Příklady k procvičení 11: Průřezové charakteristiky

Zadání: Vypočítejte hlavní momenty setrvačnosti a vykreslete elipsu setrvačnosti na zadaných obrazcích.

Příklad 11.1

Zadání: Rozkreslení na jednoduché obrazce:

1) Výpočet plochy a těžiště:

$$
\begin{aligned}
A & =500 \cdot 300=1,5 \cdot 10^{5} \mathrm{~mm}^{2} \\
T_{y} & =150 \mathrm{~mm} \\
T_{z} & =250 \mathrm{~mm}
\end{aligned}
$$

2) Výpočet těžišitových momentů setrvačnosti a deviačního momentu:

$$
\begin{aligned}
I_{y} & =\frac{1}{12} \cdot b \cdot h^{3}=\frac{1}{12} \cdot 300 \cdot 500^{3}=\mathbf{3 , 1 2 5} \cdot \mathbf{1 0}^{\mathbf{9}} \mathbf{m m}^{4} \\
I_{z} & =\frac{1}{12} \cdot b^{3} \cdot h=\frac{1}{12} \cdot 300^{3} \cdot 500=\mathbf{1 , 1 2 5} \cdot \mathbf{1 0}^{\mathbf{9}} \mathbf{m m}^{4} \\
D_{y z} & =0 \mathbf{m m}^{4}
\end{aligned}
$$

3) Výpočet hlavních momentů setrvačnosti a vykreslení elipsy setrvačnosti:

$$
\begin{aligned}
I_{1,2} & =\frac{I_{y}+I_{z}}{2} \pm \sqrt{\left(\frac{I_{y}-I_{z}}{2}\right)^{2}+D_{y z}^{2}} \\
I_{1,2} & =\frac{3,125 \cdot 10^{9}+1,125 \cdot 10^{9}}{2} \pm \sqrt{\left(\frac{3,125 \cdot 10^{9}-1,125 \cdot 10^{9}}{2}\right)^{2}+0^{2}} \\
I_{1} & =\mathbf{3 , 1 2 5} \cdot \mathbf{1 0} 0^{9} \mathbf{m m}^{4}=I_{\max } \\
I_{2} & =\mathbf{1 , 1 2 5} \cdot \mathbf{1 0} \mathbf{0}^{9} \mathbf{m m}^{4}=I_{\min }
\end{aligned}
$$

$$
\begin{aligned}
& i_{\max }=\sqrt{\frac{I_{\max }}{A}}=\sqrt{\frac{3,125 \cdot 10^{9}}{1,5 \cdot 10^{5}}}=\mathbf{1 4 4 , 3 \mathrm { mm }} \\
& i_{\min }=\sqrt{\frac{I_{\min }}{A}}=\sqrt{\frac{1,125 \cdot 10^{9}}{1,5 \cdot 10^{5}}}=\mathbf{8 6 , 6} \mathrm{mm}
\end{aligned}
$$

Poznámka: Pokud je průřez symetrický, pak je deviační moment $D_{y z}$ nulový. Potom jsou těžišṫové momenty setrvačnosti zároveň hlavními momenty setrvačnosti a osy se nepootočí o žádný úhel. Není tedy nutné počítat $I_{1,2}$. Zde je uvedeno pouze ilustrativně.

Příklad 11.2

Zadání:

Rozkreslení na jednoduché obrazce:

1) Výpočet plochy a těžiště:

$$
\begin{aligned}
A & =\frac{1}{2} \cdot 300 \cdot 450=6,75 \cdot 10^{4} \mathrm{~mm}^{2} \\
T_{y} & =200 \mathrm{~mm} \\
T_{z} & =300 \mathrm{~mm}
\end{aligned}
$$

2) Výpočet těžištových momentů setrvačnosti a deviačního momentu:

$$
\begin{aligned}
I_{y} & =\frac{1}{36} \cdot b \cdot h^{3}=\frac{1}{36} \cdot 300 \cdot 450^{3}=\mathbf{7 , 5 9 3 7 5} \cdot \mathbf{1 0}^{\mathbf{8}} \mathbf{m m}^{4} \\
I_{z} & =\frac{1}{36} \cdot b^{3} \cdot h=\frac{1}{36} \cdot 300^{3} \cdot 450=\mathbf{3 , 3 7 5} \cdot \mathbf{1 0} 0^{\mathbf{8}} \mathbf{m m}^{4} \\
D_{y z} & =-\frac{1}{72} \cdot b^{2} \cdot h^{2}=-\frac{1}{72} \cdot 300^{2} \cdot 450^{2}=\mathbf{- 2 , 5 3 1 2 8} \cdot \mathbf{1 0}^{\mathbf{8}} \mathbf{m m}^{4}
\end{aligned}
$$

3) Výpočet hlavních momentů setrvačnosti a vykreslení elipsy setrvačnosti:

$$
\begin{aligned}
\tan 2 \alpha_{0} & =\frac{2 \cdot D_{y z}}{I_{z}-I_{y}}=\frac{2 \cdot\left(-2,53125 \cdot 10^{8}\right)}{3,375 \cdot 10^{8}-7,59375 \cdot 10^{8}}=1,2 \\
\alpha_{0} & =\mathbf{2 5 , 1 ^ { \circ }} \\
I_{1,2} & =\frac{I_{y}+I_{z}}{2} \pm \sqrt{\left(\frac{I_{y}-I_{z}}{2}\right)^{2}+D_{y z}^{2}} \\
I_{1,2} & =\frac{7,59375 \cdot 10^{8}+3,375 \cdot 10^{8}}{2} \pm \sqrt{\left(\frac{7,59375 \cdot 10^{8}-3,375 \cdot 10^{8}}{2}\right)^{2}+\left(-2,53125 \cdot 10^{8}\right)^{2}} \\
I_{1} & =\mathbf{8 , 8 7 9 3 \cdot 1 0 ^ { 8 } \mathbf { m m } ^ { 4 } = I _ { \operatorname { m a x } }} \\
I_{2} & =\mathbf{2 , 1 8 9 4 \cdot 1 0 ^ { 8 } \mathbf { m m } ^ { 4 } = I _ { \operatorname { m i n } }} \\
i_{\max } & =\sqrt{\frac{I_{\max }}{A}}=\sqrt{\frac{8,8793 \cdot 10^{8}}{6,75 \cdot 10^{4}}}=\mathbf{1 1 4} \mathbf{~ m m} \\
i_{\min } & =\sqrt{\frac{I_{\min }}{A}}=\sqrt{\frac{2,1894 \cdot 10^{8}}{6,75 \cdot 10^{4}}}=\mathbf{5 7} \mathbf{~ m m}
\end{aligned}
$$

Příklad 11.3

Zadání:

Rozkreslení na jednoduché obrazce:

1) Výpočet plochy a těžiště:

$$
\begin{aligned}
A_{1} & =500 \cdot 550=2,75 \cdot 10^{5} \mathrm{~mm}^{2} \\
A_{2} & =\frac{1}{2} \cdot 300 \cdot 450=6,75 \cdot 10^{4} \mathrm{~mm}^{2} \\
A & =A_{1}+A_{2}=2,75 \cdot 10^{5}+6,75 \cdot 10^{4}=3,425 \cdot 10^{5} \mathrm{~mm}^{2} \\
T_{y} & =\frac{A_{1} \cdot T_{1 y}+A_{2} \cdot T_{2 y}}{A}=\frac{2,75 \cdot 10^{5} \cdot 550+6,75 \cdot 10^{4} \cdot 200}{3,425 \cdot 10^{5}}=481 \mathrm{~mm} \\
T_{z} & =\frac{A_{1} \cdot T_{1 z}+A_{2} \cdot T_{2 z}}{A}=\frac{2,75 \cdot 10^{5} \cdot 275+6,75 \cdot 10^{4} \cdot 150}{3,425 \cdot 10^{5}}=250 \mathrm{~mm}
\end{aligned}
$$

2) Výpočet těžišt̛ových momentů setrvačnosti a deviačního momentu:

$$
\begin{aligned}
\Delta z_{1} & =T_{1 z}-T_{z}=275-250=25 \mathrm{~mm} \\
\Delta z_{2} & =T_{2 z}-T_{z}=150-250=-100 \mathrm{~mm} \\
I_{y 1} & =\frac{1}{12} \cdot b_{1} \cdot h_{1}^{3}+A_{1} \cdot \Delta z_{1}^{2}=\frac{1}{12} \cdot 500 \cdot 550^{3}+2,75 \cdot 10^{5} \cdot 25^{2}=7,10417 \cdot 10^{9} \mathrm{~mm}^{4} \\
I_{y 2} & =\frac{1}{36} \cdot b_{2} \cdot h_{2}^{3}+A_{2} \cdot \Delta z_{2}^{2}=\frac{1}{36} \cdot 300 \cdot 450^{3}+6,75 \cdot 10^{4} \cdot(-100)^{2}=1,43438 \cdot 10^{9} \mathrm{~mm}^{4} \\
I_{y} & =I_{y 1}+I_{y 2}=7,10417 \cdot 10^{9}+1,43438 \cdot 10^{9}=8,53855 \cdot 10^{9} \mathrm{~mm}^{4} \\
\Delta y_{1} & =T_{1 y}-T_{y}=550-481=69 \mathrm{~mm} \\
\Delta y_{2} & =T_{2 y}-T_{y}=200-481=-281 \mathrm{~mm} \\
I_{z 1} & =\frac{1}{12} \cdot b_{1}^{3} \cdot h_{1}+A_{1} \cdot \Delta y_{1}^{2}=\frac{1}{12} \cdot 500^{3} \cdot 550+2,75 \cdot 10^{5} \cdot 69^{2}=7,03844 \cdot 10^{9} \mathrm{~mm}^{4} \\
I_{z 2} & =\frac{1}{36} \cdot b_{2}^{3} \cdot h_{2}+A_{2} \cdot \Delta y_{2}^{2}=\frac{1}{36} \cdot 300^{3} \cdot 450+6,75 \cdot 10^{4} \cdot(-281)^{2}=5,6674 \cdot 10^{9} \mathrm{~mm}^{4} \\
I_{z} & =I_{z 1}+I_{z 2}=7,03844 \cdot 10^{9}+5,6674 \cdot 10^{9}=\mathbf{1 , 2 7 0 6 2} \cdot \mathbf{1 0} \mathbf{m m}^{\mathbf{1 0}} \mathrm{mm}^{4} \\
D_{y z 1} & =0+A_{1} \cdot \Delta y_{1} \cdot \Delta z_{1}=2,75 \cdot 10^{5} \cdot 69 \cdot 25=4,74375 \cdot 10^{8} \mathrm{~mm}^{4} \\
D_{y z 2} & =\frac{1}{72} \cdot b_{2}^{2} \cdot h_{2}^{2}+A_{2} \cdot \Delta y_{2} \cdot \Delta z_{2}=\frac{1}{72} \cdot 300^{2} \cdot 450^{2}+6,75 \cdot 10^{9} \cdot(-281) \cdot(-100) \\
& =2,14988 \cdot 10^{9} \mathrm{~mm}^{4} \\
D_{y z} & =D_{y z 1}+D_{y z 2}=4,74375 \cdot 10^{8}+2,14988 \cdot 10^{9}=\mathbf{2 , 6 2 4} \cdot \mathbf{1 0} \mathbf{1 0}^{9} \mathrm{~mm}^{4}
\end{aligned}
$$

3) Výpočet hlavních momentů setrvačnosti a vykreslení elipsy setrvačnosti:

$$
\begin{aligned}
\tan 2 \alpha_{0} & =\frac{2 \cdot D_{y z}}{I_{z}-I_{y}}=\frac{2 \cdot 2,624 \cdot 10^{9}}{1,27062 \cdot 10^{10}-8,53855 \cdot 10^{9}}=1,25922 \\
\alpha_{0} & =25,8^{\circ} \\
I_{1,2} & =\frac{I_{y}+I_{z}}{2} \pm \sqrt{\left(\frac{I_{y}-I_{z}}{2}\right)^{2}+D_{y z}^{2}} \\
I_{1,2} & =\frac{8,53855 \cdot 10^{9}+1,27062 \cdot 10^{10}}{2} \pm \sqrt{\left(\frac{\left.8,53855 \cdot 10^{9}-1,27062 \cdot 10^{10}\right)^{2}+\left(2,624 \cdot 10^{9}\right)^{2}}{2}\right.}
\end{aligned}
$$

$$
\begin{aligned}
I_{1} & =1,39732 \cdot 10^{\mathbf{1 0}} \mathrm{mm}^{4}=I_{\max } \\
I_{2} & =\mathbf{7 , 2 7 1 6 0} \cdot \mathbf{1 0 ^ { \mathbf { 9 } } \mathrm { mm } ^ { 4 }}=I_{\min } \\
i_{\max } & =\sqrt{\frac{I_{\max }}{A}}=\sqrt{\frac{1,39732 \cdot 10^{10}}{3,425 \cdot 10^{5}}}=\mathbf{2 0 2 , 0} \mathrm{mm} \\
i_{\min } & =\sqrt{\frac{I_{\min }}{A}}=\sqrt{\frac{7,27160 \cdot 10^{9}}{3,425 \cdot 10^{5}}}=\mathbf{1 4 5 , 7} \mathbf{m m}
\end{aligned}
$$

Příklad 11.4

Zadání:

Rozkreslení na jednoduché obrazce:

1) Výpočet plochy a těžiště:

$$
\begin{aligned}
A_{1} & =300 \cdot 400=1,2 \cdot 10^{5} \mathrm{~mm}^{2} \\
A_{2} & =\frac{\pi \cdot 100^{2}}{4}=7,85398 \cdot 10^{3} \mathrm{~mm}^{2} \\
A & =A_{1}-A_{2}=1,2 \cdot 10^{5}-7,85398 \cdot 10^{3}=1,12146 \cdot 10^{5} \mathrm{~mm}^{2} \\
T_{x} & =\frac{A_{1} \cdot T_{1 x}-A_{2} \cdot T_{2 x}}{A}=\frac{1,2 \cdot 10^{5} \cdot 200-7,85398 \cdot 10^{3} \cdot(300+57,6)}{1,12146 \cdot 10^{5}}=189,0 \mathrm{~mm} \\
T_{y} & =\frac{A_{1} \cdot T_{1 y}-A_{2} \cdot T_{2 y}}{A}=\frac{1,2 \cdot 10^{5} \cdot 150-7,85398 \cdot 10^{3} \cdot(200+57,6)}{1,12146 \cdot 10^{5}}=142,5 \mathrm{~mm}
\end{aligned}
$$

2) Výpočet těžištových momentů setrvačnosti a deviačního momentu:

$$
\begin{aligned}
\Delta y_{1} & =T_{1 y}-T_{y}=150-142,5=7,5 \mathrm{~mm} \\
\Delta y_{2} & =T_{2 y}-T_{y}=257,6-142,5=115,1 \mathrm{~mm} \\
I_{x 1} & =\frac{1}{12} \cdot b_{1} \cdot h_{1}^{3}+A_{1} \cdot \Delta y_{1}^{2}=\frac{1}{12} \cdot 400 \cdot 300^{3}+1,2 \cdot 10^{5} \cdot 7,5^{2}=9,0675 \cdot 10^{8} \mathrm{~mm}^{4} \\
I_{x 2} & =0,0549 \cdot r^{4}+A_{2} \cdot \Delta y_{2}^{2}=0,0549 \cdot 100^{4}+7,85398 \cdot 10^{3} \cdot 115,1^{2}=1,09540 \cdot 10^{8} \mathrm{~mm}^{4} \\
I_{x} & =I_{x 1}+I_{x 2}=9,0675 \cdot 10^{8}-1,09540 \cdot 10^{8}=\mathbf{7 , 9 7 2 1} \cdot 10^{\mathbf{8}} \mathbf{m m}^{4}
\end{aligned}
$$

$$
\begin{aligned}
\Delta x_{1} & =T_{1 x}-T_{x}=200-189=11 \mathrm{~mm} \\
\Delta x_{2} & =T_{2 x}-T_{x}=357,6-189=168,6 \mathrm{~mm} \\
I_{y 1} & =\frac{1}{12} \cdot b_{1}^{3} \cdot h_{1}+A_{1} \cdot \Delta x_{1}^{2}=\frac{1}{12} \cdot 400^{3} \cdot 300+1,2 \cdot 10^{5} \cdot 11^{2}=1,61452 \cdot 10^{9} \mathrm{~mm}^{4} \\
I_{y 2} & =0,0549 \cdot r^{4}+A_{2} \cdot \Delta x_{2}^{2}=0,0549 \cdot 100^{4}+7,85398 \cdot 10^{3} \cdot 168,6^{2}=2,28750 \cdot 10^{8} \mathrm{~mm}^{4} \\
I_{y} & =I_{y 1}-I_{y 2}=1,61452 \cdot 10^{9}-2,28750 \cdot 10^{8}=1, \mathbf{3 8 5 7 7} \cdot \mathbf{1 0}^{\mathbf{9}} \mathbf{m m}^{4}
\end{aligned}
$$

$$
\begin{aligned}
D_{x y 1} & =0+A_{1} \cdot \Delta x_{1} \cdot \Delta y_{1}=1,2 \cdot 10^{5} \cdot 7,5 \cdot 11=9,9 \cdot 10^{6} \mathrm{~mm}^{4} \\
D_{x y 2} & =-0,0165 \cdot r^{4}+A_{2} \cdot \Delta x_{2} \cdot \Delta y_{2}=-0,0165 \cdot 100^{4}+7,85398 \cdot 10^{3} \cdot 115,1 \cdot 168,6 \\
& =1,50763 \cdot 10^{8} \mathrm{~mm}^{4} \\
D_{x y} & =D_{y z 1}-D_{y z 2}=9,9 \cdot 10^{6}-1,50763 \cdot 10^{8}=\mathbf{- 1 , 4 0 8 6 3} \cdot \mathbf{1 0} \mathbf{0}^{\mathbf{8}} \mathbf{m m}^{4}
\end{aligned}
$$

3) Výpočet hlavních momentů setrvačnosti a vykreslení elipsy setrvačnosti:

$$
\begin{aligned}
\tan 2 \alpha_{0} & =\frac{2 \cdot D_{x y}}{I_{y}-I_{x}}=\frac{2 \cdot\left(-1,40863 \cdot 10^{8}\right)}{1,38577 \cdot 10^{9}-7,9721 \cdot 10^{8}}=-0,4787 \\
\alpha_{0} & =-\mathbf{1 2 , 7 9 ^ { \circ }} \\
I_{1,2} & =\frac{I_{y}+I_{z}}{2} \pm \sqrt{\left(\frac{I_{y}-I_{z}}{2}\right)^{2}+D_{y z}^{2}} \\
I_{1,2} & =\frac{7,9721 \cdot 10^{8}+1,38577 \cdot 10^{9}}{2} \pm \sqrt{\left(\frac{7,9721 \cdot 10^{8}-1,38577 \cdot 10^{9}}{2}\right)^{2}+\left(-1,40863 \cdot 10^{8}\right)^{2}} \\
I_{1} & =\mathbf{1 , 4 1 7 7} \cdot \mathbf{1 0} \mathbf{9} \mathbf{m m}^{4}=I_{\max } \\
I_{2} & =\mathbf{7 , 6 5 2 3} \cdot \mathbf{1 0}^{\mathbf{8}} \mathbf{m m}^{4}=I_{\min }
\end{aligned}
$$

$$
i_{\max }=\sqrt{\frac{I_{\max }}{A}}=\sqrt{\frac{1,4177 \cdot 10^{9}}{1,12146 \cdot 10^{5}}}=\mathbf{1 1 2 , 4 \mathrm { mm }}
$$

$$
i_{\min }=\sqrt{\frac{I_{\min }}{A}}=\sqrt{\frac{7,6523 \cdot 10^{8}}{1,12146 \cdot 10^{5}}}=\mathbf{8 2 , 6} \mathbf{~ m m}
$$

Příklad 11.5

Zadání:

Rozkreslení na jednoduché obrazce:

1) Výpočet plochy a těžiště:

$$
\begin{aligned}
A_{1} & =100 \cdot 500=5 \cdot 10^{4} \mathrm{~mm}^{2} \\
A_{2} & =500 \cdot 100=5 \cdot 10^{4} \mathrm{~mm}^{2} \\
A_{3} & =100 \cdot 500=5 \cdot 10^{4} \mathrm{~mm}^{2} \\
A & =\sum_{i=1}^{3} A_{i}=5 \cdot 10^{4}+5 \cdot 10^{4}+5 \cdot 10^{4}=1,5 \cdot 10^{5} \mathrm{~mm}^{2} \\
T_{x} & =250 \mathrm{~mm} \\
T_{y} & =350 \mathrm{~mm}
\end{aligned}
$$

Poznámka: Pokud je průřez symetrický, je zbytečné počítat jeho těžiště.
2) Výpočet těžišt̛ových momentů setrvačnosti a deviačního momentu:

$$
\begin{aligned}
\Delta y_{1} & =T_{1 y}-T_{y}=50-350=-300 \mathrm{~mm} \\
\Delta y_{2} & =T_{2 y}-T_{y}=350-350=0 \mathrm{~mm} \\
\Delta y_{3} & =T_{3 y}-T_{y}=650-350=300 \mathrm{~mm} \\
I_{x 1} & =\frac{1}{12} \cdot b_{1} \cdot h_{1}^{3}+A_{1} \cdot \Delta y_{1}^{2}=\frac{1}{12} \cdot 500 \cdot 100^{3}+5 \cdot 10^{4} \cdot(-300)^{2}=4,54167 \cdot 10^{9} \mathrm{~mm}^{4} \\
I_{x 2} & =\frac{1}{12} \cdot b_{2} \cdot h_{2}^{3}+A_{2} \cdot \Delta y_{2}^{2}=\frac{1}{12} \cdot 100 \cdot 500^{3}+5 \cdot 10^{4} \cdot 0^{2}=1,04167 \cdot 10^{9} \mathrm{~mm}^{4} \\
I_{x 3} & =\frac{1}{12} \cdot b_{3} \cdot h_{3}^{3}+A_{3} \cdot \Delta y_{3}^{2}=\frac{1}{12} \cdot 500 \cdot 100^{3}+5 \cdot 10^{4} \cdot 300^{2}=4,54167 \cdot 10^{9} \mathrm{~mm}^{4} \\
I_{x} & =\sum_{i=1}^{3} I_{x i}=4,54167 \cdot 10^{9}+1,04167 \cdot 10^{9}+4,54167 \cdot 10^{9}=\mathbf{1 , 0 1 2 5 0} \cdot \mathbf{1 0} 0^{10} \mathbf{m m}^{4} \\
\Delta x_{1} & =T_{1 x}-T_{x}=250-250=0 \mathrm{~mm} \\
\Delta x_{2} & =T_{2 x}-T_{x}=250-250=0 \mathrm{~mm} \\
\Delta x_{3} & =T_{3 x}-T_{x}=250-250=0 \mathrm{~mm} \\
I_{y 1} & =\frac{1}{12} \cdot b_{1}^{3} \cdot h_{1}+A_{1} \cdot \Delta x_{1}^{2}=\frac{1}{12} \cdot 500^{3} \cdot 100+0=1,04167 \cdot 10^{9} \mathrm{~mm}^{4} \\
I_{y 2} & =\frac{1}{12} \cdot b_{2}^{3} \cdot h_{2}+A_{2} \cdot \Delta x_{2}^{2}=\frac{1}{12} \cdot 100^{3} \cdot 500+0=4,16667 \cdot 10^{7} \mathrm{~mm}^{4} \\
I_{y 3} & =\frac{1}{12} \cdot b_{3}^{3} \cdot h_{3}+A_{3} \cdot \Delta x_{3}^{2}=\frac{1}{12} \cdot 500^{3} \cdot 100+0=1,04167 \cdot 10^{9} \mathrm{~mm}^{4} \\
I_{y} & =\sum_{i=1}^{3} I_{y i}=1,04167 \cdot 10^{9}+4,16667 \cdot 10^{7}+1,04167 \cdot 10^{9}=\mathbf{2 , 1 2 5} \cdot \mathbf{1 0} 0^{9} \mathbf{m m}^{4} \\
D_{x y} & =\mathbf{0} \mathbf{m m}^{4}
\end{aligned}
$$

Poznámka: Je-li souřadnice celkového těžiště totožná s těžištěm rozloženého obrazce, pak není trěeba používat Steinerův doplněk. Ten slouží k opravě toho, že lokální těžiště obrazce není totožné s celkovým (tj. tím, ke kterému počítáme momenty). A pokud je průřez symetrický, pak je $D_{x y}$ nulový.
3) Výpočet hlavních momentů setrvačnosti a vykreslení elipsy setrvačnosti:

$$
\begin{aligned}
I_{x} & >I_{y} \rightarrow I_{\max }=I_{x} \\
I_{1} & =1,01250 \cdot 10^{\mathbf{1 0}} \mathrm{mm}^{4}=I_{\max } \\
I_{2} & =\mathbf{2 , 1 2 5 \cdot 1 0 ^ { 9 } \mathbf { m m } ^ { 4 } = I _ { \operatorname { m i n } }} \\
i_{\max } & =\sqrt{\frac{I_{\max }}{A}}=\sqrt{\frac{1,01250 \cdot 10^{10}}{1,5 \cdot 10^{5}}}=\mathbf{2 5 9 , 8} \mathrm{mm} \\
i_{\min } & =\sqrt{\frac{I_{\min }}{A}}=\sqrt{\frac{2,125 \cdot 10^{9}}{1,5 \cdot 10^{5}}}=\mathbf{1 1 9 , 0} \mathbf{~ m m}
\end{aligned}
$$

Příklad 11.6

Zadání:

Rozkreslení na jednoduché obrazce:

1) Výpočet plochy a těžiště:

$$
\begin{aligned}
A_{1} & =500 \cdot 50=2,5 \cdot 10^{4} \mathrm{~mm}^{2} \\
A_{2} & =50 \cdot 500=2,5 \cdot 10^{4} \mathrm{~mm}^{2} \\
A_{3} & =200 \cdot 50=1 \cdot 10^{4} \mathrm{~mm}^{2} \\
A & =\sum_{i=1}^{3} A_{i}=2,5 \cdot 10^{4}+2,5 \cdot 10^{4}+1 \cdot 10^{4}=6 \cdot 10^{4} \mathrm{~mm}^{2} \\
T_{y} & =250 \mathrm{~mm} \\
T_{z} & =\frac{A_{1} \cdot T_{1 z}+A_{2} \cdot T_{2 z}+A_{3} \cdot T_{3 z}}{A}=\frac{2,5 \cdot 10^{4} \cdot 575+2,5 \cdot 10^{4} \cdot 300+1 \cdot 10^{4} \cdot 25}{6 \cdot 10^{4}}=368,75 \mathrm{~mm}
\end{aligned}
$$

2) Výpočet těžišt̛ových momentů setrvačnosti a deviačního momentu:

$$
\begin{aligned}
\Delta z_{1} & =T_{1 z}-T_{z}=575-368,75=206,25 \mathrm{~mm} \\
\Delta z_{2} & =T_{2 z}-T_{z}=300-368,75=-68,75 \mathrm{~mm} \\
\Delta z_{3} & =T_{3 z}-T_{z}=25-368,75=-343,75 \mathrm{~mm}
\end{aligned}
$$

(C) Adéla Pospísisilová

$$
\begin{aligned}
I_{y 1} & =\frac{1}{12} \cdot b_{1} \cdot h_{1}^{3}+A_{1} \cdot \Delta z_{1}^{2}=\frac{1}{12} \cdot 500 \cdot 50^{3}+2,5 \cdot 10^{4} \cdot 206,25^{2}=1,06868 \cdot 10^{9} \mathrm{~mm}^{4} \\
I_{y 2} & =\frac{1}{12} \cdot b_{2} \cdot h_{2}^{3}+A_{2} \cdot \Delta z_{2}^{2}=\frac{1}{12} \cdot 50 \cdot 500^{3}+2,5 \cdot 10^{4} \cdot(-68,75)^{2}=6,38997 \cdot 10^{8} \mathrm{~mm}^{4} \\
I_{y 3} & =\frac{1}{12} \cdot b_{3} \cdot h_{3}^{3}+A_{3} \cdot \Delta z_{3}^{2}=\frac{1}{12} \cdot 200 \cdot 50^{3}+1 \cdot 10^{4} \cdot(-343,75)^{2}=1,18372 \cdot 10^{9} \mathrm{~mm}^{4} \\
I_{y} & =\sum_{i=1}^{3} I_{y i}=1,06868 \cdot 10^{9}+6,38997 \cdot 10^{8}+1,18372 \cdot 10^{9}=\mathbf{2 , 8 9 1 4 0} \cdot 10^{9} \mathrm{~mm}^{4} \\
\Delta y_{1} & =T_{1 y}-T_{y}=250-250=0 \mathrm{~mm} \\
\Delta y_{2} & =T_{2 y}-T_{y}=250-250=0 \mathrm{~mm} \\
\Delta y_{3} & =T_{3 y}-T_{y}=250-250=0 \mathrm{~mm} \\
I_{z 1} & =\frac{1}{12} \cdot b_{1}^{3} \cdot h_{1}+A_{1} \cdot \Delta y_{1}^{2}=\frac{1}{12} \cdot 500^{3} \cdot 50+0=5,20833 \cdot 10^{8} \mathrm{~mm}^{4} \\
I_{z 2} & =\frac{1}{12} \cdot b_{2}^{3} \cdot h_{2}+A_{2} \cdot \Delta y_{2}^{2}=\frac{1}{12} \cdot 50^{3} \cdot 500+0=5,20833 \cdot 10^{6} \mathrm{~mm}^{4} \\
I_{z 3} & =\frac{1}{12} \cdot b_{3}^{3} \cdot h_{3}+A_{3} \cdot \Delta y_{3}^{2}=\frac{1}{12} \cdot 200^{3} \cdot 50+0=3,33333 \cdot 10^{7} \mathrm{~mm}^{4} \\
I_{z} & =\sum_{i=1}^{3} I_{z i}=5,20833 \cdot 10^{8}+5,20833 \cdot 10^{6}+3,33333 \cdot 10^{7}=\mathbf{5 , 5 9 3 7 5} \cdot \mathbf{1 0} \mathbf{m}^{8} \mathbf{m m}^{4} \\
D_{y z} & =\mathbf{0} \mathbf{m m}^{4}
\end{aligned}
$$

3) Výpočet hlavních momentů setrvačnosti a vykreslení elipsy setrvačnosti:

$$
\begin{aligned}
& I_{y}>I_{z} \rightarrow I_{\max }=I_{y} \\
& I_{1}=2,89140 \cdot 10^{9} \mathrm{~mm}^{4}=I_{\max } \\
& I_{2}=5,59375 \cdot 10^{8} \mathrm{~mm}^{4}=I_{\min }
\end{aligned}
$$

$$
\begin{aligned}
& i_{\max }=\sqrt{\frac{I_{\max }}{A}}=\sqrt{\frac{2,89140 \cdot 10^{9}}{6 \cdot 10^{4}}}=\mathbf{2 1 9 , 5 \mathrm { mm }} \\
& i_{\min }=\sqrt{\frac{I_{\min }}{A}}=\sqrt{\frac{5,59375 \cdot 10^{8}}{6 \cdot 10^{4}}}=\mathbf{9 6 , 6} \mathbf{~ m m}
\end{aligned}
$$

Příklad 11.7

Zadání:

Rozkreslení na jednoduché obrazce:

1) Výpočet plochy a těžiště:

$$
\begin{aligned}
A_{1} & =\frac{1}{2} \cdot 600 \cdot 900=2,7 \cdot 10^{5} \mathrm{~mm}^{2} \\
A_{2} & =\frac{1}{2} \cdot 300 \cdot 200=3 \cdot 10^{4} \mathrm{~mm}^{2} \\
A_{3} & =\frac{1}{2} \cdot 150 \cdot 200=1,5 \cdot 10^{4} \mathrm{~mm}^{2} \\
A & =A_{1}-A_{2}-A_{3}=2,7 \cdot 10^{5}-3 \cdot 10^{4}-1,5 \cdot 10^{4}=2,25 \cdot 10^{5} \mathrm{~mm}^{2} \\
T_{y} & =\frac{A_{1} \cdot T_{1 y}+A_{2} \cdot T_{2 y}+A_{3} \cdot T_{3 y}}{A}=\frac{2,7 \cdot 10^{5} \cdot 300-3 \cdot 10^{4} \cdot 400-1,5 \cdot 10^{4} \cdot 250}{2,25 \cdot 10^{5}}=290 \mathrm{~mm} \\
T_{z} & =\frac{A_{1} \cdot T_{1 z}+A_{2} \cdot T_{2 z}+A_{3} \cdot T_{3 z}}{A}=\frac{2,7 \cdot 10^{5} \cdot 200-3 \cdot 10^{4} \cdot 266,7-1,5 \cdot 10^{4} \cdot 266,7}{2,25 \cdot 10^{5}}=186,7 \mathrm{~mm}
\end{aligned}
$$

2) Výpočet těžištových momentů setrvačnosti a deviačního momentu:

$$
\begin{aligned}
\Delta z_{1} & =T_{1 z}-T_{z}=200-186,7=13,3 \mathrm{~mm} \\
\Delta z_{2} & =T_{2 z}-T_{z}=266,7-186,7=80 \mathrm{~mm} \\
\Delta z_{3} & =T_{3 z}-T_{z}=266,7-186,7=80 \mathrm{~mm} \\
I_{y 1} & =\frac{1}{36} \cdot b_{1} \cdot h_{1}^{3}+A_{1} \cdot \Delta z_{1}^{2}=\frac{1}{36} \cdot 900 \cdot 600^{3}+2,7 \cdot 10^{5} \cdot 13,3^{2}=5,44776 \cdot 10^{9} \mathrm{~mm}^{4} \\
I_{y 2} & =\frac{1}{36} \cdot h_{2} \cdot h_{2}^{3}+A_{2} \cdot \Delta z_{2}^{2}=\frac{1}{36} \cdot 300 \cdot 200^{3}+3 \cdot 10^{4} \cdot 80^{2}=2,58667 \cdot 10^{8} \mathrm{~mm}^{4} \\
I_{y 3} & =\frac{1}{36} \cdot b_{3} \cdot h_{3}^{3}+A_{3} \cdot \Delta z_{3}^{2}=\frac{1}{36} \cdot 150 \cdot 200^{3}+1,5 \cdot 10^{4} \cdot 80^{2}=1,29333 \cdot 10^{8} \mathrm{~mm}^{4} \\
I_{y} & =I_{y 1}-I_{y 2}-I_{y 3}=5,44776 \cdot 10^{9}-2,58667 \cdot 10^{8}-1,29333 \cdot 10^{8}=\mathbf{5 , 0 5 9 7 6} \cdot \mathbf{1 0}{ }^{9} \mathbf{m m}^{4}
\end{aligned}
$$

$$
\begin{aligned}
\Delta y_{1} & =T_{1 y}-T_{y}=300-290=10 \mathrm{~mm} \\
\Delta y_{2} & =T_{2 y}-T_{y}=400-290=110 \mathrm{~mm} \\
\Delta y_{3} & =T_{3 y}-T_{y}=250-290=-40 \mathrm{~mm} \\
I_{z 1} & =\frac{1}{36} \cdot b_{1}^{3} \cdot h_{1}+A_{1} \cdot \Delta y_{1}^{2}=\frac{1}{36} \cdot 900^{3} \cdot 600+2,7 \cdot 10^{5} \cdot 10^{2}=1,2177 \cdot 10^{10} \mathrm{~mm}^{4} \\
I_{z 2} & =\frac{1}{36} \cdot b_{2}^{3} \cdot h_{2}+A_{2} \cdot \Delta y_{2}^{2}=\frac{1}{36} \cdot 300^{3} \cdot 200+3 \cdot 10^{4} \cdot 110^{2}=5,13 \cdot 10^{8} \mathrm{~mm}^{4} \\
I_{z 3} & =\frac{1}{36} \cdot b_{3}^{3} \cdot h_{3}+A_{3} \cdot \Delta y_{3}^{2}=\frac{1}{36} \cdot 150^{3} \cdot 200+1,5 \cdot 10^{4} \cdot(-40)^{2}=4,275 \cdot 10^{7} \mathrm{~mm}^{4} \\
I_{z} & =I_{z 1}-I_{z 2}-I_{z 3}=1,2177 \cdot 10^{10}-5,13 \cdot 10^{8}-4,275 \cdot 10^{7}=1,16213 \cdot 10^{10} \mathrm{~mm}^{4} \\
D_{y z 1} & =-\frac{1}{72} \cdot b_{1}^{2} \cdot h_{1}^{2}+A_{1} \cdot \Delta y_{1} \cdot \Delta z_{1}=-\frac{1}{72} \cdot 900^{2} \cdot 600^{2}+2,7 \cdot 10^{5} \cdot 10 \cdot 13,3=-4,01409 \cdot 10^{9} \mathrm{~mm}^{4} \\
D_{y z 2} & =-\frac{1}{72} \cdot b_{2}^{2} \cdot h_{2}^{2}+A_{2} \cdot \Delta y_{2} \cdot \Delta z_{2}=-\frac{1}{72} \cdot 300^{2} \cdot 200^{2}+3 \cdot 10^{4} \cdot 80 \cdot 110=2,14 \cdot 10^{8} \mathrm{~mm}^{4} \\
D_{y z 3} & =\frac{1}{72} \cdot b_{3}^{2} \cdot h_{3}^{2}+A_{3} \cdot \Delta y_{3} \cdot \Delta z_{3}=\frac{1}{72} \cdot 150^{2} \cdot 200^{2}+1,5 \cdot 10^{4} \cdot 80 \cdot(-40)=-3,55 \cdot 10^{7} \mathrm{~mm}^{4} \\
D_{y z} & =D_{y z 1}-D_{y z 2}-D_{y z 3}=-4,01409 \cdot 10^{9}-\left(2,14 \cdot 10^{8}-3,55 \cdot 10^{7}\right)=-\mathbf{- 4 , 1 9 2 5 9 \cdot 1 0 ^ { 9 } \mathrm { mm } ^ { 4 }}
\end{aligned}
$$

3) Výpočet hlavních momentů setrvačnosti a vykreslení elipsy setrvačnosti:

$$
\begin{aligned}
\tan 2 \alpha_{0}= & \frac{2 \cdot D_{x y}}{I_{y}-I_{x}}=\frac{2 \cdot\left(-4,19259 \cdot 10^{9}\right)}{1,16213 \cdot 10^{10}-5,05976 \cdot 10^{9}}=-1,27793 \\
\alpha_{0}= & -\mathbf{2 6} 6^{\circ} \\
I_{1,2}= & \frac{I_{y}+I_{z}}{2} \pm \sqrt{\left(\frac{I_{y}-I_{z}}{2}\right)^{2}+D_{y z}^{2}} \\
I_{1,2}= & \frac{5,05976 \cdot 10^{9}+1,16213 \cdot 10^{10}}{2} \pm \ldots \\
& \cdots \sqrt{\left(\frac{5,05976 \cdot 10^{9}-1,16213 \cdot 10^{10}}{2}\right)^{2}+\left(-4,19259 \cdot 10^{9}\right)^{2}} \\
I_{1}= & \mathbf{1 , 3 6 6 4 \cdot 1 0 ^ { \mathbf { 1 0 } } \mathbf { m m } ^ { 4 } = I _ { \operatorname { m a x } }} \\
I_{2}= & \mathbf{3 , 0 1 6 9 \cdot 1 0 ^ { 9 } \mathbf { m m } ^ { 4 } = I _ { \operatorname { m i n } }} \\
i_{\max }= & \sqrt{\frac{I_{\max }}{A}}=\sqrt{\frac{1,3664 \cdot 10^{10}}{2,25 \cdot 10^{5}}}=\mathbf{2 6 4 , 4} \mathbf{~ m m} \\
i_{\min }= & \sqrt{\frac{I_{\min }}{A}}=\sqrt{\frac{3,0169 \cdot 10^{9}}{2,25 \cdot 10^{5}}}=\mathbf{1 1 5 , \mathbf { 8 m m }}
\end{aligned}
$$

Příklad 11.8

Zadání:

1) Výpočet plochy a těžiště:

$$
\begin{aligned}
A_{1} & =\frac{1}{2} \cdot 100 \cdot 100=5 \cdot 10^{3} \mathrm{~mm}^{2} \\
A_{2} & =400 \cdot 100=4 \cdot 10^{4} \mathrm{~mm}^{2} \\
A_{3} & =\frac{1}{2} \cdot 100 \cdot 100=5 \cdot 10^{3} \mathrm{~mm}^{2} \\
A_{4} & =A_{5}=A_{6}=A_{7}=\frac{\pi \cdot 50^{2}}{4}=1,9635 \cdot 10^{3} \mathrm{~mm}^{2} \\
A & =\sum_{i=1}^{3} A_{i}-\sum_{i=4}^{7} A_{i}=5 \cdot 10^{3}+4 \cdot 10^{4}+5 \cdot 10^{3}-4 \cdot 1,9635 \cdot 10^{3}=4,2146 \cdot 10^{4} \mathrm{~mm}^{2} \\
T_{y} & =300 \mathrm{~mm} \\
T_{z} & =\frac{A_{1} \cdot T_{1 z}+A_{2} \cdot T_{2 z}+A_{3} \cdot T_{3 z}-A_{4} \cdot T_{4 z}-A_{5} \cdot T_{5 z}-A_{6} \cdot T_{6 z}-A_{7} \cdot T_{7 z}}{A} \\
& =\frac{5 \cdot 10^{3} \cdot \frac{2 \cdot 100}{3}+4 \cdot 10^{4} \cdot 50+5 \cdot 10^{3} \cdot \frac{2 \cdot 100}{3}-4 \cdot 1,9635 \cdot 10^{3} \cdot 50}{4,2146 \cdot 10^{4}}=53,955 \mathrm{~mm}
\end{aligned}
$$

2) Výpočet těžišśových momentů setrvačnosti a deviačního momentu:

$$
\begin{aligned}
\Delta z_{1} & =T_{1 z}-T_{z}=\frac{2 \cdot 100}{3}-53,955=12,712 \mathrm{~mm} \\
\Delta z_{2} & =T_{2 z}-T_{z}=50-53,955=-3,955 \mathrm{~mm} \\
\Delta z_{3} & =T_{3 z}-T_{z}=\frac{2 \cdot 100}{3}-53,955=12,712 \mathrm{~mm} \\
\Delta z_{4} & =\Delta z_{5}=\Delta z_{6}=\Delta z_{7}=T_{i z}-T_{z}=50-53,955=-3,955 \mathrm{~mm} \\
I_{y 1} & =\frac{1}{36} \cdot b_{1} \cdot h_{1}^{3}+A_{1} \cdot \Delta z_{1}^{2}=\frac{1}{36} \cdot 100 \cdot 100^{3}+5 \cdot 10^{3} \cdot 12,712^{2}=3,58575 \cdot 10^{6} \mathrm{~mm}^{4} \\
I_{y 2} & =\frac{1}{12} \cdot b_{2} \cdot h_{2}^{3}+A_{2} \cdot \Delta z_{2}^{2}=\frac{1}{12} \cdot 400 \cdot 100^{3}+4 \cdot 10^{4} \cdot(-3,955)^{2}=3,39590 \cdot 10^{7} \mathrm{~mm}^{4} \\
I_{y 3} & =\frac{1}{36} \cdot b_{3} \cdot h_{3}^{3}+A_{3} \cdot \Delta z_{3}^{2}=\frac{1}{36} \cdot 100 \cdot 100^{3}+5 \cdot 10^{3} \cdot 12,712^{2}=3,58575 \cdot 10^{6} \mathrm{~mm}^{4} \\
I_{y 4} & =I_{y 5}=I_{y 6}=I_{y 7}=\frac{1}{64} \cdot \pi \cdot d^{4}+A_{i} \cdot \Delta z_{i}^{2}=\frac{1}{64} \cdot \pi \cdot 50^{4}+1,9635 \cdot 10^{3} \cdot(-3,955)^{2}= \\
& =3,37509 \cdot 10^{5} \mathrm{~mm}^{4} \\
I_{y} & =\sum_{i=1}^{3} I_{y i}-\sum_{i=4}^{7} I_{y i}=3,58575 \cdot 10^{6}+3,39590 \cdot 10^{7}+3,58575 \cdot 10^{6}-4 \cdot 3,37509 \cdot 10^{5}= \\
& =\mathbf{3 , 9 5 8 0 5} \cdot \mathbf{1 0}^{\mathbf{7}} \mathrm{mm}^{4}
\end{aligned}
$$

$\Delta y_{1}=T_{1 y}-T_{y}=\left(\frac{100}{3}+500\right)-300=233,33 \mathrm{~mm}$
$\Delta y_{2}=T_{2 y}-T_{y}=300-300=0 \mathrm{~mm}$
$\Delta y_{3}=T_{3 y}-T_{y}=\frac{2 \cdot 100}{3}-300=-233,33 \mathrm{~mm}$
$\Delta y_{4}=T_{4 y}-T_{y}=450-300=150 \mathrm{~mm}$
$\Delta y_{5}=T_{5 y}-T_{y}=350-300=50 \mathrm{~mm}$
$\Delta y_{6}=T_{6 y}-T_{y}=250-300=-50 \mathrm{~mm}$
$\Delta y_{7}=T_{7 y}-T_{y}=150-300=-150 \mathrm{~mm}$

$$
\begin{aligned}
I_{z 1}= & \frac{1}{36} \cdot b_{1}^{3} \cdot h_{1}+A_{1} \cdot \Delta y_{1}^{2}=\frac{1}{36} \cdot 100^{3} \cdot 100+5 \cdot 10^{3} \cdot 233,33^{2}=2,74992 \cdot 10^{8} \mathrm{~mm}^{4} \\
I_{z 2}= & \frac{1}{12} \cdot b_{2}^{3} \cdot h_{2}+A_{2} \cdot \Delta y_{2}^{2}=\frac{1}{12} \cdot 400^{3} \cdot 100+0=5,33333 \cdot 10^{8} \mathrm{~mm}^{4} \\
I_{z 3}= & \frac{1}{36} \cdot b_{3}^{3} \cdot h_{3}+A_{3} \cdot \Delta y_{3}^{2}=\frac{1}{36} \cdot 100^{3} \cdot 100+5 \cdot 10^{3} \cdot(-233,33)^{2}=2,74992 \cdot 10^{8} \mathrm{~mm}^{4} \\
I_{z 4}= & \frac{1}{64} \cdot \pi \cdot d^{4}+A_{4} \cdot \Delta y_{4}^{2}=\frac{1}{64} \cdot \pi \cdot 50^{4}+1,9635 \cdot 10^{3} \cdot 150^{2}=4,44855 \cdot 10^{7} \mathrm{~mm}^{4} \\
I_{z 5}= & \frac{1}{64} \cdot \pi \cdot d^{4}+A_{5} \cdot \Delta y_{5}^{2}=\frac{1}{64} \cdot \pi \cdot 50^{4}+1,9635 \cdot 10^{3} \cdot 50^{2}=5,21555 \cdot 10^{6} \mathrm{~mm}^{4} \\
I_{z 6}= & \frac{1}{64} \cdot \pi \cdot d^{4}+A_{6} \cdot \Delta y_{6}^{2}=\frac{1}{64} \cdot \pi \cdot 50^{4}+1,9635 \cdot 10^{3} \cdot(-50)^{2}=5,21555 \cdot 10^{6} \mathrm{~mm}^{4} \\
I_{z 7}= & \frac{1}{64} \cdot \pi \cdot d^{4}+A_{7} \cdot \Delta y_{7}^{2}=\frac{1}{64} \cdot \pi \cdot 50^{4}+1,9635 \cdot 10^{3} \cdot(-150)^{2}=4,44855 \cdot 10^{7} \mathrm{~mm}^{4} \\
I_{z}= & \sum_{i=1}^{3} I_{z i}-\sum_{i=4}^{7} I_{z i}=2,74992 \cdot 10^{8}+5,33333 \cdot 10^{8}+2,74992 \cdot 10^{8}-4,44855 \cdot 10^{7} \\
& -5,21555 \cdot 10^{6}-5,21555 \cdot 10^{6}-4,44855 \cdot 10^{7}=\mathbf{9 , 8 3 9 1 5 \cdot 1 0 ^ { 8 } \mathrm { mm } ^ { 4 }} \\
D_{y z}= & \mathbf{0} \mathbf{m m}^{4}
\end{aligned}
$$

Poznámka: Průřez je symetrický, tudíž je $D_{y z}$ nulový. Kdo by tomu nevěřil, necht projde následující výpočet.

$$
\begin{aligned}
D_{y z 1}= & \frac{1}{72} \cdot b_{1}^{2} \cdot h_{1}^{2}+A_{1} \cdot \Delta y_{1} \cdot \Delta z_{1}=\frac{1}{72} \cdot 100^{2} \cdot 100^{2}+5 \cdot 10^{3} \cdot 12,712 \cdot 233,33= \\
= & 1,62193 \cdot 10^{7} \mathrm{~mm}^{4} \\
D_{y z 2}= & 0+A_{2} \cdot \Delta y_{2} \cdot \Delta z_{2}=0+4 \cdot 10^{4} \cdot(-3,955) \cdot 0=0 \mathrm{~mm}^{4} \\
D_{y z 3}= & -\frac{1}{72} \cdot b_{3}^{2} \cdot h_{3}^{2}+A_{3} \cdot \Delta y_{3} \cdot \Delta z_{3}=-\frac{1}{72} \cdot 100^{2} \cdot 100^{2}+5 \cdot 10^{3} \cdot 12,712 \cdot(-233,33)= \\
= & -1,62193 \cdot 10^{7} \mathrm{~mm}^{4} \\
D_{y z 4}= & 0+A_{4} \cdot \Delta y_{4} \cdot \Delta z_{4}=0+1,9635 \cdot 10^{3} \cdot(-3,955) \cdot 150=-1,16485 \cdot 10^{6} \mathrm{~mm}^{4} \\
D_{y z 5}= & 0+A_{5} \cdot \Delta y_{5} \cdot \Delta z_{5}=0+1,9635 \cdot 10^{3} \cdot(-3,955) \cdot 50=-3,88282 \cdot 10^{5} \mathrm{~mm}^{4} \\
D_{y z 6}= & 0+A_{6} \cdot \Delta y_{6} \cdot \Delta z_{6}=0+1,9635 \cdot 10^{3} \cdot(-3,955) \cdot(-50)=3,88282 \cdot 10^{5} \mathrm{~mm}^{4} \\
D_{y z 7}= & 0+A_{7} \cdot \Delta y_{7} \cdot \Delta z_{7}=0+1,9635 \cdot 10^{3} \cdot(-3,955) \cdot(-150)=1,16485 \cdot 10^{6} \mathrm{~mm}^{4} \\
D_{y z}= & \sum_{i=1}^{3} D_{y z i}-\sum_{i=4}^{7} D_{y z i}=1,62193 \cdot 10^{7}+0-1,62193 \cdot 10^{7}-\left(-1,16485 \cdot 10^{6}\right. \\
& \left.-3,88282 \cdot 10^{5}+3,88282 \cdot 10^{5}+1,16485 \cdot 10^{6}\right)=\mathbf{0} \mathrm{mm}^{4}
\end{aligned}
$$

3) Výpočet hlavních momentů setrvačnosti a vykreslení elipsy setrvačnosti:

$$
\begin{aligned}
& I_{z}>I_{x} \rightarrow I_{\max }=I_{z} \\
& I_{1}=9,83915 \cdot 10^{8} \mathrm{~mm}^{4}=I_{\max } \\
& I_{2}=\mathbf{3 , 9 5 8 0 5} \cdot 10^{7} \mathrm{~mm}^{4}=I_{\min }
\end{aligned}
$$

$$
\begin{aligned}
& i_{\max }=\sqrt{\frac{I_{\max }}{A}}=\sqrt{\frac{9,83915 \cdot 10^{8}}{4,2146 \cdot 10^{4}}}=\mathbf{1 5 2 , 8} \mathrm{mm} \\
& i_{\min }=\sqrt{\frac{I_{\min }}{A}}=\sqrt{\frac{3,95805 \cdot 10^{7}}{4,2146 \cdot 10^{4}}}=\mathbf{3 0 , 7} \mathbf{~ m m}
\end{aligned}
$$

Prosba V případě, že v textu objevíte nějakou chybu nebo budete mít námět na jeho vylepšení, ozvěte se prosím na adela.pospisilova@fsv.cvut.cz.

V02: U všech příkladů opraveno značení os. (Na chybu upozornil doc. Zeman.)

