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Abstrakt 

Kvazikontinuální (QC) metoda je poměrně nový způsob modelování materiálů, 

který kombinuje přesný atomistický přístup se zjednodušením v podobě kontinua. 

Hlavní myšlenkou QC je snížit výpočetní nároky snížením počtu stupňů volnosti (SV) 

plně atomistického modelu. Za tímto účelem je ze všech atomů vybrána jen určitá pod-

množina významných atomů, která reprezentuje celý systém. Tyto atomy se nazývají 

rep-atomy a jsou použity k aproximování SV ostatních atomů [21]. Tento postup byl 

původně navržen pro pravidelné atomistické mřížky, ale v této práci je použit na nepra-

videlné částicové struktury reprezentující homogenní materiál. Pro elastické materiály 

jsou představeny tři metody používající zjednodušený částicový model založené na 

myšlence QC. Je navržena také QC metoda pro plastické materiály, která vychází 

z modelu microplane [2]. Metody pro oba typy materiálů jsou implementovány 

v programu OOFEM [24]. Přesnost, efektivita a vlastnosti jednotlivých metod používa-

jících myšlenku QC je vyhodnocena porovnáním výsledků s přesným čistě částicovým 

přístupem pro několik příkladů s různými typy materiálů. 

Klíčová slova 

Kvazikontinuální metoda, diskrétní částicový model, homogenizace, microplane 

model. 

 



Abstract 

The quasicontinuum (QC) method is a relatively new computational technique. 

This technique is a combination of continuum and atomistic approaches. The key idea 

of QC is to reduce the computational cost by reducing degrees of freedom (DOF) of the 

fully atomistic approach. Instead of dealing with all atoms, a small relevant subset of 

atoms is selected to represent the whole system. These atoms, the so-called repatoms, 

are used to approximate the DOF of other atoms [21]. This technique was originally 

proposed for regular atomistic lattices. In this work, this technique is applied to an irre-

gular set of particles representing a homogeneous material. This thesis provides three 

models using a simplified discrete particle model based on the idea of QC for elastic 

material. Also, a QC model for plastic materials using the idea of microplanes [2] is 

proposed. Models for both types of materials are implemented in OOFEM [24]. Accura-

cy, efficiency and specific properties of all simplified models based on the idea of QC 

are evaluated by comparison of results with the exact pure particle approach for a num-

ber of examples with different types of materials. 

Key words 

Quasicontinuum method, discrete particle model, homogenization, microplane 

model. 
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1 Introduction 

1.1 Discrete material models 

One of the most natural ways to set up a material model is to use a network of 

particles interacting via discrete links or beams that represent discrete microstructure of 

modeled material. An advantage of this approach is that the discrete models can natural-

ly capture phenomena incurred by the material microstructure. Therefore, the discrete 

material models are frequently used to simulate all sorts of materials such as paper [17], 

textile and fibrous material [7, 36] or fiber composites [3]. And last but not least, a lot of 

effort was put into creating a discrete model of concrete [10, 16, 18, 27] and [28]. But 

on the other hand, there are two main disadvantages of particle models. At the first, the 

large number of particles is needed to investigate the response of large-scale physically 

relevant models. This results in a huge number of DOF and it makes the system of equa-

tions of these models expensive to solve. Secondly, the process of assembling of this 

system is also computationally expensive because all discrete connections must be vi-

sited. 

Both of these disadvantages of discrete particle models can be removed by using 

simplified continuous models based on one of the conventional homogenization proce-

dures. But these continuous models cannot capture localized phenomena, e.g. Bažant 

shows in [1] that the only valid approach to softening damage is a discrete (lattice-

particle) simulation of the mesostructure of the entire structural region in which soften-

ing damage can occur. 

Another way to reduce the computational cost of the discrete particle models is a 

combination of simplified continuous model with the exact discrete description in the 

parts where it is needed. But the combination of two different approaches entails that 

some hand shaking procedure is needed at the interface between continuous and discrete 

domain [9]. The quasicontinuum (QC) method is a suitable way how to combine the 

advantages of continuous models with the exact description of discrete particle model 

without additional coupling procedures. 
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1.2 Quasicontinuum method 

The quasicontinuum (QC) method was originally proposed by Tadmor, Ortiz 

and Phillips [32, 35] in 1996. The original application of this computational technique 

was a simplification of a simulation of large atomistic lattice models described by long-

range conservative interaction potentials. Since the time, QC methods have been widely 

used to investigate local phenomena of these lattice models with long range interactions 

[9] and [31]. Recently, the application of QC methods has been successfully extended to 

other lattices and interaction potentials. For example, the application of QC method to 

the structural lattice models of fibrous material with short range nearest-neighbor inte-

ractions is provided by Beex et al. with conservative [4] and non-conservative [5, 6] 

interaction potentials including dissipation and fiber sliding but still applied to the regu-

lar lattices only. In this work, we focused on the application of QC approach with the 

same types of short range interactions but applied to the irregular set of particles con-

nected by discrete links. 

An overview of applications and current directions of QC methods is provided 

by Miller and Tadmor in [20, 21] and [31] or in part IV in the book of the same authors 

[34]. And many useful materials including the software and the QC code can be found 

on the web page: http://qcmethod.org/ [33]. 

1.3 The idea of quasicontinuum method 

The main idea of the QC method is to reduce the DOF and computational de-

mand without losing the exact atomistic description in regions where it is required. 

Therefore, two types of regions in the solved domain are considered. In the regions of 

high interest, the pure particle approach is required and all particles contribute to DOF. 

By contrast, in the regions of low interest, continuum assumptions can be used. 

The key idea of QC method can be briefly presented in three steps: 

 Interpolation of DOF is used in the region of low interest and the number of 

DOF is significantly reduced. 

 Summation rule is applied to eliminate the requirement of visiting all particles 

during the assemblage of the solved system. 

 Adaptivity provides the arbitrary changes of the region of high interest during 

the simulation process. 
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1.3.1 Interpolation 

Only a small subset of particles is selected to represent the entire system. These 

particles, the so-called repnodes, represent the nodes of a triangular mesh that are used 

to interpolate the DOF of other particles in the region of low interest. The position of 

the node of interpolation mesh is not arbitrary, but has to coincide with one of the rep-

nodes, i.e., with a particle carrying DOF. In the regions of high interest, all particles are 

selected as repnodes to provide the exact particle representation. This interpolation pro-

vides the significant reduction of DOF without losing the exact description in the parts 

of high interest. Interpolation mesh in the region of low interest can be coarse with large 

elements and then the reduction of DOF is significant. 

1.3.2 Summation 

If the so-called summation procedure is not applied, then all particles need to be 

visited to construct the system of governing equations and it makes the process compu-

tationally expensive. If the summation rule is used, then only one sampling particle for 

each interpolation triangle is used to obtain accurate solution. It makes this process fast-

er but problems occur on the interface between regions of high and low interest. Be-

cause of the interpolation and the summation, the deformation of each interpolation 

element is represented by one particle. Therefore, the deformations in the regions of low 

interest are piecewise constant while the deformations in the regions of high interest are 

solved exactly. Consequently, forces of nonphysical character, so-called ghost-forces, 

appear on the interface [20] and [29]. This problem can be solved by the cluster summa-

tion rule presented in [15] and extended in [11]. In this case the summation of one ele-

ment is done only in the clusters of given radius and all particles outside the cluster are 

solved exactly. Next improvement is the central summation rule introduced by Beex in 

[4]. In central summation only the particles that have one or more neighboring particles 

in a different element must be computed exactly. 

In this work, irregular lattices are used, and therefore, the summation procedure 

is realized by a homogenization of links networks contributing to the corresponding 

interpolation elements. Some truss elements are selected to be solved exactly to provide 

the interface between exactly solved and interpolated domain and to eliminate the ghost-

forces. This procedure is in more detail described in chapters 4.3 and 4.4. 
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1.3.3 Adaptivity 

The regions of high interest can be set explicitly as constant during the entire 

simulation process, or can be changed as needed in each time step. Hand-shaking pro-

cedure between the regions of low and high interest is not needed. Therefore the type of 

region can be changed only by the addition of the repnodes before each step. New trian-

gulation of interpolation mesh can be done but it is not necessary; see chapters 3.1 and 

3.2. A suitable change of the regions of high interest is often associated with a substan-

tial increase of accuracy and, in several specific cases, it is necessary to represent the 

correct physical behavior, e.g., in the crack propagation process. 

1.4 Methodology 

In this work, we focus on discrete particle systems with short-range elastic and 

inelastic interactions. Such systems are typically used in simulations of heterogeneous 

materials. Particles in these systems are distributed randomly and do not form regular 

lattices like in atomistic systems, but the idea of QC can still be used. 

Three methods based on the idea of quasicontinuum are introduced and com-

pared with the pure particle approach in 2D. Accuracy is expressed in terms of errors in 

displacement and strain. The number and position of repnodes are adaptively changed to 

achieve the optimal result. 

The simulation algorithm is composed of the following steps: 

 Generation of particles and of connecting links 

 Selection of repnodes and interpolation elements 

 Application of a simplification rule 

 Computation in OOFEM 

 Post processing of results and error evaluation 

The procedures and details of all individual steps are described in the following 

chapters.  
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2 Generating particles and connecting them by links 

In the first step, the input geometry of the particle system is generated; it is spe-

cified by the position of all particles in the system and by the information which par-

ticles are connected. This process depends on the type of represented material. 

2.1 Homogeneous material with uniform distribution of particles 

For this type of material, at the first, the required number of particles is generat-

ed in the solved 2D domain. Then all pairs of particles satisfying an appropriate rule are 

connected by a link. 

2.1.1 Generating particles 

The following rules are applied to obtain the required properties of the generated 

system of particles representing the required material. 

 The total number of particles in the solved domain, 𝑁P  

 The minimal distance between each two particles, 𝑅P  

 The maximal number of all generations, 𝐶tot  

 The maximal number of generations until a newly generated particle is accepted, 𝐶gen  

The position of each particle is generated randomly. The minimal distance between each 

two particles 𝑅𝑃  is checked in all iterations. If the distance between a newly generated 

particle and one of existing particles is smaller than 𝑅𝑃 , then the newly generated par-

ticle is not accepted. New particles are generated until the required number of particles 

or the maximal number of iterations is reached. 

Distance checking is the most time consuming part of this process. If the minim-

al distance criterion must be evaluated for all existing particles, computational cost 

grows unacceptably with the number of particles 𝑁𝑝 ; see Fig. 3 (dashed black). There-

fore, a quadtree structure is used to make the distance checking faster. 

2.1.2 Quadtree structure 

The solved domain is bounded by a rectangular region, which is recursively sub-

divided into four quadrants several times. The number of subdivisions depends on the 

number of particles placed inside. In general, the level of subdivision is different for 
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each quadrant and subquadrant to provide the maximal number of particles in the final 

quadrant lower than a prescribed value. An example of this unequal division can be seen 

in Fig. 1. 

 

Fig. 1 Example of quadtree structure. Taken over from: WIKIPEDIA. Avalible at: 

https://upload.wikimedia.org/wikipedia/de/a/a7/Quadtree.png. 

But in our case the distribution of particles is uniform and the number of particles in the 

final quadrants for a sufficiently filled domain is almost the same, because it can be af-

fected by the shape of the solved domain only. Hence, we can consider the same level of 

division for all quadrants. After all particles are generated, lists of particles placed in 

each quadrant are created for all final quadrants. Then only the necessary neighboring 

quadrants are scanned during distance checking; see Fig. 2. 

Numerical tests showed that this method becomes efficient for systems with at 

least a few thousands of particles. Fig. 3 shows the dependence of time effort on the 

final number of particles in 2D solved domain. The curve for generating particles with 

using the full distance checking procedure, where all newly generated particles are 

tested with all existing particles, is plotted by black dashed line. The curves obtained by 

using quadtree structure with two, three and four levels of subdivision are plotted by 

black, blue and red solid line respectively. It takes some time to sort particles in to sub-

divided quadrants. Hence, it is not surprising that for a small number of particles (less 

than a few thousands) the procedures using higher level of subdivision are slower and 

the full distance checking procedure is the fastest. But with an increasing number of 

particles the pains taken by the subdividing is outweighed by faster distance checking 

and the order of procedures start to turn over. For a higher number of particles (more 

than ten thousands) the time effort of full distance checking procedure increases expo-

nentially and for the instance the generating of 25 000 particles was not finished even in 
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two hours simulation. By contrast, the dependence of procedures using quadtree struc-

ture seems to be linear; see Fig. 3. It is because for pretty filled domain the number of 

particles that needs to be checked for a newly generated particle remains almost con-

stant.  

 

Fig. 2 Example of neighboring quadrants in quadtree structure. 

It is noteworthy that, for all examples used in Fig. 3, the dominant stopping criterion 

was the criterion of maximal number of generation until one newly generated particle is 

accepted (𝐶gen = 104). Therefore the numbers of particles in several sets (with the same 

or the different distance checking procedure) generated with the same parameters are 

not exactly the same and the values of time effort have a random character. But the 

main features can still be well observed. To obtain exactly the same behavior for all 

procedures with the same geometry without the influence of randomness, the same se-

quences of random numbers must be used for all simulations. Then the time effort of 

different methods generating the same set of particles is obtained, but it is not our main 

purpose. 

The whole process of generating particles can also be realized very effectively 

with different generating procedures. For instance, the generating procedure can use the 

Latin Hypercube Sampling or Delaunay triangulations [22] or can be based on the ge-

netic algorithms or Monte Carlo methods [8]. In all cases, the parallelization can be 

used to reach a significant reduction of computational demands. However the search for 

the best generating algorithm is not the original purpose of this work and non-parallel 

algorithm using the quadtree structure turned out to be fully sufficient for generating 

particles in 2D. Also in 3D, an analogous algorithm using octree structure can be used. 
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Only the squares are replaced by cubes and each cube is subdivided into eight sub-

cubes. 

 

Fig. 3 The dependence of time effort on the final number of particles for generating particles 

with full distance checking procedure (dashed black), procedure using quadtree with two (solid 

black), three (blue) and four (red) levels of subdivision. 

2.1.3 Boundary conditions 

Boundary conditions of a point support are realized through the use of 6 regular 

nodes to prevent local effects; see Fig. 4. Only one node in the middle is subjected to 

the appropriate boundary condition. 

2.1.4 Connecting by links 

Finally, each two particles satisfying an appropriate rule are connected by a link. 

Only a short-distance interaction model is considered. The connecting rule depends on 

the type of material. 

For an isotropic material, a circle rule can be applied, i.e., each two particles 

whose distance is less than a prescribed distance 𝑅𝑡  are connected by a link. The pre-

scribed radius is selected in the form 𝑅𝑡 = 𝑘𝑅𝑃. In 2D, factor 𝑘 should be selected from 

the range  1.8,2.0  to obtain the optimal truss element density; see Fig. 4 (top). Prob-
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lems can occur in examples with 𝑅𝑡 < 1.8𝑅𝑃  because the link connection can be too 

loose, which can lead to a kinematic mechanism; see Fig. 4 (bottom). 

 

Fig. 4 Particles connected by links (circle rule). Optimal set for 𝑅𝑃 = 0.5;  𝑅𝑡 = 1.9𝑅𝑃 (top), 

unsuitable set with mechanisms for 𝑅𝑃 = 0.5;  𝑅𝑡 = 1.6𝑅𝑃 (bottom). 

 

Fig. 5 Particles connected by links (elliptic rule) for 𝑎 = 2𝑅𝑡 , 𝑏 = 1𝑅𝑡 , 𝜑 = 0 (left) and 

𝑎 = 2𝑅𝑡 , 𝑏 = 1𝑅𝑡 , 𝜑 = 𝜋/4 (right). 

For an orthotropic material, an elliptic rule can be applied. Each particle is con-

sidered as the center of one ellipse. Then all particles lying in the same ellipse are con-

nected by links to the particle in the centre. The ellipse is defined by the length of the 

horizontal axis 𝑎 and vertical axis 𝑏 and can also be rotated by an angle 𝜑 (defined 
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counterclockwise). The different lengths of axes lead to the orthotropic properties; see 

Fig. 5. 

2.2 Materials with fibrous structure 

Fibrous materials are formed by long yarns. This structure is typical for example 

for textile, paper or fiber-concrete. The structure of fibrous material cannot be 

represented by the random sets of particles used in the previous chapter because long 

fibers are not created if this type of random set of particles is used. To generate the fibr-

ous structure of material, a reverse process is used. At the first, long fibers are generated 

and then particles are created in the position of fiber intersections. 

2.2.1 Generating line segments 

At the first, the required number of long fibers is generated. Then particles are 

placed into the position of all fiber intersections in the solved 2D domain. The fibers are 

represented as line segments with random length with uniform distribution from 𝐿min  to 

𝐿max . The position of each line segment is given by the position of its center and by the 

rotation angle. The positions of the centers are randomly generated with uniform distri-

bution and minimal distance 𝑅𝑃. The procedure for generating particles from part 2.1 is 

used here; see grey dots in Fig. 6. The distribution of rotation angle can be set as uni-

form; see Fig. 9 and Fig. 8 or some directions can be preferred; see Fig. 7. 

2.2.2 Creating particles and links 

In the next step, the intersections of all particles are computed. If the centers are 

generated only in the solved domain then the concentration of intersections in border 

areas is lower than in the middle of solved domain. To ensure the same density of inter-

sections in the whole solved domain, the centers of the line segment must be generated 

not only in the solved domain but in surrounding area as well. The optimal size of outer 

area, where the centers are generated is 𝐿max /2; see Fig. 6. Finally, all particles lying on the 

same line segment are subsequently connected by links one after another. Therefore each par-

ticle is contained maximally in the four links because of the origin of intersection. 
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Fig. 6 Randomly generated centers (grey) of line segment with preferred orthogonal orientation 

and intersections (blue) computed only in solved domain 10x10. 

 

Fig. 7 Example of the particles connected by links obtained from the same set of line segments 

with 𝑅𝑃 = 0.5 and preferred orthogonal orientation with two different connecting radii 

 𝑅𝑐 = 0.25𝑅𝑃 (left) and 𝑅𝑐 = 0.50𝑅𝑃 (right). 

2.2.3 Consolidation of too close particles 

Particles created in the previous step are mainly located in clusters; see Fig. 6. 

And many places are empty. To ensure a good distribution of particles in the whole 

solved domain a consolidation procedure is necessary. Therefore the value of connec-

tion radius 𝑅𝑐  is set and all particles in this radius are consolidated into one particle. The 

position of this new particle is computed as an average of all consolidated particles. The 
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link connections remain unchanged. Therefore, one consolidated particle can be con-

nected by more than four links and fibers are not straight. 

For one set of generated line segments, several sets of particles and links can be 

created by setting the different connecting radius 𝑅𝑐 ; see Fig. 7. This radius should be set 

no less than 𝑅𝑐 ≥ 0.5𝑅𝑃  to ensure the uniform distribution of particles after connection. Higher 

value of 𝑅𝑃 provides a better distribution but at the same time reduces the number of particles 

and breaks the continuity of fibers especially if they are located only in preferred directions. For 

the uniform orientation of fibers, the value of 𝑅𝑐 ≥ 2.0𝑅𝑃  can still be used; see Fig. 8.  

The process of particle consolidation is realized in the loop through all particles. 

The realization of this loop should be repeated until no consolidation is possible to en-

sure that no pair of particles is closer than the connecting radius. Because after finishing 

one loop, it can happen that two newly created particles are in connecting radius. But 

the distance checking is time consuming process, even if the quadtree structure is used, 

and one realization of consolidating loop is enough to eliminate the problematic clusters 

of particles, therefore this loop is realized just once. 

 

Fig. 8 Particles connected by links generated for fibrous material with uniform distribution of 

orientation of line segments for 𝑅𝑃 = 0.5 and connecting radius  𝑅𝑐 = 2.5𝑅𝑃. 

2.2.4 Removing of useless particles and links 

Sometimes, it can happen, especially near the boundary, that some particles are 

not connected by any link or connected only with one link. Such particles with indepen-

dent DOF are useless and attached links are useless too. Thus they are removed. Also 

the removing process is realized in the loop through all particles. And this loop should 

be, again, repeated until any removing is possible because after finishing the loop new 
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particles connected by only one link can appear (in previous loop connected also by any 

removed link). 

The boundary conditions are realized in the same way as for the homogenous 

material with a uniform distribution of particles in part 2.1. 

An example of final particles connected by links with uniform rotation of fibers 

is shown in Fig. 9. The position of particles is well-distributed and the structure of long 

fibers is clearly visible in each direction; see Fig. 9. For comparison, an example of real 

structure of nanotextile is taken over from [14] and depicted in Fig. 10.  

 

Fig. 9 Particles connected by links generated for fibrous material with uniform distribution of 

orientation of line segments for 𝑅𝑃 = 0.5 and connecting radius  𝑅𝑐 = 0.5𝑅𝑃. 

2.2.5 Input with exact geometry of real material 

Another way, how to obtain the input geometry, is analyze the real microstruc-

ture of material. For example, an algorithm converting the image of real nanofibers 

(such as Fig. 10) into 3D model is used in [26]. 
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Fig. 10 Example of real structure of nanotextile, taken over from [14]. 
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3 Selection of repnodes and interpolation elements 

In the QC approach, most of the DOF are approximated. For that purpose, a suf-

ficient subset of particles is selected as repnodes. There are two reasons why particles 

can be selected as a repnode. The first one is if the particle is situated in a region of high 

interest. All such particles are selected as repnodes to represent the exact particle beha-

vior in this region. But also in a region of low interest, a sufficient number of repnodes 

are needed to represent the simplification of this region. These repnodes form interpola-

tion elements and their position depends on the type of triangulation of interpolation 

mesh. Two ways how to create an interpolation mesh with added repnodes in a region of 

high interest are described below. The basic triangulation is done by the T3D mesh ge-

nerator [25] in both of them. 

3.1 Addition of repnodes without densification of interpolation mesh 

(MESH1) 

In this case, the optimal 2D triangulation with a prescribed density is done by 

T3D in the whole solved domain. Then all newly created nodes of the mesh are shifted 

to the position of the nearest particles and these particles are labeled as repnodes. Some-

times, two or more nodes of one mesh element happen to be shifted to the same posi-

tion, which leads to degeneration of a triangular element to a line or a point. Such dege-

nerated elements are detected and removed. After that, all nodes in the region of high 

interest that do not have the repnode status yet are labeled as repnodes. 

This process allows creating an interpolation mesh with a predefined density 

with the nodes in the position of particles and repnodes in the region of high interest 

which do not affect the mesh; see Fig. 11 

3.2 Addition of repnodes with densification of interpolation mesh 

(MESH2) 

In this case, the reverse order is used. At first, all particles in regions of high in-

terest are selected as repnodes. Then all existing repnodes are considered as nodes of the 

initial 2D mesh and the triangulation is finished by T3D in the whole domain. The sizes 

of mesh elements are affected by the position of existing mesh nodes (repnodes) and 

continuously change from the minimal value (distance between particles in the region of 
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high interest) to the maximal one (prescribed value in the region of low interest). All 

newly created nodes of the mesh are shifted to the position of the nearest particle and 

this particle is labeled as a repnode. Mesh elements degenerated to a line or a point are 

detected and removed. 

This process allows creating an interpolation mesh with the nodes in the position 

of particles with variable density affected by the position of repnodes in the region of 

high interest; see Fig. 12. 

 

Fig. 11 Interpolation mesh with constant density. Repnodes and interpolation elements (black), 

hanging nodes (grey) and truss elements (blue). 

 

Fig. 12 Interpolation mesh with variable density. Repnodes and interpolation elements (black), 

hanging nodes (grey) and truss elements (blue). 
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3.3 Boundary conditions 

If any of the boundary condition is realized through the use of 6 extra nodes, 

then all these nodes are labeled as repnodes. But interpolation elements formed by these 

nodes are not taken into account because they are located outside the solved domain. 

3.4 Modeling of cracks 

A crack can be modeled as a notch with a finite width or as a sharp spike. But in 

both cases it is required to include the information about crack into the input geometry. 

And the mesh generator is restricted to respect the crack. But it is also possible to real-

ize the interpolation mesh independently of the crack geometry. For that purpose, an 

idea of doubled elements is used. This idea stems from the extended finite elements 

(XFEM) [23], where doubled DOF are used in elements with a crack. 

In our case, the doubled elements are used in the following way: 

 The initial crack is modeled as a segment connecting two points 

 The mesh generator is not affected by the crack 

 Then elements intersecting the crack are detected and doubled 

 One of the double elements is connected on the left side and the other on the 

right side of the crack and then labeled as left or right 

 The hanging nodes are also labeled as left or right according to their position 

with respect to the crack. 

 Left hanging nodes can be interpolated by the left elements only, and vice versa 

 An area near the crack tip is included in the area of high interest and realized 

with repnodes and truss elements, therefore interpolation elements are not 

needed here 

This process of crack modeling is more convenient because it does not need the genera-

tion of a mesh with a special shape and the crack can propagate arbitrarily without re-

meshing and the exact behavior around the crack tip can still be captured by adding rep-

nodes. Crack propagation can then be realized by breaking a bar near the crack tip. 
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4 Application of simplifying rule 

From the previous two chapters, we know how to generate and describe the in-

put geometry of the problem and now it is finally time to apply some simplifying rule 

based on the idea of QC. In this chapter, four models using different levels of simplifi-

cation are presented. 

4.1 Pure particle model (M1) 

This model does not use any simplification. Only particles and links are used as 

an input for this model. Repnodes and interpolation elements are not needed. Every sin-

gle particle represents a node with two independent DOF (vertical and horizontal dis-

placement) and the links are described by 1D truss elements. Consequently, all links are 

taken in to account explicitly and connections contribute to the stiffness matrix. 

This model can be considered as the exact model and results obtained by using 

this model are used as a reference solution for other simplified models. Nevertheless, 

the results of this ―exact‖ model are not totally exact because depend on the position of 

particles which is generated randomly in the first step. The results are not the same if 

two different set of representing particles are generated for one input geometry. It is 

because the particles are generated with uniform distribution from the global point of 

view but not in all scales. In some parts, the density of particles can be a little higher or 

lower than average value, which makes these parts stiffer or weaker. This behavior does 

not have negative influence on global results. But if the solution computed only on one 

set of particles is used as a reference solution then the error values for other simplified 

models can be significantly affected by the distribution of particles. Therefore, it is ne-

cessary to compare the results of simplified model with exact solution for several ran-

dom generations and not just for one. The average error from several generations can be 

used as an objective error indicator of simplified models. 

 

4.2 Hanging nodes model (M2) 

The first way how to use QC idea to simplify the pure particle models is by us-

ing approximation of DOF of particles not labeled as repnodes. This particles are called 

hanging nodes because their DOF are not independent but they are hanged on appropri-
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ate repnodes. For that purpose, the interpolation elements formed just by the repnodes 

are used. For all hanging nodes the relevant interpolation element is found. It is either 

the element in which the hanging node is located or the nearest element if the hanging 

node is not located in any interpolation elements; see Fig. 13. The displacement of each 

hanging nodes is given by the displacements of the vertices of its selected interpolation 

element. Consequently, DOF of all hanging nodes are interpolated (or extrapolated) by 

the DOF of repnodes.  

 

Fig. 13 Example of hanging nodes (grey) located outside of interpolation elements. 

All nodes (particles) connected with truss elements contribute to the stiffness 

matrix but only the repnodes have independent DOF. The repnodes with two DOF (ver-

tical and horizontal displacement) represent the nodes of an interpolation mesh. The 

Interpolation mesh is realized by 2D plane triangle elements. Zero thickness is assigned 

to these elements and thus they do not contribute to the global stiffness matrix. These 

elements are used only to approximate displacements of nodes not selected as repnodes. 

In OOFEM implementation, the nodes carrying DOF (repnodes) are modeled as 

regular nodes. The nodes with interpolated DOF (hanging nodes) are realized with a 

special type of node. For this type of node, the subset of interpolation elements can be 

specified. Then the nearest interpolation elements is found only prom this subset and not 

from all interpolation elements. This allows to distinguish overlap elements along the 

crack. 

The truss connection is realized in the same way as for model M1. In the region 

of high interest, all nodes are repnodes. Therefore, no hanging nodes with interpolated 
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DOF are there. And description of this region is exact as well as for model M1 using 

pure particle approach. 

4.2.1 Linear interpolation 

Linear interpolation (extrapolation) rule is used. 

 

𝑢 =
1

𝐴
 𝐴𝑖𝑢𝑖

3

𝑖=1

 (1) 

where 𝑢 is an interpolated quantity, 𝑢𝑖  is the value in 𝑖th node of the interpolation ele-

ment, 𝐴 is an area of this element and 𝐴𝑖  is 𝑖th area coordinate of interpolated point. 

4.3 General homogenization model (M3) 

In this model, 2D plane elements are used to replace the stiffness represented by 

1D truss elements in the region of low interest. Thereby, a substantial number of truss 

elements can be removed and number of DOF is significantly reduced. 

Material properties of 2D plane elements are identified by the homogenization of 

all 1D truss elements. There are several ways how to identify material parameters which 

depend on the type of materials. Homogenization process is described in more detail in 

subchapters 4.3.1 - 4.3.6. Obtained parameters are set the same for all 2D elements. 

Geometry of interpolation elements are used for plane elements. The interpola-

tion elements with zero stiffness are replaced by the plane elements with stiffness ob-

tained in homogenization process. Plane strain or plane stress 2D elements can be used 

but the corresponding homogenization process must be considered. 

Then hanging nodes with interpolated DOF are removed and truss elements con-

necting them can be removed too. It leads to the significant reduction of DOF. But it 

must be done carefully.  

The truss elements connecting two hanging nodes (in the same or in two differ-

ent elements) can be removed because their stiffness is represented by 2D elements. 

Truss elements connecting one repnode and one hanging node laying in the same 2D 

element can be removed too because their stiffness is still captured. 

A problem occurs if a bar goes through an edge of 2D element and connects one 

hanging node with one repnode. It can happen if 2D elements are too small or on the 
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interface between region of low and high interest; see Fig. 14. Such truss elements can-

not be removed because their stiffness is not covered by 2D elements. In these cases, 

such hanging nodes are not removed and such truss elements remain too. 

 

Fig. 14 Example of truss elements (blue) and hanging nodes (grey) remaining on the interface. 

4.3.1 Assemblage of global stiffness matrix 

The global stiffness matrix is assembled from the contribution of all links. Glob-

al stiffness tensor is defined in [30] as 

 

𝑫𝑒 =
1

𝑉
 𝐿𝑖𝐸𝑡 𝑖𝐴𝑖(𝑵𝑖 ⊗𝑵𝑖)

𝑁𝑡

𝑖=1

 (2) 

where 𝑵 = 𝒏⊗ 𝒏 and 𝒏 is a unit vector of characteristic direction of the link. 𝐸𝑡  is its 

Young’s modulus, 𝐴 is the cross-section area and 𝐿 is the length of the link. 𝑉 is the 

volume of solved domain. Then final stiffness tensor is evaluated in the loop through all 

𝑁𝑡  links in solved domain. The symmetry of computed tensor is guaranteed by 𝒏⊗

𝒏⊗𝒏⊗𝒏. 

Generally in 3D, the stiffness tensor has 81 components because of dimension 

3x3x3x3. But because of symmetry, only 21 components are independent and stiffness 

tensor can be represented by the symmetric stiffness matrix 6x6. In 2D, three lines and 

three columns related to the third direction can be removed. Then stiffness in 2D can be 

represented by symmetric stiffness matrix 3x3 with 6 independent components 
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𝑫𝑐 =  
𝑎 𝑏 𝑐
𝑏 𝑑 𝑒
𝑐 𝑒 𝑓

  (3) 

This matrix is obtained by using the right components from the global stiffness tensor 

computed according to (2). Although the geometry of particles and links is generated for 

isotropic material the computed stiffness matrix corresponds to the generally anisotropic 

material because of influence of randomness. 

4.3.2 Approximation of stiffness matrix  

For the homogenized material, the computed stiffness matrix 𝑫𝑐  can be used ex-

actly as a material stiffness matrix but in some cases it is more convenient to approx-

imate computed matrix by some matrix with specific properties. 

Approximated matrix 𝑫𝑎  is found in an apriory given form. The components of 

𝑫𝑎  are identified by minimizing the error in terms of the norm of the difference between 

𝑫𝑎  and 𝑫𝑐 . 

Two ways how to calculate the norm of the difference between computed matrix 

and approximated matrix are used. 

At the first the norm using eigenvectors of 𝑫𝑎  is denoted  ∙ A  and defined as 

 

 𝑫𝑐 −𝑫𝑎 A
2

=  𝑣𝑖 𝑫𝑐 −𝑫𝑎 𝑣𝑖
T

3

𝑖=1

 (4) 

where 𝑣𝑖 is 𝑖th eigenvector of matrix 𝑫𝑎 . 

Then the norm using square of the components of the difference matrix 𝑫𝑎 −𝑫𝑐  is de-

noted  ∙ B  and defined as 

 

 𝑫𝑐 −𝑫𝑎 B
2 =    𝑤𝑖𝑗  𝑫𝑐 ,𝑖𝑗 −𝑫𝑎 ,𝑖𝑗   

2
3

𝑗=1

3

𝑖=1

 (5) 

where 𝑫𝑎 ,𝑖𝑗  is the component of 𝑫𝑎on the 𝑖th row and 𝑖th column, and 𝑤𝑖𝑗 is the compo-

nent of weight matrix 𝑾 defined as 

 
𝑾 =  

1 1 2
1 1 2
2 2 4

 . (6) 

The weight matrix 𝑾 appears because of matrix representation of stiffness tensor. If the norm 

is computed directly from the stiffness tensor 𝑫𝑒  
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  𝑫𝑒 
2 = 𝑫𝑖𝑗𝑘𝑙 𝑫𝑖𝑗𝑘𝑙  (7) 

then some summands appear more often than others. That is why the corresponding 

weights are necessary to obtain the correct norm by using the stiffness matrix instead of 

stiffness tensor. 

In the next three subsections, it is shown how the computed matrix 𝑫𝑐  can be 

approximated by isotropic or orthotropic stiffness matrix. In the following two subsec-

tions we assume that the material of the elements is isotropic. The definition of theoreti-

cal stiffness matrix of isotropic material in 2D is different for plane stress and plane 

strain. 

4.3.3 Homogenization by isotropic stiffness matrix for plane stress 

The 2D stiffness matrix for plane stress is defined as 

 

𝑫𝑖𝑠𝑜 ,𝑠𝑡𝑟𝑒 =
𝐸

 1 + 𝜈  1− 2𝜈 
 

1 − 𝜈 𝜈 0
𝜈 1 − 𝜈 0

0 0
1− 2𝜈

2

  (8) 

where 𝐸 is Young’s modulus and 𝜈 is Poisson’s ratio of the material. These two para-

meters are identified by minimizing the approximation error. 

4.3.3.1 Results for norm  ∙ 𝐀 

If the approximate matrix is set 𝑫𝑎 = 𝑫𝑖𝑠𝑜 ,𝑠𝑡𝑟𝑒 and the first matrix norm is used 

then the error can be expressed as a function of 𝐸 and 𝜈 

 
𝑓 𝐸, 𝜈 =  𝑘1 −

2𝐸

 1 + 𝜈  1− 2𝜈 
 

2

+  𝑘2 −
2𝐸

1 + 𝜈
 

2

+  𝑘3 −
𝐸

2 1 + 𝜈 
 

2

 (9) 

where 

 𝑘1 = 𝑎 + 2𝑏 + 𝑑 (10) 

 𝑘2 = 𝑎 − 2𝑏 + 𝑑 (11) 

 𝑘3 = 𝑓                    (12) 

where 𝑎, 𝑏,… ,𝑓 are constant components of computed stiffness matrix 𝑫𝑐 . 

To be able to find the minimum analytically, it is convenient to do the following 

substitution 

𝜆 =
𝐸𝜈

 1 + 𝜈  1− 2𝜈 
 𝐸 =

𝜇(3𝜆 + 2𝜇)

𝜆 + 𝜇
 (13) 
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𝜇 =
𝐸

2 1 + 𝜈 
 𝜐 =

𝜆

2(𝜆 + 𝜇)
 

(14) 

and substitute Lamé’s parameters 𝜆 and 𝜇 instead of 𝐸 and 𝜐 into the function (9). After 

the substitution, the objective function 

 𝑓 𝜆, 𝜇 =  𝑘1 − 4𝜆 − 4𝜇 2+ 𝑘2 − 4𝜇 2 +  𝑘3 − 𝜇 
2 (15) 

is quadratic with the respect to the both variables. By standard minimizing we obtain a 

unique solution 

 
𝜆 =

1

68
 17𝑘1 − 16𝑘2 − 4𝑘3  (16) 

 
𝜇 =

1

17
 4𝑘2 + 𝑘3  

(17) 

or 

 
𝐸 =

 35𝑎 + 134𝑏 + 35𝑑 − 4𝑓  4𝑎 − 8𝑏 + 4𝑑 + 𝑓 

289 𝑎 + 2𝑏 + 𝑑 
 (18) 

 
𝜐 =

𝑎 + 66𝑏 + 𝑑 − 4𝑓

34 𝑎 + 2𝑏 + 𝑑 
 

(19) 

4.3.3.2 Results for norm  ∙ 𝐁 

In this case, approximate matrix is still set 𝑫𝑎 = 𝑫𝑖𝑠𝑜 ,𝑠𝑡𝑟𝑒  but the second matrix 

norm is used. Then the error can be expressed as a function of 𝐸 and 𝜈 

 
𝑓 𝐸, 𝜈 =  𝑎 −

𝐸 1− 𝜈 

 1 + 𝜈  1− 2𝜈 
 

2

+2  𝑏 −
𝐸𝜈

 1 + 𝜈  1− 2𝜈 
 

2

+  𝑑 −
𝐸(1− 𝜈)

 1 + 𝜈  1− 2𝜈 
 

2

+ 16  𝑓 −
𝐸

2 1 + 𝜈 
 

2

. 

(20) 

To be able to find the minimum analytically, it is convenient to do the following 

substitution 

𝛼 =
𝜈

1− 2𝜈
 𝐸 = 𝛽 +

𝛼𝛽

1 + 2𝛼
 (21) 

𝛽 =
𝐸

1 + 𝜈
 𝜐 =

𝛼

1 + 2𝛼
 

(22) 

and substitute parameters 𝛼 and 𝛽 instead of 𝐸 and 𝜐 into the function (20). After the 

substitution, the objective function 

 𝑓 𝛼,𝛽 =  𝑎 − 𝛼𝛽 − 𝛽 2+2 𝑏 − 𝛼𝛽 2 +  𝑑 − 𝛼𝛽 − 𝛽 2 + 4 2𝑓 − 𝛽 2 (23) 

is quadratic with the respect to the both variables. By standard minimizing we obtain a 

unique solution 
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𝛼 =

2(𝑎 + 3𝑏 + 𝑑 − 4𝑓)

𝑎 − 2𝑏 + 𝑑 + 16𝑓
 (24) 

 
𝛽 =

1

10
 𝑎 − 2𝑏 + 𝑑 + 16𝑓  

(25) 

or 

 
𝐸 =

 7𝑎 + 16𝑏 + 7𝑑 − 8𝑓  𝑎 − 2𝑏 + 𝑑 + 16𝑓 

50 𝑎 + 2𝑏 + 𝑑 
  (26) 

 
𝜐 =

2(𝑎 + 3𝑏 + 𝑑 − 4𝑓)

5 𝑎 + 2𝑏 + 𝑑 
. 

(27) 

4.3.4 Homogenization by isotropic stiffness matrix for plane strain 

The 2D stiffness matrix for plane stress is defined as 

 

𝑫𝑖𝑠𝑜 ,𝑠𝑡𝑟𝑎 =
𝐸

1 − 𝜈2  

1 𝜈 0
𝜈 1 0

0 0
1− 𝜈

2

  (28) 

and approximate matrix is set 𝑫𝑎 = 𝑫𝑖𝑠𝑜 ,𝑠𝑡𝑟𝑒 . 

4.3.4.1 Results for norm  ∙ 𝐀 

If the approximate matrix is set 𝑫𝑎 = 𝑫𝑖𝑠𝑜 ,𝑠𝑡𝑟𝑎  and the first matrix norm is used 

then the error can be expressed as a function of 𝐸 and 𝜈 

 
𝑓 𝐸, 𝜈 =  𝑘1 −

2𝐸

1− 𝜈
 

2

+  𝑘2 −
2𝐸

1 + 𝜈
 

2

+  𝑘3 −
𝐸

2 1 + 𝜈 
 

2

. (29) 

To be able to find the minimum analytically, it is convenient to do the following 

substitution 

𝛾 =
2𝐸

1− 𝜈
 𝐸 =

𝛼 − 4𝜇

𝛼 + 4𝜇
 (30) 

𝜇 =
𝐸

2 1 + 𝜈 
 𝜐 =

4𝛼𝜇

𝛼 + 4𝜇
 

(31) 

and substitute parameters 𝛾 and 𝜇 instead of 𝐸 and 𝜐 into the function (32). After the 

substitution, the objective function 

 𝑓 𝛾, 𝜇 =  𝑘1 − 𝛾 
2+ 𝑘2 − 4𝜇 2 +  𝑘3 − 𝜇 

2 (32) 

is quadratic with the respect to the both variables. By standard minimizing we obtain a 

unique solution 

 𝛾 = 𝑘1 (33) 
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𝜇 =

1

17
 4𝑘2 + 𝑘3  

(34) 

or 

 
𝐸 = 4 𝑎 + 2𝑏 + 𝑑 

 4𝑎 − 8𝑏 + 4𝑑 + 𝑓 

33𝑎 + 2𝑏 + 33𝑑 + 4𝑓
 (35) 

 
𝜐 =

𝑎 + 66𝑏 + 𝑑 − 4𝑓

33𝑎 + 2𝑏 + 33𝑑 + 4𝑓
. 

(36) 

4.3.4.2 Results for norm  ∙ 𝐁 

In this case, approximate matrix is still set 𝑫𝑎 = 𝑫𝑖𝑠𝑜 ,𝑠𝑡𝑟𝑎  but the second matrix 

norm is used. Then the error can be expressed as a function of 𝐸 and 𝜈 

 
𝑓 𝐸, 𝜈 =  𝑎 −

𝐸

1− 𝜈2
 

2

+2  𝑏 −
𝐸𝜈

1− 𝜈2
 

2

+  𝑑 −
𝐸

1− 𝜈2
 

2

+ 16  𝑓 −
𝐸

2 1 + 𝜈 
 

2

. 

(37) 

To be able to find the minimum analytically, it is convenient to do the following 

substitution 

𝛼 =
𝜈

1 − 𝜈
 𝐸 = 𝛽 +

𝛼𝛽

1 + 𝛼
 (38) 

𝛽 =
𝐸

1 + 𝜈
 𝜐 =

𝛼

1 + 𝛼
 

(39) 

and substitute parameters 𝛼 and 𝛽 instead of 𝐸 and 𝜐 into the function (37). After the 

substitution, the objective function 

 𝑓 𝛼,𝛽 =  𝑎 − 𝛼𝛽 − 𝛽 2+2 𝑏 − 𝛼𝛽 2 +  𝑑 − 𝛼𝛽 − 𝛽 2 + 4 2𝑓 − 𝛽 2 (40) 

is quadratic with the respect to the both variables. By standard minimizing we obtain a 

unique solution 

 
𝛼 =

2(𝑎 + 3𝑏 + 𝑑 − 4𝑓)

𝑎 − 2𝑏 + 𝑑 + 16𝑓
 (41) 

 
𝛽 =

1

10
 𝑎 − 2𝑏 + 𝑑 + 16𝑓  

(42) 

or 

 
𝐸 =

 𝑎 + 2𝑏 + 𝑑  𝑎 − 2𝑏 + 𝑑 + 16𝑓 

2(3𝑎 + 4𝑏 + 3𝑑 + 8𝑓)
  (43) 

 
𝜐 =

2(𝑎 + 3𝑏 + 𝑑 − 4𝑓)

3𝑎 + 4𝑏 + 3𝑑 + 8𝑓
. 

(44) 
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4.3.5 Homogenization by orthotropic stiffness matrix 

In this case a concept of orthotropic material is accepted. The matrix of 2D or-

thotropic material with the respect to the axes of orthotropy is defined as 

 

𝑫𝑜𝑟𝑡ℎ =  

𝐸𝑥 1− 𝜈𝑦𝑧𝜈𝑧𝑦  /𝛿 𝐸𝑦 𝜈𝑥𝑦 − 𝜈𝑥𝑧𝜈𝑧𝑦  /𝛿 0

𝐸𝑦 𝜈𝑥𝑦 − 𝜈𝑥𝑧𝜈𝑧𝑦  /𝛿 𝐸𝑦 1− 𝜈𝑥𝑧𝜈𝑧𝑥  /𝛿 0

0 0 𝐺𝑥𝑦

  (45) 

where 

 𝛿 = 1−  𝜈𝑥𝑦 𝜈𝑦𝑥 + 𝜈𝑦𝑦 𝜈𝑦𝑦 + 𝜈𝑧𝑥𝜈𝑥𝑧 −  𝜈𝑥𝑦𝜈𝑦𝑧𝜈𝑧𝑥 + 𝜈𝑦𝑥 𝜈𝑧𝑦𝜈𝑥𝑧  (46) 

where 𝐸𝑖 is Young’s modulus in the 𝑖th direction, 𝐺𝑥𝑦 is the shear modulus 

in 𝑥𝑦 plane, 𝜈𝑖𝑗 major Poisson’s ratio, and 𝜈𝑗𝑖 minor Poisson’s ratio. In 2D, there are 

only six independent material parameters, because symmetry conditions yield [23] 

 𝜈𝑥𝑦𝐸𝑦 = 𝜈𝑦𝑥𝐸𝑥 , (47) 

 𝜈𝑦𝑧𝐸𝑧 = 𝜈𝑧𝑦𝐸𝑦 , (48) 

 𝜈𝑧𝑥𝐸𝑥 = 𝜈𝑥𝑧𝐸𝑧 . (49) 

The orientation of the axes of orthotropy can be arbitrary and must be identified too. 

The minimization must be realized numerically [19], with the respect to all seven para-

meters (six parameters of 2D orthotropic material and the angle of the axes rotation). 

Numerical minimization is time expensive if it must be realized for all elements. There-

fore this type of stiffness matrix is acceptable only for the general homogenization 

model M3. For model M4 with individual homogenization (described thereinafter), it is 

more effective to use exact anisotropic stiffness matrix. 

4.3.6 Homogenization by exact anisotropic stiffness matrix 

In this case, the material of the elements is considered to be generally anisotrop-

ic and the full computed stiffness matrix 𝑫𝑠 defined in (3) is used as the material stiff-

ness matrix. Identification procedure is not needed because all 6 component of com-

puted stiffness matrix are entered in the OOFEM input. 

4.4 Individual homogenization model (M4) 

This model stems from model M3 and tries to improve the following deficiencies: 

 In model M3, stiffness matrix of 2D element is obtained by the contribution of 

all truss elements but then parts of some truss elements remain in some 2D ele-
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ments. If element is small the error caused by the twice considered parts of truss 

elements can be significant. 

 Model M3 assume that material properties are the same in all points of material. 

This model removes these deficiencies by identifying material parameters individually 

for each element. For that purpose the stiffness matrix must be assembled for all ele-

ments.  

Then the homogenization of stiffness matrix for each element is realized by one 

of the procedures described in 4.3.3 - 4.3.6. The material can be again considered as 

isotropic, orthotropic or generally anisotropic. For computation of local parameters of 

material, it makes sense to consider orthotropic or anisotropic material even if resulting 

material behavior is isotropic. Because for small elements, an exclusion of the contribu-

tion of one truss element can result in a significant failure of isotropy. 

4.4.1 Assemblage of local stiffness matrix for all interpolation elements 

The stiffness matrix is assembled individually for all 2D elements. The stiffness 

matrix of each element is assembled only from the contributions of the parts of the links 

which are really situated inside the element. But at the same time, some links (for which 

it is necessary) remain in input file as 1D truss elements and do not contribute to the 

stiffness matrix of any 2D element. 

The loop through all links is realized and the contribution of every link is com-

puted according to the following rules which depend on the type of ends of the link.   

Repnode – repnode 

 Link is realized by 1D truss element 

 This link does not contribute to the stiffness matrix of any 2D elements 

Hanging node – hanging node 

If one or both of the ends of the link are situated outside of interpolation element 

 This link is realized by 1D truss element 

 Both hanging nodes remain in input file 

 This link does not contribute to the stiffness matrix of any 2D elements 
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If both of the ends of the link are situated in the same element 

 The stiffness contribution of this link is computed according to (2) 

 The entire contribution of this link is assembled to this element 

If both of the ends of the link are situated in the different elements 

 The stiffness contribution of this link is computed according to (2) 

 All elements which this links goes through are detected 

  The stiffness contribution is distributed to all the detected element according to 

the length of the part of the link inside each element 

Repnode – hanging node 

If both of the ends of the link are situated in the same element 

 The stiffness contribution of this link is computed according to (2) 

 All contribution is assembled to this element 

If both of the ends of the link are situated in the different elements 

 Link is realized by 1D truss element 

 Hanging node remains in input file 

 This link does not contribute to the stiffness matrix of any 2D elements 

4.4.2 Modeling of cracks 

If the crack is modeled by the overlap elements then the same rules can be used. 

It is only necessary to do extra decision on which side of the crack the link is situated. 

And according to this decision the stiffness contribution is assigned to the correct one of 

the overlap elements.  

4.4.3 Computational effort 

OOFEM input file for model M4 is almost the same as for M3 with only one ex-

ception. In M4 input file there are more types of materials with different parameters for 

plane elements. And also numerical tests show that computation with M4 is slightly 

slower than with M3 because M4 has to deal with more materials. But this difference is 

negligible. But set-up process of identifying material parameters is measurably slower 

for M4. This difference depends on the type of homogenization. 
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Both models M3 and M4 are several times faster than M1 and M2 even if the 

time of set-up process is involved. 

  



34 

5 Post processing of results and error evaluation 

After choosing one of the simplified models, numerical simulations are per-

formed using the open-source finite element code OOFEM [24]. OOFEM computes the 

displacement values for repnodes and hanging nodes, the strain and stress values for 1D 

truss elements and 2D plane elements. Then some post processing procedures are re-

quired to evaluate error of chosen model and to plot computed results.  

5.1 Error evaluation 

For M3 and M4 we obtain the continuous results in the region of low interest 

represented by 2D elements. For each element, there are constant stress and strain and 

linear displacement, if triangular 2D elements with linear approximation are used. By 

contrast for M1 and M2, the values of obtained result are in the discrete position of par-

ticles or links. There are two ways how to compare continuous results with discrete val-

ues. The first one is to make continuous values from the discrete result by computing 

average on the area of each element. But this comparing does not lead to the good error 

prediction because a lot of information is lost by averaging. The second one and more 

convenient way is to recalculate the needed discrete values from the continuous results.  

At the first the values of displacements are computed in the position of all nodes 

which are not used in M3 and M4 as repnode or hanging node. Displacements inside of 

the elements are interpolated according to (1). Extrapolation outside of the elements is 

not needed because all nodes outside are treated as hanging nodes and displacements are 

computed explicitly. In the next step the strain is computed from the displacement for 

all links which are not considered as truss elements and computed explicitly. Finally the 

stress is computed from the strain. Now for M3 and M4, the corresponding values for 

all particles and truss elements are available to be compared with M1.  

The error for 𝑖th model 𝑒𝑥,𝑖 is computed by comparing the corresponding values 

𝑥𝑖  (displacement, stress or strain) with the results 𝑥1 of M1. As it is noted above the 

error values depend on the position of generated particles. Therefore the error is eva-

luated as an average for 𝑃 randomly generated sets of particles and links. 

Absolute error is defined as 
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𝑒𝑥 ,𝑖 =
1

𝑃
  𝑥𝑖,𝑗 − 𝑥1,𝑗  

𝑃

𝑗=1

 (50) 

and relative error as 

 

𝑒 𝑥 ,𝑖 =
1

𝑃
 

 𝑥𝑖 ,𝑗 − 𝑥1,𝑗  

 𝑥𝑖,𝑗  

𝑃

𝑗=1

 (51) 

where 𝑥𝑖,𝑗 is monitored value computed with 𝑖th model for 𝑗th
 generation of particles and 

𝑃 is the total number of iterations. 

Frequently, it happens that for some particles or links the real value 𝑥𝑖 ,𝑗  is close 

to zero, e. g. the displacement near the supported particles or the strain in the truss ele-

ment perpendicular to the load direction.  Then the value of relative error is extremely 

high even if the absolute error is small. Consequently it is more convenient to use abso-

lute error divided by some characteristic value instead of relative error. 

To be able to compare individual models, it is useful to define some global indi-

cator of error.  

 

𝐸𝑡𝑜𝑡 ,𝑥 ,𝑖
2 =  𝑒𝑥 ,𝑖

2

𝑇

𝑖=1

 (52) 

or 

 𝐸𝑚𝑎𝑥 ,𝑥 ,𝑖 = max
𝑖
 𝑒𝑥 ,𝑖 . (53) 

Here, 𝑇 is the total number of nodes respectively bars if error is evaluated in displacement or 

stress or strain. 

5.2 Visualization of the results and errors 

The results and errors are represented by the values in discrete points. It is con-

venient for computing but less comfortable for visualization. Naturally, it is possible to 

depict some color points into the place with error, color lines instead of stress and strain 

or resized vectors instead of displacement. But because of our experience with conti-

nuously looking world around us, it is more pleasurable to see a full-filled color plot. 

For that purpose, a regular square grid is used and the plotted values are con-

verted. The plotted value of each cell in the grid is computed as an average of all values 

placed inside the cell. If the cell is empty then its value is interpolated as an average of 
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the values of neighboring cells. The size of the grid in each direction is selected close to 

the minimal distance of two particles 𝑅𝑃  to ensure that the maximal number of values in 

one cell is not too high and simultaneously to minimize the number of empty cells.  
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6 Material representation 

6.1 Elastic materials 

6.1.1 Elastic truss elements 

If the link connection is considered as purely elastic then all links are realized by 

elastic bars and the stiffness of the truss elements is defined as 

 
𝑘 =

𝐸𝐴𝑡
𝐿

 (54) 

where 𝐿 is the bar length (corresponding to the distance of connected particles) and 

𝐸𝐴𝑡  is the cross-section stiffness of the bar which is the same for all bars and its value is 

set to represent the global behavior of real material. 

6.1.2 Elastic continuous elements 

Material of 2D elastic elements is represented by the 6x6 stiffness matrix ob-

tained by using one of the homogenization procedures described in section 4.3.  

6.2 Plasticity 

For quasicontinuous simulations of plastic materials, the description of both the 

plastic truss elements and the 2D plastic material is needed.  

6.2.1 Plastic truss elements 

Material of bars is considered to be perfectly elasto-plastic; see Fig. 15.The plas-

tic limit is considered only in tension and characterized by the value of maximal uniaxi-

al yield stress 𝑅𝑦 . Elastic stiffness 𝐸𝑡  and the area of bar cross-section 𝐴𝑡  are the same 

as for elastic computation. 
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Fig. 15 Stress-strain diagram of perfectly elasto-plastic material. 

6.2.2 Uniform tension test of an example with plastic truss elements 

An example formed from randomly generated particles with 𝑅P = 0.5 connected 

by plastic truss elements is submitted to the uniform tension test. The dimensions of this 

example are 20x10. In addition, a significant narrow region is realized in the middle, see 

Fig. 16, to avoid a high number of truss elements in plastic state starting from the 

loaded particles along the vertical boundaries. 

 

Fig. 16 Stress-strain diagram (black) of discrete particle model with plastic truss ele-

ments. Two examples of deformed truss elements (blue) with marked truss elements in 

plastic state (red) in different loading steps. 

Material parameters are the following: 

 𝐸𝑡 = 1000,                      𝐴𝑡 = 𝑅P ,                      𝑅𝑦 = 0.01. (55) 

The specific physical units are not used but one can consider MPa and mm. In 

2D, all quantities are relative to the thickness of the specimen hence the area has the 

same unit as the length. 

Equivalent strain 𝜀 is evaluated as 
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 𝜀 =
𝑢𝑥
𝐿1

 (56) 

where 𝑢𝑥  is prescribed displacement in the loading (horizontal) direction and 𝐿1 = 20 is 

the length of the specimen in this direction. 

Equivalent stress 𝜎  is evaluated as 

 
𝜎 =

 𝐹𝑖
𝐿2𝑅𝑦

 (57) 

where  𝐹𝑖 is sum of all reaction on loaded side and 𝐿2 = 6 is the width in the narrow re-

gion. 

Stress-strain diagram of above defined equivalent values is depicted in Fig. 16. 

It can be observed that initial response is linear, as long as all bars remain in an elastic 

state. When some bars (mainly oriented in loading direction) get into the plastic state 

the linearity is lost. During next loading, the number of bars in plastic state is still in-

creasing and the response is less and less stiff until plastic mechanism is formed; see 

examples in Fig. 16. 

6.2.3 Microplane model 

The description of the 2D material with plastic properties is based on the idea of 

microplanes. The definition of such models can be found in chapter 25 in the book [12]. 

The essential idea of microplane models is to characterize the constitutive law in terms 

of stress and strain vectors instead of second-order tensors. The relation between the 

stress and strain vectors is used on planes with various orientations, so-called micro-

planes. The macroscopic stress and strain tensors are obtained by a summation of all 

these vectors under the assumption of static or kinematic constraint. All possible spatial 

orientations of microplanes are considered. The orientation of each microplane is de-

fined by its unit normal 𝒏. In our case the kinematic constraint is used. Then the strain 

vector 𝜀𝑛  on the microplane is the projection of strain tensor 𝜺. 

 𝜀𝑖
𝑛 = 𝜀𝑖𝑗 𝑛𝑗 . (58) 

Then the normal strain on the microplane is 

 𝜀𝑁 = 𝑛𝑖𝜀𝑖
𝑛 = 𝑛𝑖𝜀𝑖𝑗 𝑛𝑗 = 𝑁𝑖𝑗 𝜀𝑖𝑗  (59) 

where 𝑁𝑖𝑗 = 𝑛𝑖𝑛𝑗. 
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The microplane model from [2] with only the normal strain on microplanes is used. The 

shear strain on microplanes is not considered. 

In 2D, all possible orientations of normal microplane vectors form a unit semi-

circle and each microplane can be defined by an angle 𝛼 ∈  −
𝜋

2
,
𝜋

2
 ; see Fig. 17. The 

microplanes with 𝛼 = −
𝜋

2
 and 𝛼 =

𝜋

2
 are equivalent. 

 

Fig. 17 All possible orientations of microplane normal vectors (left). Example of finite 

number of microplanes used in numerical integration (right). 

The components of normal vectors are 

 𝑛1 = cos𝛼, 

𝑛2 = sin𝛼. 

 

(60) 

Each microplane can be in elastic or plastic state. For monotonous loading process, we 

can assume that if one microplane gets in to the plastic state then this microplane is nev-

er unloaded back to the elastic state. Then the conditions are the following: 

The microplane is in elastic state if 

 𝜀𝑁𝐸𝑁 < 𝑆0 (61) 

or in plastic state if 

 𝜀𝑁𝐸𝑁 ≥ 𝑆0 (62) 

where 𝐸𝑁 it Young’s modulus on the micro level and 𝑆0 is maximal yield stress. It is 

assumed that the microplanes can only get into the plastic state in tension and not in 

compression.  

Then the stress 𝜎𝑁 on the microplane is defined as 
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 𝜎𝑁 = 𝜀𝑁𝐸𝑁    for microplanes in elastic state 

𝜎𝑁 = 𝑆0         for microplanes in plastic state 
(63) 

For the value of macroscopic stress, the integral formula is obtained from the weak form 

of the equilibrium of the stresses on the micro and macro levels 

 
𝜎𝑖𝑗 =

2

𝜋
 𝜎𝑁𝑁𝑖𝑗

 

Ω

dΩ (64) 

where the integration is taken over all possible orientation of microplanes represented 

by the surface of unit semicircle. The factor 
2

𝜋
 is the inverse value of the volume of the 

integration domain in 2D.  

In numerical computation, the Gaussian integration is used to approximate the 

integral formula. Integration is replaced by the summation with tabular weights and 

only a finite number of microplanes is used; see Fig. 17. 

6.2.4 Semi-analytic study of 2D microplane model 

If macroscopic stress tensor is given in each time step then the macroscopic re-

sponse of microplane element is obtained by using kinematic constraint (59), yield con-

ditions (61)-(63) and macroscopic stress, the integral formula (64). 

But now, let us assume that the 2D microplane element is loaded by fixed rate of prin-

cipal stresses 

 𝜎22 = 𝑘𝜎  𝜎11 (65) 

where 𝑘𝜎 ∈  0,1  is given stress ratio. 

The simulation is controlled by the linearly increasing strain 𝜀11 . Then the ratio 

of principal strains is not constant during the plastic process. The second component of 

principal strain can be written as 

 𝜀22 = 𝑘𝜀  𝜀11 (66) 

where 𝑘𝜀 it unknown strain ratio changing during the loading process. 

Then the normal strain on the microplane can be expressed from kinematic constraint 

(59) as 

 𝜀𝑁 = 𝜀11 cos2(𝛼) + 𝑘𝜀  𝜀11 sin2(𝛼). (67) 
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Then the yield condition is 

 
cos2(𝛼) + 𝑘𝜀  sin2(𝛼) ≥

𝑆0

𝐸𝑁𝜀11
. (68) 

For a current load level, represented by 𝜀11 , this condition divides the integration do-

main into elastic and plastic part; see Fig. 18. The microplanes with 𝛼 ∈  −𝛼𝑐 ,𝛼𝑐  get 

into the plastic state and the rest of integration domain remain elastic. It is also visible 

that the firts microplane that gets into the plastic state has the normal angle 𝛼 = 0, 

which corresponds to the microplane perpendicular to the direction of loading. 

 

Fig. 18 Example of yield condition dividing integration domain into elastic part (black) 

and plastic part (red). 

The symmetry of yield condition function results in the symmetry of integration do-

mains. The integrated functions that appear in the integral formula (64) for 𝜎𝑖𝑗  are either 

all even if 𝑖 = 𝑗 (sin2 𝛼 , cos2 𝛼 , sin4 𝛼 , cos4 𝛼 , sin2 𝛼 cos2 𝛼) or all odd if 𝑖 ≠ 𝑗 

( sin𝛼 cos𝛼, sin3 𝛼 cos𝛼, sin𝛼 cos3 𝛼). Therefore only one half of integration domain 

can be considered, because the integral from an even function taken over a symmetric 

interval is equal to the double integral taken over one half of the symmetric domain. 
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The half-length integration domain can be divided by the critical angle 𝛼𝑐  into elastic 

and plastic part, see Fig. 18, defined as 

 Ω𝑒𝑙 =  αc ,
π

2
 , 

Ω𝑝𝑙 =  0,  αc). 

(69) 

This symmetry also result in no shear stress, if the element is loaded by the combination 

of principal stresses, because the integral from an odd function taken over a symmetric 

interval is always zero and it automatically ensures that 

 𝜎12 = 0. (70) 

The nonzero components of macroscopic stress tensor with consideration of new inte-

gration domains are 

 

𝜎11 =
4

𝜋
 𝑆0 cos2(𝛼)

 𝛼c

0

d𝛼 +
4

𝜋
   𝜀11 cos4 𝛼 + 𝑘𝜀 𝑡 𝜀11 cos2 𝛼 sin2 𝛼   

 𝜋 2 

𝛼c

d𝛼  (71) 

and 

 

𝜎22 =
4

𝜋
 𝑆0 sin2(𝛼)

 𝛼c

0

d𝛼 +
4

𝜋
   𝜀11 cos2 𝛼 sin2 𝛼 + 𝑘𝜀 𝑡 𝜀11 sin4 𝛼   

 𝜋 2 

𝛼c

d𝛼. (72) 

In this case, the critical angle 𝛼𝑐  depends on the unknown strain ratio 𝑘𝜀  and can be 

expressed from the yield condition as 

 

𝛼𝑐 𝑘𝜀 = arcsin 
𝑆0

𝐸𝑁𝜀11
− 1

𝑘𝜀 − 1
. 

(73) 

Then 𝜎11  and 𝜎22  are functions of 𝑘𝜀 . After integration we obtain 

 
𝜎11(𝑘𝜀) =

2𝑆0

𝜋
 𝛼𝑐 + sin𝛼𝑐 cos𝛼𝑐 + 

+
𝐸𝑁𝜀11

8𝜋
 6𝜋 − 12𝛼𝑐 − 8 sin 2𝛼𝑐 − sin 4𝛼𝑐 + 𝑘𝜀 2𝜋 − 4𝛼𝑐 − sin 4𝛼𝑐    

(74) 

and 

 
𝜎22(𝑘𝜀) =

2𝑆0

𝜋
 𝛼𝑐 − sin𝛼𝑐 cos𝛼𝑐 + 

+
𝐸𝑁𝜀11

8𝜋
 2𝜋 − 4𝛼𝑐 − sin 4𝛼𝑐 + 𝑘𝜀 6𝜋 − 12𝛼𝑐 + 8 sin 2𝛼𝑐 − sin 4𝛼𝑐    

(75) 
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Finally, the unknown ratio 𝑘𝜀  is obtained as a solution of 

 𝜎22(𝑘𝜀)

𝜎11(𝑘𝜀)
− 𝑘𝜎 = 0. (76) 

The final solution can only be considered as semi-analytic because the equation (76) 

must be solved numerically in all loading steps with the condition 

 

𝛼𝑐 𝑘𝜀 = arcsin 
𝑆0

𝐸𝑁𝜀11
− 1

𝑘𝜀 − 1
∈  0,

𝜋

2
 . 

(77) 

Newton-Raphson method is used to find the root of eq. (76). If the first step is solved, 

the next solution step is very fast because the wanted 𝑘𝜀  changes continuously and the 

value from the previous step is used as a starting point in each next step. 

The semi-analytic solution is compared with a numerical computation using a 

Gaussian integration with finite number of microplanes. 

6.2.5 Uniform tension test of microplane element 

A comparative example is uniform tension test where the prescribed stress ratio 

is 

 𝑘𝜎 = 0. (78) 

One triangular element is loaded by the strain 𝜀11  so that only 𝜎11  appears. The 

semi-analytic solution of searched strain ratio 𝐾𝜀  and the critical angle 𝛼𝑐  in all loading 

steps are plotted in Fig. 19 and Fig. 20. Theoretically, the value of 𝐾𝜀  resp. 𝛼𝑐  goes to 0 

resp. 𝜋/2 if loading strain 𝜀11  goes to the infinity. It corresponds to the fact that in the 

limit plastic state all microplanes are yielding. It can be seen that the approach to these 

values is slow. In real simulation, some microplanes still remain in elastic state and 

some transversal contraction can be observed even if an arbitrarily high finite value of 

prescribed strain is reached. 

The stress-strain diagrams are compared in Fig. 21. The solution obtained by the 

semi-analytic procedure is plotted by thick black curve. The solutions obtained by com-

putation in OOFEM using Gaussian integration with 5 (green), 10 (blue) and 100 (red) 

microplanes are depicted in the same plot. The solution with 100 microplanes is almost 

perfectly identical with semi-analytic solution and can be considered as exact. The solu-

tions with low number of microplanes are visibly piecewise linear because the plastic 
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Fig. 19 Dependence of strain ratio 𝐾𝜀  on the prescribed strain 𝜀11 . 

 

Fig. 20 Dependence of the critical angle 𝛼𝑐  on the prescribed strain 𝜀11 . 
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domain cannot expand continuously between angles of two neighboring microplanes. 

But the solution for 10 microplanes can still be considered as quite a good approxima-

tion because the value of final stress approaches to the maximal yield stress 𝑆0. But this 

is not true for the solution with 5 microplanes, where only 3 of 5 microplanes can get 

into the plastic state and therefore this low number of microplanes cannot capture the 

final value of yield stress exactly.  

 

Fig. 21 Stress-strain diagram of microplane element in uniform tension test obtained by 

semi-analytic solution (black) and by numerical integration using 5(green), 10 (blue) 

and 100 (red) microplanes. 

6.2.6 Comparison of plastic particle model and microplane model 

The shape of stress-strain diagram is the same for the microplane 2D element 

and for the particle model with plastic links; compare Fig. 16 and Fig. 21. For both, 

there are two significant points. The first one is the beginning of plastic process that 

corresponds to the stress state when the first microplane resp. bar gets into the plastic 

state. And the second one is the reach of the final yield stress when all microplanes are 

in plastic state or the trusses form a plastic mechanism.  
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For microplane model, these points can be investigated analytically. From eq. 

(68) for 𝛼 = 0, the first point corresponds to the moment when the maximal principal 

strain reaches the critical value 𝑆0/𝐸𝑁. And from eq. (75) and (76) for 𝛼 = 𝜋/2, the 

second point corresponds to the moment when one of the normal stresses reaches the 

critical value 𝑆0. Graphical representation of initial and final yield surfaces in the plane 

of principal stresses is depicted in Fig. 22. It can be observed, that for the loading trajec-

tory with 𝑘𝜎 = 1.0 the initial and final point are the same. This type of loading corres-

ponds to the increasing positive hydrostatic stress and in this special case, all micro-

planes get into the plastic state at the same time. 

 

Fig. 22 Initial yield surface (dashed black) final yield surface (solid black) and exam-

ples of loading trajectories for 𝑘𝜎 = 1.0 (blue), 𝑘𝜎 = 0.5 (green) and 𝑘𝜎 = −0.5 (red).  

For particle model, these points cannot be predicted exactly because they depend 

on the random position of particles. But the microplane model is equivalent to the par-

ticle modes with the uniform distribution of truss elements. Therefore one can expect 

that these points of both models will correspond if the particles are well distributed. 

Thus particle and microplane model can be considered as equivalent if they have the 

same value of the initial elastic stiffness and the final yield stress. The properties of mi-

croplane models are described by 𝐸𝑁 and 𝑆0, by contrast the description of particle 
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model is realized with 𝐸𝑡  and 𝑅𝑦 . To fit equivalent microplane and particle model, the 

relations between these two sets of parameters are needed. These relations can be ob-

tained by comparison of virtual work of microplane element and the set of truss ele-

ments. The relation between Young’s moduli 𝐸𝑁 on the microplane and macro level can 

be written as 

 𝐸𝑁 =
𝜋

2
𝐸 (79) 

where macroscopic Young’s modulus 𝐸 is evaluated from 𝐸𝑡  by one of the homogeniza-

tion procedures for isotropic material described in 4.3.3 and 4.3.4. 

The relation between maximal yield values 𝑆0 on microplane and 𝑅𝑦  on bar level is the 

following 

 

𝑆0 =
1

𝑉
 𝐿𝑖𝑅𝑦 𝑖𝐴𝑖𝑛1𝑖

2

𝑁𝑡

𝑖=1

 (80) 

where 𝐴 is the cross-section area and 𝐿 is the length of the link. 𝑉 is the volume of mi-

croplane element, 𝑁𝑡  is the number of truss elements in this element and 𝑛1𝑖 = cos𝛼𝑖 is 

the first component of the unit normal of the link. 

Simulations of an example with plastic links and equivalent microplane model 

are presented in section 7.6. 

6.3 Other types of materials 

Both elastic and inelastic material models have been presented. So far, inelastic 

model deals only with plasticity but can be easily extended to other types of materials. 

6.3.1 Extension of particle model 

The material properties of particle model are mainly given by the link connec-

tion, which is realized by 1D truss elements. Therefore a required extension of particle 

model can be realized using a suitable material of bars (truss elements) with a required 

constitutive law. 

Another way how to change material properties of the particle model is to 

change the distribution of particles. But one should keep in mind that the distribution of 

particles represents, at the first, the microstructure of random material. Therefore it is 

better not to realize the representation of a different material type by the change of par-
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ticle distribution if there is no reason resulting from the change of material microstruc-

ture. 

6.3.2 Extension of continuum models 

The extension of continuum models is realized via microplane model. The most 

important advantage of models based on the idea of microplane is the definition of the 

constitutive law on level of the microplane. Therefore these types of material models 

can be easily extended. Quite a number of material phenomena such as plastic soften-

ing, hardening, damage etc. can be simply defined on the microplane, and macroscopic 

response is obtained using a corresponding integration formula. The definition of ma-

terial properties on the level of microplanes provides a good physical agreement with 

the original discrete model, where these properties are also represented by link connec-

tions among particles. 

So far the microplane model has been considered as isotropic but also the aniso-

tropy properties can be simply added by consideration of a different number of micro-

planes in different directions. This is realized by adding a corresponding weight func-

tion, which provides a required distribution of microplanes, into the integral formula. 
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7 Results 

7.1 Direct tension example 

The first tested example is a square with dimensions 10x10 submitted to the di-

rect tension. Particles are generated with parameter 𝑅𝑃 = 0.25. The material is consi-

dered as isotropic and the circle rule is used, 𝑅𝑡 = 1.9𝑅𝑃. Four sets of particles are gen-

erated and average number of particles in one set is 𝑁𝑃 = 1100. Along both vertical 

sides, 21 particles are placed periodically with prescribed boundary conditions. The 

particles on the left side are fixed in both directions and particles on the right side have 

prescribed displacement 𝑢 = 0.002 in horizontal direction and at the same time they are 

fixed in vertical direction. An example of one set of these particles is depicted in Fig. 

23. Strain distribution for all sets of particles is computed by M1. Theoretically, the 

strain should be constant in the middle part of solved domain but the fluctuation caused 

by random position of particles can be observed; see Fig. 24. The error is evaluated for 

all sets of particles to eliminate the influence of this randomness. 

 

Fig. 23 Example of particles connected by links before (left) and after deformation 

(right). Deformation scale = 1000. 

7.1.1 Simple mesh 

At the first, only a simple interpolation mesh is used; see Fig. 25. Each set of 

particles (a)-(d) is computed by each simplifying model M1-M4. The results are sum-

marized in  Table 1. Computed time effort consists of both the time consumed by 
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Fig. 24 Strain distribution for all sets of particles computed by M1. 

 

Fig. 25 Interpolation mesh with all hanging nodes(grey) used by M2 (left) and only with 

some remaining hanging nodes used by M3 and M4 (right).  
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preparing input data of simplified model and the time of computation in OOFEM. Time 

consumed by generating input geometry (particles, links and elements) is not included. 

Global error indicator is evaluated according (52). The average of all sets of particles is 

computed in the last row. Absolute stress error of M2-M4 with respect to the M1 is eva-

luated and divided by the characteristic deformation 0.0002. This error is higher near 

the boundary, where the fixed boundary conditions are applied; see Fig. 26. It is be-

cause single fixed particles tend to be pulled out. Interpolation elements are not able to 

capture this behavior. That is why the region of high interest is realized along the boun-

dary in the next step. 

 

 

Fig. 26 Absolute strain error divided by characteristic deformation for M2 (left), 

M3 (right) and M4 (bottom).  
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 Time effort (s) Strain error indicator (𝟏𝟎−𝟑) 

 M1 M2 M3 M4 M2 M3 M4 

(a) 4.27 5.48 0.68 1.24 2.71 2.78 2.76 

(b) 4.29 5.79 0.63 1.05 2.67 2.78 2.73 

(c) 3.99 5.49 0.60 1.02 2.70 2.81 2.76 

(d) 4.30 5.46 0.70 1.34 2.74 2.83 2.78 

Avg 4.21 5.55 0.65 1.16 2.71 2.80 2.76 

Table 1. Comparison of time effort and error indicator in direct tension. 

It is noteworthy that model M2 with hanging nodes is not faster than exact M1. 

Even if the number of independent DOF is reduced, current numerical implementation 

is unable to compute M2 faster. It is because a renumbering algorithm that makes direct 

solver faster works fine for M1 matrix but not for M2. Also, the structure of matrix with 

hanging nodes is not convenient for iterative solvers. For some examples with really 

simple interpolation mesh and with at least ten thousand of particles, M2 is faster than 

M1. But to be effective in general, suitable renumbering algorithm needs to be devel-

oped. 

7.1.2 Selection of region of high interest 

The problematic parts along the boundaries are selected as the thin regions of 

high interest and all particles are considered as repnodes here, but the interpolation 

mesh is not affected according to MESH1 procedure; see Fig. 27 (bottom left). The re-

sults for this mesh are summarized in Table 2. The decrease of error indicators is less 

than 10%. The error is reduced along the boundary, but some high error still remains in 

the corners; see Fig. 27. This indicates that more repnodes are needed to represent rea-

listic behavior. 

 Time effort (s) Strain error indicator (𝟏𝟎−𝟑) 

 M1 M2 M3 M4 M2 M3 M4 

(a) 4.52 5.54 1.05 1.53 2.53 2.77 2.58 

(b) 4.12 6.05 1.32 1.37 2.43 2.78 2.49 

(c) 5.24 5.70 1.02 1.40 2.48 2.80 2.55 

(d) 4.41 5.61 1.09 1.71 2.52 2.81 2.57 

Avg 4.57 5.73 1.12 1.50 2.49 2.79 2.55 

Table 2. Comparison of time effort and error indicator in direct tension with added repnodes. 
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Fig. 27 Absolute strain error divided by characteristic deformation for M2 (top left), 

M3 (top right) and M4 (bottom right) computed with added repnodes (bottom left). 

7.2 Three-point bending test 

The next tested example is a beam with the dimensions 40x10 tested in a three-

point bending test. Particles are generated with distance parameter 𝑅𝑃 = 0.5. The ma-

terial is considered as isotropic and the circle rule is used, 𝑅𝑡 = 1.9𝑅𝑃 . Four sets of par-

ticles are generated and average number of particle in one set is 𝑁𝑃 = 1107. Boundary 

conditions are realized using six regular nodes. The test is controlled by the displace-

ment 𝑢 = 0.002. Fig. 28 shows example of generated particles and links. The fluctua-

tion of the strain is not as significant as in the direct tension test and the distribution of 

strain is given mainly by the geometry of the test; see Fig. 29. 
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Fig. 28 Example of particles connected by links before (top) and after deformation (bot-

tom). Deformation scale = 1000. 

 

Fig. 29 Strain distribution for all sets of particles computed by M1. 
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7.2.1 Simple mesh 

If the simple mesh from Fig. 30 is used, then the error in the middle area is sig-

nificant; see Fig. 31. Results are summarized in Table 3. Noteworthy is that the error 

indicator for set of particles marked as (b) is significantly higher than for other sets. It is 

caused by a small vacancy that occurred in the structure of (b) particles near the right 

support. This event cannot be captured by linear interpolation elements and repnodes 

are needed to achieve better description. 

 

Fig. 30 Interpolation mesh with all hanging nodes(grey) used by M2 (left) and only with 

some remaining used by M3 and M4 (right). 

 Time effort (s) Error indicator (𝟏𝟎−𝟒) 

 M1 M2 M3 M4 M2 M3 M4 

(a) 4.70 6.36 0.85 1.34 5.8575 6.0125 5.9900 

(b) 4.49 6.05 0.94 1.34 8.9761 9.2865 9.1957 

(c) 4.47 6.27 0.78 1.24 6.0233 6.3616 6.3545 

(d) 4.99 5.81 0.87 1.28 5.9599 6.0299 6.0008 

Avg 4.66 6.12 0.86 1.30 6.8318 7.0574 7.0148 

Table 3. Comparison of time effort and error indicator in bending test. 
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Fig. 31 Absolute strain error divided by characteristic deformation. 

7.2.2 Selection of region of high interest 

The region of high interest is realized in the middle part, and repnodes are add-

ed; see Fig. 33. Results for this mesh are summarized in Table 4. For M2 and M3, the 

error is reduced significantly in terms of error indicator. The error indicator of M2 is 

reduced too, but it is two times higher than for M2 or M4, even if all three indicators are 

almost the same for the simple mesh. Problem is in the interface between repnodes and 

interpolation elements. In M3, the stiffness of large elements with repnodes inside (rea-

lized by MESH1 procedure) is overestimated. It is because 1D truss eelements connect-

ing repnodes are evaluated explicitly, and at the same time, the stiffness of 2D is set the 

same as for other elements without repnodes. Thus it is better to use MESH2 procedure 

for M3 and generate smaller elements near the interface or eliminate this absence by 

using M4 instead of M3. 

The error indicator of all models for set of particles (b) is still significantly high-

er than for other sets, and as well, the error near the supports can be observed; see Fig. 

32.  
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Fig. 32 Absolute strain error computed with added repnodes and divided 

by characteristic deformation. 

 

 

 Time effort (s) Strain error indicator (𝟏𝟎−𝟒) 

 M1 M2 M3 M4 M2 M3 M4 

(a) 5.45 6.22 2.68 3.35 3.3166 4.7318 3.4249 

(b) 4.84 6.20 2.83 3.63 3.3121 4.7032 3.3226 

(c) 4.96 5.94 2.59 2.85 3.6414 5.2364 3.9179 

(d) 5.17 5.88 2.69 2.70 3.3045 4.8031 3.3166 

Avg 5.11 6.06 2.70 3.13 3.3937 4.8686 3.4955 

Table 4. Comparison of time effort and error indicator in bending test with added repnodes.  
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Fig. 33 Interpolation mesh with added repnodes 

7.2.3 Second region of high interest 

The second region of interest is realized to be able to capture exact behavior in 

the surrounding of supports, and furthermore, the size of interpolation elements is 

changed to one half; see Fig. 34. Results are summarized in Table 5. Again, the error 

indicators of M2 and M4 decrease much more significantly than for M3. Also the error 

near the supports vanishes for M2 and M4 only; see Fig. 35. M3 seems to be unsuitable 

for this mesh because it cannot capture the behavior of interface, even if the interpola-

tion elements are smaller. 

 

Fig. 34 Interpolation mesh with repnodes added in two regions of high interest. 

 

 Time effort (s) Strain error indicator (𝟏𝟎−𝟒) 

 M1 M2 M3 M4 M2 M3 M4 

(a) 5.80 6.89 3.81 4.04 1.9225 3.3317 1.9662 

(b) 5.54 6.62 3.43 4.55 2.1107 3.6208 2.1684 

(c) 5.41 6.26 3.63 3.94 2.1218 3.6111 2.1746 

(d) 5.92 7.60 3.48 4.17 2.1545 3.7403 2.2145 

Avg 5.67 6.84 3.59 4.18 2.0774 3.5760 2.1309 

Table 5. Comparison of time effort and error indicator in bending test with added repnodes.  
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Fig. 35 Absolute strain error computed with added repnodes and divided 

by characteristic deformation. 

7.3 Three-point bending test - beam with a notch 

The last example is the same three-point bending test, but now with an initial 

notch. The sets of particles are the same, only the truss elements intersecting the crack 

are removed; see Fig. 37. Stress and strain are concentrated near the crack tip; see Fig. 

36. The region of high interest covers the surrounding of crack tip; see Fig. 38. Results 

are summarized in Table 6. M2 and M4 provide almost the same and accurate approxi-

mation but M4 is dramatically faster. M3 is the fastest but at the price of the higher er-

ror; see Fig. 39. 

 

Fig. 36 Typical strain distribution computed by M1. 
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Fig. 37 Beam with the initial notch deformed in three-point bending test. 

 

 

 

Fig. 38 Interpolation mesh with added repnodes. 

 

 

 Time effort (s) Strain error indicator (𝟏𝟎−𝟒) 

 M1 M2 M3 M4 M2 M3 M4 

(a) 4.79 6.36 1.96 2.57 1.4199 1.9336 1.4731 

(b) 4.04 5.73 1.59 2.79 1.3568 2.1562 1.3817 

(c) 4.77 5.94 1.60 2.66 1.5392 2.1989 1.5915 

(d) 4.23 5.80 1.47 2.27 1.1340 2.1636 1.1996 

Avg 4.46 5.96 1.66 2.57 1.3704 2.1157 1.4188 

Table 6. Comparison of time effort and error indicator in bending test with crack. 
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Fig. 39 Absolute strain error computed with added repnodes and divided 

by characteristic deformation. 

 

7.4 Uniform tension test of anisotropic material 

All so far presented examples show different geometry but for isotropic mate-

rials only. The next few examples in this subchapter show a simulation of anisotropic 

materials represented by the set of particles and links generated using the elliptic rule 

described in 2.1.4. 

7.4.1 Orthotropic material stiffer in vertical direction 

The first isotropic example is a square with the dimensions 10x10 submitted to 

uniform tension test. Along both vertical sides, 21 particles are placed periodically with 

prescribed boundary conditions. The particles on the left side are fixed in horizontal 

direction and particles on the right side have a prescribed horizontal displacement 

𝑢 = 0.002. Only the bottom corners are fixed in vertical direction. 
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Again, four sets of particles with uniform distribution are generated with the 

same parameter 𝑅𝑃 = 0.25 to eliminate the influence of randomness. The material is 

considered as orthotropic and the elliptic rule is used. The parameters of elliptic rule are 

𝑎 = 1.0𝑅𝑡 , 𝑏 = 1.5𝑅𝑡 , 𝜑 = 0 

where 𝑅𝑡 = 1.9𝑅𝑃. Thus particles are connected in the ellipses with major axis in vertical 

direction. Consequently, this example is stiffer in the direction perpendicular to the di-

rection of loading. Therefore only the minimal transverse contraction can be observed 

on deformed particles; see Fig. 40. Strain distribution seems to have almost constant 

character and only some fluctuation caused by the influence of randomness can be ob-

served; see Fig. 41 (right). Problems with high concentration of the strain near the par-

ticles with prescribed boundary conditions are reduced in this case because the vertical 

orientation of connection links dominates and loaded particles are also mutually con-

nected in this direction. Therefore no extra repnodes are needed; see Fig. 41 (left). 

 

Fig. 40 Example of particles connected by links before (left) and after deformation 

(right). Deformation scale = 1000. 

To be able to capture the influence of anisotropy, the model M4 is used with 

both isotropic (M4iso) and generally anisotropic stiffness matrix (M4aniso or M5). The 

accuracy of all models is compared in Table 7 and absolute strain error is depicted in 

Fig. 42. Error indicator of M4aniso is naturally essentially better than of M4iso and 

reaches almost the same accuracy as M2 but with dramatically lower time effort. The 

results of M3 and M4iso, both using isotropic assumption, are less accurate but still ap-

plicable because the influence of anisotropy is not too much significant in this example. 



64 

 

Fig. 41 Interpolation mesh (left) and strain distribution computed by M1 (right). 

 

Fig. 42 Absolute strain error divided by characteristic deformation 

computed for all models. 
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 Time effort (s) Strain error indicator (𝟏𝟎−𝟑) 

 M1 M2 M3 M4iso M4aniso M2 M3 M4iso M4aniso 

(a) 15.64 56.98 4.24 9.86 9.71 2.28 2.44 2.41 2.29 

(b) 15.31 56.94 3.29 8.74 9.03 2.30 2.54 2.40 2.31 

(c) 15.46 57.98 2.85 9.16 9.41 2.22 2.45 2.33 2.24 

(d) 15.95 57.81 3.72 10.04 10.06 2.35 2.61 2.47 2.37 

Avg 15.59 57.43 3.52 9.45 9.55 2.29 2.51 2.40 2.30 

Table 7. Comparison of time effort and error indicator. 

7.4.2 Orthotropic material stiffer in horizontal direction 

In this example, the same four sets of particles and boundary conditions are 

used. The material is again considered as orthotropic and the elliptic rule is used. But 

the parameters of elliptic rule are different 

𝑎 = 1.7𝑅𝑡 , 𝑏 = 1.0𝑅𝑡 , 𝜑 = 0 

where 𝑅𝑡 = 1.9𝑅𝑃. It means that the major axis of connected ellipse is oriented in the 

horizontal direction, i.e., direction of loading. The length of major axis increases from 

1.5𝑅𝑡  to 1.7𝑅𝑡 . Consequently, more significant influence of anisotropy is expected. Be-

cause the links starting the particles with prescribed boundary conditions are connected 

mainly in the direction of loading, the large variation of the deformation near the boun-

daries is expected. Therefore these parts are chosen as an area of high interest and rep-

nodes are added. See Fig. 43. 

 

Fig. 43 Interpolation mesh with added repnodes. 



66 

Significantly stiffer response in the direction of loading causes a huge transver-

sal contraction in vertical direction. But this phenomenon is not captured by the models 

M3 and M4iso with isotropic assumption. See the deformed particles in Fig. 44. An 

influence of ability to capture this phenomenon on the accuracy of individual models is 

clearly visible in the figures of displacement error; see Fig. 46. The displacement errors 

of M2 and M4aniso are almost negligible. By contrast, the displacement errors of iso-

tropic models M3 and M4iso are increasing with the horizontal coordinates. The value 

of displacement error is lower near the bottom corners for all models because the dis-

placements are fixed there. 

 

 

Fig. 44 Deformed particles computed by M1 (top left), M3 (top right), M4iso (bottom 

left) and M4aniso (bottom right). Deformation scale = 1000.  
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Fig. 45 shows the strain error of all models. Time effort is summarized in Table 

9. Time consumption of M4 is almost the same for the isotropic and anisotropic stiff-

ness. Global error indicators are evaluated in both the displacement and the strain and 

summarized in Table 8. Several times higher values of the displacement indicators show 

obviously that the isotropic models M3 and M4iso are not suitable for this type of ma-

terial. 

 

 

Fig. 45 Absolute strain error divided by characteristic deformation 

computed for all models. 
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Fig. 46 Absolute displacement error divided by value of prescribed displacement 

computed for all models. 

 

 Strain error indicator (𝟏𝟎−𝟑) Displacement error indicator (𝟏𝟎−𝟑) 

 M2 M3 M4iso M4aniso M2 M3 M4iso M4aniso 

(a) 2.45 4.89 3.85 2.56 1.60 17.39 13.43 2.64 

(b) 2.34 5.15 3.78 2.44 1.09 18.48 13.91 1.92 

(c) 2.54 5.07 3.93 2.67 7.22 25.96 20.89 9.37 

(d) 2.33 5.20 3.85 2.47 3.62 22.75 17.93 5.41 

Avg 2.42 5.08 3.85 2.53 3.38 21.14 16.54 4.83 

Table 8. Comparison of error indicator in terms of strain and displacement. 
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 Time effort (s) 

 M1 M2 M3 M4iso M4aniso 

(a) 17.58 62.03 7.21 15.34 15.63 

(b) 17.09 60.74 6.15 13.99 14.24 

(c) 17.43 60.43 6.21 14.99 15.20 

(d) 17.47 62.39 6.88 16.15 16.02 

Avg 17.40 61.40 6.61 15.12 15.27 

Table 9. Comparison of time effort. 

7.5 Material with variable orientation of orthotrophy 

For this example four sets of particles with uniform distribution and 𝑅𝑃 = 0.25 

have been generated in a rectangular domain with dimensions 20x10. The links are gen-

erated with the elliptic rule with parameters 

𝑎 = 2.0𝑅𝑡 , 𝑏 = 1.0𝑅𝑡 , 𝜑(𝑥) =
𝑥

𝐿𝑥

𝜋

2
 

where 𝑅𝑡 = 1.9𝑅𝑃 and 𝐿𝑥  is the dimension of solved domain in 𝑥-direction. 

 

Fig. 47 Example of the anisotropic material of bone with denoted continuous change of 

orientation. 
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Thus particles are connected in the ellipses whose orientation continuously 

changes with the horizontal coordinate from 𝜑 = 0 to 𝜑 =
𝜋

2
. An example of this set of 

truss elements with denoted ellipse orientation is depicted in Fig. 47. This input geome-

try represents the type of anisotropic material which is typical for bones [13] because 

the orientation is changing during the growth. 

In this case, only the left bottom corner is fixed in vertical direction. It allows the 

whole right side to slide down when the vertical displacement is applied; see Fig. 48. 

This sliding is caused by the orientation of anisotropy and naturally cannot be captured 

by the isotropic models M3 and M4iso; see the displacement error in Fig. 51. The 

change of the orientation also causes that the strain and stress distribution is not constant 

but increases from left to right as the material becomes stiffer in the loading direction; 

see Fig. 49. In the figure of strain distribution, high values of the strain in the links start-

ing in the particles with the prescribed boundary conditions can be observed on the left 

side only, because the density of links is higher near the right boundary and strain value 

of one plotted grid is computed as an average of all contributing links. So repnodes are 

added along both of the boundaries; see Fig. 50. 

 

Fig. 48 Deformed particles computed with M1. 

Global error indicators are evaluated in both the displacement; see Fig. 51 and 

the strain; see Fig. 52 and summarized in Table 11. Computational time and total time 

effort (including the process of generating input data of simplified model and the time 

of computation) are measured and summarized in Table 10. 
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Fig. 49 Strain distribution in anisotropic material computed with M1. 

 

Fig. 50 Interpolation mesh with added repnodes. 

The main features of individual models for anisotropic material can be summa-

rized as follows: 

Model M2 is the most accurate because the stiffness is represented by the real 

geometry of links. 

The models M3 and M4iso with isotropic stiffness matrixes are not able to cap-

ture anisotropic phenomena. The inapplicability of these models is more significant if 

the error is measured in terms of the displacement. For M4iso the addition of repnodes 

leads to the  elimination of error and isotropic properties of material can be captured 

by the repnodes in the regions of high interest because the stiffness of all elements is 

assembled individually. Hence, M4iso can be eventually used for only locally anisotrop-

ic examples if the repnodes are used in the whole area of anisotropy. This is not true for 
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M3 where the stiffness is the same for all elements. Even if the repnodes represent the 

exact isotropic material, the constant stiffness of elements leads to the stiffer response. 

The elimination of the strain error for M3 along the left boundary is probably only a 

lucky effect of this example because the added repnodes even up the missing constant 

stiffness in the direction of loading. But this is not true in general. For example along 

the right boundary, the area of high interest does not eliminate the strain error; see Fig. 

52. 

Model M4aniso reaches very good accuracy and seems to be convenient for the 

continuous description of this type of materials. Also the addition of repnodes leads to 

the error reduction.  

Unfortunately the total time effort of M4 is approximately twice as high as for 

the exact model M1 in this example. But most of the time is consumed in the process of 

stiffness assignment which is not optimized. For example, the parallelization of this 

process is possible because the contributions to the individual elements can be evaluated 

independently for all link connections. The time of the computation only, i.e., the solv-

ing time of the model M4 is approximately three times lower than M1; see Table 10. 

Therefore the results are still promising for both large examples in 3D where the influ-

ence of the computation demand is expected to be substantial and for nonlinear prob-

lems where the process of the stiffness assignment is done just once at the beginning 

and then several iterations are computed. 

 

 Total time effort (s) Computational time (s) 

 M1 M2 M3 M4iso M4aniso M1 M2 M3 M4iso M4aniso 

(a) 40.45 149.87 13.03 82.60 83.26 39.46 148.85 11.93 11.83 12.81 

(b) 41.06 150.53 12.67 85.73 86.19 40.02 149.46 11.64 11.72 11.93 

(c) 41.16 178.79 23.87 97.25 97.96 40.13 177.79 22.87 22.88 23.37 

(d) 77.50 219.90 13.35 155.31 155.98 75.46 217.80 11.39 11.50 11.93 

Avg 50.04 174.77 15.73 105.22 105.85 48.77 173.48 14.46 14.48 15.01 

Table 10. Comparison of computational time and total time effort.  
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Fig. 51 Absolute displacement error divided by value of prescribed displacement 

for M2, M3, M4iso and M4aniso subsequently.  

M2 

M3 

M4iso 

M4aniso 
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Fig. 52 Absolute strain error divided by characteristic value computed 

for M2, M3, M4iso and M4aniso subsequently.  

M2 

M3 

M4iso 

M4aniso 
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 Strain error indicator (𝟏𝟎−𝟑) Displacement error indicator (𝟏𝟎−𝟑) 

 M2 M3 M4iso M4aniso M2 M3 M4iso M4aniso 

(a) 1.55 4.02 3.54 1.59 1.58 26.10 23.18 2.54 

(b) 1.60 4.04 3.62 1.64 1.48 26.28 22.27 3.20 

(c) 1.68 4.02 3.67 1.72 1.33 27.16 24.39 2.84 

(d) 1.66 4.20 3.62 1.70 1.74 27.90 23.01 3.09 

Avg 1.62 4.07 3.61 1.67 1.53 26.86 23.21 2.92 

Table 11. Comparison of error indicator in terms of strain and displacement. 

 

7.6 Uniform tension test of plastic material 

This example is formed by randomly generated particles with 𝑅P = 0.5 con-

nected by plastic truss elements with 𝑅𝑡 = 1.9𝑅P  described in section 6.2.1 and submit-

ted to the uniform tension test. The geometry of this example is depicted in Fig. 54. A 

significant narrow region is realized in the middle to avoid a high number of truss ele-

ments in plastic state starting from the loaded particles along the vertical boundaries. 

The microplane model defined in 6.2.3 is used for 2D elements in simplified 

model using the idea of quasicontinuum. Formulas from section 6.2.6 and algorithm 

similar as for the elastic model M4 are used to fit the parameters of microplanes model 

to be equivalent to the particle model. Two computations of simplified model are rea-

lized. At the first (MP1), only the microplane elements are used in the central area and 

repnodes are added only along the boundaries. In the second computation (MP1 with 

RN), the same mesh is used and extra repnodes are added in the narrow region, where 

the plastic mechanism is expected; see Fig. 55. 

Results of both quasicontinuum computations are compared with exact model 

M1 and summarized in Table 12. All three computations run until the plastic mechanism 

occurs. The plastic mechanism can be visible in the deformed particles of exact model 

M1; see Fig. 54. And it is also visible that some truss elements are in plastic state even 

if they are located outside the middle narrow area. The force-displacement diagrams are 

plotted in Fig. 53. And the strain error of simplified model is in Fig. 56. 

The microplane model without repnodes is approximately four-times faster than 

the exact particle model M1. But the microplane elements in the narrow area are not 
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able to capture the exact plastic mechanism that is formed by some plastic bars for low-

er loading level. Therefore this model predicts higher value of maximal yield stress; see 

Fig. 53. And the strain error in the area of plastic mechanism is also unacceptable; see 

Fig. 56. 

On the other hand, the added repnodes turn out to be able to capture the plastic 

mechanism exactly. And the microplane elements are sufficiently accurate to deal with 

some plastic bars outside the narrow area even if there are no repnodes. Therefore the 

results of MP1 with repnodes are in very good agreement with exact model M1; see Fig. 

53. and Fig. 56. The reduction of total time effort is more than 20% and it not negligible 

save because the time effort of M1 is more than 10 minutes. 

Finally, we can summarize that, the microplane elements are suitable to describe 

the particle model with plastic links but the final plastic mechanism must be captured by 

repnodes. 

 

Fig. 53 Force- displacement diagram for particle model M1 (black), microplane model 

without extra repnodes (blue) and with repnodes in the narrow region (red).  
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Fig. 54 Particles connected by links before (top) and after deformation (bottom). Bars 

in plastic state (red). 

 

 Time effort (-) Strain error indicator (𝟏𝟎−𝟓) 

 M1 MP1 MP1 with RN MP1 MP1 with RN 

Avg 1.0 0.278 0.785 72.53 4.64 

Table 12. Comparison of time effort and error indicator of an example with plastic material. 
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Fig. 55 Interpolation mesh with added repnodes. 

 

 

 

Fig. 56 Absolute strain error divided by characteristic value computed for microplane 

model without extra repnodes (top) and with repnodes in the narrow region (bottom).  
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8 Conclusions and outlook 

8.1 Summary 

For elastic materials, three simplified models M2-M4 based on the idea of QC 

have been presented and compared with exact particle model M1. Advantages and dis-

advantages of individual models and their numerical implementation have been dis-

cussed in chapter 7 for isotropic materials (sections 7.1 - 7.3), orthotropic material (sec-

tion 7.4) and anisotropic material (section 7.5). 

For plastic materials, the QC model originates from the microplane model. The 

microplane model has been proposed and studied in detail in section 6.2. The applica-

tion of QC microplane model has been presented in section 7.6. It turned out that mi-

croplane provides a very good description of particle model with plastic links if the final 

plastic mechanism is captured by repnodes. 

For both types of materials, the presented examples have shown that the QC-

based method leads to a substantial reduction of unknown DOF. The error caused by 

this reduction can be effectively reduced by suitably setting the region of high interest. 

Finally, a significant simplification of the problem can be reached at the price of an ac-

ceptable error. 

8.2 Future research 

Future work will be, at the first, focused on an extension of all presented me-

thods to 3D. It seems to be only a technical question to extend 2D to 3D because main 

theoretical features are the same and only the different types of elements must be used. 

But it takes some effort to modify corresponding algorithms, e.g. the stiffness assign-

ment. 

Another option of future research is a development of a suitable adaptive algo-

rithm for repnodes addition during plastic simulation. This algorithm will be useful be-

cause the final plastic mechanism must be realized by repnodes and its position in not 

always known at the beginning of loading. The criterion used in this algorithm can be 

based for example on the value of plastic strain or the number of truss elements resp. 

microplanes in plastic state in a given microplane element. 
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Also, addition of other nonlinear material phenomena such as plastic softening, 

hardening, damage etc. can be realized on the level of microplanes and truss elements. 
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