Heat Conduction Modeling and Simulation using Deep Learning
Techniques

April 23, 2024

Autor: Ondiej Sperl

Abstract: The present work is devoted to the surrogate modeling of heat conduction problem
using deep neural networks. Deep learning is a subfield of machine learning that employs artificial
neural networks to extract intricate patterns and relationships from data. These networks consist
of multiple layers of interconnected nodes, which enable the automatic learning of hierarchical
representations of data. Unlike traditional machine learning algorithms that require handcrafted
features, deep learning algorithms can learn features directly from raw data, making them highly
effective in tasks such as image and speech recognition, natural language processing, and predictive
analytics. In this study, the U-Net convolutional neural network is utilized to model stationary heat
transfer. The U-Net is a powerful deep learning architecture that has been widely used in image
segmentation tasks, and its application to heat transfer modeling represents a novel approach to
this important problem in engineering and physics.

Keywords: Heat conduction, Deep learning, U-Net architecture

[1]:

1 Heat conduction

To begin with, we introduce a bounded body D C R? (reference configuration) with a piecewise
smooth boundary I'. In particular, the Dirichlet, Neumann, and Robin boundary conditions are
imposed on I'p CI', 'y CI'and ' C I, such that I' =I'p UT'y U T'g. Moreover, to investigate
the time-dependent behavior of D, thus we consider a time interval [0,¢s] C R;. The evolution of

temperature in D is expressed as
:D x[0,t] — R, (1)

where 6 [°C] is the temperature. Heat transport is then described by the transient heat balance
equation with initial and boundary conditions as

col) o (a,1) = V- (M) V02, 1)) = 0. veD, te(0t,),
0(x,t) = 0p(x,t), xel'p, te(0,ts),
)\(m)gz(x,t) = qn(z,t), x €y, t €(0,t5), (2)
a(f(x,t) — O (x,t)) =)\(x)g;;(x,t), x € g, t €(0,t),
0(x,0) = 0;n(x), xz e D.

\

where c,(z) [Jm™3K~!] is the volumetric heat capacity introduced as a product of the volumetric
mass density ps(z) [kgm 3] and the specific heat capacity c,(x) [JKg™'K™1], i.e., ¢y (z) = ps(x)cp(z),
A(x) [Wm™1K™1] is the thermal conductivity, t4[s] is the final time of the simulation, . (z,t)
[°C] is the ambient temperature, o [Wm~2K~1] is the heat transfer coefficient, 0p(z,t) [°C] is
the prescribed temperature and gy [Wm™2] is the prescribed heat flux. As a preamble, we limit
ourselves to the stationary problem. This simplification offers a more tractable approach to data
handling during the training phase of neural networks, thereby allowing for a more thorough and
in-depth analysis of the problem at hand.

from Unet_functions import =*
import tensorflow as tf

from scipy.io import loadmat
import pandas as pd

from io import StringlO
import math

from Graphs import *

import os

2 Finite element discretization and dataset preparation

The finite element method (FEM) represents a systematic technique for the approximation of solu-
tions to partial differential equations (PDEs) by projecting the infinite-dimensional function space
onto a finite-dimensional subspace. This process involves the conversion of continuous functions
into discrete functions, which are then represented as ordinary vectors within a vector space. These
vectors can be effectively manipulated using numerical methods. One widely used formulation of the
finite element method is the Galerkin method, which is employed for the discretization process. The
Galerkin method is based on the principle of weighted residuals, where the residual is orthogonal

[2]:

[3]:

to the chosen finite-dimensional subspace. This method ensures that the error between the exact
solution and the approximate solution is minimized in a well-defined mathematical sense.

In this study, a 2D rectangular domain subjected to Dirichlet boundary conditions on its left and
right sides is discretized utilizing quadrilateral finite elements. Each quadrilateral element cor-
responds to a single pixel, which represents the given material phase. The investigated domain
comprises two material phases with distinct thermal conductivities, i.e. A\; = 1.0Wm'K~! and
Ao = 5.0 Wm~'K~!. To account for the heterogeneity of the material, we model it by randomly po-
sitioning overlapping circles characterized by A; within the domain predominantly characterized by
Ao, see attached figure below. The successful training of neural networks necessitates the availability

of a well-prepared dataset that enables efficient learning and guarantees optimal performance. In
this context, a total of 20,000 finite element simulations were performed, utilizing randomly gener-
ated input domains to encompass the essential features required for comprehensive learning. This
extensive dataset ensures the neural network’s ability to accurately model complex relationships
and generalize well across various scenarios.

path = ". . \InputsForDNN\MESH_Rec_15_x_31_1\\"

grid = "..\Grids\\MESH_Rec_15_x_31_1.mat"

model_database_dir = "..\\U_Net\Models\\" # directory where trained models are,
—stored

lambdas = np.array(loadmat(path+"Lambdas.mat") ["Lambdas"])
temperatures = np.array(loadmat (path+"NodeTemperatures.mat") ["Temperatures"])
elementTemperatures = np.array(loadmat(path+"ElementTemperatures.
—mat") ["ElementTemperatures"])
nodeLambdasAsCodeNumbers = np.array(loadmat (path+"NodeLambdasAsCodeNumbers.
—mat") ["NodeLambdas"])

lambdas = lambdas.reshape((20000, 15, 31))

elementTemperatures = elementTemperatures.reshape(20000, 15, 31)
temperatures = temperatures.reshape(20000, 16, 32)
nodeLambdasAsCodeNumbers = nodeLambdasAsCodeNumbers.reshape (20000, 16, 32)

[4] :

3 Deep Learning

Here, It is essential to introduce the context between artificial intelligence (AI), machine learning,
and deep learning. Al refers to the development of machines and algorithms that can perform
tasks that typically require human intelligence, such as recognizing patterns or making decisions.
Machine learning is a subset of AI, which enables machines to learn from data without being
explicitly programmed. Machine learning algorithms can analyze large datasets, such as those used
for playing chess, or identify patterns and relationships within the data. Deep learning is a subset
of machine learning that uses artificial neural networks with multiple layers to model and solve
complex problems. By leveraging the power of neural networks, deep learning has achieved state-
of-the-art results in a wide range of applications. For that reason, all proposed solutions in this
work are based on deep learning bringing the ready-made, well-established, and well-documented
software libraries, testing and benchmarking methodologies such as underfitting, overfitting, and
cross-validation, and standards for measuring model performance.

Training_data = 15000
Validation_data= 2500
Testing_data = len(lambdas) - Validation_data - Training_data

Data splitting into training, validation, and testing sets is crucial for several interconnected reasons
that contribute to the development of accurate and reliable deep learning models. This practice
allows for an unbiased evaluation of the model’s performance on unseen data, preventing overfitting
by monitoring the model during the training process and detecting any signs of learning the training
data too well, including noise and outliers. The validation set plays a vital role in fine-tuning
hyperparameters, such as learning rate, batch size, or the number of hidden layers in a neural
network, and in comparing multiple models or algorithms to determine which one performs best on
unseen data. By using separate datasets for training, validation, and testing, we ensure that the
model’s performance is estimated without bias, which is crucial for obtaining reliable and accurate
results, especially in real-world applications where the model’s performance on new data is of utmost
importance. From mentioned reasons, the dataset is here partitioned into three distinct subsets:
the training dataset, the validation dataset, and the testing dataset, with the following respective
sizes: 15,000, 2,500 and 2,500.

4 Data normalization

Data normalization is a vital preprocessing step in the context of neural networks for several reasons:
i) It speeds up the learning process as gradient-based learning algorithms, typically used in neural
networks, perform optimally when input features are on a similar scale. If one feature has a much
larger range than others, the algorithm’s iteration through that feature’s values slows down, hinder-
ing the learning process. ii) Normalizing data can help avoid the problem of local minima, where
neural networks often get stuck during optimization. By smoothing and easing the optimization
landscape, the network can navigate better. iii) The performance of the model can be significantly
improved as neural networks frequently use activation functions sensitive to the scale of their inputs.
Functions like sigmoid and tanh can saturate if inputs are too large or small, causing slow or poor
learning. iv) Normalization can also reduce overfitting by helping the model generalize better and
be less sensitive to specific input feature values. iv) It provides numerical stability by preventing
issues caused by very large or small numbers, leading to more accurate computations and results.

[4] :

[5]:

Normalizing input and output

Lambdas = np.unique(nodeLambdasAsCodeNumbers)

MaxLambda = Lambdas.max()

MinLambda = Lambdas.min()

Inputs = (nodelLambdasAsCodeNumbers - MinLambda)/(MaxLambda - MinLambda)

MaxTemperature = temperatures.max()
MinTemperature = temperatures.min()
Outputs = (temperatures - MinTemperature)/(MaxTemperature - MinTemperature)

TrainingInputs = Inputs[:Training_ data]
ValidationInputs = Inputs[Training_data:Training_datat+Validation_data]
TestingInputs = Inputs[Training data+Validation_data:]

TrainingOutputs = Outputs[:Training_datal

ValidationOutputs = Outputs[Training data:Training_data+Validation_datal
TestingOutputs = Outputs[Training_ data+Validation_data:]
print(TrainingOutputs.shape)

print(TestingInputs.shape)

try:
ModelsDataFrame = pd.read_csv(model_database_dir+"ModelsDatabase.csv")
NewIndex = ModelsDataFrame.index[-1] + 1
except:
ModelsDataFrame = pd.DataFrame({})
NewIndex = 1

model_path = model_database_dir+"Model"+str(NewIndex)

if not os.path.exists(model_path):
os.makedirs (model_path)

model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint (
filepath=model_path,
monitor='val_loss',
mode='min',
save_best_only=True)

5 U-Net Architecture

The U-Net architecture, introduced by Ronneberger et al in 2015, is derived from the “fully convo-
lutional network” introduced by Long, Shelhamer, and Darrell in 2014. The core concept involves
enhancing a typical contracting network with subsequent layers, where traditional pooling operations
are substituted with upsampling operators. These layers increase the output resolution, enabling
successive convolutional layers to generate a precise output based on the provided information. A
significant adjustment in the U-Net architecture is the incorporation of a large number of feature
channels in the upsampling section, facilitating the propagation of context information to higher

resolution layers. Consequently, the expansive path exhibits near symmetry with the contracting
part, resulting in the distinctive u-shaped architecture.

[6]: def build_unet_model():
building model
inputs
inputs = layers.Input(shape=(16,32,1))

f1, pl = downsample_block(inputs, 64)
f2, p2 = downsample_block(pl, 128)
£3, p3 = downsample_block(p2, 256)

bottleneck = double_conv_block(p3, 512)

ul = upsample_block(bottleneck, £3, 256)
u2 = upsample_block(ul, £f2, 128)

u3 = upsample_block(u2, f1, 64)
outputs
outputs = layers.Conv2D(1, 1, padding="same", activation = "linear") (u3)

unet model with Keras Functional API
unet_model = tf.keras.Model(inputs, outputs, name="U-Net")
return unet_model

Typical U-Net architecture is depicted in the following figure (courtesy of Kaustav Das).

|‘~I‘
) 64

I __
I*! -0

Input Image

n

Output Probability
Map

256
- [M g
512 256
I > - > I
512

I >

=% Convolution Block 1024

‘ MaxPool (2x2)
Upsampling Block n: Output Classes

— Copy

[7]: unet_model = build_unet_model ()
unet_model . summary ()

The total quantity of unknown weights, which require training, exceeds 8 million. Optimization
algorithms are indispensable components in the domain of deep learning, as they enable neural
networks to learn with high efficiency and converge towards optimal solutions. One of the most
popular optimization techniques used in training deep neural networks is the Adam optimizer, which
is also utilized for our training case.

[8]: |lunet_model.compile(optimizer=tf.keras.optimizers.Adam(learning rate=0.001),
loss="mean_squared_error")

[9]: epochs = 20
model_history = unet_model.fit(TrainingInputs,
TrainingQutputs,
epochs=epochs,
validation_data=[ValidationInputs,
—ValidationQOutputs],
callbacks=[model_checkpoint_callback])

[11]: display_learning_ curves(model_history.history)

The evolutions of training loss and validation loss are depicted in the following figure.

Loss

—— train loss
validataion loss

0.012 4

0.010 4

0.008 1

Loss

0.006 -

0.004

0.002

0.000 T

T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Epoch

[12]:

unet_model = tf.keras.models.load_model(model_path)
etaps_of _prediction = math.floor(Testing data / 2500) # Splitting testing,
—dataset due to GPU memory - I can not load big tensors to GPU.
predictions = np.zeros((Testing data, 16, 32))
for i in range(etaps_of_prediction):
prediction_part_i = unet_model(TestingInputs[i*2500: (i+1)*2500].
—reshape ((2500, 16, 32, 1)))
prediction_part_i = tf.reshape(prediction_part_i, (2500, 16, 32)).numpy()
predictions[i*2500: (i+1)*2500] = prediction_part_i

RemainingData = Testing_data - etaps_of_prediction * 2500
prediction = unet_model(TestingInputs[etaps_of_prediction*2500:].
—reshape ((RemainingData, 16, 32, 1)))

prediction = tf.reshape(prediction, (RemainingData, 16, 32)).numpy()
predictions[etaps_of_prediction*2500:] = prediction

The performance of the proposed technique is observed in the comparison of FEM-predicted and
Deep learning-based temperature fields computed for one particular material domain illustrated in

the following figures.

T T T

5 5 F &

o FS o
Temperatures (°C)

4.8

FEM-predicted field Deep learning-based field

6 Conclusions

16.0

5
-

ey
M
o

,_.
=
¥

o
)

o
o

o
S

4.8

We briefly present the use of deep neural networks in the problem of heat conduction. We are aware
of the length and quality of the manuscript, thus the oral presentation is an integral part of the

studied topic.

Temperatures (°C)

	Heat conduction
	Finite element discretization and dataset preparation
	Deep Learning
	Data normalization
	U-Net Architecture
	Conclusions

