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1 Introduction

The steady increase in computing power over the years allowed for substituting phys-
ical experiments that are often demanding in terms of time, manpower and funding
with numerical computer simulations. One of the objectives of numerical analysis is
to predict outputs of complex engineering systems, especially those burdened with a
high amount of input data uncertainty, such as material parameters and boundary
conditions. Using numerical models has an advantage of controlled environments
with at least a priory knowledge of their inevitable numerical errors.
In this project, an inverse problem for parameter identification of an elliptic partial
differential equation in the form of the steady-state heat equation is considered. The
parameters are involved in the data of the problem, more precisely in the random
fields that represent the thermal conductivity λ of the material and the Dirichlet
boundary conditions. The parameters are to be identified based on temperature
distributions resulting from the finite element method solution of the problem. The
Bayesian approach is used by applying the Metropolis-Hastings algorithm to ap-
proximate the parameter’s distribution.

2 The Physical Model

We assume the steady state heat equation

−∇ · (a(x)∇u(x)) = f(x), (1) {eq1}{eq1}

with the Dirichlet boundary conditions

u(x) = b(x) for x ∈ Γ. (2) {eq2}{eq2}

The function a(x) represents the material’s conductivity and is a random field over
the domain Ω, where Ω ⊂ R2 is a rectangular domain. Conversely, b(x) is the random
field on the boundary Γ of Ω. The heat source function f(x) ∈ Ω is constant, and
the function a(x) is uniformly positive definite in Ω.

Equation (1) is transformed into the weak form and discretized using the finite
element method with N continuous piece-wise linear basis functions [4]. We denote
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the resulting discretized system by

AΩuΩ = fs − AΓuΓ, (3) {Auf}{Auf}

where, in the case of a square domain Ω with the nodes on a regular N ×N mesh,
AΩ(ξ) is a (

√
N − 2)2 × (

√
N − 2)2 symmetric, positive definite matrix of internal

nodes, uΩ is the approximate solution. The right-hand side vector consists of the
heat source vector fs and a boundary condition vector that is a product of AΓ, a
(
√
N − 2)2 × 4(

√
N − 1) matrix, and boundary values uΓ given by the Dirichlet

condition function b(x).

3 The Parametrization of the Model

We assume two random fields a(x) and b(x) which are stochastic processes in
space. We state the parametrization problem as follows [5]: let (Yt, t ∈ T ) be
a stochastic process of the random inputs, where the index t belongs to an index
set T , and find a suitable transformation function R such that Yt = R(Z), where
Z = (Z1, . . . , Zd), d ≥ 1, are mutually independent. As the index set T is infinite-
dimensional domain and d is a finite integer, the transformation is an approximate.
To consider the finite-dimensional version of Yt we first discretize the index domain
T into a set of finite indices and then study the process

(Yt1 , . . . , Ytn), t1, . . . , tn ∈ T,

which is now a finite-dimensional random vector. To reduce the dimensionality of
the random processes we introduce two parameters into the model by applying the
truncated Karhunen-Loeve (KL) expansion. Let µY (t) be the mean of the input
process Yt(ω) = (a(x), b(x)) ∈ Ω and let C(t, s) = cov(Yt, Ys) be its covariance
function. We assume that the functions a(x)andb(x) are mutually independent.
The Karhunen-Loeve expansion of Yt is given by:

Yt(ω) ≈ µY (t) +
d∑
i=1

√
λiψi(t)Yi(ω), d ≥ 1, (4) {eq3}{eq3}
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where ψi are the orthogonal eigenfunctions and λi are the corresponding eigenvalues
of the eigenvalue problem∫

T

C(t, s)ψi(s)ds = λiψi(t), t ∈ T,

and Yi(ω) are mutually uncorrelated random variables satisfying

E[Yi] = 0, E[YiYj] = δij

where δij is Kronecker’s delta and defined by

Yi(ω) =
1√
λi

∫
T

(Yt(ω)− µY (t))ψi(t)dt, i = 1, . . . , d.

For our particular problem, we set the covariance functions as follows:

covA(xi,xj) = e
−||(xi−xj)||22

lA , ∀x ∈ Ω;

covuΓ
(si, sj) = e

−| sin
si−sj

2 |
luΓ , S : x→ s ∈ [0, 2π), ∀x ∈ Γ

where lA, luΓ
∈ R are respective correlation lengths, S is a mapping from the rect-

angular boundary to a circle. We can write the input process A as:

A(ξ) = ξ1µA +
K∑
k=2

ξk

√
λAkΨA

k , (5) {A}{A}

where ΨA
k is the eigenvector ψA

k ∈ RN2 reshaped into a N × N matrix. Then from
the resulting matrix A we can extract the matrices AΩ and AΓ:

3



Au ≡




a1

1

. . .

a
(
√
N−2)2

(
√
N−2)2


︸ ︷︷ ︸

AΩ


a

(
√
N−2)2+1

1

. . .

aN
(
√
N−2)2


︸ ︷︷ ︸

AΓ

... ...
aNN





uΩ


u1

...

u(
√
N−2)2

uΓ


u(
√
N−2)2+1

...

uN


Similarly to (5), right-hand vector f can be written as:

f = fs − AΓ

L∑
l=1

θl

√
λuΓ
l ψ

uΓ
l , (6)

Note that we normalized ΨA
1 to a zero mean to eliminate linear dependency with

µA, and that ΨuΓ
1 is constant, so we can treat it as the mean of the process.
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Figure 1: The first four eigenfunctions of covA.
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.

Now the parameter identification problem can be written as a minimization
problem:

find such ρ∗ = arg min
ρ∈RM

||ue + η − u(ρ∗)||L2 (7) {P}{P}

where ue = ue,Ω ∪ ue,Γ is a given approximate solution based upon which the
probability distributions of the parameter ρ, m = 1, . . . ,M must be identified.
To represent discretization and measurement errors, we suppose η to be a random
field of Nb independent elements, each normally distributed with zero mean and
variance ση.

4 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm [3] (MHA) can be used to identify the proba-
bility distribution of ρ based on measurements (7). Let us denote the prior dis-
tribution (our original guess about the distributions) of the parameters ρm as πm,
m = 1, . . . , K + L. In our numerical experiments, we will choose the priors as
standard normal distributions.

In MHA, we start with an initial sample ρi and set it as the current state ρ̂i = ρi.
Then each new proposal ρi+1 is generated based on the proposal distribution q which
is symmetric in the sense that q(ρi|ρi+1) = q(ρi+1|ρi) for all (ρ1,ρ2) ∈ RM=K+L.
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Usually q is Gaussian. In our numerical experiments, we will assume that its mean is
zero and its variance is known and equal to σq. After evaluating Gu(ρ̂1) and Gu(ρ2),
we compute the likelihoods (probabilities of observing) of g for given parameter
vectors ρ̂i and ρi+1 [1]:

L(g|ρ̂1) ∝ (σ2
η)
−Nb/2 exp

(
− 1

2σ2
η

‖Gu(ρ̂i)− g‖2
2

)
L(g|ρ2) ∝ (σ2

η)
−Nb/2 exp

(
− 1

2σ2
η

‖Gu(ρi+1)− g‖2
2

)
.

Now we can compute the approximate probabilities

π(ρ̂i|g) = C L(g|ρ̂i)π1(ρ̂i1) · · · πM(ρ̂iM)

π(ρi+1|g) = C L(g|ρi+1)π1(ρi+1
1 ) · · · πM(ρi+1

M ),

where C represents an unknown normalization constant. In MHA, the newly pro-
posed state ρi+1 is then accepted with the probability of min(1, p), where

p =
π(ρi+1|g)

π(ρ̂i|g)
.

This is usually implemented by generating a uniformly randomly distributed α ∈
[0, 1]. If α < p then accept ρi+1 and set ρ̂i+1 = ρi+1, otherwise, reject ρi+1 and
set ρ̂i+1 = ρ̂i. Continuing in this way, we obtain a sequence ρ̂j, j = 1, 2, . . . , Nρ.
After discarding the first I0 elements (burn in), we can finally obtain approximation
of marginal or joint posterior distributions of parameters ρm as distributions of ρ̂jm,
j = N0 + 1, 2, . . . , Nρ, for m = 1, . . . ,M = K + L.

The Algorithm:

1. Draw initial state ρ1 ∈ RM .
Set ρ̂1 = ρ1.

2. For i = 2, 3, . . . , I do:
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(a) draw proposal ρi+1 ∼ N (ρ̂i, σ2
q )

(b) set p = π(ρi+1|g)/π(ρ̂i|g)

(c) draw a ∼ U(0, 1)

(d) if a < p set ρ̂i+1 = ρi+1 (accept ρi+1) else set ρ̂i+1 = ρ̂i (reject ρi+1)

3. Discard ρ̂1, ρ̂2, . . . , ρ̂I0 (burn in).

4. Compute estimates of parameter characteristics from ρ̂I0+1, . . . , ρ̂I .

5 Experiments

There are several important input parameters of the considered problem that are
influencing the behaviour of the MHA and therefore are subjected to fine-tuning,
namely the variance ση that represents the measurement accuracy, the variance σq of
the proposal distribution q and the intensity of the heat source f(x). We try to set
these parameters for a given constant heat source f , so that the overall acceptance
rate of the samples is roughly between 20% and 30%, close to the recommended
value of 23,4%. [6]. In a real-life version of the experiment, the accuracy of the
measuring instrument (e.g. thermographic cameras) would be given relative to the
measured value, so to reflect that we set ση in percentage based on the solution
ug. The variance σq determines the step size of the MHA walker, and it should
be scaled reasonably according to the finite number of samples and the estimated
distance between the starting point of the algorithm and the area of high probability.

Before applying the MHA to identify the full set of parameters ρ, we first identify
the material parameters ξ with fixed boundary parameters θ and vice versa. For
the sake of simplicity, we constrained the respective number of dimensions of ξ and
θ to 2.

We noticed that the heat source f greatly influences the shape of the joint pos-
teriori distribution of the parameters. For the heat source f(x) = 0, there seems to
be a linear dependency for the components of ξ (Fig. 3) while θ remains constant,
and we are not able to accurately identify the high-probability region.
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Figure 3: Identification of ξ for f(x) = 0, measurement accuracy 0.1%.

For increasing values of f we are able to decrease the measurement accuracy ση
while it seems we are better at establishing the mean of the conductivity field than
the fluctuations parameter ΨA

2 .
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Figure 4: Identification of ξ for f(x) = 10, measurement accuracy 1.33%.
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Figure 5: Identification of ξ for f(x) = 1000, measurement accuracy 5%.

An opposite situation holds for the case of identifying boundary conditions θ
with fixed material parameters ξ. Even with the heat source f(x) = 0, we are able
to determine the parameters of both modes (Fig. 6). Increasing the magnitude of the
heat source improves the accuracy of the measurement if we went to keep the high-
probability region from expanding (Fig. 7). Realistically, as modern thermovision
cameras have an accuracy of about 2% [7], the end result from real-world experiment
would look more like Fig. 8.
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Figure 8: Identification of θ for f(x) = 0, measurement accuracy 2%.

Finally we applied the MHA to identify both parameters of the material ξ and
boundary conditions θ, with the consideration for the effect the heat source has.

Naturally, with a heat source turned off , the material parameters cannot be
identified with no negative effect on the high-probability region of the boundary
condition parameters (Fig. 9), while the opposite is true of the other extreme exam-
ple with f(x) = 1000 (Fig. 11).
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Figure 9: Identification of ξ and θ for f(x) = 0, measurement accuracy 4%.

There is a considerably wide range of values for the heat source for which we
can establish the areas of interest for both of the parameters ξ and θ, although it
is worth noting that, again, increasing the heat source at a certain point immensely
expands the area of interest for the parameter θ, while having little to no effect on
the accuracy of the mean’s guess and slightly decreasing the area of interest for the
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second mode of ξ (Fig. 12).
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Figure 10: Identification of ξ and θ for f(x) = 10, measurement accuracy 4%.
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Figure 11: Identification of ξ and θ for f(x) = 1000, measurement accuracy 4%.
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Figure 12: Parameters’ variance depending on the intensity of the heat source

6 Conclusion

In this project we applied the Metropolis-Hastings algorithm to identify the distri-
bution of parameters of the steady-state heat equation, such as the conductivity
and boundary conditions. As the experiments have shown, there are other crucial
input variables that we must consider to get satisfactory results, specifically there
seems to be an optimal range for the magnitude of the heat source. In the future, we
would like to increase the scope of this study to more complex problems with higher
dimensionality with a potential application of surrogate models and identification
of parameters from real-life experiments.
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