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Overview of Micro-Elasticity theories with emphasis on strain gradient 

elasticity: Part I – Theoretical considerations 
 

George Exadaktylos, TUC 

Abstract 

In terms of the atomic lattice model, elasticity incorporates only the nearest neighbor 

interactions, and that’s it. The theory does not have any intrinsic length scale and as a 

result a 2cm slab behaves like a 10μm film, and there is no difference among a 

microcrack and a geological fault. Moreover, classical elasticity implies that wave 

speed of plane shear and dilatational waves in an unbounded medium is independent 

of frequency, the same is predicted for Rayleigh waves, and surface SH waves are not 

predicted by elasticity.  So the question is if one could develop an elasticity theory 

with intrinsic length scale or scales that can predict such phenomena. One way to 

include a length scale in an elasticity theory is by considering higher gradients of 

displacements (i.e. 2
nd

 , 3
rd

 and so forth). The fundamental idea of considering not 

only the first, but also the higher gradients of the displacement field in the expression 

for the strain energy function of an elastic solid, can be traced back to J. Bernoulli 

(1654-1705) and L. Euler (1707-1783) in connection with their work on beam theory. 

In elementary beam theory there are associated two sets of kinematical quantities (a 

deformation vector and a rotation vector) and two sets of surface loads (tractions and 

bending couples) with a section of the bar. In plate theory the situation is similar. 

Mindlin’s pioneering work in 1964 on gradient linear elasticity is strongly influenced 

from structural mechanics. On the other hand Casal in 1961 was the first to see the 

connection between surface tension effects and the anisotropic second gradient 

theory. Mindlin following another path in 1965 was enforced to embark in third 

gradient of displacement and triple stresses to capture the surface energy property of 

new surfaces in solids. In this respect, for pedagogical reasons, we first present a 

technical beam bending theory with surface energy that contains two length scales. 

One length scale arises from Timoshenko’s correction to account for shear strains and 

the other to account for surface effects. It is shown that the surface energy length scale 

of the theory is responsible for (i) a “stiffening” effect of the beam similar to that 

produced by the presence of initial tension, and (ii) a size effect exhibited by the 

flexural strength of beams, namely the dependence of the flexural strength on the 

inverse length of the beam for the same aspect ratio, which is similar to that 

considered by Griffith in his celebrated paper in 1921. Then, an overview of the 

various formats of general gradient elasticity theories is displayed focusing on 

Mindlin’s second gradient theory that is based on the idea of the “unit cell” inspired 

from the concept of deformable directors proposed by Ericksen and Truesdell; if these 

directors become rigid then the theory degenerates to the Cosserat model. The latter is 

useful in the direction of development of an elasticity beam theory by generalizing the 

results of the technical theory presented previously. The principal difficulties indeed 

are to discover the practical significance of these generalized theories, to design 

experimental methods to explore their physical validity and to identify the length 

scale parameters. However, it is shown here that a Mindlin-Casal type strain gradient 

elasticity constitutes the simplest, in energy consistent, non-local extension of 

Hooke’s law that is able to capture the surface energy and used to predict interesting 

phenomena like size and dispersion effects and cusping of crack lips. So, the 

simplified theory with 4 material constants i.e. 2 Lame and 2 additional length scales, 
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is subsequently used in Part 2 to attack some basic elasticity problems, albeit of 

technological importance, that are presented in Part 2 of these series of lectures. 
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1. Introductory notes 

 

 First of all I want to thank CTU and the Department of Mechanics-Faculty of 

Civil Engineering for the invitation of the series of the two lectures and particularly 

my colleague Prof. Milan Jirasek for encouraging me to re-visit work I have been 

concerned with in the past, and witty comments he made during my January 2017 

visit to him that are considered here. These notes are not in their final form, but they 

were necessary for the introduction to the interested person into a very interesting 

subject of theoretical and applied Mechanics. 

 In the Mechanics of Materials we distinguish among continuum and discrete 

models. Such a distinction is of course an ancient one, which can be traced back to the 

philosophical controversy between atomists and stoics (see e.g. (Lloyd, 1970)). In our 

times this controversy still persists among those who believe that quantities, which 

enter a continuum description should be seen as ‘averages’ of some other underlying 

‘microscopical’ properties of the material, and those who do not accept this point of 

view.  For example Truesdell and Noll in the introduction of Non-Linear Field 

Theories of Mechanics (Truesdell and Noll, 1965, sect.3), state explicitly that: 

"..Widespread is the misconception that those who formulate continuum theories 

believe matter 'really is' continuous, denying the existence of molecules. This is not 

so. Continuum physics presumes nothing regarding the structure of matter. It confines 

itself to relations among gross phenomena, neglecting the structure of the material on 

a smaller scale. Whether the continuum approach is justified, in any particular case, is 

a matter, not for the philosophy or methodology of science, but for the experimental 

test...".   

 Note: In terms of lattice theory, elasticity incorporates only the nearest 

neighbor interactions, and that’s it. It is well known that classical continua consist of 

points having three translational dofs that is displacement in three directions ux, uy, uz 

in a fixed Cartesian coordinate system Oxyz. The material response due to action of 

external loads is described by a symmetric stress tensor σij and the transmission of 

loads is uniquely determined by a force vector, neglecting couples. The theory does 

not have any intrinsic length scale and as a result a 2cm slab behaves like a 10μm 

film, and there is no difference among a microcrack and a geological fault. Moreover, 

classical elasticity implies that wave speed of plane shear and dilatational waves in an 

unbounded medium is independent of frequency, and surface SH waves are not 

predicted by elasticity. 

 Real materials often have a number of important length scales, which should 

be included in a realistic model such as molecules in polymers, crystals in a 

metamorphic rock, grains and particles, fibers, cellular structures, building blocks in 

rock masses or in architectural monuments like Parthenon temple etc. A length scale 

is included only if the theory is extended to consider 2
nd

, 3
rd

 and so forth neighbor 

interactions and the theory is then “non-local” in contrast to elasticity which is a 

“local” theory. The continuum version of the nth neighbor interaction lattice theory is 

the so-called grade-n theory. Surface tension phenomena are also not captured by 

elasticity. In conclusion, due to limited amount of physics that was built in elasticity 

the micromechanical phenomena we are so eager to understand are not derivable from 

this theory.  

 In the study of cracks Griffith’s paper (Griffith, 1921) was the initiation of the 

independent discipline of Fracture Mechanics. Griffith  started with the study of the 

size effect exhibited by the tensile strength of glass fibers as is depicted in Fig. 1.1. 

Griffith fitted on the test data the following empirical law 
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t

27.17
44.154                                                                                                   (1.1) 

 

This law is the same with that proposed by Karmarsch (1858) based on a best-fitting 

procedure of experimental data of tension tests on cylindrical metal wires with 

different diameters “Mittheilungen des gew. Ver. Für Hannover”, 1858, pp. 138-155. 

From the engineering standpoint the chief interest of this size effect is to apply it for 

the production of high-strength composites i.e. glass and graphite fiber composites 

with very small diameter approaching ultra-high strengths bonded together with resin. 

Of equal importance in terms of safety of large structures is that the standard methods 

of strength estimation in the lab may lead in some cases to serious error.  

 

 
 

Fig. 1.1. Size effect exhibited by the tensile strength of glass fibers (circles) tested by 

Griffith (1921) and best-fitted inverse diameter relationship (continuous line). 

 

 Griffith, extended into theory by him by postulating an energy balance law 

considering the surface energy (or tension) 2γ of the crack in a plate under fixed-grip 

conditions, that is 

 

2





a

U
                                                                                                              (1.2) 

 

But as pointed out by Goodier (1968) in due course of calculating the strain energy in 

the crack plate Griffith neglected the stresses due to surface tension that are implied 

by the existence of surface energy on the crack surfaces. If surface energy is specified, 

the boundary value problem to be solved is not that of Inglis (1913), but rather one 

that would include a normal traction r/ where r is the radius of curvature of the 

stress-free crack. Furthermore, because the specification of an energy balance then 
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becomes redundant, that is it is guaranteed by the solution of a properly posed 

boundary value problem, some alternative criterion for fracture must be sought. 

 The presentation is organized as follows: In Section 2 a short historical 

overview of micro-mechanical theories is presented. Reference is made in Casal’s 1D 

elastic bar model, 2D Cosserat theory and the extension of Timoshenko’s beam 

theory.  Section 3 is devoted to the presentation of Mindlin’s gradient elasticity theory 

and his second gradient of strain elasticity theory. The latter includes a surface energy 

term in the potential energy density expression.  Section 4 refers to the presentation of 

a Mindlin-Casal type first strain gradient elasticity theory which constitutes the 

simplest, in energy consistent, non-local extension of Hooke’s law that is able to 

capture the surface energy phenomena. 

2. Overview of simple micro-mechanical theories 

 

2.1 Introductory notes 

 

One of the researchers who empirically considered an intrinsic length scale based on 

the mean value of the nominal stress along the potential fracture path and introduced 

a non-local integral-type theory was Neuber (1936); this contribution is mentioned 

by Tanaka & Mura (1981) of fatigue crack initiation from notches. In fact Neuber 

used this modification of classical strength theory to better interpret metal fatigue 

experimental evidences. 

 

 
Fig. 2.1. Sketch taken from Neuber’s paper presented in IUTAM 1967 conference 

(Kroener, 1968). 
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 In his “stress-mean-value” theory he postulated that the strength of a material 

in the neighborhood of a notch (r = distance from point O of the notch tip, and Oz-

axis is normal to the plane of the notch as is shown in Fig. 2.1) should be compared 

with the nominal stress σn whereas the kernel of the integral represents the local stress 

that is given as usual with Hooke’s law 

 

   




*

0

*
0,

1
R

r

zzn drr
R

  

 

The length scale R
*
 appearing in this empirical model is an intrinsic length scale of 

the material. Similarly to Neuber, Eringen’s work (Eringen, 1983) is probably best 

known for advocating the use of an integral-type spatial nonlocality, where volume 

averages of state variables are computed. The nonlocal stress tensor, is defined as 

follows  

     ss-xx
V

 dVc

ij

g

ij  )(                  (2.1) 

 

where α is a nonlocal weight function that is non-negative and attenuating for 

increasing values of the argument it encloses, and for isotropic elastic solid 

 

ijijkk

c

ij G 2  

 

The meaning of Eq. (2.1) is that the nonlocal stress at point x is the weighted average 

of the local stress of all points in the neighborhood of x, the size of which is set via 

the definition of a(s). Both non-local and local stresses obey the stress equilibrium 

eqns, i.e. (in the absence of body forces) 
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2.2 1D strain gradient models 

 

We first may recall that the average value of an one-dimensional field y=f(x) (say an 

1D stress field) in a representative length L is 

 






2/

2/
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1

L

L

dxf
L

y                                                                                              
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Fig. 2.2. Linearly varying stress field around material point x. 

  

By expanding f(x+ξ) into Taylor series and substituting the result in the integral and 

evaluating we find that the local value of y at the mid-point of the line of length L is 

 

)(
24

4

2

22

LO
dx

ydL
yy

x

                                                                                     

 

For uniform or linearly varying fields it is seen that the mid-point value coincides 

with the average over the whole length L. However for quadratically varying fields, 

i.e. stress distribution close to the tip of notch or crack, the second gradient of y=f(x) 

should be also taken into account. Based on the above observation and by induction 

we may generalize the result for the stress tensor in the 3D space. That is to say, we 

can easily show that for cubic REV with dimension a, the following approximation 

formula holds for the average stress,  

 

 kijREVij x
a

 







 2

2

24
1                                                                             (2.2) 

 
It is also legitimate to assume that Hooke’s law does not hold for the local equilibrium 

stress but rather for an average stress that is defined over a Representative Elementary 

Volume (REV) 

 

ijijkk
REV

ijREVij GdV  2
)(

                                                                  (2.3) 

 

By inverting the differential operator in Eq. (2.2) and substituting the average stress 

with the strains (Eq. (2.3)) we get the following expression of the mid-point stress 

tensor 

 

 ijijkkREVijij G
a

a
 2

24
1

24
1

1 2
2

2
2













                                      (2.4) 
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It may be shown that the above constitutive relation is a special form of gradient 

elasticity theory proposed by Mindlin (1964). Based on an appropriate and simple 

strain energy expression of the restricted form of this theory, the constitutive relations 

linking stresses with strains have the following form  

 

  ijkkijij G 21 22                                                              (2.5) 

 

This is a Laplacian-type strain gradient elasticity or Laplacian modification of 

Hooke’s law with an intrinsic length scale proposed by Aifantis (Altan and Aifantis. 

1992; Ru and Aifantis, 1993) to be used for the solution of static and dynamic 

problems in the frame of linear elasticity. The gradient length scale parameter   may 

be associated with lattice characteristic dimension or some characteristic 

microstructural length scale of a solid, like mean grain or crystal size etc. In this case 

it may be shown that the theory leads to the prediction of size effects in static loading 

tests, or to dispersion in wave propagation problems.   

 The above averaging considerations find many applications in continuum 

mechanics. Typical example of a locally homogeneous one-dimensional continuum is 

the tension/compression bar. In this case we assume that the displacement of a normal 

section to the axis of the bar is adequately described by a displacement field u = u(x), 

which, in a good approximation, is a linear function of position,  

 

xuu  0  

 

In this case we call the deformation homogeneous, and we describe it satisfactorily by 

the gradient of displacement.that we call the strain 

 

xdx

du
u   

 

In such a test it is sufficient to measure the relative displacement of  two distant points 

of the bar along its axis and to interpolate linearly between them. From this 

measurement we can compute the axial elongation (or shortening) of the bar per unit 

length, , which coincides with the average and the local strain  

 

 


L

LxuLxu )2/()2/(
 

 

The corresponding engineering model for tension/compression of long prismatic bars 

is classified as a simple theory for an one-dimensional continuum, which connects, 

through a constitutive relation, the axial force to the axial elongation,  

 

)(NN   

 

Or in other words the axial force to the first gradient of the deformation,  

 

)( uNN   
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Accordingly the engineering theory of simple tension/compression of long prismatic 

bars is a 1
st
 gradient continuum theory.  

 On the contrary, in the frame of the engineering beam-bending theory, we 

get that a locally linear approximation of the deflection w(x) is not sufficient. In the 

case of pure bending we assume for example that  

 

2

0
2

1
xxww    

 
Fig. 2.3. Quadratically varying deformation around point x in a beam. 

 

 

In this case the deformation cannot be assumed as being locally homogeneous. For the 

estimation of the curvature we need at least three measurements (at x and ) and a 

parabolic interpolation of the data.  

 Accordingly the engineering bending theory of long prismatic beams is 

described by a constitutive relation, which connects the bending moment M to the 

curvature of the deflection of the beam,  

 

 )(MM )( 2wMM   

 

where the bending curvature is 

 

x
dx

wd
w

2

2
2   

 

This means that the engineering beam-bending theory is a 2
nd

 gradient continuum 

theory.  

 Other well-known example of 2
nd

 gradient continuum theory is the theory of  

capillary waves in ideal fluids with surface tension. In this case, through a simple 

membrane model of the free surface of the fluid, only the boundary condition on the 

free surface is modified, so as to include the effect of  curvature.  

1. the problem of surface tension   in fluids. For example in the study of capillary 

surface waves in fluids the information concerning the characteristic length of the 

problem, )/(2 gT  , enters only through the dynamic boundary condition, 

that assigns on the surface of the fluid a fictitious pressure that is proportional to 

the mean curvature of that surface
1
, ),(2 yxTp  ; see Fig. 2.4.  

 

                                                 
1
 cf. L. A. Segel, Mathematics Applied to Continuum Mechanics, Dover, 1977. 
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Fig. 2.4 

 

  

2.3 Casal’s elastic model for the rod with surface energy 

 

 Professor Germain has encouraged the communication o the French Academy 

of Sciences of the ideas of Casal (1961), which in turn seem to have inspired 

Germain’s (1973a; 1973b) fundamental papers on the continuum mechanics structure 

of the grade-2 or higher grade theories. In our paper, we want to give full credit to 

Casal’s original idea, who was first to see the connection between surface tension 

effects and the anisotropic grade-2 elasticity theory. Casal has extended the classical 

1D Hookean definition of linear elastic solids by introducing additional terms of 

second order in displacements in the strain energy density expression (grade-2 or g2 

theory) based on linear capillarity theory of liquids. Because this theory is anisotropic, 

it is possible to take into account surface free energy by multiplying a director (first-

order tensor) with the strain-gradient (third-order tensor) in the expression for the 

strain energy density function. Accordingly, two material constants  ,  having the 

dimension of length, were introduced by Casal to characterize the internal and surface 

capillarity of the solid. 

 For demonstration purposes we consider first the 1D example of a tension bar 

of length L in a clamped end- free end configuration with the load acting on its free 

end along the x-axis. In the uniaxial case the strain energy of the tension bar was 

presented by Casal as follows 

 

   L
L

EdxEW 0

2

0

22

2

1

2

1
                                                                      (2.6) 

 

Casal’s elastic strain energy ansatz (2.6) consists of two terms : (a) a “volume energy” 

term which includes the contribution of the strain gradient, and (b) a “surface energy” 

term. Accordingly,   and  ’ are material lengths related to volume and surface 

elastic strain energy, respectively. Casal’s expression for the global elastic strain 

energy of the tension bar was recovered by introducing an appropriate anisotropic, 
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linear elastic, restricted Mindlin continuum. Since in a restricted continuum the 

relative deformation γ vanishes, the variation of the strain energy density becomes 

 

 w                                                                                                      (2.7) 

 

In this expression τ (Cauchy term) works on the strain, whereas μ (double stress) 

works on the strain gradient. In connection to the variation (2.7), Casal’s model is 

equivalent with the following constitutive assumptions for the Cauchy- and double-

stress 
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From eqns (2.6)-(2.8) the elastic strain density is derived, resulting in the following 

expression 
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Ηence the potential energy is recovered in the following manner 

 

 222

2

1
  Ew                                                                             (2.9)             

 

It turns out that for positive strain energy density (w > 0) in the considered 1D case, 

the material lengths are restricted, such that 

 

11 






 

 

This means that if surface energy terms are included, then volume strain-gradient 

terms must also be included. It is worth noting that in Griffith’s (1921) original theory 

of cracks only surface energy is considered, which is of course inadmissible in the 

sense of inequality (A.7); however, as was already mentioned above Griffith 

considered surface energy in an ad hoc manner. 

 

 

2.4 The Cosserat continuum 

 

First recall basics from tensors notation, for example Table 2.1. 
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Table 2.1. Indicial notation for tensors 

 

 
 

 

 In natural or man-made constructions involving blocky rock structures like 

these illustrated in Fig. 2.5, the relative rotations between the building blocks could be 

equally important with the deformation of the structure or sliding between blocks. 

 

    
Fig. 2.5. Examples of natural and man-made blocky rock structures (sketches taken 

from the textbook of Goodman and Shi 
2
on key block theory) 

 

 The study of such structures can be performed by a model of the so called 

oriented medium with rigid or deformable directors. The idea of couple stresses was 

originally introduced by Voigt and others, but the Cosserat brothers in 1909 (Cosserat 

E. and F., 1909) gave the first systematic treatment. They removed the connection 

between the rotation field and the displacement gradients and introduced an intrinsic 

length scale. This further generalization implies the introduction of couple stresses. A 

Cosserat continuum is equipped with the following ingredients: 

 Kinematics: Continuum of oriented rigid particles, equipped with three 

perpendicular unit vectors called trièdres rigides (or rigid crosses) which Ericksen 

and Truesdell (1958) called “directors” of an “oriented merium”. Each mtl point has 

with 6 d.o.f. i.e. 3 displacements ui and  3 rotations (or micro-rotations) c

i (different 

from the rotational (anti-symmetric) part i  of displacement gradient) (e.g. 

(Mindlin, 1964)). 

 

                                                 
2
 Goodman R.E. and Shi G. (1985), Block theory and its application to rock engineering, Prentice-Hall 

Inc. 
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Fig. 2.6. Cosserat-continuum kinematics in 2-d; (a) Displacement ui and rotation 
c

of a rigid cross (b) Relative rotation 
c of two neighboring rigid crosses (curvature) 

 

The deformation state is described by the relative strain γij and the Cosserat rotation 

gradient κij defined as 
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The meaning of the relative strain may be realized if we split it into a symmetric and 

anti-symmetric part 
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where 

 qr  is defined as the usual symmetric infinitesimal macro-strain tensor defined 

in terms of the displacement vector qu , ss x / , the indices (q,r,s) span 

the range (1,2,3),  

 

 )(
2

1
,, ijjiij uu                                                                                      (2.12) 

So, the relative strain γij can be expressed through the usual macro-strain εij and 

macro-rotation ωij i 

 

)( c

ijijijij                                                                                          (2.13) 

 

The quantity )( c

ijij   or “relative spin” in Eq. (2.13) represents the relative rotation 

of a material point with respect to the rotation of its neighborhood. If it is null it 

reduces to the usual strain εij. 
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Statics: 9 force stresses σij (force per unit area) associated with the displacements, 

and 9 couple stresses μij (torques per unit area) associated with the rotations. In 

contrast to elasticity theory the stress tensor is not-symmetric. 

 Based on the virtual work principle the following force and moment 

equilibrium conditions along Ox1- and Ox2-directions for a volume element V of the 

Cosserat medium in the static limit (Fig. 3) are derived first for the stresses 

 

Vine

f

jkijkjij

ijij

0

,0

,

,


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
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                                                                                             (2.14) 

 

Equivalently, 
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xx
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                                                                                      (2.15) 

 

where , γ denotes the unit weight of the elastic medium and the symbol τ is sometimes 

here used to denote shear stress.  

 

 

 
(α) 
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(b) 

 

Fig. 2.7. (α) Stress and couple stress (μi3=mi), in the sense of Cauchy in 2D. (b) 

Statics of a 2D Cosserat asymmetric stress element represented by Mohr’s circle 

(Vardoulakis and Sulem, 1997). 

 

 

 The center M
II
 of the Mohr circle is shifted normal to the Oσ -axis by the 

amount of the asymmetry of the stress tensor, given by a  . From Fig. 4 we can also 

compute the angular displacement of the center Μ of the Mohr circle, expressed by 

the stress obliquity of the antisymmetric part of the stress tensor, 

 

 
 2211

2112tan










p

a                                                                                         

 

wherein   2/zzxxp   is the in-plane invariant mean normal stress and 

  2/zxxza   is also an invariant and measure of the stress-tensor asymmetry. 

  

Constitutive relations (in simplest isotropic Cosserat elasticity): The variation of 

potential energy of the Cosserat medium – following the terminology of Mindlin -  is 

defined as 

 

  ii

c

ijijijijij mw   ][)(  
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where 

 

)(ij =Cauchy stress 

][ij =relative stress since it works on relative rotation. 

 

The 2 elastic constants K, G of classical elasticity, the Cosserat shear modulus G
c
 

linking the anti-symmetric shear stresses with the anti-symmetric part of the relative 

deformation and one additional elastic constant with dimensions of length (square root 

of the bending modulus with dimensions of force to the shear modulus) that is linked 

to the microstructure and may be identified experimentally by the method of size 

effects for a particular problem. 
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







                                                                             (2.16) 

  

 All theories in which the stress tensor is not symmetric are references as 

“polar-continua” or “micro-polar continua”. Tthe basic kinematic and static concepts 

of the “Cosserat” continuum that contains an intrinsic length scale were reworked in a 

milestone paper by late Professor Guenther (Guenther,1958) in Braunschweig. 

Günther's paper marks the rebirth of the so-called “continuum micro-mechanics” in 

the late 50’s and early 60's. Following this publication, several hundred papers were 

published all over the world on that subject. A variety of names have been invented 

and given to theories of various degrees of rigor and complexity: Cosserat continua or 

micro-polar media, oriented media, continuum theories with directors, multi-polar 

continua, micro-structured or micro-morphic continua, non-local media and others 

(Hermann, 1972). The state-of-the-art at this time was reflected in the collection of 

papers presented at the historical IUTAM Symposium on the "Mechanics of 

Generalized Continua", in Freudenstadt and Stuttgart in 1967 (Kroener, 1968). On the 

subject of Cosserat Elasticity recommendable for their clarity and didactical value are 

the papers by H. Schaeffer (1962, 1967) in German and of Koiter (1964) in English. 

Notable and of equal importance in relation to Gradient Elasticity is the milestone 

paper by Mindlin (1964) and two papers by Germain (1973a, b), the latter written 

partially in French and partially in English.  

 Table 2.2 presents the relations among the quantities involved in 3 theories, 

namely Cosserat, beam bending and form III of Mindlin’s theory that is a special case 

of the general theory of elasticity with deformable unit cells or deformable directors. 

 

 

 

 

 

 

 

 

https://www.google.cz/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj9gLLo297TAhUGUlAKHU_qBxYQFggtMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBraunschweig&usg=AFQjCNGFkiLxmHv_WY5UTlfvE3vhwSikDQ
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Table 2.2. Relations among the kinematic and static quantities of 3 theories. 
2D Cosserat theory Timoshenko’s beam 

theory 
Mindlin’s theory 

Relative 

deformation 

(difference 

between 

macro- and 

micro-

deformation) 

c

ijjiij eu  3,   Shear 

strain γ 
   

w  

Relative 

deformation 
qrrqqr u    

Rotation  c  rotation   Anti-

symmetric 

part of the 

micro-

deformation 

of a particle 

][qr  

rotation 

gradient or 

“curvature of 

deformation” 

c

ii ,   bending 

curvature 
x,   Micro-

rotation 

gradient, curl 

of the strain 

][ jki  

“Balance” 

Stress tensor 
ij  Normal 

 stress 
  “Balance” 

Stress tensor 
ij  

Couple stress 

tensor 
iim 3  Bending 

moment 
M  Couple stress 

tensor (anti-

symmetric 

part of the 

double stress 

tensor) 

][ jki  

 

 

 

 

 

2.5 Some remarks on technical beam theory 

 
 The fundamental idea of considering not only the first, but also the higher 

gradients of the displacement field in the expression for the strain energy function of 

an elastic solid, can be traced back to J. Bernoulli (1654-1705) and L. Euler (1707-

1783) in connection with their work on beam theory.  

Note: 

 In elementary beam theory there are associated two sets of kinematical 

quantities (a deformation vector and a rotation vector) and two sets of surface 

loads (tractions and bending couples) with a section of the bar. In plate theory 

the situation is similar.  

 As is shown in Fig. 2.8 in classical beam-bending theory the microelement is 

the cross section of the beam with 2 d.o.f., vertical displacement plus rotation. 

 It is obvious that Mindlin’s [20] pioneering work on gradient linear elasticity 

is strongly influenced from structural mechanics.  

 It may be also shown that the Timoshenko beam is merely a 1-d Cosserat 

medium. 
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Fig. 2.8. Rotation of the cross-section of the beam. Cross-section and neutral axis 

form the rigid cross in Cosserat theory. 

 

 To fix ideas we consider a simply supported beam of rectangular cross-section 

under the action of a vertical load P at its upper surface and at the mid-span. The 

longitudinal section of the beam is referred to a Cartesian coordinate system Ο(x,y,z) 

positioned on the neutral axis – which is the locus of centroids of cross-sections - with 

its origin at mid-span and with the Ox-axis directed along the neutral axis of the beam 

while Oz-axis extending vertically downwards, as it is illustrated in Fig. 2.9. Further, 

deformation quantities are assumed as infinitesimal, and the corresponding 

displacements of points in a cross-section along Ox and Oz directions are denoted by 

the symbols wu,  respectively. Let the infinitesimal normal strains zzxx  ,  and the 

engineering shear strain xz   in the plane xOz to be defined as follows  

 

xzxzzzzxxx wuwu ,,      ,,,,                                                       (2.17) 

 

 
Fig. 2.9. Horizontal and vertical displacements u,w, respectively, and rotation  . 
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Fig. 2.10 Forces and moment, (b) Linear distribution of the horizontal strain along 

the height of the beam and definition of the radius of curvature. 

 

For the achievement of a unique displacement solution, the Timoshenko extension of 

Bernoulli-Euler (B-E) theory rests on the following two kinematical assumptions: 

Assumption #1: It is assumed that planar vertical cross-sections of the beam in the 

undeformed state, such as section A  in Fig. 2.9, remain planar after loading (i.e. A’ in 

Fig. 2.9). Consequently, as is displayed in Fig. 2.10, the horizontal displacement u 

along Ox-axis at a given vertical section of the beam should be a linear function of the 

vertical coordinate z, i.e.  

 

zzxu x,)(                                                                                            (2.18) 

where   denotes the rotation (considered to be a small quantity) of the cross-section 

A of the beam at position x  as is displayed in Fig. 2.9. Also, with the symbol   we 

denote the gradient of the rotation angle (bending curvature) of the cross-section, that 

is 

 

,,x                                                                                                     
         

     (2.19) 

 

Substituting Eq. (2.19) into (2.18) we take the following expression for the horizontal 

strain 

 

z                                                                                                                      (2.20) 

 

The bending curvature R/1  in Fig. 2.10 is found as xz ,/   .  

Assumption #2: Every point lying at the vertical section x = (ct) is subjected to the 

same vertical displacement, that is to say 

  

)(xww                                                                                                                  (2.21) 

 

This assumption means that the height of a given cross-section of the beam remains 

constant during deformation i.e. 0zz . 

 B-E assumption that vertical cross-sections perpendicular to the neutral beam 

axis remain orthogonal with the axis during the bending of the beam is relaxed in 

Timoshenko’s theory (Fig. 2.11)   
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0
dx

dw
                                                                        (2.22) 

 

 
Fig. 2.11. Timoshenko beam with xw, . 

 

Next the static equilibrium conditions of the beam are found by recourse to the 

Principle of Virtual Work. Define 

 







 bb MQ  ,                                                                                          (2.23) 

wherein b  denotes the internal strain energy density of the beam. 

The variation of the total strain energy bU along the length L  of the beam with 

the absence of axial load ( 0N ), takes the form 

 

   MQdxMQdxU b

LL

bb  
2/

0

2/

0

22                           (2.24) 

The form of Eq. (2.24) is the motivation for the adoption of the following form for the 

variation of work eU  done by external forces  

 

    2/

0

2/

0

22
Lx

x

L

se MwQdxwqU


                                                        (2.25) 

where the factor 2 has been inserted because due to symmetry only the half-length of 

the beam could be considered. By requiring eb UU    there are derived the static 

equilibrium equations 

 

)(xq
dx

dQ
s ,   Q

dx

dM
 ,                                 (2.26) 

,, 



t

c

t

c

z

z

z

z

dzzMdzQ   

  

It may be easily shown that the representation of the strain energy density (potential) 

of the beam in the context of Timoshenko’s beam bending theory is given by the 

following ansatz 
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









2

2
2

2

1

v

T EI



                                                                                      (2.27) 

where the term EI denotes the flexural rigidity or stiffness of the beam, I  denotes 

the moment of inertia of the cross-section A of the beam, v  stands for a 

microstructural length scale of the beam material that considers the effect of the 

transverse shear stress contributing to the deflection )(xww   of the beam, 

 The following constitutive relationships for the bending moment and 

transverse shear force may be deduced   

2
,

v

TT EIQEIM






















                                                        (2.28) 

 The first of Equations (2.28) forms the Bernoulli-Euler theorem depicting the 

analogy of the bending moment with the bending curvature of the beam, while the 

second is due to Timoshenko that considers the effect of the transverse shear forces on 

the beam deflection. So, Timoshenko beam is merely a 1-d Cosserat medium.  

Herein an engineering gradient beam bending theory that has been previously 

presented by Vardoulakis et al. (1998) containing two material length scales and 

aiming at capturing the size effect exhibited by beams in bending, is re-visited. In fact 

we change the strain energy density (or potential) ansatz initially proposed in our 

previous work, with the following straightforward expression (Exadaktylos, 2017) 

 












 

sv

b EI


21

2

1 2

2

2
                                                                      (2.29) 

 

 So, Bernoulli-Euler theory which leads to the proportionality of the bending 

moment with curvature, is expressed only by the first term, whereas Timoshenko’s 

beam bending theory that explains the effect of shear forces on beam deflection 

and bending curvature of the beam is expressed by the first two terms.  

The constitutive equations for the shear force Q and bending moment M, are also 

easily derived from the potential of Eq. (2.29) as follows 
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






















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 
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svsv

b wEIEIQ
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1111
22

                                   (2.30)           
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


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







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


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


wEIEIM

ss

b



11
                                            (2.31) 

 

 The third term in the above strain energy density function has not been 

obtained arbitrarily, but rather on the simple and straightforward argument, namely 

that since the curvature and shear strain are already included by Bernoulli-Euler and 

Timoshenko, respectively, then their product should be also included for 

completeness of the representation. The above ansatz contains the last term that 

considers surface energy effects through the microstructural length scale s , and also 

contains as a special case Timoshenko’s beam bending theory through the length scale 
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v as may be observed from Eq. (2.27). In fact, by applying Gauss’ divergence 

theorem the total elastic strain energy of the beam takes the form 
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It may be easily shown that the positive-definiteness of the strain energy density is 

guaranteed if the following inequalities are valid 

 

11 
s

v




                                                                                                       

This means, that surface energy length  s  must not vanish if the length scale 

correcting B-E theory to account for shear strains is considered. 

  

2.6 Closed-form solution of the simply supported beam in 3PB  

 

It may be shown that the expression for the deflection of 3PB simply supported beam 

has the form (Exadaktylos, 2017)  
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where we have used the following dimensionless quantities  
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cw represents the maximum (i.e. mid-span) deflection derived from Bernoulli-Euler 

beam theory. For example for a rectangular cross-section with height H , we get that 
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T  essentially compares with the inverse of the aperture ratio of the beam, that is to 

say for a rectangular cross-section of the beam, Τimoshenko (1921) found that  T  

compares with the inverse of the length to height ratio  
 

LHfor
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Also, the rotation of the initially vertical cross-section of the beam could be found  
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The engineering shearing strain could be also found in the following manner 
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Note that ls should not vanish for positive definite potential energy of the beam. In 

addition, the bending curvature of the beam may be found by formal differentiation of 

Equation 94 as follows 
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                              (2.32)                      

As, it may be seen from Eq. (2.32), in contrast to classical theory, the present gradient 

theory with surface energy predicts always for any value of 
2  a finite and larger 

value of the beam curvature at its supporting ends (i.e. for 2/1 ). This is due to the 

presence of the surface energy term s̂2
 
in the expression for the curvature that also 

is responsible for the inequality
22 / xw  .             
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Fig. 2.12. “stiffening” effect of surface energy term Classical B-E theory elastic curve 

passes through 1 . 

 

 

 

2.7 Size effect exhibited by the beam strength  

 

Assuming that the Poncelet - Saint Venant (PSV) failure hypothesis is valid for 

granular brittle materials, then the fracture of the beam will occur when the horizontal 

extension strain at the mid-span of the bottom fiber of the beam denoted here as 

reaches the limit strain f  that is material property 
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In the formula above, fP  denotes the value of the concentrated load at failure. For 

constant beam aperture ratio HL / , the extended beam bending theory accounting for 

surface effects, predicts a (-1)- power of the beam length dependence of the flexural 

strength of the beam, and (iii) this size effect law resembles Karmarsch’s empirical 

law also used later by Griffith (i.e. Eq. (1.1)). Also we may say that in contrast to 

Griffith’s theory we do not need to consider ad hoc the existence of material defects.  
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3. Mindlin’s micro-elasticity theory  

 

3.1 Kinematical considerations 

 

In the sequel the basic formalism of the grade-2 theory of elasticity presented by 

Mindlin (1964) is outlined. With respect to a fixed Cartesian coordinate system 

321 xxOx ,  

 

 Each material point has  deformable micro-volume (e.g. Fig. 3.1) (multi-scale 

model). 

 Two scales: micro-medium (unit cell) & macro-medium. 

 Each scale has it’s own deformation measure. 

 Deformation inside unit cell (micro-volume) is homogeneous and 

inhomogeneous in the macro-volume V. 

 

 
Fig. 3.1. Mindlin’s 2 scales model. 

 

The displacement of the macro-volume is defined as usually 

 

iii Xxu   

 

On the other hand, in the micro-scale the micro-displacement is defined in the 

following manner 

 

iii Xxu   

 

Assuming that the absolute value of the displacement gradients is smaller than unity 

then the usual macro-deformation or macro-displacement gradient qru  (displacement 

gradient tensor) is recovered 
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If the same holds true at the micro-scale then the micro-deformation tensor iju  is 

also recovered, 
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That is assume that micro-displacements can be expressed as sums of products of 

specified functions of ix  and arbitrary functions of ix  and time t, and as an 

approximation we keep only the linear term of the series 

 

ikik xu   

 

Where ik  is a function of global coordinates ix and time t only. The displacement-

gradient of the micro-medium (element) is 

 

ikii u 


  

 

with qr  denoting the micro-deformation of a particle in the form of a grain or 

crystal for a granular or crystalline rock, respectively, (Fig’s 3.2 a, b), 

 

        
 

Fig. 3.2. (a) Multi-scale model, (b) relative deformation of the macro-volume w.r.t. 

the unit cell. 

 

The micro-deformation gradient may be splitted it into a symmetric and an anti-

symmetric part 
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The symmetric part is the micro-strain while the anti-symmetric part is the micro-

rotation. Ericksen and Truesdell (1958) interpreted ψ as being proportional to the 

components of the displacements of the tips of deformable crosses, so the component 

][ij  describes the rotation of the rigid cross in Cosserat theory. 

 
  

 

 The usual strain is defined 

 

))(2/1( rqqrqr uu    

And also 

 

qrrqqr u    is the relative deformation  

 

and  

 

rsqqrs    is the micro-deformation gradient or the macro-gradient of the micro-

deformation  

 

It is worth noting here that all three tensors pqrqrqr  ,, are independent of the micro-

coordinates ix . 
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(a) 

 

 
 

(b) 
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(c) 

Figure 3.3.  (a,b) Typical components of relative stress ij  ( ijijij   ,) 

displacement gradient jiu , and micro-deformation ij  for the simple case of 

uniaxial tension of a flat plate, and (c) various forms of micro-deformation gradients 

and associated double stresses and double stresses doublets (Mindlin, 1964). 

 

 

 

 

3.2 Kinetic and potential energies 

 

The kinetic energy density of the micro-medium may be derived as follows  

 

ijtijtkttijijii duduuT  22

6

1
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1

2

1
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

 

 

where 2d is the size of the unit cell (element) of the microstructure, ρ’=ρΜ+ρ, 

ρΜ=density of the macro-volume and ρ the density of the micro-volume. Also the 

potential energy density (potential energy per unit macro-volume) is a 

homogeneous, quadratic function of the 42 variables ijkijij  ,,  

),,( qrsqrqrww                                                                                             
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Then, appropriate definitions for the stresses follow from the variation of w , i.e. 
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Then the following form of variation is assumed 
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Integrating and applying the divergence theorem 
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The form of the above equation motivates the adoption of the following form of the 

variation of external work 
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Where we assumed the existence of the following set of external forces: 

 

 body forces, dVfk  

 surface tractions, Sdt k   

 double force per unit volume dVik  

 double tractions, dSTik  

 In both Φ and T the first subscript indicates the direction of the lever arm 

between the forces and the second gives the orientation of the forces. Across a surface 

with its outward normal in the positive direction, the force at the positive end of the 

lever arm acts in the positive direction. “Positive” means the positive sense of the 

coordinate axis parallel to the lever arm of force. Across a surface with its outward 

normal in the negative direction, the directions of the forces are reversed. 

 Hamilton’s principle is written in terms of independent variations of the 

displacement ku and kl between fixed limits and of time also between fixed limits, 
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From above relations [Question: which?] there follow the (3+3
2
=12) stress-equations 

of motion in the volume V  
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





                                                                       (4.1)                                    

 

And the 12 (3 and 3
2
=9 respectively) traction boundary conditions read as follows 

 

ijkijk

ijijij

nT

nt







 )(
                                                                                                    (4.2)   

 

In view of qrsqrqr  ,,  denote the Cauchy stress (symmetric), relative stress 

(asymmetric), and double stress tensors, respectively. The second order stress tensor 

 ij , which is dual in energy to the macroscopic strain, is symmetric, i.e.  ij ji  

whereas the third order tensor ijk , which is dual in energy to the strain-gradient, is 

called the double stress. The  ij  are like the components of the usual stress with the 

dimensions of force per unit area, however, they depend on the second gradient of 

strain in addition to the strain. The twenty-seven components kij  have the character 

of double forces per unit area. The first subscript of a double stress kij  designates 

the normal to the surface across which the component acts; the second and third 

subscripts have the same significance as the two subscripts of ij . There are eight 

components of the deviator of the couple-stress or couples per unit area formed by the 

combinations ( / )( )1 2  pqr prq , and ten independent combinations 

( / )( )1 2  pqr prq  called “double stress doublets”, the latter being self-equilibrating 

(Mindlin, 1964;1965). Double force systems without moments are stress systems 

equivalent to two oppositely directed forces at the same point; such systems have 

direction but not net force and no resulting moment. Notice that singularities of this 

kind are discussed by Love (1927) and Eshelby (1951). 

 

 3.3 The anisotropic format 

 

Constitutive equations may be found from the definition of the potential energy 
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The constitutive tensors ijklijklmijklmijklmnijklijkl gfdabc ,,,,, contain 42x42=1764 

coefficients with only 1/2x42x43=903 to be independent. From the definition of the 

stresses and the above ansatz the following constitutive eqns are found 
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3.4 The isotropic format  

 

 For centro-symmetric isotropic materials the strain energy density could be 

considerably simplified since there are no isotropic tensors of odd rank and hence 

ijklmijklm fd ,  must vanish. The remaining coefficients must be homogeneous, linear 

functions of products of Kronecker deltas. It is recalled that there are 3 independent 

products of 2 Kronecker deltas and 15 independent products of 3 Kronecker deltas. 

Finally the simplified form of the potential energy density with 18 coefficients is 

given as follows (Mindlin, 1964)  
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The constitutive equations take the form 
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[Question: Show that the above expressions are valid]. 

 

3.5 Limit case of Cosserat continuum 

 

Note: The linear eqns of the Cosserat continumm are obtained by setting  

 

      00  jkiijijij   

 

[Question: why this is true?] 
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Homework: Derive under any simplifying assumptions the constitutive equations 

governing a Cosserat continuum.  

 

3.6 Mindlin’s restricted contimuum and the 3 forms of the theory 

 

 In the same paper Mindlin presented simpler models of the gradient elasticity 

employing simplifying assumptions by dropping the multi-scale character of the 

theory, that allow to express the strain energy density in terms of macroscopic 

displacement ui only. This is achieved by setting zero the relative deformation tensor 

 

0 qrrqqr u                                                                                          (4.3) 

 

This assumption makes the relative stress tensor aij to be workless. Also the eight 

components of the deviator of the couple-stress or couples per unit area formed by the 

combinations ( / )( )1 2  pqr prq are all equal to zero in the present gradient 

dependent elasticity theory.  

 The Forms I, II, and III presented by Mindlin and Eshel differ in the assumed 

relation between the microscopic deformation gradient κijk and the macroscopic 

displacements ui. 

 

Form I: The microscopic deformation gradient is equal to the 2
nd

 gradient of the 

macroscopic displacements ui, i.e. kjiijk u~  and the strain energy density is 

)~,(~~
ijkijww  . 

Form II:  The microscopic deformation gradient is assumed to be equal to the first 

gradient of strain jkiikj  ˆ  so the strain energy density function depends only on 

the strain and its gradient )ˆ,(ˆˆ
ijkijww  . 

Form III: In this case the microscopic deformation gradient was splitted into 2 parts 

namely the gradient of microdeformation kiljlkij u 
2

1
 where jlk denotes the 

Levi-Civita permutation tensor and the symmetric part of the second gradient of 

macroscopic displacement  jikikjkjiijk uuu 
3

1
 . The potential energy 

density in this form becomes ),,( ijkijijww  . 

 Mindlin (1964) has shown that all 3 forms reduce to the same displacement 

equations of motion for isotropic materials, whereas Mindlin and Eshel (1968) 

demonstrated the same result for the stress-equations of motion. 

  

3.7 Surface effects 

 

Surface effects in Mindlin’s theory are possible if one adds the initial stress terms in 

the potential energy density expression for the isotropic material 

 

kkkk bc  00                 (4.4) 

 



G Exadaktylos, Strain Gradient Theory Part (1), CTU, Prague May 2017 

34 

 

If we take 
00 bc   both constants, then there is added a constant in both expression 

for the Cauchy stress τij and the relative stress αij, or in other words a homogeneous 

and isotropic initial stress, but the total stress remains unchanged and so the traction 

vector ti at the surface vanishes under no action of external stress. However, from the 

equilibrium Eq. (4.1)2 with zero Φ (body double forces) there will be a non-zero 

double force and so at the boundaries of the body there will emerge according to Eq. 

(4.2) double tractions Tjk acting on them. The removal of these double tractions will 

cause the appearance of displacements localized at the surface of the solid, so there 

will be an energy trapped close to the surface that is a surface energy. In crack 

equilibrium and propagation problems this is the energy accociated with new surface 

created by crack propagation. 

 

[Exercise: find the displacement equilibrium equation and it solution] 

3.8 Mindlin’s second gradient elastic model 

 

In another paper Mindlin (1965) embarked in a third gradient of displacement theory 

with triple stresses to capture the surface energy property of new surfaces in solids, 
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where we have set 

 

pqrspqrsqrsqrs uu ,, ,               (4.6) 
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The right-hand-side of the above integral may be reduced to include a surface integral 

by application of the chain rule of differentiation and Gauss’s divergence theorem. 

 The potential energy density with 18 coefficients i.e. 2 Lame constants and 16 

additional constants a, b, c, b0 is given by the 2
nd

 degree polynomial as follows 

(Mindlin, 1965)  
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                                          (4.8)                                

 

The last term iikkb 0 was called by Mindlin “surface energy term” since gives rise to 

surface phenomena. Subsequently, if one writes the total potential deformation energy 
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of the system according to the generalized Clapeyron’s theorem (Love, 1927), and 

considers vanishing external forces it will find the result 

 

  
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V

iin

V

ext dSubwdVWWWU ,0  

 

where U is the total potential energy of the system. So the interesting result is found 

namely that if one finds a proper displacement field that will be self-equilibrated then 

the above Gibbs or Helmholtz free energy is not null for a traction-free surface of the 

solid.  

 

4. A strain gradient elasticity with surface energy 

4.1 Introduction 

 

Here we present a special version of Mindlin’s linear Elasticity Theory with 

Microstructure. The basic feature of this theory is that it predicts surface energy in the 

frame of a strain gradient theory, i.e. without recourse to second gradient of strain. 

Vardoulakis and Sulem, Exadaktylos, Georgiadis have applied this theory in a number 

papers, where static and dynamic boundary-value problems have been addressed and 

solved analytically and numerically by Aravas, Zervos, Papanicolopoulos. It is 

demonstrated that a Mindlin-type linear gradient elasticity with surface energy, 

constitutes the simplest, in energy consistent, non-local extension of Hooke’s law.  

 In case of a restricted  Mindlin continuum the relative deformation  ij  

vanishes since the macroscopic strain coincides with the micro-deformation, i.e. Eq. 

(4.3). In this particular type of micro-homogeneous material and considering 

Mindlin’s Form II, the micro-deformation gradient (i.e. the macro-gradient of the 

micro-deformation) ijk  is identical with the  gradient of strain, that is to say 

 

jkiikjijk                                                                                                                                                                               

 

4.2 Variational equations of motion 

 

Next, the following ansatz for the potential energy density w (potential energy per 

unit macro-volume) is taken  

 

w w ij k ij ( , )                                                                                                         (4.9)                                                                                           

 

that corresponds to form II (Mindlin and Eshel, 1968). The variation of the total 

potential energy in volume V of the body is defined as follows  
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where we define 



G Exadaktylos, Strain Gradient Theory Part (1), CTU, Prague May 2017 

36 

 

 









  
ij

ij
ijk

i jk

w w
 ,

( )
                                                                             (4.11)         

 

 To prepare for the formulation of a variational principle, we apply the chain 

rule of differentiation and the divergence theorem; furthermore, we resolve i ju  on 

the boundary V of V into a smooth surface - gradient and a normal-gradient. Let ni 

be the unit normal to V  and pointing away from V, then the following are applicable 

on  V  
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where nk  is the outward unit normal on the boundary V . After applying the 

divergence theorem, the final expression for the variation in potential energy of a 

smooth boundary V reads 
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                (4.13) 

 

where  21 R/1R/1   is the mean curvature of the bounding surface. Looking at the 

structure of (4.13) we now postulate the following form for the variation of work extW  

done by external forces 
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where fk is the body force per unit volume, kk mt  ,  are the specified tractions and 

double tractions, respectively, on the smooth surface V . 

Next, we write Hamilton’s principle for independent variations   u ui i j,  

between fixed limits of ui  and  i ju  at times t0 and t1 (Love, 1927) 
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dtWdtWT                                                                                 (4.15) 

 

where T is the total kinetic energy of the system. It can be shown that for the case of 

the restricted Mindlin continuum the following relationship is valid (Mindlin, 1964) 
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                                           (4.16) 

 

From relations (4.13), (4.14), (4.15) and (4.16) there follow the only surviving stress-

equations of motion in the volume V [please derive yourself!] 

 

      i ij j tt j i tt i jf u d u  
1

3

2 ( )                                                               (4.17) 

 

where we have set  

 

   ij ij k kij                                                                                                 (4.18) 

 

Since the workless 2
nd

 order relative stress tensor aij in a restricted Mindlin 

continuum without double body forces is in equilibrium with double stress 

 

0 kijkij   

 

We notice that according to (4.17) and in the static limit, the new stress tensor ij  is 

identified with the common macroscopic equilibrium stress tensor. 

 The surface V of the considered volume V is divided into two 

complementary parts Vu and  V  such that on Vu  kinematic data whereas on 

 V  static data are prescribed. In classical continua these are constraints on 

displacements and tractions, respectively. For the stresses the following set of six 

traction and double traction boundary conditions on a smooth surface  V  are also 

derived from the virtual work principle - i.e. equations (4.13), (4.14) and (4.16) 
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                                                   (4.19)  

kijkji mnn                                                                                                          (4.20) 

 

Since strain gradients are considered into the constitutive description, 

additional kinematic data must be prescribed on Vu . With the displacement already 

given in Vu , then according to Gauss’ theorem only its normal derivative with 

respect to that boundary is unrestricted. This means that on Vu  the normal derivative 

of the displacement should also be given, i.e. 

 

1uii Vonwu                                                                                            (4.21) 

2uii VonrDu                                                                                           (4.22) 
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The most general form of the strain energy density function for a linear, 

macroscopically homogeneous and isotropic, grade-2 elastic material is the following 

2
nd

 degree polynomial 
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( ) ( ) ( )                           (4.23) 

 

where the five  an are the additional constants which appear in Toupin’s strain-

gradient theory (Toupin, 1962; Mindlin, 1964), and nk  (n=1,...,5; k=1,2,3) are the 

five additional directors in order to include the effect of terms linear in the strain 

gradient, jki , in the strain energy density expression. The choice of the above 

polynomial expression for the strain energy density of the material with 

microstructure implies that terms of higher degree are small in comparison with those 

retained.  

 In (4.23) nk  are characteristic directors such that 

 

 nk n k k k n k     ,       1 1 5 1 2 3; ,..., , , , .                                           

 

Accordingly Eq. (4.23) defines a gradient anisotropic elasticity with constant 

characteristic directors nk . Also, the terms in (4.23) that are associated with these 

directors have the meaning of surface energy, since by using the divergence theorem 

one may find the following relations 
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 The ratios nk G/  have the dimension of length whereas the ratios a Gn /  

have the dimension of square of length. The constitutive equations for the Cauchy 

and total stresses, as well as the double stresses are then derived by recourse to (4.10), 

(4.11), (4.18) and (4.23) as it will be demonstrated in the next paragraphs. 

 

4.2 Constitutive equations of strain gradient theory with surface energy 

 

Significant simplification of the theory results if we set:  
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Then the elastic-strain energy density function becomes, 
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In the above energy expression   and k  are material constants with dimension of 

length. The director k  takes on the boundary the direction of the unit outward 

normal, i.e. if 

 

Vonnkk            

 

Hence, the above theory is anisotropic (due to directors).                            

 

 
Fig. 4.1.Piece-wise constant director field in a strip confined into the two boundary 

layers. 

 

 As can be seen from the following expression, in this case the elastic-stain 

energy density function describes a 2
nd

-gradient elastic material equipped with surface 

energy,  
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Notice that from the requirement of positive elastic-strain energy density we get a 

restriction of the relative surface length scale  / . It seems that the limits of this 

ratio depend on the type of boundary value problem. 
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4.3 Skin effect and surface free energy 

 

 Our purpose here is to show that a basic feature of the present strain gradient 

elasticity theory with surface energy is the appearance of a skin effect associated with 

the volume energy parameter   and a pre-tension as is done by Mindlin’s 

(1964,1965) theory.  Furthermore, it will be shown that the relative surface energy 

parameter  /  gives rise to surface energy associated with a new cut in the material .  

 The deformation of an isotropic semi-infinite body x1 0  due to a large 

uniform tensile stress )0(,22   , parallel with the surface with outward unit 

normal vector (n1 n2  n3)=(-1 0 0) with the Cartesian coordinates be x1, x2, and x3, is 

considered as was done in (Exadaktylos & Vardoulakis, 1998). Starting from a stress-

free configuration, C0, the body is stressed uniaxially under plane strain conditions, 

and C is the resultant configuration. Then, the pre-stressed body is incrementally 

deformed and let its current configuration state to be that of C’. The problem under 

consideration is formulated in terms of the 1st Piola-Kirchhoff stress ij  with respect 

to current configuration C’, with ij  being its increment referred to the deformed 

initially stressed state C. Assuming infinitesimal strain elasticity, the Jaumann stress 

increments ij

o

 of the total stress are related directly to the strain increments through 

the following constitutive for the total stress, Cauchy stress and double stress tensors, 

respectively in the frame of Casal-Mindlin theory [please derive] 
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                                                                  (4.24) 

For the traction-free surface of the half-space the following incremental boundary 

conditions are valid  

 11 21 111 112 10             on = 0x
                                               (4.26) 

It is possible to assume, without loss of generality (it can be shown that, in this 

problem, the quantities 31, uu  do not couple with 2u ; these quantities satisfy 

homogeneous equations with homogeneous boundary conditions and therefore vanish 

identically) the following displacement field   

 u u x u u2 2 1 1 3 0  ,
                                                                                (4.27)            

and the only non-zero initial stress 22  to act along x2-axis. Upon substituting the 

strain-displacement relation into the the stress-strain relations and the resulting 

expressions for the stresses into the stress-equation of equilibrium 0 ijj  , we 

find only the following surviving displacement equation of equilibrium 
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where we have set    22 2/ G . The solution of Eq. (4.28), vanishing at infinity, is 

merely, 
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exp()( 112 xcxu
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
                                                                              (4.29) 

where c denotes an integration constant. The first three boundary conditions described 

by Eq. (4.26) are satisfied identically, whereas the only remaining boundary condition 

along x1 0  takes the form 

0=x on     02 122
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d
G                                             (4.30) 

which holds true for r rn   and gives the following equation 

           01 


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
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


c                                                                               

(4.31) 

From Eq. (4.31) one may deduce that the only case which gives non-zero and 

exponentially decaying displacement with distance from the surface of the solid, that 

is c  0, is the following   

])(1[1 2







 



                                                                    (4.32)                                  

The above relation elucidates the importance of the surface strain gradient term   in 

determining surface effects. Eq. (4.32) depicts that the effect of the surface energy 

parameter is equivalent to the effect of an initial stress. The dependence of initial 

stress   on the relative surface energy parameter  /  is shown in Fig. 4.2. From this 

figure it may be seen that if   / 0  the half-space is under surface tension, with this 

surface tension to be maximum. As  /   increases from the value of zero the initial 

tension or in other words the surface tension of the medium decreases reaching the 

value of zero for   / 1. At 1/   the initial stress changes sign and for   / 1 

becomes compressive in nature. That is, for values of the relative surface energy 

parameter higher than the value of one, the medium is under surface compression and 

it is no longer in a state of elastic equilibrium, or in other words as it is also shown by 

the inequality 1/1    its strain energy density function is negative definite. 

 The elastic strain energy density of the considered 1D configuration reduces to 

Casal’s original expression recovered above and is given by 

1

22 /},2{ dxdGw                                              (4.33) 
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Substituting in Eq. (4.33) the values for the strain and the strain-gradient, we find 
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Fig. 4.2. Graphical representation of the relation of the dimensionless pre-stress   

with the relative surface energy parameter  /  (Exadaktylos & Vardoulakis, 1998). 

  

  

 By adopting the following definition for the average surface stress (or surface 

free energy) 

AwdV
V

se /                                                                                                 (4.35) 

where A is the area of the free smooth surface, we may find after some manipulations 
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This is also, for each surface, the energy per unit area required to separate the body 

along a smooth plane and 0se  if inequality  
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holds true. A plot of the dependence of the dimensionless surface energy 

 

2
2ˆ

Gc

se
   

 



G Exadaktylos, Strain Gradient Theory Part (1), CTU, Prague May 2017 

43 

 

on the surface energy length scale is shown in Fig. 4.3. If 0  then no surface 

energy is assigned to the new surface, but on the other hand the presence of initial 

stress that makes the material to be stiffer, is effectively modeled. 

 

 

 
Fig. 4.3 Plot of normalized specific surface energy vs the relative surface energy 

length scale (Exadaktylos and Vardoulakis, 1998). 
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