property depending on a design demand: resistance or conductivity.

4.2. Rate of convergence. In this section, we focus on the rate of convergence
(RoC) depending primarily on the regularity of material coefficient. Thus, according
to Rem. 4.1, we define material coefficients through scalar functions f as

• circle (C): f(x) =

{
1, ‖x‖2 <

3
5

0, otherwise
,
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• cone (E): f(x) =

{
1− ‖x‖2, ‖x‖2 < 1

0, otherwise
,

• hummock (H): f(x) =





1− 2‖x‖22, ‖x‖2 <
1
2

2(1− ‖x‖2)
2, 1

2 ≤ ‖x‖2 < 1

0, otherwise

,

• standard mollifier (M): f(x) =

{
exp(1 − 1

1−‖x‖2
), ‖x‖2 < 1

0, otherwise
;

the cut through the periodic unit cell, for x2 ≡ 0, can be observed in Fig. 4.3. The
regularity of the material coefficients are based on the regularity of scalar functions f ;
circle (C) is piecewise constant, cone (E) has piecewise constant the first derivative,
hummock (H) has piecewise constant the second derivative while standard mollifier
(M) is infinitely smooth, having continuous all derivatives.
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Fig. 4.3. The material coefficients at PUC for x2 ≡ 0 showing their smoothness

First, we verify the RoC of ‖e(α)−e
(α)
N ‖L2

per
≤ C(n2 )

−µ from Lem. 3.23 for α = 1.

Unfortunately, the exact solution e(1) is possible to obtain only in a very special cases,

hence, we approximate it by a solution calculated with a very fine grid, i.e. e(1) ≈ e
(1)

N̄

where we have chosen N̄ = (2005, 2005). It enables to calculate the approximations
of order µ, particularly

µN = log

(
‖e

(1)

N̄
− e

(1)
N ‖L2

per

‖e
(1)

N̄
− e

(1)
λN‖L2

per

)
(log λ)−1, (4.1)

where the factors λ equals to 2 or 3, cf. Rem. 4.1. Norms ‖ · ‖L2
per

in (4.1) can be
calculated exactly using Plancherel’s theorem as all functions are the trigonometric
polynomials.

Table 4.1
The rate of convergence µN for the odd number of discretization points

RoC f \n 5 15 45 135 405 limit
µN (C) 0.568 0.579 0.511 0.544 0.565 0.5
µN (E) 1.083 1.410 1.522 1.527 1.557 1.5
µN (H) 2.504 2.554 2.476 2.478 2.499 2.5
µN (M) 1.491 3.009 6.777 10.266 6.091 —

The rate of convergence can also be studied from the upper-lower bounds of the
homogenized matrix. According to Lem. 2.14, it converges with rate 2µ that represents

the smallest value of following rates ‖e(α) − e
(α)
N ‖2

L2
per

and ‖(α) − 
(α)
N ‖2

L2
per

for all α.
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Table 4.2
The rate of convergence µN for the even number of discretization points

RoC f \n 4 8 16 32 64 128 256 512 limit
µN (C) -0.139 1.111 0.315 0.484 0.553 0.578 0.467 0.603 0.5
µN (E) 1.067 1.210 1.293 1.407 1.483 1.515 1.522 1.525 1.5
µN (H) 2.326 2.964 2.652 2.468 2.443 2.452 2.469 2.486 2.5
µN (M) 1.475 1.710 2.714 4.812 7.246 8.895 12.656 4.858 —
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Fig. 4.4. Progress in error ηN for increasing in the number of discretization points N = (n, n)

Hence, we define

µ̄N =
1

2
log

(
trDN

trDλN

)
(logλ)−1, (4.2)

where DN is the error from Def. 2.11 and λ is taken as 2 or 3.
Nevertheless, it can be calculated only for special material coefficients A, e.g. for

problem (C), cf. Rem. 3.35. Thus, we define the alternative

µ̃lin,N̄
N =

1

2
log


tr D̃

lin,N̄

N

tr D̃
lin,N̄

λN


 (logλ)−1, (4.3)

where D̃
lin,N̄

N = 1
2

∣∣∣∣Ã
lin,N̄

eff,N − Ã
lin,N̄

eff,D,N

∣∣∣∣ and N̄ = (2005, 2005).

Analogically, we define the normalized errors

ηN :=
trDN

trAeff,M

(4.4a)

η̃lin,N̄N :=
tr D̃

lin,N̄

N

trAeff,M

(4.4b)

where M = (1215, 1215) or M = (1024, 1024) depending on N being odd or even,
and N̄ is taken as previously.

Now, we will discuss and compare the results. First, there is no significant ob-
servation between even and odd number of discretization points N in the rates of
convergence, compare Tab. 4.1, 4.3 versus Tab. 4.2, 4.4, and see also almost straight
lines of the normalized errors in Fig. 4.4.

The rates of convergence suffer from an inaccuracy for large N ; the rates of

‖e(1) − e
(1)
N ‖L2

per
stated in Tab. 4.1 and 4.2 are depreciated due to approximation of
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Table 4.3
The rate of convergence (RoC) from the guaranteed bounds for odd N = (n, n)

RoC f \n 5 15 45 135 405 theory
µ̄N (C) 0.495 0.402 0.484 0.460 0.496 0.5

µ̃
lin,N̄
N

(C) 0.495 0.401 0.483 0.441 0.338 0.5

µ̃
lin,N̄
N

(E) 1.185 1.446 1.406 0.526 0.032 1.5

µ̃
lin,N̄
N

(H) 2.655 1.662 0.054 0.000 0.000 2.5

µ̃
lin,N̄
N

(M) 1.836 2.732 0.319 0.000 0.000 ???

Table 4.4
The rate of convergence (RoC) from the guaranteed bounds for even N = (n, n)

RoC f \n 4 8 16 32 64 128 256 512 limit
µ̄N (C) 0.727 0.276 0.641 0.230 0.596 0.379 0.561 0.469 0.5

µ̃
lin,N̄
N

(C) 0.727 0.276 0.641 0.231 0.593 0.363 0.524 0.360 0.5

µ̃
lin,N̄
N

(E) 1.055 1.284 1.475 1.520 1.427 0.853 0.207 0.026 1.5

µ̃
lin,N̄
N

(H) 2.456 2.999 2.133 0.396 0.015 0.000 0.000 0.000 2.5

µ̃
lin,N̄
N

(M) 1.511 1.892 2.774 1.975 0.013 0.000 -0.000 0.000 ???

minimizers e(1) ≈ e
(1)

N̄
and the rates of the upper-lower bounds, see Tab. 4.3 and

4.3, due to approximations Aeff,N ≈ Ã
lin,N̄

eff,N and Aeff,N ≈ Ã
lin,N̄

eff,N . The exception
is the rate µ̄N in (4.2), calculated for circle (C), that can be compared with its

approximation µ̃lin,N̄
N in (4.3), see Tab. 4.3 and 4.4. Both the rates coincide for two

digits up to N = (45, 45) for the odd case and up to N = (64, 64) for the even case. It
can also be compared in terms of errors (4.4) shown in Fig. 4.4 — the corresponding
lines differ significantly only for N = (1215, 1215) and N = (1215, 1215) resp.

Further, the errors in Fig. 4.4 — observed for problems (E), (H), and (M) —
reach a limit state about the order 10−6. It is primarily caused by an inaccuracy in

approximation e(1) ≈ e
(1)

N̄
. It also depreciate the rates in Tab. 4.3, 4.4. However, the

rates give evidence in the parts where errors in Fig. 4.4 produces the straight lines.

Concluding, the rates of convergence, calculated as in Eq. (4.1), (4.2), and (4.3),
are comparable and depend on the regularity of material coefficients. Particularly,
problem (C) reaches the rate 1

2 , while (E) 3
2 , and the last (H) and (M) even higher –

about 5
2 – however, this value is highly influenced by the inaccuracy in its determina-

tion.

4.3. Comparison with p-version of FEM. In this section, we compare the
upper-lower bounds calculated with FFT-based FEM to p-version of FEM by [6]. The
comparison is made for material coefficients defined according to Rem. 4.1 through
scalar functions:

• circle (C): f(x) =

{
1, ‖x‖2 < π− 1

2

0, otherwise

• square (S): f(x) =

{
1, ‖x‖∞ ≤ 1

2

0, otherwise

• rectangle (R): f(x) =

{
1, |x1| ≤

√
2
4

∧
|x2| ≤

√
2
2

0, otherwise

Contrary to the previous examples, the conductivity of circle, square, and rectangle
inclusion is set to 10−3 that intends to model void. The number of degrees of freedom
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for the p-version of FEM reaches 959 for circle and 511 for square and rectangle
while the number of discretization points for FFT-based FEM was taken as N =
(1215, 1215), hence substantially larger.

However, p-version of FEM is still significantly better in the terms of errors η, see
Tab. 4.5. It is mainly caused by better approximation properties of the p-version of
FEM, the shapes of inclusions are well suited for this method. Although, p-version of
FEM only approximates circle inclusion contrary to the FFT-based method. More-
over, the FFT-based FEM is influenced by variational crime caused by the numerical
integration in Def. 3.19.

Table 4.5
The comparison of the homogenized matrices between the p-version of FEM and the FFT-based

FEM

method p-FEM p-FEM p-FEM FFTH FFTH FFTH
problem\property AFEM

eff,11
AFEM

eff,22
ηFEM Aeff,N ,11 Aeff,N,22 ηN

(C) 0.600 0.600 1.166582e-04 0.588 0.588 2.676e-02
(S) 0.578 0.578 3.611941e-03 0.476 0.476 2.149e-01
(R) 0.425 0.671 6.403170e-03 0.346 0.569 1.951e-01

Nevertheless, the p-version of FEM with divergence-free subspaces is mostly suit-
able to 2-dimensional problems. It is an opportunity for the FFT-based FEM that
manage higher dimensional problems without any additional effort, especially for data
provided as voxel images.

Acknowledgments. The authors are thankfull to Jaroslav Haslinger for point-
ing out the works of Jan Dvořák, [5, 6].

Appendix A. Continuous projections on solenoidal and curl-free spaces.

Definition A.1. For i ∈ {0, 1, 2}, we define operators G(i)[·] : L2
per(Y;R

d) →

L2
per(Y;R

d) as convolution

G(i)[v](x) :=

∫

Y
Γ(i)(x− y)v(y)dy =

∑

n∈Zd

Γ̂
(i)
(n)v̂(n)ϕn(x)

where v̂α :=
(
vα, ϕn

)
L2

per

denotes the Fourier coefficients for ϕn(x) = exp(iπ
∑d

α=1
kαxα

Yα
).

Integral kernels Γ(i) are easily expressed in the Fourier space; the matrices Γ̂
(i)
(n) ∈

Rd×d of the Fourier coefficients reads

Γ̂
(0)

(n) =

{
I

0
Γ̂
(1)

(n) =

{
0
ξ(n)⊗ξ(n)
ξ(n)·ξ(n)

Γ̂
(2)

(n) =

{
0, for n = 0

I − ξ(n)⊗ξ(n)
ξ(n)·ξ(n) , for n ∈ Zd \ {0}

where I ∈ Rd×d is the identity matrix, 0 denotes either a vector or a matrix with
zero components, and ξα(n) = nα

Yα
for period Y being consistent with periodic unit

cell Y =
∏

α(−Yα, Yα) ⊂ Rd.
Lemma A.2. Operators G(i) from previous definition are mutually orthogonal

projections on, step-by-step, U ,E , and J — the subspaces of L2
per(Y;R

d) defined in
Eq. (2.1).

Proof. In [31], we show in detail that G(1) is a projection onto E , the other cases

are analogical. It is based on mutual orthogonality of Γ̂
(i)
(n) for particular n ∈ Zd

that can be found for example in [17].
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[24] J. Oden, T. Belytschko, I. Babuška, and T. Hughes, Research directions in computational
mechanics, Computer Methods in Applied Mechanics and Engineering, 192 (2003), pp. 913–
922.

[25] A. Reuss and Z. Angnew, A calculation of the bulk modulus of polycrystalline materials, Math
Meth, 9 (1929), p. 55.

Paper 6 page 147

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.45.1190
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