Stochastic optimization - how to improve computational efficiency?

Christian Bucher

Center of Mechanics and Structural Dynamics Vienna University of Technology & DYNARDO GmbH, Vienna

Presentation at Czech Technical University in Prague, 27 June 2014

Overview

Introduction

- Stochastic design optimization
- Reliability analysis
- Response surface method
- Example ten bar truss
 - Deterministic optimization
 - "Robust" optimization
- Concluding remarks

Uncertainties in optimization

- Design variables (e.g. manufacturing tolerances)
- Objective function (e.g. tolerances, external factors)
- Constraints (e.g. tolerances, external factors)

Traditional design approach

- Introduce "safety factors" into the constraints
- Leads to results satisfying safety requirement, but not necessarily optimal designs

Motivating Example 1

Deterministic problem

- Maximize area of a rectangle $A = B \cdot H$
- Constraint: limited circumference $C = 2(B + H) 4L \le 0$
- Solution: B = H = L
- Stochastic problem
 - *B* and *H* are random variables with mean values \overline{B} and \overline{H} and standard deviations σ_B and σ_H , respectively (e.g. normally distributed)

Motivating Example 2

Maximize expected value of A

 $\bar{A} = \mathbf{E}[B \cdot H]$

• or mean plus (or minus) multiple of standard deviation

 $\bar{A} \pm k \cdot \sigma_A$

• Satisfy constraint condition with certain probability $P_C \approx 1$

$$\mathbf{Prob}[C \le 0] = \mathbf{Prob}[2(B+H) - 4L \le 0] \ge P_c$$

- *L* may be random, too
- Objective function

$$\bar{A} - k\sigma_A \rightarrow Max.!$$

Constraint condition

$$Prob[C \ge 0] = Prob[2(B + H) - 4L \ge 0] \le 1 - P_c = P_F$$

Numerical example 1

- Assume *B* and *H* correlated with ρ , *L* uncorrelated from *B* and *H*
- Assume all variables to be normally distributed, all have the same coefficient of variation COV
- Probability of constraint violation:

$$\bar{C} = 2(\bar{B} + \bar{H}) - 4\bar{L}; \ \bar{L} = 1$$
$$\sigma_C^2 = 4(\sigma_B^2 + 2\rho\sigma_B\sigma_H + \sigma_H^2) + 16\sigma_L^2$$
$$\mathbf{Prob}[C > 0] = \Phi\left[\frac{\sigma_C}{\bar{C}}\right] \le 0.1$$

Expected value of area

$$\mathbf{E}[BH] = \bar{B}\bar{H} + \rho\sigma_B\sigma_H$$

Maximize expected area under probability constraint

Numerical example 2

Numerical example 3

Different probability measures

• More "linear" dependence using β

Robustness

- Optimal design should not be sensitive to small variations of uncertain parameters
- For the case of stochastic uncertainty, robustness can be measured in statistical terms
- Choice of robustness measures
 - Variance-based: Global behavior, relatively frequent events
 - Probability-based: Specific behavior (often safety-related), rare events

Robustness measures 1

- Use probabilistic quantities in objective and/or constraints
- Add multiple of standard deviation of objective to the mean values to form new objective function

$$R = \bar{f} + k\sigma_f$$

Case k = 0 corresponds to game theory (large portfolio management, insurance, bank loans, fair gambling, ...)

• Use probability of constraint violation as new constraint

 $P[f_k(\mathbf{x}^*)] > 0] \leq \varepsilon$

In safety related constraints, the probability level $\boldsymbol{\varepsilon}$ may be very small

• Better to use probability-related measure such as reliability index $\beta = -\Phi^{-1}(P[f_k(\mathbf{x}^*)))$

Optimization strategies

Conventional strategy

- Optimize
- check robustness/reliability
- if not sufficient, optimize again with modified constraints
- Easily implemented, may lead to non-optimal results
- Full RDO strategy
 - incorporate robustness/reliability measure into optimization problem
 - Solve directly for design satisfying robustness/reliability constraint
 - Leads directly to desired solution, may be very expensive

The need for speed ...

- Complex system (many parameters, computationally expensive, slow, ...)
- Needed: Fast and reasonably accurate response prediction (e.g. for real-time applications such as control systems)
- Possible choices:
 - Reduce model complexity based on essential physical features (reduced order model)
 - Replace model based on mathematical simplicity (metamodel)
- Stochastic analysis needs to be very efficient

Reduced order model

- Need to understand and represent physics
- May be applicable for many different load cases
- Very suitable for time dependent phenomena (structural dynamics, convection-diffusion processes)
- Can be difficult in the presence of strong nonlinearity
- Typical examples
 - Modal analysis
 - Proper orthogonal decomposition (POD)

Metamodel

- Mathematically formulated black box
- Suitable for arbitrarily nonlinear input-output relations
- Requires extensive training data
- Very difficult to extrapolate
- Time-dependent problems may be tricky
- Typical example: Linear response surface model

Model Correction factor method

- Hybrid between reduced order model and meta-model
- Replaces detailed mechanical model by simple mechanical model
- Adjust parameters of simple model by calibration to the detailed model
- Calibration based on probabilistic criteria (e.g. FORM)

Common properties

Based on previous experience

- Knowledge of physical processes
- Acquired experience through training
- Limited range of applicability
 - Nonlinearities
 - Number of input variables
- NOTE: Approaches complement each other → Combination may be better than the sum of the individual parts!

Efficient reliability estimation procedures

- FORM/SORM (approximation of the limit state)
- Monte Carlo methods
 - Crude MC typically used as reference solution when developing a method
 - Importance sampling requires identification of probabilistically relevant regions in the space of random variables
 - Asymptotic sampling obtain reliability from results generated with artificially increased standard deviations of the basic variables

Essential Steps

- Sensitivity Analysis to determine the most relevant uncertain parameters
- Model order reduction for reducing the number of degrees of freedom and complexity
- Efficient probabilistic analysis to reduce number of samples
- Validation procedures to detect omissions and errors (includes expert judgement)

Reliability analysis

Mechanical system

Failure condition

$$\mathcal{F} = \{(F, L, M_{pl}) : FL \ge M_{pl}\} = \{(F, L, M_{pl}) : 1 - \frac{FL}{M_{pl}} \le 0$$

Failure probability

$$P(\mathcal{F}) = P[\{\mathbf{X} : g(\mathbf{X}) \le 0\}$$
$$P(\mathcal{F}) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} I_g(x) f_{X_1 \dots X_n} dx_1 \dots dx_n$$
$$I_g(x_1 \dots x_n) = 1 \text{ if } g(x_1 \dots x_n) \le 0 \text{ and } I_g(.) = 0 \text{ else}$$

20/47

CTU 27 June 2014

First-order reliability method (FORM)

• Rosenblatt-Transformation, e.g. for Nataf model

$$Y_i = \Phi^{-1}[F_{X_i}(X_i)]; \quad i = 1n$$
$$\mathbf{U} = \mathbf{L}^{-1}\mathbf{Y}; \quad \mathbf{C}_{\mathbf{Y}\mathbf{Y}} = \mathbf{L}\mathbf{L}^T$$

Inverse transformation

$$X_{i} = F_{X_{i}}^{-1} \left[\Phi \left(\sum_{k=1}^{n} L_{ik} U_{k} \right) \right]$$

• Computation of design point

 $\mathbf{u}^* : \mathbf{u}^T \mathbf{u} \to \text{Min.}; \text{ subject to: } g[\mathbf{x}(\mathbf{u})] = 0$

• Linearize at the design point (in standard Gaussian space)

FORM procedure

 Find point u* with minimal distance β from origin in standard Gaussian space

$$\bar{g}: -\sum_{i=1}^{n} \frac{u_i}{s_i} + 1 = 0; \quad \sum_{i=1}^{n} \frac{1}{s_i^2} = \frac{1}{\beta^2}$$

 $P(\mathcal{F}) = \Phi(-\beta)$

CTU 27 June 2014

Optimization loop

- Outer optimization loop controls the structural design
- Probability of constraint violation computed by FORM
- Inner optimization driven by random variables
- Both loops need gradients

Response surface method

- Reduce computational effort by replacing expensive FE analyses
- Establish meta-models in terms of simple mathematical functions
- Fit model parameters to FE solution using regression analysis

Regression

• Adjust a model to experiments

$$Y = f(X, \mathbf{p})$$

Set of parameters

$$\mathbf{p} = [p_1, p_2, \ldots, p_n]^T$$

• Experimental values for input X and output Y

$$(X^{(k)}, Y^{(k)}), k = 1 \dots m$$

• Search for best model by minimizing the residual

$$S(\mathbf{p}) = \sum_{k=1}^{m} \left[Y^{(k)} - f(X^{(k)}, \mathbf{p}) \right]^2; \quad \mathbf{p}^* = \operatorname{argmin} S(\mathbf{p})$$

Linear regression

• Linear dependence on parameters (not on variables!)

$$f(X, \mathbf{p}) = \sum_{i=1}^{n} p_i g_i(X)$$

Necessary condition for a minimum

$$\frac{\partial S}{\partial p_j} = 0; \quad j = 1 \dots n$$

Solution

$$\sum_{k=1}^{m} \left\{ g_j(X^k) [Y^k - \sum_{i=1}^{n} p_i g_i(X^k)] \right\} = 0; \quad j = 1 \dots n$$
$$\mathbf{Q} \mathbf{p} = \mathbf{q}$$

Quality of regression

• Coeffient of determination (CoD): correlation between experimental data and model predictions

$$R^{2} = \left(\frac{\mathbf{E}[Y \cdot Z]}{\sigma_{Y}\sigma_{Z}}\right)^{2}; Z = \sum_{i=1}^{n} p_{i}g_{i}(X)$$

Adjusted (reduced) CoD for small sample sizes (penalize overfitting)

$$R_{adj}^{2} = R^{2} - \frac{n-1}{m-n} \left(1 - R^{2}\right)$$

 If an additional test data set T is available: Coefficient of Prognosis (CoP)

$$\mathsf{CoP} = \left(\frac{\mathbf{E}[T \cdot Z_T]}{\sigma_Y \sigma_Z}\right)^2; \ Z_T = \sum_{i=1}^n p_i g_i(X_T); \ 0 \le \mathsf{CoP} \le 1$$

• Adapt polynomial function to 6 data points

Regression result

• Adjust model to training data, cross-check with test data

Quality depending on model order

- Repeat regression and test for different polynomial orders
- Quadratic model has best prediction capability

What to approximate?

- For reliability analysis, the limit state function g(X) is needed
- Immediate approximation of g may introduce unwanted nonlinear dependencies on input variables
- Example: shear stresses in a console with square cross section

$$au_{xy} = rac{3F_H}{2B^2}; \ au_{xz} = rac{3F_V}{2B^2}$$

• Failure criterion (v. Mises)

$$g(F_H, F_V) = \beta_F - \sqrt{3(\tau_{xy}^2 + \tau_{xz}^2)} \le 0$$

Comparison

- Stresses τ_{xy} and τ_{xz} are linear functions of F_H and F_v
- Limit state function $g(F_H, F_V)$ is highly nonlinear and contains a singularity
- ${\color{black} \bullet} \ {\color{black} \to} \ {\color{black} Try}$ to use "easy" formulation for constraint functions

Example - ten bar truss

• Configuration: L = 360, $F_1 = F_2 = 100000$

- Objective: Minimize structural mass
- Constraints:

All member stresses < 25000

All nodal displacements < 2

Deterministic optimization

• Gradient-based solver (Conmin)

DEMO

Optimal design

- Objective function: m = 5065
- Cross sectional areas

Member	Area	Member	Area	
1	30.23	6	1.12	
2	0.10	7	7.46	
3	23.77	8	20.82	
4	15.03	9	21.38	
5	0.10	10	0.10	

- Active constraints: no member stress, displacements in nodes 3 and 6
- Effort: \approx 200 FE analyses

Robustness evaluation

- Take into account randomness of loads (F₁ and F₂ independent, log-normally distributed, coefficient of variation = 0.3)
- Take into account randomness of cross sections (all independent, normally distributed, coefficient of variation = 0.15)
- Compute variability of constraints
- Estimate probability of constraint violation(s) using a distribution hypothesis (Gaussian)
- High probability of violating active constraints, but also 3 inactive ones
- Effort: 100 FE analyses

Member	P_{σ}	Member	P_{σ}				
					P_u	Node	P_v
1	0.00	6	0.00			2	0.00
2	0.00	7	0 17	2	0.00	2	0.00
-	0.00		0.00	3	0.00	3	0.53
3	0.00	8	0.00	5		Б	0.27
4	0.00	9	0.00	5	0.00	5	0.21
	0.00	10	0.00	6	0.00	6	0.53
5	0.51	10	0.00	L			

Upscaled deterministic solution

- Increase cross sectional areas of design uniformly to match reliability constraint
- Use repeated FORM analysis

COV	0.10	0.2	0.30
m _{opt}	7167	8966	11347

• Effort: \approx 300 FE analyses for each β

Reliability-based optimization

- Model randomness of loads (F₁ and F₂ independent, log-normally distributed)
- Model randomness of cross sections (all independent, normally distributed)
- Accept constraint violation(s) with a probability corresponding to a reliability index $\beta = 3$
- Use FORM to obtain β for all designs during the optimization process
- Best designs depend on the coefficient of variation of F_1 and F_2
- Effort: \approx 60.000 FE analyses (factor 300 vs. deterministic case)

Robust optima

COV	0.10	0.2	0.30
m _{opt}	6682	8532	11092

- Direct: Computational effort: 60.000 FE runs for 1 COV
- Upscaled: Computational effort: 1500 FE runs for 1 COV

CTU 27 June 2014

Response surface

- Use 500 support points in 12-dimensional space
- Assess quality of regression
- Cross validation by splitting samples 2/1
- Compute coefficient of prognosis (CoP) from applying regression model to unused samples

Qu	antity	σ	1	σ_2		σ	3	σ	4	σ	5
(CoP	0.9	99	0.873		0.9	99	0.9	99	0.9)55
Qu	antity	σ	6	σ_7 σ_7		8	σ_9		σ_{10}		
(CoP	0.8	370 0.9		99	0.999		0.999		0.8	379
	Quant	tity	U ₂		u	l3 L		5	u	6	
	CoF)	0.999		0.9	998 0.9		99	0.9	99	
	Quant	tity	V2		V	V3 1		, 5	V	6	
	CoF)	0.9	99	0.9	99	0.9	99	0.9	99	

Approximation of displacements

- Vertical displacement of node 6
- Compare displacement computed from FE analysis to response surface results (500 random samples)

Approximation of stresses

- Stress in member 5
- Compare stress computed from FE analysis to response surface results (full quadratic, 500 random samples)

Alternative approximation of stresses

- Stress in member 5
- Compare stress computed from FE analysis to response surface results (thin plate spline, 500 random samples)

Reliability-bsed optimization using RSM

Gradient-based optimizer (Conmin), FORM based on response surfaces

DEMO

Robust optima from RSM

COV	0.10	0.2	0.30
m _{opt}	6108	8741	11261

Computational effort reduced by a factor of 100 for one COV (300 for 3 COVs)

Compare robust designs

- All elements are strengthened with larger COV of load
- Relative member cross section ratios remain similar (not too different from upscaled deterministic solution)

Benefits of robust optimization

- Avoids highly specialized designs, reduces imperfection sensitivity
- Naturally includes statistical uncertainties into the design optimization process
- Allows the inclusion of quality control measures (manufacturing, maintenance) into the design process
- BUT: computationally very expensive unless based on approximations such as response surface models