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ABSTRACT 

Timber is one of the most frequently used building materials both in ancient and modern 

engineering constructions. Recently, the use of timber structures has increased in the construction 

industry due to the advantages of environmentally friendly nature of timber and low handling costs. 

Nevertheless, the complexity of timber structure causes difficulties in adequate description of 

timber behaviour by means of mathematical models.  

This thesis provides a summary of typical wood behavior and wood characteristics and an overview 

of current timber models together with a brief discussion on their applicability to a model developed 

in this work. The core of the thesis is a two-dimensional homogeneous constitutive model of timber 

fracturing under tensile and shear loads that was implemented in a MATLAB
®
 computer code and 

verified. The model performance was demonstrated for various load cases with isotropic and 

orthotropic material properties and also for an unloading/reloading cycle. 

In the proposed constitutive model, we idealize timber as a quasi-brittle material. Thus, we consider 

the material as a continuum with discontinuities (cracks). The continuous part is characterized by 

elastic orthotropic stress-strain law while traction-separation law describes the behavior of the 

discontinuities (cracks). Fixed smeared crack model is used to represent the fracture. Prior to 

cracking, wood obeys the rules of orthotropic elasticity. The proposed model considers only one 

initiated crack in material at the same time and small deformations (lower than ). 

A crack is initiated if failure criterion is fulfilled. Whether a crack forms across (crack type 1) or 

along the grain (crack type CT2) is decided based on treshold angle between the grain direction 

and the principal stress direction. This angle is considered as a material parameter. Crack across 

the grain is perpendicular to the principal stress direction while the crack along the grain keeps 

parallel to the fibers irrespective of the principal stress direction. Consequently, at the crack 

initiation state, the crack type CT1 is exposed only to normal traction while the crack type CT2 can 

be exposed both to normal and tangential traction. After crack initiation, as the fixed crack model is 

used, the direction of the crack (CT1 or CT2) is freezed and since the principal stress axes can 

rotate, both normal and shear tractions may subsequently arise on the crack. 

Traction-separation law defining the behavior of the initiated crack is softening in normal direction 

to the crack ( ). In tangential direction, traction-separation law ) is proposed using 

an arctangential function that fulfills the following assumptions: (i) the maximal value of shear 

traction  never exceeds shear strength  ( ), (ii) the function of ) can take the 

value of  at the crack initiation state. Thus, traction separation law in both local directions 

( , ) ensures a smooth transition from the stress state on the failure surface to the proposed 

cracking cohesive relationship. Traction-separation law is limited in both local directions by critical 

crack opening ( ).  

On account of the developed model performance demonstrated for various load cases, the model 

is consistent with expected timber behavior.  

 

 

Keywords: timber, 2D constitutive model, orthotropic elasticity, orthotropic fracture criterion, fixed 

smeared crack model, traction-separation law, shear retention function, unloading/reloading 
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ABSTRAKT 

Dřevo je jeden z nejpoužívanějších konstrukčních materiálů historických i moderních budov. V 

posledních letech je dřevo více a více používáno ve stavebnictví díky jeho výhodným vlastnostem, 

které nezatěžují životní prostředí, a nízkým nákladům. Nicméně složitá struktura dřeva komplikuje 

popis jeho chování pomocí matematických modelů. 

Tato diplomová práce shrnuje typické chování dřeva a jeho charakteristiky. Dále poskytuje přehled 

současných modelů dřeva spolu s krátkým zhodnocením jejich použitelnosti pro model vyvinutý v 

této práci. Jádro diplomové práce představuje dvourozměrný homogenní konstitutivní model 

porušení dřeva trhlinami pro zatížení tahem a smykem, který byl implementován v počítačovém 

kódu MATLAB
®
 a verifikován. Chování modelu bylo demonstrováno na několika zatěžovacích 

stavech za použití izotropních a ortotropních materiálových vlastností, a také na odtěžovacím 

cyklu. 

V navrženém konstitutivním modelu dřevo idealizujeme jako kvazi křehký materiál, který 

považujeme za kontinuum obsahující diskontinuity (trhliny). Spojitá část materiálu (kontinuum) je 

charakterizována elastickým ortotropním vztahem mezi napětím a deformací, zatímco zákon 

koheze popisuje chování diskontinuit (trhlin). Model fixované rozetřené trhliny je použit pro popis 

trhliny. Předpokládáme, že před vznikem trhliny se dřevo chová ortotrpně elasticky. Navržený 

model uvažuje existenci maximálně jedné trhliny a malé deformace (menší než ) . 

Trhlina se vytvoří, pokud je splněna podmínka porušení. Zda se vytvoří trhlina přes vlákna (typ 

trhliny CT1) či podél vláken (typ trhliny CT2) závisí na mezním úhlu mezi podélnou orientací vláken 

a směrem hlavního napětí. Tento úhel má roli materiálového parametru. Trhlina přes vlákna (CT1) 

je vždy kolmá na směr hlavního napětí, zatímco v případě trhliny podél vláken (CT2) je její směr 

vždy s vlákny bez ohledu na směr hlavního napětí. Z toho plyne, že při vzniku trhliny je trhlina CT1 

zatížena pouze normálovou složkou vektoru napětí, zatímco trhlina CT2 může být namáhána jak 

normálovou tak tečnou složkou vektoru napětí. Po vytvoření trhliny je směr trhliny (CT1 nebo CT2) 

zafixován, což je hlavní předpoklad použitého modelu fixované trhliny, a jelikož osy hlavního napětí 

mohou rotovat, trhlina může být vystavena normálové i tangenciální složce vektoru napětí.   

Zákon koheze definující chování vzniklé trhliny je změkčujícího charakteru pro normálový směr 

vzhledem k trhlině ( ). Pro tečný směr je trakční separační zákon ) nově navržen 

pomocí arcustangenciální funkce, která splňuje následující předpoklady: (i) maximální hodnota  

nikdy nepřesáhne smykovou pevnost  ( ), (ii) funkce ) může nabývat hodnot 

 v okamžiku vzniku trhliny. Tímto zákon koheze zajišťuje hladký přechod v obou 

lokálních směrech mezi stavem napětí na ploše porušení a navrženým kohezním vztahem pro 

trhlinu. Zákon koheze je omezen hodnotou kritického otevření trhliny ( ) v obou lokálních 

směrech. 

Vzhledem k chování modelu, které bylo demonstrováno na několika zatěžovacích případech, je 

navržený model konzistentní s očekávaným chováním dřeva. 

 

 

Klíčová slova: dřevo, 2D konstitutivní model, ortotropní elasticita, ortotropní kritérium porušení, 

model fiktivní rozetřené trhliny, zákon koheze, funkce retence smykové tuhosti, 

odtěžování/přitěžování 
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1. Introduction 

1.1 Motivation 

Timber is one of the most frequently used building materials in both ancient and modern 

engineering constructions. Recently, the use of timber structures has increased in the construction 

industry due to the advantages such as environmentally friendly nature of timber and low handling 

costs.  

Nevertheless, there is still a gap between understanding of timber behavior from micro to macro 

level and adequate timber models. Timber behavior at micro level ought to be integrated with the 

knowledge of its behavior on different scales, especially those that have a dominant effect on its 

structural performance. 

1.2 Objectives 

This thesis has the following objectives:  

 to summarize typical wood behavior and characteristics describing it, 

 to make an overview of current models of timber, 

 to develop a general constitutive model of timber fracturing under tensile and shear loads 

and implement it in MATLAB
®
 software, to verify the model and to demonstrate and 

discuss the performance of the model by analyzing the response of spruce under complex 

loading paths.  

1.3 Organization of the thesis  

The thesis is organized in 6 chapters as follows: 

 Chapter 1: Introduction, 

 Chapter 2: Wood properties, 

 Chapter 3: Overview of current models of timber, 

 Chapter 4: Constitutive model for timber under tension and shear, 

 Chapter 5: Verification and results, 

 Chapter 6: Conclusion. 

In chapter 1, the main challenges regarding the modeling of timber are briefly described. Then, the 

objectives and organization of the thesis are outlined. Chapter 2 gives an overview of the typical 

structural, physical, and mechanical wood properties. Chapter 3 provides an overview of up to date 

models of timber. Chapter 4 represents the core of the thesis. It describes the theory behind the 

proposed constitutive model of timber, its application and input data. Chapter 5 concerns 

verification of the constitutive model developed in MATLAB
®
 software and discussion of obtained 

results for different load cases. Chapter 6 summarizes the important ideas and results of this thesis 

together with suggestions for future work.  
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2. Wood properties 

Wood is a complex biological structure composed of many chemistries and cell types that all 

together ensure conduction of water from the roots to leaves, mechanical support of the plant body 

and storage of biochemicals. Wood properties can be of physical, mechanical, chemical, biological 

or technological essence. This chapter describes basic principles of timber behavior. The following 

subchapters discuss macroscopic and microscopic structure of wood, density and specific gravity, 

influence of moisture, mechanical properties and natural defects affecting mechanical properties of 

wood.    

2.1 Macroscopic description of a tree trunk section 

Main features of timber (milled from a tree trunk) can be observed in Figure 1. Main parts of a trunk 

from the outside of the tree to the inside are outer bark, inner bark, vascular cambium, sapwood, 

heartwood, juvenile wood and the pith. These parts are briefly described in the following 

paragraphs:  

 The outer layer of a trunk is a bark, which protects the tree from fire, injury or temperature. 

The inner layers of the bark transport nutrients from leaves to growth parts. (Kuklík, 2008) 

 Wood cells grow in a cambium. New wood cells grow towards the interior and new bark 

cells grow towards the exterior of the cambium. (Kuklík, 2008) 

 New cells of upward flow of sap (water and nutrients) from the roots to the crown are 

known as sapwood. (Kuklík, 2008) 

 Heartwood cells in the inner part of the stem do not grow anymore and have the role of 

receptacles of waste products (extractives). Heartwood is darker in color than sapwood 

due to the incrustation with organic extractives. Thank to these chemicals, heartwood is 

more resistant to decay and wood boring insects. Heartwood formation results in reduction 

in moisture content. (Kuklík, 2008) 

 Juvenile wood is the wood of the first 5 – 20 growth rings and thus it is a very early wood. It 

has different physical and anatomical properties than that of mature wood. The differences 

consist in fibril angle, cell length, specific gravity, percentage of latewood, cell wall 

thickness and lumen diameter. It tends to be inferior in density and cell structure and 

exhibits much greater longitudinal shrinkage than mature wood. (Kuklík, 2008) 

 Finally, the very center of the trunk is a pith. This part is typically of a dark color and 

represents the original twig of a young tree. (Kuklík, 2008)  
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Figure 1 - Cross section of a tree trunk (Kuklík, 2008) 

 

Collections of timber cells produced together over a discrete time interval are known as growth 

increments (growth rings). Cells formed at the beginning of the growth increment are called 

earlywood cells. Cells formed in the latter portion of the growth increment are called latewood cells. 

(Wiedenhoeft, 2010) 

2.2 Microscopic structure of wood 

The fundamental differences between woods are founded on the types, sizes, proportions, pits, 

and arrangements of different wood cells. These fine structural details can affect the use of a wood. 

This subchapter describes wood cells structure and function with regard to its differences between 

hardwood and softwood. 

2.2.1 Wood cells 

Wood is composed of discrete cells connected and interconnected in an intricate and predictable 

fashion to form an integrated continuous system from root to twig. The cells of wood are usually 

many times longer than wide and are oriented in two separate systems: the axial system (long axes 

running up and down the trunk) and the radial system (elongated perpendicularly to the long axis of 

the organ and are oriented from the pith to the bark). The axial system provides the long-distance 

water movement and the bulk of the mechanical strength of the tree. The radial system provides 

lateral transport for biochemicals and an important fraction of the storage function. (Wiedenhoeft, 

2010) 

In most cells in wood there are two domains; the cell wall and the lumen. The lumen is a critical 

component of many cells in the context of the amount of space available for water conduction or in 

the context of a ratio between the width of the lumen and the thickness of the cell wall. The lumen 

has no structure as it is the void space in the interior of the cell. (Wiedenhoeft, 2010) 

Cell walls in wood give wood the majority of its properties. The cell wall itself is a highly regular 

structure. The cell wall consists of three main regions: the middle lamella, the primary wall, and the 

secondary wall (Figure 2). In each region, the cell wall has three major components: cellulose 

microfibrils, hemicelluloses, and a matrix or encrusting material. Generally, cellulose is a long 

string-like molecule with high tensile strength, microfibrils are collections of cellulose molecules into 

even longer, stronger thread-like macromolecules. Lignin is a brittle matrix material. The 

hemicelluloses help link the lignin and cellulose into a unified whole in each layer of the cell wall. 

(Wiedenhoeft, 2010) 
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Figure 2 - Cut-away drawing of the cell wall: middle lamella (ML), primary wall with random orientation 
of the cellulose microfibrils (P), the secondary wall composed of its three layers with illustration of 

their relative thickness and the microfibril angle: (S1), (S2), and (S3); The lower portion of the 

illustration shows bordered pits in both sectional and face view (Wiedenhoeft, 2010) 

 

The primary wall (Figure 2) is characterized by a largely random orientation of cellulose microfibrils 

where the microfibril angle ranges from 0° to 90° relative to the long axis of the cell. The secondary 

cell wall is composed of three layers. The secondary cell wall layer S1 is a thin layer and is 

characterized by a large microfibril angle. The angle between the mean microfibril direction and the 

long axis of the cell is large (50° to 70°).The next wall layer S2 the most important cell wall layer in 

determining the wood properties at a macroscopic level. This is the thickest secondary cell wall 

layer characterized by a lower lignin percentage and a low microfibril angle (5° to 30°). The S3 

layer is relatively thin. The microfibril angle of this layer is >70°. This layer has the lowest 

percentage of lignin of any of the secondary wall layers. (Wiedenhoeft, 2010) 

Communication and transport between the wood cells is provided by pits. Pits are thin areas in the 

cell walls (cell wall modification) between two cells having three domains: the pit membrane, the pit 

aperture and the pit chamber (Figure 2). (Wiedenhoeft, 2010) 

2.2.2  Softwood and hardwood  

Commercial timber is obtained from two categories of plants, hardwoods and softwoods. To define 

them botanically, softwoods come from gymnosperms (mostly conifers) and hardwoods come from 

angiosperms (flowering plants). Softwoods are generally needle-leaved evergreen trees such as 

pine and spruce, whereas hardwoods are typically broadleaf deciduous trees such as maple, birch 

and oak. (Wiedenhoeft, 2010) 

Main distinction between these two groups consists in their component cells (Figure 3). Softwoods 

have a simpler basic structure that comprises only of two cell types with relatively little variation in 

structure within these cell types. Hardwoods have greater structural complexity consisting in a 

greater number of basic cell types and a far greater variability within the cell types. Hardwoods 

have characteristic type of cell called a vessel element (pore) whereas softwoods lack these. 

(Wiedenhoeft, 2010) 
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(a) (b) (c) (d) 

Figure 3 – The general form of a generic softwood tree (a), transverse section of a typical softwood 
with resin canals as round white spaces (b), the general form of a generic hardwood tree (c), 

transverse section of a typical hardwood with many vessels and pores as round white structures (d) 
(Wiedenhoeft, 2010) 

 

2.2.2.1 Softwood 

Softwood structure is relatively simple (Figure 4). The axial (vertical) system is composed mostly of 

axial tracheids. The radial (horizontal) system is the rays, which are composed mostly of ray 

parenchyma cells. Another cell types that can be present in softwood are axial parenchyma and 

resin canal complex. (Wiedenhoeft, 2010) 

 

 

Figure 4 – Structure of softwood, magnified 250 times (Kuklík, 2008) 

 

Tracheids are long cells being the major component of softwoods, making up over 90% of the 

volume of the wood. They serve both the conductive and mechanical needs. Within a growth ring, 

they are thin-walled in the earlywood and thicker-walled in the latewood. Water flows between 

tracheids by passing through circular bordered pits that are concentrated in the ends of the cells. 

Pit membrane ensures resistance to flow. Tracheids are less efficient conduits compared with the 

conducting cells of hardwoods due to the resistance of the pit membrane and the narrow diameter 

of the lumina. (Wiedenhoeft, 2010) 

In evolving tracheids from earlywood to latewood, the cell wall becomes thicker, while the cell 

diameter becomes smaller. The difference in growth may result in a ratio latewood density to early 

wood density of 3:1. (Kuklík, 2008) 
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Another cell type that is sometimes present in softwoods is axial parenchyma. Axial parenchyma 

cells are vertically oriented and similar in size and shape to ray parenchyma cells. Resin canal 

complex is present radially or axially in in species of pine, spruce, Douglas-fir, and larch. These 

structures are voids in the wood. Specialized parenchyma cells producing resin surround resin 

canals. (Wiedenhoeft, 2010) 

Rays are formed by ray parenchyma cells (brick-shaped cells). They function primarily in synthesis, 

storage, and lateral transport of biochemicals and water. (Wiedenhoeft, 2010) 

The cell arrangement in radial and tangential direction is different. Cells in radial direction are 

assembled in straight rows while in tangential direction they are disordered (Figure 5). This causes 

that tangential stiffness is lower than the radial one. Also, ray cells aligned in the radial direction 

reinforce the structure radially and increase the radial stiffness. (Wiedenhoeft, 2010) 

 

 

Figure 5 - Cell structure arrangement in the radial and tangential directions (Wiedenhoeft, 2010) 

   

2.2.2.2 Hardwood 

The structure of a typical hardwood (Figure 6) is more complicated than that of softwood. The axial 

system is composed of various fibrous elements, vessel elements, and axial parenchyma. As in 

softwoods, rays (composed of ray parenchyma) comprise the radial system, but hardwoods show 

greater variety in cell sizes and shapes. (Kuklík, 2008) 
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Figure 6 – Structure of hardwood, magnified 250 times (Kuklík, 2008) 

 

Vessel elements (forming vessels) are the specialized water-conducting cells of hardwoods. 

Vessels are much shorter than tracheids and can be arranged in various patterns. If all the vessels 

are the same size and more or less scattered throughout the growth ring, the wood is diffuse-

porous. If the earlywood vessels are much larger than the latewood vessels, the wood is ring-

porous. (Wiedenhoeft, 2010) 

Hardwoods have perforated tracheary elements (vessels elements) for water conduction, whereas 

softwoods have imperforate tracheary elements (tracheids). Hardwood fibers have thicker cell walls 

and smaller lumina than softwood tracheids. Differences in wall thickness and lumen diameters 

between earlywood and latewood are not as distinct as in softwoods. (Kuklík, 2008) 

2.3 Density and specific gravity 

This subchapter recalls the definition of density and specific gravity and shows the change in 

density across a growth ring. 

2.3.1 Density 

Density is one of the most important physical characteristics of wood. Majority of timber mechanical 

properties are correlated to it. 

Since moisture adds to the mass and causes the volume to swell, density is dependent on 

moisture. Density    [kg/m
3
] is expressed as mass of wood divided by the volume of the specimen 

at a given moisture content   [%]: 

  
   

  

  
 

           

             
   

       

         
  

 

[1] 

where    and    are the mass and volume at zero moisture content (MC).    is oven-dry density 

(at zero MC).    is the coefficient of volumetric swelling expressed by units of percentage swelling 

per percentage increase of MC. In wood science, oven-dry density    and density at 12% MC     

are most frequently used. (Kuklík, 2008) 

In all woods, density is related to wood structure, such as the proportion of the volume of cell wall 

material to the volume of lumina of those cells, proportion of earlywood and latewood, amount of 

void space occupied by vessels, etc. (Wiedenhoeft, 2010) 
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2.3.2 Density within growth rings 

As each growth ring is composed of three main regions (earlywood, transitionwood and latewood), 

density changes across it together with its mechanical properties. Density variation for a growth 

ring of spruce is shown in Figure 7. Function of density variation is linear for earlywood and 

latewood zone and parabolic for the transitionwood zone. (Persson, 1997) 

 

 
 

(a) (b) 

Figure 7 – A growth ring of spruce: cell structure (a), density distribution (b) (Persson, 1997) 

 

2.3.3 Specific gravity 

Specific gravity   is defined as the ratio of the density of a substance to the density of water        

at a specified reference temperature (typically 4 °C).        is 1 g/cm
3
 (or 1000 kg/m

3
). Therefore, a 

material with a density of 5 g/cm
3
 has a specific gravity of 5. (Glass and Zelinka, 2010) 

2.4 Moisture in wood 

Wood is a hygroscopic material, which means that it takes on moisture from the surrounding 

environment. Moisture exchange between wood and air depends on the relative humidity, 

temperature of the air and the current amount of water in the wood. This subchapter discusses the 

macroscopic physical properties of wood related to moisture content (MC) such as fiber saturation 

point, maximum moisture content, equilibrium moisture content, sorption hysteresis, and 

dimensional instability.  

2.4.1 Moisture content (MC) 

Many physical and mechanical properties of wood depend upon the MC of wood. MC is usually 

expressed as a percentage and can be calculated from 

 
   

      

     

       [2] 

where        is the mass of water in wood and       is the mass of the ovendry wood. Green 

wood is usually defined as freshly sawn wood where the cell walls are completely saturated with 

water and additional water resides in the lumina. The moisture content of green wood can range 

from about 30% to more than 200%. In green softwoods, the moisture content of sapwood is 

usually greater than that of heartwood. For example for the black spruce the average MC of 

sapwood is 113% and the average MC of heartwood is 52%. (Glass and Zelinka, 2010) 
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2.4.2 Fiber saturation point (MCfs) 

Moisture can exist in wood as free or bound water. Free water is the form of liquid or vapor in cell 

lumina and cavities while bound water is held by intermolecular attraction within cell walls. The 

state when the cell walls are completely saturated (bound water) but no water exists in cell lumina 

is known as fiber saturation point (    ). The fiber saturation point averages about 30% moisture 

content depending on individual species and individual pieces of wood. (Glass and Zelinka, 2010) 

2.4.3 Maximum moisture content (MCmax) 

The maximum moisture content is a state in wood at which both cell lumina and cell walls are 

completely saturated with water. The major determinant of       is basic specific gravity    which 

is based on oven-dry mass and green volume. As    increases, the volume of the lumina 

decreases (together with room available for free water) because the specific gravity of wood cell 

walls is constant among species.       for any basic specific gravity can be estimated according 

to Glass and Zelinka (2010) from 

                           [3] 

where the specific gravity of wood cell walls is taken as 1.54. Maximum possible moisture content 

ranges from 267% (for        ) to 44% (for        ) and it is seldom attained in living trees. 

(Glass and Zelinka, 2010) 

2.4.4 Equilibrium moisture content (EMC) 

Equilibrium moisture content is MC at which the wood is neither gaining nor losing moisture. EMC 

depends on both relative humidity and temperature. The relationship among them is shown in 

Figure 8. (Glass and Zelinka, 2010) 

 

 

Figure 8 – Equilibrium moisture content of wood (labelled contours) as a function of relative humidity 
and temperature (Glass and Zelinka, 2010) 

  

For most practical purposes, EMC applicable to wood of any species can be calculated according 

to Glass and Zelinka (2010) from the following equation: 

 
       

    

 
*

  

    
 

           
   

            
   

+ [4] 
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where   is relative humidity (decimal) and the parameters  ,  ,   , and    depend on temperature 

  in °C: 

                      [5] 

                                [6] 

                             [7] 

                            [8] 

2.4.5 Sorption hysteresis 

The relationship between EMC and relative humidity at constant temperature is known as a 

sorption isotherm. Sorption hysteresis referring to the influence of wood history upon its EMC is 

shown in Figure 9 by means of moisture content – relative humidity relationship under adsorption 

and various desorption conditions. Desorption isotherm is measured on initially wet wood that is 

brought to equilibrium by decreasing relative humidity (RH). An adsorption (resorption) isotherm is 

measured from the dry state by increasing RH values. Wood dried from the initial green condition 

below the fiber saturation point (initial desorption) shows greater EMC than in subsequent 

desorption isotherms. A midway between adsorption and desorption is represented by oscillating 

vapour pressure. (Glass and Zelinka, 2010) 

 

 

Figure 9 - Moisture content–relative humidity relationship for wood under adsorption and various 
desorption conditions (Glass and Zelinka, 2010) 

 

2.4.6 Dimensional instability 

Wood is dimensionally instable when moisture content is lower than the fiber saturation point 

(    ). This is because volume of the cell wall depends on the amount of bound water. Below MCfs 

wood swells as it gains moisture or shrinks as it loses moisture. Shrinking and swelling usually 

result in warping, checking and splitting of the wood. (Glass and Zelinka, 2010) 

Since wood is an anisotropic material, it shrinks and swells most in tangential direction, about half 

as much in radial direction and only slightly in longitudinal direction. Radial and tangential 

shrinkage can distort the shape of wood pieces because of the difference in shrinkage and the 

curvature of annual rings (Figure 10). (Glass and Zelinka, 2010) 
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Figure 10 - Shrinkage and distortion of flat, square, and round pieces as affected by direction of 
growth rings (Glass and Zelinka, 2010) 

 

Shrinkage from green to oven-dry MC (expressed as a percentage of the green dimension) for 

black spruce is in radial direction 4.1% and in tangential direction 6.8%.  Average values for 

shrinkage are between 0.1% and 0.2% for most species of wood. Reaction wood (compression 

wood in softwoods or tension wood in hardwoods) and juvenile wood of some species tend to 

shrink excessively in longitudinal direction. They can shrink 2% from green to oven-dry. (Glass and 

Zelinka, 2010) 

Moisture content-shrinkage relationship can be a linear function for a sufficiently small piece of 

wood (without moisture gradient) where shrinkage begins at about the fiber saturation point and 

continues linearly until the wood is dry. However, for a large piece of wood is typical a moisture 

gradient (the surface of wood dries first) and it begins to shrink when the surface MC drops below 

the fiber saturation point (in spite of the fact that the interior can still be wet and does not shrink). 

That is why moisture content - shrinkage relationship is not linear (Figure 11). (Glass and 

Zelinka,  2010) 

 

 

Figure 11 – Typical moisture content – shrinkage curve (Glass and Zelinka, 2010) 

 

Changes in dimensions tend to be linear within the interval (5% – 20%)MC. For this range, change 

in dimension can be calculated from 

 
     [  

 

   
          ] [9] 

where    and    are the dimensions at moisture content    and    respectively.   is the coefficient 

of swelling (positive value) or shrinkage (negative value). (Glass and Zelinka, 2010) 

The coefficient of volumetric movement    can be considered equal to the value of density times 

10
-3

 (the volume of timber of density equal to 400 kg/m
3
 swells 0.4% for each 1% increase in 

moisture content. As the coefficient of longitudinal movement    is usually negligible, the coefficient 
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of transverse movement     is equal to      . For most species, such as spruce, pine, fir, larch, 

poplar and oak, engineering values of   can be taken as         and          where is 

considered as percentage movement for 1% change of moisture content. (Kuklík, 2008) 

2.5 Mechanical properties of wood 

This chapter shortly describes the most important mechanical properties of wood, such as elastic 

orthotropic properties (modulus of elasticity MoE, Poisson’s ratio, shear modulus), non-elastic 

properties (failure types, stress-strain curves, fracture), fracture toughness and fracture energy, 

and strength properties.  

2.5.1 Elastic orthotropic properties 

Wood as an orthotropic material has unique and independent mechanical properties in the 

directions of three mutually perpendicular axes: longitudinal (L, parallel to fiber), radial (R, normal 

to the growth rings in radial direction), and tangential (T, perpendicular to grain and tangent to the 

growth rings), see Figure 12. (Kretschmann, 2010) 

 

 

Figure 12 - Three principal axes (L – longitudinal, R – radial, T – tangential) of wood with respect to 
grain direction and growth rings (Kretschmann, 2010) 

 

Elasticity implies that deformations produced by low stress are completely recoverable after loads 

are removed and the stress-strain relation is considered to be linear. When loaded to higher stress 

levels, plastic deformation or failure occurs.  

Orthotropic material of wood in elastic region possessing three principal directions (L, R, T) in 3D 

can be described by Hooke’s generalized law as follows: 
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[10] 

or shorter as 
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      [11] 

or as the inverse relationship 

               
[12] 

where   is the elastic strain vector,   is the stress vector and   is the material stiffness matrix,   is 

the compliance matrix.   ,    and    are the moduli of elasticity in longitudinal, radial and 

tangential direction, respectively. Parameters    ,    , and     are the shear moduli in the 

respective orthotropic planes. Parameters    ,    ,    ,    ,     and     are Poisson’s ratios. 

Compliance matrix is symmetric and thus 

    

  

 
   

  

    
   

  

 
   

  

    
   

  

 
   

  

 [13] 

Finally, there are nine independent constants that are necessary for description of elastic behavior 

of wood (three moduli of elasticity  , three shear moduli  , and three Poisson’s ratios  ).  

Elastic moduli values depend on species, growth conditions, moisture content or temperature. 

Nevertheless, they can be generally related according to the following ratios (Bodig and Jayne, 

1982): 

                    
                      

            
 

[14] 

The three moduli of elasticity (  ,   ,   ) are usually obtained from compression tests. However, 

data for    and    are not extensive.  

Poisson’s ratio (   ,    ,    ,    ,    ,    ) represents ratio of the transverse to axial strain with 

respect to the load direction. The first letter of the subscript refers to direction of applied load and 

the second letter to direction of lateral deformation. 

Two of the Poisson’s ratios,     and    , are very small and are less precisely determined 

compared to other Poisson’s ratios. Poisson’s ratios vary within and between species and are 

influenced by moisture content and specific gravity. 

The shear modulus (modulus of rigidity) relates the shear stress to engineering shear strain. The 

three shear moduli (   ,    ,    ) are the elastic constants in the respective planes. For example, 

    is the shear modulus based on shear strain in the LR plane and shear stress in the same 

plane. The shear moduli vary within and between species and with moisture content and specific 

gravity. (Kretschmann, 2010) 

2.5.2 Non-elastic properties 

Wood behaves in a nonlinear way when loaded above the limit of proportionality (elastic region). 

Also, irreversible changes occur in the material. Similarly to elastic properties, non-elastic 

properties are influenced by density, moisture content, temperature, and duration of loading.  

2.5.2.1 Failure types 

Three basic failure patterns can be distinguished for compression perpendicular to grain according 

to growth rings orientation and direction of load: crushing of earlywood, buckling of growth rings 

and shear failure (Figure 13). (Gibson and Ashby, 1988) 
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(a) (b) (c) 

Figure 13 - Failure types in compression perpendicular to the grain: crushing of earlywood under 
radial loading (a), buckling of growth rings under tangential loading (b), shear failure under loading at 

an angle to the growth rings (c) (Gibson and Ashby, 1988) 

 

Failure modes that occur during a compression test in longitudinal direction are crushing (the plane 

of rupture is approximately horizontal), wedge split, shearing (the plane rupture makes an angle of 

more than 45° with the top of the specimen), splitting (usually occurs in specimens having internal 

defects prior to test), compression and shearing parallel to grain (usually occurs in cross-grained 

pieces) and broomig or end-rolling (usually associated to an excessive MC at the ends of the 

specimen or improper cutting of the specimen), see Figure 14. The failure modes of splitting, 

compression and shearing parallel to grain and broomig or end-rolling are the basis for excluding 

the specimen from the set of measured results.  

 

  
    

(a) (b) (c) (d) (e) (f) 

Figure 14 – Failure types in compression parallel to grain: crushing (a), wedge split (b), shearing (c), 
splitting (d), compression and shearing parallel to grain (e), brooming (end-rolling) (f) (ASTM D143-94)  

 

Tensile loading perpendicular to the grain gives three failure patterns (similarly to compression 

perpendicular to grain, Figure 13):  

 tensile fracture in earlywood (radial loading), 

 failure in wood rays (tangential loading), 

 shear failure along growth ring (loading at an angle to the growth rings). 

Crack propagation for opening mode (I) can occur in two ways: cell-wall breaking (crack 

propagates across the cell wall) and cell-wall peeling (crack propagates between two adjacent 

cells), see Figure 15. (Gibson and Ashby, 1988) 
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(a) (b) 

Figure 15 – Crack propagation for opening mode (I) loading: cell-wall breaking (a), cell-wall peeling (b) 
(Gibson and Ashby, 1988) 

 

For tension parallel to grain, four failure types may occur, namely shear, a combination of shear 

and tension, pure tension, and splinter mode (Figure 16). (Feio, 2005) 

 

    

(a) (b) (c) (d) 

   Figure 16 - Failure types in tension parallel to the grain: splinter (a), shear and tension failure (b), 
shear failure (c) and pure tension failure (d) (Feio, 2005) 

 

2.5.2.2 Stress-strain curves 

Typical stress-strain curves for dry wood loaded in longitudinal (L), radial (R) and tangential (T) 

direction in compression and in tension in L direction are presented in Figure 17. (Holmberg 

et  al.,1998) 
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Figure 17 – Typical stress-strain curves for wood loaded in compression in L, R and T direction and 
for tension in L direction (Holmberg et al.,1998) 

 

Development of the stress-strain curves in L, T and R (longitudinal, transversal and radial) 

compression show an initial elastic region, followed by a plateau region and a final region of rapidly 

increasing stress. The yield stresses for T and R compression are about equal and are 

considerably lower than L compression. R compression is characterized by a small drop in stress 

after the end of elastic region and it has slightly irregular plateau compared to the smooth plateau 

of T compression and serrated plateau region of L compression. (Holmberg et al.,1998) 

2.5.2.3 Fracture 

In fracture mechanics, three general fracture modes are defined: symmetric opening perpendicular 

to the crack surface (I), forward shear mode (II) and transverse shear mode (III), see Figure 18. 

Modes (II) and (III) involve antisymmetric shear separations. (Kretschmann, 2010) 

 

 

Figure 18 - Failure modes in wood: opening mode (I), forward shear mode (II) and transverse shear 
mode (III) (Kretschmann, 2010) 

 

In wood, eight crack-propagation systems can be distinguished: RL, TL, LR+, LR-, TR+, TR-, LT, 

and RT. The first letter of the crack-propagation system denotes perpendicular direction to the 

crack plane and the second one refers to direction in which the crack propagates. The distinction 

between + and – direction arises because of the asymmetric structure of the growth rings, see 

Figure 19. For each of eight crack-propagation systems, fracture can occur in three modes and thus 

cracks in wood can arise in 24 different principal manners. (Kretschmann, 2010)  
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Figure 19 – Eight modes of possible crack propagation in wood (Gibson and Ashby, 1988) 

 

It is suggested that fracture toughness is either insensitive to moisture content or increases as the 

material dries (until maximum at MC of 6% - 15%). Fracture toughness then decreases with further 

drying. (Kretschmann, 2010) 

Mode I fracture characteristics of one softwood (spruce) and three hardwoods (alder, oak and ash) 

in the crack propagation systems RL and TL are presented in Reiterer et al. (2002). Wedge splitting 

test under loading perpendicular to grain was used (Figure 20). Testing arrangement is shown in 

Figure 21. 

 

 

Figure 20 – Wedge splitting test: specimen geometry and grain orientation (RL, TL) 

 

 

Figure 21 – Wedge splitting test: testing arrangement 
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The load-displacement curves for different crack propagation systems are presented in Figure 22. 

Spruce shows stable crack propagation until complete separation of the specimens. Hardwoods 

behave in a different manner: after macro-crack initiation at the maximum horizontal splitting force 

a sudden drop in the load–displacement curve occurs indicating unstable crack propagation. This 

drop is followed by crack arresting leading to another maximum. This is explained by the more 

brittle behavior of the hardwoods, which can be attributed to the fact that hardwood fibers are 

shorter than spruce fibers and energy dissipating processes (e.g. fiber bridging) are less effective. 

Also, less micro-cracks is formed during the crack initiation phase for the hardwoods which can be 

shown by means of acoustic emission measurements. 

 

  

(a) (b) 

Figure 22 – Typical load-displacement curves obtained by the wedge splitting test in the RL (a) and TL 
(b) systems (Reiterer et al., 2002) 

 

2.5.3 Fracture toughness and fracture energy 

The fracture mechanics approach has three important variables: applied stress, flaw size, and 

fracture toughness while traditional approach to structural design has two main variables: applied 

stress and yield or tensile strength. In the latter case, a material is assumed to be adequate if its 

strength is greater than the expected applied stress. The additional structural variable in fracture 

mechanics approach is flaw size and fracture toughness. They replace strength as the relevant 

material property. Fracture mechanics quantifies the critical combinations of the three variables. 

(Anderson, 2005) 

In fracture mechanics, fracture toughness is essentially a measure of the extent of plastic 

deformation associated with crack extension. Fracture toughness is measured by critical strain 

energy release rate    according to energy-balance approach or by critical stress intensity factor 

(SIF)    according to stress intensity approach. (Dinwoodie, 1981) 

In case linear elastic fracture mechanics (LEFM) is involved, critical strain energy release rate    is 

equal to fracture energy    (     ). Both variables are a material property that gives information 

about when a crack starts propagating. (Bostrom, 1992) 

The forthcoming subchapters describe material properties   ,   ,    and a few examples of current 

test methods available for their determination. 
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2.5.3.1 Critical strain energy release rate    (energy-balance approach) 

The energy approach assumes that crack extension (i.e. fracture) occurs when the energy 

available for crack growth is sufficient to overcome the resistance of the material. The material 

resistance may include the surface energy, plastic work, or other types of energy dissipation 

associated with crack propagation. This approach is based on energy release rate   which is 

defined as the rate of change in potential energy with the crack area for a linear elastic material. At 

the moment of fracture, energy release rate is equal to its critical value (    ) which is a measure 

of fracture toughness. (Anderson, 2005) 

For a crack of length    in an infinite plate (where width of the plate is >>   ) subjected to a remote 

tensile stress (Figure 23), the energy release rate is expressed by 

 
  

    

 
 [15] 

where   is modulus of elasticity,   is the remotely applied stress, and   is the half-crack length. If 

fracture occurs (    ), the Eq. [15] describes the critical combinations of stress and crack size for 

failure: 

 
   

   
   

 
 [16] 

The energy release rate   is the driving force for fracture while    is the material’s resistance to 

fracture. Fracture toughness    is independent of the size and geometry of the cracked body and 

thus a fracture toughness measurement on a laboratory specimen should be applicable to a 

structure. These assumptions are valid as long as the material behavior is predominantly linear 

elastic. (Anderson, 2005) 

 

 

Figure 23 - Through-thickness crack in an infinite plate (plate width is >>   ) subject to a remote 
tensile stress (Anderson, 2005) 

 

2.5.3.2 Critical stress intensity factor (SIF)    (stress intensity approach) 

Stress intensity approach examines the stress state near the tip of a sharp crack and defines 

critical stress intensity factor    that is a fracture toughness measure and it can be used for normal-

opening crack modes I and shear sliding modes II and III (   ,     ,      ). The text of this 

subchapter describes equations only for opening crack failure mode I. Figure 24 schematically 

shows an element near the tip of a crack in an elastic material, together with the in-plane stresses 
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on this element. Each stress component is proportional to stress intensity factor    for fracture 

mode I. If material fails locally at some critical combination of stress and strain, then fracture must 

occur at a critical stress intensity factor    . (Anderson, 2005) 

 

 

Figure 24 - Stresses near the tip of a crack in an elastic material (Anderson, 2005) 

 

For an infinite plate (Figure 23), the stress intensity factor is given by  

     √   [17] 

Failure occurs when        (where     is the driving force for fracture and     is a measure of 

material resistance.     is assumed to be a size-independent material property. If we compare Eq. 

[15] and Eq. [17], we can derive relation between   and    

 
  

  
 

 
 [18] 

This same relationship holds for    and    . Thus, the energy and stress-intensity approaches to 

fracture mechanics are essentially equivalent for linear elastic materials. (Anderson, 2005) 

2.5.3.3 Fracture energy    

Fracture energy [N/m] is an amount of energy required to form a unit area of a new crack in the 

material. For opening crack mode I      can be defined as the area under the stress-displacement 

curve       for the fracture process zone as follows 

 

     ∫   

       

 

    [19] 

where         is critical crack opening of the crack in normal direction to the crack [mm],    is actual 

crack opening of the crack in normal direction to the crack [mm] and    is the stress acting in 

normal direction at the crack. 

Similarly, fracture energy for pure shear mode II       can be defined as the area under the stress-

displacement curve       for the fracture process zone as follows 

 

      ∫   

       

 

    [20] 

where         is critical crack opening of the crack in tangential direction to the crack [mm],    is 

actual crack opening of the crack in tangential direction to the crack [mm] and    is the stress 

acting in tangential direction to the crack. (Bostrom, 1992) 
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2.5.3.4 Test methods for fracture toughness and fracture energy determination 

Most specimens for experimental determination of the most important fracture parameters were 

originally developed for metals (Bostrom, 1992). Several experimental methods that are nowadays 

used for determination of fracture toughness and energy in wood are as follows: 

 Double cantilever beam (DCB) test standardized for carbon fiber reinforced plastics 

(CFRP) in Japanese Industrial Standards (JIS) (JIS K7086-93, 1998) can be used for 

measurement of fracture toughness of timber. (Yoshihara and Kawamura, 2005) 

 Three point bending test (TPB) according to RILEM and CIB-W18 recommendations 

(Larsen and Gustafsson, 1989) is classically used for determination of fracture energy in 

tension perpendicular to grain. (Daudeville, 1999) 

 Testing methods based on the standard ASTM E399 (Plain-Strain Fracture Toughness of 

Metallic Materials) considers fracture mode I only. For the    test, a modification of the 

standard is proposed in Fonselius and Riipola (1992). 

 Fracture toughness in opening fracture mode I can be determined from displacement fields 

obtained from digital image correlation for about 400 data points within a 7x9 mm
2
 area in 

front of the tip in conjunction with orthotropic fracture theory. (Samarasinghe, 1999)  

2.5.4 Strength properties 

Most commonly measured strength (mechanical) properties for design include modulus of rupture 

in bending, maximum stress in compression parallel or perpendicular to grain, and shear strength 

parallel to grain. Additional measurements evaluate work to maximum load in bending, impact 

bending strength, tensile strength perpendicular to grain, and hardness. These characteristics are 

shortly described in the following text. 

 Modulus of rupture in bending reflects the maximum load-carrying capacity of a member in 

bending and is proportional to the maximum moment borne by the specimen. Modulus of 

rupture is valid only to the elastic limit. 

 Compressive strength parallel or perpendicular to grain represents maximum stress 

sustained by a specimen with respective orientation of grain.  

 Shear strength parallel to grain is the ability to resist internal slipping of one part upon 

another along the grain.  

 Work to maximum load in bending represents ability to absorb shock with some permanent 

deformation. It is a measure of the combined strength and toughness of wood under 

bending stresses. 

 Impact bending strength is measured in the impact bending test where a hammer of given 

weight is dropped upon a beam from successively increased heights until rupture occurs or 

the beam deflects 152 mm or more. The height of the maximum drop (that causes failure) 

is a comparative value that represents the ability of wood to absorb shocks that cause 

stresses beyond the proportional limit. 

 Tensile strength perpendicular to grain is the resistance of wood to forces acting across the 

grain that tend to split a member.  

 Hardness is generally defined as resistance to indentation using a modified Janka 

hardness test, measured by the load required to embed a 11.28-mm ball to one-half its 

diameter. (Kretschmann, 2010) 

Among less common properties measured in clear wood is ranged torsion, fracture toughness, 

rolling shear. Other properties involving time under load include creep and duration of load, fatigue 
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strength, and creep under mechanical stress and moisture variations (mechanosorptive effect). 

These properties are briefly defined in the following text. 

 Torsion strength is a resistance to twisting about a longitudinal axis. For solid wood 

members, torsional shear strength may be taken as shear strength parallel to grain. 

(Kretschmann, 2010)  

 Fracture toughness is treated in Chapter 2.5.3.  

 Rolling shear strength represents shear strength of wood where shearing force is in a 

longitudinal plane and is acting perpendicular to the grain. (Kretschmann, 2010) 

 Creep and duration of load describes time-dependent deformation of wood under load. If 

the load is sufficiently high and the duration of load is long, failure (creep–rupture) will 

eventually occur. The time required to reach rupture is commonly called duration of load. 

(Kretschmann, 2010) 

 Fatigue strength is resistance to failure under specific combinations of cyclic loading 

conditions: frequency and number of cycles, maximum stress, ratio of maximum to 

minimum stress, and other less-important factors. (Kretschmann, 2010)  

 Mechanosorptive effect is apparent under simultaneous mechanical stress and moisture 

sorption cycling as creep is increased by moisture variations. This phenomenon also 

shortens the time to failure of timber. (Kuklík, 2008) 

2.6 Natural defects affecting mechanical properties of wood 

Clear straight-grained wood is used for determining fundamental mechanical properties of timber. 

Nevertheless, wood vary in its mechanical properties due to the following natural characteristics 

(defects): reaction wood, cross grain, knots, pitch pockets, and certain types of cracks. These 

properties must be taken into account in assessing actual properties of wood products. 

2.6.1 Reaction wood 

A tree will form reaction wood when the woody organ (e.g. a trunk, a branch) is deflected from the 

vertical by more than one or two degrees. 

In softwoods, the reaction wood is formed on the underside of the leaning organ; this is called 

compression wood. In Figure 25a, we can observe that the pith is not in the center of the trunk with 

compression wood and the growth rings are much wider in the compression zone. In Figure 25b, 

there is a microscopic view of compression wood in softwood where the tracheids are typically 

thick-walled and round in outline. (Kretschmann, 2010) 

In hardwoods, the reaction wood forms on the top side of the leaning organ; this is referred to as 

tension wood. In Figure 25c is shown a cross-section of tension wood in hardwood where the pith is 

nearly centered, but the growth rings are wider in the tension wood zone. Figure 25d represents a 

microscopic view of tension wood fibers in hardwood showing prominent gelatinous layers (most 

pronounced across the top of the image). (Kretschmann, 2010) 
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(a) (b) (c) (d) 

Figure 25 - Views of reaction wood: macroscopic transverse section of compression wood in 

softwood (a); microscopic view of compression wood in softwood (b), macroscopic transverse section 

of tension wood in hardwood (c), microscopic view of tension wood fibers (d) (Kretschmann, 2010) 

 

Various features of juvenile wood and reaction wood are similar. In compression wood, the 

tracheids are shorter, misshapen cells with a large S2 microfibril angle and a high degree of 

longitudinal shrinkage. In tension wood, the fibers fail to form a proper secondary wall and instead 

form a highly cellulosic wall layer. Compression wood has the appearance of wider growth rings 

and a higher latewood portion than normal wood. (Kretschmann, 2010) 

Timber containing an area of compression wood is liable to great distortion upon drying. As the 

compression wood is of higher density, there is no loss in mechanical properties. However, it 

exhibits a brittle failure in dry conditions. (Kuklík, 2008) 

2.6.2 Cross grain 

Cross grain is expressed by the term slope of grain that relates the fiber direction to the edges of a 

piece. Slope of grain indicates that the directions of important stresses may not coincide with the 

natural axes of fiber orientation in the wood. (Kretschmann, 2010) 

Cross grain occurs in the form of spiral grain or diagonal grain. Spiral grain deviation is the case 

when the wood fibers form a helix around the stem instead of growing axially. This phenomenon is 

particularly pronounced in young trees. There is no way to saw a board from such a log to produce 

uniformly straight grain. (Kretschmann, 2010) 

When the long edge of a board is not parallel with the grain, the board has what is called diagonal 

grain. Boards with diagonal grain will show atypical shrinking and swelling with changes in moisture 

content and altered mechanical properties with regard to the slope of grain. (Kretschmann, 2010) 

2.6.3 Knots 

Knots are remnants of branches in the tree appearing in sawn timber. Independent of the cut of the 

board, knots occur in two basic varieties: intergrown knots and encased knots. If the branch was 

alive at the time when the growth rings making up a board were formed, the wood of the trunk and 

that branch is continuous; this is referred to as intergrown knot (Figure 26a).  If the branch was 

dead at the time when growth rings of a board were formed, knot is not continuous with the stem 

wood; this produces an encased knot (Figure 26b). Encased knots generally disturb the grain angle 

less than intergrown knots. (Kretschmann, 2010) 
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(a) (b) 

Figure 26 – Intergrown knot (a), encased knot (b) (Kretschmann, 2010) 

 

In sections containing knots, most mechanical properties are lower than in clear straight-grained 

wood. The reasons for this are:  

 the clear wood is displaced by the knot, 

 the fibers around the knot are distorted, resulting in cross grain, 

 the discontinuity of wood fiber leads to stress concentrations, 

 checking usually occurs around the knots during drying, 

 knots have a greater effect on strength in axial tension than in axial short-column 

compression. (Kretschmann, 2010) 

2.6.4 Pitch Pockets 

A pitch pocket is an opening that contains free resin. The pocket extends parallel to the annual 

rings. Pitch pockets are confined to certain species, such as pines, spruces, Douglas-fir, tamarack, 

and western larch. Change in strength of wood depends upon number, size, and location of a pitch 

pocket. A large number of pitch pockets indicates a lack of bond between annual growth layers. 

Piece with pitch pockets tends to suffer from shake or separation along the grain. 

(Kretschmann, 2010) 

2.6.5 Cracks 

Splits and cracks in wood are ruptures or separations in the grain of the wood which reduce 

strength and serviceability. There are two categories of natural origin of splits and cracks in wood: 

resource based and changing moisture content (MC) based.  

Resource based splits and cracks occur in a standing tree or in a log as a result of environmental 

conditions, growth stresses or acting of various microorganisms. Ring shake which appears as 

longitudinal separation of wood fibers in the tangential direction can be ranged in this group. 

Cracks in wood related to changing MC can be grouped as follows: cracks in drier environment 

than the timber MC (shrinkage), cracks in wetter environment than the timber MC and cycling 

environment. (Lamb, 1992) 
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3. Overview of current models of timber 

There are currently many types of timber models. Some of them are concentrated on a specific 

timber construction member, e.g. layered timber beams (Kroflič et al., 2009), ribbed shell 

frameworks (Gliniorz et al., 2002), components and joints (Serrano and Gustafsson, 2005), timber 

composite beams with openings (Guan and Zhu, 2008), under specific conditions such as, growth 

stress formation and distortion of sawn timber (Ormarsson et al., 2008) and timber under fire 

(Frangi et al., 2009). Some of them are focused on analysis of general piece of wood under 

different conditions.  

In the following subchapters are described a few models concerning the wood modeling where 

different approaches are taken: micro-macro modeling (Holmberg et al., 1998), models including 

moisture-induced stresses (Häglund, 2009; Fragiacomo et al., 2011; Fortino et al., 2009; Turner, 

1996), a model encompassing wood-drying, a model at large deformation taking into account brittle 

failure (Oudjene and Khelifa, 2009), and a model of fracture in spruce (Larsen and Gustafsson, 

1989). In the end, the models of timber presented in this chapter are briefly summarized. 

3.1 Micro-macro modeling of wood properties 

Two types of models of timber that can be used for an analysis of timber in the refining process in 

mechanical pulp manufacture have been developed by Holmberg (1997, 1998). This application is 

a good illustration of modeling spanning from micro to macro scale. It involves large deformations, 

plasticity, damage and fracture. 

Micro models of the cellular microstructure (micro level) are used for analysis of individual fibers 

deformation. They are very general with a very high degree of resolution, but they allow studying 

only very small pieces of wood. They are also difficult to handle with the computer resources 

available today. Compared to micro modeling, macro modeling (continuum modeling) is based on 

the average material properties that can be obtained from a micro model. It allows analysis of 

deformation and fracturing of large wood pieces. On the other hand, macro modeling does not 

permit analysis of the deformation and fracturing of the individual fibers. (Holmberg et al., 1998) 

The micro-macro model is based on an experimental study of the defibration process (Figure 27) 

described in Holmberg (1997). The behavior of a specimen is characterized by development of 

cracks and by large volumetric changes in earlywood under compression. (Holmberg et al., 1998) 
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Figure 27 – Failure process in a 5 mm high wood specimen loaded perpendicularly to grain by steel 
grips (simulation of refiner discs during pulp production); Load-displacement (horizontal, vertical) 

curve (Holmberg et al., 1998) 

  

3.1.1 Micro-mechanical approach 

For the micro model of wood, equivalent stiffness and shrinkage were determined by a 

homogenization method. The basic equations are solved by means of finite element method 

(FEM). The equivalent properties were determined in steps presented in Figure 28. 

 

 

Figure 28 – Modeling scheme of micro-mechanical approach (Holmberg et al., 1998) 
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In the first step, equivalent properties of cell wall layers were calculated from the properties of 

cellulose, hemicellulose and lignin. Microfibril models were created for representing the different 

layers of the cell wall. FEM together with homogenization approach were used to determine the 

equivalent properties from these macrofibril models. Material stiffnesses were transformed in order 

to relate the local directions of microfibrils with the global L, R, and T directions. (Holmberg et al., 

1998) 

The aim of the second step was to determine the equivalent properties of wood structure. In this 

step, the cell structure was modeled by means of a five-parameter cell structure model with the 

most representative properties. For this purpose, 3D cell structures of complete growth rings 

composed of irregular hexagonal cells were created (Figure 29a). A model of a complete growth 

ring was obtained with respect to the density function and the radial widths of the cells (Figure 29b). 

Density and cell wall thickness were assumed to increase slightly linearly for earlywood, rapidly 

(quadratically) for transition zone and linearly in latewood zone. Cell width in radial direction was 

considered constant for the earlywood, decreasing for the transitionwood and constant in the zone 

of latewood. (Holmberg et al., 1998) 

 

 

 
(a) (b) 

Figure 29 – Modeling of a growth ring: single-cell geometry (a), photographed and modeled cell 
structures (b) (Holmberg et al., 1998) 

 

This approach cannot be used for simulation of complete cell structures of trees or boards because 

the models become very large. Nevertheless, parameters obtained by this model, such as average 

stiffness and shrinkage properties of growth rings with different radial widths and average densities, 

can be used in various analyses on larger scale, where it is efficient to model wood as an 

equivalent homogeneous continuum. (Holmberg et al., 1998) 

To determine the global constitutive behavior of such equivalent homogeneous continuum, 

Holmberg et al. (1998) used homogenization procedure and FEM. To this goal, the wood was 

considered to be composed of subcells of equal shape and equal material properties (Figure 30). 

The periodic structure was divided into equal representative volume elements (base cells, 

substructures) for which equivalent smeared properties were derived.  
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Figure 30 – A periodic structure with representative volume elements composed of two different 
materials Df and Dm (Holmberg et al., 1998) 

 

Ray cells with an average density of 400 kg/m
3
 and a microfibril angle of the layer S2 of 10° were 

employed in the model. Properties of growth ring obtained by the above-discussed micro-

mechanical approach were close to typical elastic stiffness and shrinkage data of spruce reported 

by Persson (1997). (Holmberg et al., 1998) 

3.1.2 Continuum modeling approach 

To analyze mechanical behavior of wood on structural element scale (macro modeling), it is 

desirable to model it as an equivalent continuum.  However, it is necessary to take into account 

various damage phenomena, such as defibration (fracture propagating along wood fibers). In order 

to perform a proper model of initial defibration by means of a continuum model, Holmberg et al. 

(1998) considered the following characteristics of wood: 

 variation in material properties within a growth ring, 

 nonlinear inelastic response of earlywood subjected to compression perpendicular to the 

grain, 

 fracture behavior of material. (Holmberg et al., 1998) 

In the wood, two parts of growth ring (earlywood and latewood) should be considered in order to 

describe the variation in properties within a growth ring. The earlywood zone can be subdivided in 

several layers in radial direction that differ in strength and stiffness. The strain arising when 

earlywood is subjected to compression should be captured adequately. (Holmberg et al., 1998) 

Holmberg et al. (1998) used a crushable foam model for earlywood behavior as the foams are able 

to deform volumetrically when subjected to compression. The model followed deSouza Neto et al. 

(1995) and it was based on non-associated compressible plasticity. (Holmberg et al., 1998) 

Linear elastic behavior was considered for latewood as long as no cracks had developed.  

The stiffness ratio of the radial to tangential direction is usually between 1.5 and 2.0. This ratio is 

based on conditions in which the material is considered as a continuum. Differences between radial 

and tangential directions concern only linear elastic part of the material behavior and thus only 

before the radial cell walls are buckled. For this reason, an isotropic foam model for loading 

perpendicular to the grain was adopted as reasonable simplification. Nevertheless, an orthotropic 

foam model should be used for more arbitrary loading conditions. (Holmberg et al., 1998) 

Fictitious crack model was used for fracture of the material. The fracturing properties were 

associated with distinct cracking surfaces and were described by softening stress-relative 

displacement relations. The crack model was implemented in the finite element simulations by 

introducing special crack elements between the solid elements. (Holmberg et al., 1998) 
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In the finite element analysis, the problem was analyzed as constituting a two-dimensional static 

problem under plane strain conditions using an implicit integration scheme. Four-noded bilinear 

quadrilateral elements were employed for latewood. Three-noded linear triangular elements were 

used for earlywood as they are relatively less sensitive to large distortions. Large deformations in 

the earlywood were simulated by a formulation based on the Jauman stress rate and a logarithmic 

strain rate. Crack elements were introduced between the solid elements where tensile or shearing 

fracture criteria were attained. Subsequently, softening behavior was introduced. 

A Coulomb friction model was used for the interface elements between the wood specimen and 

steel grips. The steel grips were modeled as rigid surfaces. A typical FE mesh that was used is 

shown in Figure 31. 

 

 

Figure 31 – A typical finite element mesh used in the simulations (Holmberg et al., 1998) 

 

Two specimen types were described: the wood subjected to shear loading in radial and in 

tangential direction both in dry and wet conditions (Figure 32). The deformation and fracture 

process agree well with the experimental results. (Holmberg et al., 1998) 

 

  

(a) (b) 

Figure 32 – Comparison between numerical simulation and experimental results: loading in tangential 
(a) and radial (b) direction (Holmberg et al., 1998) 

 

3.2 Moisture induced eigen-stresses 

Moisture content influences physical, mechanical, and rheological properties of wood (durability, 

shrinkage/swelling, modulus of elasticity, and strength properties). Another important factor is the 

moisture gradient that is created when the humidity load is variable or different from initial 
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equilibrium. Moisture gradients induce differences in shrinkage and swelling of wood, which further 

induce stresses in the wood sections (moisture-induced stresses) and may lead to cracks in the 

surface or in the central part of the wood sections. The rheological properties of wood, namely 

creep and mechanosorption have also an important role in the development of internal stresses as 

they generally decrease the stress magnitudes. Moisture actions on timber are nowadays 

described by advanced constitutive models. 

This subchapter briefly describes one study and three models related to moisture induced eigen-

stresses: parameter influence on moisture induced eigen-stresses (Häglund, 2009), moisture-

induced stresses under different climates (Fragiacomo et al., 2011), 3D moisture-stress FEM 

analysis (Fortino et al., 2009), and 2D orthotropic model of wood-drying (Turner, 1996).  

3.2.1 Parameter influence on moisture induced eigen-stresses 

Moisture induced stress in timber is the result of a few factors. The moisture variation in the 

surrounding air causes induced stress due to restraint of hygro-expansion within timber elements.  

A parametric study of the input values of a constitutive model for moisture induced stress was 

carried out by (Häglund, 2009).  

This study encompassed effects of beam size, indoor climate, surface coating and several other 

parameters. The moisture transport model was based on diffusion process. The calculations were 

run in a commercial FE program (ComsolMultiphysics) using a one-dimensional model. The wood 

material was treated as isotropic in the transversal directions. Recorded outdoor climate data was 

used as a basis for determining indoor relative humidity to represent boundary conditions. The 

model was validated against laboratory test results of a glulam beam sealed so as the moisture 

could be transported only perpendicularly to grain (1D). 

This investigation confirmed that variation of moisture in the ambient air can cause high induced 

stresses due to hygro-expansion in timber elements. There is a risk of cracking when the value of 

induced stress is above the characteristic strength perpendicular to grain. Surface coating was 

shown to be effective in reducing hygro-expansion and induced stress. Given that the element is in 

equilibrium during the application of coating, higher stress cannot develop.  

The cross-sectional size also affects the distribution and magnitude of the stresses. In general 

terms, higher maximum stress levels are induced in large widths cross-sections than in small ones. 

Häglund (2009) questioned whether the Maxwell mechano-sorptive stress model was applicable 

under conditions with externally applied tensile forces because the results indicate that the 

applicability does not encompass external loading. Effects of moisture are size dependent and 

should be considered to help improve the design of timber structures. Influences of other 

parameters are summarized in Table 1. (Häglund, 2009) 
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Table 1 – Comments on the response of different parameters (Häglund, 2009) 

 

  

3.2.2 Moisture-induced stresses under different climates 

Main parameters affecting moisture-induced stresses such as type of climate, size of timber cross-

section, and type of protective coating are investigated by Fragiacomo et al. (2011). For this 

purpose, Europe was considered to be divided into a number of climatic regions. For each of them 

were identified relative humidity and temperature histories. Also, characteristic and mean values of 

yearly and daily variations were calculated.  

A 3D FEM was implemented in ABAQUS software. The model was based on the orthotropic 

viscoelastic–mechanosorptive material model presented by Fortino et al. (2009) and a combination 

of Fickian moisture transfer model that was used to compute the moisture distribution and a 

mechanical model for time-dependent behavior of wood by means of which the corresponding 

stress distribution was calculated. Moisture content and stress distribution were computed on 

different timber cross-sections (protected with different types of coating) exposed to the climatic 

regions. (Fragiacomo et al., 2011)  

It was found that the variation of moisture results in stresses of magnitudes that would probably 

cause cracking of wood in the perimeter of any uncoated cross-section size. The use of a 

protective coating, however, reduces considerably the moisture-induced stresses, and it can be 

regarded as an effective protective measure to avoid cracking due to humidity variations. 

Regarding European climates, Northern climates result in higher surface tensile stresses than 

Southern climates. (Fragiacomo et al., 2011) 

3.2.3 A 3D moisture-stress FEM analysis 

A 3D moisture-stress numerical analysis for timber structures under variable humidity and load 

conditions was developed by Fortino et al. (2009). Both the constitutive model of an orthotropic 

viscoelastic-mechanosorptive material and the equations needed to describe the moisture flow 

across the structure were implemented into user subroutines of the ABAQUS FE code. Coupled 

moisture-stress analysis was performed for several types of mechanical loads and moisture 

changes. This computational approach was validated by wood tests described in the literature and 

by comparing the computational results with the reported experimental data. 

The constitutive model was based on the 1D model for wood in longitudinal direction and on the 1D 

model for wood in the perpendicular to grain direction. For both the viscoelastic and the 
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recoverable mechanosorptive mechanisms, Kelvin elements were used and for irrecoverable 

mechanosorption a mechanosorptive dashpot scheme is also taken into account. The above creep 

mechanisms are added to the elastic strain and to the hygroexpansion strain. The temperature was 

considered to be constant during the studied cases. (Fortino et al., 2009) 

The extension of the previous 1D constitutive creep models to 3D was done by writing the problem 

in a thermodynamic form. 3D elemental compliance matrices were defined for each element of the 

different creep mechanisms and an algorithm for updating the total stress was used. This 

computational approach is very general and can also be used for other types of materials where 

the creep mechanism is described by Kelvin elements. (Fortino et al., 2009) 

The constitutive model and the algorithm for stress update were implemented into the UMAT 

subroutine of the FEM code ABAQUS. The equation describing the flow across the surface was 

implemented into the user subroutine DFLUX. A coupled moisture-stress analysis was performed 

by using the analogy with the available temperature-displacement analysis of ABAQUS. (Fortino 

et al., 2009) 

The computational results fitted relatively well the experimental curves for both grain direction and 

cross grain section. However, more experimental data are needed in order to define viscoelastic 

and mechanosorptive compliances fully independent of the particular studied case. Both the 

material model and the computational method can be directly used for analyzing problems in which 

the effect of temperature is significant. In this case a thermal analysis and the described coupled 

moisture-stress analysis can be solved sequentially by using the computational tools of ABAQUS. 

(Fortino et al., 2009) 

3.2.4 2D orthotropic model of wood-drying 

Wood must be dried before it can be manufactured. Drying is important for the protection of the 

wood against biological damage and the reduction of the moisture content to final equilibrium 

levels. In order to allow a numerical investigation of the convective drying of wood, a two-

dimensional (2D) orthotropic mathematical model was formulated by Turner (1996). The numerical 

code of the 2D model was based on a structured mesh cell centered control volume approach.  

The modeling of the drying process consists of analyzing the heat and mass transfer phenomena 

that arise in an anisotropic, nonhomogeneous, and hygroscopic porous medium of wood.  

A comparison between two different numerical solution techniques was made. The first numerical 

method solved the system of equations by treating each equation in an uncoupled form, while the 

second scheme solved the entire system as a completely coupled set. The most efficient numerical 

algorithm was obtained when the system was solved using the coupled procedure.  

The overall kinetics for both low and high temperature drying was examined. Three different cases 

of convective drying of wood were considered: the drying of wood below the boiling point at the 

temperature of 50°C, 80°C, and above the boiling point at the temperature of 120°C.  

The 2D model highlights two important facts. First, for an anisotropic medium, where the ratio 

between longitudinal and transverse permeability is of the order of 10
3
 the moisture migration 

occurs in the longitudinal sense. Second, the behavior of the internal gaseous pressure can have a 

substantial impact on moisture migration. (Turner, 1996) 

3.3 FEM at large deformations and brittle failure prediction 

A constitutive model of wood based on both hardening associated with material densification at 

large compressive deformations and brittle failure modes was developed by Oudjene and Khelifa 

(2009). Coupling between the anisotropic plasticity and the ductile densification was considered. 
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The model was implemented in the commercial software ABAQUS and its validation was 

performed by means of uniaxial compressive test in longitudinal and radial direction and three-

points bending (TPB) test.  

Material parameters (elasticity, plasticity hardening, densification) were determined using 

experimental data (stress-strain curves) obtained from uniaxial compression tests in longitudinal 

and radial direction. Distinction between radial and tangential planes was disregarded. In two-

dimensional finite element model was assumed isotropic behavior in the transverse direction (radial 

and tangential). (Oudjene and Khelifa, 2009) 

The coupled model is well suited for analysis with large compressive deformations perpendicular to 

the grain. The behavior is accurately predicted until 25% of deformation by both the coupled and 

the uncoupled cases. The densification effect occurs beyond this limit and is well predicted by the 

coupled model while the uncoupled one provides fairly good agreement with the experiment. 

(Oudjene and Khelifa, 2009) 

The coupled, uncoupled and linear elastic models give almost the same results in linear load-

displacement curves as the experiment in bending until a final failure. Hence, the effect of the 

densification should be neglected since the plastic behavior is not significant. Linear elastic 

material model is more accurate for the behavior after reaching the compressive yield stress in 

perpendicular direction than coupled or uncoupled models. (Oudjene and Khelifa, 2009) 

The results obtained from the uniaxial compressive test demonstrate the capability of the model to 

simulate the wood behavior at large compressive deformations and show clearly the effect of the 

densification on the plastic behavior. The results obtained from the three-points bending test show 

a good implementation of the brittle failure criterion and demonstrates the suitability of the 

developed model to analyze and design wooden structures. (Oudjene and Khelifa, 2009) 

3.4 Fracture in spruce: damage and linear mechanics 

Linear elastic fracture mechanics (LEFM) and damage mechanics (DM) methods were compared 

in a simulation of three point bending (TPB) test in spruce using FEM by Daudeville (1999).  

The LEFM is a theory used for the analysis of brittle materials (metals, ceramics) where all damage 

phenomena are assumed to be concentrated at the crack tip. The DM treats the problem of fracture 

in materials that exhibit softening behavior (i.e. quasi-brittle materials). (Daudeville, 1999) 

The TPB test (Figure 33) was used for the determination of the fracture energy (  ) in tension 

perpendicular to grain according to RILEM and CIB-W18 recommendations (Larsen and 

Gustafsson, 1989). TPB tests were performed in order to obtain a stable crack extension in TL 

(tangential-radial) and TL (tangential-longitudinal) planes from an initial notch to the complete 

separation of both crack faces. (Daudeville, 1999) 
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Figure 33 – Three point bending test (Larsen and Gustafsson, 1989) 

 

The TPB test was performed for the mode I fracture analysis. It was carried out first for the 

determination of fracture energy with respect to wood orientation for a fixed beam width and depth 

(       mm). The influence of variations in beam depth (            mm) with the fixed 

beam width on the nominal stress was examined. (Daudeville, 1999) 

The finite element method (FEM) was used for the analysis of crack propagation. The critical 

energy release rate (  ) and fracture energy per unit cracked area (  ) were computed from 

maximum load. (Daudeville, 1999) 

Comparisons between simulation results with LEFM and experimental results of the TPB test have 

shown that LEFM could predict the load-displacement curve but the critical energy release rate    

could not be equal to the fracture energy   . The load-deflection curve is correctly predicted by the 

DM model. Furthermore, it was shown that the fracture energy    was the major parameter that 

governs fracture propagation in linear (large structures) or in non-linear (small structures) fracture 

studies and it is not size dependent. (Daudeville, 1999) 

3.5 Summary 

This chapter briefly summarizes the above-mentioned current model of timber in the context of the 

constitutive model developed in this work. 

The constitutive model developed in this work was inspired by continuum modeling approach 

described in Holmberg (1997, 1998). That is why the part of micro-macro modeling is treated in 

more detail than other modeling approaches of timber. 

Common features of the constitutive model developed in this work and that of Holmberg (1997, 

1998) are as follows: 

- mechanical behavior of wood on structural element scale (macro modeling) is modeled as 

an equivalent continuum, 

- wood is regarded as an orthotropic material, 

- fictitious crack model for fracture of timber is involved, 

- both models can be used for simulation of timber behavior in construction members or 

details. 

On the other hand, the aspect of variation in material properties within a growth ring is disregarded. 

The model developed in this work can be further enhanced by implementation of other modeling 

approaches such moisture induced eigen-stresses, wood drying or large deformations. For a 
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thorough validation of the model should be obtained experimental data that would contain also 

fracture properties of wood.  
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4. Constitutive model for timber under tension and shear 

A two-dimensional homogeneous constitutive model for mechanical behavior of timber under 

tensile and shear loading is developed in this work. This model covers the following phenomena: 

- elastic and inelastic behavior, 

- material orthotropy, both in linear and non-linear range, 

- fracture across and along fibers, 

- behavior under unloading/reloading is considered to a certain extent, 

- only small deformations (lower than      ) are considered, 

- the model can be applied both to hardwood and softwood by selecting appropriate material 

characteristics.  

Within the scope of the present work, we do not consider non-linear behavior and failure of timber 

under compression. However, the proposed fracture model is ready to be extended to this range, 

for example, by combining it with plasticity in analogy with the fracture-plastic model developed for 

concrete by Červenka and Papanikolaou (2008). 

A constitutive model in general expresses how a material responds to acting stress. In the present 

study we idealize timber as a quasi-brittle material. Thus, the material is considered as a continuum 

with discontinuities (cracks). The continuous part is characterized by a stress-strain law while a 

traction-separation law describes the behavior of the discontinuities. Fixed smeared crack model is 

used to represent the fracture. 

Finite element method (FEM) is a universal numerical technique applicable to problems with 

arbitrary geometry and boundary conditions. It is the core of the most of the commercial software 

packages for engineering computations. The constitutive model proposed in this work is intended 

to be a basis for a material subroutine of a finite element code. Within the scope of this thesis, the 

developed model is implemented in a MATLAB computer code to that extent that it calculates 

stress and tangent material stiffness matrix corresponding to a given strain state (which is attained 

by a prescribed sequence of increments) at the level of a material point (or integration point in FEM 

model). The prescribed strain path may involve non-proportional change of strain components, 

loading and unloading/reloading cycles. 

After full implementation into a finite element code, this model can be used as a basis for the 

following advanced approaches to analysis of timber members: 

- A model that can account for the presence of inhomogeneities such as knots. For this 

purpose, the present model would be used to represent clear timber while the 

inhomogeneities would be modeled as discrete regions with different properties. This 

approach may further require representation of the interface between two materials. 

- A model that can take into account an influence of moisture (wood drying, moisture 

induced stresses), which would be assigned as initial stress or eigen-strain. To this end, 

the moisture distribution would have to be analyzed separately using suitable transport 

model. 

The following text of this chapter deals with aspects regarding the constitutive model developed in 

this work such as principal assumptions of the model, elastic orthotropy, failure criterion, crack 

types, smeared crack model and its application in the model, cohesive law, critical crack opening, 

crack unloading/reloading cycle, characteristic length, transformation between coordinate systems, 

computational Newton-Raphson method, code scheme and in the end are summarized input data. 
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4.1 Assumptions  

The 2D constitutive model for timber developed in this work is based on the following assumptions: 

 Wood is regarded as homogeneous material. 

 Prior to cracking, wood obeys rules of elastic orthotropy (chapter 4.2). 

 In the proposed 2D model, axes of orthotropy are reduced from 3D space ( , , ) 

respectively (R,L,T) to 2D space ( , ) respectively (R,L). Thus, the direction    

corresponds to parallel to grain (longitudinal) direction (L),   corresponds to perpendicular 

to grain radial direction (R), and in case of 3D   corresponds to perpendicular to grain 

tangential direction (T), see Figure 34. This implies that for the proposed 2D model is 

considered    respectively RL plane. 

 

 

Figure 34 – 2D coordinates in the context of 3D coordinates: longitudinal (   ), radial (   ) and 

tangential (   ) direction 

 

 A crack is initiated along the fibers or across the fibers and after its initiation, the crack 

direction is fixed. Treshold angle defines a limit value of principal stress deviation from the 

grain and specifies which crack type (along or across the grain) is initiated. The crack along 

the fibers is always initiated in the longitudinal direction while the crack across the fibers is 

always perpendicular to the principal stress. Only one crack exists at a material point. 

 In timber is assumed an equivalent computational crack that is perfectly planar. 

Nevertheless, in real material of timber, the crack is not planar and it can be accompanied 

by micro-cracks of different sizes, shapes and orientations. 

 The post-cracking behavior is described by a cohesive response at the initiated crack.  

4.2 Elastic orthotropic 2D model  

Elastic orthotropic properties are described for 3D space in chapter 2.5.1. In 2D space, Hook’s law  

for an orthotropic material of wood in elastic region possesses two principal directions (L, R) and 

can be expressed as follows: 
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) [21] 

Finally, there are four independent constants that are necessary for description of elastic behavior 

of wood in 2D (two moduli of elasticity  , one shear modulus  , and one Poisson’s ratio  ).  

4.3 Failure criterion 

Failure criterion defines conditions under which a crack is initiated in a material. In the proposed 

model, a function of failure criterion (crack initiation criterion)      is derived from the standard 

Rankine failure criterion that is defined as follows 
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                [22] 

where required maximum stress      in any direction (maximum principal stress) is to be equal to 

tensile strength   . Rankine yield surface in the principal stress space in 2D is shown in Figure 35. 

 

 

Figure 35 – Rankine yield surface in the principal stress space in 2D  

 

Rankine criterion can be expressed by a single function of the first principal stress and tensile 

strength (  ) in the corresponding direction 
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[23] 

To account for orthotropic material properties of timber, we modify the Rankine criterion following 

Lourenço et al. (1997). The function of crack initiation criterion      is in the proposed model defined 

as follows 
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  [24] 

where      is the crack initiation function,   ,    and     are stress components,     and     are 

uniaxial tensile strengths in   and   direction (parallel and perpendicular to fibers, respectively). 

Parameter   controls the shear stress contribution to the failure and reads 

 
  

      

  
 

 [25] 

where    is shear strength.  

The value of the function of crack initiation criterion      refers to elastic or crack initiation state of 

the material, see Table 2.  

 

Table 2 – Status of material defined by the crack initiation criterion (value of     ) 

Status Elastic Crack initiation 

Criterion               

 

For the crack initiation state, the function     (         )    is shown in Figure 36 as a failure 

surface by means of expressing    (     ).  
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Figure 36 – Visualization of the of failure surface     (         )    by means of    (     ) for       

for spruce (Picea abies) 

 

Failure surface can be also visualized for     ,      and        (Figure 37). In this figure is 

shown that     decreases with increasing    (Figure 37a) which means that for increasing    

suffices smaller and smaller     to initiate a crack. A similar assumption is made in the case of     

and    (Figure 37b). If      ,    is constant with increasing    until ultimate strength in   direction 

(   ) is reached (Figure 37c). 

 

  

 

 
 

 

(a) (b) (c) 

Figure 37 – Visualization of failure surface     (         )    and a respective loading for spruce 

(Picea abies) for      (a),      (b) and       (c) 

 

4.4 Crack types 

In the proposed 2D fixed crack model, two crack types are considered: crack across the fibers 

(CT1) and along the fibers (CT2).  

The crack type CT1 includes cracks across the fibers that are initiated under loading where 

maximum principal stress (  ) is deviated from the   direction by crack normal deviation angle 

                 , e.g. pure longitudinal loading in tension (  ). Crack type is limited by treshold 
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angle         . As the crack CT1 is perpendicular to the maximum principal stress direction, only 

normal traction    acts on the crack at the moment of its initiation (Figure 38a, Figure 38b). 

The crack type CT2 assumes that the crack is initiated in longitudinal direction regardless 

maximum principal stress direction if crack normal deviation angle is                    (Figure 38c, 

Figure 38d). 

 

    

(a) (b) (c) (d) 

Figure 38 – Crack types according to crack normal deviation angle   : CT1 under        (a), CT1 under 

                   (b), CT2 under                     (c), CT2  under        (d)  

 

In the developed model, crack type is determined by means of the function of crack type    (     ) 

that reads  

 
            

       

 
 [26] 

The function     is derived from the standard expression for an angle   contained by the direction 

of maximum principal stress (  ) and that of longitudinal direction (x) as follows 

 
        

   
     

 

 [27] 

For a point on the failure surface, the value of    (     ) and the function of crack type    (     ) 

are compared (see Figure 39). Crack type CT1 is considered if         and crack type CT2 if 

       . 

A few examples (A - D) of load conditions and their crack types are introduced in Table 3. In this 

table are presented stress components calculated for prescribed increments of strain in elastic 

region until reaching the failure surface. These four cases are visualized in Figure 40 where is 

highlighted a stress component that initiated the corresponding crack type. Load cases A - D are 

also visualized on the failure surface in the state of crack initiation in Figure 41. 
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Figure 39 – Failure surface      for spruce (Picea abies) divided into two parts for crack type CT1 
(across the fibers) and CT2 (along the fibers) by the surface of crack type function     

 

Table 3 – Examples of load cases run by strain  , their crack types and crack normal deviation angle   

Load 

case 
Crack 
type 

Angle 

  [°] 
   [-]    [-]     [-]    [MPa]    [MPa] 

    

[MPa] 

A CT1   0 0.00496 0.00005 0 74.40000 1.86560 0 
B CT2 90 0.00002 0.00072 0 0.53938 2.20000 0 
C CT2 90 0.00005 0.00020 0.00993 0.81002 0.62962 5.61719 
D CT1   4 0.00300 0.00004 0.00505 45.69849 1.17246 2.84399 

 

    

(a) (b) (c) (d) 

Figure 40 – Crack type and crack normal deviation angles   for load cases A (CT1,     ) (a), B (CT2, 

     ) (b), C (CT2,      ) (c), and D (CT1,     ) (d) where large arrows reflect a dominant stress 
initiating the corresponding crack type  
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Figure 41 – Visualization of stress components of load cases A, B, C, D at the state of crack initiation 

in the form of points with coordinates [         ] at failure surface  

 

4.5 Smeared crack model (SCM) 

By smeared crack model we mean here a particular class of constitutive models developed for 

quasi-brittle materials under predominantly tensile loading. The basic idea of the model is that the 

total strain is decomposed into an elastic part and in an inelastic part (cracking strain). The inelastic 

strain due to crack opening is related directly to the traction transmitted across the crack. 

(Jirásek, 2012) 

Two types of SCM can be distinguished: fixed and rotating crack model. Fixed crack model freezes 

the crack direction determined at the moment of the crack initiation while rotating crack model 

assumes that crack normal remains aligned with the current direction of maximal principal strain. In 

case Rankine criterion is used as an initiation criterion, the crack plane is initially exposed to a non-

zero normal traction (of value of tensile strength in the appropriate direction) and zero shear 

traction. Later, the crack plane remains freezed and principal axes can rotate and shear tractions 

may arise on the crack. (Jirásek, 2012) 

In the following subchapters, basic principles of smeared crack model are described for 1D space. 

The second and third subchapters provide a general description of 2D fixed smeared crack model 

and its application to the constitutive model developed in this work, respectively.  

4.5.1 One-dimensional smeared crack  model  

Smeared crack model (SCM) decomposes the total strain ( ) in into two parts: elastic strain    

(defomation of the uncracked material) and crack strain    (the contribution of cracking). The one-

dimensional (1D) space, strain decomposition is expressed as follows 

         [28] 

The elastic strain (  ) is related to stress ( ) by Hook’s law 

       [29] 

where   is modulus of elasticity. 

The crack strain represents smeared additional deformation caused by opening of the crack. The 

additive strain decomposition can be expressed as a rheological model where elastic spring is 

coupled in series with a unit representing the contribution of the crack (Figure 42). As the coupling 

is serial, both units transmit the same stress  . 
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(a) (b) 

Figure 42 – Smeared crack model: represented as an elastic unit coupled in series to a crack unit (a), 
local coordinate system aligned with the crack (b) (Jirásek, 2012) 

 

Initially, the material in an uncracked state has linear elastic response. A crack appears when the 

tensile strength of the material is reached. The loss of cohesion during the crack development is 

considered as a gradual process. An equivalent cohesive crack which can still transmit stress is 

introduced. The cohesive stress   can be expressed as a function of crack strain    (cohesive law) 

or a function of the crack opening   (traction-separation law):  

          [30] 

         [31] 

Since the crack strain depends on the gauge length along which the average strain is measured, it 

is more appropriate to express the cohesive stress   by means of crack opening  . Crack opening 

is defined as the integral of all inelastic deformation across the width of the fracture process zone.  

Evaluation of stress for a given strain increment (required for numerical simulations) is determined 

by assuming that the final stress in the elastic spring is equal to the final stress in the cracking unit. 

This leads to the equation describing the internal equilibrium in the rheological model: 

                  [32] 

In Figure 43, total stress-strain curve obtained by the sum of elastic and crack strain is displayed.  

 

 

Figure 43 – Total stress-strain curve (   ) obtained by summing elastic strain    and crack strain    
(Jirásek, 2012) 

 

4.5.2 Two-dimensional fixed smeared crack model 

Consistently with the basic assumptions (chapter 4.5), we employ the fixed variant of the smeared 

crack model. To this end, we introduce a local Carthesian coordinate system  ,   (Figure 42b): axis 

  is normal to the crack and   is parallel to it. As previously mentioned, in fixed crack model, the 

crack direction determined at the moment of the crack initiation remains fixed. The following text is 

based on Jirásek (2012) and equations are written in tensor notation. 

General forms of Eq. [28] and Eq. [29] are written in tensor notation as follows 
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         [33] 

           [34] 

where   is total strain tensor,    and    is elastic and crack strain tensor , respectively,   is stress 

tensor and    is elastic stiffness tensor. 

Crack opening and sliding are affected only by the traction vector    acting on the crack plane 

defined by a unit normal vector  : 

       [35] 

Strain components are obtained as follows 

       
      

   [36] 

              [37] 

where    is crack strain vector work-conjugate with   ,   is a unit vector normal to the crack,   is a 

unit vector tangential to the crack,    
  is normal crack strain,    

  is shear crack strain, and    is 

crack strain tensor that is further described in Jirásek (2012). 

Combining equations [33], [34] and [37], stress-strain law is obtained 

                 [38] 

where symbol of symmetric part at      can be omitted because of minor symmetry of   . 

(Jirásek, 2012) 

The relation between shear traction and shear crack strain can be expressed by means of a  

proportionality factor   , where   is shear modulus of elasticity and     is shear retention factor 

usually descreasing to zero as the crack opening grows. 

The cohesive law can be written in the total form 

           [39] 

or the incremental form 

  ̇      ̇   [40] 

where             is second-order tangent crack stiffness tensor. 

The traction vector must be equal to the projection of the stress tensor which can be computed 

from the elastic strain. Combining equations [35] and [38] is obtained  

                                       [41] 

where         is called acoustic tensor and an auxiliary function   can be defined as     

     . Combining equations [39] and [41], internal equilibrium between tractions in the elastic unit 

and the crack unit is obtained 

                      [42] 

In case this equation for a given strain increment is non-linear, an iterative computational method is 

used to solve   , e.g. Newton-Raphson’s method (chapter 4.12). (Jirásek, 2012) 

In order to derive the tangent material stiffness tensor (relation between stress and strain rate), 

internal equilibrium equation [42] is expressed in the rate form and crack strain rate is derived 

        ̇      ̇      ̇   [43] 

  ̇         
          ̇ [44] 

The rate form of stress-strain law is given by substitution of [44] into [38] 

  ̇         ̇     ̇         ̇      [         
  ]          ̇         ̇ [45] 

The tangent stiffness tensor of the elastic-cracking material     is then given by 

                      
          [46] 

4.5.3 Application of two-dimensional fixed smeared crack model 

The constitutive model developed in this work was based on fixed smeared crack model where 

only one crack appears. The model was calculated in two-dimensional (2D) space where Voigt’s 

notation (also called matrix notation) was used. Basic variables of 2D fixed smeared crack model 

used in the developed model are presented in Table 4. Components of an appropriate vector are 
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considered in the local coordinates of the crack   (normal to the crack) and   (tangential to the 

crack) (Figure 42b).  

 

Table 4 – Basic variables of 2D smeared crack model:    – normal traction,    – shear traction,    – 

crack opening in   direction to the crack,    – crack opening in   direction to the crack,    
  – normal 

crack strain in   direction,    
  – normal crack strain in   direction,    

  – shear crack strain 

Traction vector 

   

Crack opening 

vector   

Crack strain 

vector    

Crack strain tensor in 

Voigt’s notation    

   (
  
  

)   (
  

  
)    (

   
 

   
 )    (

   
 

   
 

   
 

)  (
   
 

 
   

 
) 

 

The application of Voigt’s notation causes a formal change in previously defined equations. 

Consideration of orthotropic material calls for consistent distinction between local and global 

coordinates. For these reasons we present the most important equations for fixed crack model 

([33]-[46]) in matrix notation as they were applied in the developed model.  

A transformation of crack strain vector    to crack strain tensor in Voigt’s notation    is calculated in 

local coordinates (denoted by superscript L) as follows   

   
      

  [47] 

where   is a transformation matrix defined by 

 

  (
  
  
  

) [48] 

The equation of internal equilibrium between tractions in the elastic unit and the crack unit 

(Eq. [42]) in local coordinates is obtained 

     
       

    
       

   [49] 

where   
  is elastic stiffness matrix in local coordinates,   

       
     is acoustic matrix in local 

coordinates,      
   is a vector of functions of cohesive law in   and   direction, and an auxiliary 

function   is defined as       
    . In case this equation for a given strain increment is non-

linear, an iterative computational method ought to be used to solve the equation for crack strain 

vector   
  (e.g. Newton-Raphson). 

Eq. [44] of crack strain rate is in Voigt’s notation computed 

  ̇ 
     

    
         

   ̇  [50] 

where  ̇ 
  is an increment of crack strain vector in local coordinates,  ̇  is an increment of crack 

strain tensor in Voigt’s notation in local coordinates, and   
         

   is tangent crack stiffness 

matrix. 

Similarly to Eq. [45], the rate form of stress-strain law is expressed in local coordinates 

  ̇    
    ̇   ̇ 

     
   ̇    

      
    

         
   ̇     

   ̇  [51] 

Accordingly to Eq. [46], the tangent stiffness matrix of the elastic-cracking material in local 

coordinates    
  is given by 

    
    

    
      

    
         

  [52] 

Transformation between local and global coordinate systems is further treated in chapter 4.11. Full 

version of the code of the model developed in this work is available in Appendix 2. 

4.6 Cohesive law in   direction 

The cohesive law (softening curve) in the direction normal to the fixed crack can be expressed by 

different functions (according to the experimental data). In Figure 44, a comparison of various 
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softening laws for a material with given stregth        MPa and fracture energy             is 

presented. The deviations of exponential, bilinear and Reinhardt-Hordijk’s (Reinhardt et al., 1986) 

curves are relatively small while the linear softening curve substantially differs from the non-linear 

ones. (Jirásek, 2012) 

 

 

Figure 44 – Comparison of various softening laws in for a given strength            and fracture 

energy             (Jirásek, 2012)  

 

For the developed model, the component    (cohesive law in   direction) of the traction vector    is 

calculated on the basis of Reinhardt-Hordijk traction-separation law proposed by 

Reinhardt et al. (1986) as it is qualitatively consistent with experimentally observed softening of 

wood (e.g. spruce) in Reiterer et al. (2002) (Figure 22) 
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 [53] 

 

where       is the normal traction at the state of crack initiation which existed at the crack plane 

[MPa],          
  is crack opening normal to the crack direction [mm],     is equivalent length 

expressing the size of an element [mm] where the crack is smeared,       is critical crack opening in 

  (and also for the proposed model in  ) direction [mm]. Material parameters    and    are 

dimensionless. They control the shape of the softening curve and their default values 

recommended by Hordijk (1991) are      and        . The softening    function according to 

Reinhardt et al. (1986) expressed as a cohesive law is displayed in Figure 45. 

 



Constitutive Model of Timber 

 
 

Czech Technical University in Prague 

Faculty of Civil Engineering  47 

 

Figure 45 – Reinhardt–Hordijk cohesive law in   direction       
   for             ,             , 

     and         and            

 

4.7 Cohesive law in   direction 

The component shear traction    of traction vector     is proposed to be calculated according to 

linear-based function or arctangential function. The latter function is used because, as opposed to 

the former one, it allows us to limit the maximum shear traction that can develop on the crack. 

For the crack type CT1, the value of shear traction    is always zero (    ) at crack initiation as 

the crack is always perpendicular to the principal stress direction when it is initiated. On the 

contrary, for the crack type CT2, the value of    can be    [     , limited by shear strength   , at 

crack initiation as the crack is always parallel with wood fibers and does not have to be 

perpendicular to the principal stress.  

4.7.1 Linear-based function    

If shear traction    is taken proportional to local total shear strain     with a proportionality factor 

  , the linear-based function can be derived in local coordinates in 2D as follows  

          [54] 

        
  [55] 

        
     

  [56] 
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 )         

  
  [57] 

            
  
  [58] 

 
   

 

   
    

  [59] 

where    
  is elastic part of total shear strain and      

   is a function of shear retention factor that 

depends on normal crack strain in   direction    
 .  

The linear-based function    can be finally calculated according to the following equation: 

 
      

     
   

     
  

       
  

    
  [60] 

Due to lack of available experimental evidence on shear behavior of cracks in wood, we assume 

that the shear retention factor beta linearly decreases with increasing crack opening displacement, 

i.e. it can be expressed as: 

 

     
   {   

  

     

                      

   

 
      [        

 
                         

 [61] 

where          
  is crack opening normal to the crack direction [mm],       is critical crack opening 

in   direction [mm] which is further described in chapter 4.8. Both functions       
     

   and      
   

are displayed in Figure 46. 
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(a) (b) 

Figure 46 – Display of the cohesive law in   direction (linear-based function)       
     

    (a) and 

function of shear retention factor      
   (b) for           mm and        mm  

 

The linear-based function       
     

   is not defined at    
   . If crack strain is approaching zero 

(   
        

   ), the function       
     

   approaches vertical axis. This implies that if the crack 

is initiated at      (e.g. crack type CT2), the linear-based description of       
     

   allows a 

smooth transition from the stress state on the failure surface to the proposed cracking cohesive 

relationship 

For a constant value of    
 , shear traction    decreases with increasing    

 . For a constant value of 

   
                 , shear traction    linearly increases without limits with increasing    

  and thus 

the function       
     

   is unbounded. 

To conclude, the linear-based function       
     

   is advantageous to use as it enables a smooth 

transition from the stress state on the failure surface to the proposed cracking cohesive 

relationship. On the other hand, its weakness consists in the fact, that it is unbounded 

(      
     

      ) and thus shear traction    can exceed shear strength   , which is unrealistic. 

4.7.2 Arctangential function of    

In order to describe cohesive law by a more appropriate function than by the linear-based one 

(chapter 4.7.1), an arctangential function is proposed. The arctangential function enables that 

shear traction    is limited by shear strength    and takes the value of    [      at crack initiation 

state.  

Shear traction    is expressed using arctangential function as follows 
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) [62] 

where    
  and    

  are components of crack strain vector   . The function of shear retention factor 

     
   is considered as follows 
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      [        

 
                         

 [63] 

where          
  is crack opening normal to the crack direction [mm],       is critical crack opening 

in   direction [mm] which is further described in chapter 4.8, and   is a material parameter that 

determines the slope of the function      
  . For an assumed slope, the exponent   is set to    .   

It should be noted that for negative shear crack strain    
 , the function       

     
   is considered 

odd to       
     

   function for positive    
   Thus, shear traction    is expressed using 

arctangential function for negative    
  as follows  
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) [64] 

where the function of shear retention factor      
   is calculated according to Eq. [63]. 

Function       
     

   for positive and negative    
  is displayed in Figure 47. The function      

   is 

displayed in Figure 48. 

 

 

Figure 47 – Display of the arctangential function of cohesive law in   direction       
     

   for 

positive and negative    
  where               and            

 

 

Figure 48 – Display of the function of shear retention factor      
   for arctangential function of 

cohesive law in   direction       
     

   where               and            

 

The arctangential function       
     

   behaves in an analogous way with the linear-based function 

(chapter 4.7.1) as the arctangential function       
     

   allows a smooth transition from the stress 

state on the failure surface to the proposed cracking cohesive relationship and it is not defined at 

   
   .  

Difference between these functions consists in the fact that the arctangential function       
     

   

is limited by shear strength and thus shear traction takes the value of    [     . Unlike the linear-
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based function, for a constant value of    
                 , shear traction    increases with 

increasing    
  in a non-linear way. 

If the crack is initiated under pure shear, the value of shear strength    is approached at the 

beginning of inelastic calculation (     ). If the pure shear loading goes on, the shear traction    

keeps approaching    (     ) and the behavior is plastic.  

The arctangential function       
     

   counts with non-linear elastic behavior of the material after 

crack is initiated which describes behavior of bridging fibers that tie the two crack faces together. 

This assumption of bridging fibers is more suitable for crack type CT1 than CT2. 

To conclude, the arctangential function       
     

   is advantageous to use as it not only enables a 

smooth transition from the stress state on the failure surface to the proposed cracking cohesive 

relationship, but also it is limited by shear strength   .  

4.8 Critical crack opening       

In the proposed model, critical crack opening       is a parameter that determines a complete 

separation of crack surfaces both in   and   direction. 

Here, critical crack opening       is calculated for the normalized Reinhardt–Hordijk softening curve 

(Reinhardt et al., 1986). The area under the normalized Reinhardt–Hordijk curve is for default 

parameters 0.1947. The fracture energy    can be evaluated as  

                  [65] 

where    is tensile strength. 

When a material is described by tensile strength    and fracture energy   , the critical crack 

opening       can be evaluated as  

 
      

       

  
 [66] 

4.9 Crack unloading/reloading cycle 

This subchapter describes basic principles of unloading/reloading and their implementation in the 

2D constitutive model developed in this work.  

To consider unloading/reloading cycles in the calculation, a history variable   is introduced as a 

sum of positive increments of crack strain     (maximum previously reached   ). Linear 

unloading/reloading is the simplest approach. Three basic types of unloading are presented in 

Figure 49. 

 

   

(a) (b) (c) 

Figure 49 – Basic types of unloading/reloading cycles: permanent crack strain    (a), partial reduction 

of    due to crack closure (the most realistic case) (b), complete reduction of    due to crack closure 
(c) (Jirásek, 2012) 
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In the constitutive model developed in this work, the crack unloading/reloading is intended for one 

cycle and it needs to be tested in more details for further use. 

The implementation of unloading into the developed model is depicted in the following text: 

- A new internal variable   is introduced. This variable expresses a sum of all positive 

increments of crack strain vector     
  that are not part of unloading/reloading cycle (see 

Figure 50a). 

- In the first step of unloading, the calculated value of     
  is rectified by means of a new 

calculation of     
  where is used a function           

    instead of cohesive law function 

      
  . The function       

     
   is considered the same both for loading and unloading. 

 The function           
   is based on simplified assumption of complete reduction of     

  

due to crack closure (Figure 49c). This function includes a constant value of the starting 

point (S) of unloading expressed by an actual value of normal traction at point S (    ) and 

the value of internal variable   at point S (  ) (Figure 50b) as follows 

 
          

   
     

   
   
  [67] 

- The next steps of unloading are calculated directly on the basis of            

[          
           

     
   ]  until the last step of unloading/reloading cycle is finished. 

Then, the calculation is again the same as before the unloading/reloading cycle until the 

next negative increment of normal crack strain    
  is calculated. 

 

  

(a) (b) 

Figure 50 – Unloading/reloading function           
  : Internal variable   as a sum of all positive 

increments     
  (a), input values of           

   at point S (b) 

 

4.10 Characteristic length     

In smeared crack model, characteristic length     [mm] is a size of an element across which a 

fictious crack is smeared. The parameter of     relates crack opening (  ,   ) [mm] and crack strain 

components (   
 ,    

 ) [-], respectively, as follows 

          
  [68] 

          
  [69] 

In finite element calculations, the value of     is often related to the area of a finite element. 

(Feenstra, 1993).  

Generally, characteristic length     is not a material property (length) that can be measured. It is 

derived from three different material properties and therefore it can be regarded as a material 

property. The characteristic length is defined as 

 
    

   

  
  [70] 
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where   is modulus of elasticity in the respective direction [MPa],    is fracture energy [N/mm] and 

   is tensile strength [MPa]. 

If the value of characteristic length     is higher than a limit value        , snap-back occurs in the 

calculation. An effect of snap-back is shown in Figure 51 for load – displacement curve. When 

elastic region of the curve is abandoned, snap-back occurs with negative increments of 

displacement and load at the same time.  

 

 

Figure 51 – Non-linear response: snap-back in load (L) – displacement (d) curve  

 

To avoid snap-back e.g. in a stress-strain relation, the derivative of the stress-strain curve after the 

maximum stress is reached must be negative. The influence of characteristic length     on stress-

strain curve is shown in Figure 52. It can be observed that the higher is the value of    , the closer is 

the softening part of the curve to snap-back. 

 

 

Figure 52 – Stress-strain curve    -    calculated by the proposed model for 1D inputs             ,  

     ,       mm,        mm 

 

4.11 Transformation between coordinate systems 

In the model developed in this work, for transformation between local (   ) and global (   ) 

coordinates was used rotation matrix  . This rotation matrix for counterclockwise transformation by 

an angle   of strain and stress second order tensor in 2D (    ) is defined as follows 

 
     (

         
        

) [71] 

The transformation of stress or strain second order tensor from global (G) to local (L) coordinates 

counterclockwise can be calculated as follows 
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          (    )
 
 [72] 

          (    )
 
 [73] 

The transformation of stress or strain second order tensor from local (L) to global (G) coordinates 

clockwise can be calculated as follows 

 
   (    )

  
  ((    )

 
)
  

 [74] 

 
   (    )

  
  ((    )

 
)
  

 
[75] 

Rotation matrix for counterclockwise transformation by an angle   of a stiffness matrix (Voigt’s 

notation of fourth order stiffness tensor) in 2D (  ) is defined as follows 

 

   (

                       

                      

                                      

) [76] 

The transformation of stiffness matrix   from global (G) to local (L) coordinates counterclockwise 

and then back from local (L) to global (G) coordinates clockwise can be calculated as follows  

        
      [77] 

         
          

   [78] 

4.12 Computational Newton-Raphson method  

In the proposed constitutive model, Newton-Raphson method is used for solving a set of two non-

linear equations (Eq. [49]) used in the calculation of fixed crack model as it is not possible to find a 

direct solution. 

Generally, an iterative procedure to solve a non-linear problem which is rewritten in incremental 

form is called incremental-iterative (or prediction-correction) procedure. An example of this method 

is the Newton-Raphson (N-R) method (tangent stiffness method) where the stiffness matrix is 

updated after each iteration. Basic description of this method is as follows: 

- given:  ̅   
   

,  ̅   
   

,  ̅   
   

, … 

- to find:     ,     ,     , … 

- such that:        
       ̅   

   
;             

An example of N-R method calculation for a known size of step ( ̅   
   

 -  ̅   
     

) and a known non-

linear function        
       ̅   

   
 is shown for the first iteration (Figure 53) and second iteration 

(Figure 54) within the first step  . The iteration process for a step   is terminated if a chosen 

condition is fulfilled, e.g. ( ̅   
   

  ̅   
           . 
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Figure 53 – An example of the first iteration within the first step of N-R method calculation for a known 

size of step ( ̅   
   

 -  ̅   
     

) and a known non-linear function        
       ̅   

   
  

 

 

Figure 54 – An example of the second iteration within the first step of N-R method calculation for a 

known size of step ( ̅   
   

 -  ̅   
     

) and a known non-linear function        
       ̅   

   
  

 

N-R method was used in the developed model for a loop of equations ([50] - [49] - [50] - [49] …) 

where was established a new variable   and its increment  ̇ (in Voigt’s notation) for the purpose of 

iterations as follows: 

       
     [79] 

  ̇      
   ̇  [80] 

An example of N-R method in the developed model calculation for 2 steps where the first 

component of  ̇ vector ( ̇   ) and the actual value of the first component of   vector      were 

known is shown in Figure 55. In this Figure, the curve      represents the iterated function 

 (     )    (     )           , lines s(1)_iterN_Step1,2 represent the actual value of the 

function  (     ) calculated for an iteration of the appropriate step and polylines s(1)_Step1,2,3 

represent a known increment of the auxiliary function  ̇    for the respective step. All variables 

used in this iteration are considered in local coordinates. 
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Figure 55 – An example of N-R method calculation for known increments of auxiliary function  ̇    and 

a known non-linear function        (     )            

 

4.13 Code scheme 

The proposed model calculation consists of two main parts: elastic calculation (EL) and fixed 

smeared crack calculation (SC). A code scheme of the model is briefly outlined in the following text: 

 input data (1): loading path in the form of strain increments (  ), 

 input data for EL (2): definition of elastic orthotropic material parameters (strength  , 

modulus of elasticity  , Poisson’s ratio  ) and assembly of compliance (  ) and stiffness 

matrix (  ) in global coordinates, 

 input data for SC (3): critical crack opening (     ) and characteristic length (   ) for crack 

types CT1 and CT2, 

 A. ELASTIC CALCULATION (EL): 

 calculation of peak values of stress (  ), strain (  ) and strain for the second part of 

the mixed (EL-SC) step (        )  which is used as strain increment for the first SC 

step,  

 definition of crack type (CT1, CT2) by means of failure surface ( 
   

) and the crack 

type function ( 
  

),  

 calculation of unit normal vector ( ) and crack normal deviation angle ( ) at the crack 

initiation state, normal and shear traction in local coordinates (           ), 

 input data for SC (4): transformation of peak values of stress and strain and stiffness matrix 

from global to local coordinates, 

 input data for SC (5): determination of transformation matrix ( ), acoustic matrix (  ), 

tangent crack stiffness matrix (  ), functions for cohesive law (     ), approximation of 

crack strain vector at crack initiation (    ), 

 B. SMEARED CRACK CALCULATION (SC): cyclic calculation for each loading step   : 

 calculation of crack strain increment (   ) by an iterative method,  

 unloading/reloading part of the calculation (chapter 4.9), 

 stress increments (  ) and total stress ( ) in local coordinates, tangent stiffness 

matrix in local coordinates (     ), 

 transformation of calculated stress and tangent stiffness matrix into global 

coordinates, 

 output graphs and files.  
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Full version of the MATLAB code of the developed model is available in Appendix 2. 

4.14 Input data 

This chapter summarizes input data for developed 2D constitutive model such as elastic material 

characteristics of several species of hardwoods and softwoods (strength, MoE, Poisson’s ratio), 

treshold angle         , characteristic length    , fracture energy    and critical crack opening      .  

Basic average material characteristics of spruce (Picea abies) based on Požgaj et al. (1993), 

chestnut (Castanes Sativa Mill.) according to Sousa (2012) and Bartůňková (2010) enhanced by 

values of deciduous species D70 according to ČSN EN 338 are introduced in Table 5. 

 

Table 5 – Average elastic material characteristics of spruce (Picea abies) and oak (Quercus L.) 
according to Požgaj et al. (1993), chestnut (Castanea sativa Mill.) according to Sousa (2012) and 

Bartůňková (2010), deciduous species D70 according to ČSN EN 338 and approximate values (a. v.) 

of chestnut at       

Species 
Strength [MPa] MoE in tension [MPa] Poisson’s ratio [-] 

                       

Spruce          74.4 2.2 6.7 14 956 3 088 573 0.023 

Chestnut 73.0 - - 13 048 - - - 

D70 71.3 1.0 10.2 20 000 1 330 1 250 - 

Oak 132.4 5.8 5.8 - - - 0.014 

Chestnut (a. v.)  73.0 3.4 8.0 13 048 1 330 1 250 0.014 

 

In the proposed model, treshold angle          defines which crack type was initiated at the crack 

initiation state. It is set to            .  

Characteristic length     is set to        mm for CT1 and        mm for CT2 for spruce. 

The value of critical crack opening of spruce for crack type CT2           was calculated according 

to the equation [66]. The value of fracture energy    was approximated by means of mean value of 

fracture energy of Eastern Canadian spruce measured on end-tapered double cantilever beam 

specimens by wedge-splitting test method in Vasic and Smith (2001). The value of tensile strength 

in normal direction to the crack plane of CT2 is            . Due to lack of available experimental 

data, critical crack opening of spruce for CT2 was calculated using a simplified estimation that 

                    . 

In case of chestnut, critical crack opening for CT1 is considered according to tension test results 

               mm (Appendix 1) and           is calculated as                        and fracture 

energy is obtained by relation [65], see Table 6. 

 

Table 6 – Critical crack opening for crack type CT1 and CT2 (         ,          ) for spruce and 

chestnut timber used in the proposed model; values written in bold are based on Vasic and 
Smith (2001), Bartůňková (2010) and Požgaj et al. (1993) while the others are computed from them 

Species 

Crack type CT1 Crack type CT2 

       

[N/mm] 

    

[N/mm
2
] 

          

[mm] 

       

[N/mm] 

    

[N/mm
2
] 

          

[mm] 

Spruce          6.519 74.4 0.45 0.064 2.2 0.15 

Chestnut 2.558 73.0 0.18 0.012 1.0 0.06 
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5. Results  

Results obtained by the developed 2D homogeneous constitutive model are presented in this 

chapter. The first part of this chapter describes verification of the proposed model by comparison of 

results obtained from different load cases where isotropic and slightly orthotropic material input 

data were used. In the second part of this chapter are presented and discussed results of the 

proposed model for different load cases (LCs) and crack types (crack across fibers CT1, crack 

along fibers CT2) where orthotropic material of spruce was considered. Last part of this chapter 

describes model performance during unloading/reloading cycle. 

 In calculations of fixed crack model were used the following softening functions: 

- Reinhardt–Hordijk cohesive law in   direction     nn
c  , 

- arctangential function of       
     

  , 

- input data an orthotropic material of spruce (chapter 4.14). 

5.1 Model performance with isotropic material properties 

The constitutive model developed in this work was verified by comparing results obtained under 

different loading paths for isotropic material input data shown in the form of compliance matrix as 

follows    
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 [81] 

where   is compliance matrix,   is Young modulus of elasticity [MPa] (in both   and   direction),   

is shear modulus [MPa] and   is Poisson’s coefficient [-]. These material characteristics were used 

in load cases V1, V2 and V3 while in V4 was considered minor anisotropy in the form of slightly 

different values of Young modulus in   and   direction         . 

5.1.1 LC V1:     and then     , CT1,       

Load case V1 prescribes increments of strain    
         for step 1 and    

            for 

steps 2-10 and then     
             for steps 11-20 while       (Figure 56a). The results are 

plotted in Figure 56 - Figure 61. Figure 56b shows the course of crack opening first in   direction and 

then in   direction as the load is applied in   and   direction which is in fact   and   direction, 

respectively. Due to non-zero  , stress results in   direction (  ) is non-zero. Stress-strain curves 

(Figure 57) in non-elastic region (after the peak stress is reached) correspond to the course of 

iterated normal traction    (Figure 58) and shear traction    (Figure 59) based on iterated values of 

iteration functions      and      (Figure 60 and Figure 61). In Figure 58 - Figure 61 are marked 

points of changes A (crack initiation), B (end of uniaxial loading and start of pure shear) and C (end 

of loading). 
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(a) (b) 

Figure 56 – LC V1: Course of loading run by strain increments    ,    ,      (a), development of crack 

opening    with respect to    (b) 

 

 
 

 

(a) (b) (c) 

Figure 57 – LC V1: Stress-strain curves        (a),        (b),          (c) 

 

 

Figure 58 – LC V1: Iterated normal traction         and normal traction function       
   (          ) 
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Figure 59 – LC V1: Iterated shear traction         and shear traction function       
     

   (          ) 

 

 

Figure 60 – LC V1: Iteration function     : iterated (        ) and the precise function (           ) 

  

 

Figure 61 – LC V1: Iteration function     : iterated (        ) and the precise function (           ) 

 

5.1.2 LC V2:     and then     , CT2,       

Load case V2 prescribes increments of strain in global coordinates    
         for step 1 and 

   
            for steps 2-10 and then     

             for steps 11-20 while       (see 

Figure 62a). The prescribed strain in local coordinates ( ,  ) for LC V2 is the same as the 

prescribed strain in global coordinates ( , ) for LC V1. They both are compared in Figure 62a and 
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Figure 62b. It can be observed that for LC V2 in global coordinates are prescribed positive 

increments       and        (     ) while in local coordinates is strain vector rotated and 

thus the increment of shear strain is negative        and that of normal strain in   direction is 

positive       (     ).  

The course of crack opening is shown in Figure 62c where the crack opens first in   direction and 

then in   direction. The values of crack opening    are the same as in LC V1 (  
     

  ) while 

  
      

   due to the opposite orientation of prescribed      in local and global coordinates. 

Stress-strain curves       ,        and          in LC V2 (Figure 63) correspond to       , 

       and          in LC V1 (Figure 57). 

Results in local coordinates for normal    and shear traction    and iteration functions     ,      

depend on negative shear crack strain (   
   ), see Figure 64 - Figure 67. In Figure 64 - Figure 67 

are marked points of changes A (crack initiation), B (end of uniaxial loading and start of pure shear) 

and C (end of loading).Thus, normal traction    being independent of    
  is defined in CT2 in the 

same way as in CT1 while    is defined in CT2 as an odd function to    in CT1.  

 

 

  

(a) (b) (c) 

Figure 62 – LC V2: Course of loading strain in global coordinates    ,    ,      (a), sum of strain 

increments in smeared crack region in local coordinates          ,          ,            (b), development of 

crack opening    with respect to    (c) 

 

   

(a) (b) (c) 

Figure 63 – LC V2: Stress-strain curves in global coordinates        (a),        (b),          (c) 
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Figure 64 – LC V2: Iterated normal traction         and normal traction function       
   (          ) 

 

 

Figure 65 – LC V2: Iterated shear traction         and shear traction function       
     

   (          ) 

 

 

Figure 66 – LC V2: Iteration function     : iterated (        ) and the precise function (           )  
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Figure 67 – LC V2: Iteration function     : iterated (        ) and the precise function (           ) 

 

5.1.3 LC V3:     and then     , CT1,        

Load case V3 prescribes strain increments for step 1    
             ,    

             and 

    
             in order to initiate crack deviated by       from positive   axis. For this 

purpose, the treshold angle is set to             . 

The rest of the loading increments is derived from the global strain increments of LC V1 (   
  ) 

which are equal to local strain increments of LC V2 (   
  ). In order to use these strain increments 

in local coordinates for LC V3, they must be prescribed as global strain increments    
  . Thus, the 

strain increments    
      

   are transformed in global strain increments    
   as follows 

 
   

  
              
→               

    [82] 

The strain increment was calculated as follows 

    
                                  ;     

                                   [83] 

The loading is shown in Figure 68 in global and local coordinates. 

It is important to mention that to initiate crack type CT1 across the grain at crack normal deviation 

angle      and at      , the loading in elastic region must be different. Due to the fact, that in 

fixed smeared crack calculation is used the value of total strain (the sum of elastic and crack strain) 

both in elastic and inelastic region, it is necessary to replace calculated values of stress and strain 

in point peak in LC V3 by the values obtained in LC V1. In this way, the results can correspond. 

Furthermore, we can verify that calculated stress increments in local coordinates in LC V3 are the 

same as in LC V1 (Figure 69 and Figure 57) (where local and global coordinates are identical) if we 

compare the course of sum of increments in inelastic region of stress (       ) and strain (       ).  

The results in local coordinates for normal traction    and shear traction    (Figure 58, Figure 59) 

and iteration functions      and      (Figure 60 and Figure 61) are the same as in LC V1 or LC V2.  
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(a) (b) 

Figure 68 – LC V3: Course of sum of strain increments in smeared crack region in local coordinates 

         ,          ,            (a), strain increments in global coordinates    ,    ,      (b) 

 

  

 

(a) (b) (c) 

Figure 69 – LC V3: Course of sum of increments in smeared crack region in local coordinates:           

-           (a),           -            (b),            -             (c) 

 

5.1.4 LC V4:     and then     , CT1,      , minor orthotropy  

Load case V4 considers minor orthotropy of the material in the form of         . Other material 

parameters are the same as in LC V1 – V3. Prescribed strain increment for the first step is 

   
             ,    

             and     
             which is very near to the values in 

LC V3. These values were calculated considering minor orthotropy for crack type CT1 under 

     .  

The rest of the prescribed deformation increments is identical with LC V3. As the loading path of 

LC V4 is almost the same as the loading path in LC V3 and the orthotropy in LC V4 is almost 

negligible, almost no difference in results is noticed. For this reason, only course of sum of 

increments of stress and strain in smeared crack region in local coordinates (Figure 70) are 

presented in this subchapter.  

From visual comparison of sum of increments of stress and strain in smeared crack region in local 

coordinates for LC V4 (Figure 70) and LC V3 (Figure 69) can be concluded, that resulting 

increments          slightly decreased as modulus of elasticity    was decreased in LC V4. 

Orthotropic material parameters caused that local stiffness matrix has its elements (1,3), (2,3), (3,1) 

and (3,2) non-zero and thus resulting shear stress     is influenced not only by shear strain 

increments      but also by normal strain increments     and    . Similarly, stress    is influenced 
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by      and    . Local and global stiffness matrices (  
 ,   

 ) are evaluated for this load case in 

Eq. [84] and Eq. [85]. 

 

  

 

(a) (b) (c) 

Figure 70 – LC V4: Course of sum of increments of stress and strain in smeared crack region in local 

coordinates:           -           (a),           -            (b),            -             (c) 

 

 

  
  (

              
               
             

) [84] 

 

  
  (

            
            

       
) [85] 

5.2 Model performance with orthotropic material properties 

This subchapter describes and discusses results for different load cases (LC) that were obtained 

by the developed constitutive model with orthotropic material parameters. Load cases are denoted 

LC CT1-x if they cause a crack across the fibers (CT1) with crack normal deviation from the grain 

by an angle   [           ] and LC CT2-x if they cause a crack along the fibers (CT2) with crack 

normal deviation from the grain by an angle      .  

5.2.1 LC CT1-1:    ,      (pure tension parallel to grain)    

Load case CT1-1 prescribes strain increments    
              for all 20 load steps (Figure 71a). 

Poisson‘s coefficient is set to zero (         ). In Figure 71 - Figure 77, results for LC CT1-1 are 

plotted.  

Crack opens only in   direction (    ) while in   direction is closed (    ), see Figure 71b. Due 

to zero Poisson’s ratio and loading path, the only non-zero stress component is    (Figure 72, 

Figure 73a). In Figure 73b, development of non-zero elements of tangent stiffness matrix     is 

shown. Non-zero values are obtained in calculation for iterated normal traction    while shear 

traction    is zero. Stress-strain curves in smeared crack region (after the peak stress is reached) 

correspond to the course of iterated components of traction vector    (Figure 74) and     (Figure 75) 

based on iterated values of iteration functions      and      (Figure 76 and Figure 77). Turning 

points A (crack initiation) and B (end of loading path) are denoted in Figure 74 - Figure 77. 

In case Poisson’s ratio is non-zero (             ), calculated stress    is also non-zero and 

influenced by    , see Figure 78.   
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(a) (b) 

Figure 71 – LC  CT1-1: Course of loading run by strain increments , ,  (a), development of 

crack opening  with respect to  (b) 

 

 

 

(a) (b) 

Figure 72 – LC  CT1-1: Stress-strain curve  (a),  (b) 

 

  

(a) (b) 

Figure 73 – LC  CT1-1: Stress-strain curve  (a), development of non-zero elements of tangent 

stiffness matrix  (b) 
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Figure 74 – LC  CT1-1: Iterated normal traction         and normal traction function       
   (          ) 

 

 

Figure 75 – LC  CT1-1: Iterated shear traction         and shear traction function       
     

   (          ) 

 

 

Figure 76 – LC  CT1-1: Iteration function     : iterated (        ) and the precise function (           ) 
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Figure 77 – LC  CT1-1: Iteration function     : iterated (        ) and the precise function (           ) 

 

 

Figure 78 – LC  CT1-1: Stress-strain curve        if               

 

5.2.2 LC CT1-2:     and then     ,       

Load case CT1-2 prescribes strain increments    
            and    

             for load 

steps 1-10 and 11-20 (Figure 79a). Results for this LC CT1-2 are plotted in Figure 79 – Figure 85.  

Crack opens in   direction (    ) if        and in   direction (    ) if         (Figure 79b). 

Stress-strain curves are plotted in Figure 80 and Figure 81.  

Course of the calculation is expressed by means of iterated components of traction vector    and 

   (Figure 82, Figure 83) and iterated values of iteration functions      and      (Figure 84 and 

Figure 85).In Figure 82 - Figure 85 are denoted turning points A (crack initiation), B (end of pure 

tension, start of pure shear), C (value of critical crack opening       is reached) and D (end of 

loading path). It can be observed that crack stops transferring stresses at point C as stress   and 

iterated components of traction vector (       ,        ) drop to zero.  
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(a) (b) 

Figure 79 – LC  CT1-2: Course of loading run by strain increments    ,    ,      (a), development of 

crack opening    with respect to    (b) 

 

  

(a) (b) 

Figure 80 – LC  CT1-2: Stress-strain curve        (a),        (b) 

 

 

Figure 81 – LC  CT1-2: Stress-strain curve           
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Figure 82 – LC  CT1-2: Iterated normal traction         and normal traction function       
   (          ) 

 

 

Figure 83 – LC  CT1-2: Iterated shear traction         and shear traction function       
     

   (          ) 

 

 

Figure 84 – LC  CT1-2: Iteration function     : iterated (        ) and the precise function (           ) 
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Figure 85 – LC  CT1-2: Iteration function     : iterated (        ) and the precise function (           ) 

 

5.2.3 LC CT1-3:          ,         

LC CT1-3 prescribes strain increments    
          ,    

            and     
            

(Figure 86a). First two steps ensure the crack type CT1 and crack normal deviation angle        

of an initiated crack. Results for this LC CT1-3 are plotted in Figure 86 - Figure 92.  

Crack opens in both   and   direction (     and     ) for       and        (Figure 86b). 

Stress-strain curves are plotted in  Figure 87 and Figure 88 where can be observed that the shape 

of stress-strain curve with respect to    is very similar to that with respect to    .  

Course of the calculation is expressed by means of iterated components of traction vector    and 

   (Figure 88, Figure 89) and iterated values of iteration functions      and      (Figure 91 and 

Figure 92). In Figure 88 - Figure 85 are denoted turning points A (crack initiation), B (value of critical 

crack opening       is reached) and C (the end of the loading path). It can be observed that crack 

stops transferring stresses at point C as stress   and iterated components of traction vector (       , 

       ) drop to zero.  

 

  

(a) (b) 

Figure 86 – LC  CT1-3: Course of loading run by strain increments    ,    ,      (a), development of 

crack opening    with respect to    (b) 
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(a) (b) (c) 

Figure 87 – LC  CT1-3: Stress-strain curves        (a),        (b),         (c) 

 

 
  

(a) (b) (c) 

Figure 88 – LC  CT1-3: Stress-strain curves         (a),         (b),          (c) 

 

 

Figure 89 – LC  CT1-3: Iterated normal traction         and normal traction function       
   (          ) 
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Figure 90 – LC  CT1-3: Iterated shear traction         and shear traction function       
     

   (          ) 

 

 

Figure 91 – LC  CT1-3: Iteration function     : iterated (        ) and precise (           ) 

 

 

Figure 92 – LC  CT1-3: Iteration function     : iterated (        ) and precise (           ) 

 

5.2.4 LC CT1-4:     or      ,       

Load case CT1-4 prescribes strain increments for different steps    
       

            , 

    
        

             and     
             (Figure 93a). The results are plotted in Figure 93 

- Figure 99.  

Crack opens in   or   direction if       or         , see Figure 93b. Stress-strain curves are 

plotted in Figure 94 and Figure 95 where can be observed that     does not influence     and      

does not influence   .  
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Course of the calculation is expressed by means of iterated components of traction vector    and 

   (Figure 96, Figure 97) and iterated values of iteration functions      and      (Figure 98 and 

Figure 99). In Figure 96 - Figure 99 are denoted turning points A (crack initiation), B (end of    , 

beginning of      ), C (beginning of      ), D (beginning of    ), E(end of    , beginning of      ) 

and F (end of loading path). It can be observed that the crack does not reach its critical opening 

      and thus it can transfer all stresses during the whole loading path.  

 

 
 

(a) (b) 

Figure 93 – LC  CT1-4: Course of loading run by strain increments    ,    ,      (a), development of 

crack opening    with respect to    (b) 

 

  
 

(a) (b) (c) 

Figure 94 – LC  CT1-4: Stress-strain curves        (a),        (b),         (c) 

 

  
 

(a) (b) (c) 

Figure 95 – LC  CT1-4: Stress-strain curves         (a),         (b),          (c) 
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Figure 96 – LC  CT1-4: Iterated normal traction         and normal traction function       
   (          ) 

 

 

Figure 97 – LC  CT1-4: Iterated shear traction         and shear traction function       
     

   (          ) 

 

 

Figure 98 – LC  CT1-4: Iteration function     : iterated (        ) and the precise function (           ) 

 

 

Figure 99 – LC  CT1-4: Iteration function     : iterated (        ) and the precise function (           ) 
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5.2.5 LC CT2-1:    ,       (pure tension perpendicular to the grain)    

Load case CT2-1 prescribes strain increments    
            (Figure 100a). Behavior of the 

material in CT2 under load conditions CT2-1 (pure tension perpendicular to the grain) is analogical 

to LC CT1-1 (pure tension parallel to grain). The difference consists in rotation between local and 

global coordinates. The results are plotted in Figure 100 – Figure 105.  

Crack opens only in   direction as      , see Figure 100b. Stress-strain curves are plotted in  

Figure 101 where can be observed that     does not influence     (     ).   

Course of the calculation is expressed by means of iterated components of traction vector    and 

   (Figure 102 and Figure 103, respectively) and iterated values of iteration functions      and      

(Figure 104 and Figure 105, respectively).In Figure 102 - Figure 105 are denoted turning points A 

(crack initiation), B (value of critical crack opening       is reached) and C (end of loading path). It 

can be observed that the crack reaches its critical opening       in   direction and thus no sudden 

drop in stress occurs and the course of stress is continuous.  

 

  

(a) (b) 

Figure 100 – LC  CT2-1: Course of loading run by strain increments    ,    ,      (a), development of 

crack opening    with respect to    (b) 

 

 
 

 

(a) (b) (c) 

Figure 101 – LC  CT2-1: Stress-strain curves        (a),        (b),         (c) 
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Figure 102 – LC  CT2-1: Iterated normal traction         and normal traction function       
   (          ) 

 

 

Figure 103 – LC  CT2-1: Iterated shear traction        , shear traction function       
     

   (          ) 

 

 

Figure 104 – LC  CT2-1: Iteration function     : iterated (        ) and the precise function (           ) 
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Figure 105 – LC  CT2-1: Iteration function     : iterated (        ) and the precise function (           ) 

 

5.2.6 LC CT2-2:          ,        

Load case CT2-2 prescribes strain increments    
           ,     

            and     
      

       (Figure 106a). Behavior of the material in LC CT2-2 is analogical to LC CT1-3. The 

difference consists in rotation between local and global coordinates and its impact on stiffness 

matrix. The results are plotted in Figure 106 - Figure 112.  

Crack opens only in both    and   direction as       and       , see Figure 106b. Stress-strain 

curves are plotted in Figure 107 and Figure 108. It ought to be noticed that course of     is similar to 

the course of    not due to the shape of softening function of cohesive law    but due to its path on 

the surface   . The values of         are negative but the calculated stress is finally positive as their 

values in local coordinates are transformed into global coordinates. 

Course of the calculation is expressed by means of iterated components of traction vector    and 

   (Figure 109, Figure 110) and iterated values of iteration functions      and      (Figure 111, 

Figure 112). In Figure 109 and Figure 110 can be observed that the values of    and    at the crack 

initiation state are non-zero. In Figure 109 - Figure 112 are denoted turning points A (crack 

initiation), B (decrease in      and reach of critical opening       in   direction) and C (end of 

loading path). It can be observed that the crack reaches its critical opening       in   direction and 

thus a sudden drop in stress occurs and the course of stress is not continuous.  

 

  

(a) (b) 

Figure 106 – LC  CT2-2: Course of loading run by strain increments    ,    ,      (a), development of 

crack opening    with respect to    (b) 
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(a) (b) (c) 

Figure 107 – LC  CT2-2: Stress-strain curves        (a),        (b),         (c) 

 

 
  

(a) (b) (c) 

Figure 108 – LC  CT2-2: Stress-strain curves         (a),         (b),          (c) 

 

 

Figure 109 – LC  CT2-2: Iterated normal traction         and normal traction function       
   (          ) 
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Figure 110 – LC  CT2-2: Iterated shear traction        , shear traction function       
     

   (          ) 

 

 

Figure 111 – LC  CT2-2: Iteration function     : iterated (        ) and the precise function (           ) 

 

 

Figure 112 – LC  CT2-2: Iteration function     : iterated (        ) and the precise function (           ) 

 

5.2.7 LC CT2-3:     or      ,         

LC CT2-3 prescribes strain increments    
       

            ,     
        

             and 

    
             (Figure 113a). Behavior of the material in LC CT2-3 is analogical to LC CT1-4. 

The difference consists in rotation between local and global coordinates. The results are plotted in 

Figure 113 - Figure 119.  

Crack opens only in    direction if       and in   direction if       , see Figure 113b. Stress-

strain curves are plotted in Figure 114 and Figure 115. It can be remarked that in Figure 115c is 
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shown how the shear stress     behaves for a certain level of crack opening   . The less is the 

crack opened in   direction, the higher is the slope of          curve. 

The course of the calculation is expressed by means of iterated components of traction vector    

and    (Figure 116, Figure 117) and iterated values of iteration functions      and      (Figure 118, 

Figure 119). In Figure 116 - Figure 119 are denoted turning points A (crack initiation), B (end of    , 

beginning of      ), C (beginning of      ), D (end of      , beginning of    ), E (end of    , 

beginning of      ) and F (end of loading path).  

 

  

(a) (b) 

Figure 113 – LC  CT2-3: Course of loading run by strain increments    ,    ,      (a), development of 

crack opening    with respect to    (b) 

 

 
 

 

(a) (b) (c) 

Figure 114 – LC  CT2-3: Stress-strain curves        (a),        (b),         (c) 

 

 
 

 

(a) (b) (c) 

Figure 115 – LC  CT2-3: Stress-strain curves         (a),         (b),          (c) 
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Figure 116 – LC  CT2-3: Iterated normal traction         and normal traction function       
   (          ) 

 

 

Figure 117 – LC  CT2-3: Iterated shear traction        , shear traction function       
     

   (          ) 

 

 

Figure 118 – LC  CT2-3: Iteration function     : iterated (        ) and the precise function (           ) 
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Figure 119 – LC  CT2-3: Iteration function     : iterated (        ) and the precise function (           ) 

 

5.2.8 LC CT2-4:     ,       (pure shear)  

Load case CT2-4 prescribes only positive shear strain increments     
           for steps 1-3 

and     
            for steps 4-20 (Figure 120a). Behavior of the material under shear is in this 

model considered as non-linear elastic. It is assumed that after crack initiation, the remaining 

bridging fibers do not behave in the manner of sliding friction but in a non-linear elastic way. This 

assumption seems to be suitable for CT1 while for CT2 less because in case of crack parallel to 

grain, there is less amount of bridging fibers as the fibers run in parallel.  The results are plotted in 

Figure 120 - Figure 125.  

Crack opens (slides) in    direction as       , see Figure 120b. Stress-strain curves are plotted in 

Figure 121 where is shown that with growing shear strain        is non-zero only shear stress 

that keeps constant after reaching shear capacity   . 

Course of the calculation is expressed by means of iterated components of traction vector    and 

   (Figure 122 and Figure 123, respectively) and iterated values of iteration functions      and      

(Figure 124, Figure 125).In Figure 122 - Figure 125 are denoted turning points A (crack initiation), B 

(reach of critical crack opening       in   direction) and C (end of loading path). It can be remarked 

that the function       
   is in this case zero because the value of normal traction at crack initiation 

is zero (       ). 

 

 
 

(a) (b) 

Figure 120 – LC  CT2-4: Course of loading run by strain increments    ,    ,      (a), development of 

crack opening    with respect to    (b) 
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(a) (b) (c) 

Figure 121 – LC  CT2-4: Stress-strain curves         (a),         (b),          (c) 

 

 

Figure 122 – LC  CT2-4: Iterated normal traction         and normal traction function       
   (          ) 

 

 

Figure 123 – LC  CT2-4: Iterated shear traction        , shear traction function       
     

   (          ) 
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Figure 124 – LC  CT2-4: Iteration function     : iterated (        ) and the precise function (           ) 

 

 

Figure 125 – LC CT2-4: Iteration function     : iterated (        ) and the precise function (           ) 

 

5.3 Model performance during unloading/reloading cycle 

An example of results for unloading/reloading path (LC UNL) is presented in the following text. This 

Load case prescribes strain increment    
         for the step 1,    

       
            , 

   
               and     

             (Figure 126a). The results are plotted in Figure 126 - 

Figure 131.  

Crack opens and close in    direction if       or      , respectively, and in   direction if 

      , see Figure 126b. Stress-strain curves are plotted in Figure 127. It can be remarked that in 

Figure 127a and Figure 127b is shown the unloading cycle path as a line edging to the origin of 

coordinates.  

Course of the calculation is expressed by means of iterated components of traction vector    and 

   (Figure 128, Figure 129) and iterated values of iteration functions      and      (Figure 130, 

Figure 131). In Figure 128 is displayed the unloading function for   direction       . In Figure 128 - 

Figure 131 are denoted turning points A (crack initiation), B (beginning of unloading cycle with 

     
 ), C (the middle of unloading cycle, beginning of      

 ), D (the end of unloading cycle, 

beginning of      ), E (beginning of      and      ) and F (end of the loading path).  
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(a) (b) 

Figure 126 – LC  UNL: Course of loading run by strain increments    ,    ,      (a), development of 

crack opening    with respect to    (b) 

 

  
 

(a) (b) (c) 

Figure 127 – LC  UNL: Stress-strain curves        (a),        (b),          (c) 

 

 

Figure 128 – LC  UNL: Iterated normal traction         and normal traction function       
   (          ) 
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Figure 129 – LC  UNL: Iterated shear traction        , shear traction function       
     

   (          ) 

 

 

Figure 130 – LC  UNL: Iteration function     : iterated (        ) and the precise function (           ) 

 

 

Figure 131 – LC  UNL: Iteration function     : iterated (        ) and the precise function (           ) 
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6. Conclusion 

This thesis has fulfilled its objectives. First, a summary of typical wood behavior and characteristics 

was provided. Second, and overview of current timber models was given together with a brief 

discussion on their applicability to the model developed in this work. Third, a two-dimensional 

homogeneous constitutive model of timber fracturing under tensile and shear loads was 

implemented in a MATLAB
®
 computer code, verified and the model performance was 

demonstrated for various load cases with isotropic and orthotropic material properties and also for 

an unloading/reloading cycle. 

 

In the proposed constitutive model, we idealize timber as a quasi-brittle material. Thus, we consider 

the material as a continuum with discontinuities (cracks). The continuous part is characterized by 

elastic orthotropic stress-strain law while traction-separation law describes the behavior of the 

discontinuities (cracks). Fixed smeared crack model is used to represent the fracture. Prior to 

cracking, wood obeys the rules of orthotropic elasticity. The proposed model considers only one 

initiated crack in material at the same time and small deformations (lower than      ). 

A crack is initiated if failure criterion is fulfilled. Whether a crack forms across (crack type 1) or 

along the grain (crack type CT2) is decided based on treshold angle between the grain direction 

and the principal stress direction. This angle is considered as a material parameter. Crack across 

the grain is perpendicular to the principal stress direction while the crack along the grain keeps 

parallel to the fibers irrespective of the principal stress direction. Consequently, at the crack 

initiation state, the crack type CT1 is exposed only to normal traction while the crack type CT2 can 

be exposed both to normal and tangential traction. After crack initiation, as the fixed crack model is 

used, the direction of the crack (CT1 or CT2) is freezed and since the principal stress axes can 

rotate, both normal and shear tractions may subsequently arise on the crack. 

Traction-separation law defining the behavior of the initiated crack is softening in normal direction 

to the crack (      
  ). In tangential direction, traction-separation law       

     
 ) is proposed using 

an arctangential function that fulfills the following assumptions: (i) the maximal value of shear 

traction    never exceeds shear strength    (     ), (ii) the function of       
     

 ) can take the 

value of    [      at the crack initiation state. Thus, traction separation law in both local directions 

( ,  ) ensures a smooth transition from the stress state on the failure surface to the proposed 

cracking cohesive relationship.  

Traction-separation law is limited in both local directions by critical crack opening (     ). If the value 

of       is trespassed in   direction, both components of traction vector (     ) continuously reach 

zero. If the same happens in   direction for normal crack opening (  ) lower than the critical value 

(        ), both components of traction vector suddenly drop to zero. 

On account of the developed model performance demonstrated for various load cases, the model 

is consistent with expected timber behavior.  

 

Suggestions for future work are as follows: 

 The developed 2D constitutive model should be validated more thoroughly against 

experimental data. This might involve a need for additional specialized experiments.  

 An enhancement of the model developed in this work to three-dimensional space can be 

carried out. 

 The developed model can be extended for arbitrary loading (tension, shear, and 

compression). 
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 The input functions of cohesive law or failure surface can be improved based on available 

experimental data. 

 After full implementation into a finite element code, this model can be used as a basis for 

the following advanced analysis approaches to timber: 

 A model that can account for the presence of inhomogeneities such as knots. For this 

purpose, the present model would be used to represent clear timber while the 

inhomogeneities would be modeled as discrete regions with different properties.  

 A model that can take into account an influence of moisture (wood drying, moisture 

induced stresses), which would be assigned as initial stress or eigen-strain. To this 

end, the moisture distribution would have to be analyzed separately using suitable 

transport model. 
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APPENDIX 1: Tension test parallel to grain of chestnut timber 

Appendix 1 is literally adopted from Bartůňková (2010). It describes tension test parallel to grain of 

hundred year old chestnut timber. The raw measured data were provided by Sousa (2012).  

Tension test is a destructive method used to determine modulus of elasticity (MoE) in tension 

parallel to grain      and tensile strength parallel to grain     . The bending test was performed 

according to European norm EN 408:2003 (Timber structures - Structural timber and glued 

laminated timber - Determination of some physical and mechanical properties) except for the time 

of failure that was considered with respect to the procedures.  

Specimens 

After completion of the bending test, two specimens were cut from each left, central and right part 

(L, C, R) of every bending specimen (A – T) except for the bending specimens H, L, P, T from 

which was cut only one specimen for each left, central and right part of the beam. There were 

made 108 tension specimens. The dimensions of the specimens were adapted from the Brazilian 

norm NBR 7190:1997 (Figure 132). 

 

 

Figure 132 – Tension specimen design (dimensions in mm) 

 

Test set up 

The test piece was supported using gripping devices which permitted as far as possible the 

application of a tensile load without inducing bending. The test was run by displacement control of 

the rate of 1 to 2 mm/min with respect to a visual assessment of the specimen tension resistance 

regarding the existence of defects. The loading equipment used was capable of measuring the load 

to the required accuracy of 1% of the load applied. Deformation was measured clip-on 

extensometer (Figure 133) over a length of five times the width of the piece, located five times the 

width to the ends of the grips. The tension test performance is presented in Figure 134. 
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Figure 133 – Scheme of the clip-on extensometer position on the tension specimen 

 

  

(a) (b) 

Figure 134 – Tension test: (a) overall arrangement, (b) detail of a specimen in grips 

  

Modulus of elasticity in tension parallel to grain (    ) 

MoE in tension parallel to grain      [N/mm
2
] is given by the equation as follows: 

 
     

         

        
 [86] 

where    is gauge length [mm] for the determination of MoE,   is cross-sectional area [mm
2
], 

(     ) is an increment of load [N] on the straight line portion of the load deformation curve, 

(     ) is an increment of deformation [mm] corresponding to (     ). 

Grips 

Clip-on 
extensometer 
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MoE in tension parallel to grain      for each specimen was calculated according to Eq. [86]. 

Precise cross-sectional dimensions in the middle of the specimens were measured by use of an 

electronic caliper. Maximum load (    ) together with clip and grip displacement were obtained 

from the tension test procedure. Increments of load and deformation were calculated on the basis 

of the load vs deformation linear regression where the square of the correlation coefficient was 

       . The linear regression was performed within an interval of (0.1 – 0.4)      of the load vs. 

displacement curve. An example of the linear regression is shown in Figure 135 for the tension 

specimen Ac1. 

 

 

Figure 135 - Load vs. (clip gauge) displacement for the specimen Ac1  

 

Tensile strength parallel to grain (    ) 

Tensile strength parallel to grain      [N/mm
2
] is given by the expression as follows 

 
     

    

 
  [87] 

where      is maximum load [N],   is cross-sectional area [mm
2
]. Tensile strength parallel to grain 

     was calculated according to Eq. [87] for each tension specimen.  

Failure modes 

The mode of failure at the fracture section of each test piece was reported. The fracture modes 

considered were distinguished according to the failure localization or presence of the nodes as 

follows 

 failure in the grip,  

 failure due to the presence of a nod,  

 failure in the middle thinner part of the tension specimen in the form of splinter, shear, 

tension failure mode or their combinations (Figure 16).  

Examples of the failure modes recognized in the tension specimens in test campaign are shown in 

Figure 136. 
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(a) (b) (c) 

Figure 136 – Examples of tension specimens failed in split (a), shear (b) and tension (c) 

  

The specimens where occurred failure in the grip or failure due to the presence of a nod were not 

included in the calculation of the resulting      and     . The coefficients of variation (CoV) of      and 

     for all the tension specimens (CoVall) and for the specimens selected with respect to the failure 

mode (CoVselected) are presented in Table 7. The CoV did not change or decrease with the selection 

of the tension specimens, especially considering the stiffness parameters in linear elastic range. 

Nevertheless, the CoV are equal or lower than the CoV of      and      (CoV [    ] = CoV [  ] = 0.13 

and CoV [    ] = 0.30) of Nordic softwood suggested by the JCSS Probabilistic model code (2006).   

 

Table 7 – Coefficients of variation of      and      for all the specimens and for the selected specimens 

  CoVall CoVselected 

     0.13 0.13 

     0.27 0.25 

 

Results 

Results obtained from the tension test (     and     ) are shown in Table 8. Mean values of      and 

     for all specimens sorted according to the failure type are shown in Table 9 where failure due to 

node shows significantly lower strength values than other modes and the values of      do not 

much differ across the failure types.  
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Table 8 – Tension test results for each beam A – T:     ,      [N/mm
2
] 

  A B C D E F G H I J 

Mean      14 427 14 374 13 509 10 888 11 907 13 735 12 726 14 735 14 033 13 359 
CoV  0.11 0.02 0.03 0.07 0.14 0.09 0.05  - 0.01 0.14 
Mean      87 68 90 62 57 79 70 65 88 82 
CoV  0.15 0.25 0.03 0.27 0.48 0.21 0.10  - 0.07 0.29 
           

  K L M N O P Q R S T 

Mean      15 198 12 666 11 569 13 785 12 829 12 673 13 204 11 179 13 978 8 372 
CoV  0.11  - 0.05 0.07 0.07 0.17 0.07 0.03 0.08  - 
Mean      78 70 59 67 55 65 87 65 85 47 
CoV  0.46  - 0.27 0.11 0.51 0.19 0.12 0.14 0.03 - 

 

Table 9 – Mean values      and      [N/mm
2
] of each failure type for all specimens A - T 

Failure Mean      Mean      

Node 13 913 48 
Grip 12 629 68 

Tension 12 564 71 
Shear 11 599 61 

Splinter 13 736 78 

 

The overall tension test results for the selected specimens A – T are presented in Table 10. Mean 

value of ft,0 is much higher than the mean value of ft,0 for class I – III defined by the Italian norm 

(UNI 11035- 2:2003). 

 

Table 10 – Overall tension test results for specimens A – T:      and      [N/mm
2
] 

  Min Max Meanselected StDevselected CoVselected 

     8 372 18 003 13 048 1 731 0.13 
     29 114 73 19 0.25 

 

In conclusion, the strength and stiffness value obtained by the tension test correspond to the class I 

defined by the Italian norm UNI 11035-2:2003. The CoV values comply with the recommendation of 

JCSS Probabilistic model code (2006). 
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APPENDIX 2: Code of constitutive model developed in MATLAB® software 

clc; clear all; close all;  fclose('all'); 

 

%--INPUTS I. 

Sig_0=[0; 0; 0] ; 

Eps_0=[0; 0; 0] ; 

%LC CT1-1:  

d_Eps_m=[2.4e-3 2.4e-3 2.4e-3 2.4e-3 2.4e-3  2.4e-3 2.4e-3 2.4e-3 2.4e-3 2.4e-3  

2.4e-3 2.4e-3 2.4e-3 2.4e-3 2.4e-3  2.4e-3 2.4e-3 2.4e-3 2.4e-3 2.4e-3; 0 0 0 0 0  

0 0 0 0 0  0 0 0 0 0  0 0 0 0 0; 0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0 0 0 0] ;  

%LC CT1-2: d_Eps_m=[0.8e-3 0.8e-3 0.8e-3 0.8e-3 0.8e-3  0.8e-3 0.8e-3 0.8e-3 

0.8e-3 0.8e-3  0 0 0 0 0  0 0 0 0 0 ; 0 0 0 0 0  0 0 0 0 0  0 0 0 0 0  0 0 0 0 

0 ; 0 0 0 0 0  0 0 0 0 0  6e-3 6e-3 6e-3 6e-3 6e-3  6e-3 6e-3 6e-3 6e-3 6e-3] ;  

%LC CT1-3: d_Eps_m=[3e-3 0 3e-3 2e-3 2e-3   2e-3 2e-3 2e-3 2e-3 2e-3   2e-3 2e-3 

2e-3 2e-3 2e-3   2e-3 2e-3 2e-3 2e-3 2e-3;0 0 0 0 0   0 0 0 0 0   0 0 0 0 0   0 0 

0 0 0 ; 0 3e-3 3e-3 3e-3 3e-3    3e-3 3e-3 3e-3 3e-3 3e-3   3e-3 3e-3 3e-3 3e-3 

3e-3    2e-3 2e-3 2e-3 2e-3 2e-3] ;  

%LC CT1-4: d_Eps_m=[5e-3 5e-3 0 0 0   0 0 0 0 0   0 0 5e-3 5e-3 0   0 0 0 0 0;0 0 

0 0 0   0 0 0 0 0   0 0 0 0 0   0 0 0 0 0 ; 0 0 2e-3 2e-3 2e-3    2e-3 2e-3 -2e-3 

-2e-3 -2e-3   2e-3 2e-3 0 0 2e-3    2e-3 2e-3 2e-3 2e-3 2e-3 ] ; 

%LC CT2-1  d_Eps_m=[0 0 0 0 0  0 0 0 0 0   0 0 0 0 0  0 0 0 0 0 ; 4e-4 4e-4 4e-4 

4e-4 4e-4   4e-4 4e-4 4e-4 4e-4 4e-4  4e-4 4e-4 4e-4 4e-4 4e-4   4e-4 4e-4 4e-4 

4e-4 4e-4 ; 0 0 0 0 0  0 0 0 0 0   0 0 0 0 0  0 0 0 0 0 ] ; 

%LC CT2-2: d_Eps_m=[0 0 0 0 0  0 0 0 0 0   0 0 0 0 0  0 0 0 0 0 ; 3e-4 3e-4 3e-4 

3e-4 3e-4   3e-4 3e-4 3e-4 3e-4 3e-4  3e-4 3e-4 3e-4 3e-4 3e-4   3e-4 3e-4 3e-4 

3e-4 3e-4 ; 5e-4 5e-4 5e-4 5e-4 5e-4   5e-4 5e-4 5e-4 5e-4 5e-4  1e-4 1e-4 1e-4 

1e-4 1e-4   1e-4 1e-4 1e-4 1e-4 1e-4 ] ; 

%LC CT2-3: d_Eps_m=[0 0 0 0 0  0 0 0 0 0   0 0 0 0 0  0 0 0 0 0 ; 4e-4 4e-4 0 0 0   

0 0 0 0 0  0 0 4e-4 4e-4 0  0 0 0 0 0 ; 0 0 6e-4 6e-4 6e-4  6e-4 6e-4 -6e-4 -6e-4 

-6e-4  -6e-4 -6e-4 0 0 6e-4   6e-4 6e-4 6e-4 6e-4 6e-4 ] ; 

%LC CT2-4: d_Eps_m=[0 0 0 0 0  0 0 0 0 0   0 0 0 0 0  0 0 0 0 0 ; 0 0 0 0 0  0 0 

0 0 0  0 0 0 0 0  0 0 0 0 0 ; 4e-3 4e-3 4e-3 3e-4 3e-4  3e-4 3e-4 3e-4 3e-4 3e-4  

3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4 ] ; 

%LC UNL: d_Eps_m=[5e-3 2e-3 2e-3 2e-3 2e-3   -2e-3 -2e-3 -2e-3 -2e-3 2e-3  2e-3 

2e-3 2e-3 0 0   0 0 2e-3 2e-3 2e-3 ; 0 0 0 0 0   0 0 0 0 0   0 0 0 0 0   0 0 0 0 

0 ; 0 0 0 0 0   0 0 0 0 0   0 0 0 4e-3 4e-3   4e-3 4e-3 4e-3 4e-3 4e-3] ;  

 

%--INPUTS II. 

Ex=14956; Ey=3088; Gxy=573; %[MPa] 

ny_xy=0.023; ny_yx=Ex*ny_xy/Ey;  

Ce=[1/Ex -ny_xy/Ey 0;-ny_yx/Ex 1/Ey 0;0 0 1/Gxy]; %Compliance matrix 

De_G=inv(Ce); %Stiffness matrix 

ft1=74.4 ; ft2=2.2; fs=6.7; %strength [MPa];ft1 = ftx; ft2 = fty; fs=tau_xy 

alfa=((ft1*ft2)/(fs^2)); 

 

%--INPUTS III. (SCM) 

delta_crit_11=0.45; %max crack opening CT1; spruce: 0.45 mm 

delta_crit_12=0.15; %max crack opening CT2; spruce: 0.15 mm 

l_ch_1=10; %char. length for CT1 

l_ch_2=30; % char. length for CT2 
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%Failure surface f_Sig: 

syms X Y Z real 

f_Sig=(((X-ft1)+(Y+(k*X)-ft2))/2 + sqrt( (((X-ft1-(Y+(k*X)-ft2))/2)^2) + 

alfa*(Z^2))); 

X=Sig_0(1); Y=Sig_0(2); Z=Sig_0(3); 

f_Sig_0=subs(f_Sig); 

 

 

 if f_Sig_0>0 

f_Sig_0_negat=0 %Incorrect input. The initial value of the failure 

function is f_Sig_0 > 0. Acceptable values are f_Sig_0 < 0 

 return; end; 

 if abs(f_Sig_0)<1E-8 

f_Sig_0_negat=0 %Incorrect input. The initial value of the failure 

function is f_Sig_0 = 0. Acceptable values are f_Sig_0 < 0 

 return; end; 

 if f_Sig_0<0 

f_Sig_0_negat=1 %Correct input. The initial value of the failure function 

is f_Sig_0 < 0. 

 end; 

 

 

%--- A] ELASTIC CALCULATION 

f_Sig_n=f_Sig_0; Sig_el_n=Sig_0; 

StepN_el = 0; StepN=StepN_el; 

Eps_el_n=Eps_0; 

 

%-Write in Excel: 

 soubor2 = fopen('12_17_FCM_iter_2D_M1aM2_oprava2.csv', 'wt'); 

 soubor = fopen('12_17_FCM_2D_M1aM2_oprava2.csv', 'wt'); 

 fprintf(soubor, '%s\n', '1)Input - elastic calculation'); 

 fprintf(soubor, '%s;%s;%s;%s;%s;%s;%s;%s;%s\n', 

  'f_Sig_0_negat','Ex', 'Ey',       'Gxy', 'ny_xy', 'ny_yx', 'ft1', 'ft2', 'fs'); 

 fprintf(soubor, '%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f\n',  

  f_Sig_0_negat, Ex, Ey, Gxy, ny_xy, ny_yx, ft1, ft2, fs); 

 fprintf(soubor, '%s;%s;%s;%s;\n', 'Ce(1,1)','Ce(1,2)','Ce(2,2)','Ce(3,3)'); 

 fprintf(soubor, '%.6f;%.6f;%.6f;%.6f;\n', Ce(1,1),Ce(1,2),Ce(2,2),Ce(3,3)); 

 fprintf(soubor, '%s;%s;%s;%s;\n', 'De(1,1)','De(1,2)','De(2,2)','De(3,3)'); 

 fprintf(soubor, '%.6f;%.6f;%.6f;%.6f;\n', 

  De_G(1,1),De_G(1,2),De_G(2,2),De_G(3,3)); 

 fprintf(soubor, '%s\n', '2)Elastic calculation'); 

 fprintf(soubor, '%s;%s;%s;%s;%s;%s;%s;%s;%s;%s;%s\n', 

  'StepN_el', 'd_Eps(1)','d_Eps(2)', 'd_Eps(3)','Eps(1)','Eps(2)', 'Eps(3)', 

  'Sig_el_n(1)', 'Sig_el_n(2)', 'Sig_el_n(3)','f_Sig_n'); 

 fprintf(soubor, '%.6f;%s;%s;%s;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f\n',  

  StepN_el, '-','-', '-',Eps_0(1), Eps_0(2), Eps_0(3), Sig_el_n(1), Sig_el_n(2), 

  Sig_el_n(3),f_Sig_n); 

 

%-Write in vectors: 

 g_Sig_1=[];g_Sig_2=[];g_Sig_3=[];g_Eps_G_1=[];g_Eps_G_2=[];g_Eps_G_3=[]; 

 g_StepN=[]; 

 g_Eps_c_L_1=[];g_Eps_c_L_2=[];g_Eps_c_L_3=[]; 
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 g_Sig_L_1=[];g_Sig_L_2=[];g_Sig_L_3=[];  g_Eps_L_1=[];g_Eps_L_2=[];g_Eps_L_3=[]; 

 g_Sig_1=[g_Sig_1 (0)];g_Sig_2=[g_Sig_2 (0)];g_Sig_3=[g_Sig_3 (0)]; 

 g_Eps_G_1=[g_Eps_G_1 (0)];g_Eps_G_2=[g_Eps_G_2 (0)];g_Eps_G_3=[g_Eps_G_3 (0)]; 

 g_StepN=[g_StepN (StepN)]; 

 g_Eps_c_L_1=[g_Eps_c_L_1 (0)]; 

 g_Eps_c_L_2=[g_Eps_c_L_2 (0)];g_Eps_c_L_3=[g_Eps_c_L_3 (0)]; 

 g_Sig_L_1=[g_Sig_L_1 (0)];g_Sig_L_2=[g_Sig_L_2 (0)];g_Sig_L_3=[g_Sig_L_3 (0)]; 

 g_Eps_L_1=[g_Eps_L_1 (0)];g_Eps_L_2=[g_Eps_L_2 (0)];g_Eps_L_3=[g_Eps_L_3 (0)]; 

 

while f_Sig_n<0  

  StepN_el=StepN_el+1; %last el. cycle is divided by f_cic in el. and pl. part  

  StepN=StepN_el; 

  d_Eps=d_Eps_m(:,StepN_el); 

  Sig_el_n=Sig_el_n+De_G*d_Eps; 

  X=Sig_el_n(1); Y=Sig_el_n(2); Z=Sig_el_n(3); 

  f_Sig_n=subs(f_Sig); 

  Eps_el_n=Eps_el_n+d_Eps; 

  fprintf(soubor, '%f;%f;%f;%f;%f;%f;%f;%f;%f;%f;%f\n', 

   StepN_el, d_Eps(1),d_Eps(2), d_Eps(3),Eps_el_n(1), Eps_el_n(2), Eps_el_n(3), 

   Sig_el_n(1), Sig_el_n(2), Sig_el_n(3),f_Sig_n);       

end; 

 

  Sig_el_n_above=Sig_el_n 

  Sig_el_n_under=Sig_el_n-De_G*d_Eps 

  Eps_el_n_under=Ce*Sig_el_n_under; 

  f_Sig_n_above=f_Sig_n 

    X=Sig_el_n_under(1); Y=Sig_el_n_under(2); Z=Sig_el_n_under(3); 

    f_Sig_n_under=subs(f_Sig) 

 Sig_el_n_above_x=Sig_el_n(1); 

 Sig_el_n_above_y=Sig_el_n(2); 

 Sig_el_n_above_z=Sig_el_n(3); 

 Sig_el_n_under_x=Sig_el_n_under(1); 

 Sig_el_n_under_y=Sig_el_n_under(2); 

 Sig_el_n_under_z=Sig_el_n_under(3); 

 

if f_Sig_n>0 

    syms t real positive 

    Xp=Sig_el_n_above_x+(Sig_el_n_under_x-Sig_el_n_above_x)*t;   

     %Xp,Yp,Zp – coordinates of point PEAK (where the yielding starts) 

    Yp=Sig_el_n_above_y+(Sig_el_n_under_y-Sig_el_n_above_y)*t; 

    Zp=Sig_el_n_above_z+(Sig_el_n_under_z-Sig_el_n_above_z)*t; 

    f_Sig_p=(((Xp-ft1)+(Yp+(k*Xp)-ft2))/2 + sqrt( (((Xp-ft1-(Yp+(k*Xp)- 

     -ft2))/2)^2) + alfa*(Zp^2))); 

    t_2reseni=solve(f_Sig_p,'t');size_t_2reseni=size(t_2reseni); 

  if size_t_2reseni(1)==2 

    t_2reseni_1=eval(t_2reseni(1));t_2reseni_2=eval(t_2reseni(2)); 

      if (t_2reseni_1<1 && t_2reseni_1>0) || t_2reseni_1==1 || t_2reseni_1==0 

        t=t_2reseni_1; %parameter t is in an interval [0,1] 

      end;  

      if (t_2reseni_2<1 && t_2reseni_2>0) || t_2reseni_2==1 || t_2reseni_2==0 

        t=t_2reseni_2; %parameter t is in an interval [0,1] 

      end; 
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  end; 

  if size_t_2reseni(1)==1 

    t_2reseni=eval(t_2reseni(1)) 

      if (t_2reseni<1 && t_2reseni>0) || t_2reseni==1 || t_2reseni==0 

        t=t_2reseni; %parameter t is in an interval [0,1] 

      end; 

  end; 

  Sig_p=[subs(Xp) subs(Yp) subs(Zp)]'; 

  f_Sig_p=(((Sig_p(1)-ft1)+(Sig_p(2)+(k*Sig_p(1))-ft2))/2 + sqrt( (((Sig_p(1)- 

    -ft1-(Sig_p(2)+(k*Sig_p(1))-ft2))/2)^2) + alfa*(Sig_p(3)^2)));      

    %check f_Sig_p=0 

end; 

 

Eps_p=Ce*Sig_p; 

d_Eps_step1_G=d_Eps-(Eps_p-Eps_el_n_under); % 2
nd
 part of el-pl step 

fprintf(soubor, '%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f\n', 

 StepN_el, d_Eps_step1_G(1),d_Eps_step1_G(2), d_Eps_step1_G(3),Eps_p(1), 

 Eps_p(2), Eps_p(3), Sig_p(1), Sig_p(2), Sig_p(3),f_Sig_p); 

 

X=Sig_p(1); 

Y=Sig_p(2); 

Zp=Sig_p(3); 

theta=8; %max. crack deviation from the grain [°] 

Z_f_CT=(tan(2*(theta/180*pi)))*((X-Y)/2); %(theta/180*pi) [rad] 

fi=0.5*atan(2*Sig_p(3)/(Sig_p(1)-Sig_p(2))); %crack deviation from grain 

fi_deg=fi/pi*180 ; 

if Zp> Z_f_CT 

   MODE=2; %SC calculation of CT2 (across the fibers) 

   n=[0;1]; m=[-1;0]; 

   delta_crit_1=delta_crit_12; 

   l_ch=l_ch_2; 

   fi_deg=90;fi=fi_deg/180*pi; 

end; 

if Zp<= Z_f_CT 

   MODE=1 %SC calculation of CT1 (along the fibers)    

   n=[cos(fi); sin(fi)] 

   m=[-n(2); n(1)]; 

   fi_deg=fi/pi*180; 

   delta_crit_1=delta_crit_11; 

   l_ch=l_ch_1; 

end; 

ec_crit_1=delta_crit_1/l_ch; 

 

%Write in Excel: 

fprintf(soubor, '%s\n', '3)Output - elastic calculation'); 

fprintf(soubor, '%s;%s;%s;%s;%s;%s;%s;%s;%s;%s ;%s;%s;%s;%s;%s;%s\n', 

 'MODE', 'f_Sig_p', 'Sig_p(1)','Sig_p(2)', 'Sig_p(3)', 'Eps_p_G(1)','Eps_p_G(2)', 

 'Eps_p_G(3)', 'd_Eps_step1_G(1)','d_Eps_step1_G(2)','d_Eps_step1_G(3)', 

 'fi_deg', 'n(1)', 'n(2)', 'm(1)', 'm(2)'); 

fprintf(soubor,'%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f ;%.6f;%.6f; 

 %.6f;%.6f;%.6f;%.6f\n', MODE, f_Sig_p, Sig_p(1), Sig_p(2), Sig_p(3), 

 Eps_p(1),Eps_p(2), Eps_p(3),d_Eps_step1_G(1),d_Eps_step1_G(2),d_Eps_step1_G(3), 
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 fi_deg, n(1), n(2), m(1), m(2)); 

 

%Write in vectors for graphs at the end: 

 g_Sig_1=[g_Sig_1 (Sig_p(1))];g_Sig_2=[g_Sig_2 (Sig_p(2))]; 

 g_Sig_3=[g_Sig_3 (Sig_p(3))];g_Eps_G_1=[g_Eps_G_1 (Eps_p(1))]; 

 g_Eps_G_2=[g_Eps_G_2 (Eps_p(2))];g_Eps_G_3=[g_Eps_G_3 (Eps_p(3))]; 

 g_StepN=[g_StepN (StepN)]; 

 

 

%--- B] SMEARED CRACK MODEL (after crack initiation) 

%-INPUTS: Eps_p, Sig_p,d_Eps_step1_G (Voigt’s notation), n, m 

Sig_2ord_p=[Sig_p(1) Sig_p(3);Sig_p(3) Sig_p(2)]; 

Eps_p_G=Eps_p; %G-global, L-local coordinates 

 

%-- according to angle fi (and CT) we can calculate: 

R_De=[(cos(fi))^2 ,(sin(fi))^2 ,  -sin(fi)*cos(fi);  

      (sin(fi))^2 ,(cos(fi))^2 ,  sin(fi)*cos(fi); 

      2*cos(fi)*sin(fi) , 2*(-sin(fi))*cos(fi) , (cos(fi))^2-(sin(fi))^2]; 

De_L=R_De'*De_G*R_De; 

R_Eps_Sig=[cos(fi) -sin(fi); sin(fi) cos(fi)]; %rotation matrix counterclockwise  

d_Eps_2ord_step1_L=R_Eps_Sig*[d_Eps_step1_G(1) , d_Eps_step1_G(3);  

                   d_Eps_step1_G(3) , d_Eps_step1_G(2)]*R_Eps_Sig'; 

d_Eps_step1_L=[d_Eps_2ord_step1_L(1,1); d_Eps_2ord_step1_L(2,2); 

              d_Eps_2ord_step1_L(1,2)]; 

if MODE==1 

   Sig_p_hl_L_max=max( (Sig_p(1)+Sig_p(2))/2+sqrt( ((Sig_p(1)- 

    -Sig_p(2))/2)^2+Sig_p(3)^2), (Sig_p(1)+Sig_p(2))/2-sqrt( ((Sig_p(1)- 

    -Sig_p(2))/2)^2+Sig_p(3)^2) ); 

   Sig_nn_p_scalar=Sig_p_hl_L_max; 

   Sig_nm_p_scalar=0; 

  else 

   tc_p_G=n'*Sig_2ord_p;  
   tc_p_L=[tc_p_G(2);tc_p_G(1)]  

   Sig_nn_p_scalar=tc_p_L(1); 

   Sig_nm_p_scalar=tc_p_L(2); 

end; 

 

%-Eps_2ord_p, Sig_2ord_p: G->L 

Eps_2ord_p_L=R_Eps_Sig*[Eps_p_G(1) Eps_p_G(3); Eps_p_G(3) Eps_p_G(2)]*R_Eps_Sig'; 

Eps_p_L=[Eps_2ord_p_L(1,1); Eps_2ord_p_L(2,2); Eps_2ord_p_L(1,2) ]; 

Sig_p_2ord_L=R_Eps_Sig*Sig_2ord_p*R_Eps_Sig'; 

Sig_p_L=[Sig_p_2ord_L(1,1); Sig_p_2ord_L(2,2); Sig_p_2ord_L(1,2) ]; 

 

%-matrix N_L 

N_L=[1 0 0 ; 0 0 1]; 

%-Qe Acoustic matrix: 

Qe_2ord = N_L*De_L*N_L'; 

%-Dc_2ord: 

     c1=3;c2=6.93; %parameters of function t_n 

     syms Eps_c_nn Gama_c_nm real 

     t_n=Sig_nn_p_scalar*( (1+((c1*l_ch*Eps_c_nn/delta_crit_1)^3)) *exp(- 

         -c2*l_ch*Eps_c_nn/delta_crit_1) - exp(- 
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         -c2)*(1+(c1^3))*l_ch*Eps_c_nn/delta_crit_1); 

 

%-calculation of ec_0->0 for defined Sig_nm_p_scalar=t_m 

t_m=fs*atan(abs(Gama_c_nm)*((1-((Eps_c_nn*l_ch)/delta_crit_1)^2)/(1-(1- 

    -((Eps_c_nn*l_ch)/delta_crit_1)^2))))/(pi/2); 

if Sig_nm_p_scalar==0;  

  Sig_nm_p_scalar_q=(delta_crit_1/l_ch/100); 

 else Sig_nm_p_scalar_q=Sig_nm_p_scalar;  

end; 

if (abs(Sig_nm_p_scalar-fs)<=1e-3); 

Sig_nm_p_scalar_q=fs-1e-5; 

end; 

q=solve(t_m-Sig_nm_p_scalar_q,Eps_c_nn,Gama_c_nm); 

    if MODE==2; x=-ec_crit_1/1e9;else x=ec_crit_1/1e20;end; 

      s_Eps_c_nn_obec=(eval(q.Eps_c_nn)); 

      Eps_c_nn=max(subs(s_Eps_c_nn_obec)) 

      Gama_c_nm=x; 

      ec_0=[Eps_c_nn;Gama_c_nm]; 

%--- 

syms Eps_c_nn Gama_c_nm real 

     if MODE==2 

       t_m=-fs*atan((-Gama_c_nm)*((1-((Eps_c_nn*l_ch)/delta_crit_1)^2)/(1-(1- 

           -((Eps_c_nn*l_ch)/delta_crit_1)^2))))/(pi/2); 

      else t_m=fs*atan( (Gama_c_nm)*((1-((Eps_c_nn*l_ch)/delta_crit_1)^2)/(1-(1- 

               -((Eps_c_nn*l_ch)/delta_crit_1)^2))))/(pi/2); 

     end; 

Dc_2ord=[diff(t_n,Eps_c_nn), diff(t_n,Gama_c_nm); diff(t_m,Eps_c_nn), 

        diff(t_m,Gama_c_nm)]; 

Dc_2ord_00=[0, 0; 0, 0]; 

fc_ec=[t_n;t_m]; 

 

%-derivative of fuction s=[fc(ec)+Qe*ec] 

syms Eps_c_nn Gama_c_nm real 

 Qe_times_ec=Qe_2ord*[Eps_c_nn; Gama_c_nm]; 

 diff_Qe_times_ec=[diff(Qe_times_ec(1),Eps_c_nn), diff(Qe_times_ec(1),Gama_c_nm); 

                  diff(Qe_times_ec(2),Eps_c_nn), diff(Qe_times_ec(2),Gama_c_nm)]; 

 s_slope=diff_Qe_times_ec+Dc_2ord; 

 Eps_c_nn=0; Gama_c_nm=0; 

 s_slope_eval=subs(s_slope); 

     if s_slope_eval(1,1)<0;s_slope_11_positive=0 

     else s_slope_11_positive=1; end; 

     if s_slope_eval(1,2)<0;s_slope_12_positive=0 

     else s_slope_12_positive=1; end; 

     if s_slope_eval(2,2)<0;s_slope_22_positive=0 

     else s_slope_22_positive=1;end; 

 

%- for Dec_L: De_L*N_L' a N_L*De_L 

De_L_times_N_L_T=De_L*N_L'; 

N_L_times_De_L=N_L*De_L; 

 

%- STEP N (2D): 

d_Eps_StepN_L=d_Eps_step1_L; 



Constitutive Model of Timber 

 
 

Czech Technical University in Prague 

Faculty of Civil Engineering  103 

d_Eps_StepN_G=d_Eps_step1_G; 

d_Eps_iter_L=d_Eps_step1_L; 

s_previous=N_L*De_L*Eps_p_L; 

d_s_iter=N_L*De_L*d_Eps_iter_L; 

 

ec=ec_0; Eps_c_nn=ec(1); Gama_c_nm=ec(2); % ec_0= ec->0 

Dec_StepN_L=De_L-De_L*N_L'*inv(Qe_2ord+subs(Dc_2ord))*N_L*De_L; %Dec(ec_0) 

Dec_StepN_G=inv(R_De')*Dec_StepN_L*R_De'; 

delta=[0;0]; 

fc_ec_StepN=subs(fc_ec); 

fc_ec_plus_Qe_ec=fc_ec_StepN+Qe_2ord*ec; 

s_StepN=N_L*De_L*(Eps_p_L+d_Eps_StepN_L) ; 

d_s_StepN=N_L*De_L*d_Eps_StepN_L ; 

d_ec_StepN=[0;0]; 

Sig_StepN=Sig_p;    

d_Sig_StepN_L= [0; 0; 0]; 

Sig_StepN_L=[0; 0; 0]; 

Eps_StepN_G=Eps_p_G; 

Eps_StepN_L=Eps_p_L; 

d_Eps_StepN_L=d_Eps_step1_L; 

d_Eps_c_L=[0; 0; 0]; 

Eps_c_L=[0; 0 ;0]; 

iKT=inv(Qe_2ord+subs(Dc_2ord));  

StepN_pl=0; 

StepN=StepN_el; 

 

fprintf(soubor, '%s\n', '4)Input - FCM calculation'); 

fprintf(soubor, '%s;%s;%s;%s;%s;%s;%s\n', 

       'delta_crit_1', 'Sig_nn_p_scalar', 'Sig_nm_p_scalar','l_ch', 

       's_slope_11_pos','s_slope_12_pos','s_slope_22_pos' ); 

fprintf(soubor, '%.6f;%.6f;%.6f;%f;%f;%f;%f\n', 

       delta_crit_1, Sig_nn_p_scalar, Sig_nm_p_scalar, l_ch, 

       s_slope_11_positive,s_slope_12_positive,s_slope_22_positive ); 

fprintf(soubor, '%s\n', '5)Output - FCM calculation'); 

fprintf(soubor, '%s;%s;%s;%s;%s; %s;%s;%s;%s;%s; %s;%s;%s;%s;%s; %s;%s;%s;%s;%s; 

       %s;%s;%s;%s;%s; %s;%s;%s;%s;%s; %s;%s;%s;%s;%s; %s;%s;%s;%s;%s; %s\n', 

       'StepN_pl','d_Eps_L(1)','d_Eps_L(2)', d_Eps_L(3)','d_Eps_G(1)', 

       'd_Eps_G(2)', 'd_Eps_G(3)','Eps_G(1)','Eps_G(2)', 'Eps_G(3)','d_ec(1)', 

       'd_ec(2)', 'ec(1)', 'ec(2)', 'delta(1)', 'delta(2)','fc_ec(1)' , 

       'fc_ec(2)','d_Sig(1)', 'd_Sig(2)', 'd_Sig(3)', 'Sig(1)', 'Sig(2)', 

       'SigG(3)', 'Dec_G(1,1)', 'Dec_G(1,2)', 'Dec_G(2,2)', 

       'Dec_G(3,3)','Dec_L(1,1)','Dec_L(1,2)','Dec_L(2,2)','Dec_L(3,3)',  

       's_StepN(1)','s_StepN(2)','d_Eps_c_L(1)','d_Eps_c_L(2)','d_Eps_c_L(3)', 

       'iKT(1,1)', 'iKT(1,2)', 'iKT(2,2)','StepN' ); 

fprintf(soubor, '%f;%.6s;%.6s;%.6s;%.6s;  %.6s;%.6s;%.6f;%.6f;%.6f;  

       %.6f;%.6f;%.6f;%.6f;%.6f;  %.6f;%.6f;%.6f;%s;%s;  %s;%.6f;%.6f ;%.6f;%s; 

       %s;%s;%s;%s;%s;  %s;%s;%.6f;%.6f;%.6f;  %.6f;%.6f;%s;%s;%s;  %f\n', 

       StepN_pl, '-','-', '-','-','-', '-',Eps_StepN_G(1),Eps_StepN_G(2), 

       Eps_StepN_G(3), d_ec_StepN(1), d_ec_StepN(2),ec(1), ec(2),delta(1), 

       delta(2),fc_ec_StepN(1) ,fc_ec_StepN(2),'-', '-', '-', Sig_StepN(1), 

       Sig_StepN(2), Sig_StepN(3), '-', '-', '-', '-', '-', '-', '-', '-', 

       s_previous(1), s_previous(2), d_Eps_c_L(1),d_Eps_c_L(2),d_Eps_c_L(3),'-', 
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       '-', '-', StepN ); 

fprintf(soubor2, '%s\n', '6)SC iterations within a StepN_pl'); 

fprintf(soubor2, '%s;%s;%s;%s;%s;%s;%s;%s;%s\n', 'StepN_pl', 'No_pl_iter', 

       's_StepN(1)', 's_StepN(2)','s(1)','s(2)','ec(1)','ec(2)', 'StepN'); 

fprintf(soubor2,'%f;%s;%s;%s;%.6f;%.6f;%.6f;%.6f;%f\n',  StepN_pl, '-', '-', '-', 

       s_previous(1),s_previous(2),ec(1),ec(2),StepN); 

 

g_fc_1=[];g_fc_2=[];g_ec_1=[];g_ec_2=[];g_s_1=[];g_s_2=[];g_delta_1=[]; 

g_delta_2=[];g_Dec_G_11=[];g_Dec_G_22=[];g_Dec_G_33=[];g_Dec_G_12=[]; 

g_fc_1=[g_fc_1 (fc_ec_StepN(1))];g_fc_2=[g_fc_2 (fc_ec_StepN(2))]; 

g_ec_1=[g_ec_1 (ec(1))];g_ec_2=[g_ec_2 (ec(2))];  g_s_1=[g_s_1 (s_previous(1))]; 

g_s_2=[g_s_2 (s_previous(2))];g_delta_1=[g_delta_1 (ec(1)*l_ch)]; 

g_delta_2=[g_delta_2 (ec(2)*l_ch)]; 

g_Eps_c_L_1=[g_Eps_c_L_1 (Eps_c_L(1))];g_Eps_c_L_2=[g_Eps_c_L_2 (Eps_c_L(2))]; 

g_Eps_c_L_3=[g_Eps_c_L_3 (Eps_c_L(3))]; 

g_Sig_L_1=[g_Sig_L_1 (Sig_p_L(1))];g_Sig_L_2=[g_Sig_L_2 (Sig_p_L(2))]; 

g_Sig_L_3=[g_Sig_L_3 (Sig_p_L(3))]; 

g_Eps_L_1=[g_Eps_L_1 (Eps_p_L(1))];g_Eps_L_2=[g_Eps_L_2 (Eps_p_L(2))]; 

g_Eps_L_3=[g_Eps_L_3 (Eps_p_L(3))]; 

 

UNL=0; Kapa=[0; 0]; %Kapa–internal variable, vector or positive increments 

d_Eps_c_nn 

fc_ec_S_1=0; 

 

StepN_pl=1; 

Cond=1; 

 

while StepN<=20 

 

  if ( (abs(ec(1))<ec_crit_1) && (abs(ec(2))<ec_crit_1) && (UNL==0) )   

    No_pl_iter=1; 

    while Cond > 1e-4 

      d_ec_iter=(inv(Qe_2ord+subs(Dc_2ord)))*d_s_iter; 

      ec=ec+d_ec_iter; 

      Eps_c_nn=ec(1); Gama_c_nm=ec(2); 

      d_ec_StepN=d_ec_StepN+d_ec_iter 

      s=subs(fc_ec)+Qe_2ord*ec; 

      d_s_iter=(s_StepN-s); 

      Cond=( sqrt(d_s_iter(1)^2+d_s_iter(2)^2)/sqrt(s_previous(1)^2+ 

           +s_previous(2)^2) ) ; 

 

      fprintf(soubor2, '%f;%f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%f\n', 

              StepN_pl, No_pl_iter, s_StepN(1), s_StepN(2), 

              s(1),s(2),ec(1),ec(2),StepN); 

      No_pl_iter=No_pl_iter + 1; 

     end; 

  end; 

 

  if ( (abs(ec(1))<ec_crit_1) && (abs(ec(2))<ec_crit_1) && UNL==1)   

    No_pl_iter=1; 

    while Cond > 1e-4 

      d_ec_iter=(inv(Qe_2ord+subs(Dc_2ord_unl)))*d_s_iter; 
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      ec=ec+d_ec_iter; 

      Eps_c_nn=ec(1); Gama_c_nm=ec(2); 

      d_ec_StepN=d_ec_StepN+d_ec_iter; 

      s=subs(fc_ec_unl)+Qe_2ord*ec; 

      d_s_iter=(s_StepN-s); 

      Cond=( sqrt(d_s_iter(1)^2+d_s_iter(2)^2)/sqrt(s_previous(1)^2+ 

          +s_previous(2)^2) ) ; 

 

      fprintf(soubor2, '%f;%f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%f\n', 

             StepN_pl, No_pl_iter, s_StepN(1), s_StepN(2), 

              s(1),s(2),ec(1),ec(2),StepN); 

      No_pl_iter=No_pl_iter + 1; 

    end; 

  end; 

 

  %-- unloading (UNL): 

  if  ( (d_ec_StepN(1)>-1e-8 && d_ec_StepN(2)>-1e-8 && UNL==0) || 

      || (((d_ec_StepN(1))>-1e-8 && d_ec_StepN(2)>-1e-8 && ec(1)>ec_S(1) && 

      && ec(2)>ec_S(2))) );  

     Kapa=Kapa+d_ec_StepN ; 

  end; 

 

  disp(StepN);disp(UNL); disp(ec); disp(d_ec_StepN);  disp(Kapa); 

 

  if  ( UNL==1 && ((ec(1)-Kapa(1))<1e-8) && ((ec(2)-Kapa(2))<1e-8) && 

      (Kapa(1)-ec(1)>d_ec_StepN(1)) &&abs(Kapa(2)-ec(2)-d_ec_StepN(2))<1e-5 )   

     disp('Step_UNL 2->(N-1)'); UNL==1; 

  end; 

 

  if  ( UNL==1 && (d_ec_StepN(1)>-1e-8) && (d_ec_StepN(2)>-1e-8) &&  

      (abs(Kapa(1)-ec(1))<1e-6)  && (abs(Kapa(2)-ec(2))<1e-6) ) 

     disp('Step_UNL N'); UNL=0 

  end; 

 

  if  ( (UNL==0) && (ec(1)-Kapa(1))<1e-8 && (abs(ec(2)-Kapa(2)))<1e-8 &&  

      && (abs(Kapa(1)-(ec(1)-d_ec_StepN(1)))<1e-8) && 

      && (abs(Kapa(2)-(ec(2)-d_ec_StepN(2))<1e-8)) ) %1
st
 step of UNL 

     disp('Step_UNL 1') 

     ec_S=ec-d_ec_StepN 

      Eps_c_nn=ec_S(1); Gama_c_nm=ec_S(2); 

     fc_ec_S=(subs(fc_ec)) ; 

     fc_ec_S_1=fc_ec_S(1);ec_S_1=ec_S(1); 

   %--DATA for iterations: 

     syms Eps_c_nn Gama_c_nm real 

     t_n_unl=fc_ec_S(1)/ec_S(1)*Eps_c_nn 

     t_m=fs*atan( (Gama_c_nm)*((1-((Eps_c_nn*l_ch)/delta_crit_1)^2)/(1-(1- 

         -((Eps_c_nn*l_ch)/delta_crit_1)^2))))/(pi/2); 

     fc_ec_unl=[t_n_unl;t_m]; 

     Dc_2ord_unl=[(fc_ec_S(1)/ec_S(1)) 0; Dc_2ord(2,1), Dc_2ord(2,2)]; 

 

     Eps_c_nn=ec_S(1); Gama_c_nm=ec_S(2); 

    %--iter.: 
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     while Cond > 1e-8 

            d_ec_iter=(inv(Qe_2ord+subs(Dc_2ord_unl)))*d_s_iter; 

            ec=ec+d_ec_iter 

               Eps_c_nn=ec(1); Gama_c_nm=ec(2); 

            d_ec_StepN=d_ec_StepN+d_ec_iter; 

            s=subs(fc_ec_unl)+Qe_2ord*ec; 

            d_s_iter=(s_StepN-s); 

            Cond=( sqrt(d_s_iter(1)^2+d_s_iter(2)^2)/sqrt(s_previous(1)^2+ 

                 +s_previous(2)^2) ) ; 

            fprintf(soubor2, '%f;%f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%f\n', 

                   StepN_pl, No_pl_iter, s_StepN(1), 

                   s_StepN(2),s(1),s(2),ec(1),ec(2),StepN); 

            No_pl_iter=No_pl_iter + 1; 

     end; 

     disp(ec); disp(d_ec_StepN); 

     UNL=1; 

  end; 

 

  if ( (abs(ec(1))<ec_crit_1) && (abs(ec(2))<ec_crit_1)  ) 

    d_Eps_c_L=N_L'*d_ec_StepN; 

    Eps_c_L=Eps_c_L+d_Eps_c_L; 

    d_Sig_StepN_L=De_L*(d_Eps_StepN_L-d_Eps_c_L); 

    Sig_StepN_L=Sig_StepN_L+d_Sig_StepN_L; 

    d_Sig_2ord_StepN_L=[d_Sig_StepN_L(1) ,d_Sig_StepN_L(3); d_Sig_StepN_L(3), 

                     d_Sig_StepN_L(2)]; 

                 

    d_Sig_2ord_StepN_G=inv(R_Eps_Sig)*d_Sig_2ord_StepN_L*inv(R_Eps_Sig'); %L->G 

    d_Sig_StepN=[d_Sig_2ord_StepN_G(1,1);d_Sig_2ord_StepN_G(2,2); 

              d_Sig_2ord_StepN_G(1,2)]; 

    Sig_StepN=Sig_StepN+d_Sig_StepN 

    if UNL==1  ; fc_ec_StepN=subs(fc_ec_unl); 

      else fc_ec_StepN=subs(fc_ec); 

    end; 

 

  else 

    fc_ec_StepN=[0;0]; 

    d_Eps_c_L=N_L'*d_ec_StepN; 

    Eps_c_L=Eps_c_L+d_Eps_c_L; 

    d_Sig_StepN_L=[0;0;0]; 

    Sig_StepN_L=[0;0;0]; 

    d_Sig_StepN=[0;0;0]; 

    Sig_StepN=[0;0;0]; 

  end; 

 

  delta=ec*l_ch; 

  Eps_StepN_G=Eps_StepN_G+d_Eps_StepN_G; 

  Eps_StepN_L=Eps_StepN_L+d_Eps_StepN_L; 

 

  fprintf(soubor, '%f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f; 

        %.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;  %.6f;%.6f;%.6f;%.6f; 

        %.6f;%.6f;%.6f;%.6f;%.6f;%.6f;  %.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f; 

        %.6f;%.6f; %f \n', StepN_pl, d_Eps_StepN_L(1),d_Eps_StepN_L(2), 
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        d_Eps_StepN_L(3),d_Eps_StepN_G(1),d_Eps_StepN_G(2), d_Eps_StepN_G(3), 

        Eps_StepN_G(1),Eps_StepN_G(2), Eps_StepN_G(3),d_ec_StepN(1), 

        d_ec_StepN(2),ec(1),  ec(2),delta(1), delta(2),fc_ec_StepN(1) , 

        fc_ec_StepN(2), d_Sig_StepN(1), d_Sig_StepN(2), d_Sig_StepN(3), 

        Sig_StepN(1), Sig_StepN(2), Sig_StepN(3), Dec_StepN_G(1,1),  

        Dec_StepN_G(1,2), Dec_StepN_G(2,2), Dec_StepN_G(3,3), 

        Dec_StepN_L(1,1),Dec_StepN_L(1,2),Dec_StepN_L(2,2),Dec_StepN_L(3,3), 

        s_StepN(1),s_StepN(2) , d_Eps_c_L(1),d_Eps_c_L(2),d_Eps_c_L(3),iKT(1,1), 

        iKT(1,2), iKT(2,2),StepN ); 

 

  g_Sig_1=[g_Sig_1 (Sig_StepN(1))];g_Sig_2=[g_Sig_2 (Sig_StepN(2))]; 

  g_Sig_3=[g_Sig_3 (Sig_StepN(3))]; 

  g_Eps_G_1=[g_Eps_G_1 (Eps_StepN_G(1))];g_Eps_G_2=[g_Eps_G_2 (Eps_StepN_G(2))]; 

  g_Eps_G_3=[g_Eps_G_3 (Eps_StepN_G(3))]; 

  g_StepN=[g_StepN (StepN)];g_fc_1=[g_fc_1 (fc_ec_StepN(1))]; 

  g_fc_2=[g_fc_2 (fc_ec_StepN(2))];g_ec_1=[g_ec_1 (ec(1))]; 

  g_ec_2=[g_ec_2 (ec(2))]; 

  g_s_1=[g_s_1 (s_StepN(1))];g_s_2=[g_s_2 (s_StepN(2))]; 

  g_delta_1=[g_delta_1 (ec(1)*l_ch)];g_delta_2=[g_delta_2 (ec(2)*l_ch)]; 

  g_Dec_G_11=[g_Dec_G_11(Dec_StepN_G(1,1))]; 

  g_Dec_G_22=[g_Dec_G_22 (Dec_StepN_G(2,2))]; 

  g_Dec_G_33=[g_Dec_G_33 (Dec_StepN_G(3,3))]; 

  g_Dec_G_12=[g_Dec_G_12 (Dec_StepN_G(1,2))]; 

  g_Eps_c_L_1=[g_Eps_c_L_1 (Eps_c_L(1))]; 

  g_Eps_c_L_2=[g_Eps_c_L_2 (Eps_c_L(2))];g_Eps_c_L_3=[g_Eps_c_L_3 (Eps_c_L(3))]; 

  g_Sig_L_1=[g_Sig_L_1 (Sig_StepN_L(1))]; 

  g_Sig_L_2=[g_Sig_L_2 (Sig_StepN_L(2))];g_Sig_L_3=[g_Sig_L_3 (Sig_StepN_L(3))]; 

  g_Eps_L_1=[g_Eps_L_1 (Eps_StepN_L(1))]; 

  g_Eps_L_2=[g_Eps_L_2 (Eps_StepN_L(2))];g_Eps_L_3=[g_Eps_L_3 (Eps_StepN_L(3))]; 

  if StepN==20 

    break; 

  end; 

 

  %---For the next STEP: 

  if ( (abs(ec(1))>=ec_crit_1) || (abs(ec(2))>=ec_crit_1) ) 

    No_pl_iter=0; 

    Dc_2ord=Dc_2ord_00; fc_ec=[0;0]; 

    iKT=inv(Qe_2ord+Dc_2ord_00); 

    Dec_StepN_L=[0 0 0;0 0 0;0 0 0];  

    Dec_StepN_G=[0 0 0;0 0 0;0 0 0]; 

   else 

    iKT=inv(Qe_2ord+subs(Dc_2ord)); 

    Dec_StepN_L=De_L-De_L*N_L'*inv(Qe_2ord+subs(Dc_2ord))*N_L*De_L; 

    Dec_StepN_G=inv(R_De')*Dec_StepN_L*R_De'; 

  end; 

          

  StepN_pl=StepN_pl + 1; 

  StepN=StepN+1; 

  s_previous=s_previous+d_s_StepN; 

  d_Eps_StepN_G=[d_Eps_m(1,StepN); d_Eps_m(2,StepN); d_Eps_m(3,StepN)]; 

  d_Eps_2ord_L=R_Eps_Sig*[d_Eps_StepN_G(1), d_Eps_StepN_G(3); d_Eps_StepN_G(3), 

               d_Eps_StepN_G(2)]*R_Eps_Sig'; 
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  d_Eps_StepN_L=[d_Eps_2ord_L(1,1); d_Eps_2ord_L(2,2); d_Eps_2ord_L(1,2) ]; 

  d_Eps_iter_L=d_Eps_StepN_L; 

  d_s_StepN=N_L*De_L*d_Eps_StepN_L ; 

  s_StepN=s_StepN+d_s_StepN; 

  d_s_iter=N_L*De_L*d_Eps_iter_L; 

  d_ec_StepN=[0;0]; 

   Cond=1; 

 

if ( (abs(ec(1))>=ec_crit_1) || (abs(ec(2))>=ec_crit_1) ) 

   No_pl_iter=1; 

   Dc_2ord=Dc_2ord_00; fc_ec=[0;0]; 

   iKT=inv(Qe_2ord+Dc_2ord_00); 

    d_ec_StepN=iKT*d_s_StepN; 

   ec=ec+d_ec_StepN; 

   Eps_c_nn=ec(1); Gama_c_nm=ec(2); 

   s=subs(fc_ec)+Qe_2ord*ec; 

   fprintf(soubor2, '%f;%f;%.6f;%.6f;%.6f;%.6f;%.6f;%.6f;%f\n', 

          StepN_pl, No_pl_iter, s_StepN(1), s_StepN(2), 

          s_StepN(1),s_StepN(2),ec(1),ec(2),StepN); 

end; 

end; 

 

 

 

figure %1 

  subplot(2,2,1); hold on 

    plot(1:length(g_Eps_G_1),g_Eps_G_1,'-xb'),  

    plot(1:length(g_Eps_G_2),g_Eps_G_2,':ob'), 

    plot(1:length(g_Eps_G_3),g_Eps_G_3,'--.b'); 

    xlabel('StepN [-]'); ylabel('\epsilon_x ; \epsilon_y ; \epsilon_x_y [-]'); 

    legend('\epsilon_x','\epsilon_y','\epsilon_x_y'); 

  subplot(2,2,2); hold on 

    plot(g_Eps_G_1,g_Sig_1,'-xb'); 

    xlabel('\epsilon_x [-]'); ylabel('\sigma_x [MPa]'); 

  subplot(2,2,3); hold on 

    plot(g_Eps_G_1,g_Sig_2,'-xb'); 

    xlabel('\epsilon_x [-]'); ylabel('\sigma_y [MPa]'); 

  subplot(2,2,4); hold on 

    plot(g_Eps_G_1,g_Sig_3,'-xb'); 

    xlabel('\epsilon_x [-]'); ylabel('\tau_x_y [MPa]'); 

 

figure%2 

  subplot(2,2,1); hold on 

    plot(g_Eps_G_2,g_Sig_1,'-xb'); 

    xlabel('\epsilon_y [-]'); ylabel('\sigma_x [MPa]'); 

  subplot(2,2,2); hold on 

    plot(g_Eps_G_2,g_Sig_2,'-xb'); 

    xlabel('\epsilon_y [-]'); ylabel('\sigma_y [MPa]'); 

  subplot(2,2,3); hold on 

    plot(g_Eps_G_2,g_Sig_3,'-xb'); 

    xlabel('\epsilon_y [-]'); ylabel('\tau_x_y [MPa]'); 
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figure%3 

  subplot(2,2,1); hold on; 

    plot(g_Eps_G_3,g_Sig_1,'-xb'); 

    xlabel('\epsilon_x_y [-]'); ylabel('\sigma_x [MPa]'); 

  subplot(2,2,2); hold on; 

    plot(g_Eps_G_3,g_Sig_2,'-xb'); 

    xlabel('\epsilon_x_y [-]'); ylabel('\sigma_y [MPa]'); 

  subplot(2,2,3); hold on; 

    plot(g_Eps_G_3,g_Sig_3,'-xb'); 

    xlabel('\epsilon_x_y [-]'); ylabel('\tau_x_y [MPa]'); 

 

figure%4 

if MODE==1 

  subplot(2,2,1); hold on 

    X=g_ec_1; Y=g_ec_2; Z=g_fc_1; 

    plot3(X, Y, Z,'-db','MarkerSize',7, 

          'MarkerFaceColor','c','MarkerEdgeColor','k'); 

    [X,Y]=meshgrid(0:(ec_crit_1/15):ec_crit_1); 

    Z=Sig_nn_p_scalar.*( (1+((c1.*l_ch.*X./delta_crit_1).^3)) .*exp(- 

      -c2.*l_ch.*X./delta_crit_1) - exp(- 

      -c2).*(1+(c1.^3)).*l_ch.*X./delta_crit_1); 

    mesh(X,Y,Z); 

    [X,Y]=meshgrid(ec_crit_1:(ec_crit_1/15):1.2*ec_crit_1, 

          0:(ec_crit_1/15):ec_crit_1); 

    Z=(X-X)+(Y-Y) ; mesh(X,Y,Z); 

    [X,Y]=meshgrid(0:(ec_crit_1/15):1.2*ec_crit_1, 

    ec_crit_1:(ec_crit_1/15):1.2*ec_crit_1 ); 

    Z=(X-X)+(Y-Y) ; mesh(X,Y,Z); 

     if fc_ec_S_1>0 

      [X,Y]=meshgrid(0:(ec_crit_1/10):ec_crit_1/4,0:(ec_crit_1/10):ec_crit_1 ); 

      Z=fc_ec_S_1/ec_S_1.*X;  %t_n_unl 

      mesh(X,Y,Z); 

     end; 

    xlabel('\epsilon^c_n_n [-]');ylabel('\epsilon^c_n_m [-]'); 

    zlabel('t_n [MPa] ');  

    legend('t_n_,_i_t_e_r','t_n_,_p_r_e_c_i_s_e'); 

  subplot(2,2,2); hold on 

    X=g_ec_1; Y=g_ec_2; Z=g_fc_2; 

    plot3(X, Y, Z,'-db','MarkerSize',7,'MarkerFaceColor','c', 

         'MarkerEdgeColor','k'); 

    [X,Y]=meshgrid(0:(ec_crit_1/15):ec_crit_1); 

    Z=fs.*atan(Y.*((1-((X.*l_ch)./delta_crit_1).^2)./(1-(1- 

      -((X.*l_ch)./delta_crit_1).^2))))./(pi./2); 

    mesh(X,Y,Z); 

    [X,Y]=meshgrid(ec_crit_1:(ec_crit_1/15):1.2*ec_crit_1, 

          0:(ec_crit_1/15):ec_crit_1);Z=(X-X)+(Y-Y) ; mesh(X,Y,Z); 

    [X,Y]=meshgrid(0:(ec_crit_1/15):1.2*ec_crit_1, 

          ec_crit_1:(ec_crit_1/15):1.2*ec_crit_1 );Z=(X-X)+(Y-Y) ; mesh(X,Y,Z); 

    xlabel('\epsilon^c_n_n [-]');ylabel('\epsilon^c_n_m [-]');  

    zlabel('t_m [MPa] '); legend('t_m_,_i_t_e_r','t_m_,_p_r_e_c_i_s_e'); 

  subplot(2,2,3); hold on 

    X=g_ec_1; Y=g_ec_2; Z=g_s_1; 
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    plot3(X,Y,Z,'-db','MarkerSize',7,'MarkerFaceColor','c', 

         'MarkerEdgeColor','k'); 

    [X,Y]=meshgrid(0:(ec_crit_1/15):ec_crit_1); 

    t_n=Sig_nn_p_scalar.*( (1+((c1.*l_ch.*X./delta_crit_1).^3)) .*exp(- 

        -c2.*l_ch.*X./delta_crit_1) - exp(- 

        -c2).*(1+(c1.^3)).*l_ch.*X./delta_crit_1);   

    Qe_times_ec_1=Qe_2ord(1,1).*X+Qe_2ord(1,2).*Y; 

    Z=t_n+Qe_times_ec_1; 

    mesh(X,Y,Z);%oaxes([0 0 0]); 

    xlabel('\epsilon^c_n_n [-]');ylabel('\epsilon^c_n_m [-]');  

    zlabel('s(1) [-]'); legend('s_i_t_e_r(1)','s_p_r_e_c_i_s_e(1)'); 

  subplot(2,2,4); hold on 

    X=g_ec_1; Y=g_ec_2; Z=g_s_2; 

    plot3(X,Y,Z,'-db','MarkerSize',7,'MarkerFaceColor','c', 

         'MarkerEdgeColor','k'); 

    [X,Y]=meshgrid(0:(ec_crit_1/15):ec_crit_1); 

    t_m=fs.*atan(Y.*((1-((X.*l_ch)./delta_crit_1).^2)./(1-(1- 

        -((X.*l_ch)./delta_crit_1).^2))))./(pi./2); 

    Qe_times_ec_2=Qe_2ord(2,1).*X+Qe_2ord(2,2).*Y; 

    Z=t_m+Qe_times_ec_2; 

    mesh(X,Y,Z);%oaxes([0 0 0]); 

    xlabel('\epsilon^c_n_n [-]');ylabel('\epsilon^c_n_m [-]');  

          zlabel('s(2) [-]'); legend('s_i_t_e_r(2)','s_p_r_e_c_i_s_e(2)'); 

else %Figure 4 

  subplot(2,2,1); hold on 

    X=g_ec_1; Y=g_ec_2; Z=g_fc_1; 

    plot3(X, Y, Z,'-db','MarkerSize',7,'MarkerFaceColor','c', 

         'MarkerEdgeColor','k'); 

    [X,Y]=meshgrid(0:(ec_crit_1/15):ec_crit_1, -ec_crit_1:(ec_crit_1/15):0); 

    Z=Sig_nn_p_scalar.*( (1+((c1.*l_ch.*X./delta_crit_1).^3)) .*exp(- 

      -c2.*l_ch.*X./delta_crit_1) - exp(- 

      -c2).*(1+(c1.^3)).*l_ch.*X./delta_crit_1);   

    mesh(X,Y,Z); 

    [X,Y]=meshgrid(ec_crit_1:(ec_crit_1/15):1.2*ec_crit_1, 

          -ec_crit_1:(ec_crit_1/15):0);Z=(X-X)+(Y-Y) ; mesh(X,Y,Z); 

    [X,Y]=meshgrid(0:(ec_crit_1/15):1.2*ec_crit_1, 

         -ec_crit_1:(-ec_crit_1/15):-1.2*ec_crit_1 );Z=(X-X)+(Y-Y) ; mesh(X,Y,Z); 

    xlabel('\epsilon^c_n_n [-]');ylabel('\epsilon^c_n_m [-]');  

    zlabel('t_n [MPa] '); legend('t_n_,_i_t_e_r','t_n_,_p_r_e_c_i_s_e'); 

  subplot(2,2,2); hold on 

    X=g_ec_1; Y=g_ec_2; Z=g_fc_2; 

    plot3(X, Y, Z,'-db','MarkerSize',7,'MarkerFaceColor','c', 

         'MarkerEdgeColor','k'); 

    [X,Y]=meshgrid(0.00001:(ec_crit_1/30):ec_crit_1+0.00001, 

          -0.00001:(-ec_crit_1/15):-ec_crit_1-0.00001); 

    Z=-fs.*atan((-Y).*((1-((X.*l_ch)./delta_crit_1).^2)./(1-(1- 

      -((X.*l_ch)./delta_crit_1).^2))))./(pi./2); 

    mesh(X,Y,Z); 

    [X,Y]=meshgrid(ec_crit_1+0.00001:(ec_crit_1/15):1.2*ec_crit_1+0.00001, 

          -ec_crit_1-0.00001:(ec_crit_1/15):-0.00001);Z=(X-X)+(Y-Y) ; 

    mesh(X,Y,Z); 

    [X,Y]=meshgrid(0.00001:(ec_crit_1/15):1.2*ec_crit_1+0.00001, 
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          -ec_crit_1-0.00001:(-ec_crit_1/15):-1.2*ec_crit_1-0.00001 ); 

    Z=(X-X)+(Y-Y) ; mesh(X,Y,Z); 

    xlabel('\epsilon^c_n_n [-]');ylabel('\epsilon^c_n_m [-]');  

    zlabel('t_m [MPa] '); legend('t_m_,_i_t_e_r','t_m_,_p_r_e_c_i_s_e'); 

  subplot(2,2,3); hold on 

    X=g_ec_1; Y=g_ec_2; Z=g_s_1; 

    plot3(X,Y,Z,'-db','MarkerSize',7,'MarkerFaceColor','c', 

         'MarkerEdgeColor','k'); 

    [X,Y]=meshgrid(0:(ec_crit_1/15):ec_crit_1, -ec_crit_1:(ec_crit_1/15):0); 

      t_n=Sig_nn_p_scalar.*( (1+((c1.*l_ch.*X./delta_crit_1).^3)) .*exp(- 

          -c2.*l_ch.*X./delta_crit_1) - exp(- 

          -c2).*(1+(c1.^3)).*l_ch.*X./delta_crit_1); 

    Qe_times_ec_1=Qe_2ord(1,1).*X+Qe_2ord(1,2).*Y; 

    Z=t_n+Qe_times_ec_1; 

    mesh(X,Y,Z); 

    [X,Y]=meshgrid(ec_crit_1+0.00001:(ec_crit_1/30):1.2*ec_crit_1+0.00001, 

          -0.00001:(-ec_crit_1/15):-ec_crit_1-0.00001); 

    t_m= (X-X)+(Y-Y);Qe_times_ec_2=Qe_2ord(1,1).*X+Qe_2ord(1,2).*Y; 

    Z=t_m+Qe_times_ec_2; 

    mesh(X,Y,Z); 

    [X,Y]=meshgrid(0.00001:(ec_crit_1/30):1.2*ec_crit_1+0.00001, 

          -ec_crit_1-0.00001:(-ec_crit_1/15):-1.2*ec_crit_1-0.00001); 

    t_m= (X-X)+(Y-Y);Qe_times_ec_2=Qe_2ord(1,1).*X+Qe_2ord(1,2).*Y; 

    Z=t_m+Qe_times_ec_2; 

    mesh(X,Y,Z); 

    xlabel('\epsilon^c_n_n [-]');ylabel('\epsilon^c_n_m [-]');  

    zlabel('s(1) [-]'); legend('s_i_t_e_r(1)','s_p_r_e_c_i_s_e(1)'); 

  subplot(2,2,4); hold on 

    X=g_ec_1; Y=g_ec_2; Z=g_s_2; 

    plot3(X,Y,Z,'-db','MarkerSize',7,'MarkerFaceColor','c', 

         'MarkerEdgeColor','k'); 

    [X,Y]=meshgrid(0.00001:(ec_crit_1/30):ec_crit_1+0.00001, 

          -0.00001:(-ec_crit_1/15):-ec_crit_1-0.00001); 

    t_m=-fs.*atan((-Y).*((1-((X.*l_ch)./delta_crit_1).^2)./(1-(1- 

        -((X.*l_ch)./delta_crit_1).^2))))./(pi./2); 

    Qe_times_ec_2=Qe_2ord(2,1).*X+Qe_2ord(2,2).*Y; 

    Z=t_m+Qe_times_ec_2; 

    mesh(X,Y,Z); 

    [X,Y]=meshgrid(ec_crit_1+0.00001:(ec_crit_1/30):1.2*ec_crit_1+0.00001, 

          -0.00001:(-ec_crit_1/15):-ec_crit_1-0.00001); 

    t_m= (X-X)+(Y-Y);Qe_times_ec_2=Qe_2ord(2,1).*X+Qe_2ord(2,2).*Y; 

    Z=t_m+Qe_times_ec_2; 

    mesh(X,Y,Z); 

    [X,Y]=meshgrid(0.00001:(ec_crit_1/30):1.2*ec_crit_1+0.00001, 

          -ec_crit_1-0.00001:(-ec_crit_1/15):-1.2*ec_crit_1-0.00001); 

    t_m= (X-X)+(Y-Y);Qe_times_ec_2=Qe_2ord(2,1).*X+Qe_2ord(2,2).*Y; 

    Z=t_m+Qe_times_ec_2; 

    mesh(X,Y,Z); 

    xlabel('\epsilon^c_n_n [-]');ylabel('\epsilon^c_n_m [-]');  

    zlabel('s(2) [-]'); legend('s_i_t_e_r(2)','s_p_r_e_c_i_s_e(2)'); 

end; 
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figure%5 

  subplot(2,2,1); hold on 

    plot(g_Sig_3,g_Sig_1,'-xb') 

    xlabel('\tau_x_y [MPa]'); ylabel('\sigma_x [MPa]'); 

  subplot(2,2,2); hold on 

    plot(g_Sig_3,g_Sig_2,'-xb'); 

    xlabel('\tau_x_y [MPa]'); ylabel('\sigma_y [MPa] '); 

  subplot(2,2,3); hold on 

    plot(g_delta_1,g_delta_2,'-xb'), 

    xlabel('\delta_n [mm]'); ylabel('\delta_m [mm]'); 

  subplot(2,2,4); hold on 

    plot(1:length(g_Dec_G_11),g_Dec_G_11,'-b'), 

    plot(1:length(g_Dec_G_22),g_Dec_G_22,'--xb'), 

    plot(1:length(g_Dec_G_33),g_Dec_G_33,':b'), 

    plot(1:length(g_Dec_G_12),g_Dec_G_12,'-.b'), 

    xlabel('Step_p_l'); ylabel('D_e_c(i,j) [MPa]'); 

    legend('D_e_c(1,1)','D_e_c(2,2)','D_e_c(3,3)','D_e_c(1,2)'); 
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