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Abstract

The main purpose of this contribution is to present a newly derived modified
torsional model—an elastic beam model for non-uniform torsion of beams with
thin-walled closed cross sections. The derivation is based on previous work of
the authors [4] on the modified torsional model based on the Hellinger-Reissner
variational principle. As the derived model is a refinement of a widely used
model of the same phenomena [2], we demonstrate the difference in predictions of
both models using an example of a prismatic beam with rectangular thin-walled
cross section which is clamped on both sides and its right support is rotated
by a prescribed angle. For this particular example, the analytical solution of
governing equations of both theories is found and the results are compared. The
influence of basic geometrical parameters on the difference in predictions of both
models is investigated.
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1 Introduction

In technical literature and engineering practice, non-uniform torsion of beam
with closed cross-section is often described by a model which we refer to as
classical, based on equations (explained in more detail later in the text)

f ′′′(x)− β2f ′(x) =
β2

GJ
mx(x),

νf ′(x)− ϕ′′(x) =
1

GIc
mx(x),

which could be found in [1, chapter 2.5.4, p.247] or [2, Chapter 6, p.130]. The
history of this equation dates back to famous publication of Umanskij [3] from
1939, who as first considered problem of non-uniform torsion of beams with
closed cross section. We would like to mention on this place that the differential
equation describing non-uniform torsion of beams with ”I” cross-section was
derived by S.P. Timošenko in 1905 and generalized by many other authors such
as C.Weber or H.Wagner for beams with arbitrary open cross-section. Maybe
the most famous version comes from V.Z. Vlasov from 1940. [2, Chapter 1, p.14]

The purpose of this work is to derive an alternative model (in this work re-
ferred as modified torsional model) for torsion of beams with thin-walled closed
cross section with restrained warping analogous to the generally known widely
used model described in [1, chapter 2.5.4, p.247] or [2, Chapter 6, p.130]. The
modified torsional model will be derived utilizing the Hellinger - Reissner varia-
tional principle. To achieve this, it wil be used the general format of governing
equations of the model given by Hellinger - Reissner variational principle for
prescribed approximation of displacement and stress field derived in the bache-
lor thesis [4] of the author of this work.

Afterwards, our aim is to demonstrate the difference between the classical and
the modified model. To perform this, we will pick an example of prismatic beam
with rectangular thin-walled cross section which is clamped on both sides while
its right support is twisted by the prescribed angle. This particular case allows
us to find analytical solution so we can eliminate the influence of numerical er-
ror, while being very simple and generally representative from the engineering
point of view.

For this particular example, we will investigate effective torsional stiffness keff
(defined for the purpose of easier comparison) predicted by both models, looking
for the case where the difference of both models will be of engineering relevance.
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2 Derivation of modified torsional model for elas-
tic beams with thin-walled closed cross section

We will now derive the modified torsional model for elastic beams with thin-
walled closed cross section. The model will be derived using Hellinger - Reissner
variational principle. The general format of governing equations of the model
given by Hellinger - Reissner variational principle for prescribed approximation
of displacement field and stress field is taken from [4]. For the purpose of conve-
nience of the reader, the general form of governing equations and corresponding
notation from [4] is reminded hereinafter. Unknown functions of following equa-
tions are incorporated in vector d(x). This vector contains unknown functions
depending only on Cartesian coordinate x 1, which are used to approximate the
displacement field.

Requiring zero value of variation of Hellinger-Reissner functional with respect
to d(x) and c(x) (for more thorough description see [4]), we obtain two sets of
differential equations (1) and (2)

−EAnnd′′(x) + AT
σBc(x)−AT

σuc
′(x) = f(x), (1)

AσBd(x) + Aσud
′(x)− 1

G
Aσσc(x) = 0 (2)

We can easily rewrite equation (2) as (assuming existence of A−1
σσ )

c(x) = GA−1
σσ

(
AσBd(x) + Aσud

′(x)
)

(3)

When substitung (3) into (1) we reduce our set of differential equations to a
compact form (4)

−
(
EAnn +GAT

σuA
−1
σσAσu

)
d′′(x) +G

(
AT
σBA−1

σσAσu −AT
σuA

−1
σσAσB

)
d′(x)+

+GAT
σBA−1

σσAσBd(x) = f(x).
(4)

Where f(x) is the vector of prescribed internal loads (see more detailed descrip-
tion in [4]). Notation used in previous equations has following meaning

y =

(
y
z

)
,

1x-axis is presumed to coincide with the centerline of the beam.
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Ann =

∫
S

nTu (s)nu(s)t(s) ds, (5)

AσB =

∫
S

nTτ (s)
dnu(s)

ds
t(s) ds, (6)

Aσu =

∫
S

nTτ (s)nv(s)t(s) ds, (7)

Aσσ =

∫
S

nTτ (s)nτ (s)t(s) ds. (8)

Where nu(s) describes out of plane displacement of cross section in direction of
x and nv(s) describes in plane displacement of cross section. In terms of this
work, local curve coordinate s is defined as the distance from a selected origin
measured along the centerline of the section. The centerline is assumed to be a
closed curve of total length smax.

To derive the model with the prepared aparatus, we therefore need to find
suitable approximation of displacement field and stress field. For displacement
field, we will adopt the same approximation as given in [1, chapter 2.5.4, p.247]
or [2, Chapter 6, p.130] except for convenience we consider the warping function
χ(x) with the opposite sign than the authors does for their warping function
f(x) in [1, chapter 2.5.4, p.247] or [2, Chapter 6, p.130]. Therefore it holds
f(x) = −χ(x). Displacement field approximation is so given as:

u(x, s) = χ(x)ψ(s) (9)

vs(x, s) = φx(x)ρ(s)

where u is displacement in direction of Cartesian x-axis and vs is displacement
tangential to the centerline of the cross section. %(s) is the perpendicular dis-
tance from shear centre to the point of centerline specified by coordinate s (it
could aquire both non-positive and non-negative value - see [4]). ψ(s) repre-
sents presumed warping function of the cross section describing out of plane
displacement of cross section in direction of Cartesian x-axis.

ψ(s) = ψ0 + ω(s)− Ω

Π
π(s) (10)

Here, ω is the sectorial coordinate defined by the usual expression

ω(s) =

∫ s

0

ρ(s̄) ds̄ (11)

Constant ψ0 will be later selected to decouple axial effects from torsion. The
correction term in (10) contains function

π(s) =

∫ s

0

ds̄

t(s̄)
(12)
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where t denotes the thickness of the section. Quantities Ω and Π are simply the
values obtained by integrating ρ or 1/t over the entire centerline:

Ω = ω(smax) =

∫ smax

0

ρ(s̄) ds̄ (13)

Π = π(smax) =

∫ smax

0

ds̄

t(s̄)
(14)

Note that

ψ(smax) = ψ0 + ω(smax)− Ω

Π
π(smax) = ψ0 + Ω− Ω

Π
Π = ψ0 = ψ(0) (15)

which is necessary for continuity of function ψ, since the points where s = 0
and s = smax physically coincide. It is good to select constant ψ0 such that∫ smax

0

ψ(s̄)t(s̄) ds̄ = 0 (16)

because then the axial effects are decoupled from torsion. This can be achieved
by setting

ψ0 =
1

A

(
Ω

Π

∫ smax

0

π(s̄)t(s̄) ds̄−
∫ smax

0

ω(s̄)t(s̄) ds̄

)
(17)

where

A =

∫ smax

0

t(s̄) ds̄ (18)

is the sectional area.

Now we will try to find suitable approximation for the stress field. For this
purpose we will inspire ourselves by the equations of static equilibrium of our
thin-walled beam.

In the absence of body and surface forces, the equilibrium equation integrated
along the thickness can be written as

∂

∂x
(t(s)σ(x, s)) +

∂

∂s
(t(s)τxs(x, s)) = 0 (19)

We consider linear elastic behaviour of the material desribed by Young’s mod-
ulus E and shear modulus G. Substituting

σ(x, s) = E
∂u(x, s)

∂x
= Eχ′(x)ψ(s) (20)

we obtain
∂

∂s
(t(s)τxs(x, s)) = −t(s)Eχ′′(x)ψ(s) (21)
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from which

τxs(x, s) =
t(0)τxs(0)

t(s)
− Eχ′′(x)

t(s)

∫ s

0

t(s̄)ψ(s̄) ds̄ (22)

This motivates the shear stress approximation in the form

τxs(x, s) = C1(x)f1(s) + C2(x)f2(s) (23)

where

f1(s) =
1

t(s)
(24)

f2(s) = − 1

t(s)

∫ s

0

t(s̄)ψ(s̄) ds̄ ≡ S̄ψ(s)

t(s)

Note that the definition of quantity S̄ψ includes the negative sign:

S̄ψ(s) = −
∫ s

0

t(s̄)ψ(s̄) ds̄ =

∫ smax

s

t(s̄)ψ(s̄) ds̄ (25)

In terms of the general notation introduced in [4], our present approximations
are described by

d =

(
φx
χ

)
, nu =

(
0
ψ

)
, nv =

(
ρ
0

)
, nτ =

(
1/t
S̄ψ/t

)
, c =

(
C1

C2

)
Based on these column matrices, the square matrices defined in [4] can be eval-
uated:

Ann =

(
0 0

0 Iψ

)
, Iψ =

∫ smax

0

ψ2(s)t(s) ds (26)

AσB =

(
0 0

0 IA

)
, IA =

∫ smax

0

S̄ψ(s)
dψ(s)

ds
ds (27)

Aσu =

(
Ω 0

IB 0

)
, IB =

∫ smax

0

S̄ψ(s)%(s) ds (28)

Aσσ =

(
Π ID

ID IC

)
, ID =

∫ smax

0

S̄ψ(s)

t(s)
ds, IC =

∫ smax

0

S̄2
ψ(s)

t(s)
ds (29)

Knowing general form of governing equations from [4] - equations (4), we can
now write the governing equations of the modified model as the set of ODEs

K1ϕ
′′(x)−K3χ

′(x) = mx(x) (30)

K2χ
′′(x) +K3ϕ

′(x) +K4χ(x) = b(x) (31)

where,

K1 = − G

ΠIc − I2
d

(Ω (−IbId + IcΩ) + Ib (−IdΩ + IbΠ)) (32)
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K2 = −EIψ (33)

K3 =
G

ΠIc − I2
d

(−IaIdΩ + IaIbΠ) (34)

K4 =
G

ΠIc − I2
d

I2
aΠ (35)

We can rewrite equation (31) as

ϕ′(x) =
1

K3
(b(x)−K2χ

′′(x)−K4χ(x)) (36)

When substituting (36) into (30), we can reduce this system of two second-order
ODEs to one third-order ODE which reads

K1
1

K3
(b′(x)−K2χ

′′′(x)−K4χ
′(x))−K3χ

′(x) = mx(x) (37)

or in the rewritten form

−K1K2

K3
χ′′′(x)−

(
K1K4

K3
+K3

)
χ′(x) = mx(x)− K1

K3
b′(x) (38)

We can now also derive expression for total torsional moment, which is defined
by

Mk(x) =

∫ smax

0

τxs(x, s)ρ(s)t(s) ds. (39)

Now because we presumed the distribution of shear stress described by

τxs(x, s) = C1(x)
1

t(s)
+ C2(x)

S̄ψ(s)

t(s)
, (40)

we obtain

Mk(x) =

∫ smax

0

τxs(x, s)ρ(s)t(s) ds =

=

∫ smax

0

(C1(x)f1(s) + C2(x)f2(s)) ρ(s)t(s) ds =

=

∫ smax

0

(
C1(x)

1

t(s)
+ C2(x)

S̄ψ(s)

t(s)

)
ρ(s)t(s) ds =

= C1(x)

∫ smax

0

ρ(s) ds+ C2(x)

∫ smax

0

S̄ψ(s)ρ(s)t(s) ds =

= C1(x)Ω + C2(x)IB (41)

Based on the theory from [4] we can also express C1(x) and C2(x) as

C1(x) =
G(χ(x)IAID + ϕ′(x)IBID − ϕ′(x)ICΩ)

I2
D − ICΠ

, (42)
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C2(x) =
G(χ(x)IAΠ + ϕ′(x)IBΠ− ϕ′(x)IDΩ)

−I2
D + ICΠ

, (43)

and we obtain the formula for total torsional moment

Mk(x) = Gχ(x)

(
IAIBΠ

ICΠ− I2
D

− IAIDΩ

ICΠ− I2
D

)
+ (44)

+ Gϕ′(x)

(
Ω

(
ICΩ

ICΠ− I2
D

− IBID
ICΠ− I2

D

)
+ IB

(
IBΠ

ICΠ− I2
D

− IDΩ

ICΠ− I2
D

))
.

3 Simplification of various relations for modified
torsional model

Some of the integrals defined above can be simplified by using the definition
of S̄ψ and then changing the order of integration variables. Let us show this
procedure in detail for IB defined in (28):

IB =

∫ smax

0

S̄ψ(s)%(s) ds = −
∫ smax

0

∫ s

0

ψ(s̄)t(s̄) ds̄ %(s) ds =

= −
∫ smax

0

∫ smax

s̄

%(s) dsψ(s̄)t(s̄) ds̄ = −
∫ smax

0

(ω(smax)− ω(s̄))ψ(s̄)t(s̄) ds̄ =

= −Ω

∫ smax

0

ψ(s̄)t(s̄) ds̄+

∫ smax

0

ω(s̄)ψ(s̄)t(s̄) ds̄ =

∫
A

ωψ dA (45)

Here we have exploited the fact that
∫
A
ψ dA = 0. In a similar fashion, it can

be shown that

IA =

∫ smax

0

S̄ψ(s)
dψ(s)

ds
ds =

∫
A

ψ2 dA = Iψ (46)

ID =

∫ smax

0

S̄ψ(s)
1

t(s)
ds =

∫
A

πψ dA (47)

Therefore, one could write Iψ instead of IA and replace IB and ID by Iωψ and
Iπψ.

4 Classical solution of non-uniform torsion of
beam with closed cross-section

We will now remind the governing equations of model of non-uniform torsion
of beam with closed cross section as found in [1, chapter 2.5.4, p.247] or [2,
Chapter 6, p.130]. We will refer to this model as to classical torsional model. In
following equations, f(x) has the same meaning as χ(x) in equations (30) and
(31).

f ′′′(x)− β2f ′(x) =
β2

GJ
mx(x) (48)
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νf ′(x)− ϕ′′(x) =
1

GIc
mx(x) (49)

β2 = ν
GJ

EIψ
, ν = 1− J

Ic
(50)

Iψ =

∫ smax

0

ψ2(s)t(s) ds, Ic =

∫ smax

0

ρ2(s) ds, J =
Ω2

Π
(51)

Total torsional moment can be calculated as (see [2, Chapter 6, p.128])

MV L
k (x) = Gχ(x)(J − Ic) +Gϕ′(x)Ic. (52)

5 Stiffness parameters for rectangular thin-walled
cross section

After the derivation of the modified torsional was done in previous sections and
classical torsional model was reminded, our aim is now to demonstrate the dif-
ference between classical and modified model. For this purpose, we will take an
example of prismatic beam with rectangular thin-walled cross section (of con-
stant thickness) which is clamped on both sides while its right support is twisted
by the prescribed angle. More precisely written, we suppose that the centerline
of the beam is represented by a line segment 〈0, L〉, ϕ(0) = 0, ϕ(L) = ϕL,
χ(0) = 0, χ(L) = 0, m(x) = 0 and b(x) = 0. We will presume that functions
ϕ(x) and χ(x) are sufficiently smooth to enable following operations.

To be able to compute numerical results, we therefore need firstly to calculate
various stiffness parameters presented in previous chapters both for modified
and classical torsional theory.

s = 0s = s1

s = s2 s = s3

s = s4

P

O

s

h

b

t

Figure 1: Considered rectangular thin-walled cross section

For the chosen example function ω(s) is piecewise linear and we can write it as
follows
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On the interval

(
0,
b

2

)
ω(s) =

h

2
s,

On the interval

(
b

2
,
b

2
+ h

)
ω(s) =

b

2
s+

hb

4
− b2

4
,

On the interval

(
b

2
+ h,

3b

2
+ h

)
ω(s) =

h

2
s+

3hb

4
− h

2

(
b

2
+ h

)
,

On the interval

(
3b

2
+ h,

3b

2
+ 2h

)
ω(s) =

b

2
s+

5hb

4
− b

2

(
3b

2
+ h

)
,

On the interval

(
3b

2
+ 2h, 2b+ 2h

)
ω(s) =

h

2
s+

7hb

4
− h

2

(
3b

2
+ 2h

)
.

Function π(s) is linear and π(s) =
1

t
s.

From the previous we obtain

Ω = ω(smax) =

∫ smax

0

ρ(s̄) ds̄ = 2bh, (53)

Π = π(smax) =

∫ smax

0

ds̄

t(s̄)
=

1

t
(2b+ 2h) , (54)

sectional area

A =

∫ smax

0

t(s̄) ds̄ = 2t(b+ h), (55)

ψ0 =
1

A

(
Ω

Π

∫ smax

0

π(s̄)t(s̄) ds̄−
∫ smax

0

ω(s̄)t(s̄) ds̄

)
= (56)

=
bht(2b+ 2h)− t

(
2b2h+ 2bh2

)
2t(b+ h)

= 0,

IA =

∫
A

ψ2 dA = Iψ =
b2h2t(b− h)2

24(b+ h)
, (57)

IB =

∫
A

ωψ dA =
b2h2t(b− h)(2b+ h)

24(b+ h)
, (58)

IC =

∫ smax

0

S̄2
ψ(s)

t(s)
ds =

b2h2t(b− h)2
(
3b2 + 12bh+ 8h2

)
1920(b+ h)

, (59)

ID =

∫
A

πψ dA =
1

24
bh(b− h)(b+ 2h). (60)

With the computed cross-sectional parametres IA - ID we can express K1 - K4

according to the expressions (32)-(35).

K1 = −G
3b2h2t

(
3b2 + 2bh+ 3h2

)
2(b+ h) (b2 + 4bh+ h2)

, (61)
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K2 = −E b
2 h2t(b− h)2

24(b+ h)
, (62)

K3 = G
5b2h2t(b− h)2

2(b+ h) (b2 + 4bh+ h2)
, (63)

K4 = G
5b2h2t(b− h)2

2(b+ h) (b2 + 4bh+ h2)
. (64)

We see that for our specific example K3 = K4.

For classical theory as described previously holds

Ic =
1

2
bht(b+ h), (65)

Iψ =
b2h2t(b− h)2

24(b+ h)
, (66)

J =
2b2h2t

b+ h
, (67)

ν =
(b− h)2

(b+ h)2
, (68)

β2 =
48G

E(b+ h)2
, (69)

β =

√
48G

E(b+ h)2
. (70)

6 Analytical solution according to modified the-
ory for chosen example

We will now try to solve equations (30) and (31) analytically for the special case
of beam clamped on both ends, while its right support is rotated by an angle
of ϕL. We still consider hollow rectangular cross section depicted in Fig.1. In
other words we presume that centerline of the beam is represented by an interval
by line segment 〈0, L〉, ϕ(0) = 0, ϕ(L) = ϕL, χ(0) = 0, χ(L) = 0, m(x) = 0 and
b(x) = 0. We will presume that functions ϕ(x) and χ(x) are sufficiently smooth
to enable following operations.

In order to make comparison with solution of classical model (equations (48)
and (49)), we will follow very similar procedure as later for the classical torsional
model.
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As we showed previously, we can obtain equation (38) when combining equations
(30) and (31). Equation (38) reads

−K1K2

K3
χ′′′(x)−

(
K1K4

K3
+K3

)
χ′(x) = mx(x)− K1

K3
b′(x)

We can rewrite this equation as

χ′′′(x) +

K1K4

K3
+K3

K1K2

K3

χ′(x) = − 1
K1K2

K3

mx(x) +
1

K1K2

K3

K1

K3
b′(x) (71)

If we introduce a new parameter

β̃2 = −

K1K4

K3
+K3

K1K2

K3

, (72)

which is analogical to β2 in classical model, we can write (71) as

χ′′′(x)− β̃2χ′(x) = − 1
K1K2

K3

mx(x) +
1

K1K2

K3

K1

K3
b′(x). (73)

We will now take this equation together with equation (30), which reads

K1ϕ
′′(x)−K3χ

′(x) = mx(x)

and find unknown functions χ(x) and ϕ(x) analytically. We will represent the
unknown functions χ(x) and ϕ(x) as a linear combination of functions eλx.
Substituting eλx to equation (71), we obtain the characteristic equation

λ3 − β̃2λ = λ(λ2 − β̃2) = 0. (74)

We now see that we can write χ(x) as

χ(x) = C1 + C2e
β̃x + C3e

−β̃x. (75)

Utilizing equation (30), we can also write ϕ(x) as

ϕ(x) = C4 + C1x+ C2
K3

K1

1

β̃
eβ̃x − C3

K3

K1

1

β̃
e−β̃x. (76)

Yet unknown coefficients C1 - C4 can be specified by applying boundary condi-
tions ϕ(0) = 0, ϕ(L) = ϕL, χ(0) = 0, χ(L) = 0.
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7 Analytical solution according to classical the-
ory for chosen example

We will now solve equations (48) and (49) analytically with the same assump-
tions as in previous chapter. We remind that we consider special case of beam
clamped on both ends, while its right support is rotated by an angle of ϕL.
We also still consider hollow rectangular cross section depicted in Fig.1. The
centerline of the beam is represented by an interval 〈0, L〉, ϕ(0) = 0, ϕ(L) = ϕL,
f(0) = 0, f(L) = 0, m(x) = 0 and b(x) = 0. We presume that functions ϕ(x)
and χ(x) are sufficiently smooth to enable following operations as well.

We will now find solution of equations describing the classical model (48) and
(49) in the similar manner as we did when solving equations of the modified
model (30) and (31) previously. Let us remind that equations (48) and (49)
take form2

f ′′′(x)− β2f ′(x) =
β2

GJ
mx(x)

νf ′(x)− ϕ′′(x) =
1

GIc
mx(x)

We will represent the unknown functions f(x) and ϕ(x) as a linear combination
of functions eλx. Substituting eλx to equation (48), we obtain the characteristic
equation

λ3 − β2λ = λ(λ2 − β2) = 0. (77)

We now see that we can write f(x) as

f(x) = C1 + C2e
βx + C3e

−βx. (78)

Utilizing equation (49), we can also write ϕ(x) as

ϕ(x) = C4 + C1x+ C2
ν

β
eβx − C3

ν

β
e−βx. (79)

Value of coefficients C1 - C4 can be found by applying boundary conditions
ϕ(0) = 0, ϕ(L) = ϕL, χ(0) = 0, χ(L) = 0.

2We would like to remind on this place again that f(x) = −χ(x).
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8 Comparison of analytical solutions of modified
and classical model - brief review of theoreti-
cal background

We will now try to compare solutions obtained by classical model of torsion of
beams with thin-walled closed cross section and modified model of the same
phenomena proposed in this text. Comparison will be presented for the specific
case of prismatic beam with rectangular thin-walled cross section (of constant
thickness) which is clamped on both sides while its right support is twisted by
an prescribed angle. This particular case was chosen because it allows us to find
analytical solution so we can eliminate the influence of numerical error in the
comparison and at the same time is very simple, clear and meaningful from the
engineering point of view. Because for the sake of clarity we will try to com-
pare both theories mostly graphically, we will firstly review the most important
results, which we derived in previous sections. The following expressions form
a theoretical background for the subsequent graphical comparison.

1. Classical model3

For m(x) = 0 and b(x) = 0 we get

f(x) = C1 + C2e
βx + C3e

−βx.

ϕ(x) = C4 + C1x+ C2
ν

β
eβx − C3

ν

β
e−βx.

Unknown coefficients C1 - C4 can be specified by applying boundary con-
ditions. In our considered example of twisted beam we require ϕ(0) = 0,
ϕ(L) = ϕL, χ(0) = 0, χ(L) = 0.

Moreover, for rectangular cross section of arbitrary positive sizes b and h
and constant thickness t we get

β2 =
48G

E(b+ h)2
,

ν =
(b− h)2

(b+ h)2
,

MV L
k (x) = Gϕ′(x)

1

2
bht(b+ h)−Gχ(x)

bht(b− h)2

2(b+ h)
.

2. Modified model

For m(x) = 0 and b(x) = 0 we get

χ(x) = C1 + C2e
β̃x + C3e

−β̃x.

3We would like to remind on this place that f(x) = −χ(x).
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ϕ(x) = C4 + C1x+ C2
K3

K1

1

β̃
eβ̃x − C3

K3

K1

1

β̃
e−β̃x.

Again, unknown coefficients C1 - C4 can be specified by applying boundary
conditions ϕ(0) = 0, ϕ(L) = ϕL, χ(0) = 0, χ(L) = 0.

Moreover, for rectangular cross section of arbitrary positive sizes b and h
and constant thickness t we get

β̃2 =
80G

E(3b2 + 2bh+ 3h2)
,

K3

K1
= − 5(b− h)2

9b2 + 6bh+ 9h2
,

Mk(x) = Gϕ′(x)
3b2h2t

(
3b2 + 2bh+ 3h2

)
2(b+ h) (b2 + 4bh+ h2)

+Gχ(x)
5b2h2t(b− h)2

2(b+ h) (b2 + 4bh+ h2)
.
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9 Comparison of analytical solutions of modified
and classical model

We will now try to compare results for above considered example obtained when
using classical model of torsion of beams with thin-walled closed cross section
(of constant thickness) and its modified counterpart presented in the chapter 1
of this text. As mentioned before, this will be performed by comparing effective
torsional stiffness keff (defined hereinafter).

Effective torsional stiffness keff is defined on the basis of following expression

Mk(L) = keffΘk, (80)

so in other words

keff =
Mk(L)

Θk

, (81)

where Mk(L) is the torsional moment at x = L (right support) and

Θk =
ϕL
L
, (82)

is an average twist angle. If the cross section does not have tendency to warp,
keff reduces to free warping torsinal stiffness, which is

keff = G
Ω2

Π
= G

2b2h2t

b+ h
. (83)

We now see that the concept of effective torsional stiffness keff enables us to eas-
ily compare the stiffness in case of free warping to stiffness obtained by classical
or modified torsional model, which enables us to consider engineering relevance
of obtained results.

We will of course obtain different results comparing both models when choos-
ing different geometrical setup, which is specified by the length of the beam
L, width of the hollow rectangular cross section b, its height h and thickness t
(geometrical meaning of these parameters is depicted in Fig.1). Therefore, our
goal is to observe how the change of these parameters influences the value of
effective torsional stiffness keff predicted by both models. As the changes of b
4 and L are predictably the most influential on the value of effective stiffness,
we will particularly focus on the influence of these two parameters.

4Which is on our case of twisted beam equivalent to the change of height.
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9.1 Influence of the length of the beam

For this comparison we considered the following values of geometrical and ma-
terial parametres. Elastic Young’s modulus E and elastic shear modulus G are
chosen to reflect the real values of corresponding material parameters of steel.

E = 210 · 103 MPa, G = 81 · 103 MPa

ϕL =
π

180
rad

b = 700 mm, h = 100 mm, t = 10 mm

We can observe that the ratio of b to h is 7. Value of ratio b/h could have been
chosen arbitrarily except b/h = 1. This ratio implies that the cross section is
hollow square of constant thickness, which does not have tendency to warp, so
the total torsional stiffness is given just by the free warping torsional stiffness.
Generally we can say that as b/h approaches 1, the difference of prediction of
keff by both models diminishes. From analysis in subsequent section we will
also see that the greater b/h is, the predicted stiffness differs more significantly.

The Fig.2 shows the dependence of effective torsional stiffness keff predicted by
both models on the length of the beam. We can observe that with the growing
length the difference of prediction of both models diminishes. On the contrary,
we can observe that the stiffness difference is increasing with decreasing lengtht.

Figure 2: Dependence of effective torsional stiffness keff on the length of the
beam
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Fig.3 relates to Fig.2 and depicts the relative stiffness difference of modified and
classical model. The relative stiffness difference relates to the difference of keff
predicted by both models divided by keff for case of free warping.

Figure 3: Dependence of relative stiffness difference on the length of the beam
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9.2 Influence of the b/h ratio of the rectangular cross sec-
tion

We will now follow the dependence of keff on the ratio b/h - width to height of
the rectangular cross section. Le us remind that we consider the case of constant
thickness of the cross section. Before we proceed to the graphical comparison,
let us make brief remark on how we generated sizes b and h for ratio b/h. It
is important to realize that with different b and h we get different keff for free
warping torsional stiffness. For the sake of comparability of results we therefore
considered such values b and h that the stiffness keff for free warping torsion
remains constant for all considered cross sections.

Fig.4 depicts the dependence of h on b, so that the stiffness keff for free warping
torsion is the same for every b and corresponding h(b) pair. The value of free
warping torsional stiffness was chosen as 1.7 · 1013 Nmm2.

Figure 4: Dependence of the height h on the b/h ratio of the cross section to
obtain the same free warping torsional stiffness 1.7 · 1013 Nmm2
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For this comparison we considered the following values of geometrical and ma-
terial parameters. Elastic Young’s modulus E and elastic shear modulus G are
chosen to reflect the real values of corresponding material parameters of steel.

E = 210 · 103 MPa, G = 81 · 103 MPa

ϕL =
π

180
rad

L = 1000 mm, t = 10 mm

Fig. 5 shows the dependence of effective torsional stiffness keff predicted by
both models on the b/h ratio of the cross section. We can observe that with
the growing b/h ratio the difference of keff predicted by corresponding models
increases.

Let us denote that the minimal value of b is b = 300 mm. That is, because
for chosen value of free warping torsional stiffness5 the size of square with this
free warping torsional stiffness is 275.838 mm.

Figure 5: Dependence of effective torsional stiffness keff on the b/h ratio of the
cross section

5Which was chosen as 1.7 · 1013 Nmm2 as mentioned before in this chapter.
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Fig.6 relates to Fig.5 and depicts the relative stiffness difference of modified and
classical model. The relative stiffness difference relates to the difference of keff
predicted by both models divided by keff for case of free warping.

Figure 6: Dependence of relative stiffness difference on the b/h ratio of the cross
section
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10 Conclusion

In this work we derived model describing non-uniform torsion of beams with
thin-walled closed cross section. For this purpose, we utilized Hellinger - Reiss-
ner variational principle and the general format of governing equations of the
model given by Hellinger - Reissner variational principle for prescribed approx-
imation of displacement (9) and stress (24) field derived in the bachelor thesis
[4] of the author of this work.

The derived model is referred to as the modified torsional model in this work
and it is shown that its governing equations (30) and (31) are analogous to the
widely known model describing non-uniform torsion of beams with thin-walled
closed cross section, which we adopted in the form found in [1, chapter 2.5.4,
p.247] or [2, Chapter 6, p.130]. This model was selected as the reference model
and is referred to as the classical torsional model in this work.

Afterwards, to demonstrate the difference between classical and modified model,
we analyze the case of prismatic beam with rectangular thin-walled cross section
(of constant thickness) which is clamped on both sides while its right support
is twisted by the prescribed angle. This particular case was chosen because it
allows us to find analytical solution so we can eliminate the influence of nu-
merical error in the comparison and at the same time is very simple, clear and
meaningful from the engineering point of view.

Lastly, we graphically demonstrate, comparing effective torsional stiffness keff
(defined for the purpose of easier comparison), that in case of short beams (see
Fig.2 and Fig.3) and cross sections with large b/h ratio (see Fig.4, Fig.5 and
Fig.6), the difference of keff of classical and modified model can be significant
from the engineering point of view and in the latter case could reach tens of
percents of torsional stiffness of cross section with free warping.

We would like to extend this work in future, namely we would like to compare
the results of both theories for our considered example to the results gained by
three-dimensional finite element method.
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Oborongiz, 1939.
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