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Abstract: 
 
Failure criteria for rocks usually involve only stresses and are thus suited primarily for 
homogeneous states of stresses. Since in rock mechanics highly inhomogeneous stresses may 
occur, it is possible that stress-gradients have some effects of failure mechanism. As 
mentioned by Mindlin (1963), the apparent strength of rock-type materials is affected by 
strain gradient. It is observed that brittle failure and the onset of static yielding in the presence 
of stress concentration occur at higher loads than might be expected on the basis of stress 
concentration factors calculated from the theory of elasticity. In general, increasing strain 
gradients appear to make some materials stronger and to a degree that depends upon grain 
size. In order to capture microstructural effects in stress concentration problems it appears 
necessary to resort to continuum models with microstructure to describe correctly the 
deformation process at small scale. These generalized continua usually contain additional 
kinematical degrees of freedom (Cosserat continuum) and/or higher deformation gradients 
(higher grade continuum). Rotation gradients and higher velocity gradients introduce a 
material length scale into the problem, which allow to assess the effect of scale. In this paper 
some examples of high stress concentration problems as caused by singular stress distribution 
(indentation and crack problems) are studied and solved analytically within the frame of 
gradient elasticity with surface energy. The potential of the theory in order to interpret scale 
effects, i.e. the influence of the size of the loading strip on the response of the material for 
indentation problems or the dependence of fracture toughness of the material on the size of 
the crack for crack problems is  presented. 
 

1 INTRODUCTION 

Failure criteria for rocks usually involve only stresses and are thus suited primarily for 
homogeneous states of stresses. Since in rock mechanics highly inhomogeneous stresses may 
occur, it is possible that stress-gradients have some effects of failure mechanism. As 
mentioned by Mindlin (1963), the apparent strength of rock-type materials is affected by 
strain gradient. It is observed that brittle failure and the onset of static yielding in the presence 
of stress concentration occur at higher loads than might be expected on the basis of stress 
concentration factors calculated from the theory of elasticity. In the framework of continuum 
theories, quantitites such as stress and strain, represent statistical mean values taken over very 
small ranges of volume. Consequently continuum theories cannot give satisfying predictions 
of the behaviour of the material within very small ranges of volume, if high gradients of stress 
and strain occur. Especially standard continuum-mechanics theories cannot describe situations 
dominated by microstructural effect, e.g. load or geometrically induced stress singularities, 
since the influence of these effects is not properly accounted by the standard continuum 
theories.  
Let us for simplicity consider an one-dimensional example and let )x(fy =  be a field (e.g. 
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the density ρ  at position x), whose mean value is computed over a small but finite averaging 
or sampling length L with the point x as its center-point, 
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If the field f(x) varies more or less linearly in the considered sampling region, then it is 
approximated locally by a linear function, using an 1-term Taylor series expansion of the 
function f around point x, 
 

ξ′+≈ξ+ )x(f)x(f)x(f  (2) 
 
In the trivial case when the field f is indeed constant, then the first and all higher derivatives 
vanish, and indeed the local value coincides with the average value. However, this is also true 
in case when the field varies locally linearly. Indeed we may then identify the field with its 
mean value over the considered averaging length, because, following the ‘trapezoidal’ rule of 
integration, the mean value of a linearly varying field in an interval is equal to the value of it 
in the midpoint of the sampling interval,  
 

><= yy  (3) 
 
 

 
Figure 1: The simple trapezoidal rule of averaging 

 
In this case the ‘local’ value y and the ‘non-local’ value <y> coincide. In a field theory where 
local values are identified with mean values, according to the rule (3), are called simple 
theories and the corresponding continua, locally homogeneous.  
In case however, where the field in the considered sampling interval is not described 
satisfactorily by a linear function, then of course we have to assume that it possesses some 
curvature. In this case the above formula (3) must be corrected accordingly, since a linear fit 
of the data does suffice for the satisfactory description of the field locally. Thus we have to 
approximate it at least by a 2-term Taylor-series expansion around point x, 
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We notice that in the midpoint integration rule the effect of the first derivative is null. Thus 
for ‘quadratically’ varying fields, computational rule (3) must be enhanced, so as to 
incorporate the effect of curvature, 
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Field theories, which are based on averaging rules that include the effect of higher gradients, 
are called higher gradient theories. In particular above rule (5) represents a 2nd gradient rule, 
and can be readily generalized in 2 and 3 dimensions by introducing the Laplacian operator 
instead of the second derivative. Such higher gradient theories can be formalised within the 
frame of generalised continuum theories. These theories were rediscovered and reopened in 
various special forms and degree of complexity in the sixties. The state of the art of this 
evolution in the mid-sixties was refected in a collection of papers presented at the historical 
IUTAM Symposium on the “Mechanics of Generalised Continua” (Kröner 1967). Newly the 
interest to such theories is rekindled through the idea of connecting micromechanics with 
fracture and failure of solids (see for example extensive literature review in Vardoulakis and 
Sulem 1995) 
These generalised continua usually contain additional kinematical degrees of freedom 
(Cosserat continuum) and/or higher deformation gradients (higher grade continuum). Rotation 
gradients and higher velocity gradients introduce a material length scale into the problem, 
which allow to assess the effect of scale. In this paper some examples of high stress 
concentration problems as caused by singular stress distribution (indentation and crack 
problems) are studied and solved analytically within the frame of gradient elasticity with 
surface energy. The potential of the theory in order to interpret scale effects, i.e. the influence 
of the size of the loading strip on the response of the material for indentation problems or the 
dependence of fracture toughness of the material on the size of the crack for crack problems is  
presented. 
 

2 MINDLIN'S FORMALISM OF MICROSTRUCTURE 

The description of statics and kinematics of continuous media with microstructure has been 
studied in a systematic way by Germain (1973a,b) through the application of the virtual work 
principle and following the formalism introduced by Mindlin (1964).  

2.1 Kinematics 

In a classical description, a continuum is a continuous distribution of particles, each of them 
being represented geometrically by a point X and characterised kinematically by a velocity v. 
In a theory which takes into account the microstructure of the material, each particle is viewed 
as a continuum C(X) of small extent around the point X.  
Consider a body B which at a configuration C(t) occupies the volume V with boundary ∂V. 
Let xi and xi (i=1,2,3) be the coordinates of a macro-material particle X in C(t) and 
C C t t= +( )∆ , respectively, measured from a fixed-in-space Cartesian coordinate system. The 
components of the (infinitesimal) displacement vector of the macro-particle X are defined as 
 
∆u x xi i i= −  (6) 
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The infinitesimal macro-strain and macro-rotation are defined as usual as the symmetric and 
antisymmetric part of the displacement gradient 
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We assume now that the macro-particle possesses a simple micro-structure defined as 
follows: In each macro-material particle X we assume that there is a micro-volume V' 
embedded, in which the spatial position vectors of micro-material particle X' are x i'  and xi in 
C and C, respectively. We assume that the position of the micro-particle is measured with 
respect to a single Cartesian coordinates system ( ' )x i , parallel to the xi-system, such that the 
origin of the coordinates x i'  moves with the macroscopic displacement ∆ui. A micro-
displacement ∆ui' is defined, with components 
 
∆u x xi i i' ' '= −  (8) 
 
A micromorphic continuum of order 1 is obtained if the micro-displacement ∆ui is expressed 
as a first order Taylor expansion of the coordinates x'i of X', that is 
 
∆ ∆ψu xj i ij' '=  (9) 
  
Accordingly the quantity  
 
∆ψ ∆ij i ju= ∂ '  (10) 
 
is called the micro-deformation which we assume to be homogeneous in the micro-volume V'. 
The symmetric part 
 

∆ψ ∆ψ ∆ψ( ) ( )ij i j j i= +
1
2

∂ ∂  (11) 

 
is called the micro-strain, and the antisymmetric part 
 

[ ]∆ψ ∆ψ ∆ψij i j j i= −
1
2

( )∂ ∂  (12) 

 
is called the micro-rotation. 
The difference between the macro-displacement gradient and the micro-deformation gradient 
is called the relative deformation 
 
∆γ ∆ ∆ψij j i iju= −∂  (13) 
 
Finally the quantity 
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∆κ ∆ψijk i jk= ∂  (14) 
 
is called the micro-deformation gradient. 
The basic kinematic quantities ∆ui and ∆ψij are assumed to be single-valued functions of xi, 
leading to the following compatibility conditions 
 
e e
e
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+ − =

0
0
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where eijk is the Levy-Civita permutation tensor; i.e. the complete 3rd order antisymmetric 
tensor 
 
if (i,j,k) = cyclic(1,2,3) then eijk = 1 
if (i,j,k) = cyclic(2,1,3) then eijk = −1                                                                                    ( 16) 

             else eijk = 0 

2.2 The principle of virtual work 

Germain (1972a,b) suggested a general framework for the foundation of consistent higher 
grade continuum theories on the basis of the virtual work principle. This approach starts with 
the definition of the virtual work δw(i) of the internal forces at any point, which for a Mindlin-
type continuum is defined as follows 
 
δ τ δε α γ µ δκw i

ij ij ij ij ijk ijk
( ) = + +  (17) 

 
The expression for the virtual work gives rise to the identification of the corresponding stress 
tensors. Here, according to (17), the stress tensor, τij, which is dual in energy to the 
macroscopic strain, is symmetric and is called by Mindlin the Cauchy stress. The stress 
tensor, αij, which is dual in energy to the relative deformation is called the relative stress, and 
the higher order stress tensor µijk, which is dual in energy to the micro-deformation gradient is 
called the double stress. By using equation (7) and (15), the work of internal forces become 
 
δ σ ∂ δ α δψ µ δκw ui

ij i j ij ij ijk ijk
( ) = − +  (18) 

  
where 
 
σ τ αij ij ij= +  (19) 
 
is called the total stress tensor. 
The definition (17) of the virtual work of internal forces gives rise also to the definition of the 
virtual work of corresponding external forces, i.e. body forces and surface tractions, 
 
δ δ δ δψ δψ

∂ ∂

W f u dV t u dS dV T dSe
i i

V
i i

V
ij i

V
ij ij

V

( ) = + + +∫ ∫ ∫ ∫Φ  (20) 
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where fi is identified as the body force per unit volume, ti as the surface traction per unit 
surface area. Φij is the double-force per unit volume , and Tij is the double-traction per unit 
surface area. 
Using d'Alembert's principle, macro- and micro-inertial terms may be included in the above 
expression for the virtual work of external forces. In this case in equation (20) the body force 
fi may be replaced by ( )f ui tt i− ρ∂ ∆  and the double body force Φij by ( )Φ ∆ψij ijkl tt klI− ∂  
where Iijkl is an appropriate micro-inertial tensor. 
The variations δui and δψij are treated as independent. Then from the equation of virtual work 
 

δ δw dV Wi

V

e( ) ( )∫ =  (21) 

 
one obtains two integral equations: one concerning the macro-mechanics of the medium 
 

( )σ ∂ δ δ δ
∂

ij i j i i
V

i
V

iu f u dV t u dS− =∫ ∫  (22) 

 
and, an other concerning the micro-mechanics 
 

( )− + − =∫ ∫α δψ µ ∂ δψ δψ δψ
∂

ij ij ijk i jk ij ij
V

ij ij
V

dV T dSΦ  (23) 

 
In order to evaluate these integral equations, the boundary ∂V is divided into complementary 
parts {∂Vu , ∂Vσ} and {∂Vψ , ∂Vγ}, respectively, such that 
 
on ∂Vu : ∆ui = δi and δui = 0 

  (24) 
on ∂Vψ : ∆ψij = Θi and δψij = 0 
 
are prescribed. From equations (22) and (24), Gauss' theorem and d'Alembert's principle one 
obtains the following dynamic equations, holding for the macro- and micro-medium 
respectively: 
 
in V:      ∂ σ ρ∂i ij j tt jf u+ = ∆  (25) 
on V :  n∂ σσ i ij jt=  (26) 
 
and 
 
in V:      jkα ∂ µ ∂+ + =i ijk jk jkmn tt mnIΦ ∆ψ  (27) 
on V :  n∂ µµ i ijk jkT=  (28) 
 
Notice that according to equation (25) the total stress tensor σ τ αij ij ij= + , is identified with 
the common (macroscopic) equilibrium stress tensor. 

2.3 Micromorphic continuum of order 1 

2.3.1 Cosserat continuum 
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From the Mindlin's formulation of microstructure we can derive the basic equations of a 
Cosserat continuum and a second-gradient theory. A Cosserat continuum which is a 
micropolar medium is obtained by assuming that the micro-volume V' moves as a rigid body. 
Accordingly a Cosserat model is a continuum model that allows both particle displacement 
and rotation. Consequently, the micro-deformation tensor is purely antisymmetric and is 
identified with the individual particle rotation ∆ωc 
 

[ ]∆ψ ∆ψ ∆ω

∆γ ∆ε ∆ω ∆ω

ij ij ij
c

ij ij ij ij
c

= =

= + −( )
 (29) 

 
and the micro-rotation gradient is identified to the curvature which is also antisymmetric 
 
∆κ ijk i jk

c= ∂ ω  (30) 
 
From the above equations we observe that for a Cosserat continuum the symmetric part of the 
relative deformation ∆γij coincides with the macro-strain and that the difference between 
macro- and micro-deformation appears only in the antisymmetric part of the relative 
deformation, namely that the individual rotation of a particle does not coincide with the spin 
of the domain around the particle represented by the macro-rotation ∆ω.  
From the principle of virtual work we can specify the statical quantities involved in a Cosserat 
continuum. It appears from equation (18) that the relative stress αij is nothing else but the 
antisymmetric part of the total stress tensor σij. On the other hand, from equation (20) Φij and 
Tij may be assumed, without loss of generality, antisymmetric with respect to i and j.: they 
define the volumic couple distribution and surface couple stress respectively. 
It is obviously easy to get a more classical description when one introduces the adjoints 
tensors with respect to the indices i and j: 
 
ω ω µij

c
ijk k

c
ijk ijl kl ij ijk k ij ijk ke e m e T e M= − = − = − = −, , ,Φ Φ  (31) 

 
The interpretation is quite easy: ωc is a rotation vector interpreted as the individual particle 
rotation or Cosserat rotation vector, M and Φ are couple densities, m is the couple density 
stress. Equations (27) and (28) can then be written as 
 
 in V:       e ijk jkσ ∂ ∂+ + =j ij i tt i

cm IΦ ∆ω  (32) 
 on V :   n∂ µ i ij im M=  (33) 
 
2.3.2  Second gradient theory 

The second gradient theory may be obtained very easily from the theory of micromorphic 
media of order 1 when one assumes that the particle is subject to the same deformation as the 
general continuum, i.e. 
 
∆ψ ∆ij i ju= ∂  (34) 
 
and consequently in that case relative deformation is vanishing 
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∆γ ij ≡ 0  (35) 
 
The corresponding medium may be called a restricted Mindlin continuum. In the present case 
ui and ψij are not independent fields and the virtual work equations must be modified 
accordingly. The micro- and macro-strain tensors are identical and the micro-deformation 
gradient is the second gradient of the displacement. 

3 2ND-GRADIENT ANISOTROPIC ELASTICITY MODEL 

3.1 Constitutive equations 

The 2nd-gradient elasticity model considered here is based on an original idea of Casal (1961) 
who introduced in the global strain-energy of a one-dimensional tension bar both a 
‘volumetric energy’ term which includes the contribution of strain gradient and a ‘surface 
energy’ term. The one-dimensional Casal’s model was generalised into a three dimensional 
anisotropic gradient-dependent elasticity (Vardoulakis and Sulem 1995) where the following 
expression for the strain energy function is considered (see also Vardoulakis and Exadaktylos 
1999),  
 

( ) ( )( )w G G Gii jj ij ji k ii k jj k ij k ji k k ii jj k k ij ji= + + + + +
1
2

2 22 2λε ε ε ε λ ∂ ε ∂ ε ∂ ε ∂ ε λ ∂ ε ε ∂ ε εl l l l  (36) 

 
where λ and G are the Lamé’s constants, l is a characteristic length of the material 
responsible for volumetric strain-gradient terms and  
 
l lk k k k= ='ν ν ν,    1  (37) 
 
is a material director, l’ being another material length responsible for surface strain-gradient 
terms. Indeed the last two terms in equation (37) have the meaning of a surface energy, since 
by using the divergence theorem 
 

( ) ( )( ) ( )( )l lk k ii jj k ij ji ii jj ij ji k k
SV

G dV G n dSλ∂ ε ε ∂ ε ε λε ε ε ε ν+ = +∫∫ 2 2'  (38) 

 
Accordingly, in Casal’s model, two material constants with dimension of length l and l’ are 
introduced to characterise the internal and surface capillarity with the following condition for 
positiveness of the elastic strain energy density  
 

− < <1 1
l

l

'
 (39) 

 
This means in particular that if surface energy terms are included then volume strain-gradient 
must be also included. It is worth noticing that in Griffith’s theory of cracks only surface 
energy is considered, which is of course inadmissible in the sense of inequality (34). Notice 
that such a model is by essence anisotropic as it includes the effect of surface tension. Positive 
values for l’ correspond to strengthening due to surface tension whereas negative values 
correspond to weakening due to material decohesion.     
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With the above expression for the strain energy function (equation 2) and following Mindlin’s 
(1964) formalism for materials with microstructure, the following constitutive equations are 
obtained for the total,  Cauchy and double stress tensors  
 

( )
( )

( ) ( )

σ λδ ε ε λδ ε ε

τ λδ ε ε ∂ λδ ε ε

µ λδ ε ε ∂ λδ ε ε

ij ij kk ij ij kk ij

ij ij kk ij k k ij kk ij

kij k ij ll ij k ij ll ij

G G

G G

G G

= + − ∇ +

= + + +

= + + +

2 2

2 2

2 2

2 2

2

l

l

l l

 (40) 

 
where δij is Kronecker delta. The 27 components µkij have the character of double forces per 
unit area. The first subscript of a double stress µkij designates the normal to the surface across 
which the component acts; the second and third subscripts have the same significance as the 
two subscripts of σij.   
 

3.2 Plane strain problem 

In a Cartesian coordinate system (x,y,z) for the case of plane strain parallel to the xy-plane 
with 
 

( ) ( )( )u = u x y v x y, , , ,0   (41) 
 
The components of the strain tensor in plane strain are given by 
 

( )ε ∂ ε ∂ ε ε ∂ ∂ ε ε εxx x yy y xy yx y x zz xz yzu v u v= = = = + = = =, , ,
1
2

0  (42) 

 
The components of the stress tensor are give by the constitutive equations (40) 
 

( ) ( )[ ]
( ) ( )[ ]

( ) ( )[ ]
( ) ( )[ ]

σ λ ∂ λ∂ λ ∂ λ∂

σ λ ∂ λ∂ λ ∂ λ∂

σ σ ∂ ∂ ∂ ∂

σ λ ∂ ∂ λ ∂ ∂

σ σ

xx x y x y

yy y x y x

xy yx y x y x

zz x y x y

zx zy

G u v G u v

G v u G v u

G u v G u v

u v u v

= + + − ∇ + +

= + + − ∇ + +

= = + − ∇ +

= + − ∇ +

= =

2 2

2 2

0

2 2

2 2

2 2

2 2

l

l

l

l

 (43) 

 
The only non-vanishing components of the double stress tensor for the half-plane y ≥ 0 are 
(equation 40) 
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µ ∂ λ ε λε

µ λ ε λε ∂ λ ε λε

µ µ ∂ ε µ µ ε ∂ ε

xxx x xx yy

yxx xx yy y xx yy

xyy x yy xx

yyy yy xx y yy xx

xxy xyx x xy yyx xyx xy y xy

G

G G

G

G G

G G G

= + +

= − + + + + +

= + +

= − + + + + +

= = = = − +

l

l l

l

l l

l l

2

2

2

2

2

2

2 2

2

2 2

2 2 2

'

'

, '

 (44) 

 
In the absence of body forces the equilibrium equation (25) becomes 
 
∂ σi ij = 0 (45) 
 

3.3 The semi-infinite elastic medium  

Plane problems for the half-space y ≥ 0 are commonly solved using the Fourier transform 
(Sneddon 1951). We use the “bar notation” to denote 1-D Fourier transform with respect to x: 
 

( ) ( ) ( ) ( )u y u x y e dx v y v x y e dxi x i xξ
π

ξ
π

ξ ξ, , , , ,= =
−∞
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Accordingly the stress-displacement relations (43) are transformed as 
 

( )( ) ( )[ ] ( )[ ]
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 (47) 

 
where D≡d/dy and the equilibrium equations as 
 
− + =

− + =

i D

i D
xx xy

xy yy

ξσ σ

ξσ σ

0

0
 (48) 

 
leading to the following system of ordinary differential equations 
 

( )[ ] ( )[ ] ( ){ }
( )[ ] ( )[ ] ( ){ }
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1 2 0
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On eliminating u v and  from equation (49) we have 
 
( ) [ ]( )
( ) [ ]( )
D D u

D D v

2 2 2 2 2 2

2 2 2 2 2 2

1 0

1 0

− − + =

− − + =

ξ ξ

ξ ξ

l l

l l
 (50) 
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For the case where the gradients effects are negligible, that is l → 0 , the above equations 
reduce to those of classical elasticity 
 
( )
( )
D u

D v

2 2

2 2

0

0

− =

− =

ξ

ξ
 (51) 

 
The general solution of (50) for the half plane y ≥ 0, considering that the displacements must 
remain finite for y → ∞ is 
 

( ) ( ) ( )[ ] ( ) ( )

( ) ( ) ( )[ ] ( ) ( )

u y A yB e C e

v y A yB e C e

y ya

y ya

ξ ξ ξ ξ

ξ ξ ξ ξ

ξ ξ

ξ ξ

,

,

= + +

= + +

− −

− −

1 1 1

2 2 2

 (52) 

 
where 
 

( )a ξ ξ= +2
2

1
l

 (53) 

 
and Ai(ξ), Bi(ξ), Ci(ξ), (i = 1,2) are unknown complex functions to be determined from the 
boundary conditions of the problem. The components of the stress and double stress tensors in 
the transform domain can be expressed in terms of the above unknown functions: 
 

( ) ( )( ) ( ) ( ) ( )[ ]{
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y
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xy

σ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

σ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

σ ξ ξ ξ ξ ξ ξ

ξ ξ
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,
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−

−

l
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l
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                           ( ) ( )[ ]}y B e y+ −2 2
2l ξ ξ ξ

 (54) 

 
and only the following double stress components 
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where 
 

( )m G= = −λ ν ν/ /2 1 2   (56) 
 

4 THE INDENTATION PROBLEM 

4.1 Classical boundary conditions 

The simplest model to represent the effect of an indentor acting at the surface of  a material is 
to consider a half-space with uniform surface pressure over a strip of dimension 2a. It is 
assumed that the medium is bounded by a plane. The y axis is taken normal to this plane to 
point into the medium. Then the boundary conditions are 
 
on y  , , ,xy yyy yyx= = = = =0 0 0 0σ σ µ µyy p x( )  (57) 
 
with 
 

p x
p x a

x a
( ) =

− ≤

>





0

0
 if 

      if 
  (58) 

 
These boundary conditions can be expressed in the transform domain as 
 
on y  , , ,xy yyy yyx= = = = =0 0 0 0σ ξ σ µ µyy p( )  (59) 
 
with 
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( )
p

a
( )

sin
ξ

ξ
ξ

=  (60) 

 
From above boundary conditions (59) and the expressions (54) and (55) for the stress and 
double stress components, the integration functions Ai(ξ), Bi(ξ), Ci(ξ), (i = 1,2) are 
determined 
 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )
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A i
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i p
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and 
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                               1- 2  (62)  

 
with 
 

η =
l

l

'
 (63) 

 
Substituting the expressions of the functions Ai(ξ), Bi(ξ) (i = 1,2) (equation 56) in equation 
(54), we obtain the following components of the stress tensor 
 

( )( )

( )( )

( )

σ
π

ξ ξ ξ

σ
π

ξ ξ ξ

σ
π

ξ ξ ξ

ξ ξ
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y i x

p y e d

p y e d

i
y p e d

= − −

= − +
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− −

−∞

∞

− −

−∞

∞

− −

−∞

∞

∫

∫

∫

1
2

1

1
2

1

2

 (64) 

  
This expression is similar to the one obtained in classical elasticity (Sneddon 1951). For a 
uniform pressure acting on the boundary (equation 53) we obtain 
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2
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0
0

sin cos

sin cos

sin sin

 (65) 

 
The vertical displacement under the indentor has then the following expression 
 

( ) ( ) ( )( ) ( ) ( )( ) ( )v x A C e d A C x di x, cos0
1
2

2
2 2 2 2

0

= + = +−

−∞

+∞ ∞

∫ ∫π
ξ ξ ξ

π
ξ ξ ξ ξξ  (66) 

 
 In order to demonstrate the effect of higher order gradient terms in the constitutive equations 
for assessment of scale effect, the ratio between the present gradient solution and the classical 
one (e.g. Johnson 1985) for the displacement under the indentor (x = y= 0) is plotted on 
Figure 2 for various values of the ratio l’/ l  and compared to the solution obtained in case of 
a Cosserat elastic half-space (Sulem and Vardoulakis 1998). 
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Figure 2: Scale effect for elastic 2nd-gradient and Cosserat models (Poisson’s ratio = 0.3) 
 
These results show that when the size of the indentor is comparable to the internal length of 
the material, for a given value of the applied pressure, the scale effect can reach 20 to 25 % in 
case of  gradient-elasticity model and only 5 to 7% in case of a Cosserat elastic model. This 
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scale effect is emphasised when surface-energy terms are considered in addition to volumetric 
strain gradient terms. 

4.2 Higher order boundary conditions 

In the above section we considered the deformation of a semi-infinite elastic medium when a 
normal distribution of stress is applied on the boundary with zero shearing stress. If the 
surface is deformed by the pressure of a rigid indentor, then the appropriate boundary 
condition corresponds to the prescription of the normal component of the surface 
displacement under the indentor. However for example for the indentation of a semi-elastic 
medium with a rectangular indentor, the corresponding normal stress on the free surface is of 
the form (Johnson 1985) 
 

( )σ yy x p x, ( )0 =  (67) 
 
with 
 

p x
P

x
x a

x a
( ) =

−
−

≤

>









π
1

a
 if 

      if 
 2 2

0
 (68) 

 
where P is the total force applied. This normal stress distribution is singular at the corners of 
the indentor (x = ±a) which is in contradiction with the small strain elasticity assumption.  
In addition to the classical boundary conditions considered in equations (57) and (58), the 
present theory allows to consider the effect of imposed double-forces at the boundary. The 
punching process with a rigid indentor can be represented by separating the effect of the 
deformation of the surface as the result of a prescribed normal stress distribution on the free 
surface and the effect of opening of the material at the corners of the indentor by considering 
appropriate higher order boundary conditions. In the following the effect of prescribing a 
double force at the surface of the semi-infinite elastic medium will be investigated. 
Equation (54) shows that the functions Ai(ξ) and Bi(ξ) (i=1,2) depends only the imposed stress 
function at the boundary.In particular if the boundary is stress free Ai(ξ) and Bi(ξ) are 
identically zero and the remaining functions Ci(ξ) (i=1,2) will be determined from the higher-
order boundary conditions. Notice that in that case the stress field inside the half-plane is zero 
everywhere but the field of double-stresses is of course non zero. 
 
4.2.1 The effect of a concentrated double force µ δyyy x M x( , ) ( )0 0=   

where δ0 is the Dirac function in 0 (Figure 3) 
 
  
 
 
 
 
 
 
 

Figure 3 : Concentrated double force µyyy 

x 

y 

M 
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From (55) the following expression is obtained for C1(ξ) and C2(ξ) 
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              (70) 
.  
 
Consequently equations (52), (70) lead to the following displacement field at the boundary 
plane y = 0 
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∫
m
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20

                                                          (71) 
 

where lS

M
G

2 2
=  plays the role of a square length related to the imposed double force at the 

surface. 
 
As expected it is obtained that the displacement in x-direction is antisymmetric whereas the 
displacement in y-direction is symmetric (Figure 4). 
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Figure 4 : Concentrated double force µyyy : displacement field 
 
The normalised displacement increases when the Poisson’s ratio ν decreases as shown on the 
above figure. These plots correspond to η = 0 ( l’ = 0). It is obtained that the maximum 
normalised displacement v* in y-direction obtained at the origin decreases with increasing 
values of the parameter η. Negative values for η correspond to a weakening of the free 
surface (Figure 5).  
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Figure 5 : Concentrated double force µyyy : The effect of the surface energy term 
 
The effect of a double-force doublet M at x=-a and -M at x=+a can easily be obtained by 
superposition of the above solutions. 
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The following numerical example corresponds to a double force doublet at ±l (Figure 6). 
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Figure 6 : Doublet of concentrated double force µyyy 
 
4.2.2 The effect of a concentrated double force µ δyyx x M x( , ) ( )0 0=  (Figure 7) 

 
  
 
 
 
 
 
 
 

Figure 7 : Concentrated double force µyyx 
 
The solution is derived exactly as above leading to the following expressions for the 
displacement field at y = 0 
 
 

x 

y 

M 
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             (73) 
 
 
This result is illustrated on the Figure 8 for the particular values η = 0 and ν = 0.3. 
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Figure 8 : Concentrated double force µyyx : Displacement field 
 
The response for a double-force doublet at x=±a is constructed by superposition of the 
elementary solutions. An example is shown on Figure 9 for the normalised displacement in y-
direction:  
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Figure 9 : Doublet of concentrated double force µyyx 

 

4.3 Interpretation of the meaning of higher order boundary conditions 

Classical boundary conditions in terms of uniform imposed pressure on the surface of the 
elastic half-space represents the effect of the so-called “soft” indentor. For indentation by a 
rigid flat punch, boundary conditions in terms of uniform imposed displacement on the 
surface are more appropriate. However the corresponding pressure distribution under the 

loaded zone calculated from classical elasticity is of the form 
P

a xπ 2 2−
 (Sneddon, 1951) 

where P is the total imposed force. The pressure reaches a theoretically infinite values at the 
edges of the punch (x = ±a). This singularity of the stress field can be avoided by considering 
the indentation process as a combination of a punching process represented by a finite 
pressure distribution and an opening process at the edges represented by a concentrated 
double-force (Sulem 1999).   
 

5 GRADIENT ELASTICITY SOLUTIONS FOR CRACK PROBLEMS IN 
BRITTLE GEOMATERIALS 

5.1 Introduction 

The first who introduced molecular forces of cohesion acting near the tip of a crack was 
Griffith who considered forces of cohesion as forces of surface tension being internal forces 
for the given body in order to develop his celebrated criterion of fracture mechanics (Griffith 
1921); however, their effect on the stresses and strains was neglected by Griffith and his 
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theory predicts infinite slope of the crack displacement at the crack tip. Classical Linear 
Elastic Fracture Mechanics (LEFM) theory which was based on the concept of sharp Griffith 
cracks (considered as branch cuts) predicts infinite slope of the crack displacement at the 
crack tip. For example, for the specific case of mode-I deformation one can deduce 
 

2 2 1 2 0 0 0G
x

r K
r

G
x

r r
c

I
c∂υ

∂
π

π
ν ∂υ

∂
( , ) ( ) ( , ) ;= −

−
≠ = →                                         (74) 

 
where the superscript ‘c’ denotes classical LEFM solution, ( r,θ ) are polar coordinates fixed 
at the crack tip, KI is the mode-I stress intensity factor (SIF), and υc denotes the crack 
opening displacement. As it is shown in Figure 10a the origin of the crack tip singularity lies 
in the fact that the originally sharp crack is widening due to the application of load into a 
parabolic tip (i.e. υ πc r r( , ) /∝ 1 2 ). From a consideration of the term ∂υ ∂c x/ , it is evident that 
the infinity in the slope is directly associated with the non-zero displacement at the very tip of 
the rounded crack. In his milestone paper in 1921 Griffith also proceeded to the investigation 
of the structure of the crack tip. This investigation was performed by Griffith without any 
consideration of cohesive forces, hence with infinite crack slope at the tip region. Griffith 
made an attempt to improve this description of the crack model by considering it as an 
elliptical cavity with a finite radius of curvature ρ   at the tip (Fig. 10a). However, according 
to his estimate the magnitude of ρ  was of the order of intermolecular distance, which, as it 
was pointed out by Barenblatt (1962), clearly indicates the contradiction with the original 
principle on which Griffith’s derivation was based, that is, the continuous distribution of 
matter; in a continuous medium intermolecular distances cannot in principle be considered as 
finite. 
 

 
 

Figure 10. (a) Classical model of crack tip. Originally branch cut (broken line) opens into 
rounded contour (full line). (b) Crack lips in the form of a cusp of the first kind with 

zero enclosed angle and zero first derivative of the displacement at the crack tip 
(∂υ ∂/ x = 0 ). 

 
 
Following a different approach Elliot (1947) proposed an atomistic model which explicitly 
accounted for the effect of the interatomic forces along the crack faces. An important result of 
this study was that the adjacent atomic planes defining the crack surface displace with respect 
to each other beyond the crack tip in contrast to the results of classical elasticity. Later 
Barenblatt (1959) in a celebrated work has introduced a small cohesive zone ahead of the 
‘physical’ crack tip whose size is determined explicitly by requiring the cancellation of stress 

(a) (b) 
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singularity at the tip of the cohesive zone (or tip of ‘effective’ crack), or equivalently smooth 
closure of crack lips (Fig. 10b). However, the slope of the crack opening displacement in 
mode-I deformation turns out to be infinite at the crack tip/cohesive zone boundary, even 
though a smooth closure condition is ensured. Indeed, Barenblatt (1959, p. 1013) gives the 
following expression for the mode-I crack opening displacement υ( , )x y  
 

υ
κ

φ ζ ζ θ=
+

=
1

2G
eiIm( ( ));                                                                                         (75) 

 
 
withζ -values to correspond to the contour of the crack occupying the region 

− ≤ ≤ = ±α αx y, 0 , i.e. the values ζ = ±1 correspond to the crack tips. The complex function 
φ ζ( )  which assures finite stresses at the crack tips is given by  
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and the distribution of stresses g(x) to be determined by 
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In the above expressions (77) p(x) is the intensity of the normal tensile stresses at the axis of 
symmetry, while G(x) is the intensity of the cohesive forces and d is the width of the ‘process 
zone’. By substituting (77) and (76) into (75) and by performing an asymptotic analysis close 
to the crack tip we find 
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By differentiating (78) w.r.t. x one may easily obtain the result  
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In addition, due to (79) the asymptotical value of the dislocation density as we approach the 
crack tip that is given by η ∂υ ∂( ) /x x= −  (Lardner, 1974) turns out to be infinite. Physically 
this is not possible, since dislocations cannot be less than a unit Burger’s vector apart. 
In an effort to take into account the effect of the microstructure of the material on the solution 
of crack problems Sternberg and Muki (1967) have studied the Mode-I crack problem within 
the linearized couple-stress theory of elastic behavior (restricted Cosserat elasticity). The 
problem was reduced to a system of two Fredholm integral equations of the second kind. It 
was found that the shape of the crack remains elliptical, as in the classical elasticity, and 
stress/strain inverse square-root singularities remain, although the detailed structure of the 
stress/strain field is altered. Later, Eringen, Spezialle, and Kim (1977) have attacked the crack 
problem by using non-local elasticity. Their work seems to indicate that nonlocal elasticity 
eliminates the stress singularity at the crack tip; however, the solution seems to be 
approximate, in the sense that the stress boundary condition at the crack surface is not 
satisfied exactly. 
Recently, Aifantis and co-workers (Altan and Aifantis, 1992; Aifantis, 1992; Altan and 
Aifantis, 1997) investigated the potential of applying gradient elasticity to crack problems 
which are considered as traction boundary value problems. For simplicity, Aifantis and co-
workers studied only the effect of the volume energy strain gradient term l  whereas the 
concept of higher order self-equilibrating stresses doing work on higher order strain gradients 
was not introduced for simplicity reasons. It was found that this special theory leads to 
smooth closure of the crack outside the region occupied by the crack at infinity before the 
application of the load. The smooth closure of crack at infinity is an undesirable result of this 
type of formulation which may be seen in some sense as a constant load punch problem for a 
half-space. On the other hand, Ru and Aifantis (1993) have employed the classical boundary 
condition of zero displacement at the crack tip in addition to the condition of zero second 
order derivative of displacement along the crack faces for mode-I problem. The solution, 
which was given in inegral form, was limited to the crack surfaces only. Unger and Aifantis 
(1995) have solved the small scale yielding Mode-III crack problem by using a Riemann-
Green function technique without imposing the boundary condition of the second derivative 
of displacement along the crack which in essence is the boundary condition for double 
stresses in Mindlin’s theory of elasticity with microstructure (Mindlin 1964). Their solution 
for mode-III indicated that the leading term of the displacement near the crack tip was of 
higher order (i.e. ∝ r5/2) than that predicted by Vardoulakis et al. (1996) and Exadaktylos 
(1998) (∝ r3/2). In a recent paper of Exadaktylos (1999) it has been shown that the double 
stress does not vanish along the segment of the crack in Unger’s solution, in contrast to the 
solution of the boundary value problem treated in (Vardoulakis et al., 1996) and this is the 
reason for the above observed discrepancy. New results pertaining to the proposed anisotropic 
gradient elasticity theory with surface energy for cracks have been also presented by Paulino 
et al. (1999). More specifically, these authors presented the application of this theory to the 
solution of a mode III crack in a functionally graded material by means of Fourier transform 
and hypersingular Fredholm integral equation techniques. As it was expected the solution 
indicates a cusping crack, that is consistent with Barenblatt’s ‘cohesive zone’ theory.  
The complete analytical solution of the mode-III crack problem (tearing crack) is reviewed 
and further developed here by using the proposed anisotropic strain-gradient elasticity theory 
with surface energy extending previous results by Vardoulakis and co-workers, as well as by 
Aifantis and co-workers, and major conclusions are presented. New results recently presented 
by Exadaktylos (1999) are also illustrated. The solution of the problem is derived by applying 
the Fourier transform technique and the theory of dual integral and Fredholm integral 
equations.  Asymptotic analysis of the solution close to the tip gives a cusping crack with zero 
slope of the crack displacement at the crack tip. Cusping of the crack tips is caused by the 
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action of ‘cohesive’ double forces behind and very close to the tips, that tend to bring the two 
opposite crack lips in close contact.   Consideration of Griffith’s energy balance approach 
leads to the formulation of a fracture criterion that predicts a linear dependence of the specific 
fracture surface energy on increment of crack propagation for such crack length increments 
that are comparable with the characteristic size of material’s microstructure. This important 
theoretical result agrees with experimental measurements of the fracture energy dissipation 
rate during fracturing of polycrystalline, polyphase materials such as rocks and ceramics. The 
potential of the theory to interpret the size effect, i.e. the dependence of fracture toughness of 
the material on the size of the crack, is also presented. Furthermore, it is shown that the effect 
of the volumetric strain-gradient term is to shield the applied loads leading to crack stiffening, 
hence the theory captures the commonly observed phenomenon of high effective fracture 
energies of rocks and ceramics; the effect of the surface strain-energy term is to amplify the 
applied loads leading to crack compliance and essentially captures the development of the 
‘process zone’ or microcracking zone around the main crack in a brittle material. Thus, the 
present anisotropic gradient elasticity theory with surface energy provides an effective tool for 
understanding phenomenologically main crack-microdefect interaction phenomena in brittle 
materials.     
 
5.2 Finite-length anti-plane shear internal crack 

In this section the anti-plane shear (mode-III) crack deformation mode will be treated by 
employing the present anisotropic gradient elasticity theory with surface energy (section 3.1). 
In contrast to Griffith’s approach the effect of cohesive forces on the displacements and 
strains is considered in this theory by including higher order gradients in the constitutive 
equations. For this purpose let us consider homogeneous isotropic medium uninterrupted 
except for the mode-III crack occupying the line segment −α<  x < α, y = 0 with stress free 
faces. Let there be constant shear traction σyz = τ∞ at infinity. The general solution to this 
problem is the superposition of the solutions to the following problems: (i) the problem of the 
crack-free region subjected to constant shear traction σyz = τ∞  at infinity and (ii) the problem 
of the crack sheared out by constant shear traction −τ∞ with no loading at infinity. Problem (i) 
is trivial with the following solution 
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Next we consider problem (ii). By symmetry reasons, the problem is equivalent to a half-
plane y ≥ 0  problem, when its boundary is subjected to the following mixed-mixed boundary 
conditions  
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and to the homogeneous regularity conditions at infinity 
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The first and third of (81) are the classical conditions, while the second one of conditions (81) 
is an extra boundary condition required as a result of the gradient terms. The first stress 
boundary condition in (81) is satisfied if we introduce the following Westergaard stress 
function 
 

∫
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0

zi
1

1
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The anti-plane strain or mode-III crack problem in gradient elasticity may be solved by 
employing the above Westergaard function and the following displacement-expression 
(Vardoulakis et al. 1996) 
 

)y,x(w)y,x(w)y,x(w c
++=                                                                                     (84) 

 
where wc(x,y) is the harmonic real function that corresponds to the classical mode-III crack 
problem and w+(x,y) obeys the homogeneous Helmholtz equation, i.e. 
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The general solution of the function w+(x,y) for the half-plane y ≥ 0 , considering the 
regularity conditions at infinity and the symmetry relations furnishes 
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wherein cF  denotes the Fourier cosine transform, )/1()(a 22 l+ξ=ξ . Furthermore, 
substituting (86) for w+ and (83) in the expression for yyzµ  and considering the last two 
conditions (82) we are led to a system of dual integral equations for )(B ξ . This system may 
be eventually transformed into a regular integral equation of a standard form. This is 
accomplished by taking the following fractional integral representation for w+(x,0+)  
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where )t(ψ  is a sectionally continuous function which may exhibit weak singularities in 

],0[ α and it is allowed to depend on ll ′,  and α . Equation (87) implies that the condition of 
zero displacement ahead of the crack tip is satisfied identically. Proceeding formally as it is 
shown in (Vardoulakis et al. 1996) the mixed-mixed boundary value problem problem is 
reduced to that of a tractable Fredholm integral equation of the second kind, that is 
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Once )t(ψ  is known, the problem can be regarded as solved. The solution of the Fredholm 
integral equation of the second kind (88) for 0)/( ≅′ ll  is facilitated by Liouville-Neumann 
method of successive substitutions provided that α> 707.0l  
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where throughout this paper ‘O’ denotes Landau’s order-of-magnitude symbol, and 
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It can be easily shown that the zero-order approximation of the functions 
− −∞α τ µ δ α/ ( / ) ( )t t  cancels out the displacement predicted by the classical elastic 
solution which is responsible for the infinite slope of the crack displacement at the crack tip. 
Next, the Newmann expansion of the present solution for mode-III crack for zero value of the 
surface energy length scale, i.e. ′ =l 0 ,  yields 
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Fig. 11 illustrates the elliptical crack shape predicted by Griffith’s theory and the cusp-like 
shape of crack predicted by the present anisotropic gradient elasticity theory (equation 91), 
where both cracks display the same displacement at the centre of the crack. 
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Fig. 11:Displacements on crack plane. 

 
Further, Fig. 12 displays the crack shapes obtained from eqn (91) for 
l / . ,α = 0 7  0.8,  0.9 and 1  with the crack displacements lower for higher l / α - values. This 
crack «stiffening» effect is mainly controlled by the volumetric strain-gradient term l  for 
constant crack length (Exadaktylos, 1998). 
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Fig. 12:  Crack face displacements predicted by the present anisotropic gradient theory for 
four values of the relative length at hand l / . ,α = 0 7  0.8,  0.9 and 1 . 

 

5.3 Semi-infinite anti-plane shear crack 

5.3.1 Solution employing boundary condition on double stress 

The following asymptotic estimate for the displacement, stress and double stress, respectively, 
which holds true as r → 0  for every fixed positive l  (Vardoulakis et al. 1996) 
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where the polar coordinates are indicated in Fig. 13. That is, for traction boundary value 
problems the proposed gradient elasticity theory predicts the same stresses as the classical 
elasticity solution. 
 
 

 
 

Fig. 13 Crack and coordinates. 
 
 
Next, the energy released during an infinitesimal advancement of the crack tip by a distance 
δα  is given in polar coordinates by 
 

∫
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By inserting into (93) the values of w and σ yz  as they given by equations (92)1 and (92)2, 
respectively, and carrying out the integration we find 
 

2
3IIIkKU δα=δ                                                                                                           (94) 

 
where we have set ( ) ( )k KIII3 4= / $µ ψ α . In view of (94) and Griffith’s rupture criterion (Griffith 
1921) 
 

γδα≥δ 2U                                                                                                                  (95) 
 
where 2γ  [FL-1] is the so-called ‘specific fracture energy’, we obtain the following inequality 
which involves the important physical quantity of the energy release rate GIII in mode-III 
crack propagation 
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γ≥δα=
δα
δ

= 2kKUG 3IIIIII
 

(96) 

 
 If quantity γ  is independent of the crack advancement δα , then the left-hand part of 
inequality (96) goes to zero and the gradient elasticity theory predicts that there is no 
contribution to the work rate from the ‘holding force’ on the crack extension. Since the later is 
not possible by fundamental physical considerations, γ  has to depend linearly on δα  for 
crack tip propagation distances that are not large as compared to the grain size of the brittle 
material, that is, 
 

( ) 0as →δαβδα=δαγ=γ  (97) 
 
where the quantity β  has the dimensions of specific volume energy [FL-2], called hereafter 
‘modulus of cohesion’. Then, Griffith’s rupture criterion (96) is modified as follows 
   

β≥αψ )(ˆ
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K 2
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where the left-hand-side in (98) depends on the applied pressure on the faces of the crack, on 
crack length and on material length parameters l l, ′ . The corresponding critical value of KIII 
which represents the fracture resistance of the material is denoted by KIIIC and is called 
‘fracture toughness’ or ‘critical stress intensity factor’. Note from (98) that 
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The numerical solution of the integral equation (88) for ′ =l 0  and consideration of equations 
(89) and (99a),  lead to the following expression for the normalized fracture toughness of a 
gradient dependent material 
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Fig. 14: Size effect of the normalized fracture toughness $ /K K GIIIC IIIC= β . 
 
 
From Fig. 14 it may be seen that the resistance to fracture of the material decreases with 
decreasing volumetric energy parameter l  as it is also predicted by (99b); positive values of 
the surface energy parameter l′   further enhance the strength of the material, whereas 
negative values of the surface energy parameter lead to a decrease of the fracture toughness of 
the material (Exadaktylos 1998). Notice that LEFM does not predict an effect of the size of 
the crack on KIIIC, that is , it considers KIIIC as a constant.  
 
5.3.2 Solution without employment of boundary condition on double stress 

Here we adopt the Riemann-Green function technique adopted by Unger and Aifantis (1995). 
The solutions of the second of (85) in a simply-connected domain can be written as follows 
(Vekua 1967) 
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where ϕ(z) is an analytic function, In(.) is the modified Bessel function of the first kind and 
nth-order, Im(.) denotes the imaginary value of what encloses, the overbar denotes a conjugate 
value, and α0 =0 if we take the origin of coordinates at crack tip. Integrating (100) by parts we 
obtain 
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Obviously solution (101) pertains to the semi-infinite crack problem since it is valid only for 
simply-connected regions, whereas the finite crack configuration corresponds to a multiply-
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connected body. By letting ( )( )zImw c Φ−=  then from second of relationships (85) and (101) 
it is derived 
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The above methodology is more preferable than this presented above since it is amenable to 
general Westergaard type formulations which are known from previous elasticity solutions, 
for example for r << α  
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In view of (102), (103) the out-of-plane displacement  
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Making the transformation of variables ( )2s1zt −=  the expression (104) takes the form 
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where we have set  the non-dimensional radius ρ = r/l  The integral appearing in (105) can be 
directly evaluated in closed-form (Gradshteyn and Ryzhik 1980), thus the displacement has as 
follows 
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Taking into account the asymptotic expansion of the hypergeometric function for ρ → 0 we 
find 
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In view of (107) the double stress µ yyz  takes the following form 
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which in turn gives the result 
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The second of the above relations shows that the double stress does not vanish along the 
segment of the crack, in contrast to the solution of the boundary value problem treated in the 
previous paragraph. This is the reason why the former solution gives a leading term of the 
displacement near the crack tip that is of lower order (i.e. ∝ r3/2 ) than that predicted by Unger 
and Aifantis (1995).     

5.4 The inverse mode-III crack problem 

The above analysis presented in Sections 5.2 - 5.3 is based on the assumption that the traction 
is specified along the crack surfaces. We now consider the problem in which the crack 
occupies the line x ≤ =1 0,  y , and the shape of the crack is prescribed, i.e. we assume that 
 

( )w x x H x
c

( , ) ( ), /0 1 1 1 22= − − ≥ε   c                                                                        (110) 

 
where the function w(x) is uniquely prescribed for 0 1≤ <x , ε = w( , )0 0 and H is the 
Heaviside function. For the half-plane y ≥ 0 it may be shown that the displacement, stresses 
and double stresses are given by the formulae 
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where ( ) ( )A ξ ξ,  B  are unknown real-valued functions to be determined from the boundary 
conditions of the problem and Fc, Fs denote the Fourier cosine and sine transforms, 
respectively (Gradshteyn and Ryzhik, 1980). Putting y=0 in the first of (5.38), equating the 
result with (110), and inverting by the Fourier cosine rule we deduce 
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Furthermore, satisfaction of the boundary condition 
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where )/1()(a 22 l+ξ=ξ . Eliminating ( )B ξ  from (112) and (114) we get 
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The anti-plane shear stress along the crack-line in the transformed Fourier domain 
( )σ ξyz ,0 may be found from the third of equations (111) to be 
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By noting the equality 
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with Γ(x) to be the Gamma function, it turns out from (116) and (117) that the stress takes the 

form 
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First, let us treat the «Barenblatt crack» problem corresponding to c=3/2. In this case the 
integrand appearing in (118) can be approximated by a linear function of ξ as it is illustrated 
in Fig. 15.  
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Fig. 15: Approximation of  the kernel 1
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By using the above approximation the computation of the stress distribution along the crack 
plane  can be facilitated as follows 
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where )z;c;b,a(F12 is Gauss’s hypergeometric function. 
In Fig. 15, the distribution of the normalised applied stress  εσ− G12/)0,x(yz along the crack 
line required for maintaining the crack cusping shape for 1=l  is illustrated. It can be 
demonstrated from equation (120) that as the material length scale l  increases the applied 
stress increases proportionally to 2l , hence the effect of this material length is to add 
cohesion to the crack. Also, in Fig. 17 the distribution of the normalised tearing stress 

εσ− G12/)0,x(yz  along the crack line and in front of the crack tip is displayed for three 
values of the volumetric strain-gradient term l . According to (120) this stress also increases 
as l increases, whereas the stress singularity is larger than the inverse square root singularity 
exhibited in classical LEFM theory.  
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Fig. 16: Distribution of applied stress required to open the crack out to the shape shown in       

Fig. 12. 
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Fig. 17: Distribution of normalized tearing stress outside the crack region for three values of 

the volumetric strain-gradient term at hand 1.2 and 1, ,8.0=l . 
 
 

5.5 Concluding remarks 

Here closed form, as well as, asymptotic solutions for the mode-III crack problem were given 
by using a strain-gradient dependent theory of elasticity. This theory takes into account the 
role of the first and second gradients of strain in the mechanical behavior of elastic-perfectly 
brittle geomaterials, such as rocks, ceramics, and concretes. The fundamental idea behind the 
theory is that the effect of the granular, polycrystalline and atomic nature of materials on their 
macroscopic response may be modeled through the concept of internal and superficial 
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capillarity expressed by two material lengths ll ′, , respectively, rather than through 
intractable statistical mechanics concepts. The crack shape turns out to be that of a cusp with 
zero first derivative of the displacement at the crack tip. Consideration of the energy release 
rate in crack propagation and the Griffith criterion suggests that the specific fracture energy of 
a gradient elastic material is not a material property but depends linearly on  the crack 
extension. The potential of the gradient elastic fracture mechanics theory to interpret the 
dependence of fracture toughness of the material on the size of the crack, is also presented. 
Furthermore, the solution of the inverse mode-III crack problem demonstrates that the 
physical meaning of the volumetric strain-gradient term is to add cohesion between crack 
faces hence the term «cohesive elasticity» for the present strain-gradient dependent elasticity 
theory. 
 

6 CONCLUSION 
The role of higher order strain gradients in the mechanical behaviour of elastic perfectly 
brittle materials, such as rocks, ceramics and concrete, is studied here on the basis of a special 
second-grade elasticity with surface energy. The fundamental idea behind the theory is that 
the effect of granular, polycrystalline and atomic nature of materials on their macroscopic 
response may be modelled through the concept of internal and superficial capillarity 
expressed by two material lengths, l, l’ respectively as originally proposed by Casal (1961) 
and Mindlin (1964). It is shown that the important phenomenon of scale effect in rock 
mechanics can be interpreted by using higher order theory.  
For the indentation problem, the above analysis gives an example of microstructural effects in 
the presence of stress concentration. For a second-gradient elasticity model, it is shown that 
the displacement under the indentor is 25% smaller as compared to the classical elastic 
solution when the size of the loading strip is comparable to the internal length of the material. 
This scale effect is emphasised when surface-energy terms are considered in addition to 
volumetric strain gradient terms. For a Cosserat elastic model the scale effect is much smaller. 
On the other side it was shown in a previous paper (Sulem and Cerrolaza 1999) that for a 
elastic perfectly plastic rock with Cosserat microstructure, the apparent strength increases as 
the size of the indentor decreases. This scale effect can reach 25% when the size of the 
indentor is comparable to the grain size of the rock. Such a scale effect has been observed 
experimentally for metals (Poole et al 1996) and also recently reported for rocks (Papamichos 
et al). In addition, indentation tests appear as an experimental tool for the testing and 
validation of continuum theories with microstructure and calibration of internal lengths 
parameters. 
For crack problems, the solution of the three basic crack deformation modes with the above 
gradient elasticity model leads to cusping of the crack tips that is caused by the action of 
“cohesive” double forces behind and very close to the tips, that tends to bring the two 
opposite crack lips in close contact. This approach predicts a linear dependence of the specific 
fracture surface energy on increment of crack propagation for such crack length increments 
that are comparable with the characteristic size of material’s microstructure. Further, it is 
shown that the fracture toughness depends on the size of the crack and thus is not a 
fundamental property of the material. Furthermore, the solution of the inverse mode-III crack 
problem demonstrates that the physical meaning of the volumetric strain-gradient term is to 
add cohesion between crack faces hence the term «cohesive elasticity» for the present strain-
gradient dependent elasticity theory. 
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