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Summary of governing
equations of theory of
elasticity
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O Boundary conditions

Kinematic (essential) B.C.
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Static (natural) B.C.
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Bernoulli-Euler theory:
summary of governing equations (in plane)
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Bernoulli-Euler theory:
summary of governing equations (in plane)
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O Boundary conditions

Kinematic (essential) B.C. Static (natural) B.C.
axial du -
stretching/ u=u or EA—=N
compression dx
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St. Venant torsion of member
with arbitrary cross-section:
summary of governing equations

d2¢
Gl X =0
< dx?
o,
H:d%
dx
M, =Gl 6@




O Boundary conditions

Kinematic (essential) B.C. Static (natural) B.C.

g =9, or Gl,—*=M




Theory of thin plates:

summary of governing equations
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U Boundary conditions for various plate edge arrangements

» clamped edge
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Variational principles of elasticity

S
0O Consider a deformable body under the actionof t )Ll LLL1)]]) 1y
prescribed body forces b in domain V, surface Ibyl WA=t | b
tractions t on boundary S and displacement . ll ll .
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Virtual work principle

O Virtual work is work done by all forces acting on a deformable body as this
body is given a small hypothetical displacement — virtual displacement du,
which is consistent with constraints present. The acting forces are constant
during the virtual displacement.

oW,

virt

=j6T5u dv+jfT5u ds
v S



The necessary and sufficient condition for the body to be in equilibrium is that
the virtual work of external statically compatible forces ( t,b) is equal to the
virtual work of internal forces (stresses) for any kinematically compatible
admissible virtual displacement and deformation field (du, J¢€).

[1duU,0¢ = 040U ;
j 6 dedV = j t7ou dS+ j bTou d\
V S V
virt. work virt. work of
on internal external forces
forces

Note: statically compatible forces t,b - there is overall equilibrium for
the body from the viewpoint of rigid body mechanics.



Principle of total potential energy

a

U O 0O O

Define potential energy of applied loads: E_, iju dVv - jt uds
od

Postulate existence of positive definite strain energy density functlon D 06=—
Define strain energy of the body: E,_ = _[(DdV = I(IGT Ch) dv &
Define the total potential energy of the B/ody: EpotV: E..*+ E.
For the body to be in equilibrium, the first variation of E,, must be zero:
O = O(Ejy + Ee) =0
The necessary and sufficient conditions for the body to be in equilibrium are:

1. t,b are statically compatible

2. The deformation field which is related to stress through elastic constitutive
law minimizes the total potential energy E, with respect to all other
kinematically compatible, admissible deformation fields.



Principle of the finite element method

O Recall the governing equations of elasticity problems
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O The boundary value problem (BVP)

u ——0'Dou+b =0—— b

strong form

U=t on§| Thuililiill
ne=t onS§

boundary conditions

> the solution of BVP is a function (or functions) defined over the problem
domain, e.g. u(x), v(x), w(x)

> the finite element method allows us to obtain approximate numerical
solution of BVPs



O Solution of the boundary value problem by the finite element method (FEM)

» The problem domain is divided into elements of
finite size (discretized)

u(x)=N(x)d B

y

» On each element, displacement is approximated by function of
suitable type (e.g. linear, quadratic,...) ... shape function N(x)

» The coefficients of these functions d
(usually values of this function in certain
element points — nodes) become the
primary unknowns of the problem




» Strain is calculated from the approximated
displacement by kinematic equations

» Since only the shape functions depend on
X, the derivatives are applied only to them
(and not d)

u(x)=N(x)d
€ =0u
g(x)=B(x)d




» Constitutive equations are used to calculate
stress using the approximated
displacement

6 =Dg——| o(x)=DB(x)d




u(x)=N(x)d b(x)

» The equilibrium equations are not directly

used; instead an energy or variational
principle is used (e.g. principle of virtual
work, principle of total potential energy)

O VA

g(x)=B(x)d 6 =Deg——|6(x)=DB(x)d




- b(x)
» This leads to the weak form of the problem
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» Upon substituting the approximations, the 5
discretized weak form is obtained (X)
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u(x)=N(x)djf——Kd=f_ —— Db(x)

ext
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» The discretized weak form leads to a system of d Vdd
simultaneous linear algebraic equations ... the
primary solution are discrete nodal values d

g(x)=B(x)d 6 =Deg——|6(x)=DB(x)d




Example 1 — axially loaded bar

Boundary value problem

for simplicity, introduce notation

o=0,E=E,b=b,t=1




Governing equations

... this we call the strong form of BVP

A '_|.|

boundary conditions, e.g.




Virtual work principle — weak form of BVP

jadgdv—jBJu dV—.f_téud*S =0
Y% Y% S

x=0
virt. work virt. work of
on internal external forces
forces

... must be satisfied for any virtual displacement and compatible
strain Au, o< that satisfy the governing equations and boundary
conditions, e.g. u(0)=0,0u(0)=0 for fixed end



upon substituting the governing stress-strain and strain-
displacement relations, we obtain:

dx

X=

IO(EA"“(X) DU By y)] e A6 ()} =0

which, together with prescribed boundary conditions, is called the
weak form of the BVP



Problem description

Use the FEM to determine the displacement, strain, and stress fields of a
bar considering 1-D stress state.

— 36 MN/m?3 E=const=2000 MPa
b, (x)
f ™
g < X S,
2 ; —> = — § >
i N A
- h 2m > _ - 0,3m




Approximation of displacement

» Discretization of the domain into 4 elements, global vector of nodal
displacements

o U U @u e X

el.ll] el2 el3 eld
Notation:

(global node). global DOF .

. lelement,el. DOF .

DOF ... d ... degree of freedom (displacement component etc.)

element element, (el. node)

E.Q.: (2)u:2d:d1,2: dz,l d, :{2d3C}T



» Shape functions and element matrix of shape functions
(s ... element local coordinate)

S
Nel(s):l—l—
S
Ne,Z(S):l_
’ 10 NL
Ne = N (), Noo (9]
:_1—3’_S:| 0-6
i I, 1, 0.4l
0.2+

0.1 0.2



» matrix of shape functions derivatives

dx
d dsr
=d_S.E(— Ne,l(s)’ Ne2( g]
_dds|, s s
dsdx L' L




Virtual work principle

T[EAdZ(XX) dJOLIl)(()? — Ab( Yo Y 3] dx A5 (k=0

x=0
L 4 e
J- ...... dx - Z j ...... ds ... integration domain separated to elements
x=0 e=1 s=0
ld 2 3d 4d 5d
e O O O O >
elll el2 el3 eld X

Note: since in this example we consider all elements to be the same,
their N and B matrices will be also the same and for the sake of brevity
we will drop the indices e .



1

2

O

-

el.l el?2

e.g. element 1

{JdaijT EfB(E)d%Zg} {5d5ijT E/B($d%33}

{5,d,0,d} jNT

{51d,52d}{/2t}

AN $ d

3

jdx& AB (i K =0

,d 5d

O e e e
el.3 el4 X

element 2

{5,d,6,d) e N () A 3 d

]
{5,d,5,d} {8}



Element stiffness matrices

1
le d
T 1
{6,d,0,d}|[ BT (9 EMB( 3 d ;
s=0 2
le
= I BT (S) EAB(Q ds (#i28) for e:1 thru nel do (
e Ee[=]:
s=0 integrate (transpose (B(s)) .matrix ([E*2]) .B(s),
B 1_ 5,0,1e)
- 15
le I
11
e
= | EA[——,— ds
s=0 1 Ie Ie
| Ie _
A _ EA (%12%) print(Re[l],Ke[2],"...")5
| | 2 aE|lar  agE
— € e B
f— 1= 1= 1= 1=
EA EA 25 ar|| az a=
le 1e _; ;
N Ie Ie | —




Element vectors of external nodal forces
transform S — X

2 A
(%¥130) for e:1 thru nel do /—/\
fhele] :

Ie
{Jld’JZ d} J‘ NT ( S) At( $ d integrate (A*transpose (N (s) ) .matrix([b({(e-1)*1le+s)]1),
s=0

5,0,1e)
15

(%#133) print(fbe[l],fbe([2],fbe[3],fbe[4])5

b0{le®+31=)A || bO(a1=%+31e)a || BO(7 122 +31=)2 || BO (10 122 +3 12) 2

el. node 1
& & g g
el. node 2 bo (2 1e3+3 1) a||bo (5 12 +31e%) 2 ||bo (2 1e® +3 1e%) &||bo (11 1% +3 1e%) 2
g le g le g l= g le
At (3i31) for e:1 thru nel do (
ftele]l imatrixz([0]1,[01)
3] {a.d.odly 3
fte[l]l rmatrix([A*t0],[0]1)5%

(%134) print(fte[l],fte[2],fte[3],fte(4])5

ppooid by NN




{Jld,dzd}Kl{13}+{52d,53 d}K2{23}+...
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Assembly of global stiffness matrix and global forc

(3135) EK:

(%2035)

0

0

0

0

0

zeromatrix (nnode, nnode) ; (%136)

0 0 0 0O

0

0

0

0

0

0

0

0

0 0 (%036)

f:zeromatrix (nnode, 1) ;

0

0

0

0

(%137)

(20327)

for e:

1 thru nel do

for i:1 thru 2 do |
for j:1 thru 2 do (

El(e-1)4+1, (e-1)+71:
1Y)

done

El(e-1)+i, (e-1)+]]

+ Relel[i, 7]

(%1359)

(%0329)

for e:1 thru nel do |
for i:1 thru 2 do |

1) g

done

fl(e-1)+1]:

fl(e-1)+1] + ftele]l[1i,

11+ fbhele][1,

1]

e vector

initialize with zeros

allocate element
matrices and
vectors into global
ones



Global stiffness matrix K Global vector of ext. nodal forces f

';:A —'IEA O 0 0 ‘1 :
e e —AQ LL(3+I])+A
EA[2EA| _EA 6 BLE*L)* A
e |l | L Abyl, + AR
0 _TA ZIEA _IEA 0 ! Apl+2ApPR !
e e e 2
EA | 2EAl  EA ARy, +3AQ I
N e e Abjl
e e e Ah)lz
O 0 0 —'le 'IEA : J




Imposition of boundary conditions

e A s A
1d 1.f
2d 2 f
{51d,52d,...,55d}K< >=:{51d,52d,...,55(}< >
\5d) L5 f,
... must be satisfied for any ad satisfying kinematic boundary conditions (d.d= 0)
I
€ e rl 3
_I|EA 2|EA _ IEA 0 9 |(,d) gAh)Ie(3+|e)+Ato
e EA 2EeA EA -d Al + ARl
0 - T O [{.di=4 ARl +2AQEk |
) ° ° d Al +3Ak
O O _E_A\ ZEA __E_ _4d- A b;e tb e
.1, o | oL +1_1Ab5|eL ... a system of linear
EA  HA L2 6 ’ algebraic equations
S L]




Solution of the system of equations

(%o044)

0.005

0.007875

[

0.0085

0.006125

(¥144) sol:linsolve by lu(subst (par,Er),subst (par,fr));

 Talse]

(%i45)

(%0453)

(2i46)

(%046)

d:scl[1];

0.005

0.007875

0.0085

0.006125

resulting nodal displacements
d:addrow(d, [0]) ;

0.005

0.007875

0.0085

0.0068125

0

include the prescribed displacement




Calculation of strain and stress

O Strain and stress are analyzed locally on each element

B(9d.

0
—
L

I

e
(%148) eps[l]l(s):="'"(B(s).submatrix(3,4,5,d)) /* element 1, glcbal nodes 1,2 */;
eps[2](s):="'"(B(s).submatrix(1,4,5,d)) /* element 2, glocbal nodes 2,3 */;
eps[3](s):="'"(B(s).submatrix(1,2,5,d)) /* element 3, global nodes 3,4 */;
eps[4](s):="'"(B(s).submatrix(l,2,3,d)) /* element 4, glcbzal nodes 4,5 */;
(%¥048) eps,(s):=0.00575

(%¥042) eps,(s):=0.00125
(23030) eps,(s):=-0.00475
(¥051) eps,(s):=-0.01225

... Strain and stress are constant on each element
(result of the chosen order of approximation)



Calculation of strain and stress

O Strain and stress are analyzed locally on each element

a,(s) = Ez.( 9

(%152) sig[l]l(s):=""'"(subst (par,E*eps[1l](s))};
sig[2](s):=""'(subst (par,E*eps[2](s)));
sig[3](s):=""'"(subst (par,E¥eps[3] (s5)))
gig[4](s):=""(subst (par,E¥eps[4](=5)))

(¥052) sig,(s):=11.5
(¥053) sig,(s):=2.500000000000002
(:054) sigﬁl[s]l:=—9.SDDDDDDDDDDDD[}2

(%053) sig,(s):=-24.5

... Strain and stress are constant on each element
(result of the chosen order of approximation)



Compare FEM with analytical solution

Displacement

0.008 *
0.006 -
0.004 -

0.002 |




Strain o5

—0.005 |

—0.010 |

—-0.015 |

Stress

10|

0.5

1.5

2.0

-10+

-20/

-30+

0.5




Example 2 — beam bending

Problem description

Use the FEM to determine the displacement and bending moment
distribution of a beam loaded by a point load in mid-span.

lP
/%\._E,l_ ................................ A_{

L p—

»
»




Approximation of displacement

Discretization of the domain into 2
elements, 3 nodes

In each element, introduce local
coordinate s:

_ X" X
|

e

s (i.e s0(0,1))

L -
-
S S node 3
3 O O
nodel el.1 node 2 el.2
Z, W



» In each element, assume
approximation of displacement by the
same type of function — 3" order

nodel T

polynomial. Displacements and their
derivatives (negative rotations) at
nodes are its coefficients (degrees of

freedom):
w(s)=(1-3$+28) w, +( 525+ 9 Iy +(37s-2°% w
+(-5+ ) Lw, d,, ]
d 2
wW(s)=[ Na( 9 No( 3 (B M)y " =N d
de,4J

I

Doy =W, gy Doy = Woggys Geg = Wegpy, Aoy = Wy



Method of total potential energy

» To determine the unknown nodal degrees of freedom, we use the method of
total potential energy

» Thetotal potential energy is E = E + E,, , where

L
En = | (jM(x)dK) dx= j (j EIK())d() dx j—K( X d
x=0
1 Note:
= j%xz(s) |1ds+j E2'2K (3 )ds o
S0 & Y, _ X" X0 _
~ ~ s—l——> X=sL+ X4
element 1 I t2
elemen " %dS— | ds
E..=-Pw(/2)=-P,d ds




» The generalized strain can be expressed from approximated DOF’s as

d’w(x)  dw 9 dN,( $
= - = - = - € d =
<=5 2dg Pdg °
|6 12 4 6s 6 12s 2 ©6S
==, ———, ——+ ———|d
Iez Ié Ie Ie I2e |2e | eI e:| ’
:Bede

> We denote [Ee Ie] =D,

> Then

E

pot

Note:

d2W: d(dwj: d di dwdj
dx* dx\ dx) dsdx dsd
_(dsjz dw 1 dw

dx) d§ [ dS$

¢ 1 ¢ 1
jEDl(Bldl)z ,ds+ | EDz(Bzclz)2 L, ds- P, d
s=0 s=0

1 1
= [ ZdIBIDB.d, | ds+ [ ZdIBID,B.d, Lds- P,
s=0 s=0



» The unknown DOF's (,d, ,d, ... ;d) are determined from:

a) kinematic boundary conditions d =

b) minimization of the total potential energy with respect to the remaining

w=0 and  d= 5 w=0

unknowns (,d, 5d, ,d, d)

oE

=0 pOt:O

0y _ OEp 0 _,

9,d 9.d 9,d 9. d




oE t d (1 cod (1 d
pot _ —d'B'D.B.d. |l.ds+ —d'B!D.B.d, ||, ds——( P
azd S_[Odzd(zllllljl S_[Odzd(222222j2 dzd( 3d)
0
1 1 1
= -[E {Q,LO,Q}BIDlBldl+leBlTD1814O> ,ds+0-0
s=0
\O/

1 1
1
= | ~2B,,DB,d, | ds= | B.DBd, Lds=0 (1)
s=0 s=0

where Bl,2

|6 12s|{4 69 6 12s 2 S
B, = - |— 2 2 "
1 1 1

Z 7
ll Il




Similarly

oE
9,d

D
L

pot

.

m@

OE
9.0

pot _

1 1
- j B,,D,B,d, |, ds+ _‘- B,D,B.d, | ds=0
s=0 s=0

1
= j Bz,4DZBZd2|2 ds=0

s=0

1 1
j B,,D,B,d, I1dS+_‘- B,D,B.d, | ds- P=0 (2)
s=0 s=0

(3)

(4)

element 1

element 2




After evaluating the integrals, equations (1) to (4) can be rearranged:

" 8El 24El 4E
- — > 0
L L L e a C )
_24El 192El . 24E .d| |0
K K L2 [)sd[_]P
> = >
AE] o 16El 4El ||,d[ |oO
L L L \Gd, \O)
24El  4EI  8EI
0 - —
) B L L

from which we solve

L°P L°P _ _
,d (1)V\/=16EI g0 = 5 W= =R d=, Ww=0, d= 4, W




» By substituting to W(S) =N_d_, we obtain, e.g. for element 1:

w( x) = PL 3~ —4i
A8EI( L L°

.. Which is in this special case equal to the exact solution of the strong

form



Generalization
Approximation of displacement — choice of interpolat lon functions

O General requirements

In order to assure convergence of the FE solution to the exact solution as
the number of elements increases, the shape functions must satisfy
the following requirements:

1. The shape functions must not allow a strain to appear if the nodal
variables correspond to rigid body motion (displacement, rotation)

For example:
fWe’(l)\
We = Wery | |8 _ 12514 _6s| 6, 125/2 65| 0
W =0=w, e TR e,
0)




2. Completeness condition: If the nodal variables correspond to uniform

strain, then the shape functions must yield this uniform strain.

For example:

\/O 6 12s
K=|—=-

W, () = 0=

W, ) =

12 2
le Ie

6 12s
-—+

2 2
Iele

2.5

e

Jv)

¢




3. Compatibility condition: The shape functions should be chosen so that strain
remains finite at the elements boundaries. Therefore:

> If generalized strain involves 15t derivative of displacement, displacement
must be continuous across the element boundary.

For example: u
~/:/. not acceptable

O O O

» If generalized strain involves derivatives of displacement up to order n, then
continuity of displacement and its derivatives up to order n-1 is required.

For example:
W - A K=
i i i — : —
e & e S O o & & ¢

not acceptable L



» Elements satisfying the condition 3. are called conformable elements. The
degree of compatibility achieved by the shape functions at element
boundaries is commonly called as:

e CO continuity ... if only displacement and none of its derivatives is
continuous

e C! continuity ... if displacement and its 15t derivatives are
continuous

e Cn continuity ... if displacement and its derivatives up to nt order
are continuous



Assembly of the global stiffness matrix and externa | load vector
O The total potential energy of a an elastic structure discretized into n

elements can be written as:

7=y ld; UBZDeBeJ edvjd e—dTJNTp J gv-dTiNTte J CQ%

1| 2 | | s
LI g T : on element boundary
= 4 EdeK d.—df ej *) with static b.c.
e=1
d. ... vector of element nodal DOF’s
D, ... matrix that relates generalized stress and generalized strain
B. ... matrix that relates generalized strain to nodal DOF’s
b ... body force
t ... surface traction
K, ... element stiffness matrix
fo ... element vector of external forces

J. ... determinant of Jacobian matrix

e



J Note on Jacobian matrix:

Recall the transformation from global to local coordinates and vice versa

X=X ~

5T = o x= sl g,

dxzi(dsz Lds= J ds
ds

In multidimensional case J becomes a matrix. It is called Jacobian matrix.
Further details will be discussed later.



d The unknown nodal degrees of freedom that form vectors d, are
determined by using the prescribed kinematic constraints and minimizing 77
with respect to all remaining m DOF'’s.

0 We arrange all the unknown DOF'’s into a single vector
e A '\
d

2 > element 1

'\

o
I
D

>element 2

. w
O O O o

(6]

\md/

0 Then minimization of zimplies

o -0 ... humber of equations corresponds to the number of
0.d unknown DOF'’s



O By applying the derivatives to equation (*) we can write, for example for
elements with 4 DOF’s

00 -](,d) [O000 0000 -],d
K 00 -||,d [000O00O ,d
1lo o ||.d| oo .d
0O 0 ---|x,dp+[0._0.. K § A+
000O0O0O0 -||.d oo[ 2 -d
0000O0O0 ||| (00O :
L. g | Al.a
R oo
foe row
=< L >+ < <f2> >t ...
0
: L)
L O J L O




O In a compact form

[K] {d} :{f} ... global system of equations, from
s " which d is solved

d ... global vector of element nodal DOF’s
K ... global stiffness matrix
f ... global vector of external forces

[ Notes:

» The same result is obtained if the principle of virtual work is applied.
The advantage of using the principle of virtual work as opposed to the
method of total potential energy is that it is valid generally for any
constitutive relationship, not only elastic.



» The global matrices can be first assembled regardless of kinematic
boundary conditions. Subsequently the homogenous kinematic

boundary conditions can be applied by striking out the corresponding
rows and columns in the global vectors:

e 1 ((— ) ( )
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