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Abstract

Despite vivid interest of researchers, fueled further by recent advances in additive manufac-
turing, efficient handling of structural modularity remains an unresolved topic in topology
optimization. This master thesis presents a unifying bilivel optimization framework that al-
lows for simultaneous optimization of modules topology and their distribution within a struc-
ture. The approach combines topology optimization of truss structures, which identifies the
optimal distribution of a material within a predefined ground structure, and the formalism of
vertex-based Wang tiles, which naturally introduces jigsaw-like compatibility of individual
modules and allows for straightforward generation of a compatible assembly plan.

The topology optimization, suitably modified to account for modularity constraints, de-
termines the globally optimal design of the modules for a given assembly plan, while either
simulated annealing or the genetic algorithm is used to arrive at the optimal assembly plan.
The approach thus couples mathematical programming, namely Second-Order Cone Pro-
gramming or Semidefinite Programming, with meta-heuristics.

The developed methodology is applied to an illustrative problem of compliance mini-
mization of a simply supported beam and the influence of module size is discussed. The
optimal design of modular truss structures can be also seen, in a broader perspective, as
a preliminary step to optimal design of non-periodic microstructures, approximated by truss
members.

Keywords

Truss Topology Optimization, Modular-Topology Optimization, Assembly Plan Opti-
mization, Bilevel Optimization, Wang tiles, Non-Periodic Microstructures, Mathematical
Programming, Meta-Heuristics, Finite Element Method
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Abstrakt

I přes značnou pozornost, umocněnou v poslednı́ch letech významným rozšı́řenı́m aditivnı́
výroby, zůstává problém topologické optimalizace modulárnı́ch konstrukcı́ nedostatečně vy-
řešen. Diplomová práce přispı́vá k jeho řešenı́ návrhem dvouúrovňové optimalizace, která
zároveň řešı́ optimálnı́ topologii jednotlivých modulů a jejich rozmı́stěnı́ v konstrukci. Celý
přı́stup využı́vá standardnı́ topologické optimalizace přı́hradových konstrukcı́, sloužı́cı́ jako
nástroj pro nalezenı́ optimálnı́ho rozloženı́ materiálu v rámci zadané podkladové konstrukce,
a formalismu vrcholově definovaných Wangových dlaždic, které umožňujı́ přirozeně for-
mulovat požadavky vzájemné kompatibility jednotlivých modulů, a tı́m umožňujı́ snadno
vytvářet kompatibilnı́ skladebné plány.

Topologická optimalizace, která je upravena tak, aby umožnila zahrnout omezenı́ vyplý-
vajı́cı́ z požadavků kompatibility modulů, je v rámci dvouúrovňové optimalizace použita
k návrhu topologie jednotlivých modulů, zatı́mco nalezenı́ optimálnı́ho skladebného plánu
je řešeno pomocı́ simulovaného žı́hánı́ a genetického algoritmu. Předkládaný přı́stup tak
kombinuje postupy matematického programovánı́, konkrétně kónické programovánı́ druhého
řádu nebo semidefinitnı́ programovánı́, a meta-heuristické postupy.

Uvedený postup je aplikován na ilustrativnı́ přı́klad minimalizace poddajnosti prostě
podepřeného přı́hradového nosnı́ku, u kterého je dále řešena i otázka vlivu velikosti jed-
notlivých modulů. Vyvinutý postup však nenı́ omezen pouze na návrh modulárnı́ch přı́hrado-
vých konstrukcı́, v širšı́m smyslu jej lze chápat jako optimalizaci neperiodické mikrostruk-
tury materiálu, která je v tomto přı́padě modelována přı́hradovou konstrukcı́.

Klı́čová slova

Topologická optimalizace přı́hradových konstrukcı́, Modulárně-topologická optimaliza-
ce, Optimalizace skladebného plánu, Dvouúrovňová optimalizace, Wangovo dlážděnı́, Nepe-
riodické mikrostruktury, Matematické programovánı́, Meta-heuristika, Metoda konečných
prvků
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ûi
KA Kinematically admissible displacements of the i-th bar

x̂i Longitudinal axis of the i-th bar
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Chapter 1

Introduction

Finding optimal structures has been a challenging task attracting the interest of many re-
searchers since the turn of the 20th century (Culmann, 1875; Michell, 1904). A compre-
hensive overview of the most common approaches can be found in the excellent book by
Bendsøe and Sigmund (2003). The so-called structural optimization commonly aims at
achieving one of the following objectives: the structure of minimum weight, the stiffest
structure, or the structure as insensitive to instability and buckling as possible (Christensen
and Klarbring, 2009).

The objectives, albeit distinct, are all driven by investor’s desire for increasing com-
petitiveness of their products and expense savings. In this context, structural modularity is
a significant ingredient, especially for mass production. Prefabricated modular products, pro-
duced off-site in high-tech facilities, are of superior quality (Mikkola, 2003) and contribute
considerably to time savings by a parallel execution of the building phases (Tugilimana et al.,
2016).

1.1 Optimal Design of Modular Truss Structures
This thesis focuses on the optimal design of modular truss structures. The topology optimiza-
tion represents one of the most powerful methods for finding optimal distribution of material
within truss structures. The approach builds on discretization of the continuous design space
into the so-called ground structure (Dorn et al., 1964), defining so a set of feasible nodes
and potential bars, in which the material is to be distributed. Typically, design variables of
the topology optimization involve the cross-sectional areas of individual bars, allowing for
vanishing of unnecessary members.

Modular truss structures contain two inherent levels of details: (i) the element scale at
the level of individual bars and (ii) the module scale covering prefabricated building units,
associating several bars into modules. The element scale has been extensively studied in
the literature, either in its continuous (Bendsøe et al., 1991; Vandenberghe and Boyd, 1996;
Lobo et al., 1998), or in the discrete (Stolpe, 2016) settings. The module scale was handled
separately by Zawidzki and Nishinari (2012), who provided a framework for finding the
optimal arrangement of modules in pedestrian network design.

We believe that the only study dealing with both the scales simultaneously is the recent
article by Tugilimana et al. (2016), whose developed theory permits employment of a single
rotatable module. To the best of our knowledge, the general settings of modular-topology
optimization, allowing for concurrent optimization of topology and arrangement of a set of
several modules, remains unresolved.
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1.2 Topology Optimization of Microstructures
The problem of the two-scale design of modular trusses closely resembles to the widely
studied problem of finding optimal material distribution within the structural macro scale
subjected to the structural boundary conditions, while concurrently optimizing the design of
microstructural cells that constitute the micro scale. Within the latter problem, a treatment
similar to our can be traced in the work of Sigmund (1996), in which the material distribution
within microstructural cells was approximated by truss members.

In the case of microstructures, the two scales are commonly separated due to excessive
computational demands (Xia and Breitkopf, 2016) arising when the both levels are treated
concurrently, which leads to the micro scale designs being tailored to a specific property
(Bendsøe and Kikuchi, 1988) rather than a specific application (Alexandersen and Lazarov,
2015). The separated multi-scale model further lacks the ability to constrain mutual compati-
bility of adjacent microstructural cells (Alexandersen and Lazarov, 2015), hindering possible
industrial applications.

In order to solve the stated mutual compatibility problem, several approaches were pro-
posed. While some relied on post-processing of optimal microstructural cells by smoothen-
ing material distribution across the boundaries of adjoining cells (Radman et al., 2012), an-
other made use of a periodic unit cell (Zhang and Sun, 2006), or layered microstructures
(Alexandersen and Lazarov, 2015) to build periodic mictrostructural assemblies. Stromberg
et al. (2010) introduced an approach based on gradation of a single microstructural cell along
specified paths, leading to its stretching or extension, and, thus, offering more economical
and manufacturable designs.

To our knowledge, all the present topology optimization approaches either directly in-
volve microstructural periodicity or rely on fuzzy post-processing to produce manufacturable
designs, hence, similarly to the topology optimization of truss structures, do not provide an
exact procedure possibly leading to aperiodic materials composed of a limited set of distinct
cells, clarifying the actual response of real-world materials (Alkhader and Vural, 2008).

1.3 Objectives and Methodology
In the outlined context the objectives of the thesis address the aforementioned limitations and
insufficiently resolved problems of the two-scale modular optimization. The thesis presents
an approach that couples topology optimization of a given set of truss modules, or equiv-
alently truss microstructural cells, with a search for their optimal, possibly aperiodic, ar-
rangement, while securing jigsaw-like compatibility of adjoining modules by adaptation of
vertex-based Wang tiles (Lagae and Dutré, 2006).

The content of the thesis is structured as follows: The following three chapters review
fundamentals of Wang tiling, finite element method, and topology optimization of truss struc-
tures, respectively. The stated theory is subsequently used for derivation of convex second-
order cone and semidefinite programming formulations for the optimal least-compliant de-
sign of modular trusses with predefined assembly plans. The fifth chapter then generalizes
both programs to develop bilevel optimization formulations, coupling meta-heuristic and
mathematical programming, in order to take the compatibility constraints arising in the mod-
ular design into account. Finally, in the sixth chapter, meta-heuristics at the macro scale and
the mathematical programming approach employed at the micro scale are coupled, allowing
for simultaneous optimization of topology and assembly plan of individual modules. Im-
plementation and applicability of the developed approach is illustrated with an example of
simply supported beam in the penultimate chapter. The last chapter summarizes the thesis
and outlines possible directions of future work.
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Chapter 2

Wang Tiles

Since the birth of human civilization people have tended to create various forms of art, mak-
ing their lives more pleasing. Therefore, it is impossible to state an exact date denoting the
beginning of art. Tiling, one of its initial forms, are no exception (Grünbaum and Shephard,
1986), being used for tens of thousands of years. Tiling probably originated from the need
to cover floors and walls of dwellings, palaces, and temples, making them more resistant to
wear and climatic conditions. Initially, the first tiling were made of stone. As soon as people
could choose from various shapes and colors, aesthetics was brought into focus, marking the
onset of mosaics. The most famous examples of tiling can be found in Alhambra (Granada,
Spain).

As the vast extent of commonly used tiling is beyond the scope and interest of this thesis,
we will further focus on the Wang tiling, formed by squares with colored edges that allow
for aperiodic assemblies. The following sections state the fundamental properties of Wang
tiles, needed in the following chapters.

2.1 Fundamental Terminology
From the mathematical point of view, tiling can be described in the following way: Let us
assume a closed set of nt ∈ Z>0 planar tiles denoted by TTT =

(
T1 . . . Tnt

)
. Tiling is then

a compatible1 arrangement of the tiles from the set TTT that allows for covering the Euclidean
plane without gaps and overlaps, each tile being used arbitrary number of times. Example
segments of tiling are shown in Fig. 2.1.

Figure 2.1: Example segments of tiling.

Tiling is said to be periodic if and only if there exists a region of the tiling that tiles an
infinite plane by translations only in at least two independent directions, i.e. without rotations
and reflections. If no such region exists, the tiling is referred to as aperiodic. For examples
of both the categories, we refer to Fig. 2.2.

1The compatibility condition is specific to the particular tiling. It can be conveniently represented by en-
forced color-continuity across neighboring tiles.
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(a) Periodic tiling (b) Aperiodic tiling

Figure 2.2: Difference between (a) periodic and (b) aperiodic tiling. Note that the tiling (b)
adds the constraint that the adjoining edges of neighboring tiles must have the same color.

Further, aperiodic tile sets are such tile sets that allow only aperiodic tiling. Tile sets that
allow for at least one periodic tiling are named periodic tile sets.

2.2 Concept of Wang Tiles
The idea of domino-like Wang tiles was introduced by and is named in honor of Wang (1961),
who developed the idea as a tool for studying algorithmic decidability of the predicate calcu-
lus first-order-logical problem ∀∃∀ (Wang, 1962). He demonstrated that the logical problem
is equivalent to the so-called domino problem: Assume a finite set of equal-sized squares
with fixed rotations, later called Wang dominos or Wang tiles, whose edges are assigned
specific colors, according to the specific ∀∃∀ problem. Example Wang tiles over two colors
are shown in Fig. 2.3. The objective is then to cover an infinite plane with arbitrary number
of copies of dominoes such that their adjoining edges share the same color, for illustration
purposes refer to Fig. 2.4b. In the case of feasible objective, the domino problem is said to
be solvable, unsolvable otherwise.

1

9

3

11

2

10

4

12

5

13

7

15

6

14

8

16

Figure 2.3: The complete set of Wang tiles over two colors.

Wang (1961) straightforwardly concluded in his fundamental conjecture that the domino
problem is solvable if and only if there exists a rectangular region, such that both its horizon-
tal and vertical edges are identical, respectively, i.e. the tile set being periodic and implying
non-existence of the aperiodic tile sets.

0 0 0
0 1 1 1

0 1 0
0 1 0 1

1 0 1

(a) Connectivity information

7 10 7

5 8 6

(b) Valid tiling

7 10 7

1 6 6

(c) Invalid tiling

Figure 2.4: Illustration of: (a) connectivity information and its correspondence to valid tiling
(b), (c) example of invalid tiling.

Kahr et al. (1962) demonstrated that the origin-constrained domino problem can be re-
duced to the Turing machine halting problem (Turing, 1936; Davis, 1958). Broadly speaking,
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the problem consists in determining if an arbitrary algorithm with an arbitrary input will ter-
minate in a finite number of steps. Turing (1936) proved that the halting problem has no
solution, as a single Turing machine cannot answer the questions about all possible Turing
machines, implying the machine would operate indefinitely. Despite being possible to design
a single Turing machine for a specific tile set, halting only if the domino problem is unsolv-
able (Kahr et al., 1962), i.e. if the tiling does not cover an infinite plane, there is an infinite
number of such sets, implying infinite number of the related Turing machines. Consequently,
similarly to the halting problem, the domino problem is undecidable and there does not exist
an algorithm for general solution to the domino problem in a finite number of steps.

Insolubility of the domino problem was also proved by Wang’s student Berger (1966),
further providing an aperiodic set of 20426 tiles, contrary to Wang’s fundamental conjecture.

2.2.1 Aperiodic Tile Sets
Since Berger, who derived the first aperiodic sets composed of 20426 (Berger, 1966) and
104 (Berger, 1964) tiles, based on the principle of expanding squares (Grünbaum and Shep-
hard, 1986), the size of the smallest aperiodic set gradually decreased. Following the same
approach, Knuth (1968) proposed a set of 92 tiles. In 1966, Lauchli sent professor Wang an
aperiodic set containing 40 tiles, however the set remained unpublished until (Wang, 1975).
Meanwhile, Robinson (1967) found sets of 52 and 56 tiles (Robinson, 1971) and suggested
an existence of a set of 35 tiles.

In 1973, following the discovery of a tiling composed of two types of rhombs, Roger
Penrose developed even smaller aperiodic set containing 34 tiles. Cooperating with Penrose,
Robinson found an aperiodic set of 32 tiles in 1973. A similar method was also used by
Grünbaum and Shephard (1986) to produce a set of 24 tiles.

Based on the new approach of Ammann (Grünbaum and Shephard, 1986), Robinson
additionally discovered a set of 24 tiles in 1977. In 1978 Ammamm developed a set of only
16 tiles, firstly published in (Grünbaum and Shephard, 1986), and subsequently proved its
aperiodicity in (Ammann et al., 1992).

Further reductions to the smallest aperiodic tile set waited until 1996, when Kari (1996)
introduced a set of 14 tiles. His method was then adopted by Čulı́k (1996), leading to the
tile set of 13 tiles. In 1997, Čulı́k and Kari (1997) brought up the idea the set of 13 tiles
might contain one unnecessary tile and, therefore, there was a possible reduction to 12 tiles.
However, they were able to support their observation only for cross bifinite tiling. Their sus-
picion was proven to be false by Jeandel and Rao (2015), who also presented two aperiodic
sets containing 11 tiles over four colors and proved by enumeration that the sets are smallest
feasible sets over 4 colors. Additionally, Chen et al. (2014) stated no aperiodic tile set is
possible over less than 4 colors.

2.2.2 Applications of Wang Tiles
As mentioned above, the original purpose of establishing Wang tiles was their applicability
to automated theorem proving (ATP) (Wang, 1961), due to which Wang was selected to
become the first recipient of the milestone prize for ATP (Wang, 1984). In this direction,
Wang tiles were then used e.g. for proofs in the cellular automata2 theory (Kari, 1990).

Nowadays, Wang tiles are commonly used in computer graphics for texture synthesis,
because of their ability to efficiently tile aperiodic and stochastic tile-based textures, refer to
(Stam, 1997) and (Cohen et al., 2003). For an example stochastic texture composed of the
complete tile set over two colors, see Fig. 2.5.

2Cellular automata are synthetic computing devices similar to human brain (Kari, 2005).
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(a) Stochastic tiling composed of 120 tiles (b) The complete set of Wang tiles

Figure 2.5: (a) Stochastic compacted graphite iron microstructure generated from (b) the
complete set of Wang tiles over two colors. Wang tiles were created based on a photograph,
courtesy of (Wikimedia Commons, 2009).

Wang tiles are also commonly employed for efficient generation of Poisson disk distri-
butions, refer to (Shade et al., 2000) and (Hiller et al., 2001) for more details. Poisson disk
distributions are particularly useful in computer graphics e.g. for object placement (Deussen
et al., 1998), anti-aliasing (Yellott, 1982), illumination (Cook, 1986), or for mesh generation
(Guo et al., 2016).

Winfree et al. (1998) proposed a molecular realization of Wang tiles, allowing for self-
assemblies of biological nanostructures (e.g. DNA) into (a)periodic crystals. Appropriate
sets are assembled to perform logical computations or to create complex patterns on the
nanoscale (Seeman and Belcher, 2002).

In material engineering, Wang tiles are used for microstructure compression, efficiently
representing multiscale material in computations (Novák et al., 2012), and for microstructure
reconstruction (Doškář et al., 2014). Doškář and Novák (2016) adopted the concept of Wang
tiling to generate large stochastic material samples of the Alporas R© foam together with its
finite element representation. In this thesis it is further aimed at adaptation of Wang tiles to
provide pilot results on topology optimization of microstructures.

2.3 Vertex-Based Wang Tiles
Although Wang tiles proved to be useful for compression and construction of complex sig-
nals, i.e. textures, some of the sets did not guarantee continuity of stored information near
tile corners, because diagonally neighboring tiles were not constrained. In order to solve the
so-called corner problem, firstly recognized by Cohen et al. (2003), corner tiles were intro-
duced, providing the ability to store the connectivity information in colored corners, instead
of edges (Lagae and Dutré, 2006). In order to preserve terminology among dimensions, we
further call the corner tiles vertex-based Wang tiles.

The vertex-based Wang tiles proved to be superior to the traditional Wang tiles, allowing
for a simpler generation of valid tiling, reduced memory requirements, and easier general-
ization to multiple dimensions (Lagae and Dutré, 2006), while preserving possibility to build
aperiodic tiling (Lagae et al., 2006).

The complete set of planar vertex-based Wang tiles over two colors, used throughout the
following chapters, contains one vertex-based tile for each possible combination of colors,
as shown in Fig. 2.6a. It is easy to see that the set of vertex-based Wang tiles actually de-
fines four distinct types of horizontal and vertical edges, respectively, denoted by the follow-
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1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

(a) Complete set of vertex-based Wang tiles over
two colors

1 3 5 72 4 6 8

9 11 13 1510 12 14 16

(b) Corresponding set of 16 edge-based Wang
tiles over four colors

Figure 2.6: Equivalence of (a) the complete set of vertex-based Wang tiles over two colors
with (b) a specific set of edge-based Wang tiles over four colors.

ing combinations of vertices: white-white, blue-white, white-blue and blue-blue. Marking
the edges by red, yellow, green, and blue, respectively, the vertex-based Wang tiles can be
straightforwardly converted to the equivalent set of edge-based Wang tiles, shown in Fig.
2.6b.

In the same manner, any set of vertex-based Wang tiles can be equivalently converted
to the set of edge-based Wang tiles. On the contrary, the reverse approach is not generally
applicable (Lagae and Dutré, 2006), implying that vertex-based Wang tiles are a subset of
the traditional edge-based Wang tiles that is not affected by the corner problem.

In order to create a valid assembly plan of the tiling the vertex-based Wang tiles need to be
placed such that the vertex shared by surrounding tiles has the same color, compare Fig. 2.7b
and 2.7c. Each color can be marked by an integer value (Lagae and Dutré, 2006), here we use
0 for white and 1 for blue, so that a rectangular tiling is described by a connectivity matrix
C∈{0,1}(nt,y+1)×(nt,x+1), with nt,y ∈Z>0 and nt,x ∈Z>0 denoting the count of tiles in vertical
and horizontal direction, respectively. The unique equivalence between the connectivity
matrix and the assembly plan is illustrated in Fig. 2.7a and 2.7b.

C =

1 1 1 0
1 1 0 1
1 0 0 0


(a) Connectivity matrix

16 8 10

8 2 5

(b) Valid tiling

16 14 10

8 2 5

(c) Invalid tiling

Figure 2.7: Illustration of: (a) connectivity matrix and its correspondence to valid tiling (b),
(c) example of invalid tiling.

Utilizing the complete set of vertex-based tiles over a limited set of colors ensure that
any connectivity matrix, containing integer values corresponding to the vertex codes of the
set, automatically defines a valid tiling from the given set.
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Chapter 3

Solution of Trusses by Finite Element
Method

In order to understand real-world structural problems one needs to know all the (infinite
number of) components a structure consists of and the relations between them. Using an
infinite number of infinitesimally small components a continuous formulation, usually in the
form of a differential equation with boundary-value conditions, can be obtained.

While for some specific cases an analytical solution to the differential equation can be
derived, for more complex cases we are left without the ability to obtain an exact analytical
solution. However, based on immense expansion and development of computers, approx-
imate methods for numerical solution of differential equations have been developed in the
recent decades. The finite element method then holds a prominent place among the approxi-
mate methods.

The key idea of the finite element method consists in discretization of the infinite-dimen-
sional continuous model into a discrete finite-dimensional one composed of a finite number
of so-called elements. The unknown field is approximated with a so-called interpolation
function in each element, and governing equations describing element properties and behav-
ior are derived. The individual elements are assembled according to their shared boundaries
(nodes, lines, surfaces etc.), constituting the entire model. Subsequently, solving the differ-
ential equation is simplified into a set of ordinary algebraic equations, giving the approximate
solution to the original problem.

3.1 A Brief Historical Overview
The origin of the finite element method dates back to 1940s. The idea of discretizing a con-
tinuous model with a finite number of elements was firstly adopted by Hrennikoff (1941),
specifically, lattice analogy was used to discretize continuous solids by truss-like elements
to obtain distribution of stresses.

The first work usually cited in connection with the finite element method is (Courant,
1943), where variational principles were applied to obtain an approximate solution to the
traditional Dirichlet problem. The paper also introduced linear shape functions over triangle
network.

The actual expansion of the finite element method started in 1950s in the aircraft industry.
Argyris (1954) developed a matrix method of structural analysis applicable to structures
assembled from discrete elements, facilitating utilization of computers. Turner et al. (1956)
then derived truss, beam, triangular, and rectangular plate stiffness matrices. The term finite
element was firstly coined in (Clough, 1960).
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In (Melosh, 1963), a rigorous variational formulation minimizing the potential energy
of the problem was given, resulting in application of the method to non-structural problems,
such as fluid flow (H.C.Martin, 1969) or heat conduction (Wilson and Nickell, 1966). In (Sz-
abo and Lee, 1969) the method of weighted residuals was utilized, allowing for a quantitative
assessment of the accuracy of the finite element method.

3.2 Problem Statement
Trusses are structures consisting of nodes connected with straight bars. The longitudinal
dimension of bars, in the terminology of finite elements called truss elements, is assumed
to be much greater compared to the remaining two transverse dimensions, given by the bar
cross-sectional area. In our notation the length of an element i will always be aligned with
the longitudinal axis x̂i of the element.

In the subsequent text, we will consider the infinitesimal strain theory and linear elastic-
ity. The truss element is assumed to be prismatic with an infinitely-rigid cross-sectional area
ai ∈R>0, remaining planar after deformation. Due to negligible bending and shear stiffness,
truss member is subjected only to translations, transmits solely axial forces, and deforms
only axially along its local axis x̂i based on the displacement ux̂i(x̂i), see Fig. 3.1.

x̂i

ŷi

ẑi�

ux̂i(x̂i)

Figure 3.1: Displacement ux̂i(x̂i) of the truss element i along local axis x̂i.

Behavior of the truss element is described by three equations. Based on geometric con-
siderations, we can write the strain-displacement relation as

εi(x̂i) =
dux̂i(x̂i)

dx̂i
, (3.1)

with εi(x̂i) being the longitudinal strain.
The stress-strain relation, also called a constitutive equation, is expressed with Hooke’s

law
σi(x̂i) = Eiεi(x̂i), (3.2)

where Ei denotes the modulus of elasticity of the i-th bar and σi(x̂i) stands for the stress
within the i-th element.

Finally, the balance equation of an infinitesimal truss section provides us with the condi-
tion of the static equilibrium

dsi(x̂i)

dx̂i
+ fx̂i(x̂i) = 0, ∀x̂i ∈ (0, `i) , (3.3)

where si(x̂i) is an internal axial force in the truss element i, `i denotes the length of the i-th
bar, and fx̂i(x̂i) is distributed loading. Due to the assumption of trusses being loaded only by
external nodal forces, i.e. fx̂i(x̂i) = 0, Eq. (3.3) simplifies to

dsi(x̂i)

dx̂i
= 0. (3.4)
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The sum of the stresses σi(x̂i) within a cross-sectional area ai is precisely equal to the
axial internal force si(x̂i):

si(x̂i) =
∫

ai

σi(x̂i)dai = σi(x̂i)ai. (3.5)

Combining Eqs. (3.1), (3.2), (3.4), and (3.5) a homogeneous differential equation describing
the behavior of a single truss element is obtained in the form

d
dx̂i

(
Eiai

dux̂i(x̂i)

dx̂i

)
= 0. (3.6)

Eq. (3.6) has to be supplemented with corresponding kinematic and static boundary condi-
tions, as shown in Fig. 3.2, reflecting the loading of the model.

x̂i F2,x̂F1,x̂ u2,x̂u1,x̂

`i1 2

Figure 3.2: Boundary conditions of the truss element i.

Kinematic Dirichlet–boundary conditions are prescribed in the form of displacements
u1,x̂ ∈ R and u2,x̂ ∈ R:

ux̂i(0) = u1,x̂ (displacement of node 1 ), (3.7a)

ux̂i(`i) = u2,x̂ (displacement of node 2 ), (3.7b)

and the static Neumann–boundary conditions in the form of external nodal forces F1,x̂ ∈ R
and F2,x̂ ∈ R:

Eiai
dux̂i(0)

dx̂`i
=−F1,x̂ (force in node 1 ), (3.8a)

Eiai
dux̂i(`i)

dx̂i
= F2,x̂ (force in node 2 ). (3.8b)

The convention introduced in Fig. 3.2 directly implies that F1,x̂ ∈R>0 induces compres-
sion in the element, and F1,x̂ ∈ R<0 tension, hence the negative sign in Eq. (3.8a). On the
contrary, F2,x̂ ∈ R>0 leads to tension in the element, and F2,x̂ ∈ R<0 to compression, which
agrees with the sign convention, hence the positive sign in Eq. (3.8b).

In order to uniquely solve the boundary-value problem, two boundary conditions, includ-
ing at least one kinematic, need to be specified, corresponding to the fact that each node has
a single degree of freedom. The solution is, clearly visible from Eq. (3.6), in the form of the
displacement function ux̂i(x̂i).

3.3 Derivation of Truss Element Equations
The mathematical approach to finite element method is based on approximation of the exact
axial displacement function ux̂i(x̂i) over the length of the element i by ui

x̂i
(x̂i), such that

ux̂i(x̂i)≈ ui
x̂i
(x̂i). (3.9)

Evaluating the truss element, formally stated by Eq. (3.6) with boundary value condi-
tions expressed by Eq. (3.7) and Eq. (3.8) and recognizing that Eq. (3.6) is homogeneous
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and the boundary conditions do not state any requirements for the second order derivatives,
it is straightforward that the displacement function needs to be only C0 continuous within
the truss element and needs to respect the boundary value conditions. Following the require-
ments it implies a linear function ui

x̂i
(x̂i) is sufficient to approximate ux̂i(x̂i). It needs to be

highlighted, that in the case of the truss element being loaded only by nodal forces, the linear
approximation is actually equal to the exact analytical solution.

x̂i

u2,x̂u1,x̂

`i1 2

N i
1(x̂i) Ni

2(x̂i)

ui
x̂i
(x̂i)

Figure 3.3: Linear shape functions of the truss element i.

Let us now introduce a linear shape (interpolation) function Ni
k(x̂i), such that

Ni
k(x̂i) =

{
1 in node k ,
0 in any other node,

(3.10)

so that for a truss element i consisting of nodes 1 and 2 , see Fig. 3.3, the shape functions
Ni

1 and Ni
2 read as

Ni
1(x̂i) = 1− x̂i

`i
, (3.11a)

Ni
2(x̂i) =

x̂i

`i
. (3.11b)

The displacement ui
x̂i
(x̂i) is then a linear combination of both the shape functions

ui
x̂i
(x̂i) = Ni

1(x̂i)u1,x̂ +Ni
2(x̂i)u2,x̂, (3.12)

which can be equivalently written in the matrix notation as

ui
x̂i
(x̂i) =

(
Ni

1(x̂i) Ni
2(x̂i)

){u1,x̂
u2,x̂

}
= Ni(x̂i)ûi, (3.13)

with Ni(x̂i)∈R2 being the shape function matrix and ûi ∈R2 the displacement column vector
of the element i in local coordinates.

From Eq. (3.1), the axial strain field can be expressed through

ε
i
i =
(

dNi
1(x̂i)
dx̂i

dNi
2(x̂i)
dx̂i

){u1,x̂
u2,x̂

}
=
(
− 1

`i
1
`i

){u1,x̂
u2,x̂

}
= Biûi, (3.14)

where Bi ∈R2 is the strain-displacement matrix of the i-th element. Note that the axial strain
is constant within the truss element.

In the following sections the truss governing equations are to be derived by two different
approaches, showing various perspectives. While direct equilibrium approach is the most
straightforward, the method based on minimizing the potential energy functional will prove
to be convenient in the subsequent chapters.



Chapter 3: Solution of Trusses by Finite Element Method 12

3.3.1 Direct Equilibrium
Because the axial strain is constant within the truss element, recall Eq. (3.14), the longitudi-
nal stress is also constant over its length, and based on Eq. (3.2) equals to

σi = EiBiûi. (3.15)

Similarly, the axial internal force after substituting Eq. (3.15) into Eq. (3.5) reads as

si = EiaiBiûi. (3.16)

Again, it should be noted that the axial internal force si is constant within the truss element.
Let us now return to Fig. 3.2 and the boundary conditions, as defined by Eqs. (3.7) and

(3.8). From the static equilibrium on the element i it implies that the axial force si has to be
equal to −F1,x̂ and also to F2,x̂, therefore it stands that(

−1
1

){
si
}
=

(
F1,x̂
F2,x̂

)
, (3.17)

which is equivalently in matrix notation

γ̂γγ isi = f̂i, (3.18)

with γ̂γγ i ∈ R2 being a column vector expressing geometric relation between axial and nodal
forces in local coordinates and f̂i ∈R2 standing for nodal forces column vector of the element
i, respectively. Note that it further stands that

Bi =
1
`i
(γ̂γγ i)

T . (3.19)

Combination of Eq. (3.17) with Eq. (3.16) then leads to the relation

Eiai

`i

(
1 −1
−1 1

){
u1,x̂
u2,x̂

}
=

{
F1,x̂
F2,x̂

}
, (3.20)

which is in matrix notation
K̂iûi = f̂i, (3.21)

with the stiffness matrix of the element i in local coordinates K̂i ∈ R2×2 defined as

K̂i =
Eiai

`i

(
1 −1
−1 1

)
=
(
Bi)T

Eiai`iBi = γ̂γγ i
Eiai

`i
(γ̂γγ i)

T . (3.22)

Note that the element stiffness matrix is symmetric and positive definite for an arbitrary
cross-sectional area ai > 0 and can be expressed in the form of a dyadic product.

3.3.2 Minimum to the Potential Energy Functional
Solution of trusses can also be seen from the perspective of a search for the natural structural
state that minimizes the total energy. Let us, therefore, define the potential energy functional
of the i-th element Πi as the sum of internal elastic strain energy Ui and the potential energy
of external forces Wi

Πi =Ui +Wi. (3.23)
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Internal Elastic Strain Energy

For derivation of the internal elastic strain energy Ui an infinitesimally small section of the
truss element is considered. Due to the already stated assumption of bars transmitting only
the axial forces, resulting in the stress field σi, the section is consequently elongated from its
initial length dx̂i to dx̂i (1+ dεi), with dx̂i dεi denoting the actual differential elongation, as
shown in Fig. 3.4.

dŷ
i

σi

dẑ
i

σi

dx̂i dεi dx̂i
Figure 3.4: Normal stresses in an infinitesimally small section of the truss element i.

The differential internal work, corresponding to the infinitesimally small section of the
truss element and denoting the work done by internal forces on displacements, then reads as

dUi = sidux̂i(x̂i), (3.24)

which can be based on Eq. (3.5) rewritten as

dUi = σi dŷi dẑi dεi dx̂i (3.25)

and finally as
dUi = σi dεi dVi, (3.26)

where dVi = dx̂i dŷi dẑi corresponds to the volume of the infinitesimally small section of the
truss element.

By integration of Eq. (3.26) over the strains, to obtain displacements, and over the vol-
ume, the internal elastic strain energy of the whole truss element

Ui =
∫

Vi

(∫
εi

0
σi dεi

)
dVi (3.27)

is obtained. After integration over the strains we get

Ui =
1
2

∫
Vi

σiεi dVi, (3.28)

which reads after expressing σi from Eq. (3.5) and after substituting into Eq. (3.28) as

Ui =
1
2

∫
x̂i

∫
ŷi

∫
ẑi

si

ai
εi dẑi dŷi dx̂i (3.29)

and equivalently as

Ui =
1
2

∫ `i

0
siεi dx̂i . (3.30)

Finally, insertion of Eq. (3.1) and Eq. (3.5) into Eq. (3.30) leads to

Ui =
1
2

∫ `i

0

dux̂i(x̂i)

dx̂i
Eiai

dux̂i(x̂i)

dx̂i
dx̂i . (3.31)
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Potential Energy of External Forces

The potential energy of external forces is the external work done by external forces on nodal
displacements. Using the notation from Fig. 3.2 we can write

Wi =−
(
ux̂i(0) ux̂i(`i)

)(F1,x̂
F2,x̂

)
, (3.32)

with the negative sign implying the loss of energy when the force acts in the displaced direc-
tion.

Potential Energy Function

Insertion of the derived relations for the internal elastic strain energy (3.31) and for the
potential energy of external forces (3.32) into Eq. (3.23) leads us to the formula

Πi(ux̂i(x̂i)) =
1
2

∫ `i

0

dux̂i(x̂i)

dx̂i
Eiai

dux̂i(x̂i)

dx̂i
dx̂i−F1,x̂ux̂i(0)−F2,x̂ux̂i(`i) (3.33)

that can be equivalently rewritten in matrix notation as

Πi(ûi) =
1
2

∫ `i

0

(
ûi)T (Bi)T

EiaiBiûi dx̂i−
(
ûi)T f̂i (3.34)

and after integration as

Πi(ûi) =
1
2
(
ûi)T (Bi)T

Eiai`iBiûi−
(
ûi)T f̂i, (3.35)

that is a convex quadratic function only in terms of ûi.

Proposition 1. Minimum to the potential energy function Πi automatically satisfies Eq.
(3.21).

Proof. Expanding Eq. (3.35) leads to

Πi(ûi) =
1
2

Eiai`i
{

u1,x̂ u2,x̂
}(− 1

`i
1
`i

)(
− 1

`i
1
`i

){u1,x̂
u2,x̂

}
−
{

u1,x̂ u2,x̂
}(F1,x̂

F2,x̂

)
, (3.36)

which after multiplication equals to

Πi(ûi) =
1
2

Eiai`i

(
1
`2

i
u2

1,x̂−
2
`2

i
u1,x̂u2,x̂ +

1
`2

i
u2,x̂

)
−F1,x̂u1,x̂−F2,x̂u2,x̂, (3.37)

and also to

Πi(ûi) =
1
2

Eiai

`i

(
u2

1,x̂−2u1,x̂u2,x̂ +u2
2,x̂
)
−F1,x̂u1,x̂−F2,x̂u2,x̂. (3.38)

Due to the function Πi being convex, its minimum clearly requires only a stationary to the
potential energy function, such that

∂Πi(ûi)

∂u1,x̂
= 0, (3.39a)

∂Πi(ûi)

∂u2,x̂
= 0. (3.39b)
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The derivative in Eq. (3.39a) leads us directly to

∂Πi(ûi)

∂u1,x̂
=

1
2

Eiai

`i
(2u1,x̂−2u2,x̂)−F1,x̂ = 0, (3.40)

and similarly, the derivative in Eq. (3.39b) equals to

∂Πi(ûi)

∂u2,x̂
=

1
2

Eiai

`i
(−2u1,x̂ +2u2,x̂)−F2,x̂ = 0. (3.41)

Finally, Eqs. (3.40) and (3.41) rewritten into matrix notation denote the requirements of the
minimum

∂Πi(ûi)

∂ ûi =
Eiai

`i

(
1 −1
−1 1

){
u1,x̂
u2,x̂

}
−
{

F1,x̂
F2,x̂

}
= 0, (3.42)

which is exactly
K̂iûi = f̂i, (3.43)

and we are done.

Compliance of the Truss Element

Let ûi
KA ∈ R2 denote a vector of kinematically admissible displacements, satisfying the

boundary conditions. The quadratic potential energy function from Eq. (3.35) can then
be written as

Πi(ûi
KA) =

1
2
(
ûi

KA
)T K̂iûi

KA−
(
ûi

KA
)T f̂i (3.44)

and further as

Πi(ûi
KA) =

(
ûi

KA
)T
(

1
2

K̂iûi
KA− f̂i

)
. (3.45)

Now, we search its minimum over all admissible displacements:

min
∀ûi

KA∈R2

[(
ûi

KA
)T
(

1
2

K̂iûi
KA− f̂i

)]
. (3.46)

Because Eq. (3.21) is satisfied at the minimum to the potential energy function, recall Propo-
sition 1, ûi is clearly a minimizer to Eq. (3.46). Subsequently, the term K̂iûi can be substi-
tuted by f̂i, implying the minimum to potential energy function equals to

min
∀ûi

KA∈R2

(
Πi(ûi

KA)
)
=
(
ûi)T

(
1
2

f̂i− f̂i
)
=−1

2
(
ûi)T f̂i =−1

2
(
f̂i)T ûi, (3.47)

where
ci =

1
2
(
f̂i)T ûi, (3.48)

ci ∈R>0 is called compliance of the i-th truss element. Compliance represents one half of the
work done by external forces, recall Eq. (3.32), and measures the stiffness of the truss with
respect to specified nodal forces. The lower the compliance, the stiffer the truss element.
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3.4 Transformation to Plane Trusses
Let us consider a Cartesian coordinate system defined by orthogonal axes x and y, form-
ing plane, with the truss element i placed between arbitrary located nodes 1 and 2 , see
Fig. 3.5. Let the angle between x and the longitudinal axis of the element x̂i be measured
counterclockwise and denoted by θi ∈ [0,2π).

Because truss elements do not possess shear and bending stiffness, each node of the in-
plane truss element is associated with two degrees of freedom. Subsequently, the element is
assigned four degrees of freedom, specified by displacements u1,x̂i and u2,x̂i in the direction
of x̂i and displacements u1,ŷi and u2,ŷi in the direction of ŷi, respectively.

x̂i
ŷi

x

y θi

F2,x̂i

F1,x̂i

` i

1

2

Figure 3.5: In-plane truss element i.

For a truss structure consisting of several arbitrary truss members it is of great importance
to treat all degrees of freedom, denoted by local displacements, within a single unifying
framework, denoted by the global-coordinates displacements u1,x, u2,x in the direction of x,
and u1,y and u2,y in the direction of y.

u2,x̂i

u2,xθi

u2,ŷi

u2,y

θi

2

2′

Figure 3.6: Transformation of displacements between local and global coordinates.

Let us begin with a sample node 2 of a truss element being displaced to the position 2′ ,
as shown in Fig. 3.6. Then, based on geometrical properties of the problem, we can write
relations between the local displacements u2,x̂i and u2,ŷi and the global displacements u2,x
and u2,y as

u2,x̂i = u2,x cos(θi)+u2,y sin(θi) (3.49)

and
u2,ŷi = u2,x sin(θi)+u2,y cos(θi), (3.50)

that is in matrix notation {
u2,x̂i

u2,ŷi

}
=

(
cos(θi) sin(θi)
sin(θi) cos(θi)

){
u2,x
u2,y

}
. (3.51)
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Similarly, for the whole truss element consisting of nodes 1 and 2 it is straightforward to
write 

u1,x̂i

u1,ŷi

u2,x̂i

u2,ŷi

=


cos(θi) sin(θi) 0 0
sin(θi) cos(θi) 0 0

0 0 cos(θi) sin(θi)
0 0 sin(θi) cos(θi)




u1,x
u1,y
u2,x
u2,y

 , (3.52)

or, equivalently
ûi = Tiui. (3.53)

Here, ûi ∈R4 denotes the column vector of displacements along local axes x̂i and ŷi, ui ∈R4

standing for a column vector of displacements along global axes x and y, and the transfor-
mation matrix of the i-th element Ti ∈ R4×4 stands for

Ti =


cos(θi) sin(θi) 0 0
sin(θi) cos(θi) 0 0

0 0 cos(θi) sin(θi)
0 0 sin(θi) cos(θi)

 . (3.54)

Note that the tranformation matrix is actually a rotation matrix, and it is therefore orthogonal.

Similarly to the displacements, the linear transformation can be applied on local forces
column vector f̂i ∈ R4, such that

F1,x̂
F1,ŷ
F2,x̂
F2,ŷ

=


cos(θi) sin(θi) 0 0
sin(θi) cos(θi) 0 0

0 0 cos(θi) sin(θi)
0 0 sin(θi) cos(θi)




F1,x
F1,y
F2,x
F2,y

 , (3.55)

or, equivalently
f̂i = Tifi (3.56)

with f̂i ∈ R4 being a column vector of nodal forces in local coordinates and fi ∈ R4 standing
for a column vector of nodal forces in global coordinates.

Stress-Displacement Relation

The axial stress-displacement relation in local coordinates is based on Eq. (3.15), and reads
as

σi = EiBiûi = Ei

(
− 1

`i
0 1

`i
0
)

u1,x̂i

u1,ŷi

u2,x̂i

u2,ŷi

 , (3.57)

which can be equivalently rewritten into global coordinates:

σi = EiBiTiui = Ei

(
− 1

`i
0 1

`i
0
)

cos(θi) sin(θi) 0 0
sin(θi) cos(θi) 0 0

0 0 cos(θi) sin(θi)
0 0 sin(θi) cos(θi)




u1,x
u1,y
u2,x
u2,y

 .

(3.58)
After expanding the matrix multiplications, the previous relation simplifies into

σi =
Ei

`i

(
−cos(θi) −sin(θi) cos(θi) sin(θi)

)
u1,x
u1,y
u2,x
u2,y

 , (3.59)
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with the matrix form
σi =

Ei

`i
γγγ

T
i ui (3.60)

where γγγ i ∈ R4 stands for a column vector expressing geometric relation between axial and
nodal forces, so that it holds

γγγ isi = fi. (3.61)

The axial force equals to

si = EiaiBiûi = EiaiBiTiui =
Eiai

`i
γγγ

T
i ui. (3.62)

Equilibrium Equation

In order to state the equilibrium equation in global coordinates, we will firstly recall the
local-coordinates version:

K̂iûi = f̂i. (3.63)

Inserting Eq. (3.53) and Eq. (3.56) into Eq (3.63) leads to

K̂iTiui = Tifi, (3.64)

which is equivalent to (
Ti)−1 K̂iTiui = fi. (3.65)

Because the transformation matrix is orthogonal we have
(
Ti)−1

=
(
Ti)T. Subsequently, we

can write (
Ti)T K̂iTiui = fi. (3.66)

The global stiffness matrix Ki ∈ R4×4 of i-th element then equals to

Ki =
(
Ti)T K̂iTi =

(
Ti)T (Bi)T

Eiai`iBiTi = γγγ i
Eiai

`i
(γγγ i)

T , (3.67)

and specifically to

Ki =
Eiai

`i


cos(θi)

2 cos(θi)sin(θi) −cos(θi)
2 −cos(θi)sin(θi)

cos(θi)sin(θi) sin(θi)
2 −cos(θi)sin(θi) −sin(θi)

2

−cos(θi)
2 −cos(θi)sin(θi) cos(θi)

2 cos(θi)sin(θi)

−cos(θi)sin(θi) −sin(θi)
2 cos(θi)sin(θi) sin(θi)

2

 .

(3.68)
Finally, the global-coordinates equilibrium equation reads as

Kiui = fi. (3.69)

Potential Energy Function

Similarly, let us recall the equation for the potential energy function in local coordinates:

Πi(ûi) =
1
2
(
ûi)T K̂iûi−

(
ûi)T f̂i. (3.70)

After substituting Eq. (3.53) and Eq. (3.56) into Eq. (3.70), we obtain

Πi(ui) =
1
2
(
Tiui)T K̂iTiui−

(
Tiui)T Tifi, (3.71)
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which is equivalently

Πi(ui) =
1
2
(
ui)T (Ti)T K̂iTiui−

(
ui)T (Ti)T Tifi. (3.72)

Exploiting orthogonality of the transformation matrix and substituting Ki from Eq. (3.67),
we are led to the final relation in the global coordinates

Πi(ui) =
1
2
(
ui)T Kiui−

(
ui)T fi. (3.73)

3.5 Truss Element Equations Assembly
Consider a general truss structure consisting of nb ∈ Z>0 truss members. In order to provide
a unified framework coupling all truss elements, their equations need to be expressed in
dependence on the structural displacement field column vector uS ∈ R2nn , defined as

uS =


u1,x
u1,y

...
unn,x
unn,y

 , (3.74)

where nn ∈ Z>0 denotes the number of nodes the truss structure contains.
In this spirit, the structural stiffness matrix KS ∈ R2nn×2nn , relating global forces with

global displacements, is defined as the sum of the contributions of all bars

KS =
nb

∑
i=1

Ki, (3.75)

where the element stiffness matrices are added to such rows and columns that correspond
to the coincidence of variables in uS and ui. Note that it follows from the developments in
Section 3.3 that the structural stiffness matrix KS is square, symmetric, singular, and positive
semidefinite.

A similar approach is also applicable to the assembly of the nodal forces column vector
fS ∈ R2nn , defined as the sum of nodal forces within all truss elements

fS =
nb

∑
i=1

fi =


F1,x
F1,y

...
Fnn,x
Fnn,y

 . (3.76)

The total potential energy function Π(uS) : R2nn →R is composed from contributions of
individual members:

Π(uS) =
nb

∑
i=1

Πi(uS) =
nb

∑
i=1

(
1
2
(
ui)T Kiui−

(
ui)T fi

)
, (3.77)

which is equivalent to

Π(uS) =
1
2
(uS)

T KSuS− (uS)
T fS. (3.78)
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The structural static matrix AS ∈ R2nn×nb can be assembled as

AS =
nb

∑
i=1

γγγ i, (3.79)

with γγγ i ∈Rnn being added to the i-th column and to the rows corresponding to the coincidence
of variables in uS and ui.

3.6 Solution to the Truss Equations
In Section 3.2, we have already stated that we will consider only two types of boundary
conditions: prescribed nodal forces f ∈ Rndof (Neumann–type boundary conditions) and pre-
scribed displacements u∈R2nn−ndof (Dirichlet–type boundary conditions), with ndof denoting
the number of degrees of freedom, corresponding to the unconstrained displacements. Note
that also the unknowns are of two kinds: the reactions fR ∈R2nn−ndof acting at the prescribed
displacements, and, on the contrary, the displacement field u ∈ Rndof for Neumann data.

3.6.1 Equilibrium Equation
Without loss of generality, the equilibrium equations

KSuS = fs (3.80)

can be reordered and decomposed into smaller parts, corresponding to the boundary condi-
tions, such that (

K KuR
KRu KRR

){
u
u

}
=

{
f

fR

}
. (3.81)

Subsequently, the unknown displacement field u is solved first from

u = K−1f, (3.82)

where
f = f−KuRu. (3.83)

3.6.2 Minimum to the Potential Energy Function
Based on the boundary conditions, the total potential energy function can be expressed as

Π(u) =
1
2
(u)T Ku− (u)T f. (3.84)

Following Proposition 1, the unknown displacement field is the minimizer of the convex
quadratic function with the minimum of −c, where

c =
1
2

fTu (3.85)

is, again, the so-called compliance.
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Chapter 4

Topology Optimization of Truss
Structures

Finding optimal structures has always been a challenging task in interest of many researchers,
see e.g. (Michell, 1904), (Dorn et al., 1964) and (Bendsøe and Sigmund, 2003); and the
references herein. The so-called structural optimization usually aims at achieving one of
the following objectives: the structure of minimum weight, the most stiff structure, or the
structure as insensitive to instability and buckling as possible (Christensen and Klarbring,
2009).

To narrow the wide range of possibilities in structural optimization, we further focus en-
tirely on optimization of truss structures. Based on employed design variables, optimization
of truss structures is, generally, being divided into the following classes: sizing optimization,
searching for positive cross-sectional areas of fixed truss elements; shape optimization, as-
suming fixed nodal connectivity and optimizing solely position of nodes, hence exploring
optimal structural shape, see Fig 4.1c for an example, and topology optimization. The latter
is in focus of this thesis, and resembles the sizing optimization, but additionally permits the
cross-sectional areas to become zero, implying some bars might vanish, see Fig. 4.1b.

(a) Initial truss. (b) Optimal topology. (c) Optimal shape.

Figure 4.1: Optimization of truss structures. Assuming (a) the initial truss, sample results of
(b) topology optimization and (c) shape optimization are displayed.

Albeit differently, both the topology and the shape optimization offer a designer a way
to acquire optimal geometry, subsequently both are collectively referred to as geometry op-
timization. Simultaneous optimization of shape and topology is named layout optimization.
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4.1 Historical Background
Topology optimization of truss structures with continuous design variables has significantly
evolved in the recent century, tightly following advances in optimization techniques and
algorithms.

Culmann (1875) was probably the first one, who addressed layout optimization of trusses
(Prager, 1974). Fundamental properties of optimal grid-like structures were stated by Michell
(1904), who derived optimality conditions for least weight trusses subjected to stress con-
straints and a single loading condition. The developed approach, however, often led to de-
signs containing infinite number of bars, see Fig. 4.2 for an example, making the approach
impractical (Prager, 1974).

Figure 4.2: An example of Michell’s structure.

An approximate solution to the original Michell’s approach was introduced by Dorn et al.
(1964), who discretized the continuous structural universe (Kirsch, 1989) into a finite-dimen-
sional design domain D , the so-called ground structure, specifying a finite set of fixed admis-
sible nodes and a finite set of their admissible connections (Bendsøe and Sigmund, 2003),
consequently also avoiding the possibility of infinite number of bars; see Fig. 4.3 for an
example. Since then, the ground structure method have become the cornerstone of the truss
topology optimization.

Figure 4.3: Fully connected ground structure.

Following developments in mathematical programming and rise of computers, the mini-
mum-weight design of trusses subjected to a single loading condition was stated as a linear
program (Hemp, 1973), efficiently solvable by the simplex method. Because the formulation
omits compatibility conditions, the resulting optimal design is also referred to as the plastic
design.

In the subsequent years, several trials were made towards an elastic formulation that
would be suitable for multiple loading conditions and would permit constraining cross-
sectional areas. Majority of attempts, however, relied on nonconvex or heuristic techniques
applicable only to small-scale problems, see, e.g., (Kirsch, 1989) for an overview.

The problem of optimal elastic design had remained unsolved until the early 90s, when
the originally non-convex elastic formulation was reformulated into a convex quadratic opti-
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mization problem solvable by interior-point methods, see (Bendsøe et al., 1991), (Achtziger
et al., 1992) and (Ben-Tal and Bendsøe, 1993).

Further, Vandenberghe and Boyd (1996) developed a linear semidefinite programming
formulation, allowing straightforward addition of constraints on global buckling (Ben-Tal
and Nemirovski, 1997) or free-vibrations (Ohsaki et al., 1999). Finally, Lobo et al. (1998)
and Ben-Tal and Nemirovski (2001) introduced second-order cone programming formula-
tion, that is, together with the semidefinite programming formulation, used in this thesis.

4.2 Formulations For Truss Topology Optimization
For historical reasons the existing formulations are traditionally divided into the plastic de-
sign, which disregards the compatibility conditions, is applicable only to problems with a sin-
gle loading condition, and does not allow for constraints on cross-sectional areas; and the
elastic design. In the following sections, however, we are going to show that all the common
formulations for truss topology optimization are built on the same basis, in particular, and
they are special cases of the traditional elastic minimum-compliance formulation

min
a∈Rnb

≥0,u∈R
ndof

1
2

fTu (4.1a)

s.t. K(a)u = f, (4.1b)

`̀̀Ta≤V , (4.1c)
a≥ 0, (4.1d)

or the minimum-volume (weight) formulation

min
a∈Rnb

≥0,u∈R
ndof

`̀̀Ta (4.2a)

s.t. K(a)u = f, (4.2b)
1
2

fff Tu≤ c, (4.2c)

a≥ 0, (4.2d)

where a ∈ Rnb
≥0, a =

(
a1 . . . anb

)T, denotes a column vector of cross-sectional areas, `̀̀ ∈
Rnb
>0, `̀̀ =

(
`1 ... `nb

)T, stands for a column vector containing bar lengths, V ∈ R>0 is
the upper bound on structural volume, and c ∈ R>0 denotes the upper bound on structural
compliance.

The formulation (4.1) searches a minimum-compliant design, compare the objective
(4.1a) with Eq. (3.85), subjected to the compatibility conditions (4.1b), volume constraint
(4.1c), and non-negativity of cross-sectional areas (4.1d). Similarly, the formulation (4.2)
searches a minimum-volume (4.2a) design subjected to the compatibility conditions (4.2b),
the bound on structural compliance (4.2c), and non-negativity of cross-sectional areas (4.2d).

It should be noted that the (globally) optimal solution a∗ and u∗ to (4.1) is also (globally)
optimal to (4.2) if c = 1

2 fTu∗, and conversely (globally) optimal solution a∗ and u∗ to (4.2)
is also (globally) optimal to (4.1) if V = `̀̀Ta∗.

Both the formulations (4.1) and (4.2) would be convex and could be solved in the space
of cross-sectional areas only, if a positive lower bound had been imposed on a. In that
case K(a) would have been positive definite and thus u could be uniquely determined from
Eq. (4.1b) or (4.2b) (Svanberg, 1981). However, imposing a lower bound on a leads to
a sizing optimization problem and prohibits any member to vanish, which is the key idea of
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the topology optimization. For the truss topology optimization the matrix K(a) is positive
semidefinite, making the formulations non-convex (Bendsøe and Sigmund, 2003) and hard
to solve even for small-scale problems (Kočvara and Outrata, 2006).

In the following sections, the initial non-convex problem will be reformulated into equiv-
alent convex formulations, providing also globally optimal solution a∗ and u∗ to both the
original formulations (4.1) and (4.2).

4.2.1 Quadratic Programming Formulation
Solution to the non-convex optimization problem (4.1) to proven global optimality had been
a challenging task until its reformulation to a convex quadratic programming problem, de-
veloped by Bendsøe et al. (1991). In the following text the quadratic formulation will be
derived, following the approach of (Ben-Tal and Bendsøe, 1993), (Achtziger et al., 1992),
and (Kočvara and Zowe, 1996).

Let us firstly recall the potential energy function from Section 3.6.2:

Π(u) =
1
2

uTK(a)u− fTu, (4.3)

which allows us to rewrite Eq. (4.1) as

− max
a∈Rnb

≥0∧`̀̀
Ta=V

[
min

u∈Rndof

(
1
2

uTK(a)u− fTu
)]

. (4.4)

As already derived, the quadratic potential energy function is convex in u and thus
bounded from below, by negative compliance −1

2 fTu, recall Eq. (3.47). In order to make
the objective positive and equal to (4.1a), negative sign is imposed at the beginning of Eq.
(4.4). At the minimum of the quadratic function the compatibility conditions are automat-
ically satisfied, recall Proposition 1, therefore satisfying (4.1b). The max operator is then
linear in a and constrained to satisfy (4.1c) and (4.1d), making the entire problem (4.4)
concave-convex and equivalent to (4.1).

Rewriting Eq. (4.4) to remove the leading negative sign, we obtain

min
a∈Rnb

≥0∧`̀̀
Ta=V

[
max

u∈Rndof

(
fTu− 1

2
uTK(a)u

)]
, (4.5)

that is a convex-concave problem, for which the saddle-point exists and the min and max op-
erators can be conveniently interchanged (Rockafellar, 1997, pp. 393), subsequently leading
to

max
u∈Rndof

[
min

a∈Rnb
≥0∧`̀̀

Ta=V

(
fTu− 1

2
uTK(a)u

)]
(4.6)

or, in the expanded form,

max
u∈Rndof

 min
a∈Rnb

≥0∧`̀̀
Ta=V

fTu−
(

1
2uTγγγ1

E1
`1

γγγT
1 u . . . 1

2uTγγγnb

Enb
`nb

γγγT
nb

u
)

a1
...

anb



 (4.7)

with the inner part (with fixed u) being a linear program in terms of a. Although the stiffness
matrix has been expanded into dyadic products, which cannot be done for multiple loading
conditions, the following procedure is valid also for the general multiple loading cases, up to
minor changes in notation.
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The feasible space of the linear program is, from its nature, a polyhedron, implying we
need to find its extreme vertex. Due to fTu being fixed for all i ∈ {1 .. nb} and 1

2uTγγγ i
Ei
`i

γγγT
i u

being a scalar for any i ∈ {1 .. nb}, the linear program is minimized by assigning all the
available material V to the member(s) with the maximum specific strain energy 1

2uTγγγ i
Ei
`i

γγγT
i u,

allowing us to rewrite Eq. (4.7) as

max
u∈Rndof

[
fTu− V

2
max

i={1 .. nb}

(
uT

γγγ i
Ei

`2
i

γγγ
T
i u
)]

, (4.8)

which is a non-smooth concave quadratic problem (Bendsøe et al., 1994) only in terms of
u. Although the quadratic program (4.8) can be directly treated by non-smooth algorithms
(Achtziger et al., 1992), it is more convenient to denote an upper bound on the specific strain
energy by α ∈ R>0, so that

V
2

uT
γγγ i

Ei

`2
i

γγγ
T
i u≤ α, ∀i ∈ {1 .. nb}, (4.9)

consequently transforming the problem (4.8) into an equivalent smooth concave linear pro-
gram with quadratic constraints (Achtziger et al., 1992)

max
u∈Rndof ,α∈R>0

fTu−α (4.10a)

s.t.
V
2

uT
γγγ i

Ei

`2
i

γγγ
T
i u−α ≤ 0, ∀i ∈ {1 .. nb}, (4.10b)

efficiently solvable by interior-point methods (Jarre et al., 1998).

Theorem 1. The pair u∗ and α∗ solve (4.10) if and only if there exist multipliers µµµ∗ ∈ Rnb
≥0,

µµµ∗ =
(
µ1 . . . µnb

)T, such that

µ
∗
i =

a∗i `i

V
, ∀i ∈ {1 .. nb}. (4.11)

Proof. From the Karush-Kuhn-Tucker conditions we have

µµµ
∗ ≥ 0, (4.12a)

−1 =−
nb

∑
i=1

µ
∗
i , (4.12b)

f =
nb

∑
i=1

µ
∗
i V γγγ i

Ei

`2
i

γγγ
T
i u∗. (4.12c)

Substituting µ∗i from Eq. (4.11) into Eq. (4.12) we obtain

a∗i `i

V
≥ 0, ∀i ∈ {1 .. nb}, (4.13a)

nb

∑
i=1

a∗i `i

V
= 1, (4.13b)

f =
nb

∑
i=1

a∗i `i

V
V γγγ i

Ei

`2
i

γγγ
T
i u∗, (4.13c)

which is equivalent to
a∗ ≥ 0, (4.14a)

`̀̀Ta∗ =V , (4.14b)

K(a∗)u∗ = f, (4.14c)

that are exactly the constraints from Eq. (4.1) and we are done.
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4.2.2 Linear Programming Formulation
For a single loading condition the element stiffness matrices Ki are expressed in the form of
dyadic products 1. The specific strain energies of individual bars are then equal to

uT
γγγ i

Ei

`2
i

γγγ
T
i u =

(√
Ei

`i
γγγ

T
i u
)2

, ∀i ∈ {1 .. nb}. (4.15)

Subsequently, the linear program with quadratic constraints (4.10) can be rewritten as

max
u∈Rndof ,α∈R>0

fTu−α (4.16a)

s.t.
V
2

(√
Ei

`i
γγγ

T
i u
)2

−α ≤ 0, ∀i ∈ {1 .. nb}. (4.16b)

The constraint (4.16b) can then be recast into the form

−
√

α ≤

√
V Ei

2
1
`i

γγγ
T
i u≤

√
α, ∀i ∈ {1 .. nb}. (4.17)

Fixing α = 1 and removing the constant term α from objective, the following linear program
is obtained (Achtziger et al., 1992)

max
u∈Rndof

fTu (4.18a)

s.t. −1≤

√
V Ei

2
1
`i

γγγ
T
i u≤ 1, ∀i ∈ {1 .. nb}. (4.18b)

Problem (4.18) is, up to scaling (caused by fixed α), equivalent to Eq. (4.10). The actual
scaling factors can be found e.g. in (Achtziger et al., 1992). Note that also the objective
(4.18a) is only proportional, but not equal, to the compliance.

Now, writing dual of Eq. (4.18) we obtain

min
x−∈Rnb

≥0,x+∈R
nb
≥0

nb

∑
i=1

x−i + x+i (4.19a)

s.t.

√
V
2



−
√

E1
1
`1

γγγT
1

...
−
√

Enb
1
`nb

γγγT
nb√

E1
1
`1

γγγT
1

...√
Enb

1
`nb

γγγT
nb



T

{
x−
x+

}
= f, (4.19b)

x−,x+ ≥ 0, (4.19c)

which is after substitution σ i =
√

Ei, x−i =
√

2
V

`is−i
σ i

, and x+i =
√

2
V

`is+i
σ i

equivalent to

min
s−∈Rnb

≥0,s+∈R
nb
≥0

√
2
V

nb

∑
i=1

s−i + s+i
σ i

`i (4.20a)

s.t.
(
−A A

){s−
s+

}
= f, (4.20b)

s−,s+ ≥ 0. (4.20c)

1For multiple loading conditions, the element stiffness matrices are block-diagonal matrices constructed
from the matrices Ki

1 through Ki
nlc

, with nlc denoting the number of loading conditions, hence not allowing
explicit dyadic product expression.
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After removal of the scaling factor
√

2
V from the objective function, the linear program reads

min
s−∈Rnb

≥0,s+∈R
nb
≥0

nb

∑
i=1

s−i + s+i
σ i

`i (4.21a)

s.t.
(
−A A

){s−
s+

}
= f, (4.21b)

s−,s+ ≥ 0, (4.21c)

with σ i denoting a bound on admissible longitudinal stress in the i-th bar, s− ∈ Rnb
≥0, s− =(

s−1 . . . s−nb

)T and s+ ∈Rnb
≥0, s+ =

(
s+1 . . . s+nb

)T being column vectors of compressional
and tensional axial forces, respectively, such that s = s+− s−. Also, note that if s+i > 0 for
some i ∈ {1 .. nb}, then s−i = 0 and, similarly, if s−i > 0 for some i ∈ {1 .. nb}, then s+i = 0.

After substitution ai =
s−i +s+i

σ i
,∀i ∈ {1 .. nb}, we get

min
a∈Rnb

≥0,s∈R
nb

`̀̀Ta (4.22a)

s.t. As = f, (4.22b)
−σ iai ≤ si ≤ σ iai, ∀i ∈ {1 .. nb}, (4.22c)
a≥ 0, (4.22d)

which is the traditional minimum-volume (weight) plastic design formulation, see e.g. (Dorn
et al., 1964) or (Hemp, 1973).

For the plastic formulation the optimal design is fully stressed and statically determi-
nate, i.e. the optimal-design static matrix A is regular and the axial forces thus uniquely
determined (Rozvany et al., 2014).

Proposition 2. The least volume truss subjected to stress constraints and a single loading
condition is fully-stressed.

Proof. Let us begin with a contradiction that there exists a truss element i strictly satisfying

−σ i < σi < σ i, (4.23)

with σi being the actual stress in the i-th element.
Based on linear elasticity, recall Eq. (3.5), the relation between axial force and stress is

stated as
ai =

si

σi
. (4.24)

Built upon this equation, we can directly state the relation of the lower bound for cross-
sectional area ai on the admissible longitudinal stress bound σ , such that

amin,i =


−si

σ i
for si ≤ 0

si

σ i
for si ≥ 0

. (4.25)

If the truss element is in compression, then it holds, based on the contradiction, that

si

σi
>
−si

σ i
, (4.26)
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which is equivalent to
ai > amin,i. (4.27)

Similarly, if the truss element is in tension, it holds that

si

σi
>

si

σ i
, (4.28)

which is equivalent to
ai > amin,i. (4.29)

Due to the cross-sectional areas being constrained only by the stress bounds and their
non-negativity, recall Eq. (4.22), the not-fully-stressed truss simply cannot be the least vol-
ume, as the cross-sectional area of the i-th element could be further reduced to the corre-
sponding amin,i value, making the truss lighter.

Finally, we conclude that the plastic formulation does not state any compatibility or
stress-strain relation, so that the forces are not distributed with respect to individual element
stiffnesses. Considering a single loading condition and no constraints on the cross-sectional
areas, the plastic formulation leads to fully-stressed statically determinate optimal design,
consequently automatically satisfying the compatibility conditions (Bendsøe and Sigmund,
2003). For multiple loading conditions or when another constraints on cross-sectional areas
are imposed (positive lower bound, upper bound or their equality), the linear programming
formulation cannot be used.

4.2.3 Second-Order Cone Programming Formulation
Second-order cone programming is a field of mathematical programming that covers linear
programming, and convex quadratic programming with the addition of second-order cone
constraints (Boyd and Vandenberghe, 2004).

The second-order cone formulation for truss topology optimization was firstly derived
from a potential energy function in (Ben-Tal and Nemirovski, 2001) and (Lobo et al., 1998),
another derivation based on complementary energy was published in (Makrodimopoulos
et al., 2010).

In order to derive the second-order cone program, we will firstly modify the linear pro-
gram with quadratic constraints, recall Eq. (4.10), to

max
u∈Rndof ,α∈R>0

fTu−α (4.30a)

s.t.

(√
2V Ei

2`i
γγγ

T
i u

)2

−α ≤ 0, ∀i ∈ {1 .. nb}. (4.30b)

Such a formulation can be readily stated as a second-order cone program, because quadra-
tic programming is a subset of second-order cone programming. Based on (Ben-Tal and
Nemirovski, 2001, pp. 88) we can write

max
u∈Rndof ,α∈R>0

fTu−α (4.31a)

s.t.

∥∥∥∥∥
(√

2V Ei
2`i

γγγT
i u

α−1
2

)∥∥∥∥∥
2

≤ α +1
2

, ∀i ∈ {1 .. nb}, (4.31b)

where the notation ‖·‖2 denotes the Euclidean norm, so that the constraints (4.31b) form
second-order cones.
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Now that we have stated the second-order cone program, we state its dual as

min
a∈Rnb

≥0,τττ∈R
nb
>0,s∈R

nb

1
2

nb

∑
i=1

τi (4.32a)

s.t. `̀̀Ta≤V , (4.32b)
nb

∑
i=1

si

√
Ei

`i
γγγ i = f, (4.32c)∥∥∥∥(√2si

2ai−τi
2

)∥∥∥∥
2
≤ 2ai + τi

2
, ∀i ∈ {1 .. nb}, (4.32d)

a≥ 0, (4.32e)

where the design variables are cross-sectional areas a, contribution of individual bars to the
compliance τττ ∈ Rnb , τττ =

(
τ1 . . . τnb

)T, and axial forces s.
Compared to the quadratic programming formulation, the second-order cone program

(4.32) explicitly uses the cross-sectional areas as its primal variables, which is very conve-
nient when the cross-sectional areas are subjected to additional constraints.

4.2.4 Semidefinite Programming Formulation
Semidefinite programming is a subset of convex optimization that includes linear, quadratic
and conic programming, with addition of semidefinite cones, implying its greater generality.
Subsequently, any linear, quadratic or conic program can be equivalently cast as a semidefi-
nite program.

Even the traditional elastic truss topology formulation was reformulated to semidefinite
programming. To the author’s knowledge, the formulation originates in (Vandenberghe and
Boyd, 1996), but commonly (Ben-Tal and Nemirovski, 1997) is being referenced. The refor-
mulation to a convex linear semidefinite program then reads

min
a∈Rnb

≥0,τ∈R≥0

1
2

τ (4.33a)

s.t.
(

τ −fT

−f K(a)

)
� 0, (4.33b)

`̀̀Ta≤V , (4.33c)
a≥ 0, (4.33d)

where the linear matrix inequality “X � 0” denotes the requirement of a matrix X to be
positive semidefinite.

Comparing Eq. (4.1) with Eq. (4.33) it is obvious that Eq. (4.1c) equals to Eq. (4.33c)
and Eq. (4.1d) is identical to Eq. (4.33d). Subsequently, we only need to prove the following
theorem. Similar proof can also be found in (Achtziger and Kočvara, 2008), (Ben-Tal and
Nemirovski, 1997) or (Ohsaki et al., 1999).

Theorem 2. Let a ∈ Rnb
≥0 denote a column vector of cross-sectional areas and τ ∈ R≥0.

Then, there exist u∗ ∈ Rndof satisfying fTu∗ ≤ τ and K(a)u∗ = f if and only if(
τ −fT

−fT K(a)

)
� 0. (4.34)
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Proof. Based on the definition of positive semidefiniteness we can equivalently write(
β

v

)T(
τ −fT

−f K(a)

)(
β

v

)
≥ 0, ∀β ∈ R\0,∀v ∈ Rndof \0, (4.35)

which expands into

β
2
τ−2β fTv+vTK(a)v≥ 0, ∀β ∈ R\0,∀v ∈ Rndof \0. (4.36)

Since β 6= 0 by definition and β 2 > 0, Eq. (4.36) can be divided by β 2, leading to

τ−2fT
(

v
β

)
+

(
v
β

)T

K(a)
(

v
β

)
≥ 0, ∀β ∈ R\0,∀v ∈ Rndof \0, (4.37)

which is after substitution w = v
β

equal to

τ−2fTw+wTK(a)w≥ 0, ∀w ∈ Rndof \0. (4.38)

In order to make the above inequality (4.38) valid ∀w ∈ Rndof \0, we actually need that

min
∀w∈Rndof\0

(
τ−2fTw+wTK(a)w

)
≥ 0, (4.39)

which can be equivalently written as

min
∀w∈Rndof\0

[
τ +2

(
1
2

wTK(a)w− fTw
)]
≥ 0, (4.40)

with the potential energy function Π(u) being in the parentheses, recall Section 3.6.2. There-
fore, Eq. (4.40) is convex, minimized at K(a)u∗ = f by w = u∗ and bounded from below by
negative compliance −1

2 fTu∗. In consequence, this proves that the compatibility conditions
(4.1b) are satisfied.

Subsequently, we can further write

τ +2
(
−1

2
fTu∗

)
≥ 0, (4.41)

implying that
τ ≥ fTu∗, (4.42)

and proving that τ is lower-bounded by doubled compliance fTu∗, making the proof com-
plete.

Similarly to the minimum compliance formulation, the minimum-volume formulation,
see Eq. (4.2), can be also cast as a linear semidefinite program

min
a∈Rnb

≥0,τ∈R≥0

`̀̀Ta (4.43a)

s.t.
(

τ −fT

−f K(a)

)
� 0, (4.43b)

τ ≤ 2c, (4.43c)
a≥ 0. (4.43d)

The advantage of the semidefinite programming reformulations of topology optimization
consists in its ability to easily add constraints on fundamental free-vibrations (Achtziger
and Kočvara, 2008) and global buckling (Ben-Tal and Nemirovski, 1997), both preserving
convexity of the optimization problem.
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Chapter 5

Extension of Topology Optimization to
Modular Trusses

While there exist several objectives in optimal design of truss structures, recall for example
the minimum-compliant or the least-volume design introduced in the previous chapter, they
are driven by the same demand—effort of an investor to be economical. Note that these ob-
jectives express such a desire only approximately, as the actual optimization problem would
be significantly more complex otherwise. Although finding an optimal topology to a given
ground structure through any of the already developed formulations significantly reduces the
total costs with respect to the material usage, excessive number of present bars (Asadpoure
et al., 2015), as well as the multitude of varied cross-sectional areas (Kanno, 2016) also have
a considerable influence on the construction economy.

In practice, the established problem is usually solved by designing prefabricated mod-
ular structures. Modularity represents an approach of partitioning the complex structure
into several simpler repeated units, so-called modules, allowing for their independent mass-
production in high-controlled facilities (Mikkola, 2003). The controlled manufacturing al-
lows for better quality control and leads to significant time savings in the building phases, as
the production and construction can be carried out concurrently (Tugilimana et al., 2016).

Throughout this chapter two of the previously established formulations of truss topol-
ogy optimization will be enhanced to facilitate partitioning of a given ground structure into
a set of (identical) modules. The extension limits the number of unique continuous cross-
sectional areas and permits the subsequent development of bilevel modular-topology opti-
mization framework that will be introduced in the following chapter.

5.1 Group Vector and Group Matrix
In order to introduce notation and the theory valid for topology optimization of modular
trusses (Pospı́šilová and Lepš, 2013), the fundamentals are going to be established for the
most simple, yet illustrative, case of each module containing exactly one single bar.

Let us consider a ground structure consisting of nb ∈ Z>0 bars and a condition restricting
the count of unique cross-sectional areas to the number ng ∈ Z>0, ng ≤ nb. Further, let ag ∈
Rng
≥0 denote a column vector of unique cross-sectional areas. Then, for each bar i ∈ {1 .. nb}

there exists a number gi ∈Z>0 assigning the gi-th element of the unique cross-sectional areas
column vector ag to the bar i, such that

1≤ gi ≤ ng, ∀i ∈ {1 .. nb}. (5.1)

Subsequently, the group vector g ∈ Znb
>0 is defined as g =

(
g1 . . . gnb

)T.
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Following the definition of the group vector, let the group matrix G ∈ {0,1}nb×ng be
defined ∀i ∈ {1 .. nb} and ∀ j ∈ {1 .. ng} as

Gi, j =

{
0 for j 6= gi,

1 for j = gi,
(5.2)

with Gi, j denoting i-th row and j-th column of the matrix G. The group matrix is a linear
transformation matrix mapping the space of unique cross-sectional areas ag ∈ Rng

≥0 to the
space of cross-sectional areas a ∈ Rnb

≥0, so that it holds

a = Gag. (5.3)

Note that if ng = nb the problem simplifies back to the non-modular design.

5.1.1 Illustrative Example
Let us evaluate a simple truss structure, as shown in Fig. 5.1, to demonstrate the developed
approach. The truss is assembled from three bars, nb thus being equal to 3. While the bars 1
and 3 are both being assigned an identical cross-sectional area a1, the cross-sectional area
of the bar 2 equals a2.

1 2 3

4

1 2

3

a 1

a 2

a
1

Figure 5.1: Modular truss structure composed of three bars.

For this specific settings ng = 2 and

ag =

{
a1
a2

}
. (5.4)

The group vector then takes the form

g =
(
1 2 1

)T (5.5)

and the corresponding group matrix reads

G =

1 0
0 1
1 0

 . (5.6)

Finally, the original vector of cross-sectional areas is obtained as

a = Gag =

1 0
0 1
1 0

{a1
a2

}
=


a1
a2
a1

 . (5.7)
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5.2 Complex Modules
Let us assume a fixed structural design domain D partitioned into square truss modules with
fixed orientation, refer to Fig. 5.2a, and let nt,x and nt,y denote the number of modules in
horizontal and in vertical direction, respectively. The modularity implies that the number of
unique modules nt needs to be lower than nt,x ·nt,y. In the following text all adjacent modules
are by definition compatible across the corresponding edges, in the sense of constituting
a statically admissible ground structure.

In order to secure compatibility of modules, the bars within each module are divided
into three sets. The bars located exclusively inside a module, so-called tile-associated bars,
belong entirely to the specific module, schematically colored by white in Fig. 5.2b and drawn
with solid black lines in Fig. 5.2c. The second and the third sets contain bars that overlap
module boundaries. In order to preserve constant cross-sectional area of the interdomain
bars along their length, they need to belong to multiple modules. The vertex-associated bars,
coming strictly through a vertex of a module, imply they are bound to all the surrounding
modules sharing the same vertex. Common location of such bars is illustrated in the dark
gray color in Fig. 5.2b. Finally, the bars that intersect only an edge of a module, so-called
edge associated bars, belong to both modules sharing the edge, as schematically denoted by
the light gray color in Fig. 5.2b and plotted by dashed lines in Fig. 5.2c.

(a) Beam decomposed into modules. (b) Associations sets. (c) Single module.

Figure 5.2: (a) Partitioning of design domain into several modules. (c) Bars forming each
module are split into (b) three sets—tile-associated, edge-associated and vertex-associated.

5.2.1 Structural Modularity Using Wang Tiles
In the worst-case scenario when each module type is adjacent to all module types, a struc-
ture composed of instances from a set of nt unique modules can contain n2

t types of distinct
vertical edges, n2

t types of various horizontal edges and especially n4
t types of particular ver-

tices. The polynomial growth makes handling and, in particular, prefabricating such products
impractical.

The outlined difficulty is, however, readily eliminated adopting the concept of vertex-
based Wang tiles over two colors, recall Chapter 2, implying nt = 16, constraining the num-
ber of unique vertices to 2, and fixing the count of distinct horizontal and vertical edges to 4.
Wang tiles then provide jigsaw-like compatibility of tiles (modules), while simultaneously
allowing for aperiodic assemblies.

From this moment forth, we will consider all tiles from the complete tile set, recall Fig.
2.6a, having the same tile ground structure, depicted in Fig. 5.2c. Following the already
described approach, the bars in tile ground structures are divided into the association sets.
In this particular case of the tile ground structure, there are only the tile-associated and the
edge-associated bars, refer to Fig. 5.3.
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1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16
(a) Tile-associated bars. (b) Edge-associated bars.

Figure 5.3: Division of bars into (a) tile-associated and (b) edge-associated sets. The scat-
tered points represent nodes.

Assuming a fixed assembly defined by the connectivity matrix C ∈ {0,1}(nt,y+1)×(nt,x+1),
we can further assign a group to each bar and, subsequently, assemble the group vector g(C)
and the group matrix G(C), by a direct analogy to Section 5.1. Each tile from the complete
tile set contains 48 tile-associated bars, yielding 16×48 = 768 groups of tile-associated bars
in total, recall Fig. 5.3a. Similarly, each edge, either horizontal or vertical, accommodates 3
edge-associated bars, leading to 8×3 = 24 groups of edge-associated bars, recall Fig. 5.3b.
Consequently, we have ng = 792 for this specific choice of the tile set and the tile ground
structure.

5.3 Generalization of Topology Optimization Formulations
In order to provide a framework for topology optimization of modular trusses, the estab-
lished formulations for topology optimization need to be modified. Modularity is inherently
prescribed in terms of constraints on cross-sectional areas. As a result, only formulations
with the cross-sectional areas as primal design variables can be straightforwardly modified.
It should be further noted that the linear programming plastic design prohibits addition of
such constraints, because their imposing leads to violating the statical determinacy and the
compatibility conditions of the optimal design.

5.3.1 Second-Order Cone Programming
With the cross-sectional areas governed by Eq. (5.3), the volume constraint (4.32b) trans-
forms into

`̀̀TG(C)ag ≤V (5.8)

and the second-order cone constraints (4.32d) then reads as∥∥∥∥∥
( √

2si
2ag,gi(C)−τi

2

)∥∥∥∥∥
2

≤
2ag,gi(C)+ τi

2
, ∀i ∈ {1 .. nb}, (5.9)
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with ag,gi(C) denoting the gi(C)-th element of the vector ag. The final formulation of topol-
ogy optimization with modular trusses written as second-order cone program is then

min
ag∈R

ng
≥0,τττ∈R

nb
>0,s∈R

nb

1
2

nb

∑
i=1

τi (5.10a)

s.t. `̀̀TG(C)ag ≤V , (5.10b)
nb

∑
i=1

si

√
Ei

`i
γγγ i = f, (5.10c)∥∥∥∥∥

( √
2si

2ag,gi(C)−τi

2

)∥∥∥∥∥
2

≤
2ag,gi(C)+ τi

2
, ∀i ∈ {1 .. nb}, (5.10d)

ag ≥ 0. (5.10e)

5.3.2 Semidefinite Programming
Compared to the second-order cone program, generalization of the semidefinite program-
ming formulation in order to include modularity requires modification of the structural stiff-
ness matrix assembly:

K(ag,C) =
ng

∑
j=1

(
nb

∑
i=1

Ki(ag, j) [ j = gi(C)]

)
, (5.11)

with ag, j denoting the j-th element of the vector ag. Consequently, the minimum-compliance
semidefinite program (4.33) extended to structural modularity takes the following form:

min
ag∈R

ng
≥0,τ∈R≥0

1
2

τ (5.12a)

s.t.
(

τ −fT

−f K(ag,C)

)
� 0, (5.12b)

`̀̀TG(C)ag ≤V , (5.12c)
ag ≥ 0. (5.12d)

Similarly, the minimum-volume semidefinite program (4.43) reads as

min
ag∈R

ng
≥0,τ∈R≥0

`̀̀TG(C)ag (5.13a)

s.t.
(

τ −fT

−f K(ag,C)

)
� 0, (5.13b)

τ ≤ 2c, (5.13c)
ag ≥ 0. (5.13d)
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Chapter 6

Modular-Topology Optimization

In the previous chapter two straightforward convex minimum-compliance formulations were
developed, allowing for optimization of modular trusses with fixed assembly plan, denoted
by the connectivity matrix C. Because the matrix C needs to be specified in advance, qual-
ity of the optimal solution highly depends on the provided connectivity matrix. Note that
the number of all potential connectivity matrices increases exponentially with the size of C,
through so-called combinatorial explosion, making manual specification of a “good” con-
nectivity matrix from scratch extremely problematic.

For these reasons, this chapter introduces bilevel formulation of the modular-topology
optimization problem, optimizing simultaneously topology of individual modules and the
assembly plan. The optimization problem is approximately solved with combination of
meta-heuristics and mathematical programming methods, circumventing the need for a priori
given connectivity matrix.

6.1 Minimum Compliance Problem Statement
Let C be gradually fixed for all the 2(nt,y+1)×(nt,x+1) possible combinations of assemblies.
Then, the bilevel optimization problem that simultaneously optimizes the assembly and
topology of modules, using the second-order cone programming formulation (5.10), reads as

min
C∈{0,1}(nt,y+1)×(nt,x+1)

(
min

ag∈R
ng
≥0,τττ∈R

nb
>0,s∈R

nb

{
1
2

nb

∑
i=1

τi

∣∣∣ `̀̀TG(C)ag ≤V ;
nb

∑
i=1

si

√
Ei

`i
γγγ i = f;∥∥∥∥∥

( √
2si

2ag,gi(C)−τi

2

)∥∥∥∥∥
2

≤
2ag,gi(C)+ τi

2
,∀i ∈ {1 .. nb};ag ≥ 0

})
,

(6.1)
Equivalently, the optimization problem can be posed using the semidefinite programming
formulation (5.12) in the form

min
C∈{0,1}(nt,y+1)×(nt,x+1)

(
min

ag∈R
ng
≥0,τ∈R>0

{
1
2

τ

∣∣∣ `̀̀TG(C)ag ≤V ;
(

τ −fT

−f K(ag,C)

)
� 0;ag ≥ 0

})
.

(6.2)
Both (6.1) and (6.2) are NP-hard combinatorial-convex optimization problems, solved

with (i) the globally optimal connectivity matrix C∗ and with (ii) the globally optimal vector
of unique cross-sectional areas a∗g at the globally optimal compliance c∗. Due to the nature
of both the problems, there is no deterministic polynomial time algorithm for their solution.
Consequently, a direct solution rests on enumeration of the combinations, making the so-
lution challenging even for small-scale problems. Therefore, in the following sections we
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adopt two popular meta-heuristic approaches—the genetic algorithm (Holland, 1992) and
the simulated annealing (Kirkpatrick et al., 1983), (Černý, 1985)—leading to solutions near
the global optimum in a reasonable time.

6.1.1 Bounds on the Global Optimum
The structural modularity comes at a price of increase, i.e. worse, compliance compared
to the non-modular design (Huang and Xie, 2008). Consequently, the non-modular “ideal”
design with compliance cI ∈ R>0 represents a lower bound on the optimal solution c∗ for
both the bilevel programs (6.1) and (6.2). In the case when all the tiles from the tile set
are defined equal tile ground structures, the ideal compliance is stated as the optimum to
the non-modular topology optimization, i.e. the quadratically-constrained linear program
(4.10), the second-order cone program (4.32) or the semidefinite program (4.33). Otherwise,
if the tile ground structures are varied among tile types, a fictitious ideal tile needs to be
created, whose tile ground structure is defined as unification of tile ground structures of all
the tiles in the complete tile set. Assembling the fictitious ideal tiles, such that the partitioned
structural domain is entirely filled, leads to the most complex ground structure virtually
feasible. Finally, the ideal compliance is obtained through topology optimization of just
defined ground structure without imposing modularity.

Similarly to the ideal compliance, the upper-bound anti-ideal compliance cAI ∈ R>0 can
be straightforwardly obtained when all the tiles in the complete tile set are assigned equal
tile ground structure. Then, the upper-bound worst-case compliance is computed by solving
topology optimization of the ground structure composed of only one tile type, i.e. the con-
nectivity matrix C containing all zeros or all ones, through the second-order cone (5.10) or
the semidefinite (5.12) program. On the contrary, when the tiles contain distinct tile ground
structures, we need a definition of a fictitious anti-ideal tile, whose tile ground structure
equals to the intersection of tile ground structures of all tiles from the complete tile set. The
least complex ground structure is then composed by assembling the partitioned design do-
main entirely from the fictitious anti-ideal tile. The upper-bound compliance cAI is finally
obtained through solution of the just defined topology optimization problem of a modular
truss structure, consisting of a single repeatedly placed module.

The value of the global minimum c∗ is thus constrained by

cI ≤ c∗ ≤ cAI. (6.3)

6.2 Meta-Heuristic Algorithms
The term meta-heuristics, introduced by Glover (1986), covers optimization algorithms, of-
ten nature inspired, that provide a master strategy for modification and guiding heuristics
towards solutions beyond the scope of local optimality (Glover and Laguna, 1999). There-
fore, meta-heuristic algorithms are valuable for their capability of finding sufficiently good
solutions to difficult problems with limited computational resources (Bianchi et al., 2009).

In the following sections we briefly review the fundamentals of two standard, widely-
used meta-heuristic algorithms, namely the simulated annealing and the genetic algorithm,
that are capable of finding solutions near global optimum for the stated bilevel optimization
problems. Due to different origin and inspiration, nomenclature of the meta-heuristic algo-
rithms differs from that of mathematical programming, the correspondence between nomen-
clatures is provided in Table 6.1.
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Table 6.1: Equivalence in terminology of mathematical programming, simulated annealing,
and genetic algorithm.

Mathematical Programming Simulated Annealing Genetic Algorithm
Feasible solution State Individual

Objective function Energy Fitness function
Optimal solution Ground state Best individual

Control parameter Temperature
Crossover probability
Mutation probability

6.2.1 Simulated Annealing
Simulated annealing is a meta-heuristic algorithm developed independently by Kirkpatrick
et al. (1983) and Černý (1985). Its main idea is based on an analogy to the physical process
of annealing of solids, a thermal procedure used to bring solids into a low-energy state, while
improving material properties. The annealing starts with temperature increasing, resulting in
melting of the solid and random scatter of the particles the solid is composed of. Through the
subsequent process of gradual cooling, the particles are allowed to rearrange into a minimal-
energy grid, improving material properties.

Algorithm

Let us take a random connectivity matrix C, that represents the state and corresponds to
the design variables of the outer optimization in (6.1) and (6.2), as input to the simulated
annealing algorithm. Also assume three fixed parameters: the initial temperature T0 ∈ R≥0
stated as

T0 =
cAI− cI

25
, (6.4)

the number of temperatures nT ∈ Z>0 computed by

nT = 32(nt,y +1)(nt,x +1), (6.5)

and the number of steps within a fixed temperature nS ∈ Z>0. Here, we use nS = 1.
For a specified random state C the algorithm uniquely determines the corresponding

energy E(C), i.e. the structural compliance, by solving either (6.1), or (6.2). Note that
because the initial state C was defined to be generated randomly, its energy is (most likely)
considerably higher compared to the lower bound cI.

Subsequently, the state C enters the main iteration cycle, consisting of nT ·nS iterations,
and permitting gradual cooling after every nS successive steps accordingly to the predefined
cooling schedule

T =

[
e
(

640
nT

log(0.99)
)]t

T0, t ∈ {1 .. nT}, (6.6)

where T denotes the actual temperature. In each iteration iter ∈ {1 .. nTnS}, a trial neigh-
bor state CT is generated and its energy E(CT) compared with the stored energy E(C). If
E(CT)≤ E(C), the trial state is accepted and substitutes the former one. Otherwise, the trial
state is accepted with the probability

P = e
E(C)−E(CT)

T . (6.7)

Initially, when the temperature is high, almost all the worse trial states with higher en-
ergies are accepted. Gradually following the decrease of temperature, the probability of
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accepting states with higher energies diminishes. Therefore, unlike gradient methods, the al-
gorithm avoids being trapped in a local optimum for non-convex problems1 and, with correct
settings, converges to the global optimum (Burke and Kendall, 2014).

Let us now take a closer look on the Neighbor function, permitting to reach a neighbor
state. The neighbor function randomly reverts several elements er =

(
er,1 . . . er,ner

)T ∈
{1 .. (nt,y +1)(nt,x +1)}ner , of the connectivity matrix, such that

Cer,ζ = 1−Cer,ζ , ∀ζ ∈ {1 .. ner}, (6.8)

where Cer,ζ denotes the er,ζ -th element of the connectivity matrix C. The number of inverted
elements is picked at random, but constrained by

1≤ ner ≤max




1−
⌊
(nt,y+1)(nt,x+1)

2

⌋
0.9nTnS

iter +

⌊
(nt,y +1)(nt,x +1)

2

⌋ ,1
 . (6.9)

The algorithm terminates after the prescribed number of iterations. Based on specified
control parameters and allowed number of iterations, either a local or global optimum is
computed. A pseudo-code of simulated annealing is stated in Algorithm 1.

Algorithm 1 Simulated Annealing
function SimulatedAnnealing(C, T0, nT, nS)

T ← T0 . Initial temperature
for t← 1,nT do . For all the temperatures

for η ← 1,nS do . For all the steps within constant temperature
CT← Neighbor(C) . Obtain trial neighbor state
∆E← E(CT)−E(C) . Compute energy difference
if ∆E ≤ 0 then . If better solution is found . . .

C← CT . . . . the state is accepted . . .
else . . . . otherwise . . .

if rand(1)≤ exp(−∆E/T ) then . . . . accepted based on probability
C← CT

end if
end if

end for
T ← Cooling(T ) . Cool the temperature

end for
return C . Return approximation to C∗

end function

6.2.2 Genetic Algorithm
Genetic algorithm is a meta-heuristic stochastic optimization algorithm developed by Hol-
land (1992) that simulates the natural process of evolution. The initial population evolves
throughout generations, following Darwin’s (Darwin, 1859) “survival of the fittest” phrase
(Spencer, 1864). The competition among individuals results in dominance of the fittest in-
dividuals over the weaker ones, allowing for their reproduction and passing their genetic
information on to the next generations, gradually improving quality of the whole population.

1For combinatorial (discrete) optimization generalized (non)convexity can be introduced (Burkard, 2005).
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Naturally, all living organisms are formed by their genetic information—chromosomes
consisting of genes—determining their fitness, properties, capabilities, and ability to suc-
ceed. Similarly to the real life, a population of individuals in the genetic algorithm is defined
by chromosomes, denoted by initially random connectivity matrices C, allowing for unique
determination of the corresponding structural compliances. The lower the compliance, the
higher the fitness, since the compliance is to be minimized. Note that chromosomes corre-
spond to the design variable of the outer optimization in (6.1) and in (6.2).

In each step (generation) of the algorithm, the stronger individuals of higher fitness are
selected to reproduce and establish a new generation, inheriting their parents genetic infor-
mation through the so-called cross-over. Because reproduction represents a complex process
of combining two chromosomes, errors can occur in the form of mutations, contributing to
the population diversity.

After the cross-over and mutation, the old generation passes away except for the elite
individual with the highest fitness value, who survives within the new generation in order to
keep the best chromosome. To extend the search space of the algorithm, diversity is enforced
by replacing duplicate individuals with random ones.

For the bilevel optimization, the population size npop ∈ Z>0 is heuristically set to be

npop =

⌊
3.6
√

(nt,y +1)(nt,x +1)+
1
2

⌋
, (6.10)

and the number of generations ngen ∈ Z>0 equals

ngen = 5
⌊

2.45npop

5
+

1
2

⌋
. (6.11)

Selection

According to Darwin’s evolution theory, only the fittest individuals survive, create new off-
spring, and consequently pass their genes on to the next generation. Currently, there are
several ways of defining the selection operator, i.e. controlling mating the fittest individu-
als to reproductions. The most common approaches are the roulette-wheel (DeJong, 1975),
rank (Baker, 1985), and tournament (Brindle, 1981) selection. With respect to the stated
bilevel optimization problem (6.1) or (6.2), the tournament selection proved to be the most
advantageous.

The tournament selection consists in randomly choosing nc ∈ Z>0 competitors (individ-
uals), with nc denoting the tournament size. The competitors are then sorted accordingly
to their fitness in a descending order and assigned a probability of winning the tournament,
such that the probability of the ind-th individual to become a winner is proportional to

Pt (1−Pt)
ind , (6.12)

where Pt ∈ [0,1] denotes the tournament probability control parameter. If Pt = 1, the fittest
individual is selected and the selection becomes deterministic, while if Pt = 0, the winner is
selected at random, making the selection purely stochastic. The tournament selection thus
facilitates direct possibility to adjust the selection pressure, defining the preference of the
fittest individual, through the tournament size and the tournament probability parameters.
Note that the winner of a larger tournament have in average higher fitness compared to the
winner of a smaller tournament. The winner of the tournament is subsequently inserted into
the mating pool, grouping the parents of the next generation.

For the bilevel optimization the following parameters were used,

nc =

⌊
4
3

√
(nt,y +1)(nt,x +1)+

1
2

⌋
, (6.13)
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and
Pt = 0.30. (6.14)

Cross-Over

The cross-over operator governs mating of the couples from the mating pool, reproduction,
i.e. combining their genetic information, and subsequent birth of their offspring. Common
cross-over techniques include single-point, two-point, and uniform (Syswerda, 1989) cross-
over. However, in the following text, we will consider only the uniform cross-over.

Having two parents to give birth to a new offspring, their fitness can be straightforwardly
compared. As the genes of the individual with higher fitness should be preferred, the off-
spring is created in such a way that it obtains the genetic information from its parents ap-
proximately proportionally to the ratio of their fitness. In order to facilitate the described
behavior, each single gene, i.e. each element of the connectivity matrix in our case, is in-
herited with probability defined by the ratio of parents fitness. A sample uniform cross-over
realization is displayed in Fig. 6.1, where genes of the fitter parent are written in red.(

0 0 1
1 0 0

)
+

(
1 1 1
0 1 0

)
=

(
1 0 1
0 0 0

)
Figure 6.1: Sample cross-over realization.

Usually, the cross-over operator is used only to a portion of reproductions, given by the
cross-over probability Pc ∈ [0,1]. If Pc = 1, all offspring are made by cross-over. On the
contrary, if Pc = 0, the offspring are exact copies of the parents with higher fitness. In this
thesis we use Pc = 0.94.

Mutation

Mutation represents an operator that secures diversity of the population and simultaneously
enables random exploration of the design space. Mutation affects each individual gene of
the chromosome independently and inverts its value with prescribed mutation probability
Pm ∈ [0,1], which is usually close to 0. For a sample realization of the mutation operator,
refer to Fig. 6.2. (

1 0 1
0 0 0

)
⇒

(
1 0 0
0 0 0

)
Figure 6.2: Sample mutation realization.

In this thesis we have adopted the settings

Pm =
1

(nt,y +1)(nt,x +1)
. (6.15)

Finally, combining the described theory we can write a psuedo-code of the genetic algo-
rithm, see Algorithm 2, leading to an approximate solution to C∗.
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Algorithm 2 Genetic Algorithm
function GeneticAlgorithm(C, npop, ngen, nc, Pt, Pc, Pm)

population← GeneratePopulation(C,npop) . Create random population
f itness← FevalFitness(population) . Evaluate fitness of individuals
for δ ← 1,ngen do . For all generations

elite← BestIndividual(population) . Keep the best individual
matingPool← Selection(population,nc,Pt) . Select parents
population← CrossOver(matingPool,Pc) . Give birth to offspring
population← Mutation(population,Pm) . Apply mutation
population← AppendElite(population,elite) . Keep the elite individual
population← Diversify(population) . Replace duplicates by random C
f itness← FevalFitness(population) . Evaluate fitness of individuals

end for
return C← BestIndividual(population) . Return approximation to C∗

end function
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Chapter 7

Results

The modular-topology optimization approaches developed in the previous chapters have
been successfully implemented in MATLAB. In this section, the approach is applied to an
illustrative problem of designing a planar hinge-supported beam. In order to assess perfor-
mance of the proposed bilevel approaches coupling meta-heuritics (the simulated annealing
or the genetic algorithm) and mathematical programming (second-order cone or semidefinite
programming), a relatively coarse discretization is adopted first, as it allows for obtaining
a globally optimal design through brute-force enumeration. Subsequently, we assume also
a finer discretization, demonstrating applicability of the developed approach to more difficult
problems. Finally, the coarse and fine designs are compared.

All the computations were performed on a Linux workstation with two Intel R© Xeon R©

E5-2630 processors and 128 GB RAM. The second-order cone programs for topology opti-
mization of trusses were solved using the commercial solver Gurobi 7.0 (Gurobi Optimiza-
tion, Inc., 2016), for the semidefinite programming the state-of-the-art open-source solver
SDPA 7.3.9 (Yamashita et al., 2003) was employed. Both the mathematical programming
formulations were modeled using YALMIP toolbox (Löfberg, 2004).

7.1 Coarsely Discretized Beam
As an illustrative example, a simple supported planar beam of dimensions 8×3 m is taken,
see Fig. 7.1. In the coarse discretization the beam is partitioned into 24 square modules,
each of the unit size, and assembled from a complete set of vertex-based Wang tiles. We
assume the same tile ground structure, depicted in Fig. 5.2c, for all tiles within the tile

4 m 4 m
8 m

3
m

10 N

Figure 7.1: Dimensions, discretization, boundary conditions, and ground structure of the
evaluated coarsely discretized beam.
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set. Young’s modulus E of each bar of the ground structure is set to 1 Pa. The beam is
supported with two hinges at the very bottom-left and bottom-right corners and loaded with
an external force of magnitude 10 N at the midspan of the bent beam. It should be noted
that the selected properties do describe neither a specific material nor a realistic situation and
have been chosen only to avoid scaling of the optimization problem and ensure numerical
stability at the same time.

7.1.1 Bounds on the Globally Optimal Compliance
Following the theory developed in Section 6.1.1 the ideal and anti-ideal compliances can
be straightforwardly computed, bounding the range within which the globally optimal com-
pliance is guaranteed to lie. Because all the tiles from the complete tile set are assigned
the same tile ground structure, the fictitious ideal and anti-ideal tiles are equal and both are
defined by the tile ground structure shown in Fig. 5.2c.

Performing the topology optimization without prescribed modularity, recall Eqs. (4.10),
(4.32), and (4.33), leads to the lower-bound ideal compliance cI = 61.9 Nm and to the design
shown in Fig. 7.2a. Note that the reached objective value cannot be overcome in any modular
design, based on the same tile ground structures, but the compliance of the modular design
should be as close to the attained lower bound as possible.

(a) Ideal design, cI = 61.9 Nm
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(b) Anti-ideal design, cAI = 191.2 Nm

Figure 7.2: Lower-bound (a) and upper-bound (b) solutions to c∗.

Analogously, the upper-bound anti-ideal compliance is obtained through the topology
optimization of the design domain assembled from the anti-ideal tiles, recall Eqs. (5.10) and
(5.12). In our case, in which the ground structure Fig 5.2c is common to all tiles, the anti-
ideal design directly corresponds to the worst-case assembly from only one tile, indicated by
the connectivity matrix C containing all-zeros or all-ones. The anti-ideal topology optimiza-
tion results in the optimal design, depicted in Fig. 7.2b, with compliance cAI = 191.2 Nm.
Therefore, the compliance of the optimal modular design for the given tile ground structure
will be c∗ ∈ [61.9,191.2] Nm.

7.1.2 Brute-Force Enumeration
As mentioned in the introductory part to this section, the globally optimal connectivity matrix
C∗ and the corresponding compliance c∗ were produced from the brute-force enumeration,
allowing us to asses quality of designs obtained from the proposed bilevel optimization, re-
call Chapter 6. Note that even the coarse discretization implies 236 possible combinations of
connectivity matrices, making it impossible to enumerate them all within a reasonable time.
In order to reduce the complexity, we have enforced symmetry of the connectivity matrix C
with respect to the vertical axis of the beam, consequently limiting the number of combi-
nations of feasible assemblies to 220. Despite decreasing the problem size dramatically, the
global optimum can be distinct from the case without enforced symmetry. Also note that the
constrained symmetric assembly does not enforce symmetric topology.
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Because all tiles are assigned the same tile ground structure, the number of combinations
can be further decreased by exploiting the fact that the vertex types do not have any actual
physical meaning—topology optimization of any assembly plan denoted by C yields equal
result to the optimization of reversed C, i.e. C having interchanged all 0 with 1 and vice-
versa. Subsequently, we need to enumerate 219 distinct combinations instead of the original
236.
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(a) Globally optimal design
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(b) Globally optimal tile set

Figure 7.3: (a) Globally optimal design and (b) the corresponding tile set of the coarsely
discretized beam of compliance c∗ = 62.7 Nm.

Optimization of all combinations with the second-order cone programming formulation
(5.10) took 9.5 hours. Throughout the enumeration, the globally optimal design of compli-
ance c∗ = 62.7 Nm was obtained, see Fig. 7.3a. The modular design is only 1.3 % more-
compliant compared to the ideal design. The tile set of the globally optimal design, shown in
Fig. 7.3b, contains 13 non-empty tiles, the three empty tiles can be thus potentially omitted
from the tile set. In overall, the enumerated combinations generate nearly a Gaussian distri-
bution with the mean value of 107.7 Nm and its standard deviation equal to 14.6 Nm, refer
to Fig. 7.4.
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Figure 7.4: Distribution of optimal compliances of all the enumerated combinations, and of
50 independent runs of the bilevel optimization.

7.1.3 Bilevel Optimization
In order to account for the stochastic nature of both the proposed meta-heuristic approaches
for solution of the bilevel optimization problems (6.1) and (6.2), the calculations were per-
formed 50 times and statistics of the outputs were compared. Note that both the algorithms
are comparable in the count of performed solutions to the inner problem, i.e. topology opti-
mization of modular trusses.
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Bilevel Optimization Using Simulated Annealing

The bilevel optimization utilizing the simulated annealing algorithm was run 50 times, each
time with a random initial connectivity matrix C. Convergence of individual optimization
runs, as well as the average of all runs, are both shown in Fig. 7.5. On average, the compli-
ance of 105.2 Nm was obtained with an initial random connectivity matrix, closely following
the mean value 107.7 Nm of the nearly Gaussian distribution identified with the brute-force
enumeration. In the specified 640 iterations of the simulated annealing algorithm, the com-
pliances decreased to the final mean value 67.4 Nm, being 8.9 % higher compared to the
ideal solution and 7.5 % higher than the global optimum. Within the 50 performed runs, the
global optimum, recall Fig. 7.3, was reached once. Totally, all the achieved compliances lie
within the lowest 0.2 % of all attainable compliances, see Fig. 7.4.
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Figure 7.5: Convergence of 50 independent runs of the simulated annealing algorithm. In ad-
dition, optimized design samples of a particular connectivity matrix are displayed, proceed-
ing from a random design (the leftmost picture) to the approximate solution to the bilevel
optimization problem (the rightmost picture).

Bilevel Optimization Using Genetic Algorithm

As in the case with simulated annealing, genetic algorithm was launched 50 times, starting
with a random population of 16 individuals. The effect of evolution on the compliance of the
best individual within population is shown in Fig. 7.6.

The initial random populations yielded topologies of a mean compliance 107.4 Nm, cor-
responding to the mean value 107.7 Nm of the Gaussian distribution. Throughout the pre-
scribed 40 generations of the genetic algorithm, the objective decreased to the final mean
value of the best individual 67.4 Nm, being in average 8.9 % higher than the ideal solution
and 7.5 % higher than the global optimum. Through the bilevel optimization, the second best
design, with compliance 64.6 Nm, was reached, refer to Fig. 7.7. Again, all the achieved
objectives are within the lowest 0.2 % of all the combinations.
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Figure 7.6: Convergence of the best individuals within 50 independent runs of the genetic
algorithm. Displayed designs sample the process of evolution through generations.
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Figure 7.7: The best design of the coarsely discretized beam with compliance c = 64.6 Nm
obtained through the genetic algorithm (a), and the corresponding tile set (b).

Comparison of Approaches

Concluding the presented results, both the approaches resulted in designs of comparable
quality. However, simulated annealing was able to achieve the global optimum, although
only once. For overview of the comparison, refer to Table 7.1, showing the best, worst, and
mean compliance of all the procedures, and see Fig. 7.4 for the graphical illustration.

Table 7.1: Comparison of the results obtained through the brute-force enumeration, the sim-
ulated annealing, and the genetic algorithm.

Enumeration Simulated Annealing Genetic Algorithm
Best compliance c∗ = 62.7 Nm 62.7 Nm 64.6 Nm

Worst compliance cAI = 191.2 Nm 72.4 Nm 72.4 Nm
Mean compliance 107.7 Nm 67.4 Nm 67.4 Nm

7.1.4 Relations Between Connectivity Matrix and Design Quality
The brute-force enumeration of all possible designs of the specified problem allowed us to
perform a more detailed analysis. The question of the primary interest is the existence of
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a relation between quality of designs and connectivity matrices, to permit creation of quality
assemblies from scratch.

Firstly, we investigated the influence of a ratio of zero to nonzero elements in the con-
nectivity matrix on the achieved compliance. The boxplot in Fig. 7.8 clearly implies that
better designs are obtained when the connectivity matrix comprises nearly equal number of
zero and nonzero entries. However, enforcing such assumption a priori to the optimization
can lead to missing the global optimum, which is also the case of our example.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of nonzeros in C

60
80

100
120
140
160
180

c
[N

m
]

Figure 7.8: Compliance as a functional of the number of nonzero elements in symmetric part
of C of the example beam. The crosses denote global optimum.

Secondly, it is obvious from the anti-ideal design that the quality depends on the number
of tiles that are utilized from the complete tile set. Plotting the results of all combinations
with respect to the number of tile types appearing in C, see Fig. 7.9, supports our conclusion
that the higher the number of utilized tiles, the better design should we, on average, expect.
Again, strictly enforcing such assumption can prevent us from reaching the global optimum.
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Figure 7.9: Compliance as a functional of the number of utilized tiles in the example beam
with enforced symmetry of C. The cross denotes global optima.

Consequently, we conclude that a connectivity matrix containing similar counts of zero
and nonzero elements and resulting in an assembly plan containing all tiles from the tile set
is a promising candidate for yielding a low-compliant design.

7.2 Finely Discretized Beam
Let us now consider a beam of the same dimensions and boundary conditions as in the
previous example, recall Fig. 7.1, but with refined discretization by 96 tiles of a side length
equal to 0.5 m, refer to Fig. 7.10. In order to preserve comparability with the previous
case, the connectivity matrix is again enforced to be symmetric along midspan of the beam.
Subsequently, the fine discretization permits 262 distinct combinations of assemblies.

This huge number of combinations, pronounced further with increased number of de-
grees of freedom, makes it impossible to perform brute-force enumeration as in the pre-
vious case, leaving us without the knowledge of guaranteed global optimum. However,
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Figure 7.10: Dimensions, discretization, boundary conditions, and ground structure of the
evaluated finely discretized beam.

similarly to the previous example, we can straightforwardly obtain the bounds on the opti-
mum: cI = 61.1 Nm, see Fig. 7.11a, and cAI = 228.7 Nm, see Fig. 7.11b, implying that
c∗ ∈ [61.1;228.7] Nm.

(a) Ideal design, cI = 61.1 Nm
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(b) Anti-ideal design, cAI = 228.7 Nm

Figure 7.11: (a) Lower-bound and (b) upper-bound (b) solutions to c∗.

Compared to the coarse problem, fine discretization produces a richer ground structure,
hence leading to a lower ideal compliance. On the contrary, the anti-ideal compliance no-
ticeably increases, because the total length of bars constrained to have equal cross-sectional
areas increases compared to the coarse discretization. Similar consequence of modularity
was also reported in (Huang and Xie, 2008).

7.2.1 Bilevel Optimization
The modular-topology optimization of the finely discretized beam was launched 20 times for
both of the developed approaches, allowing for direct comparison of the methods. Note
that both the approaches involve similar numbers of solutions to the inner problems of (6.1)
or (6.2).

Bilevel Optimization Using Simulated Annealing

The mean compliance of the initial 20 random connectivity matrices was 156.2 Nm. Fol-
lowing the observation from the coarse problem, a significantly higher mean value of all
connectivity matrices combinations can be expected, compared to the mean value 107.7 Nm
of the coarse discretization.

Through the following 2016 iterations, see Fig 7.12, the simulated annealing algorithm
converged to the mean compliance 81.9 Nm, i.e. to 34.0 % higher value compared to the ideal
design. The best explored design of compliance 72.1 Nm is shown in Fig. 7.13, together with
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Figure 7.12: Convergence of 20 independent runs of modular-topology optimization of the
finely discretized beam using simulated annealing.

the corresponding tile set. Note that the compliance of the reached design is 18.0 % worse
than of the ideal design.
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(a) Design obtained through simulated annealing
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Figure 7.13: The best design of the finely discretized beam with compliance c = 72.1 Nm
obtained through simulated annealing (a), and the corresponding tile set (b).

Bilevel Optimization Using Genetic Algorithm

The initial random populations of 29 individuals lead to designs of a mean compliance
156.5 Nm, agreeing with the mean compliance obtained in the case of simulated annealing.
In the prescribed 70 generations of the bilevel optimization, refer to Fig. 7.15, the algorithm
converged to the mean compliance 82.1 Nm, which is 34.4 % higher objective than of the
ideal design. The best reached design of compliance 71.6 Nm is shown in Fig. 7.14, being
17.0 % worse than the ideal compliance.
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(a) Design obtained through genetic algorithm

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

(b) Corresponding tile set

Figure 7.14: The best design of the finely discretized beam with compliance c = 71.6 Nm
obtained through genetic algorithm (a) and the corresponding tile set (b).
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Figure 7.15: Convergence of the best individuals from 20 independent runs of modular-
topology optimization of the finely discretized beam using genetic algorithm.

Comparison of Results

Similarly to the coarse discretization, the quality of designs resulting from both the algo-
rithms is very similar also in the case of the finely discretized beam, refer to Table 7.2, and
to Fig. 7.16 for an overview.

Table 7.2: Comparison of the results obtained through simulated annealing, and genetic
algorithm.

Simulated Annealing Genetic Algorithm
Best compliance 72.1 Nm 71.6 Nm

Worst compliance 99.0 Nm 97.1 Nm
Mean compliance 81.9 Nm 82.1 Nm
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Figure 7.16: Distribution of obtained approximate solutions to the bilevel optimization
within 20 independent random runs.
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Chapter 8

Summary

In the thesis, a novel modular-topology optimization approach was introduced, facilitating
simultaneous optimization of topologies of 16 independent truss modules together with their
optimal placement within structural macro-scale.

The approach originally utilized the theoretical framework of Wang tiles, particularly
their subset of vertex-based Wang tiles, as a suitable formalism for describing aperiodic
assemblies of structural modules and maintaining the jigsaw-like compatibility of adjoining
modules.

Based on the finite element method, two fundamental approaches leading to the solu-
tion of truss structures—direct equilibrium and the principle of minimum potential energy
functional—were summarized, served as the basis for the developments in the following
chapters.

Next, the well-known elastic minimum-compliance design problem for truss topology
optimization was reviewed along with its equivalent convex reformulations, which were de-
rived based on the potential energy function. Specifically, derivation of the quadratic pro-
gramming formulation was recalled, and its reduction to the classical linear programming
plastic design was outlined. Additionally, the equivalence between the aforementioned non-
convex formulation with the second-order cone and the semidefinite programs was shown.

Because both the second-order cone and the semidefinite programming formulations in-
volve the compatibility conditions constraints, and the cross-sectional areas serve as primal
design variables, the formulations can be directly extended to incorporate structural modu-
larity for a priori specified assembly plan, provided in the form of a valid vertex-based Wang
tiling. The extended formulations preserve their convexity.

Although the developed formulations provided a globally optimal design, its quality was
mainly influenced by the provided assembly plan. In order to mitigate the dependence, we
developed a bilevel modular-topology formulation that couples mathematical programming,
optimizing topology of modules through the second-order cone or semidefinite program-
ming, with meta-heuristics, which searches for an optimal assembly plan through simulated
annealing or the genetic algorithm.

The developed approach was implemented in MATLAB and its performance was success-
fully demonstrated on a minimum-compliant design of a simply supported beam, coarsely
and finely discretized. The coarse discretization, chosen specifically such that it allowed
reaching a globally optimal design by brute-force enumeration, enabled us to assess the
quality of the proposed meta-heuristic approaches, concluding that both the approaches led
to solutions near the global optimum. The fine discretization then demonstrated possible
applicability of the approach to finer and more complex structures.

Numerical results showed that imposing structural modularity does not significantly im-
pair the quality of the optimal design, compared to the non-modular design. Thus, a signifi-
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cant savings can be achieved in production of modular trusses or structures with (a)periodic
microstructure, composed of truss elements.

8.1 Directions For Future Research
The content of the thesis can be also seen as a proof of concept, establishing ground for fol-
lowing research focused on more complex modular designs. While proving the applicability
of the approach, new challenges and topics of further research emerged during the work.
Two major directions are listed below.

The first core area of extension considers the bilevel optimization formulation. While
the developed approach works as intended, it usually requires a high number of solutions
to the inner topology optimization problem. In order to return to the purely mathematical
structure of the bilevel problem, it is important to reformulate it. A suitable approach might
be a single-level mixed-integer program solvable to proven global optimality by a method
based on branch-and-bound principles. Such formulation would also avoid direct manipu-
lation with the connectivity matrix and allow subsequent employment of an arbitrary set of
Wang tiles. Afterwards, it should be straightforward to relax the problem into a non-convex,
yet faster formulation.

Geometry, the second core area of extension, represents a crucial milestone for practi-
cal usability of the approach, permitting e.g. 3D printing (Schumacher et al., 2015; Coulais
et al., 2016; Alù, 2016). Therefore, the method needs to be generalized to cover 3D de-
sign domains by adaptation of Wang cubes. Incorporating complex geometrical constraints,
such as prescribed voids, represents another requirement arising in real-world applications
that needs to be addressed in future work. Finally, a continuous version of the topology opti-
mization in the spirit of e.g. (Alexandersen and Lazarov, 2015) is a necessary, and represents
logical extension of the approach.
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M. Kočvara and J. V. Outrata. Effective reformulations of the truss topology design prob-
lem. Optimization and Engineering, 7(2):201–219, June 2006. ISSN 1389-4420, 1573-
2924. doi: 10.1007/s11081-006-6839-z. URL http://link.springer.com/10.1007/

s11081-006-6839-z.

http://link.springer.com/10.1007/s00158-007-0196-1
http://link.springer.com/10.1007/s00158-007-0196-1
http://link.aip.org/link/SJOPE8/v8/i4/p1084/s1&Agg=doi%5Cnpapers3://publication/doi/10.1137/S1052623496297097
http://link.aip.org/link/SJOPE8/v8/i4/p1084/s1&Agg=doi%5Cnpapers3://publication/doi/10.1137/S1052623496297097
http://arxiv.org/abs/1506.06492
http://arxiv.org/abs/1506.06492
http://linkinghub.elsevier.com/retrieve/pii/0012365X9500120L
http://linkinghub.elsevier.com/retrieve/pii/0012365X9500120L
www.elsevier.com/locate/tcs
www.elsevier.com/locate/tcs
http://www.sciencemag.org/cgi/doi/10.1126/science.220.4598.671
http://link.springer.com/10.1007/s11081-006-6839-z
http://link.springer.com/10.1007/s11081-006-6839-z


Bibliography 59
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