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Abstrakt 
 
Navzdory rostoucímu výpočetnímu výkonu moderních počítačů a počítačových sítí 
jsou simulace stavebních konstrukcí stále časově velmi náročné. Proto je velmi 
výhodné využívat vhodné aproximace některých zdlouhavých výpočtů, a to zejména 
v oblasti identifikace parametrů materiálových a konstrukčních modelů.  Vrstevnaté 
neuronové sítě představují velmi robustní aproximační nástroj. Jejich praktické 
využití není však příliš jednoduché, protože je třeba správně zvolit vhodnou topologii 
sítě: počet vrstev a počet jejich neuronů. Předkládaná práce se věnuje návrhu 
jednoduché neuronové sítě, která si při procesu učení sama určí nejvýhodnější počet 
neuronů ve skryté vrstvě. Aproximační schopnosti navržené sítě jsou testovány na 
několika matematických problémech a při identifikaci parametrů mikroploškového 
modelu m4. Identifikace je provedena dvěma různými způsoby. V první variantě je 
neuronová síť použita pro aproximaci numerického modelu pro rychlý odhad odezvy 
modelu na základě daných materiálových parametrů a zatížení. V druhé variantě je 
použita pro konstrukci inverzního modelu, který je schopen předpovědět hodnoty 
materiálových parametrů pro danou (naměřenou) odezvu numerického modelu. 
 

Abstract 
 
Despite the growing performance of modern computers and clusters, a suitable 
approximation of an exhaustive simulation of structural models has still many 
applications in engineering problems. For example, the field of parameters 
identification may represent the largest domain for very efficient applications. The 
layered neural networks are considered as very general tools for approximation. The 
practical usage is, however, non-trivial in the choice of an appropriate architecture. 
The presented contribution is concerned with the development of a simple neural 
network with the self-adaptive architecture. Its approximation abilities are tested on 
several mathematical problems and two different modes of material parameters’ 
identification problem. In the first one, the neural network is used to approximate the 
numerical model predicting the response for a given set of material parameters and 
loading. The second mode employs the neural network for constructing an inverse 
model, where material parameters are directly predicted for a given response.  

1   Introduction 

A variety of engineering tasks nowadays lead to an inverse analysis problem. 
Generally, the aim of an inverse analysis is to rediscover unknown inputs from the 
known outputs. In common engineering applications, a goal is to determine the initial 
conditions and properties from physical experiments or, equivalently, to find a set of 
parameters for a numerical model describing properly the experiment. 

While the numerical model of an experiment represent a well-defined mapping 
from input (model, material, structural, or other) parameters to output (structural 
response), there is no guarantee that the inverse relation even exist. In engineering 



practice is the inverse relation often ill-posed, highly nonlinear and multi-modal. 
Therefore, the choice of an appropriate identification strategy is not trivial. Moreover, 
such identification process is supposed to be performed repeatedly for any new 
measurement and therefore, the emphasis is also put on the efficiency of chosen 
identification method. 

In overall, there are two main philosophies to solution of identification problems. 
A forward (classical) mode/direction is based on the definition of an error function of 
the difference between outputs of the model and experimental measurements. A 
solution comes with the minimum of this function. This mode of identification could 
be considered as more general and robust, but repeated application is relatively 
computationally expensive. The second philosophy, an inverse mode, assumes the 
existence of an inverse relationship between outputs and inputs. If such relationship is 
established, then the retrieval of desired inputs is a matter of seconds and could be 
easily executed repeatedly. For a more interested reader about identification 
strategies, see the contribution of Kučerová and Lepš in this proceedings. 

Artificial neural networks (ANN) [2], [4] are powerful computational systems 
consisting of many simple processing elements – so-called neurons – connected 
together to perform tasks analogously to biological brains. Their main feature is 
ability to change their structure based on external information that flows through the 
ANN during the learning (training) phase.  

A particular type of ANN is so-called feedforward neural network, which consists 
of neurons organized into layers where outputs from one layer are used as inputs into 
the following layer. There are no cycles or loops in the network, no feed-back 
connections. Mostly used example is a multi-layer perceptron (MLP) with a sigmoid 
transfer function and gradient descent method of training called back-propagation 
learning algorithm. In practical usage, MLP are known for their ability to approximate 
non-linear relations and therefore, when speaking about ANN, particularly MLP are 
considered in the following text.  

In the field of parameter identification, ANN has two main applications. In the 
forward mode of identification, ANN can be used to approximate the computationally 
expensive numerical model. Approximation of numerical model can be found 
relatively easily, since such relation is well-posed. ANN can be then efficiently used 
in the phase of parameter optimization where the huge number numerical model 
evaluations are replaced by very fast evaluations of ANN. The only drawback of such 
application is often high number of outputs. Numerical mechanical models have 
usually a small number of input parameters describing the material or structure. 
Nevertheless, there is typically huge number of outputs, for example the load-
deflection curve defined in dozens of discrete points.  In this case, one search either 
for one ANN with many outputs or many simpler ANNs with one output each. 

In the inverse mode of identification, the ANN can be applied to approximate the 
inverse relation between inputs and outputs. Search for this relation can be non-trivial 
for the reasons mentioned above, but once such relation is found, it can be very 
quickly and repeatedly used for estimating parameters from any new experiment and 
no other optimization process is necessary. 

When dealing with ANNs, the key point is the choice of its architecture. The 
number of units in input and output layer is usually given, but it remains to decide the 
number of units in hidden layer. In this contribution, we present a simple self-adaptive 



ANN, which automatically determine an optimal number of hidden neurons. The 
resulting algorithm is tested on several mathematical problems and finally applied to 
parameters identification of microplane model M4 [1]. The forward and inverse 
strategy is compared. 

2   Architecture of Artificial Neural Network 

To introduce a reader into the problematic of ANN, let’s recapitulate its main 
principles. A multi-layer feedforward neural network is a particular ANN, where 
processing units are organized into parallel layers, see Fig. 1(a). 
 

 
 

Fig. 1. (a) Architecture of an multi-layer feedforward neural network; (b) Underfitting and 
overfitting of ANN  
 

The input layer represents directly a vector of input parameters. These values are 
then multiplied by a vector of constants, so-called synaptic weights and summarized. 
The result is then used as an input into the units of the following, so-called hidden 
layer. Each element in the hidden layer – neuron – is defined by an activation 
function, which is applied on the input and produces the output value of the neuron. 
The output is then again multiplied by other synaptic weights and again used as input 
in next layer and so on. The synaptic weights are parameters of ANN to be 
determined during the training process. The type of activation function is usually 
chosen in accordance with the type of function to be approximated. In the case of 
continuous problems, sigmoid activation functions seem to be most appropriate. 

Into input and hidden layers, one bias neuron is also added. It doesn’t consist of 
activation function, but only a constant value. Its role is to enable to shift the value of 
sum over the outputs of his neighbouring neurons before this sum enters as input into 
the neurons in the following layer. The value of biases is determined by training 
process together with synaptic weights. 

Despite of ANN’s popularity there are only few recommendations for the choice 
of ANN’s architecture. The authors, e.g. in [5], [6], shows that ANN with any of a 
wide variety of continuous nonlinear hidden-layer activation functions, one hidden 
layer with an arbitrarily large number of units suffices for the “universal 
approximation” property. Therefore, we limit our numerical experiments to such as 



case. But there is no theory yet to decide how many hidden units are needed to 
approximate any given function.  

In general the choice of number of hidden units depends on many factors such as 
the number of input and output units, the number of training samples, the complexity 
of the function to be approximated, the type of hidden unit activation function, noise 
in the target values etc. In [3] it is indicated that the number of training samples NTR 
should be larger than the number of adjustable ANN’s parameters. It implies that  
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where NH is the number of hidden units and NI is the number of inputs. The 
inequality (1) creates an upper bound for the number of hidden units, but this limit 
value is usually far from optimal. When looking for some better value of NH, the 
choice should be driven by following principles:  

i. If ANN produces high error on both the training and testing data due to so-
called underfitting, ANN’s architecture is probably too simple and more 
hidden units should be added. 

ii. If ANN produces relatively small error on training data, but in orders higher 
error on testing due to overfitting, there are probably too many hidden units 
and some of them should be eliminated. 

Regarding these principles, demonstrated also in Fig. 1(b), we have developed a 
simple ANN with the ability to adapt the number of hidden neurons. The algorithm is 
following:  

o The ANN starts with one hidden neuron. 
o The process of ANN’s training is executed. 
o At the end, we compute the average absolute error on training data ETR and 

testing data ETE. 
o New hidden neuron is added into the ANN if the condition (1) is fulfilled 

together with the following condition 
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where TTER is a given testing to training error ratio. These two conditions we 
call adaptivity criteria.  

o With the new architecture, new training process is executed. 
o If one of those conditions is not fulfilled, the process of adding hidden 

neurons is stopped and the last used architecture and synaptic weights are 
stored as the best result. 

In other words, the algorithm starts with an underfitted ANN and proceeds by 
adding hidden neurons until the ANN is overfitted. The criterion of overfitting is 
based on the proportion of testing to training error. Since the high error on testing data 
together with small error on training data defines the overfitting, we stop the process 
of adding neurons, when the error on testing data exceeds the value of TTER, defining 
a certain multiple of the error on training data. In order to choose an appropriate value 
of TTER, we have performed the following numerical study. 



3   Numerical Study of ANN’s Adaptivity Features 

We have decided to test the abilities of ANN on a simple example, where the ANN 
should approximate as well as possible highly non-linear relation given as 
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which is shown in Fig. 2(a). 
We have generated 100 training and 100 testing pairs {x; F(x)} from the uniform 

distribution over the domain of [ ]5;5−∈x . As a training algorithm, an enhanced 

variant of popular backpropagation algorithm, so-called Resilient backpropagation, is 
implemented. It is a local adaptive learning scheme, performing supervised batch 
learning in multi-layer perceptrons. For a detailed discussion see e.g. [9]. The 
algorithm has three adjustable parameters concerning the steps of changing synaptic 
weights: the initial update-value ∆0, the maximum step size ∆max and the minimum 
step size ∆min. The values of these parameters are set to ∆0 = 0.001, ∆max = 10 and ∆min 
= 10-8. The other parameters are considered as constants with values recommended by 
authors. 
 

 

 

Fig. 2. (a) Relation to be learned by ANN; (b) Relation between the resulting error on testing 
data ETE and value of testing to training error ratio TTER. 
 
The training process starts with initial values of synaptic weights chosen randomly 
from a set of three values {-1; 0; 1}. The training continues by 500 iterations and the 
resulting ANN’s configuration is stored. Such starting training is performed 50-times, 
every time with new random initial values of synaptic weights. Among 50 resulting 
configurations, the one with minimal average absolute error on training data is 
chosen. For this ANN, the second phase of training is performed, starting from the 
stored configuration and proceeding in new iterations. This phase is ended when one 
of following criteria is fulfilled: 

o total number of iterations exceeds 10,000; 
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where ETRk is average absolute error on training data in actual iteration k and ETRk-1 

is the same error computed in previous iteration k-1. The second criterion is applied to 
stop the training, when the convergence becomes too slow – the error on training data 
almost is almost not changing. It indicates that some local extreme is located and no 
other iterations are needed. When the training process is finished, the adaptivity 
criteria are tested and eventually new hidden neuron is added and new training 
process is launched. Adding of new hidden neuron leads to creation of new synaptic 
weights. The following training process uses as a start point the resulting values of 
existing synaptic weights from the previous training and random values for new 
synaptic weights. This is repeated until the adaptivity criteria are fulfilled.  

To establish an appropriate value of TTER, we have performed 100 independent 
training processes with the adaptivity, but without the adaptivity condition (2). This 
condition was applied on the obtained data post facto and the value of TTER was 
varied from 1 to 100. The goal was to find the value of TTER, for which the resulting 
error on training data ETE is minimal. The results of this study are plotted in Fig. 2(b) 
and regarding them, the value TTER = 3.2 was chosen as optimal. 

We were also interested, whether the sequential changes of synaptic weights have 
some influence on the final error on testing data. We compared our results with other 
computations, where the adaptivity is used to find an optimal architecture in the first 
step and then, all synaptic weights are randomized and new training process is 
launched to establish their values on a given fixed topology. In other words, all the 
information about synaptic weighs obtained during the adaptation process is 
forgotten. The resulting errors on testing data obtained for 100 independent 
computations by both strategies are shown in Fig. 3(a) and one can see that the 
information during the adaptation process can significantly decrease the resulting 
error in ANN’s predictions. 

 

  
Fig. 3. (a) The error on testing data after adaptation and in case of training on the optimal fixed 
topology; (b) The error on testing data after adaptation and in case of training on arbitrarily 
chosen fixed topology. 

 
The most common way for establishing the number of hidden units is the simplest 

trial-and-error method. Having fixed number of training samples, we can use the rule 
(1), which tells us that number of hidden units should be smaller than 33. To have an 
idea about the results of an trial-and-error method in comparison with the results from 
adaptivity, we have trained ANN’s with fixed topology for three different numbers of 



hidden neurons: NH = 10, 20 and 30. The final error on testing data computed over 
100 independent runs of training process is depicted in Fig. 3(b). 

We should also note that the adaptivity criteria lead to a stochastic solution. Every 
run of adaptivity process can terminate with a different optimal architecture. On the 
particular problem studied here, the histogram in Fig. 4(a) was obtained for number of 
hidden neurons over 100 runs of adaptation process.  

 

  
Fig. 4. (a) Histogram of number of hidden neurons over 100 runs of adaptation process; (b) 
Bundle of stress-strain diagrams generate for training and testing of ANN  

4 Application of ANN in parameters identification of microplane 

model M4  

Concrete is a heterogeneous material and therefore the simulation of its behaviour 
encounters serious difficulties, both theoretical and numerical. The microplane model 
M4 [1] is a fully three-dimensional material law that includes tensional and 
compressive softening, damage of the material, different combinations of loading, 
unloading and cyclic loading. It can describe the development of anisotropy within 
the material. The major disadvantage of this model, however, is an enormous 
computational cost associated with structural analysis and phenomenological material 
parameters without clear physical interpretation. Therefore, a reliable procedure for 
parameters identification is on demand. Some work on parameters estimation of 
microplane model was already presented, e.g. in [7], [8]. Here, we would like to 
present two possible applications of ANN in parameters identification of microplane 
model and discuss their advantages and drawbacks. 

Because of the limited space for this contribution, we focus on identification of 
three parameters – Young’s modulus E, k1 and c20 – which should be identified from 
uniaxial compression test. When simulating uniaxial compression test, the model 
output is a stress-strain diagram. Particularly, we simulate uniaxial compression of a 
concrete cylinder with diameter equal to 15cm and height equal to 30cm. We 
discretize the stress-strain diagram into 18 discrete points corresponding to fixed 
values of strain and corresponding 18 values of stress σ1, ..., σ18 are considered as 
model outputs. Because of high computational demands of each compression test 
simulation, only 60 samples were generated for a training set and 10 samples for a 
testing set. The resulting bundle of stress-strain diagram is shown in Fig. 4(b). 



We start by the inverse mode of identification where ANN is supposed to 
approximate the inverse relation between model outputs and model parameters (here, 
considered as inputs) listed above. Since the neural network will be trained to 
approximate the inverse relation, 18 values of stress becomes ANN’s inputs. These 18 
values are, however highly correlated and therefore, only several important values are 
chosen among them to be used as inputs. The choice can be driven by Pearson 

product-moment correlation coefficient, which can be computed for pairs consisting 
of one stress value and one parameter. The computed values of correlation are 
presented e.g. in [7]. To simplify more the training process, one ANN is trained with 
adaptivity for each model parameter. The set of inputs and resulting architecture is 
described in Table 1. 

Table 1. Inverse mode – architecture of ANNs. 

Parameter Inputs Architecture 

E σ1, σ2, σ3 3 – 5 – 1  

k1 σ5, σ18, σpeak, σpeak, Eprediction 
5 – 4 – 1  

c20 σ6, σ8, σ12, σ16, Epredict., k1,predict. 6 – 3 – 1  

 
For a judgement of ANN performance we computed the average error on training 

and testing data relative to the range between minimal and maximal values of each 
model parameter used in training and testing sets. The resulting relative errors are 
presented in Table 2. One can see that ANN can very precisely found the inverse 
relation for prediction Young’s modulus and parameter k1, but it is unable to 
approximate the inverse relation for parameter c20 with satisfactory precision. So the 
application of ANN in the inverse mode is not always trivial. 

Table 2. Inverse mode – resulting average relative error on training and testing data. 

Parameter Av. Relative ETR [%] Av. Relative ETE [%] 

E   0.18    0.34 
k1   0.46    0.86 
c20 10.44   22.43 

 
In the case of forward mode, the ANN can be used for the approximation of the 

numerical model itself. In that case, however, there is a relatively small number of 
ANN’s inputs – only four model parameters (Young’s modulus E, k1 and c20 
parameters must be accompanied also by Poison’s ratio, which cannot be identified 
only from axial deformation, but has still an indispensable influence on its shape). But 
there is a larger number of outputs corresponding to discrete points of stress-strain 
diagram. In order to predict stress values in these points, there are two possibilities of 
ANN implementation.  

In the first scenario, one independent ANN can be trained to predict the stress in 
one chosen point. Such ANN can be very simple, training process can be also fast and 
easy, but we must train 18 different ANNs. Fig. 5(a) shows the minimal, average and 



maximal error on training as well as on testing data for each ANN, which predicts the 
stress value in one of 18 points.  

 

  
Fig. 5. (a) Relative errors in predictions of 18 simple ANNs; (b) Relative errors in prediction 
of one complex ANN. 
 

The resulting number of hidden neurons of each ANN was NH = [4; 7]. One can 
see that average error on both the training and testing data of all ANNs is smaller than 
4% and worst cases have not exceeded the error of 8%. This precision we consider as 
satisfactory. The only disadvantage of this approach remains the necessity of training 
number of independent ANNs. If we would like to approximate the stress-strain 
diagram in more discrete points for a better accuracy, the training process becomes 
lengthier. Moreover we should recall that training of ANNs is only a first phase of the 
identification process which proceeds in optimization of model parameters in order to 
fit the response of all ANNs to experimental data.  

In the second scenario, only one ANN can be trained, if we add the value of strain 
as the fifth input. 60 training diagram consisting of 18 points change to 1080 training 
samples and 10 testing diagrams create 180 testing samples. The relation to be 
approximated becomes of course more complicated, which is coherent with resulting 
number of hidden neurons NH = 11. The resulting errors on training and testing data, 
listed in Table 3, are expressed relatively to bounds for the output stress which is 
quite large, because it embodies all stress values during the whole loading process.  

Table 3. Forward mode – resulting relative error on training and testing data. 

Error Minimal [%] Average [%] Maximal [%] 

ETR   0.0010 0.7234      4.4428 
ETE   0.0157 1.1017    10.7873 

 
Nevertheless, one can be also interested in the accuracy of ANN’s prediction in 

particular discrete points of the diagram and how the errors become large when 
computed relatively to bounds of stresses corresponding to these particular points. 
Such error distribution is depicted in Fig. 5(b). One can see that in the beginning of 
the loading process where the values of stress are small, the relative error becomes 
high because the stress bounds are very narrow. In the middle of the loading, the 
stresses are high and the error relatively to them small, and at the end of the loading 



the stress value again decreases and the relative error increases. Nevertheless, the 
average relative error exceeds 5% only in the first point of diagram and its 
satisfactory small in the rest. When comparing to first scenario of forward mode, the 
errors are in general higher, but the usage of one ANN is of course simpler. 

5 Conclusions 

In the presented contribution, we focus on application of artificial neural networks in 
parameters identification. An easy implementation of feedforward multi-layer neural 
network is complicated by non-trivial choice of ANN’s architecture, especially the 
number of neurons in hidden layer. Here, we propose a simple algorithm for an 
automatic determination of hidden neurons. Moreover, results in Fig. 3(a) shows that 
the complete process of sequential training accompanied by adaptivity of hidden layer 
leads to better results than the simple training of well chosen architecture. 

The second part of the paper concerns the application of the resulting algorithm 
for ANN training to parameters identification of microplane model m4. Three 
different scenarios are demonstrated and their particular advantages and drawbacks 
are discussed throughout the paper in very detail. 
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