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Uncertainties in optimization

Design variables (e.g. manufacturing tolerances)

Objective function (e.g. tolerances, external factors)

Constraints (e.g. tolerances, external factors)

Design Variable 1

Contour lines of objective function

Design Variable 2

Infeasible Domain
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Traditional design approach

Introduce ”safety factors” into the constraints

Leads to results satisfying safety requirement, but not necessarily

optimal designs

Design Variable 1

Design Variable 2

Safet
y margi

n

Infeasible Domain
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Motivating Example 1

Deterministic problem

B
H

C

A

Maximize area of a rectangle A = B ·H
Constraint: limited circumference C = 2(B +H)− 4L ≤ 0
Solution: B = H = L

Stochastic problem

B and H are random variables with mean values B̄ and H̄ and

standard deviations σB and σH, respectively (e.g. normally

distributed)
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Motivating Example 2

Maximize expected value of A

Ā = E[B ·H]

or mean plus (or minus) multiple of standard deviation

Ā± k · σA

Satisfy constraint condition with certain probability PC ≈ 1

Prob[C ≤ 0] = Prob[2(B +H)− 4L ≤ 0] ≥ Pc

L may be random, too

Objective function

Ā− kσA → Max.!

Constraint condition

Prob[C ≥ 0] = Prob[2(B +H)− 4L ≥ 0] ≤ 1− Pc = PF
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Numerical example 1

Assume B and H correlated with ρ, L uncorrelated from B and H

Assume all variables to be normally distributed, all have the same

coefficient of variation COV

Probability of constraint violation:

C̄ = 2(B̄ + H̄)− 4L̄; L̄ = 1

σ2C = 4(σ
2
B + 2ρσBσH + σ

2
H) + 16σ

2
L

Prob[C > 0] = Φ
[σC
C̄

]
≤ 0.1

Expected value of area

E[BH] = B̄H̄ + ρσBσH

Maximize expected area under probability constraint
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Numerical example 2
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Numerical example 3

Different probability measures
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Robustness

Optimal design should not be sensitive to small variations of

uncertain parameters

For the case of stochastic uncertainty, robustness can be measured

in statistical terms

Choice of robustness measures

Variance-based: Global behavior, relatively frequent events

Probability-based: Specific behavior (often safety-related), rare

events
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Robustness measures 1

Use probabilistic quantities in objective and/or constraints

Add multiple of standard deviation of objective to the mean values

to form new objective function

R = f̄ + kσf

Case k = 0 corresponds to game theory (large portfolio

management, insurance, bank loans, fair gambling, ...)

Use probability of constraint violation as new constraint

P [fk(x
∗)] > 0] ≤ ε

In safety related constraints, the probability level ε may be very

small

Better to use probability-related measure such as reliability index

β = −Φ−1(P [fk(x∗))
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Optimization strategies

Conventional strategy

Optimize

check robustness/reliability

if not sufficient, optimize again with modified constraints

Easily implemented, may lead to non-optimal results

Full RDO strategy

incorporate robustness/reliability measure into optimization problem

Solve directly for design satisfying robustness/reliability constraint

Leads directly to desired solution, may be very expensive
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The need for speed ...

Complex system (many parameters, computationally expensive,

slow, ...)

Needed: Fast and reasonably accurate response prediction (e.g. for

real-time applications such as control systems)

Possible choices:

Reduce model complexity based on essential physical features

(reduced order model)

Replace model based on mathematical simplicity (metamodel)

Stochastic analysis needs to be very efficient
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Reduced order model

Need to understand and represent physics

May be applicable for many different load cases

Very suitable for time dependent phenomena (structural dynamics,

convection-diffusion processes)

Can be difficult in the presence of strong nonlinearity

Typical examples

Modal analysis

Proper orthogonal decomposition (POD)
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Metamodel

Mathematically formulated black box

Suitable for arbitrarily nonlinear input-output relations

Requires extensive training data

Very difficult to extrapolate

Time-dependent problems may be tricky

Typical example: Linear response surface model
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Model Correction factor method

Hybrid between reduced order model and meta-model

Replaces detailed mechanical model by simple mechanical model

Adjust parameters of simple model by calibration to the detailed

model

Calibration based on probabilistic criteria (e.g. FORM)
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Common properties

Based on previous experience

Knowledge of physical processes

Acquired experience through training

Limited range of applicability

Nonlinearities

Number of input variables

NOTE: Approaches complement each other → Combination may
be better than the sum of the individual parts!
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Efficient reliability estimation procedures

FORM/SORM (approximation of the limit state)

Monte Carlo methods

Crude MC - typically used as reference solution when developing a

method

Importance sampling - requires identification of probabilistically

relevant regions in the space of random variables

Asymptotic sampling - obtain reliability from results generated with

artificially increased standard deviations of the basic variables
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Essential Steps

Sensitivity Analysis to determine the most relevant uncertain

parameters

Model order reduction for reducing the number of degrees of

freedom and complexity

Efficient probabilistic analysis to reduce number of samples

Validation procedures to detect omissions and errors (includes

expert judgement)
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Reliability analysis

Mechanical system

Mpl

F

Me

L

Failure condition

F = {(F, L,Mpl) : FL ≥ Mpl} = {(F, L,Mpl) : 1−
FL

Mpl
≤ 0

Failure probability

P (F) = P [{X : g(X) ≤ 0}

P (F) =
∫ ∞
−∞
. . .

∫ ∞
−∞
Ig(x)fX1...Xndx1 . . . dxn

Ig(x1 . . . xn) = 1 if g(x1 . . . xn) ≤ 0 and Ig(.) = 0 else
20/47 CTU 27 June 2014 c⃝ Christian Bucher 2014



First-order reliability method (FORM)

Rosenblatt-Transformation, e.g. for Nataf model

Yi = Φ
−1[FXi (Xi)]; i = 1n

U = L−1Y; CYY = LL
T

Inverse transformation

Xi = F
−1
Xi

[
Φ

(
n∑
k=1

LikUk

)]

Computation of design point

u∗ : uTu→ Min.; subject to: g[x(u)] = 0

Linearize at the design point (in standard Gaussian space)
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FORM procedure

Find point u∗ with minimal distance β from origin in standard

Gaussian space

u1

u2

β

s1

g(u) = 0

ḡ(u) = 0

u∗

s2

ḡ : −
n∑
i=1

ui
si
+ 1 = 0;

n∑
i=1

1

s2i
=
1

β2

P (F) = Φ(−β)
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Optimization loop

Outer optimization loop controls the structural design

Probability of constraint violation computed by FORM

Inner optimization driven by random variables

Both loops need gradients

Compute probability of
constraint violation
Pk = P [fk(xj) > 0]

Compute objective f0(xj)

Start optimization loop

Create one design xj

Check convergence

FORM optimization loop

FE analysis

R
ep

ea
t

fo
r

gr
ad

ie
nt

s
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Response surface method

Reduce computational effort by replacing expensive FE analyses

Establish meta-models in terms of simple mathematical functions

Fit model parameters to FE solution using regression analysis

x1

x2

η
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Regression

Adjust a model to experiments

Y = f (X,p)

Set of parameters

p = [p1, p2, . . . , pn]
T

Experimental values for input X and output Y

(X(k), Y (k)), k = 1 . . . m

Search for best model by minimizing the residual

S(p) =

m∑
k=1

[
Y (k) − f (X(k),p)

]2
; p∗ = argmin S(p)
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Linear regression

Linear dependence on parameters (not on variables!)

f (X,p) =

n∑
i=1

pigi(X)

Necessary condition for a minimum

∂S

∂pj
= 0; j = 1 . . . n

Solution

m∑
k=1

{
gj(X

k)[Y k −
n∑
i=1

pigi(X
k)]

}
= 0; j = 1 . . . n

Qp = q
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Quality of regression

Coeffient of determination (CoD): correlation between

experimental data and model predictions

R2 =

(
E[Y · Z]
σY σZ

)2
;Z =

n∑
i=1

pigi(X)

Adjusted (reduced) CoD for small sample sizes (penalize

overfitting)

R2adj = R
2 −
n − 1
m − n

(
1− R2

)
If an additional test data set T is available: Coefficient of

Prognosis (CoP)

CoP =

(
E[T · ZT ]
σY σZ

)2
; ZT =

n∑
i=1

pigi(XT ); 0 ≤ CoP ≤ 1
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Example

Adapt polynomial function to 6 data points

Training set
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Regression result

Adjust model to training data, cross-check with test data

Training set
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Quality depending on model order

Repeat regression and test for different polynomial orders

Quadratic model has best prediction capability

n R2 CoP R2adj

1 0.83 0.83 0.79

2 0.93 0.92 0.88

3 0.98 0.81 0.94

4 0.98 0.73 0.90

5 1.00 0.70 -
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What to approximate?

For reliability analysis, the limit state

function g(X) is needed

Immediate approximation of g may

introduce unwanted nonlinear

dependencies on input variables

Example: shear stresses in a console with

square cross section

τxy =
3FH
2B2
; τxz =

3FV
2B2

Failure criterion (v. Mises)

g(FH, FV ) = βF −
√
3(τ2xy + τ

2
xz) ≤ 0

B

B

FH

FV
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Comparison

Stresses τxy and τxz are linear functions of FH and Fv

Limit state function g(FH, FV ) is highly nonlinear and contains a

singularity

→ Try to use ”easy” formulation for constraint functions

τxy τxz g

FH FH FH FVFVFV
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Example - ten bar truss

Configuration: L = 360, F1 = F2 = 100000

L L

L

F1 F2

1 2

3 4

5 6

7

8

9

10

1 2 3

4 5 6

Objective: Minimize structural mass

Constraints:

All member stresses < 25000

All nodal displacements < 2
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Deterministic optimization

Gradient-based solver (Conmin)

DEMO
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Optimal design

Objective function: m = 5065

Cross sectional areas

Member Area Member Area

1 30.23 6 1.12

2 0.10 7 7.46

3 23.77 8 20.82

4 15.03 9 21.38

5 0.10 10 0.10

Active constraints: no member stress, displacements in nodes 3

and 6

Effort: ≈ 200 FE analyses
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Robustness evaluation

Take into account randomness of loads (F1 and F2 independent,

log-normally distributed, coefficient of variation = 0.3)

Take into account randomness of cross sections (all independent,

normally distributed, coefficient of variation = 0.15)

Compute variability of constraints

Estimate probability of constraint violation(s) using a distribution

hypothesis (Gaussian)

High probability of violating active constraints, but also 3 inactive

ones

Effort: 100 FE analyses

Member Pσ Member Pσ

1 0.00 6 0.00

2 0.00 7 0.17

3 0.00 8 0.00

4 0.00 9 0.00

5 0.51 10 0.00

Node Pu Node Pv

2 0.00 2 0.00

3 0.00 3 0.53

5 0.00 5 0.27

6 0.00 6 0.53
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Upscaled deterministic solution

Increase cross sectional areas of design uniformly to match

reliability constraint

Use repeated FORM analysis

COV 0.10 0.2 0.30

mopt 7167 8966 11347

Effort: ≈ 300 FE analyses for each β
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Reliability-based optimization

Model randomness of loads (F1 and F2 independent, log-normally

distributed)

Model randomness of cross sections (all independent, normally

distributed)

Accept constraint violation(s) with a probability corresponding to a

reliability index β = 3

Use FORM to obtain β for all designs during the optimization

process

Best designs depend on the coefficient of variation of F1 and F2

Effort: ≈ 60.000 FE analyses (factor 300 vs. deterministic case)
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Robust optima

COV 0.10 0.2 0.30

mopt 6682 8532 11092
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Direct: Computational effort: 60.000 FE runs for 1 COV

Upscaled: Computational effort: 1500 FE runs for 1 COV
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Response surface

Use 500 support points in 12-dimensional space

Assess quality of regression

Cross validation by splitting samples 2/1

Compute coefficient of prognosis (CoP) from applying regression

model to unused samples

Quantity σ1 σ2 σ3 σ4 σ5
CoP 0.999 0.873 0.999 0.999 0.955

Quantity σ6 σ7 σ8 σ9 σ10
CoP 0.870 0.999 0.999 0.999 0.879

Quantity u2 u3 u5 u6
CoP 0.999 0.998 0.999 0.999

Quantity v2 v3 v5 v6
CoP 0.999 0.999 0.999 0.999
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Approximation of displacements

Vertical displacement of

node 6

Compare displacement

computed from FE

analysis to response

surface results (500

random samples)
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Approximation of stresses

Stress in member 5

Compare stress

computed from FE

analysis to response

surface results (full

quadratic, 500 random

samples)
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Alternative approximation of stresses

Stress in member 5

Compare stress

computed from FE

analysis to response

surface results (thin

plate spline, 500

random samples)
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Reliability-bsed optimization using RSM

Gradient-based optimizer (Conmin), FORM based on response

surfaces

DEMO
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Robust optima from RSM

COV 0.10 0.2 0.30

mopt 6108 8741 11261
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Computational effort reduced by a factor of 100 for one COV (300

for 3 COVs)
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Compare robust designs

All elements are strengthened with larger COV of load

Relative member cross section ratios remain similar (not too

different from upscaled deterministic solution)

COV = 0.1 COV = 0.3
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Benefits of robust optimization

Avoids highly specialized designs, reduces imperfection sensitivity

Naturally includes statistical uncertainties into the design

optimization process

Allows the inclusion of quality control measures (manufacturing,

maintenance) into the design process

BUT: computationally very expensive unless based on

approximations such as response surface models
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