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Abstract

Our study focuses on optimisation of the internal structure of unimodal and pentamodal
metamaterials, modelled as three-dimensional linear elastic lattice structures. For optimisation,
we represent the metamaterials with discrete truss models of their respective Periodic Unit Cells
(PUCs), whose effective response is determined by the first-order numerical homogenisation.
The optimisation is formulated as an inverse homogenisation problem with objective functions
comprising a ratio of selected eigenvalues of the effective stiffness matrix, which allows us to
dispense with the traditional volume constraint and solve the optimisation problem with a simple
gradient method combined with the line search method. We demonstrate the efficacy of the
formulation with a design of a unimodal material compliant in a chosen shear deformation mode
and we also show that our formulation recovers the traditional pentamodal metafluid. The
response of optimised metamaterials is then evaluated using a geometrically nonlinear model,
confirming that they preserve their multimodal behaviour even under large deformations.
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1 Introduction

Metamaterials have physical properties that surpass those commonly found in nature. Moreover,
these unique properties arise primarily from the microstructure of metamaterials rather than
the chemical or physical characteristics of their bulk constituents [1]. In our study, we focus
on three-dimensional unimodal and pentamodal mechanical metamaterials [2]. The modality of
these materials is derived from the number of free modes of deformation [3], i.e., homogeneous
deformations that do not result in an increase in the stored strain energy. In particular, a
unimodal metamaterial is pliable in one specific direction but very stiff in all other modes of
deformation. On the other hand, pentamodal metamaterials behave like a fluid (sometimes
pentamodal metamaterials are called metafluids), i.e., while they are almost incompressible, they
can be easily deformed in a deviatoric way.

Because of their unique properties, these metamaterials can be applied in various advanced
fields. One of the most extensively researched applications is their ability to create acoustic band
gaps—specific frequency ranges in which sound waves are unable to propagate through the material
due to disrupted transmission [4, 5]. This behaviour makes them highly effective for applications
in noise control, vibration isolation, and acoustic filtering, even underwater [6]. Another potential
application is for cloaking devices that transform waves to make objects invisible or undetectable
by bending light or sound, effectively preventing detection or visual observation [7]. The ability to
control the propagation of elastic waves also makes them highly effective for seismic isolation [8,
9].

Multimodal metamaterials have garnered significant research interest, with pentamodal meta-
materials being a primary focus. However, much of the research involves modifying the original
pentamodal structure introduced by Milton and Cherkaev [3] to enhance its overall performance.
This includes investigating different shapes [10] and sizes [11] of cross-sectional areas, adding
spherical masses to the nodes [12] and incorporating stiffening plates between the metamaterial
layers [13], even with different microstructures [14]. In addition, researchers managed both to
introduce anisotropy by shifting the central part of the microstructure [15, 16], and, conversely,
employ symmetrical designs [17].
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Figure 1.1: Examples of existing pentamodal materials: (left) a microstructure proposed by Milton
and Cherkaev [3], and (right) an alternative design by Guo and coworkers [14].

In contrast, optimising metamaterial topology through inverse homogenisation, pioneered by
the seminal work of Sigmund [18], often revolves around enhancing the bulk or shear modulus [19],
tailoring Poisson’s ratio [20], and designing materials that are both lightweight and stiff [21] or that
follow a predefined macroscopic response in the case of nonlinear models [22]. Relatively few studies
have focused on optimising multimodal metamaterial microstructures. In addition to inverse
homogenisation, genetic algorithms have been used to optimise the ratio of eigenfrequencies [23]
and components of the homogenised stiffness matrix [24], or to maximise bandwidth [25] to
improve the acoustic band gap.

In this work, we use inverse homogenisation with the objective function based on a ratio of
effective stiffness’s eigenvalues (or its analogues), distinct from previously discussed approaches.
Our approach allows for the optimisation of specific deformation modes and enables the analytical
expression of the objective function’s gradient. In addition, it naturally avoids the need for the
volume constraint.

To keep this contribution self-contained, the Methodology section next briefly introduces the
linear model with discrete truss elements (Section 2.1) and covers the essentials of the first-order
homogenisation (Section 2.2) in addition to the objective formulation and the adopted optimisation
strategy (Section 2.3). We demonstrate the efficacy of the proposed objective formulation with
two examples (one for the unimodal and one for pentamodal metamaterial) in Section 3. The
obtained optimised metamaterials are then subjected to a geometrically nonlinear analysis, and
our findings are summarised in Section 5.
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2 Methodology

2.1 Numerical model

Assuming the metamaterial as a three-dimensional periodic truss structure allowed us to
investigate the response of a Periodic Unit Cell (PUC) as its Representative Volume Element.
We modelled the PUC with a ground structure containing discrete 3D trusses with predefined
positions and orientations as shown in Fig. 2.1. As the shape of cross sections does not affect the
stiffness of the truss structure, we assumed circular cross sections with area ae for each truss rod
e as the primal unknowns for optimisation. All cross-sectional areas ae are collectively stored in a
vector a.

To determine the mechanical response of the PUC, we used a linear truss model, governed by
the global stiffness matrix K(a) assembled from the local contributions of individual rods such
that formally

K(a) =∑
e

LTe T
T
e K

ℓ
e(ae)TeLe , (2.1)

where Le denotes Boolean localisation matrices, Te is a transformation matrix containing directional
cosines of the e-th rod, and the element stiffness matrix Kℓ

e in the local coordinate system reads as

Kℓ
e(ae) =

Eae
Le
[ 1 −1
−1 1

] , (2.2)

where E stands for Young’s modulus and Le refers to the initial length of the e-th rod.
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Figure 2.1: Two periodic ground structures considered in the study: (a) smaller ground structure
with dimensions of 1x1x1, and (b) larger ground structure with dimensions of 2x2x2.
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2.2 First-order homogenisation

The homogenisation determines the effective response of a heterogeneous PUC as if it were
an equivalent homogeneous material point subjected to the same uniform strain field E. For the
linear problem considered here, the homogenised response is captured by the effective stiffness
matrix Dhom(a).

In our study, we employed the first order numerical homogenisation [26] to obtain the effective
properties of the metamaterial. The total displacement field u⃗(x⃗) was thus assumed in the form

u⃗(x⃗) = u⃗E(x⃗) + u⃗∗(x⃗) , (2.3)

where u⃗E denotes the macroscopic part of the displacement field and u⃗∗ is the fluctuation field
caused by the heterogeneity of the metamaterial [27].

For the discrete system, degrees of freedom (DOFs) related to the macroscopic displacement
of the j-th node are coupled to the vectorial representation of the symmetric second-order tensor
E (using the engineering notation) via matrix Qj containing coordinates of node j,

uEj =

⎡⎢⎢⎢⎢⎢⎢⎣

xj 0 0 0 1
2zj

1
2yj

0 yj 0 1
2zj 0 1

2xj

0 0 zj
1
2yj

1
2xj 0

⎤⎥⎥⎥⎥⎥⎥⎦

E = Qj E . (2.4)

The displacement degrees of freedom u, including both the macroscopic and fluctuation part,
then follow as

u = [Q I] [ E
u∗
] = Q̂ û , (2.5)

where Q contains vertically concatenated contributions Qj , I stands for the identity matrix, and
u∗ denotes the fluctuation DOFs. Due to the assumed periodic boundary conditions, not all DOFs
in u∗ are independent. Accounting for the periodic source-image pairs and preventing rigid body
motions by setting zero fluctuation at one selected node, the fluctuation DOFs can be expressed
in terms of a subset of unknowns υ,

û = [ E
u∗
] = [ I 0

0 P
] [E

υ
] = P̂ υ̂ , (2.6)

with P being a Boolean matrix facilitating the periodic boundary conditions.
Combining the discrete first-order displacement decomposition (2.5) and periodicity enforce-

ment (2.6), the strain energy of a PUC model can be expressed as

E(E, υ) = 1

2
υ̂TP̂TQ̂TK(a) Q̂ P̂ υ̂

= 1

2
[E
υ
]
T

[Q
TK(a)Q QTK(a)P

PTK(a)Q PTK(a)P] [
E
υ
]

= 1

2
[E
υ
]
T

[K̂EE(a) K̂Eυ(a)
K̂υE(a) K̂υυ(a)

] [E
υ
] .

(2.7)

From the homogenisation perspective, υ can be treated as internal unknowns, which can be
uniquely solved for a prescribed E, leaving us with the condensed form

Ẽ(E) = 1

2
ET (K̂EE(a) − K̂Eυ(a)K̂−1υυ(a)K̂υE(a))E =

1

2
ETKeff(a)E . (2.8)
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Comparing the last row of (2.8) with an expression for the strain energy stored in a homogeneous
material of volume V subjected to E yields the final formula for the effective stiffness matrix

Dhom(a) = 1

V
Keff(a) . (2.9)

For a detailed exposition and discussion of the adopted homogenisation scheme, we kindly refer
the reader to our previous work [28].

2.3 Topology optimisation

To optimise the structure of multimodal metamaterials, we utilised the inverse homogenisa-
tion [18] with an objective function O comprising a ratio between a projected stiffness α, defined
via a unit modal deformation p as

α(a) = pTDhom(a)p , (2.10)

and k-th largest eigenvalue λk of a residual stiffness matrix Dres obtained by subtracting the
contribution of the projected stiffness α, i.e.

Dres(a) = Dhom(a) − α(a)ppT . (2.11)

In particular, the objective function for a unimodal metamaterial contains the fifth largest
eigenvalue (out of six) of Dres, as its goal is to maximise the gap between the compliant mode
pertinent to α and the second smallest stiffness eigenvalue (the smallest eigenvalue of Dres is zero
by definition),

OI(a) = λ5(a)
αI(a)

, (2.12)

while the objective function for a pentamodal material includes the largest eigenvalue,

OV(a) = αV(a)
λ1(a)

, (2.13)

because all other stiffness components shall vanish compared to the stiffness αV in a predefined
mode p.

This objective function is volume independent as both α and λ scale linearly with the linear
scaling of a, and thus no additional volume constraint is needed. Formally, our optimisation
problem reads

max
a
O●(a) (2.14)

a ≤ ae ≤ a , (2.15)

where we set the upper bound a such that the diameter of the largest circular cross-section is
at maximum one tenth of the shortest truss rod in the ground structure, and the lower bound
a = 10−4 ⋅ a is posed to avoid an ill-conditioned system in homogenisation (2.8).

Despite a seemingly complex structure of the objective, a gradient with respect to the design
variables a is readily available via the chain rule, i.e.

∂

∂ae
OI(a) =

∂λ5(a)
∂ae

αI(a) − ∂αI
(a)

∂ae
λ5(a)

αI2(a)
(2.16)
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and
∂

∂ae
OV(a) =

∂αV
(a)

∂ae
λ1(a) − ∂λ1(a)

∂ae
αV(a)

λ2
1(a)

, (2.17)

respectively.
The sensitivity of the projected stiffness α with a given p follows directly from the defini-

tion (2.10)
∂α(a)
∂ae

= pT∂D
hom(a)
∂ae

p . (2.18)

A similar expression also holds for the sensitivity of the k-th largest eigenvalue, that is

∂λk(a)
∂ae

= vTk
∂Dres(a)

∂ae
vk , (2.19)

where vk is the eigenvector pertinent to the k-th largest eigenvalue and

∂Dres(a)
∂ae

= ∂Dhom(a)
∂ae

− ∂α(a)
∂ae

ppT . (2.20)

The last missing link in the chain rule is the sensitivity of the effective stiffness matrix

∂Dhom(a)
∂ae

= 1

V

∂Keff(a)
∂ae

= 1

V

∂

∂ae
(K̂EE(a) − K̂Eυ(a) [K̂υυ(a)]

−1
K̂υE(a)) . (2.21)

Dropping the explicit dependence on a and using the terse notation K̂●●,ae for the partial derivative
with respect to ae, we obtain

∂Keff

∂ae
= K̂EE,ae − K̂Eυ,aeK̂

−1
υυK̂υE + K̂EυK̂

−1
υυK̂υυ,aeK̂

−1
υυK̂υE − K̂EυK̂

−1
υυK̂υE,ae

= K̂EE,ae − K̂Eυ,aeΘ +Θ
TK̂υυ,aeΘ −ΘTK̂υE,ae ,

(2.22)

where Θ is the solution to an adjoin problem

K̂υυΘ = K̂υE . (2.23)

The sensitivities of the four sub-blocks K̂EE, K̂Eυ, K̂υE, and K̂υυ follow the same pattern as they
are (potentially asymmetric) projections of K(a), recall (2.7), and thus they all require only

∂K(a)
∂ae

= LTe TT
e

E

Le
[ 1 −1
−1 1

]TeLe . (2.24)

Being able to express the gradient of the objective function analytically led us to the adoption
of a steepest ascent method. To compensate for the fact that we did not compute a Hessian, we
supplemented the steepest ascent method with the line search method equipped with the Armijo
rule [29].

We started by randomly initialising feasible design variables a that satisfy the box con-
straints (2.15). In each iteration, we first calculated the gradient of the objective function ∇O
using the expressions introduced above. Next, we defined a modified gradient ∇̂O(a) by projecting
the original one on the active box constraints such that

∇̂Oe(a) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if ae = a ∧ ∇Oe(a) > 0
0 if ae = a ∧ ∇Oe(a) < 0
∇Oe(a) otherwise.

(2.25)
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The modified gradient then constituted the search direction for the inexact one-dimensional
maximisation in the current iteration. Starting with an initial step length computed as the
minimum of candidate lengths ν̃e ensuring that the box constraints are not violated in the new
state, i.e.,

ν̃e =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(a − ae)/∇̂Oe(a) if ∇̂Oe(a) > 0
(a − ae)/∇̂Oe(a) if ∇̂Oe(a) < 0
0 otherwise,

(2.26)

we halved the step length until a significant objective increase is achieved in terms of the Armijo
rule with coefficient c1 set to 0.1. We iterated until both the relative change in design variables
and the relative change in the objective value dropped below ϵ = 10−6. The structure of the
adopted optimisation strategy is summarised in Algorithm 1.

Algorithm 1 Adopted optimisation strategy
Randomly initialise a0; i = 0
repeat

compute ∇O(ai)
∇̂O(ai) = modify ∇O(ai)
compute ν̃
ν =min(ν̃)
repeat
anew = a + ν∇̂O(ai)
ν = ν/2

until O(ai + ν∇̂O) ≥ O(ai) + c1ν∇̂O(ai)T∇̂O(ai)
i = i + 1
ai = anew

end
until ∥ai − ai−1∥ / ∥ai∥ < ϵ ∧ ∥O(ai) −O(ai−1)∥ / ∥O(ai)∥ < ϵ

7



3 Optimised metamaterials

We demonstrate the proposed objective formulation with two optimisation problems: unimodal
and pentamodal metamaterials. As stated in the previous section, both optimisation problems
share the same formulation but differ in the definition of the objective function; recall Eqs. (2.12)
and (2.13). In addition, we show the results for two ground structures depicted in Fig. 2.1, with
the larger ground structure being a periodic extension of the smaller one. In all cases, we assumed
Young’s modulus of elasticity E = 1. Since the response of the metamaterial model is linear in E,
the homogenised stiffness matrices can be understood as normalised with respect to E.

3.1 Unimodal metamaterial

We start with optimising the microstructure of a unimodal metamaterial with vanishing shear
modulus in the yz direction. To this end, we set

p = [0 0 0 1 0 0]T

in the objective definition (2.12).
Since the whole problem is non-convex, the gradient method renders only local optima.

Consequently, the optimised microstructure depends on the initial distribution of cross-sectional
areas a0. The best results obtained out of 100 independent starting points a0 are shown in Fig. 3.1
for both ground structures, with the line thicknesses indicating the size of the cross-sectional
areas.
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Figure 3.1: Optimised smaller (a) and larger (b) PUCs of a pentamodal metamaterial with
maximised shear modulus in the yz plane.
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The homogenised matrix Dhom(aopt) of both optimised structures took the form

Dhom =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6.70 1.39 1.39 0.00 0.00 0.00
1.39 5.32 0.00 0.00 0.00 0.00
1.39 0.00 5.32 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 1.39 0.00
0.00 0.00 0.00 0.00 0.00 1.39

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× 10−3 , (3.1)

and exhibited almost zero value at the position Dhom
4,4 . The value of the associated objective

function was 4.79 × 103.
The best result obtained for the larger ground structure converged to a geometry that is a

periodic extension of the best result obtained for the smaller ground structure, i.e. the larger
ground structure comprises eight PUCs. Furthermore, we subsequently tested the optimisation
of unimodal metamaterial for vanishing shear modules in the xz (p = [0 0 0 0 1 0]T) and

xy (p = [0 0 0 0 0 1]T) planes. The optimised structures for these scenarios are rotated
versions of the metamaterial with a minimised shear modulus in the yz direction, as shown in
Fig. 3.2. The corresponding homogenised matrices are—up to a small numerical difference—only
permutations of (3.1). These observations indicate a strong local optimum for such a design,
corroborated further by the fact that the same design was achieved for the majority of independent
runs with random initial distribution of truss cross-sectional areas.
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Figure 3.2: Optimised PUCs of unimodal metamaterials with minimised shear modulus in the xz
(a) and xy (b) plane.
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3.2 Pentamodal metamaterial

As the second example, we optimised the same ground structures for a meta-fluid behaviour,
using the objective definition (2.13) with

p = [ 1
√

3
1
√

3
1
√

3
0 0 0]

T
.

This objective proved to be more challenging than its unimodal counterpart, as there was no
strong local optimum. Different optimisation runs with different initial states thus yielded distinct
results with suboptimal performance compared to the existing pentamodal design of Milton and
Cherkaev [3], which was attainable with the ground structures we chose.

A common remedy to suppress the sensitivity to local minima widely used in the community
of structural optimisation is to use a separable local approximation such as the method of moving
asymptotes [30]. Here, we adopted a different strategy that built on sequential 1D minimisation
problems along individual design variables. This approach fits in the provided Algorithm 1 by
introducing a gradient modification.

In each iteration, we randomly select a single design variable and compute the modified
gradient specifically for that variable. If the modified gradient is non-zero, we perform a 1D line
search while maintaining the values of the other design variables constant. If the modified gradient
equals zero, we proceed to the subsequent iteration, iterating through the randomly selected
design variables until the optimised structure is achieved. Clearly, such a modification results
in an increase in iterations. However, with this method, the optimisation yielded a design that
corresponded to the design by Milton and Cherkaev [3]. To ensure that the majority of individual
optimisation runs will yield the mentioned design, the maximum values of the initial variables
must be smaller than a/10. In particular, optimisation with smaller values of initial variables
tends to result in a higher objective function value than optimisation using larger ones.

The best obtained PUCs of the pentamodal material are shown in Fig. 3.3. Similarly to the
unimodal metamaterial, the larger PUC converges towards a geometry composed of eight smaller
identical PUCs. For completeness, we list the homogenised matrix Dhom

Dhom =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7.56 7.56 7.56 0.00 0.00 0.00
7.56 7.56 7.56 0.00 0.00 0.00
7.56 7.56 7.56 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× 10−4 , (3.2)

with objective function achieving a value of 4.27×103. Note that the result for the 2×2×2 ground
structure features two interconnected networks and thus its homogenised response is twice as stiff
compared to the stiffness of the classical metafluid structure shown in Fig. 1.1.
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Figure 3.3: Optimised smaller (a) and larger (b) PUCs of a pentamodal metamaterial with
maximised bulk modulus. The larger PUC of the pentamodal metamaterial consists of two
independent structures (plotted in black and green).
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4 Geometrically nonlinear analysis

Up to this point, we have assumed a linear elastic response of metamaterial PUCs. However,
the optimised metamaterials presented in the previous section exhibit in some way unusual
behaviour under external loading, prompting the question whether similar modal characteristics
persist in the deformed state. To investigate this, we introduce a geometrically nonlinear model
in the following sections, which enables the prediction of metamaterial behaviour under large
deformations.

The key difference between the linear elastic and geometrically nonlinear models lies in the
fact that the linear model considers only the initial configuration of the structure, whereas the
nonlinear model evaluates its response in the current, deformed state. In the geometrically
nonlinear approach, the nodal positions are updated after deformation, which directly affects
elements lengths and their stiffnesses. However, both models still assume material linearity.

4.1 Numerical model

Since the optimised metamaterials were modelled as truss structures, the derivation of geo-
metrically nonlinear model is outlined here only for truss elements. The total energy E(u) of the
model can be defined as the sum of the internal Eint(u) and external Eext(u) energy, written as

E(u) = Eint(u) − Eext(u) , (4.1)

where the external energy Eext is defined in terms of external loading Fext and nodal displacements
u as

Eext(u) = Fextu . (4.2)

The internal energy Eint(u) of a geometrically nonlinear system is expressed as the sum of the
energies of all n elements in the PUC, written as

Eint(u) =
n

∑
e=1

Eeint(u) , (4.3)

where the contribution of the e-th element takes the form

Eeint(u) =
1

2

Eae
Le

∆l2e(u) . (4.4)

Here, the geometrical nonlinearity arises from the term ∆le(u), which represents the difference
between the deformed rod length le(u) and its initial (undeformed) length Le, and is defined as

∆le(u) = le(u) −Le . (4.5)

This formulation follows the Total Lagrangian method, which incrementally accounts for
deformations relative to the initial configuration. An alternative is the Updated Lagrangian
approach, where deformations are measured relative to the previous configuration [31]. In this
work, the Total Lagrangian method is used as it is suitable for truss structures.

The length le(u) of the rod after deformation depends on the nodal displacements explicitly as

le(u) =
√
∆x2e(u) +∆y2e(u) +∆z2e(u), (4.6)
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where the differences in the spatial coordinates between beginning (B) and end (E) node are
defined as

∆xe(u) = (xE + uE) − (xB + uB)
∆ye(u) = (yE + vE) − (yB + vB)
∆ze(u) = (zE +wE) − (zB +wB) , (4.7)

and collected in the variable s(u) for use in subsequent derivations

se(u) = [∆xe(u) ∆ye(u) ∆ze(u)] . (4.8)

4.1.1 Residual vector

The residual vector R(u) is the first-order derivative of PUC’s energy E(u), defined in Eq. (4.1)

R(u) = ∂E(u)
∂u

= ∂Eint(u)
∂u

+ ∂Eext(u)
∂u

, (4.9)

where the individual components of Eint are specified in Eqs. (4.3, 4.4), and those of Eext in
Eq. (4.2). From Eq. (4.9) the residual vector R(u) can be easily written in the form

R(u) = Fint(u) − Fext , (4.10)

implying that the residual vector represents the imbalance between internal Fint(u) and external
Fext forces at a given deformation state.

Since external forces Fext are directly defined by the prescribed loading, we only need to derive
the internal forces Fint(u). To do so, we determine the derivative of the internal energy Eint(u)
with respect to the nodal displacements u, which for each truss element e reads as

∂Eeint
∂uj

= Eae
Le

∆le(u)
∂∆le(u)
∂uj

, (4.11)

where

∂∆le(u)
∂uj

= ∂le(u) −Le

∂uj
= ∂le(u)

∂uj
. (4.12)

Applying the chain rule and using the Einstein summation rule, the sensitivity of the deformed
rod’s length le(u) becomes

∂le(u)
∂uj

= ∂le(u)
∂se(u)

se(u)
∂uj

, (4.13)

where se(u) represents differences in rod’s spatial coordinates from Eq. (4.7). Evaluating this
expression yields the sensitivity of the rod’s length with respect to the nodal displacements ue,
which include only the displacements of the nodes belonging to the e-th element, as the residual
vector of the e-th rod is sensitive only to them. It is derived as

∂le(u)
∂ue

= [−∆xe(u)
le(u)

−∆ye(u)
le(u)

−∆ze(u)
le(u)

∆xe(u)
le(u)

∆ye(u)
le(u)

∆ze(u)
le(u)

]
T
, (4.14)

which can be expressed in terms of the directional cosines c̃ e(u), grouped into the auxiliary
variable ϑe(u) as

∂le(u)
∂ue

= [−c̃ ex(u) −c̃ ey (u) −c̃ ez (u) c̃ ex(u) c̃ ey (u) c̃ ez (u)]
T = ϑe(u) . (4.15)
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Substituting into Eq. (4.9), the vector of internal forces Feint for the e-th rod is obtained as

Feint(u) =
Eae
Le

∆le(u)ϑe(u) , (4.16)

which can be simplified for further derivations as

Feint(u) = Ne(u)ϑe(u) . (4.17)

Taking this into account and recalling the definition of the residual vector R(u) from Eq. (4.10),
the residual vector takes the form

Re(u) = Ne(u)ϑe(u) − Feext . (4.18)

4.1.2 Stiffness matrix

The tangent stiffness matrix K(u) is defined as the second-order derivative of the PUC’s energy

Kjk(u) =
∂E(u)
∂uj∂uk

, (4.19)

therefore it can be obtained from the residual vector R(u) as

Ke
jk(u) =

∂Re
j(u)

∂uk
. (4.20)

Since the external force term Feext vanishes upon differentiating Re(u) from Eq. (4.18), Ke(u) is
directly derived from the vector of internal forces Feint(u), leading to

Ke
jk(u) =

Eae
Le

∂∆le(u)ϑe
j(u)

∂uk
, (4.21)

which can be further written as

Ke
jk(u) =

Eae
Le
(ϑe

j(u)
∂∆le(u)
∂uk

+∆le(u)
∂ϑe

j(u)
∂uk

) , (4.22)

and corresponds to the sum of the material KM(u) and the geometric KG(u) stiffness matrix, such
that

K(u) = KM(u) +KG(u) . (4.23)

The first term on the right-hand of Eq. (4.22) side has already been derived in Eqs. (4.12) - (4.15),
resulting in

ϑe
j(u)

∂∆le(u)
∂uk

= ϑe
j(u)ϑe

k
T(u) , (4.24)

which leads to the expression for the element material stiffness matrix KM,jk(u) as

Ke
M,jk(u) =

Eae
Le

ϑe
j(u)ϑe

k
T(u) . (4.25)

To compute the remaining term from Eq. (4.22), we first need to derive the sensitivity of directional
cosines c̃ ,e, stored in the vector ϑe(u), with respect to the nodal displacement u, defined as

∂ϑe
j(u)
∂uk

= ∂

∂uk

se(u)
le(u)

, (4.26)
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which can be further written in the form

∂ϑe
j(u)
∂uk

=
∂se(u)
∂uk

le(u) − se(u)∂le(u)∂uk

l2e(u)
. (4.27)

The sensitivities of se(u) and le(u) with respect to ue has already been used in Eq. (4.15). After
defining the projection of the deformed length le(u) onto given coordinate planes as

leyz =
√
∆y2e(u) +∆z2e(u)

lexz =
√
∆x2e(u) +∆z2e(u)

lexy =
√
∆x2e(u) +∆y2e(u) , (4.28)

we can derive the geometric stiffness matrix Ke
G,jk(u) for e-th rod as

Ke
G(u) =

Eae
Le

∆le(u)
l3e(u)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

l2yz,i −∆xe∆ye −∆xe∆ze −l2yz,i ∆xe∆ye ∆xe∆ze
l2xz,i −∆ye∆ze ∆xe∆ye −l2xz,i ∆ye∆ze

l2xy,i ∆xe∆ze ∆yeδze −l2xy,i
l2yz,i −∆xe∆ye −∆xe∆ze

sym l2xz,i −∆ye∆ze
l2xy,i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4.29)

The geometrically nonlinear tangent stiffness matrix Ke(u) for e-th rod, defined in Eq. (4.23),
is then expressed in terms of the material Ke

M and the geometrical Ke
G stiffness matrices from

Eqs. (4.25), (4.29) in the form

Ke(u) =
Eae
Le
(ϑe

j(u)ϑe
k(u) +

∆le(u)
l3e(u)

K̃e
G(u)) , (4.30)

where K̃e
G(u) corresponds to the symmetric matrix from Eq. (4.29).
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4.2 Numerical strategy

To obtain the geometrically nonlinear response of the metamaterials subjected to external
loading, we assume a displacement-controlled setup with prescribed macroscopic strain E, that is
incrementally increasing from E = 0 to the final value Ê in pseudo-time loading steps.

In each loading step s, the macroscopic component of the nodal displacement uEs was determined
from the prescribed strain using the relation from Eq. (2.4). The increment to the fluctuation
part of the displacement field is iteratively computed as s minimiser of the strain energy using the
standard Newton algorithm, where the geometrically nonlinear stiffness matrix K(uk) serves as
the Hessian and the residual vector R(uk) acts as the gradient.

This computed increment is then added to the fluctuation part of the displacement field from
the previous iteration, denoted as u∗k−1. The full displacement field uk+1 for the next iteration is
then obtained as the sum of its macroscopic uEk and fluctuation u∗k parts. The positions of the
nodes are updated to model the geometrically nonlinear behaviour. These updated positions are
then used for the following iteration, and once the convergence criteria are satisfied, they are used
for the next loading step. The convergence criteria are defined such that there is no significant
change in the computed displacement field and the internal and external forces are in equilibrium,
as represented by the residual vector R(uk). The threshold for convergence was set to ϵ = 10−6.
The entire procedure is summarised in Algorithm 2.

Algorithm 2 Geometrical nonlinearity
Initialise E for loading steps
for each loading step

compute uEs
repeat

compute R(uk), K(uk)
∆u∗k = −K(uk)

−1R(uk)
u∗k = u

∗

k−1 +∆u∗k
uk+1 = uEs + Pu∗k
k = k + 1

until ∥∆u∗k∥ / ∥uk+1∥ > ϵ ∧ ∥R(uk)∥ > ϵ
end
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4.3 Results

We computed the linear and nonlinear responses of the optimised unimodal metamaterial,
shown in Fig. 3.1, and the pentamodal metamaterial from Fig. 3.3. The final value of the prescribed
macroscopic strain was set to Ê = 0.3 in one direction, with zero values in the remaining ones.
The response of the PUCs was computed separately for all six principal directions. The results
are shown in Fig. 4.1, where the dashed lines represent the linear response, and the solid lines of
the corresponding colours show the geometrically nonlinear response. The responses more or less
corresponds, and it can be observed that the optimised metamaterials retain their modality even
under the maximum prescribed strain. Due to the symmetry of the metamaterials, the response
of the PUC is identical in certain loading directions, as shown in Fig. 4.1.

The unimodal metamaterial, designed to minimise the shear modulus in the yz plane, requires
significantly less energy to deform in this plane compared to the others, which was the goal of
our optimisation. Similarly, from the response of the pentamodal metamaterial we can observe
a visible gap between the shear and the bulk modulus, which can be deduced from the green
lines corresponding to the loading along the x, y and z directions. This gap is characteristic of
pentamodal metamaterials, as their only stiff mode of deformation is associated with the bulk
modulus. Even thought linear and geometrically nonlinear analysis results in similar response
after loading in shear direction, closer look into selected loading curves in Fig. 4.2 shows a
noticeable deviation between for both metamaterials, but energy values are quite small. Overall,
both optimised metamaterials preserved their multimodal behaviour even under the maximum
prescribed strain.
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Figure 4.1: Comparison of strain-driven metamaterial response between the linear and geometrically
nonlinear models for (a) unimodal metamaterial and (b) pentamodal metamaterial.
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Figure 4.2: Comparison of the strain–energy relation between the linear and geometrically nonlinear
models for loading in selected shear directions for (a) unimodal and (b) pentamodal metamaterial.
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5 Summary

Our study dealt with optimising metamaterials for desired unimodal and pentamodal behaviour.
The material PUCs were modelled as discrete truss systems, whose effective metamaterial properties
were determined using the first-order numerical homogenisation, providing us with a link between
their microstructure and macroscopic behaviour to be optimised.

We formulated the objective function on the basis of a projected stiffness and sorted eigenvalues
of the homogenised stiffness matrix. The unimodal metamaterials were designed to be significantly
more compliant in a chosen shear direction compared to other modes of deformation. The
pentamodal metamaterial targeted maximal bulk modulus while diminishing the remaining
eigenvalues of the homogenised stiffness matrix.

The optimisation process was performed using the steepest ascent method, supplemented with
the line search algorithm, and constrained by upper and lower bounds for individual cross-sectional
areas. To suppress the algorithm’s attraction to local minima, we proposed a simple modification
of the steepest ascent, which sequentially performs a series of 1D minimisations along individual
design variables. Especially in the case of pentamodal material, this modification significantly
improved the optimisation results by reducing the number of independent optimisation runs
necessary to render a performant solution.

We subjected the optimised metamaterials to geometrically nonlinear analysis to evaluate
their response under large deformations. The structures retained their characteristic multimodal
behaviour even under 30% strain in each direction.
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