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Abstrakt

Navzdory rostoucimu vypocetnimu vykonu modernich pocitacti a pocitacovych siti
jsou simulace stavebnich konstrukci stdle Casové velmi ndro¢né. Proto je velmi
vyhodné vyuzivat vhodné aproximace n€kterych zdlouhavych vypocti, a to zejména
v oblasti identifikace parametrii materidlovych a konstrukénich modeld. Vrstevnaté
neuronové sité piedstavuji velmi robustni aproximacéni ndstroj. Jejich praktické
vyuziti nenf vSak pfili§ jednoduché, protoZe je tfeba spravné zvolit vhodnou topologii
sité: pocet vrstev a pocet jejich neuronl. Predkladand price se vénuje navrhu
jednoduché neuronové sité, kterd si pfi procesu uceni sama ur¢i nejvyhodnéjsi pocet
neuront ve skryté vrstvé. Aproximacni schopnosti navrZené sité jsou testovany na
nékolika matematickych problémech a pii identifikaci parametrd mikroploskového
modelu m4. Identifikace je provedena dvéma riznymi zpisoby. V prvni varianté je
neuronova sit’ pouZita pro aproximaci numerického modelu pro rychly odhad odezvy
modelu na zdkladé¢ danych materidlovych parametri a zatizeni. V druhé varianté je
pouzita pro konstrukci inverzniho modelu, ktery je schopen piedpovédét hodnoty
materidlovych parametri pro danou (namétenou) odezvu numerického modelu.

Abstract

Despite the growing performance of modern computers and clusters, a suitable
approximation of an exhaustive simulation of structural models has still many
applications in engineering problems. For example, the field of parameters
identification may represent the largest domain for very efficient applications. The
layered neural networks are considered as very general tools for approximation. The
practical usage is, however, non-trivial in the choice of an appropriate architecture.
The presented contribution is concerned with the development of a simple neural
network with the self-adaptive architecture. Its approximation abilities are tested on
several mathematical problems and two different modes of material parameters’
identification problem. In the first one, the neural network is used to approximate the
numerical model predicting the response for a given set of material parameters and
loading. The second mode employs the neural network for constructing an inverse
model, where material parameters are directly predicted for a given response.

1 Introduction

A variety of engineering tasks nowadays lead to an inverse analysis problem.
Generally, the aim of an inverse analysis is to rediscover unknown inputs from the
known outputs. In common engineering applications, a goal is to determine the initial
conditions and properties from physical experiments or, equivalently, to find a set of
parameters for a numerical model describing properly the experiment.

While the numerical model of an experiment represent a well-defined mapping
from input (model, material, structural, or other) parameters to output (structural
response), there is no guarantee that the inverse relation even exist. In engineering



practice is the inverse relation often ill-posed, highly nonlinear and multi-modal.
Therefore, the choice of an appropriate identification strategy is not trivial. Moreover,
such identification process is supposed to be performed repeatedly for any new
measurement and therefore, the emphasis is also put on the efficiency of chosen
identification method.

In overall, there are two main philosophies to solution of identification problems.
A forward (classical) mode/direction is based on the definition of an error function of
the difference between outputs of the model and experimental measurements. A
solution comes with the minimum of this function. This mode of identification could
be considered as more general and robust, but repeated application is relatively
computationally expensive. The second philosophy, an inverse mode, assumes the
existence of an inverse relationship between outputs and inputs. If such relationship is
established, then the retrieval of desired inputs is a matter of seconds and could be
easily executed repeatedly. For a more interested reader about identification
strategies, see the contribution of Kucerova and Leps in this proceedings.

Artificial neural networks (ANN) [2], [4] are powerful computational systems
consisting of many simple processing elements — so-called neurons — connected
together to perform tasks analogously to biological brains. Their main feature is
ability to change their structure based on external information that flows through the
ANN during the learning (training) phase.

A particular type of ANN is so-called feedforward neural network, which consists
of neurons organized into layers where outputs from one layer are used as inputs into
the following layer. There are no cycles or loops in the network, no feed-back
connections. Mostly used example is a multi-layer perceptron (MLP) with a sigmoid
transfer function and gradient descent method of training called back-propagation
learning algorithm. In practical usage, MLP are known for their ability to approximate
non-linear relations and therefore, when speaking about ANN, particularly MLP are
considered in the following text.

In the field of parameter identification, ANN has two main applications. In the
forward mode of identification, ANN can be used to approximate the computationally
expensive numerical model. Approximation of numerical model can be found
relatively easily, since such relation is well-posed. ANN can be then efficiently used
in the phase of parameter optimization where the huge number numerical model
evaluations are replaced by very fast evaluations of ANN. The only drawback of such
application is often high number of outputs. Numerical mechanical models have
usually a small number of input parameters describing the material or structure.
Nevertheless, there is typically huge number of outputs, for example the load-
deflection curve defined in dozens of discrete points. In this case, one search either
for one ANN with many outputs or many simpler ANNs with one output each.

In the inverse mode of identification, the ANN can be applied to approximate the
inverse relation between inputs and outputs. Search for this relation can be non-trivial
for the reasons mentioned above, but once such relation is found, it can be very
quickly and repeatedly used for estimating parameters from any new experiment and
no other optimization process is necessary.

When dealing with ANNSs, the key point is the choice of its architecture. The
number of units in input and output layer is usually given, but it remains to decide the
number of units in hidden layer. In this contribution, we present a simple self-adaptive



ANN, which automatically determine an optimal number of hidden neurons. The
resulting algorithm is tested on several mathematical problems and finally applied to
parameters identification of microplane model M4 [1]. The forward and inverse
strategy is compared.

2 Architecture of Artificial Neural Network

To introduce a reader into the problematic of ANN, let’s recapitulate its main
principles. A multi-layer feedforward neural network is a particular ANN, where
processing units are organized into parallel layers, see Fig. 1(a).
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Fig. 1. (a) Architecture of an multi-layer feedforward neural network; (b) Underfitting and
overfitting of ANN

The input layer represents directly a vector of input parameters. These values are
then multiplied by a vector of constants, so-called synaptic weights and summarized.
The result is then used as an input into the units of the following, so-called hidden
layer. Each element in the hidden layer — neuron — is defined by an activation
function, which is applied on the input and produces the output value of the neuron.
The output is then again multiplied by other synaptic weights and again used as input
in next layer and so on. The synaptic weights are parameters of ANN to be
determined during the training process. The type of activation function is usually
chosen in accordance with the type of function to be approximated. In the case of
continuous problems, sigmoid activation functions seem to be most appropriate.

Into input and hidden layers, one bias neuron is also added. It doesn’t consist of
activation function, but only a constant value. Its role is to enable to shift the value of
sum over the outputs of his neighbouring neurons before this sum enters as input into
the neurons in the following layer. The value of biases is determined by training
process together with synaptic weights.

Despite of ANN’s popularity there are only few recommendations for the choice
of ANN’s architecture. The authors, e.g. in [5], [6], shows that ANN with any of a
wide variety of continuous nonlinear hidden-layer activation functions, one hidden
layer with an arbitrarily large number of units suffices for the “universal
approximation” property. Therefore, we limit our numerical experiments to such as



case. But there is no theory yet to decide how many hidden units are needed to
approximate any given function.

In general the choice of number of hidden units depends on many factors such as
the number of input and output units, the number of training samples, the complexity
of the function to be approximated, the type of hidden unit activation function, noise
in the target values etc. In [3] it is indicated that the number of training samples NTR
should be larger than the number of adjustable ANN’s parameters. It implies that

. NTR-1 1)
NI+2

where NH is the number of hidden units and NI is the number of inputs. The
inequality (1) creates an upper bound for the number of hidden units, but this limit
value is usually far from optimal. When looking for some better value of NH, the
choice should be driven by following principles:

i.  If ANN produces high error on both the training and testing data due to so-
called underfitting, ANN’s architecture is probably too simple and more
hidden units should be added.

ii. If ANN produces relatively small error on training data, but in orders higher
error on testing due to overfitting, there are probably too many hidden units
and some of them should be eliminated.

Regarding these principles, demonstrated also in Fig. 1(b), we have developed a
simple ANN with the ability to adapt the number of hidden neurons. The algorithm is
following:

o The ANN starts with one hidden neuron.

o The process of ANN’s training is executed.

o At the end, we compute the average absolute error on training data ETR and

testing data ETE.

o New hidden neuron is added into the ANN if the condition (1) is fulfilled

together with the following condition

2
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where TTER is a given testing to training error ratio. These two conditions we
call adaptivity criteria.

o  With the new architecture, new training process is executed.

o If one of those conditions is not fulfilled, the process of adding hidden
neurons is stopped and the last used architecture and synaptic weights are
stored as the best result.

In other words, the algorithm starts with an underfitted ANN and proceeds by
adding hidden neurons until the ANN is overfitted. The criterion of overfitting is
based on the proportion of testing to training error. Since the high error on testing data
together with small error on training data defines the overfitting, we stop the process
of adding neurons, when the error on testing data exceeds the value of TTER, defining
a certain multiple of the error on training data. In order to choose an appropriate value
of TTER, we have performed the following numerical study.



3 Numerical Study of ANN’s Adaptivity Features

We have decided to test the abilities of ANN on a simple example, where the ANN
should approximate as well as possible highly non-linear relation given as

Flx)=Y isin(li+ 1) +i).

i=1

3

which is shown in Fig. 2(a).
We have generated 100 training and 100 testing pairs {x; F(x)} from the uniform
distribution over the domain of xe [— 5;5]. As a training algorithm, an enhanced

variant of popular backpropagation algorithm, so-called Resilient backpropagation, is
implemented. It is a local adaptive learning scheme, performing supervised batch
learning in multi-layer perceptrons. For a detailed discussion see e.g. [9]. The
algorithm has three adjustable parameters concerning the steps of changing synaptic
weights: the initial update-value A, the maximum step size A, and the minimum
step size Ap;,. The values of these parameters are set to Ag = 0.001, A,.x = 10 and Ay,
= 10"®. The other parameters are considered as constants with values recommended by
authors.
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Fig. 2. (a) Relation to be learned by ANN; (b) Relation between the resulting error on testing
data ETE and value of testing to training error ratio 7TER.

The training process starts with initial values of synaptic weights chosen randomly
from a set of three values {-1; 0; 1}. The training continues by 500 iterations and the
resulting ANN’s configuration is stored. Such starting training is performed 50-times,
every time with new random initial values of synaptic weights. Among 50 resulting
configurations, the one with minimal average absolute error on training data is
chosen. For this ANN, the second phase of training is performed, starting from the
stored configuration and proceeding in new iterations. This phase is ended when one
of following criteria is fulfilled:
o total number of iterations exceeds 10,000;

ETR, . = ETR _ 4 0001, )
ETR,



where ETR, is average absolute error on training data in actual iteration k and ETR;_;
is the same error computed in previous iteration k-1. The second criterion is applied to
stop the training, when the convergence becomes too slow — the error on training data
almost is almost not changing. It indicates that some local extreme is located and no
other iterations are needed. When the training process is finished, the adaptivity
criteria are tested and eventually new hidden neuron is added and new training
process is launched. Adding of new hidden neuron leads to creation of new synaptic
weights. The following training process uses as a start point the resulting values of
existing synaptic weights from the previous training and random values for new
synaptic weights. This is repeated until the adaptivity criteria are fulfilled.

To establish an appropriate value of TTER, we have performed 100 independent
training processes with the adaptivity, but without the adaptivity condition (2). This
condition was applied on the obtained data post facto and the value of TTER was
varied from 1 to 100. The goal was to find the value of TTER, for which the resulting
error on training data ETE is minimal. The results of this study are plotted in Fig. 2(b)
and regarding them, the value TTER = 3.2 was chosen as optimal.

We were also interested, whether the sequential changes of synaptic weights have
some influence on the final error on testing data. We compared our results with other
computations, where the adaptivity is used to find an optimal architecture in the first
step and then, all synaptic weights are randomized and new training process is
launched to establish their values on a given fixed topology. In other words, all the
information about synaptic weighs obtained during the adaptation process is
forgotten. The resulting errors on testing data obtained for 100 independent
computations by both strategies are shown in Fig. 3(a) and one can see that the
information during the adaptation process can significantly decrease the resulting
error in ANN’s predictions.
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Fig. 3. (a) The error on testing data after adaptation and in case of training on the optimal fixed
topology; (b) The error on testing data after adaptation and in case of training on arbitrarily
chosen fixed topology.

The most common way for establishing the number of hidden units is the simplest
trial-and-error method. Having fixed number of training samples, we can use the rule
(1), which tells us that number of hidden units should be smaller than 33. To have an
idea about the results of an trial-and-error method in comparison with the results from
adaptivity, we have trained ANN’s with fixed topology for three different numbers of



hidden neurons: NH = 10, 20 and 30. The final error on testing data computed over
100 independent runs of training process is depicted in Fig. 3(b).

We should also note that the adaptivity criteria lead to a stochastic solution. Every
run of adaptivity process can terminate with a different optimal architecture. On the
particular problem studied here, the histogram in Fig. 4(a) was obtained for number of
hidden neurons over 100 runs of adaptation process.
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Fig. 4. (a) Histogram of number of hidden neurons over 100 runs of adaptation process; (b)

Bundle of stress-strain diagrams generate for training and testing of ANN

4  Application of ANN in parameters identification of microplane
model M4

Concrete is a heterogeneous material and therefore the simulation of its behaviour
encounters serious difficulties, both theoretical and numerical. The microplane model
M4 [1] is a fully three-dimensional material law that includes tensional and
compressive softening, damage of the material, different combinations of loading,
unloading and cyclic loading. It can describe the development of anisotropy within
the material. The major disadvantage of this model, however, is an enormous
computational cost associated with structural analysis and phenomenological material
parameters without clear physical interpretation. Therefore, a reliable procedure for
parameters identification is on demand. Some work on parameters estimation of
microplane model was already presented, e.g. in [7], [8]. Here, we would like to
present two possible applications of ANN in parameters identification of microplane
model and discuss their advantages and drawbacks.

Because of the limited space for this contribution, we focus on identification of
three parameters — Young’s modulus E, k; and ¢,y — which should be identified from
uniaxial compression test. When simulating uniaxial compression test, the model
output is a stress-strain diagram. Particularly, we simulate uniaxial compression of a
concrete cylinder with diameter equal to 15cm and height equal to 30cm. We
discretize the stress-strain diagram into 18 discrete points corresponding to fixed
values of strain and corresponding 18 values of stress oy, ..., G5 are considered as
model outputs. Because of high computational demands of each compression test
simulation, only 60 samples were generated for a training set and 10 samples for a
testing set. The resulting bundle of stress-strain diagram is shown in Fig. 4(b).



We start by the inverse mode of identification where ANN is supposed to
approximate the inverse relation between model outputs and model parameters (here,
considered as inputs) listed above. Since the neural network will be trained to
approximate the inverse relation, 18 values of stress becomes ANN’s inputs. These 18
values are, however highly correlated and therefore, only several important values are
chosen among them to be used as inputs. The choice can be driven by Pearson
product-moment correlation coefficient, which can be computed for pairs consisting
of one stress value and one parameter. The computed values of correlation are
presented e.g. in [7]. To simplify more the training process, one ANN is trained with
adaptivity for each model parameter. The set of inputs and resulting architecture is
described in Table 1.

Table 1. Inverse mode — architecture of ANNS.

Parameter Inputs Architecture
E G1, O2, O3 3-5-1
ky 05, 518, Opeak, Opeak, Eprediction S5-4-1
C20 G6, 08, G12, 616, Epredict., k1,predict. 6-3-1

For a judgement of ANN performance we computed the average error on training
and testing data relative to the range between minimal and maximal values of each
model parameter used in training and testing sets. The resulting relative errors are
presented in Table 2. One can see that ANN can very precisely found the inverse
relation for prediction Young’s modulus and parameter k;, but it is unable to
approximate the inverse relation for parameter ¢y, with satisfactory precision. So the
application of ANN in the inverse mode is not always trivial.

Table 2. Inverse mode — resulting average relative error on training and testing data.

Parameter Av. Relative ETR [%] Av. Relative ETE [%]
E 0.18 0.34
ki 0.46 0.86
¢ 10.44 22.43

In the case of forward mode, the ANN can be used for the approximation of the
numerical model itself. In that case, however, there is a relatively small number of
ANN’s inputs — only four model parameters (Young’s modulus E, k; and cy
parameters must be accompanied also by Poison’s ratio, which cannot be identified
only from axial deformation, but has still an indispensable influence on its shape). But
there is a larger number of outputs corresponding to discrete points of stress-strain
diagram. In order to predict stress values in these points, there are two possibilities of
ANN implementation.

In the first scenario, one independent ANN can be trained to predict the stress in
one chosen point. Such ANN can be very simple, training process can be also fast and
easy, but we must train 18 different ANNs. Fig. 5(a) shows the minimal, average and



maximal error on training as well as on testing data for each ANN, which predicts the
stress value in one of 18 points.
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Fig. 5. (a) Relative errors in predictions of 18 simple ANNs; (b) Relative errors in prediction
of one complex ANN.

The resulting number of hidden neurons of each ANN was NH = [4; 7]. One can
see that average error on both the training and testing data of all ANNSs is smaller than
4% and worst cases have not exceeded the error of 8%. This precision we consider as
satisfactory. The only disadvantage of this approach remains the necessity of training
number of independent ANNs. If we would like to approximate the stress-strain
diagram in more discrete points for a better accuracy, the training process becomes
lengthier. Moreover we should recall that training of ANNSs is only a first phase of the
identification process which proceeds in optimization of model parameters in order to
fit the response of all ANNs to experimental data.

In the second scenario, only one ANN can be trained, if we add the value of strain
as the fifth input. 60 training diagram consisting of 18 points change to 1080 training
samples and 10 testing diagrams create 180 testing samples. The relation to be
approximated becomes of course more complicated, which is coherent with resulting
number of hidden neurons NH = 11. The resulting errors on training and testing data,
listed in Table 3, are expressed relatively to bounds for the output stress which is
quite large, because it embodies all stress values during the whole loading process.

Table 3. Forward mode — resulting relative error on training and testing data.

Error Minimal [%] Average [%] Maximal [%]
ETR 0.0010 0.7234 4.4428
ETE 0.0157 1.1017 10.7873

Nevertheless, one can be also interested in the accuracy of ANN’s prediction in
particular discrete points of the diagram and how the errors become large when
computed relatively to bounds of stresses corresponding to these particular points.
Such error distribution is depicted in Fig. 5(b). One can see that in the beginning of
the loading process where the values of stress are small, the relative error becomes
high because the stress bounds are very narrow. In the middle of the loading, the
stresses are high and the error relatively to them small, and at the end of the loading



the stress value again decreases and the relative error increases. Nevertheless, the
average relative error exceeds 5% only in the first point of diagram and its
satisfactory small in the rest. When comparing to first scenario of forward mode, the
errors are in general higher, but the usage of one ANN is of course simpler.

5 Conclusions

In the presented contribution, we focus on application of artificial neural networks in
parameters identification. An easy implementation of feedforward multi-layer neural
network is complicated by non-trivial choice of ANN’s architecture, especially the
number of neurons in hidden layer. Here, we propose a simple algorithm for an
automatic determination of hidden neurons. Moreover, results in Fig. 3(a) shows that
the complete process of sequential training accompanied by adaptivity of hidden layer
leads to better results than the simple training of well chosen architecture.

The second part of the paper concerns the application of the resulting algorithm
for ANN training to parameters identification of microplane model m4. Three
different scenarios are demonstrated and their particular advantages and drawbacks
are discussed throughout the paper in very detail.
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