

Multi-fidelity Bayesian inference of Concrete Damage Plasticity Model parameters or Practical obstacles applying Bayesian inference

Anna Kučerová

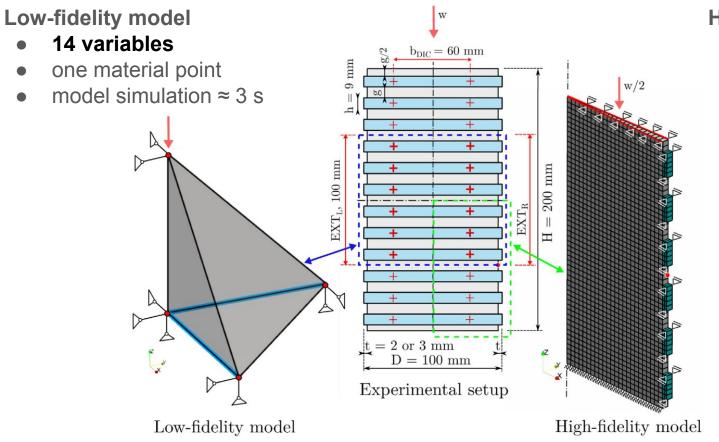
Jan Sýkora, Petr Havlásek, Daniela Jarušková, Milan Jirásek

Department of Mechanics and Mathematics Faculty of Civil Engineering Czech Technical University in Prague Czechia

2

Goal: Design of triaxial loading conditions based on the uniaxial loading regime. Cheaper and less time consuming experimental setup. Development of multi-spiral reinforcement of concrete columns. _12R | 8R _ T_6 T_4 T_5 T_3 T_4 T_3 ++ Γ_2 T₂ <u>≅</u>+ → EXT_R EXTL + + + H B_1 +↔ + B B₂ + + + B_2 B_3 B_4 $h B_3$ Bs $h B_{4}$ $k_{g/2}$ D_C 12R t3 8R t2 D Aluminum rings differ in overall number (8 vs. 12) and thickness (2 vs. 3 mm)

UNCECOMP 2023, Athens, Greece



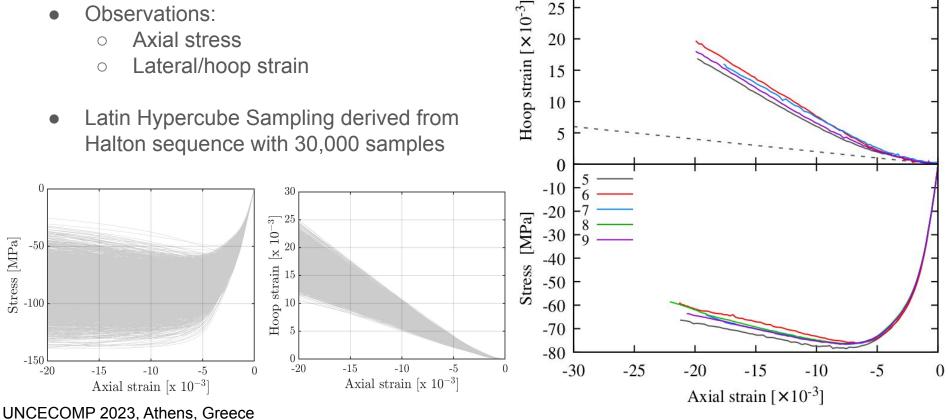
High-fidelity model

- **15 material** parameters
- despite symmetry model simulation ≈ 1 h

Numerical models of the experiments

12R t3

- Experiment controlled by axial strain
- **Observations:**
 - Axial stress Ο
 - Lateral/hoop strain Ο
- Latin Hypercube Sampling derived from Halton sequence with 30,000 samples



30

25

20

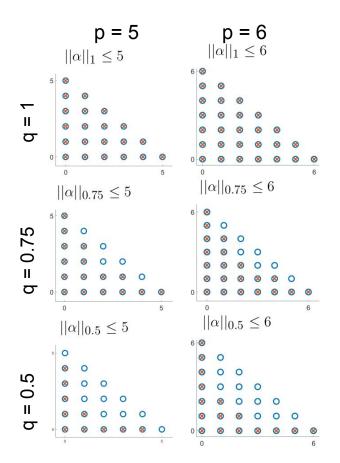
15

How to choose best bases of polynomial chaos for 14 variables and 30,000 prior simulations?

$$\widehat{y}(\boldsymbol{X}) = \sum_{\boldsymbol{\alpha} \in \mathcal{A}} \widehat{\beta}_{\boldsymbol{\alpha}} \psi_{\boldsymbol{\alpha}}(\boldsymbol{X}) \qquad |\mathcal{A}^{n_X, p}| = \frac{(p + n_X)!}{p! n_X!}$$

• hyperbolic truncation scheme [Blatman & Sudret,2011] $\mathcal{A}^{n_X,p,q} = \left\{ \boldsymbol{\alpha} \in \mathbb{N}^{n_X} : \left(\sum_{k=1}^{n_X} \alpha_k^q\right)^{1/q} \le p \right\}$

> - p = 5, q = 1.00, 11628 terms - p = 8, q = 0.77, 11215 terms - p = 11, q = 0.63, 11985 terms - p = 14, q = 0.57, 11208 terms

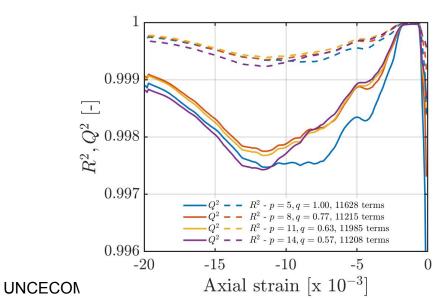


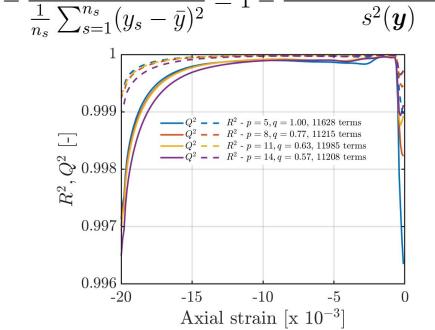
6

Error estimates: coefficient of determination:

Leave-one-out crossvalidation:

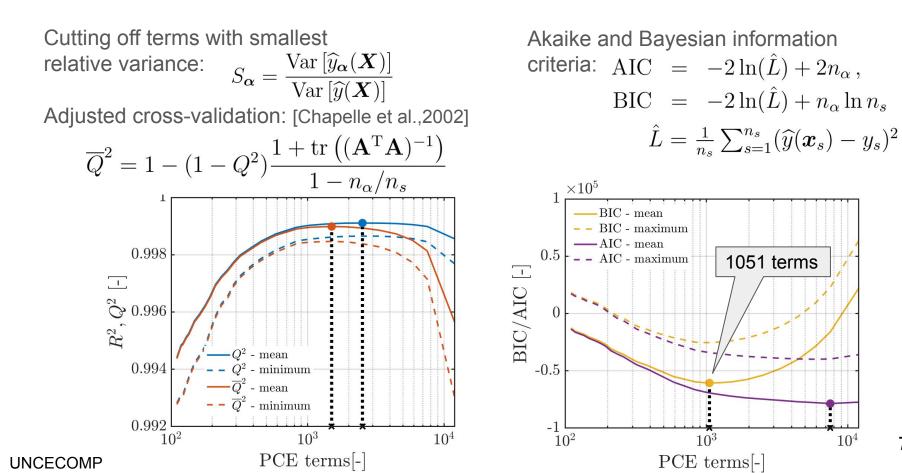
ermination:
$$R^{2} = 1 - \frac{\frac{1}{n_{s}}\sum_{s=1}^{n_{s}}(\widehat{y}(\boldsymbol{x}_{s}) - y_{s})^{2}}{\frac{1}{n_{s}}\sum_{s=1}^{n_{s}}(y_{s} - \overline{y})^{2}} = \frac{s^{2}(\widehat{\boldsymbol{y}})}{s^{2}(\boldsymbol{y})}$$
$$Q^{2} = 1 - \frac{\frac{1}{n_{s}}\sum_{s=1}^{n_{s}}(\widehat{\epsilon}(\boldsymbol{x}_{s}))^{2}}{\frac{1}{n_{s}}\sum_{s=1}^{n_{s}}(y_{s} - \overline{y})^{2}} = 1 - \frac{\frac{1}{n_{s}}\sum_{s=1}^{n_{s}}\left(\frac{\widehat{Y}(\boldsymbol{x}_{s}) - y_{s}}{1 - h_{ss}}\right)^{2}}{s^{2}(\boldsymbol{y})}$$





 10^{4}

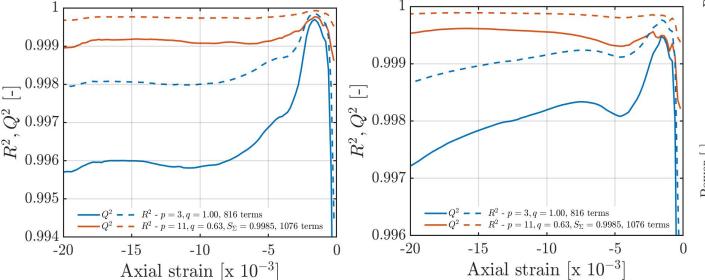
7

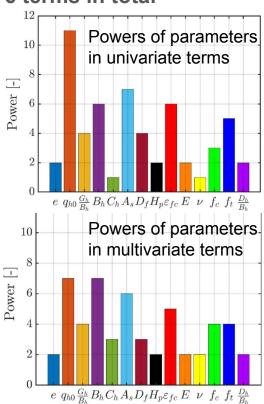


CTU CZECH TECHNICAL UNIVERSITY IN PRACUE

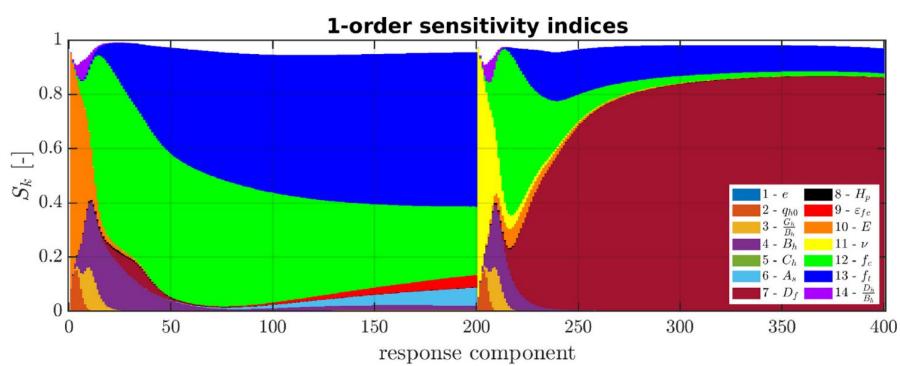
- Chosen topology for LF model extended by 25 terms related to additional 15th variable
 Sparse hyperbolic PCE up to 11th degree with 1076 terms in total
 - \Rightarrow 3,000 HF model simulations of 4 experiments

• Comparison to full PCE up to 3rd degree with 816 terms



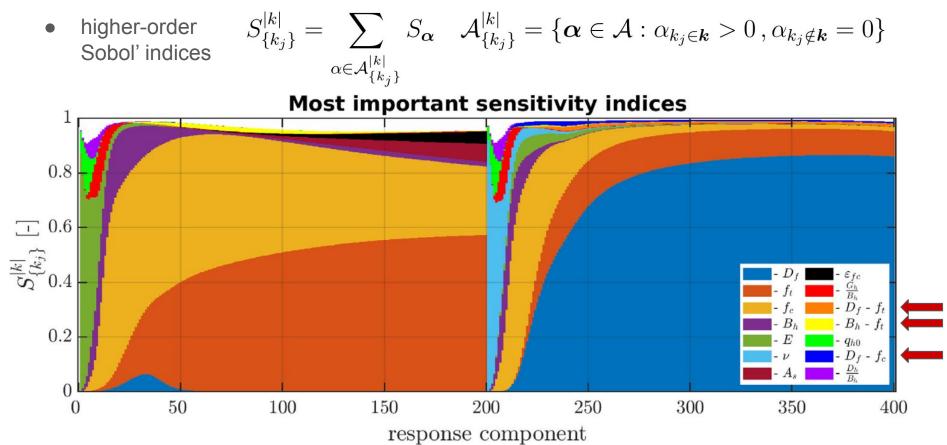


Sensitivity analysis - analysis of variance



UNCECOMP 2023, Athens, Greece

Sensitivity analysis - analysis of variance



Bayesian inference - and now come troubles

Bayes' rule:

$$p(\boldsymbol{X}|\boldsymbol{Z}) = \frac{p(\boldsymbol{Z}|\boldsymbol{X})p(\boldsymbol{X})}{p(\boldsymbol{Z})}$$

Prior distribution:

- Generally so difficult to define!
- Often several iterations/modifications
- Where the model is defined?
- Where the model is stable?
- Unrealistic parameter combinations prior should often be correlated?

Here:

uniform with several modifications of bounds

Parameter	Units	Minimum	Maximum
e	[-]	0.5	0.6
q_{h0}	[-]	0	0.4
G_h/B_h	[-]	10	30 (20)
B_h	$[10^{-3}]$	1	8 (5)
C_h	[-]	1	5
A_s	[-]	5	50
D_f	[-]	1.0	1.7
H_p	[-]	0	0.25
$arepsilon_{fc}$	$[10^{-3}]$	0.05	0.35
\check{E}	[MPa]	35000	40000
u	[-]	0.15(0.17)	0.22
f_c	[MPa]	40	60(50)
f_t	[MPa]	2	8 (6)
D_h/B_h	[-]	0	0.1
w_f	$[10^{-6} \text{ m}]$	30	400

$$\mathbf{Z}_{e} = \mathbf{F}\widehat{\mathbf{Y}}_{e}(\mathbf{X}) + \boldsymbol{\epsilon}_{\mathrm{M},e} + \boldsymbol{\epsilon}_{\mathrm{T},e}$$

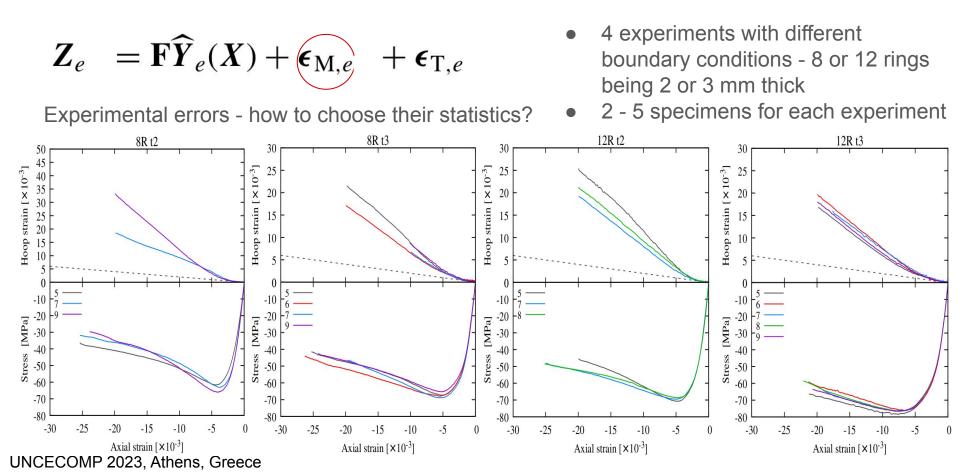
Likelihood:

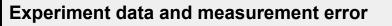
• all errors assumed to be Gaussian

$$p(\mathbf{Z}_{e}|\mathbf{X}) = \prod_{c} \frac{1}{\sqrt{(2\pi)^{n_{z}} |\mathbf{C}_{e}|}} e^{-\frac{1}{2}(\mathbf{F}\widehat{\mathbf{Y}}_{e}(\mathbf{X}) - \mathbf{Z}_{e,c})^{T} \mathbf{C}_{e}^{-1}(\mathbf{F}\widehat{\mathbf{Y}}_{e}(\mathbf{X}) - \mathbf{Z}_{e,c})}$$
$$\mathbf{C}_{e} = \mathbf{C}_{\mathrm{M},e} + \mathbf{C}_{\mathrm{T},e}$$

Error of surrogate - based on leave-one-out cross-validation:

$$\mathbf{C}_{\mathrm{T},e} = \frac{\mathbf{F}\boldsymbol{\Delta}_{e}\boldsymbol{\Delta}_{e}^{\mathrm{T}}\mathbf{F}^{\mathrm{T}}}{n_{s}} \qquad \boldsymbol{\Delta}_{e} = \left(\widehat{\boldsymbol{\epsilon}}_{\mathrm{T},e}(j,s)\right) \in \mathbb{R}^{n_{y} \times n_{s}} = \frac{y_{e;j,s} - \widehat{y}_{e;j,s}}{1 - h_{ss}}$$





- All specimens are from same material
 - same concrete mix
 - we search for the material parameters of this mix
- Concrete is heterogeneous, every sample differs in morphology and exhibits different behavior

10

X

strains

lat

in

devs.

 $\frac{1}{2}$

 10^{0}

 10^{-2}

-20

8R t2

8R t3

12R t2

12R t3

-15

-10

Axial strain $[x \ 10^{-3}]$

-5

Are observations correlated?

 10^{1}

 10^{0}

 10^{-1}

-20

8R t2

8R t3

12R t2

12R t3

-15

UNCECOMP 2023, Athens, Greece

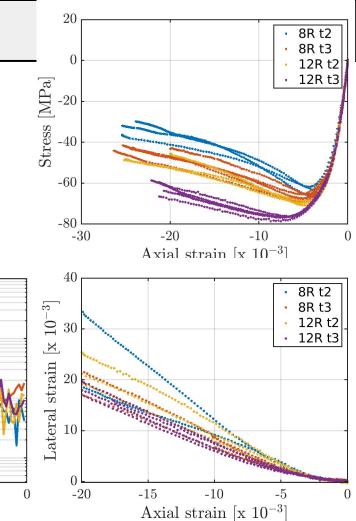
-10

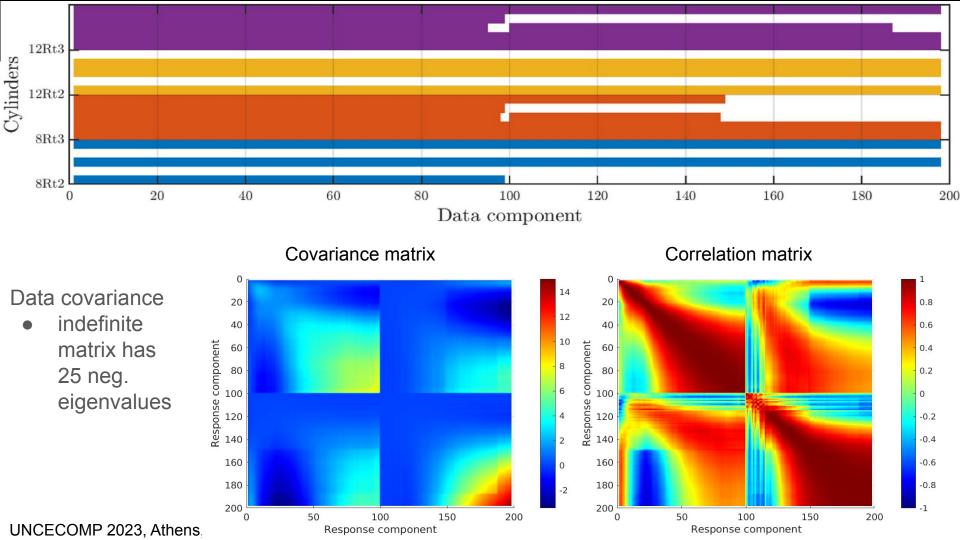
Axial strain $[x \ 10^{-3}]$

-5

devs. in stresses [MPa]

St.





Experiment data and measurement error

Covariance from prior simulations

enough simulations, positive definite matrix

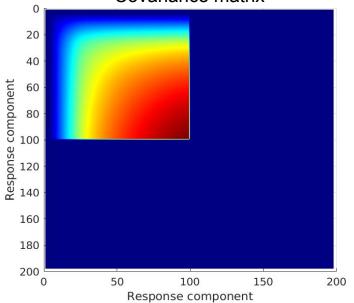
50

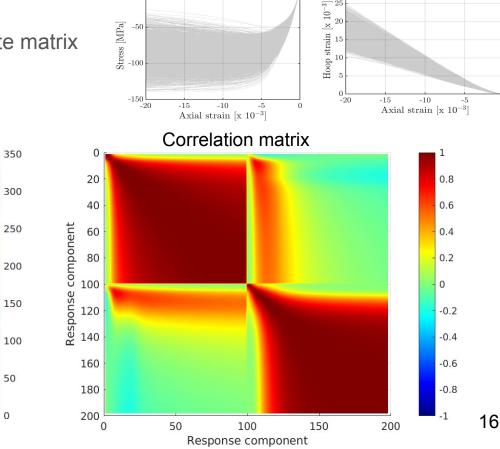
0

Can we somehow use it?

UN

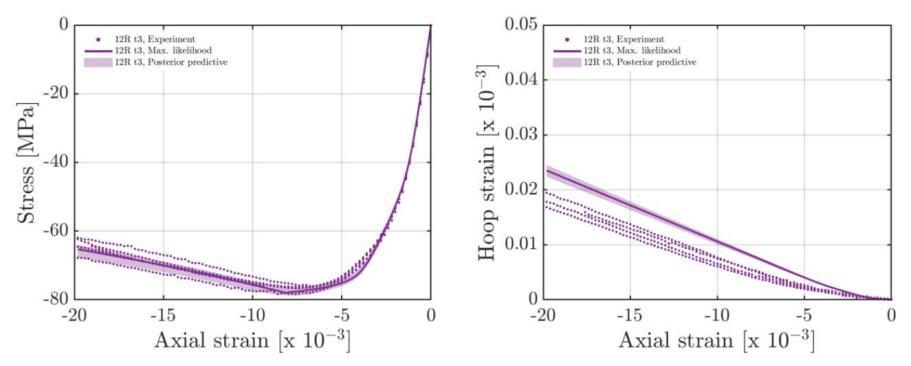
Covariance matrix



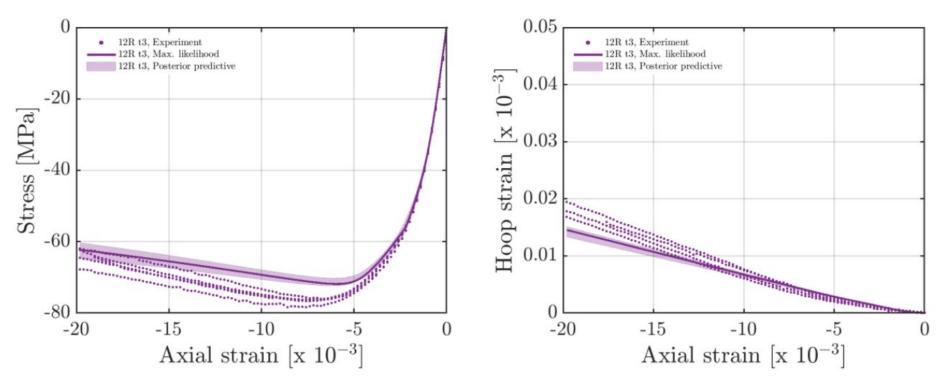


30

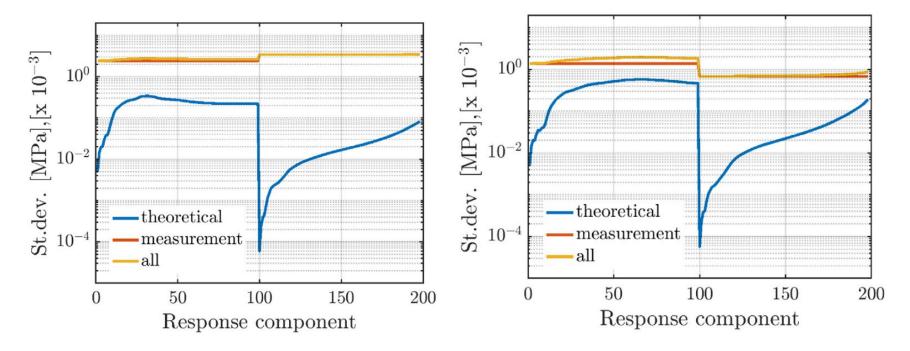
Data Covariance corrected using Covariance obtained for prior simulations



Data Covariance computed from data with gaps filled by mean

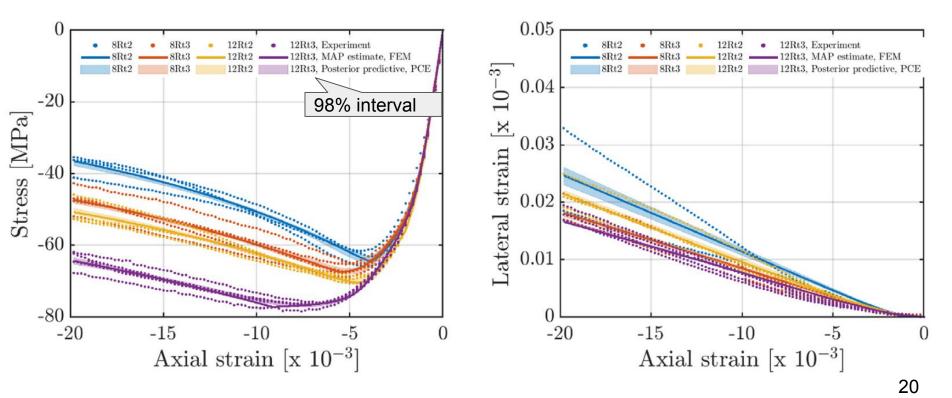


Experiment data and measurement error

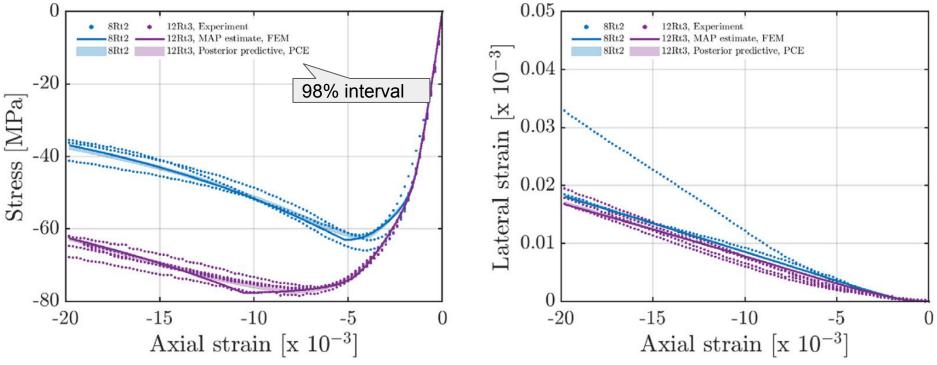


Final decision: neglect all correlations and use only diagonal covariance matrix

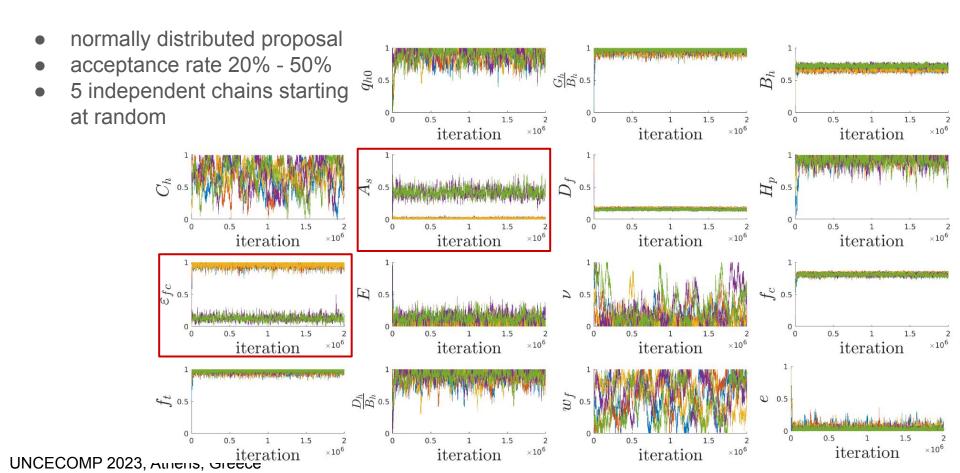
Best fits for all experiments



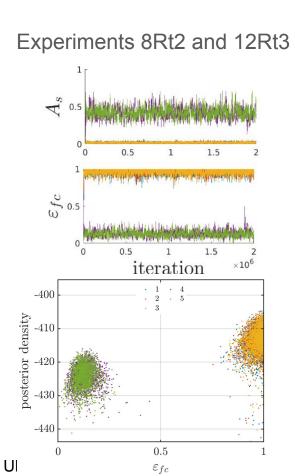
Best fits of both experiments 8Rt2 and 12Rt3

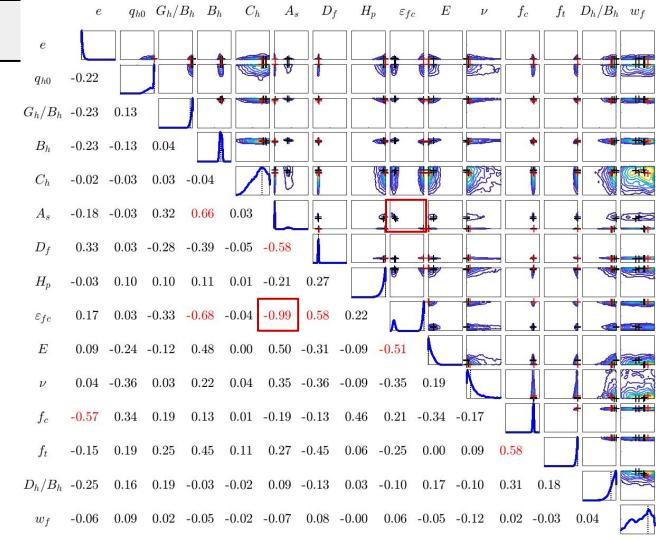


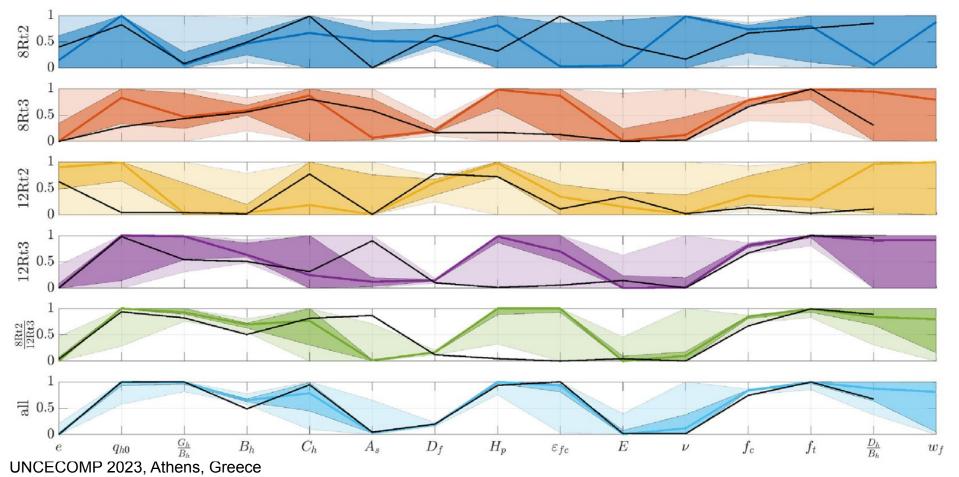
Markov chain Monte Carlo sampling of posterior



Markov chain Monte Carlo sampling of posterior







- Yes,
 - It is possible to identify 11 out of 15 parameters of complex damage- plastic model for concrete using two similar and cheap compression tests with a satisfactory accuracy.

A. Kučerová, J. Sýkora, P. Havlásek, D. Jarušková and M. Jirásek: Efficient probabilistic multi-fidelity calibration of a damage-plastic model for confined concrete. *Computer Methods in Applied Mechanics and Engineering*, Volume 412, 1 July 2023, 116099.

- Accuracy of a surrogate and computational costs are becoming manageable in many tasks of material parameter inference.
- But,
 - Interpretation of posterior uncertainties needs to be done very carefully as it is very dependent of often very weak formulation of prior distribution and also uncertainties in likelihood.
 - Estimation of correlations in data can be more tricky than it seems.