Optimalizace léčebného plánu protonové terapie

Soutěž o cenu akademika Bažanta Katedra mechaniky Stavební fakulta ČVUT

Marek Tyburec marek.tyburec@gmail.com

Vedoucí projektu: Doc. Ing. Matěj Lepš Ph.D.

duben 2014

Obsah

1	Úvod	2
2	Popis Braggovy křivky v 1D	3
3	Vliv nehomogenit na Braggovu křivku	6
4	Popis Braggovy křivky v prostoru	8
5	Optimalizace5.1Popis a řešení úloh lineárního programování simplexovou metodou5.2Příklady optimalizace5.3Složitější příklady	11 11 11 14
6	Závěr	16
7	Přílohy 7.1 Numerické řešení určitých integrálů	17 17

1 Úvod

Tato práce vznikla v rámci studentské vědecké činnosti na katedře mechaniky Stavební fakulty ČVUT. Jejím cílem je postupně vytvořit zjednodušený model protonového paprsku, tzv. beamletu, a poté sestavit optimalizovaný léčebný plán.

Rakovina je nejčastější příčinou smrti nejen na území Evropy. K její léčbě lze přistupovat různými způsoby, mezi které se řadí také radioterapie. Radioterapie je založena na ozáření zhoubného nádoru pomocí ionizujícího záření, přičemž se minimalizují následky pro okolní zdravou tkáň. Nejčastěji se používají svazky elektronů a fotonů. V poslední době se ale začínají používat také svazky hadronů - tedy protonů a lehkých iontů.

Ionty jsou vyzařovány z urychlovače částic směrem po ose z, hloubce. Dávka záření, kterou ionty odevzdávají okolí, závisí i na použitých částicích. Z nich nejlépe vycházejí protony, které předávají většinu dávky záření v krátkém intervalu, tzv. Braggově peaku.

Obrázek 1: Porovnání odevzdané dávky protonového a fotonového paprsku v závislosti na hloubce. Protonový paprskem má výrazný extrém - Braggův peak. [15]

Lékaři pracující v protonových centrech mají spolu se spolupracujícími fyziky za úkol sestavit takový léčebný plán, aby došlo k destrukci nádoru pacienta a zároveň co nejméně poškodili okolní tkáň. Vychází přitom z prostorového modelu sestaveného pomocí CT (Computed Tomography), kam umisťují jednotlivé Braggovy křivky. Poté se optimalizuje intenzita jednotlivých křivek (resp. množství protonů vyjádřených fluencí energie). Jelikož se tedy nezávisle na sobě ovlivňuje fluence jednotlivých křivek, nazývá se tato metoda *pencil beam*, metoda tužkových svazků.

Tato práce se postupně zabývá nejprve analytickým popisem Braggovy křivky v 1D, ve směru šíření po ose z, poté zavádí vliv nehomogenit prostředí, kterými se paprsek šíří. Dále rozšiřuje popsaný model do 2D, tedy uvažuje prostorové šíření protonového paprsku do okolí. Poslední kapitola ukazuje jednoduchý způsob optimalizace 1D i 2D léčebného plánu při využití lineárního programování.

2 Popis Braggovy křivky v 1D

V roce 1997 aproximoval Thomas Bortfeld tvar Braggovy křivky pro protonové paprsky [2]. Vyšel přitom z přibližného vztahu, tzv. Bragg-Kleemanova pravidla aproximující závislost dosahu protonového paprsku R_0 na počáteční energii E_0 .

$$R_0 = \alpha E_0^p. \tag{1}$$

Dosah R_0 je definován jako vzdálenost, kde přesně polovina protonů ztratí svoji energii. Koeficienty α a p jsou materiálově závislé konstanty vycházející z aproximace naměřených hodnot. Pro přesnější výpočet je možné interpolovat tabulkové hodnoty.

Vlivem časové i prostorové závislosti energie částic nemusí mít ani protony se stejnou počáteční energií E_0 ve stejné hloubce z stejnou dávku záření. Proto zavádí Bortfeld směrodatnou odchylku σ , která udává hloubkovou nejistotu ztráty energie a zároveň zahrnuje i nejistotu dosažení přesné hodnoty E_0 při výstupu částic z urychlovače.

$$\sigma = \sqrt{\left(\alpha' \frac{p^3 \alpha^{2/p}}{3p - 2} R_0^{3-2p}\right)^2 + (0.01E_0)^2 \alpha^2 p^2 E_0^{2p-2}},\tag{2}$$

kde α' je materiálová konstanta závisející na elektronové hustotě [2].

Výsledná křivka dávky D je sumou všech Gaussových rozděleních dávek záření po ose z. Po úpravě integrálu dostal Bortfeld tvar:

$$D(z, E_0) = \Phi_0 \frac{e^{-\zeta(z, E_0)^2/4} \sigma(E_0)^{1/p} \Gamma(1/p)}{\sqrt{2\pi} \rho \alpha^{1/p} (1 + \beta R_0(E_0))} \times \left[\frac{1}{\sigma(E_0)} \mathcal{P}_{-1/p} (-\zeta(z, E_0)) + \left(\frac{\beta}{p} + \gamma \beta + \frac{\epsilon}{R_0(E_0)} \right) \mathcal{P}_{-1/p-1} (-\zeta(z, E_0)) \right].$$
(3)

V této rovnici se vyskytuje hned několik druhů veličin. První jsou konstanty závislé na materiálu, kam kromě již zmíněných veličin α a p patří také ρ , hustota materiálu, ϵ , β a γ . Dále se zde vyskytují veličiny závislé na hodnotě E_0 , konkrétně zmíněná směrodatná odchylka σ , ale také ζ , která je definována dle vztahu

$$\zeta(z, E_0) = \frac{R_0(E_0) - z}{\sigma}.$$
(4)

Veličina ζ je použita také ve funkci parabolického válce \mathcal{P} [20].

Pro samotnou optimalizaci je ovšem nejdůležitější veličinou Φ_0 , primární fluence energie, popisující energii částic, které prošly daným místem prostoru, v tomto případě počátkem (z = 0). Zde je důležité zmínit, že dávka D(z) je na fluenci energie lineárně závislá.

Vzhledem k tomu, že při sestavování léčebného plánu je vhodné Braggovu křivku "uchopit" za její extrém, tzv. peak, byla sestavena závislost počáteční energie E_0 na poloze vrcholu z_{max} . Nejprve byla aproximována závislost $R_0 - z$ na E_0 , jak je vidět na Obrázku 3.

Do aproximace byla zahrnuta oblast počáteční energie E_0 v rozmezí 1MeV až 300MeV v intervalu 1MeV, celkem 300 hodnot z_{max} . Poloha z_{max} byla stanovena s přesností 0.1mm.

Vyjdeme-li z rovnice (1) a zjištěné analytické aproximace ve tvaru

$$R_0 - z = a_1 E_0^4 + a_2 E_0^3 + a_3 E_0^2 + a_4 E_0 + a_5,$$
(5)

kde a_1 až a_5 jsou číselné konstanty, lze výsledně rovnice upravit na tvar

$$z_{max} = \alpha E_0^p - a_1 E_0^4 - a_2 E_0^3 - a_3 E_0^2 - a_4 E_0 - a_5.$$
(6)

Porovnají-li se takto spočtené hodnoty z_{max} s hodnotami výše zjištěnými s přesností 0.1mm, je zde maximální hodnota chyby 0.0646mm a její směrodatná odchylka 0.0288mm. Výsledky tedy odpovídají zvolené přesnosti.

Takto je již možné rozmístit v 1D prostoru Braggovy křivky tak, aby měly v určitých bodech extrém. Konkrétní hodnoty konstantních veličin platných pro vodu jsou uvedeny opět ve zmíněné práci T. Bortfelda [2].

Obrázek 2: Znázornění základních parametrů Braggovy křivky s $E_0=158.6{\rm MeV}$ - dosahu R_0 a polohy extrému $z_{max}.$

Obrázek 3: Aproximovaná závislost $R_0 - z_{max}$ na E_0 se zobrazenými fitovanými hodnotami $R_0 - z_{max}$. Záření ve vodě.

Obrázek 4: Vliv rozdílné počáteční energie E_0 na výslednou dávku¹. Záření ve vodě.

Obrázek 5: Vliv rozdílné počáteční energie E_0 na poměrnou dávku. Dle obrázku je zřejmé, že pro co nejmenší zasažení okolní tkáně je nejvýhodnější ozařovat co nejkratší cestou.

 $^{^1 {\}rm Jeden}$ Gray (Gy) odpovídá absorbci energie 1J v 1kg látky.

3 Vliv nehomogenit na Braggovu křivku

Prostředí nádoru v lidském organismu není ovšem obklopeno vodou. Také není homogenní. Z toho vyplývá důležitost sestavení výpočtového modelu také pro heterogenní materiály a směsi.

Fyzici zde využili jedné vlastnosti - podobnosti šíření protonového záření ve vodě a v tkáni. Díky tomu je možné zavést veličinu *WET*, tzv. vodní ekvivalent, udávající takovou tloušťku vodní vrstvy, která by množstvím ztráty energie nahradila tloušťku dané nehomogenity. Jak už bylo zmíněno dříve, ztráta energie není konstantní. Proto i hodnota vodního ekvivalentu závisí nejen na materiálu, ale i na energii v místě počátku nehomogenity a na její tloušťce.

Obrázek 6: Vliv nehomogenity na Braggovu křivku. První křivka ukazuje Braggovu křivku s vrcholem ve vzdálenosti 25cm ve vodě, bez vlivu nehomogenit. Druhá křivka znázorňuje opět vrchol ve vzdálenosti 25cm, ale mezi 5 a 15cm je umístěna nehomogenita, kost. Třetí křivka má stejnou počáteční energii E_0 jako křivka druhá, ale není zde vliv nehomogenity. Na pravé i levé straně od šedých oblastí jsou druhá a třetí křivka stejné.

Vyjde-li se opět z Bragg-Kleemanova pravidla (1), lze z něj vyjádřit přibližný vztah pro funkci energie za předpokladu, že hodnota dosahu R_0 se po z mění lineárně. Potom:

$$R_0 - z = \alpha E(z)^p \equiv E(z) = \left(\frac{R_0 - z}{\alpha}\right)^{1/p}.$$
(7)

Tento vztah je značně zjednodušený. Zanedbává zejména hloubkovou nejistou danou dle rovnice (2). Není tedy platný v oblasti vrcholu.

Pokud je již známá energie v dané pozici, pomocí speciální teorie relativity Alberta Einsteina lze získat hodnotu rychlosti protonu [6]:

$$\beta = \frac{v}{c} = \sqrt{1 - \frac{1}{\left(1 + \frac{E}{m_p c^2}\right)^2}},\tag{8}$$

kde m_p je hmotnost protonu, Eje kinetická energie acrychlost světla. Potom Lorentzův faktor γ je:

$$\gamma = \sqrt{\frac{1}{1 - \frac{v^2}{c^2}}} = \sqrt{\frac{1}{1 - \beta^2}}.$$
(9)

Pro vypočtení vodního ekvivalentu byla použita Bethe-Blochova rovnice [21] a upravena na tvar:

$$WET(E) \approx t_w = t_m \left(\rho \frac{Z_{eff}}{A_{eff}} \left[\ln \frac{2m_e c^2 \gamma(E)^2 \beta(E)^2}{I_{eff}} - \beta(E)^2 \right] \right) \Big|_w^m,$$
(10)

kde t_w označuje ekvivalentní tloušťku vody, t_m reálnou tloušťku nehomogenity, ρ hustotu, A_{eff} efektivní nukleonové číslo, Z_{eff} efektivní atomové (protonové) číslo, m_e hmotnost elektronu a I_{eff} efektivní excitační energii.

Pokud se nehomogenita skládá z materiálu složeného pouze z jednoho chemického prvku, potom se místo efektivních hodnot dosazují konkrétní hodnoty dotyčného prvku. V případě směsi se pro zjednodušení výpočtů zavádí "efektivní atom", tj. atom, který má stejnou elektronovou hustotu. Potom se efektivní nukleonové číslo spočítá jako [12]:

$$A_{eff} = \frac{\sum_{i=1}^{n} N_i A_i^2}{\sum_{i=1}^{n} N_i A_i},$$
(11)

kde n je počet prvků, ze kterých se směs skládá a N je počet atomů daného prvku. Efektivní protonové číslo se spočítá [12]:

$$Z_{eff} = A_{eff} \sum_{i=1}^{n} \frac{N_i Z_i}{N_i A_i}.$$
(12)

Hodnota excitační energie je poměrně nejistá, jelikož ji nelze přesně stanovit. V článku Zhanga a Newhausera [21] je uveden vztah:

$$I = kZ, (13)$$

$$k = \begin{cases} 14.5, & \text{pro } Z \le 8\\ 13, & \text{pro } 8 < Z \le 13\\ 11, & \text{pro } Z > 13 \end{cases}$$
(14)

Pro směsi platí vztah [3]:

$$\ln I_{eff} = \frac{\sum_{i=1}^{n} N_i Z_i \ln I_i}{\sum_{i=1}^{n} N_i Z_i}.$$
(15)

Vzhledem k lineární závislosti WET na tloušťce materiálu t_m (10) a předpokladu, že se po ose z mění energie, je zřejmé, že Bethe-Blochova rovnice platí pouze pro infinitezimální tloušťky. V mnou provedené implementaci bylo větší přesnosti dosaženo rozdělením intervalu dle zadané přesnosti.

Materiál	E	t_m	WET_{exp}	WET_{BK}	$Chyba_{exp-BK}$	WET	$Chyba_{exp-WET}$
	[MeV]	[mm]	[mm]	[mm]	[%]	[mm]	[%]
Al	200	19.73	42.30	41.7	-1.42	41.861	-1.038
	200	14.90	32.20	31.5	-2.17	31.614	-1.820
	200	4.83	10.04	10.2	+1.59	10.249	+2.082
	100	14.90	31.50	31.1	-1.27	31.357	-0.454
	100	4.83	10.30	10.1	-1.94	10.166	-1.301

Tabulka 1: Porovnání přesnosti výpočtu WET. WET_{exp} udává experimentálně změřenou hodnotu vodního ekvivalentu pro zadané charakteristiky, WET_{BK} je hodnota vypočtená podle [22], hodnota WET je vypočtena podle implementace popsané v této práci. Chyba_{exp-BK} udává rozdíl mezi WET_{exp} a WET_{BK} , Chyba_{exp-WET} udává rozdíl mezi WET_{exp} a WET.

4 Popis Braggovy křivky v prostoru

V letech 1947 a 1948 napsal Moliére zásadní teorii, která popisuje šíření částic prostorem. Jednalo se nejprve o teorii jednoduchého [16] a později mnohonásobného rozptylu [17]. Tato teorie ovšem vyšla pouze německy. V angličtině se problémem zabýval H.A. Bethe [1], který v roce 1952 vydal článek *Molier's Theory of Multiple Scattering*, kde ovšem zanedbal některá zobecnění platná pro směsi [18]. Moliérova teorie je obecně brána jako nejpřesnější, ovšem také nejsložitější. Nastala proto potřeba teorii zjednodušit.

Tohoto kroku se ujal v roce 1975 Virgil L. Highland ve své práci *Some practical Remarks on Multiple Scattering* [10], kde zavedl jednoduchou Gaussovskou aproximaci, čímž výpočet značně zjednodušil a zachoval dostatečnou přesnost. Nicméně tato aproximace platila pouze pro malé tloušťky, a tak byla v roce 1993 zobecněna B. Gottschalkem [8]. Výsledný tvar aproximace je tento:

$$\theta_0 = 14.1z \left(1 + \frac{1}{9} \log_{10} \frac{t}{L_R} \right) \times \left[\int_0^t \left(\frac{1}{pv} \right)^2 \frac{dt'}{L_R} \right]^{1/2},$$
(16)

kde θ_0 je charakteristický úhel mnohonásobného rozptylu. Veličina z v tomto případě označuje náboj částice, v případě protonů je to 1eV, t značí tloušťku materiálu a L_R radiační délku. p je hybnost částice a v její rychlost. Rychlost se spočítá z kinetické energie podle rovnice (8). Hybnost částice se podle speciální teorie relativity spočítá jako [6]:

$$p = \gamma m_p v, \tag{17}$$

kde γ je Lorentzův faktor spočtený dle rovnice (9) a m_p je hmotnost protonu. Poslední neznámou veličinou je radiační délka L_R . Tu lze podle [9] vyjádřit takto:

$$L_R = \frac{716.4}{Z(Z+1)\ln\frac{287}{\sqrt{Z}}}.$$
(18)

Pro výpočet radiační délky pro deskovou skladbu se používá vztah:

$$\frac{t_0\rho_0}{L_R} = \frac{t_1\rho_1}{L_{R,1}} + \frac{t_2\rho_2}{L_{R,2}},\tag{19}$$

kde ρ je hustota materiálu. Zároveň platí vztah:

$$t_0 \rho_0 = t_1 \rho_1 + t_2 \rho_2. \tag{20}$$

Pro směsi se udává vztah:

$$\frac{A_0 N_0}{L_R} = \sum_{i=1}^n \frac{A_i N_i}{L_{R,i}},$$
(21)

kde n je počet prvků, ze kterých se směs skládá, N je molární množství a A je nukleonové číslo.

Poté je již možné přistoupit k výpočtu integrálu v rovnici (16), k jehož výpočtu byla použita Newtonova metoda 3/8 (viz Příloha). V literatuře [8] se uvádí použití Simpsonova pravidla a rozdělení tloušťky t pravidelně podle dosahu R_0 .

Tvar Gaussovského rozdělení je dán vztahem:

$$f(\theta) = \frac{1}{2\pi\theta_0^2} \left[\frac{-\frac{1}{2}}{\theta_0}\frac{\theta}{\theta_0}\right],\tag{22}$$

kde θ je úhel mnohonásobného rozptylu dle Obrázku 7.

Předpokládejme, že v prostoru se protonový paprsek šíří tedy kromě směru z také do směrů kolmých, konkrétně osy y a x. V případě 2D modelu budeme uvažovat jen směry z a y, jak je patrno na Obrázku 7. Z něj rovněž vyplývá geometrická závislost veličin:

$$\tan \theta = \frac{y}{z}.$$
(23)

Obrázek 7: Závislost úhlu θ , hloubky z a y.

Takto lze potom jednoduše pro každé místo v prostoru dopočítat dávku záření:

$$D(y,z) = D(z) \times \frac{1}{2\pi\theta_0^2} \left[\frac{\frac{-1}{2} \left(\frac{\arctan\frac{y}{z}}{\theta_0}\right)^2}{\frac{1}{2}} \right].$$
(24)

Obrázek 8: Grafické znázornění vlivu mnohonásobného rozptylu.

V Tabulce 2 je uvedeno porovnání výpočtu hodnot podle Moliéra, Highlandovy aproximace podle [8] a hodnot vypočtených dle zde popsaného postupu. Lze si povšimnout, že hodnoty θ_0 a θ_H se po většině intervalu výrazně neodlišují, problém nastává v případě, kdy se tloušťka přibližuje dosahu R_0 , jelikož Bragg-Kleemanova rovnice (1) neuvažuje hloubkovou nejistotu danou směrodatnou odchylkou (2), tudíž všechny protony ztrácí energii v místě dosahu R_0 . Zlepšení by mohlo přinést použití interpolace z tabulkových hodnot.

Obrázek 9: Vliv mnohonásobného rozptylu na intenzitu dávky záření.

Materiál	Tloušťka	$ heta_M$	$ heta_{H}$	$Chyba_{M-H}$	$ heta_0$	$Chyba_{M-0}$
	$[\mathrm{g/cm}^2]$	[mrad]	[mrad]	[%]	[mrad]	[%]
Al	0.2160	3.701	3.534	-4.512	3.500	-5.431
	0.8170	8.051	7.670	-4.732	7.428	-7.738
	2.1729	13.880	13.104	-5.591	13.024	-6.167
	3.3500	16.920	16.258	-3.913	16.823	-0.573
	7.0960	28.357	26.931	-5.029	26.976	-4.870
	11.9570	42.065	39.986	-4.942	39.607	-5.843
	13.5690	42.422	40.534	-4.451	44.231	+4.271
	17.7230	61.129	58.230	-4.742	59.329	-3.092
	21.2450	91.129	87.103	-4.418	87.279	-4.225
	21.9150	92.504	88.657	-4.159	104.860	+16.600
	22.1100	98.021	93.645	-4.464	117.185	+19.551
	22.3300	98.256	94.390	-3.935	chyba	chyba

Tabulka 2: Hodnoty mnohonásobného rozptylu. θ_M je nejpřesněji stanovená hodnota dle Moliérovy teorie mnohonásobného rozptylu. Hodnota úhlu θ_H je uváděna v [8] jako výsledek Highlandovy apro-ximace. Úhel θ_0 je počítaný dle popsané implementace. Chyba_{*M*-*H*} udává procentuální rozdíl hodnot θ_M a θ_H , Chyba_{*M*-0} udává procentuální rozdíl hodnot θ_M a θ_0 .

5 Optimalizace

Cílem optimalizace je minimalizace dávky záření D tak, aby docházelo k co nejmenšímu poškození okolní tkáně a zároveň byl zničen nádor. Optimalizovanou veličinou je fluence energie Φ_0 popisující jednotlivé Braggovy křivky, na kterých je dávka D lineárně závislá. Je tedy možné použít lineární programování.

5.1 Popis a řešení úloh lineárního programování simplexovou metodou

Úlohou lineárního programování se nazývá úloha, kde je dána lineární *n*-dimenzionální účelová funkce

$$f(x) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n, \tag{25}$$

kde c_1 až c_n se nazývají cenové koeficienty. Účelová funkce se buď minimalizuje nebo maximalizuje. Dále se zavádí lineární omezující podmínky pro jednotlivé proměnné. Obecně mají tvar:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n \le b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n \le b_2$$

$$\vdots$$

$$a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n \le b_m.$$
(26)

Řešení úloh lineárního programování může probíhat např. pomocí simplexové metody, metody vnitřních bodů a elipsoidové metody. Zde se zabývám pouze simplexovou metodou.

Simplexová metoda staví na předpokladu, že m omezujících podmínek "ořeže" n-dimensionální prostor na simplex o m hraničních bodech. Uvnitř a na hranách simplexu se nachází všechna přípustná řešení. Optimum pak leží v některém z hraničních bodů, případně na celé hraně simplexu. Cílem simplexové metody je postupovat od jednoho bodu přípustného řešení tak, aby docházelo k minimalizaci cílové funkce (pokud hledáme minimum) po hraně k dalšímu. V případě, že žádný sousední hraniční bod nenabízí zlepšení hodnot účelové funkce, nacházíme se v globálním optimu.

Pro výpočet úloh lineárního programování je použit software Matlab, první příklad je pro názornost řešen graficky, ostatní pomocí funkce linprog.

5.2 Příklady optimalizace

Aby bylo možné uvést jednoduchý příklad optimalizace, je nutné nejprve zavést předpoklady, se kterými se konkrétně do těchto úloh vstupuje. Tkáň je rozdělena v podstatě do třech podmnožin. První tvoří TARGET, což je místo nádoru. Zde je lékaři předepsána nějaká minimální dávka ozáření $TARGET_{\min}$, která musí být splněna, aby došlo k destrukci nádoru. Zároveň zde bývá udáván ještě horní limit $TARGET_{\max}$, který by neměl být překročen.

Druhou podmnožinou je OAR (organ at risk), tedy taková prostorová část tkáně, kde je umístěn důležitý orgán, který chceme zasáhnout co nejméně. Opět je zde předepsaný určitý limit ozáření OAR_{max} , který se nemá překročit. Poslední oblastí je potom zbytek tkáně, která by měla být zasažená samozřejmě co nejméně, ale není zde předepsán žádný limit.

Vzhledem k využití lineárního programování byla zvolena jako účelová funkce minimalizace množství vyzářených protonů min $\sum \Phi_0$.

Z výše zmíněného lze již obecně formulovat tvar úlohy linerárního programování:

$$\min \sum_{i=1}^{n} \Phi_{0,i}$$

s.t.:
$$\sum_{i=1}^{n} D_i(\Phi_{0,i}, z_{OAR,i}) \leq D_{OAR,\max}$$
$$\sum_{i=1}^{n} D_i(\Phi_{0,i}, z_{TARGET,i}) \geq D_{TARGET,\min}$$
$$\sum_{i=1}^{n} D_i(\Phi_{0,i}, z_{TARGET,i}) \leq D_{TARGET,\max}$$
$$\forall_{i=1}^{n} \Phi_{0,i} \geq 0, \qquad (27)$$

kde D_{\bullet} je dávka v místě \bullet a nznačí počet Braggových křivek.

Jako jednoduchý příklad optimalizace poslouží úloha o dvou proměnných Φ_1 a Φ_2 , viz Obrázek 11. Umisťují se pouze dvě Braggovy křivky s vrcholy ve vzdálenostech 24 a 28cm. Ve vzdálenosti 10-15cm je zadán OAR a hodnota $OAR_{\text{max}} = 5$ Gy. TARGET se nachází mezi 20 a 28cm. $TARGET_{\text{max}} = 10$ Gy a $TARGET_{\text{min}} = 5$ Gy. Ověřovat splnění podmínek budeme po 1cm.

Nejprve se získají funkční hodnoty (dávky) jednotlivých Braggových křivek v bodech, kde se ověřují podmínky:

Křivka	OAR(15)	T(20)	T(21)	T(22)	T(23)	T(24)	T(25)	T(26)	T(27)	T(28)
1	1.089	1.330	1.447	1.623	2.073	2.940	0.798	0.007	0.000	0.000
2	0.978	1.066	1.098	1.139	1.195	1.271	1.383	1.568	1.978	2.657

Tabulka 3: Vypočtené dávky Braggových křivek v bodech, kde se ověřují podmínky.

Poté se sestaví jednotlivé omezující podmínky:

OAR: 1)	$1.089\Phi_1 + 0.278\Phi_2 \le 5$		
TARGET: 2)	$1.330\Phi_1 + 1.066\Phi_2 \ge 5$	11) $1.330\Phi_1 + 1.066\Phi_2 \le 10$	
3)	$1.447\Phi_1 + 1.098\Phi_2 \ge 5$	12) $1.447\Phi_1 + 1.098\Phi_2 \le 10$	
4)	$1.623\Phi_1 + 1.139\Phi_2 \ge 5$	13) $1.623\Phi_1 + 1.139\Phi_2 \le 10$	
5)	$2.073\Phi_1 + 1.195\Phi_2 \ge 5$	14) $2.073\Phi_1 + 1.195\Phi_2 \le 10$	
6)	$2.940\Phi_1 + 1.271\Phi_2 \ge 5$	15) $2.940\Phi_1 + 1.271\Phi_2 \le 10$	
7)	$0.798\Phi_1 + 1.383\Phi_2 \ge 5$	16) $0.798\Phi_1 + 1.383\Phi_2 \le 10$	
8)	$0.007\Phi_1 + 1.568\Phi_2 \ge 5$	17) $0.007\Phi_1 + 1.568\Phi_2 \le 10$	
9)	$0.000\Phi_1 + 1.978\Phi_2 \ge 5$	$18) \ 0.000\Phi_1 + 1.978\Phi_2 \le 10$	
10	0) $0.000\Phi_1 + 2.657\Phi_2 \ge 5$	$19) \ 0.000\Phi_1 + 2.657\Phi_2 \le 10$	
Nezápornost fluencí: 1.0	$000\Phi_1 + 0.000\Phi_2 \ge 0$		
0.0	$000\Phi_1 + 1.000\Phi_2 \ge 0.$		(28)

Účelová funkce je:

$$f = \min\left(\Phi_1 + \Phi_2\right). \tag{29}$$

Takto jednoduchá úloha by šla řešit pouze graficky. Základní množinu tvoří rovina $x \in \mathbb{R}$ a $y \in \mathbb{R}$. Tato množina je poté ořezána plněním omezujících podmínek.

Jak je vidět z obrázku, v tomto případě je simplex ohraničen čtyřmi aktivními omezujícími podmínkami (1, 10, 11 a 17), jejichž průsečíky vytváří čtyři hraniční body:

Obrázek 10: Znázornění omezujících podmínek. Značení jednotlivých omezujících podmínek na tomto obrázku odpovídá jejich značení v rovnici (28). Šedou plnou šrafou je vyznačena oblast, která tvoří řešení dané soustavy nerovnic.

Označení bodu	Φ_1	Φ_2	Funkční hodnota
A1	0.744	3.764	4.508
A2	1.210	3.183	4.393
A3	1.212	3.764	4.976
A4	1.735	3.181	4.916

Tabulka 4: Krajní body simplexu a jejich funkční hodnota účelové funkce.

Dle hodnot účelové funkce ve vypočtených bodech je zřejmé, že se globální optimum nachází v bodě A2 s hodnotou účelové funkce 4.393. Znamená to tedy, že globálně-optimálním řešením, které splňuje všechny omezující podmínky, je Φ_1 -násobek Braggovy křivky s vrcholem ve 24cm a Φ_2 -násobek Braggovy křivky s vrcholem ve 28cm.

Obrázek 11: Jednoduchá optimalizační úloha - znázornění zadání umístění vrcholů a výsledného optimalizovaného řešení.

Běžně se ovšem úlohy lineárního programování neřeší graficky, jelikož mají více než 2 nebo i 3 dimenze, tudíž je nelze takto snadno znázornit.

Obrázek 12: Jednoduchá optimalizační úloha - histogram. Zobrazení, v jakém procentuálním množství TARGETu bylo dosaženo alespoň určité dávky.

5.3 Složitější příklady

Druhým příkladem, který zde uvádím, je úloha s vlivem nehomogenit a ozařováním z obou stran. Jeden zdroj záření je umístěn v z = 0cm, druhý zdroj v z = 50cm. Ve vzdálenosti 10-15cm je uvažován OAR s maximální dávkou $OAR_{\text{max}} = 1$ Gy. TARGET ve vzdálenosti 20-30cm je omezen $TARGET_{\text{max}} = 10$ Gy a $TARGET_{\text{min}} = 5$ Gy. Mezi 10-15cm a 35-40cm se nachází kost.

Obrázek 13: Složitější úloha s vlivem nehomogenit a ozařováním z obou stran.

Posledním uvedeným příkladem je 2D úloha s vlivem mnohonásobného rozp
tylu a ozařováním z obou stran. Rozměry jsou zřejmé z Obrázku 15 - půdory
su. $OAR_{\rm max} = 1$ Gy, $TARGET_{\rm min} = 5$ Gy,
 $TARGET_{\rm max} = 10$ Gy

Obrázek 14: 2D optimalizační úloha s ozařováním z obou stran, bez vlivu nehomogenit.

Obrázek 15: Půdorys 2D optimalizační úlohy s vyznačením TARGETu a OAR.

6 Závěr

Cílem práce bylo vytvořit zjednodušený model šíření protonového záření prostředím. Implementováno bylo prozatím šíření protonů ve 2D prostoru za přítomnosti nehomogenit a ozařování z obou stran. Zjednodušený model splňuje možné předem stanovené odchylky ve většině případech. V případě výpočtu vodního ekvivalentu došlo i k mírnému zlepšení přesnosti oproti článku, ze kterého bylo čerpáno. Další zlepšení by jistě přineslo použití interpolace tabulkových hodnot Bragg-Kleemanova pravidla.

Následujícím krokem bude vytvoření plně prostorového modelu, zavedení různých směrů záření a úpravy v optimalizaci tak, aby více odpovídala používaným metodám. Konkrétně úprava účelové funkce a typu neznámých veličin.

Výsledkem lineárního programování je hodnota globálního optima, což se v případě protonové léčby velice hodí, jelikož nelze nalézt lepší plán. Nevýhodou ovšem je, že může nastat situace, kdy v závislosti na omezujících podmínkách řešení vůbec neexistuje. Potom lineární programování selže. Řešením je zavedení neznámých v podobě odchylkových proměnných δ [13]. Potom má úloha již vždy řešení. Aby bylo možné ovlivnit důležitost jednotlivých mezí, sestaví se vícekriteriální model lineárního programování s účelovými funkcemi danými těmito proměnnými. Poté se sestaví Pareto-množina, podle níž se vždy vybere ten nejlepší plán.

7 Přílohy

7.1 Numerické řešení určitých integrálů

V případech, kdy se nedá řešení určitého integrálu vyjádřit symbolickým zápisem, je možné příslušnou hodnotu spočítat numericky. Jediné, co je třeba znát, jsou funkční hodnoty požadované funkce v určených bodech. Potom, dle požadované přesnosti, se tyto body proloží polynomiální funkcí, jejíž integrál se spočítá snadno.

Obecně se, dle požadované přesnosti, rozdělí interval na několik částí. V každé části intervalu se spočítá n funkčních hodnot, kde n značí stupeň polynomu, kterým se funkce aproximuje. Běžně se používají polynomy do 4. stupně, výpočet s $n \ge 8$ je už ale problematický, jelikož koeficienty c nabývají už i záporných hodnot. [14]

Reference

- [1] H. BETHE, Moliere's theory of multiple scattering, Physical Review, 89 (1953), p. 1256.
- T. BORTFELD, An analytical approximation of the bragg curve for therapeutic proton beams, Medical physics, 24 (1997), pp. 2024–2033.
- [3] J. CODERRE, Principles of radiation interactions. http://ocw.mit.edu/courses/ nuclear-engineering/22-55j-principles-of-radiation-interactions-fall-2004/ lecture-notes/energy_depos_hcp.pdf. [Online; přístup 08-04-2014].
- [4] P. DE VERA, I. ABRIL, AND R. GARCIA-MOLINA, Water equivalent properties of materials commonly used in proton dosimetry, Applied Radiation and Isotopes, 83 (2014), pp. 122–127.
- [5] J. DEMEL, Operační výzkum. http://kix.fsv.cvut.cz/~demel/ped/ov/ov.pdf. [Online; přístup 08-04-2014].
- [6] N. EVANS, Phys3016: lecture 28th february 2008. http://www.southampton.ac.uk/~evans/PHYS3017/Rel.pdf. [Online; přístup 08-04-2014].
- [7] B. GOTTSCHALK, On the scattering power of radiotherapy protons, Medical physics, 37 (2009), pp. 352–367.
- [8] B. GOTTSCHALK, A. KOEHLER, R. SCHNEIDER, J. SISTERSON, AND M. WAGNER, Multiple coulomb scattering of 160 mev protons, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 74 (1993), pp. 467–490.
- [9] M. GUPTA, Calculation of radiation length in materials, tech. report, 2010.
- [10] V. L. HIGHLAND, Some practical remarks on multiple scattering, Nuclear Instruments and Methods, 129 (1975), pp. 497–499.
- [11] L. HONG, M. GOITEIN, M. BUCCIOLINI, R. COMISKEY, B. GOTTSCHALK, S. ROSENTHAL, C. SERAGO, AND M. URIE, A pencil beam algorithm for proton dose calculations, Physics in medicine and biology, 41 (1996), p. 1305.
- [12] E. HUSSEIN, Handbook on Radiation Probing, Gauging, Imaging and Analysis: Volume II Applications and Design, Basics and techniques, Springer, 2003.
- [13] J. JABLONSKÝ, Vícekriteriální a cílové programování. http://nb.vse.cz/~JABLON/doc/vkr.pdf. [Online; přístup 08-04-2014].
- [14] R. KRESS, Numerical Analysis, Graduate Texts in Mathematics, Springer New York, 1998.
- [15] S. LANG AND O. RIESTERER, Modern techniques in radiation oncology. http://www.sps.ch/artikel/progresses/modern_techniques_in_radiation_oncology_36.
 [Online; přístup 08-04-2014].
- [16] V. G. MOLIÈRE, Theorie der streuung schneller geladener teilchen i. einzelstreuung am abgeschirmten coulomb-feld, Zeitschrift Naturforschung Teil A, 2 (1947), p. 133.
- [17] —, Theorie der streuung schneller geladener teilchen il. mehrfach-und vielfachstreuung, Zeitschrift Naturforschung Teil A, 3 (1948), p. 78.
- [18] H. PAGANETTI, Proton Therapy Physics, Series in Medical Physics and Biomedical Engineering, CRC Press/Taylor & Francis, 2012.
- [19] D. PFLUGFELDER, Risk-adapted optimization in intensity modulated proton therapy (impt), (2008).

- [20] E. W. WEISSTEIN, Parabolic cylinder function. http://mathworld.wolfram.com/ParabolicCylinderFunction.html. [Online; přístup 08-04-2014].
- [21] R. ZHANG AND W. D. NEWHAUSER, Calculation of water equivalent thickness of materials of arbitrary density, elemental composition and thickness in proton beam irradiation, Physics in medicine and biology, 54 (2009), p. 1383.
- [22] R. ZHANG, P. J. TADDEI, M. M. FITZEK, AND W. D. NEWHAUSER, Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions, Physics in medicine and biology, 55 (2010), p. 2481.