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Abstract

An account on the role of higher order strain gradients in the mechanical behavior of elastic-perfectly brittle materials, such
as rocks, is given that is based on a special grade-2 elasticity theory with surface energy as this was originated by Casal and
Mindlin and further elaborated by the authors. The fundamental idea behind the theory is that the effect of the granular and
polycrystalline nature of geomaterials (i.e. their microstructural features) on their macroscopic response may be modeled
through the concept of volume cohesion forces, as well as surface forces rather than through intractable statistical mechanics
concepts of the Boltzmann type. It is shown that the important phenomena of the localization of deformation in macroscopically
homogeneous rocks under uniform tractions and of dependence of rock behavior on the specimen’s dimensions, commonly
known as size or scale effect, can be interpreted by using this ‘non-local’, higher order theory. These effects are demonstrated
for the cases of the unidirectional tension test, and for the small circular hole under uniform internal pressure commonly known
as the inflation test. The latter configuration can be taken as a first order approximation of the indentation test that is frequently
used for the laboratory or in situ characterization of geomaterials. In addition, it is shown that the solution of the three basic
crack deformation modes leads to cusping of the crack tips that is caused by the action of ‘cohesive’ double forces behind and
very close to the tips, that tend to bring the two opposite crack lips in close contact, and further, it is demonstrated that the
fracture toughness depends on the size of the crack, and thus it is not a fundamental property of the material. This latter outcome
agrees with experimental results which indicate that materials with smaller cracks are more resistant to fracture than those with
larger cracks. © 2001 Elsevier Science B.V. All rights reserved.
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particular case, is a matter, not for the philosophy or
methodology of science, but for the experimental
test...’. The theories of continuum mechanics use
idealized models mostly based on the assumption of
a continuous distribution of matter, as opposed to
statistical theories of mechanics that are based on
the assumption of a discrete distribution of matter.
In our times this controversy still persists among
those who believe that quantities which enter a conti-
nuum description should be seen as ‘averages’ of
some other underlying ‘microscopical’ properties of
the material, and those who do not accept this point of
view. In the framework of continuum theories, quan-
tities such as stress and strain, represent statistical
mean values taken over very small ranges of volume.
Consequently continuum theories cannot give satisfy-
ing predictions of the behavior of the material within
very small ranges of volume, if high gradients of
stress and strain occur. Especially, these theories
cannot describe processes with dominating structure
effects since all material qualities producing effects of
such kind had been eliminated by introducing the
idealized models. Within the field of strength of
materials the above restriction becomes very impor-
tant in connection with problems of high stress
concentration as caused by extremely curved surfaces,
e.g. at holes, notches and cracks. In such cases, the
classical theory of elasticity predicts high values of
stress and strain, which are replaced by mean values.

First, let us make a remark on the averaging proce-
dure that is inherent in all continuum mechanics
theories (e.g. Vardoulakis, 1997). Let us for simplicity
consider an 1D case of a field, y = f(x), whose mean
value is computed over a small but finite averaging
length L around a point x, that is

—L2

1 (L2
W= | st od (M)

If the field f(x) varies linearly in the considered
region around x, then it is approximated locally by a
linear function, using an 1-term Taylor series expan-
sion of the function f around point x, i.e.

fa+§=foo+f0é (@)

In the trivial case of a constant field then the first
and all higher derivatives vanish and indeed the local
value coincides with the average value. However, this
is also true in case when the field varies locally

linearly. Indeed we may then identify the field with
its mean value over the considered averaging length,
because by following the ‘trapezoidal’ integration
rule, the value of a linearly varying field in the
midpoint of the sampling interval is equal to its
mean value in that interval

y= 3)

that is to say, in this case the ‘local’ value y and the
‘non-local’ value (y) coincide. In a field theory where
local values are identified with means according to
rule (3) are called simple theories or local theories
and the corresponding continua locally homogeneous.
In case, however, where the considered field varies
quadratically in the sampling region and a linear
approximation is not sufficient, then we have to
approximate it at least by a 2-term Taylor series
expansion around point x

fa+O=f0)+féE+ L' (0E? 4)

We notice that in the midpoint integration rule the
effect of the first derivative is null. Thus for ‘quadra-
tically’ varying fields, computational rule (3) must be
enhanced, so as to incorporate the effect of the
‘curvature’

L* d2y

y=0) = 37 73| HouhH )

where the ‘O’ denotes the order-of-magnitude
symbol. A general discussion of this issue may be
also found in Muhlhaus et al. (1994). Field theories
that are based on averaging rules that include the
effect of higher gradients are called higher gradient
or nonlocal theories. In particular, the above rule (5)
represents a second gradient or grade-2 rule, and can
be readily generalized in two and three dimensions by
introducing the Laplacian operator instead of the
second derivative in x.

The classical theory of elasticity requires that the
forces between the atoms fulfil a very strong condi-
tion: the range of these forces must be small enough so
that the stress (strain) measured at a point depends in
the desired approximation only on the stress (strain) in
the volume element around this point. Obviously, if
interatomic forces did not reach farther than one
atomic distance, a reaction against micro-deformation
gradient would not exist and the theory does not have
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an intrinsic length scale; this in turn leads to the unde-
sirable result that a 10 cm slab behaves the same as a
10 pm film and there is no difference between a
microcrack and a geological fault. However, since
interatomic forces do, in principle, reach farther
than one atomic distance a resistance against micro-
deformation gradient will be present, and therefore it
is of no question whether gradient-dependent elasti-
city exists or not. The question is rather how large this
effect may be.

The basic idea of taking into account not only the
first but also the higher gradients of the displacement
field in the expression for the strain energy function
can be traced back to Bernoulli (1654-1705) and
Euler (1707-1783) in connection with their work on
beam theories. In elementary beam theory, with a
section of the bar, there are associated two sets of
kinematical quantities (a deformation vector and a
rotation vector) and two sets of surface loads
(tractions and bending couples). In plate theory, the
situation is similar. The existence of surface and body
couples independent of traction is fundamental to
these theories. With the remarkable monograph of
Cosserat and Cosserat (1909), this concept was
extended to a 3D continuum where each point of the
continuum is supplied with a set of mutually perpen-
dicular rigid vectors (triad). The novel feature of their
theory was the appearance of couple stresses in the
equations of motion. An oriented continuum of this
type was noted earlier by Voigt (1887) in connection
with polar molecules in crystallography. Higher-order
gradient and oriented media theories were rediscov-
ered and/or reopened in various special forms and
degree of complexity in the sixties. The state-of-the-
art of this evolution in the mid-sixties was reflected in
the collection of papers presented at the historical
IUTAM Symposium on the “Mechanics of General-
ized Continua”, in Freudenstadt and Stuttgart in 1967
(Kroner, 1967). Newly, the interest to such theories is
rekindled through the idea of connecting micromecha-
nics with fracture and failure of solids (see for exam-
ple Muhlhaus and Vardoulakis (1987), and for
extensive literature review in Vardoulakis and
Sulem (1995), chap. 8 and 9). The isotropic, higher-
gradient, linear elasticity theory was developed essen-
tially by Mindlin (1964, 1965). Mindlin’s isotropic
grade-3, linear elasticity theory with surface energy,
which was further explored as far as its mathematical

potential is concerned in a comprehensive paper by
Wu (1992), includes 16 material constants plus the
classical Lamé’s constants. Since the presumption of
material isotropy excludes the possibility to include a
term linear in & in the strain energy density expres-
sion w, where g;; denotes the gradient of strain, Mind-
lin introduced in his theory self-equilibrating triple
stresses in order to include surface free energy. This
is clear if one considers that the strain gradient is a 3rd
order tensor, and, in order to include its effect in w,
one needs a director whose existence is excluded from
the isotropy assumption. The surface free energy
constant captures the desired surface phenomena in
solids (Mindlin, 1965).

At the same time practically of publication of the
pioneering papers by Mindlin, Professor Germain has
encouraged the communication to the French Acad-
emy of Sciences of the ideas of Casal (1961, 1963,
1972), which in turn seem to have inspired Germain’s
(1973a,b) fundamental papers on the continuum
mechanics structure of the grade-2 or higher grade
theories. In our paper we want to give full credit to
Casal’s original idea, who was first to see the connec-
tion between surface tension effects and the anisotro-
pic gradient elasticity theory. For this reason we
provide here the simplest possible generalization of
Casal’s constitutive theory that accounts for only two
material constants having the dimension of length:
One, say £, responsible for volumetric energy
strain-gradient terms, and another, L/, responsible
for surface energy strain-gradient terms. Casal consid-
ered the effect of the granular, polycrystalline and
atomic nature of materials on their macroscopic
response through the concept of internal and super-
ficial capillarity expressed by the material lengths -£,
£/, respectively, rather than through intractable statis-
tical mechanics concepts. The concept that the
surfaces of liquids are in a state of tension is a familiar
one, and it is widely utilized. Actually it is known that
no skin or thin foreign surface really is in existence at
the surface, and that the interaction of surface mole-
cules causes a condition analogous to a surface
subjected to tension. The surface tension concept is
therefore an analogy, but it explains the surface beha-
vior in such satisfactory manner that the actual mole-
cular phenomena need not be invoked. Of course such
ideas are amenable to generalizations of various
degrees of complexity. However, one should keep in
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mind that already the determination of the two
material lengths € and £’ constitutes a formidable
experimental challenge, and as it has been shown by
Vardoulakis et al. (1998) and it will be shown here
this might be possible only through -carefully
performed rock mechanics and rock fracture
mechanics experiments.

The plan of the paper is as follows. In Section 2 the
basic equations of anisotropic gradient elasticity
theory with surface energy are reviewed. In Section
3 the problem of the infinite plate under normal
tension is solved by taking into account of higher
order strain gradients in the constitutive equations.
Section 4 contains the presentation of displacement
functions and complex variables. The analytical solu-
tion of the inflated circular hole problem is displayed
in Section 5. Further, Section 6 is devoted to the inves-
tigation of strains and displacements in cracked solids.

2. Field equations and boundary conditions

2.1. Stress-equation of motion and boundary
conditions

First it is noted that Casal’s model cannot be
directly embedded in Mindlin’s (1964) linear, isotro-
pic elasticity theory with microstructure because the
former is an anisotropic elasticity model. Instead,
Casal’s expression for the global strain energy of the
1D tension bar was recovered by introducing an
appropriate anisotropic, linear elastic, restricted
Mindlin continuum. Mindlin’s theory (Mindlin,
1964) introduced the idea of the ‘unit cell’ (micro-
medium), which may be interpreted as the periodic
structure of a crystal lattice, a crystal of a polycrystal,
a grain of a granular rock, or the largest dimension of
a constituent in the case of a heterogeneous rock mass.
Appropriate kinematical quantities are then defined to
describe geometrical changes in both the macro- and
micro-medium. In case of a restricted Mindlin conti-
nuum the relative deformation v;; vanishes since the
macroscopic strain coincides with the micro-deforma-
tion, 1.e.

Yij = O — i =0 (6)

In Eq. (6) u; is the Cartesian component of the
macro-displacement vector, ¢; denotes the micro-

deformation (i.e. the displacement-gradient in the
micro-medium) and 9, = d/dx;, with x; to denote
space coordinates (k= 1,2,3). In this particular
type of micro-homogeneous material the micro-defor-
mation gradient (i.e. the macro-gradient of the micro-
deformation) kg is identical with the gradient of
strain, that is to say

Kijr = Kij = 0;8jx (7N
in which

Next, the following ansatz for the potential energy
density w (potential energy per unit macro-volume) is
taken

Furthermore, since we are dealing with single-
valued displacement fields one can easily establish a
one-to-one correspondence between dyg; and 9;9;u;
(Mindlin and Eshel, 1968). The variation of the total
potential energy in volume V of the body is defined as
follows (Mindlin, 1964, 1965)

8,[ wdv :J (708 + puij0;e5) AV (10
\% 4
where
ow ow
TP = T, Mije = ————~ an
T dgy ik 3(9; &)

The second order stress tensor 7;;, which is dual in
energy to the macroscopic strain, is symmetric, i.e.
7;; = 7;; whereas the third order tensor w, which is
dual in energy to the strain-gradient, is called the
double stress. The 7; are like the components of the
usual stress with the dimensions of force per unit area,
however, they depend on the second gradient of strain
in addition to the strain. The 27 components w,; have
the character of double forces per unit area. The first
subscript of a double stress wy; designates the normal
to the surface across which the component acts; the
second and third subscripts have the same significance
as the two subscripts of 7;. The eight components of
the deviator of the couple-stress or couples per unit
area formed by the combinations (1/2)(t,gr — Mprg)
are all equal to zero in the present gradient dependent
elasticity theory, whereas all the remaining 10
independent combinations  (1/2)(,gr — Myrg) are
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self-equilibrating (Mindlin, 1964, 1965). Double
force systems without moments are stress systems
equivalent to two oppositely directed forces at the
same point; such systems have direction but not net
force and no resulting moment. Notice that singula-
rities of this kind are discussed by Love (1927) and
Eshelby (1951).

To prepare for the formulation of a variational prin-
ciple, we apply the chain rule of differentiation and
the divergence theorem; furthermore, we resolve d;u;
on the boundary dV of V into a plane-gradient and a
normal-gradient as follows
d;0u; = D;u; + n;Ddu;, D; = (6 — njng)oy,
D= I’lkak,

(12)

where §;; is the Kronecker delta and ny is the outward
unit normal on the boundary dV. The final expression
for the variation in potential energy of a smooth
boundary 9V reads

+ Jav ni(Tye — ;i) Ouy. dS

1 1

+ JBV ninj[,l/ijkDSMk ds (13)

where (1/R; + 1/R,) is the mean curvature of the
bounding surface. Looking at the structure of Eq.
(13) we now postulate the following form for the
variation of work W, done by external forces

W, = J fiduy, AV + J (P duy + R Dduy) dS (14)
\’% av

where f; is the body force per unit volume, P;, R are
the specified tractions and double tractions, respec-
tively, on the smooth surface dV.

Next, we write Hamilton’s principle for indepen-
dent variations du;, 9;6u; between fixed limits of u;
and 9;8u; at times £ and ¢, (Love, 1927)

1 t
SJI(T—W)dtwLJIBWIdt:O (15)
)

)

where T 'is the total kinetic energy of the system. It can
be shown that for the case of the restricted Mindlin
continuum the following relationship is valid (Mind-
lin, 1964)

1
SJ’ Tdt=

Iy

1 1
| [ [~ oo, o av
o v 3

1 1
- J dIJ —pdzni(D,-Bttuk + n;Dduy)Suy dS
0 av 3

(16)

wherein p is the mass of macro-material per unit
macro-volume, d is the half-edge length of the cube
of the micro-medium, and d,, denotes double differ-
entiation with respect to time. From relations (13)—
(15) and (16) there follow the stress-equations of
motion in the volume V

1
d;0; + f; = pdyu; — §pd26i(aztai”j) 17
where we have set

0y = Ty — O (18)

We notice that according to Eq. (17) and for the static
case the new stress tensor oy; is identified with the
common macroscopic equilibrium stress tensor.

The surface 9V of the considered volume V is
divided into two complementary parts dV, and aV,,
such that on 0V, kinematic data whereas on 9V, static
data are prescribed. In classical continua these are
constraints on displacements and tractions, respec-
tively. For the stresses the following set of six traction
and double traction boundary conditions on a smooth
surface 9V, is also derived from the virtual work
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principle (i.e. Egs. (13), (14) and (16))

1 1
nTy — 0 My + ([— + —]n - D-)n,»u,»-
'k J ijk R, R, J J ijk
1, _
+ 3pd nj(Dja,tuk + njDG,,uk) =P, (19)
ninj g = Ry (20)

Note that g, given by Eq. (18) may be considered
as the Cauchy stress tensor with the associated
Cauchy stress vector #; defined by
= nIO'jk = }’lj’Tjk - njé),p,,jk (21)

Since second-grade models introduce second strain
gradients into the constitutive description, additional
kinematic data must be prescribed on dV,. With the
displacement already given indV,, only its normal
derivative with respect to that boundary is unrest-
ricted. This means that on 0V, the normal derivative
of the displacement should also be given, i.e.

u; = w; on 8Vu1 (22)

Du;, =r; ondV,, (23)

2.2. Strain energy density function

The most general form of the strain energy density
function for a linear, macroscopically homogeneous
and isotropic, grade-2 elastic rock material is

1
w= Ef\gii‘?jj + Geje + L 01 (g8 + Loydi(g8:)

+ £5;0(g85) + Lardi(g;64) + £5,0,(;8)

+ alajé‘[iaké‘[k + Clzaké‘iiajé‘kj + a38ksi[8ksjj

+ a58k8ij8,~8k]-

(24)

where A and G are the usual Lamé constants, the five
a, are the additional constants which appear in
Toupin’s strain-gradient theory (Toupin, 1962; Mind-
lin, 1964), and £,;, (n=1,...,5; k= 1,2,3) are the
five additional directors in order to include the effect

of terms linear in the strain gradient, 9; &y, in the strain
energy density expression. The choice of the above
polynomial expression for the strain energy density of
the material with microstructure implies that terms of
higher degree are small in comparison with those
retained.

In Eq. (24) £, are characteristic directors such that

«e,,k E'end, VeV = 1, n= 1,...,5, k= 1,2,3.

(25)

Accordingly Eq. (24) defines a gradient anisotropic
elasticity with constant characteristic directors £,,.
Also, the terms in Eq. (24) that are associated with
these directors have the meaning of surface energy,
since by using the divergence theorem one may find
the following relations

J 0 euey) dV=£]f (e, (v dS,
14 oV

J' (o) AV = 2, J' (&) (veny) dS,
% av

JV 0 (L3685 AV = £, ,[av (gjea)(ymy) dS,  (26)

J 0Ly e58) AV = 2, J (g8)(Ven;) dS,
v av

J' (L sieie) AV = £s J (&ii&)(veny) dS.
v av

The ratios £,,/G have the dimension of length
whereas the ratios a,,/G have the dimension of square
of length. The constitutive equations for the Cauchy
and total stresses, as well as the double stresses are
then derived by recourse to Egs. (10), (11), (18) and
(24) as it will be demonstrated in the next paragraphs.

3. An infinite plate under normal tension

For the special form of gradient elasticity that we
consider here we assume that £,, = G€, defined by
Eq. 24) and ay = G£? are the only non-vanishing
gradient coefficients, thus

1
w= E)\a,-isjj + Gg;e; + Gezake,-jakaﬁ + G0 (g¢5)
(27)
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From relationships (10) and (11) and the above
relation (27) follow the constitutive relations for the
Cauchy stress and double stress tensors, respectively

O-ij = /\51'1‘8](]( + ZG(SI] - »ezvzsij)
(28)
g = 2GL, e +2GL 0, ¢,

Let the Cartesian coordinates be x;(i =1,2,3).
Then consider the case of an infinite plate bounded
by the surfaces x, = *L, subjected to uniform tension
T perpendicular to those surfaces (Fig. 1). Accord-
ingly in Eq. (28) £, = £'(k = 2) and £, = 0 (k # 2)
is the material length scale associated with surface
energy of the free surfaces x, = =L of the plate. It
is possible to assume, without loss of generality (e.g. it
can be shown that, in this problem, the quantities u, u;
do not couple with u, since these quantities satisfy
homogeneous equations with homogeneous boundary
conditions and therefore vanish identically), the
following kinematical field

uy(xp) = u (29)

Setting Eq. (29) into the first of relationships (28),
employing the stress-equilibrium Eq. (17) for the
static case, i.e. dyu; =0, and disregarding body
forces, yields the field equation

a+?2
AV —

Vi A
2rezuzO; aZE (30)
BEEE
+
X
oL
Lo X
v

P

Fig. 1. Infinite plate bounded by surfaces at distance L apart under
uniform uniaxial tension, and coordinates.

The general solution of Eq. (30) is the following

’ o
u=c +czx+c3e”/£ ”/E;

/ \/a+2 \/1—1/
a: =
2 1—2v

where we have set x, =x, and ¢; (i=1,...,4) are
unknown constants to be determined from the follow-
ing boundary conditions (20) and (21) which are valid
at x, = *L

+ cye
(3D

0y =2G@ ' — €7y =T, oy =0,
(32)

M2 = 2G(sgn(x)€ /Ml + 'ezl/t”) = O, Moo = 0

where the symbol sgn(-) denotes the signum function.
It may be noted that for c; = ¢4 = 0 the deformation is
homogeneous and is referred as a 1st gradient conti-
nuum theory. Substituting in Eq. (32) the expression
for the displacement in the frame of the present 2nd
gradient theory given in Eq. (31) we finally obtain

T

a=h e G

e'r

Cy3 = —C4 = — g’
4Ga’3(75inha’lj + a’cosha’l_,)
(33)

in which L = L/£. The strain of the plate &5, = £ can
be found to be

B T kcosha'x
e(x) = 11— - = —
A+ 26) (ksinha'L + a’cosha’L)
el
k=" (34)
with ¥ = x/£.

The distribution of the normalized strain &/T/(A +
2G) along the height —L < ¥ < L of the tension-
specimen is displayed in Fig. 2. It is shown that the
strain distribution corresponding to homogeneous
tension is not anymore homogeneous, and depending
on the sign of the relative surface energy parameter k
reaches its maximum (k > 0) or minimum (k < 0)
value, respectively, at the mid-height of the specimen.
Hence, experimental observations that macroscopi-
cally uniform material domains, under uniform
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classical solution, k=0

k=0.2

0.94+

0.927

.1 -08 06 -04-02 0 02 04 06 08 1
-y

Fig. 2. Normalized strain distribution &/T/(A + 2G) along the height
of the specimen (L = L/€ = 1) for two values of the relative surface
energy parameter and for Poisson’s ratio v = 1/4.

surface tractions develop localized, i.e. non-uniform
deformation fields in contrast to ‘local’ theories, are
predicted by the present grade-2 theory. This property
of the solution is a clear indication that the gradient
elasticity with k > 0 can be employed as a potential
model to explain the necking phenomenon or the
strain localization in rocks. On the other hand, for
negative value of k the gradient strain localizes at
the edges of the specimen and attains a higher value
than that predicted by the classical elasticity theory.
Finally, for k = 0, the gradient elasticity solution (34)
degenerates into the classical elasticity solution.
These properties may also be used to establish the
surface gradient parameter k through carefully
performed uniaxial tension experiments.

By defining an extensional failure criterion of the
Saint-Venant type, i.e. € = g, at x = 0 for the necking
type of specimen failure (e.g. k<<0) and a strain
concentration factor, as usually, by the ratio &/T/(A +
2G) at x =0, we can obtain the behavior depicted in
Fig. 3 for the variation of the normalized failure strain
& =T/(A+ 2G)/e, with the dimensionless semi-
height L = L/€ and the relative surface energy ratio
k of the tension specimen. The behavior depicted in
Fig. 3 is consistent with rock mechanics experimental

observations which show that smaller specimens fail
at higher stress than larger specimens.

For the special 1D case considered above the strain
energy density expression (27) can be written in the
form

a k &
w/(A +2G) = (¢ 8’)(/{ )( ,) (35)

1 &

The quadratic form (35) is positive definite —
implying that energy is stored, rather than produced
— if the eigenvalues of the square matrix are all
positive (Pettofrezzo, 1978). It can be easily verified
that the eigenvalues are the following

(1 + a/2) + (1 _ a/2)2 + 4k2
Ap = 5 (36)

and are always positive if the following inequality
holds true

1—v 1—v
_1, <k <4 . 37
1—-2v 1-2v 37)
Provided that inequalities (37) are valid the unique-
ness of the problem at hand defined by displacement-

equilibrium Eq. (30) and boundary conditions (32) is
also proven.

4. Displacement functions

For the special form of gradient elasticity that we
consider here we assume that £, €4, as;, and a, are
the only non-vanishing gradient coefficients. Thus, by
setting into Eq. (24)

Ly = Aek» £y = GL,, as = ﬁg{
2 (38)

a, = G'ez

with £, defined by Eq. (25), we find the following
expression for the strain energy density function for
a macroscopically homogeneous and isotropic
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Fig. 3. Dependence of the normalized failure strain on specimen’s size (size effect) for various positive values of the surface energy parameter

and for Poisson’s ratio v = 1/4.

geomaterial

1 1,
w = —Ag;&; + Gg;e; + E)\«@ 0k ik e

2 ey yeji

1
+ G0y + EA’ekak(siié}j) (39)
+G’ek8k(8ij‘9ji) i,j,k=1,2,3

From the above definition (39) as well as definitions
(10) and (11) follow the constitutive relations for the
Cauchy stress and double stress tensors, respectively

o= (1 _—y2 VZ)(Aa,-jgkk + 2(;3,,-) (40)

ij
Mg = »ek()\5[j8gg + 2G8ij) + ezak()\5,78ee + 2G8l'j)

Note that the above definition of Cauchy stress may
be derived by assuming that Hooke’s law is general-
ized through averaging of o in a Representative

Elementary Volume (REV) of the material, i.e.
<O-l]> = J O-ij dV = Aﬁij“]‘kk + ZGSU (403.)
REV

Then according to relationship (5) the above
assumption leads to the first of constitutive Eq. (40).
Substituting in stress equilibrium Eqs. (17) (for
d,u; = 0) the constitutive relation for the total stress
given by the first of Eq. (40) and expressing the strains
in terms of displacements through Eq. (8), we obtain
the following displacement equation of equilibrium in
vector notation

GD*{mVVu + Vuy +f=0, m=

G

where the curly underline of a symbol means that this
is a vector, V is the gradient operator, V is the diver-
gence operator, and the operator D? is defined as
follows

D*=1-£*V? (42)
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As it is observed from the above Eq. (41) the
constant £’, even when properly included in the
constitutive equations, does not appear in the displa-
cement equations of equilibrium. Nevertheless, it may
enter the displacement field through certain of the
boundary conditions. It is also important to observe
that in the limit£ — 0 the highest derivative term in Eq.
(42) is lost, suggesting the emergence of boundary layer
effects at bimaterial interfaces. It may be proved that any
solution u of the displacement-equation of equilibrium
(41) can be expressed as

1 _ 1 _
u=5 - €vV5 - V(D - T)[wzlg " Bo],

m
43)

GV2D*By = r-D*f — 4€°V.f,  GV?D’B=—f

wherein

. A+2G

"=TG

It is worth noting that the functions B, B, reduce to
Neuber’s—Papkovich’s functions when £ =0. A
further simplification of the displacement representa-
tion (43) results by noting that the stress field
predicted by the present gradient theory remains the
same as that obtained from the classical solution of a
corresponding boundary value problem with imposed
traction (Ru and Aifantis, 1993). Hence, in static
plane strain conditions the displacements can be
expressed in tensorial form as follows

2Gu; = 4(1 — v)B; — (x;B; + By),; —2I°B, ;i + u; ;

iL,j=2x,)y.

(44)
in which B;(i = x,y) and By, are identified with the
classical displacement harmonic functions, and u;r,
u;r are extra functions that are associated with the
higher order strain gradients and obey the

Helmholtz’s equation

Dzu;r =0 i=xy (45)

It is possible to take one of B,, B, equal to zero (e.g.
Sternberg and Gurtin (1962)), but a more elegant
theory may be derived by virtue of the complex
function theory which has been developed in a rigor-
ous manner by Muskhelishvili (1963). It may be

shown that the following complex representation for
the displacements holds true

2G(u + iv) = kdpo(2) — ¥ .(2) — 2dL(2) — 4712
+ @ +ivh) (46)

where we have used the identities d/dz = (1/2) X
(8/0x — 10/dy), and /07 = (1/2)(8/0x + 19/dy), with
Z=x—1y to be the complex conjugate of z=
x + iy, the prime denotes differentiation with respect
toz,andi = /=1 is the usual imaginary unit. Also, in
relation (46) we have set u = u,, v= Uy, u' = u;,
v = u;“ whereas ¢.(z), ¥.(z) are analytical complex
functions and k =3 — 4v or k = B-—v/(1+vwvis
Muskhelishvili’s constant for plane strain or general-
ized plane stress conditions, respectively. It may be
observed that for £ = 0, relationship (48) reduces to
the Kolosov-Muskhelishvili solution (Muskhelishvili,
1963, p.112).

Then, the strains, and stresses referred to the Carte-
sian coordinates x, y can be found as follows

2G(8 + £y) = (k — D{@L(2) + ¢ (D)}
+ (u; + v;),

2G(&yy — &y T 2isy,)
= Z{WC(Z) +Z¢() + 479 (2) — a%(f - iv+)},

Oxx + O-yy = 2[¢IL(Z) + (;blc(z)]?
Oy — Oy + 2i0,, = 2[Z0(2) + P.(2)]. A7)

The following complex representation can be also
found for the double stresses fyyy, Myyy

: / 2
Py F ity = (€7 + £70,)

k—1 / —
X Jl 20 -2 [ de2) + ¢é(z)]
(48)
+[¢2<z> + Z¢l(2) + 47 2”(@]

+
2(1 - 2v)

d
(u; + v;) - 8_z(u+ - iv+)}
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Denote furtherby u,, ugand &,,, €g¢, £,9, respectively,
the displacement and strain components referred to the
polar coordinates r, 8 with origin exactly at the origin of
the Cartesian coordinate system. There are the following
representation formulae

2G(u, + iug) = e Kk (2) — P (2 — 2dL(2)
—402¢l@) + (" +iv)),
2G(g,, + &g9) = (k — D{P(2) + PL(2)}

+ (u; + v;),
2G(eg — & + 2erg) = 267} ()
+ 20l + 480 — - — ),
174
Ty + Tgpg = z[d)lc(z) + M],

Og9p — Opr + 2ia—r0 = ZeZio{Zd)Z(Z) + l/jlc(z)}a

Y 2 k—1 , -
Morrr—iwrro = ’e + ’e ar){m [d)c(z) + d)lc(z)]
— YL ) + 2¢l(2) + 479! ()]
1 +
T

o 0
o)+t - ivH}

5. Circular hole subjected to all-around pressure in
an infinite plane

5.1. Solution

In a first attempt the problem of all-around pressur-
ized circular hole is considered. The elastic solution of
the inflated circular hole (or cavity-expansion) is of
considerable practical interest in the investigation of
surface-removal processes on elastic—brittle rocks,
rock mass characterization by recourse to indenta-
tion-type operations, borehole stability problems and
other. It is noted here that the stress-strain field
produced by a cavity-expansion is recovered as the
leading-order approximation of the rigid, slender
indenter (Norbury and Wheeler, 1987).

For this purpose let us consider the case when
the edge of a long circular hole is subject to
uniform normal pressure P, the double tractions
vanish at the hole boundary, and the stresses and
double stresses vanish at infinity. The traction
boundary conditions according to Eqgs. (20) and
(21) take the form

O — 109 =P, py —ip,g=0 at r=R (50)

whereas the following regularity conditions at infi-
nity are valid

g — 0’ Mijke — 0
(5D

(i,j,k=r,0) as r =4/x* +y* — o

The solution of the problem at hand which satisfies
the equilibrium equations and the first of conditions
(50) in the form of complex potentials is given by
Muskhelishvili (1963) as follows

PR
¢.(2) =0, () = — — (52)

where z = re'’. Furthermore, the following representa-
tions of the extra gradient functions that satisfy Eq. (45)
are valid in the region outside the contour of the hole

w'(ny) = Biki(r) e,

(49

Py = > k() e 43

A=L" B =Prci=5

where K,,(-) is the Bessel function of the second kind of
the imaginary argument and nth order (Macdonald’s
function). By using the differentiation rule for the func-
tion K, (see for example Watson (1966)), we obtain

(9u+(x, y) 1 it ko
% " 2 Zo AB 1 K (Ar) e,

(54)
ou" (x,y) 1 & .
= _Zoo/\,@k_ll{k()\r) e?

Under these circumstances by substituting Egs.
(52)—(54) into the second of conditions (50), setting
z=Re", equating the result with zero, and comparing
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Fig. 4. Plot of the dependence of the dimensionless radial displacement on the relative volume energy length scale £/R and on the ratio of

surface length over the volume length, k for Poisson’s ratio » = 0.25.

coefficients of €’ one finds

k=0: (B +ic)AyR) +2(1 = 20)(B, — ic))By(R)

2
=4(1 — 2v)P£(e’ — 2’%)

k=1: B+ +ics1)
X (ARWR) + 2(1 = 2v)(Br—1 — ick—1)B(R)
=0,2(1 = 2v)(By+1 + icp+1)B1(R)
+ (Br—1 —ick—)A_((R) = 0.
(55)
in which
A(r) = —(@' + £29,)K (Ar),

Bk(r) = —(~€/ + 328,)[ m

(56)

Kk()\r) + Kk_Q(/\r):l.

The differentiations in Eq. (56) may be facilitated
by the identities (Watson, 1966)

K, (\'r)
or o

g - VK, (WK, =K,
p
(56a)

It may be shown from Eq. (55) that the following
equations are valid

2
Re(B)) = [(1 - 2V)P(k - ﬁ)]/

1-2
[2)\{[( — M- v)k]KO(/\R)

B a-2nf2
o 9522( 2 ) eed]

Im(c;) = —Re(B,), Im(B,) = Re(cy) = 0,

Bo=1¢o =0,

Bin=c:, =0 (n=2) (57)
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where Re(-) and Im(-) denote the real and imaginary
value of what they enclose, respectively. In view of
Eqgs. (53) and (57) the extra gradient displacement
field can be found to be

u" +ivT = 2Re(B)K;(Ar) e (58)

By virtue of the first of Egs. (49), (52), (57) and (58)
we finally obtain the displacement and strain fields
around the hole as follows

PR’ 2
2Gu, = —— + [P(l - 2v)(k - AR)KI(M)]/
/[ {[ -2 - V)k]Ko(/\R)
1 - 21/)
[ 2 (5 4) Joowi |

=0,

PR’ 2
2G800 = 7 + [P(l - 2V)(k - )\—R)Kl(/\r):l/
(1-2v)
e
1-2 2
+ [(1 —v)+ (—ARV)<E - k):lKl()\R)}],

PR?
rZ

2
—[P(l — 2V)(k - ﬁ)[()\r)KO(/\r) + KI(AF)]]/
1-2
/ [(Ar){[ G2 v)k]KOMR)
a-2v( 2

&9=0, (59

—-a- V)k]Ko()\R)

2Ge,, = —

where we have set the non-dimensional surface
energy variable k= (£')/€. Finally, it may be

demonstrated that the stress field remains the same
with that predicted by classical elasticity, i.e.

PR PR?

O = "7, Top = —5 > 0.9 =0. (60a)
r r

The asymptotic expansions of the radial displace-

ment for the volumetric strain gradient parameter

tending to zero and to infinity may be also derived

2Gu,|p—o=R + o),  2Gu,|p—0e= 0(£ *) (60b)

Fig. 4 presents the 3D plot of the dimensionless
radial displacement at hole wall vs. the relative
volume energy length scale and the relative surface
energy term for a given Poisson’s ratio of the material.
It is observed that:

1. For a given value of R and k the radial displacement
decreases as the volume length scale increases. This
result may be also interpreted by saying that the radial
displacement of the hole wall increases as the radius
of the hole increases for given characteristic length of
the rock microstructure £. This result is in accor-
dance with experimental evidence, namely that the
convergence of the wall of a deep borehole in a
compressive field increases as its radius
increases.

2. For a given value of R and volume length scale
£/R the radial displacement increases as the
surface energy length scale increases.

Also Fig. 5 shows the dependence of the dimen-
sionless radial displacement at hole wall vs. the
relative volume energy length scale £/R and the
Poisson’s ratio of the material for a zero relative
surface energy term. It may be seen that the
uniformly pressurized hole becomes stiffer as
Poisson’s ratio of the rock decreases with this
effect to be more pronounced for large values of
£IR.

5.2. Size effect and pressure—strain relation in
indentation tests

A notorious feature of brittle amorphous or crystal-
line materials such as glass, ceramics, rocks, concretes
and other, is their tendency to become stronger as the
area under stress is decreased. Herein we consider the
maximum extension strain failure hypothesis
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proposed by Poncelet (1788—1867) and referred by
the famous Barré de Saint-Venant in his notes ‘Histor-
ique abrégé des Recherches sur la résistance et sur
I’(lasticité des corps solides’, pp. xc—ccexi in his
annotated third edition (Paris, 1864) of the section
‘De la résistance des corps solides’ of Navier’s
‘Résumé des lecons donéesa [’(cole des Ponts et
Chaussées sur [’application de la mécaniquea
[’(tablissement des constructions et des machines’
which maybe stated as:  Fracture of a brittle material
will initiate when the total extension strain in the
material exceeds a critical value which is character-
istic of that material’. It is worth noting that Stacey
(1981) has applied successfully the above limiting
extension strain criterion to the prediction of fracture
in brittle rocks, although no explicit reference to
Saint-Venant’s original work is made. For the intern-
ally pressurized circular hole the maximum extension
strain criterion takes the form

Egp = & at >, r=R (61)

where gy is the tangential strain or hoop strain, and &,
is the critical value of extension strain which is intrin-

2Gu /PR

sic property of the material. Then, following the same
procedure as in the previous paragraph for the tension
specimen, we define a strain concentration factor by
the ratio £4¢/(P/2G) at r = R, so that from the third of
Eq. (58) we obtain the normalized failure strain &,

(62)

1 1
% = G IPI2G)  £0/(PI2G)

at failure (63)

and

2
&= [(1 - 2V)(k - /\R)Kl(/\R)]/
1-2
/ [(AR){[ % -1 - v)k]Ko(/\R)
B a-2nf2
; [(1 y+ 120 (m k)]mm}]

(63a)

Fig. 5. Plot of the dependence of the dimensionless radial displacement on the relative volume energy length scale, /R, and on Poisson’s ratio

for k=0.
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By using the asymptotic formula
2" Yn— 1!
X"

suitable for small x and after some elaboration, we
pass from Eq. (62) to the following inner approxima-
tion or boundary layer solution for the normalized
failure strain for small R

K,(x) = +o(x™") (63b)

o = 200 =21 5
C
_ p—ly _ . _ _
4 L= 29logR ) =y = (1 = 1) 5y
C2

+0(1) (small R) (64)
wherein
C=0-2v{log2R™H—y}+1-v (64b)

and y = 0.5772156649... is Euler’s constant. On the
other hand, for sufficiently large R the outer approx-
imation is

g =1+O0OR™") (largeR) (65)

For the intermediate values of R we can get a closed
form expression of & by using the exact solution
(62). Eq. (64) indicates that there is a size effect,
which is understood as the dependence of nominal
strain at failure (nominal strength, in our case
expressed by &) on the size-in our case the normal-
ized hole radius R/£, provided that geometrically
similar situations are compared. It should be noted
that in the theory of linear elasticity and in any theory
of conventional plasticity there is no size effect (e.g. in
Bazant and Cedolin 1991, chap. 12 and 13).

Fig. 6 displays the dependence of the normalized
failure strain &,; on the dimensionless radius of the
pressurized hole R/€ for various values of the relative
surface energy strain-gradient parameter k = £/
according to the formulae (59) and (62). As is appar-
ent, the normalized failure strain decreases monotoni-
cally in the departure from the gradient-dependent
elasticity theory, i.e. as R increases with respect to
the volume energy strain-gradient parameter €, and
tends asymptotically to the value of 1 that is predicted
by the classical theory. In Fig. 6 it is also demon-
strated that the relative surface energy parameter k
expresses the intensity of the size effect. As it is

shown, the effect of negative surface energy term is
to increase the maximum extensional strain sustained
by the hole (stiffer hole), whereas the effect of positive
surface energy term is to decrease the maximum
strain, or alternatively, to increase the compliance of
the hole. It is also seen that for sufficiently large k and
R/€ the value of the failure strain is slightly lower
than the classical value; however, the asymptotic
value of the normalized failure strain of the inflated
hole in the limit as R/£ — oo for every k, vis given by
the formula

lim g =1 (65b)
RI£—o0

The consistency of the size effect predicted herein
can be checked with Tillet’s (1956) experimental
measurements on fracturing of a glass plate using
spherical indenters of various radii. The measurement
consisted of the load required for a sphere of a given
size to produce a hertzian cone crack. If the indenter is
pushed into the glass with a compressive force F then
this load is reacted upon by a contact pressure along
the surface of the sphere which is in contact with the
glass. If P denotes the mean contact pressure then for
equilibrium reasons we have
F

P= s (66)
where R is the radius of the circle at the intersection of
the sphere and the planar surface of the glass. By
virtue of the third of relationships (59)

2 )
S (67)
1 — 2RK,(R)

and by assuming that the breaking pressure is limited
by the maximum extension strain €y = &, around the
inflated hole, then the normalized breaking force f.; is
found to be

2
= T~ A~ 68
Ja =1 2RK,(R) (08)
wherein
Fef
= 69
Je 2mGee, (69)

and F; denotes the ultimate breaking force.
Tillet’s experimental results that are also presented
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Fig. 6. Size effect exhibited by the uniformly pressurized elastic borehole for Poisson’s ratio » = 1/4 and for various values of the ratio of

surface length over the volume length, k.

graphically in Fig. 7, indicate that

Fo = C1R2 large R,
(70)
Fy = C,R small R,

where C,, C, are experimental constants. Tillet
interpreted this experimental evidence by making
the working hypothesis that in the interval of
small sizes of radius where the law F. = C,R is
valid, the fracture occurs when the integrated
energy exceeds some maximum, whereas in the
region where Fo = C1R2 is valid, the fracture
occurs when the stress (or strain) exceeds a maxi-
mum value. A more consistent interpretation of
Tillet’s experimental results, thus avoiding the
assumptions of two failure criteria depending on
the size of indenters, can be given by the present
gradient-dependent elasticity theory. For this
purpose a Taylor series asymptotic expansion of

Eq. (68) around R=1 and R— oo is elaborated

for =GR+ O(R = 1)),
Y]

R—1,f;=R, R— oo,
with C; to be constant that depends on Poisson’s ratio
v and relative surface energy lengthk, respectively.

The variation of the normalized breaking force f;
with normalized radius R as it is predicted by Eq. (68)
is presented in Fig. 8. In the same figure the asympto-
tic curves predicted by Eq. (71) are also presented. As
it can be seen in Fig. 8 the present gradient-dependent
elasticity theory predicts nicely the deviation of the
curve for small sizes of holes from the predictions of
the classical elasticity theory, as it was observed in
Tillet’s experiments (Fig. 7). Thus, a unique opportu-
nity is offered for the experimental determination in a
non-destructive manner of lengths £, £’ which are
characteristic of material’s microstructure. As it was
demonstrated above this task can be achieved by
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Fig. 7. Size effect exhibited by the breaking force in Tilett’s inden-
tation tests on glass plates (Tillet, 1956).

measuring the breaking force for various indenter
radii through carefully performed non-destructive
indentation tests, and then employing a back-analysis
procedure to calibrate parameters £, £’ such that to
establish reasonable matching with experimental data.
The estimated characteristic lengths of the material at
hand, can then be used to simulate its behavior to various
types of loading. In this manner, expensive, destructive
laboratory tests for the determination of £, €’ and the
phenomena related with these lengths (e.g. boundary
layer phenomena, size effect) may be avoided.

Next, another interpretation of indentation results will
be given. For this purpose we introduce the mean dimen-
sionless indentation radius as a strain-like measure

(72)

| X

in which p is the ratio of spherical indenter radius p over
the intrinsic length scale £. Identifying the strain & with
the hoop strain gy then Eq. (67) gives the pressure—
strain relationship in indentation test. Fig. 9 shows the
dependence of normalized indentation pressure on the
normalized strain for three values of the relative surface

energy length scale k at hand, and for v = 1/4. In the
same figure the dashed line represents Hertz’s solution
P
2G/p

p= = pe (73)

As we may see from Fig. 9 relationship (73) is valid
for relatively large indentations and we may call it
outer approximate solution. The inner solution
which corresponds to relatively small indentations
necessitates the enhancement of Eq. (73) so that
singular terms in & are included. In fact, it may be
shown that the following asymptotic expansion of
mean pressure for small strains is valid

2(1 — 2v) 1
(1 —20){log2(pe) ) — 7} + 1 — v pe

(1 —2»)[log2(pe)" ") — y— (1 — v)]
{1 = 2v){log(pe) ) — vy} + 1 — v)?

+0(pe) (small &) (74)

Eef =

The above inner solution has been also shown in
Fig. 9 by a dashed line. From the same figure it is also
noted that the effect of the surface energy on the
pressure—strain relation is not significant. The same
conclusion may be drawn from relation (74) where it
is seen that the effect of k is of second order as
compared to the effect of the volume-energy intrinsic
length scale £.

By setting the following definitions for the dimen-
sionless load and radial displacement
po_ P 5_u®

E/(1 + v R

(75)

then by recourse to Eq. (58) we find the following
relation

P=g46 (76)
where & is given by Eq. (62). Hence, the total
mechanical work dW done by the external pressure
P in applying infinitesimal additional radial displace-
ment du, is given by

21
dw = (J PR d9>du, = 2mRP du, (77)
0

In view of relationship (77) and the first of Eq. (58)
the total strain energy stored in the body will be given
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Fig. 8. Size effect in indentation (inflation) test predicted by gradient elasticity. Poisson’s ratio » = 1/4 and relative surface energy parameter
k= 0. Hertz’s solution (70), and asymptotic gradient solution (71), are also displayed with dashed lines.

by

- ~ - W
_ 2 2, _
W = TR £,4067; W= %G (78) 20

In order for the strain energy to be positive definite
the following inequality must hold true

£ > 0 (79)

Substituting in Eq. (79) the value of & as it given
by Eq. (62) and based on the equality
im Ky _
=2 Ky()

internal solution

we finally derive the inequality that secures the
positive-definiteness of W, namely

/ )
~~———— external solution

Normalized mean contact pressure
=
o
|

21Nz
£ 0

751 (80) U L DL DL L

0 2 4 6 8 10
Inequality (80) means that the case £ # 0, £’ =0 Normalized strain measure

is valid, while on the contrary the case £ = 0, £’ # 0 ! , R , o
. . . . . . . Fig. 9. Normalized mean contact pressure p vs. normalized strain p&
cannot exist since it results in negative definite strain for k= —0.4, 0, 0.4, respectively, and » — 1/4. The dashed lines
energy density of the pressurized hole in an infinite represent the classical Hertz’s solution (“outer”) and the singular

plane configuration. gradient solution (“internal”).
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6. Strains and displacements in cracked solids
6.1. Introductory remarks

Professor G.I. Barenblatt (1962, p. 59) in his
celebrated paper stated that: ‘...By using the model
of an elastic body, we do not take into consideration
all forces acting upon the body. It appears that for
developing an adequate theory of cracks it is neces-
sary to consider molecular forces of cohesion acting
near the edge of a crack, where the distance between
the opposite faces of the crack is small and the mutual
attraction strong. Although consideration of forces of
cohesion settles the matter in principle, it complicates
a great deal the analysis. The difficulty is that neither
the distribution of forces of cohesion over the crack
surface nor the dependence of the intensity of these
forces on the distance between the opposite faces are
known. Moreover, the distribution of forces of cohe-
sion in general depends on the applied loads...". The
first who introduced molecular forces of cohesion
acting near the tip of a crack was Griffith who consid-
ered forces of cohesion as forces of surface tension
being internal forces for the given body in order to
develop his celebrated criterion of fracture mechanics
(Griffith, 1921); however, their effect on the stresses
and strains was neglected by Griffith. On the other
hand, classical Linear Elastic Fracture Mechanics
(LEFM) theory which was based on the concept of
sharp Griffith cracks (considered as branch cuts)
predicts infinite slope of the crack displacement at
the crack tip. For example, for the specific case of
mode-I deformation one can deduce

v 2 (1-v v
2G— = —|—K——— #2G—
G o (r,m) —Ki NG #2G o (r,0)

=0; r—0 81)

where the superscript ‘c’ denotes classical LEFM
solution, (r,0) are polar coordinates fixed at the
crack tip, K; is the mode-I stress intensity factor
(SIF), and v denotes the crack opening displacement.
As it is shown in Fig. 10a the origin of the crack tip
singularity lies in the fact that the originally sharp
crack is widening due to the application of load into
a parabolic tip (i.e.v°(r, ) oc rV 2.) From a considera-
tion of the term dv°/dx, it is evident that the infinity in

the slope is directly associated with the non-zero
displacement at the very tip of the rounded crack. In
his milestone paper in 1921 Griffith also proceeded to
the investigation of the structure of the crack tip. This
investigation was performed by Griffith without any
consideration of cohesive forces, hence with infinite
crack slope at the tip region. Griffith made an attempt
to improve this description of the crack model by
considering it as an elliptical cavity with a finite radius
of curvature p at the tip (Fig. 10a). However, accord-
ing to his estimate the magnitude of p was of the order
of intermolecular distance, which, as it was pointed
out by Barenblatt (1962), clearly indicates the contra-
diction with the original principle on which Griffith’s
derivation was based, that is, the continuous distribu-
tion of matter; in a continuous medium intermolecular
distances cannot in principle be considered as finite.
Following a different approach Elliot (1947)
proposed an atomistic model which explicitly
accounted for the effect of the interatomic forces
along the crack faces. An important result of this
study was that the adjacent atomic planes defining
the crack surface displace with respect to each other
beyond the crack tip in contrast to the results of clas-
sical elasticity. Later Barenblatt (1959) in a celebrated
work has introduced a small cohesive zone ahead of
the ‘physical’ crack tip whose size is determined expli-
citly by requiring the cancellation of stress singularity
at the tip of the cohesive zone (or tip of ‘effective’
crack), or equivalently smooth closure of crack lips.
However, the slope of the crack opening displacement in
mode-I deformation turns out to be infinite at the crack

(a) (b)

Fig. 10. (a) Classical model of crack tip. Originally branch cut
(broken line) opens into rounded contour (full line). (b) Crack lips
in the form of a cusp of the first kind with zero enclosed angle and
zero first derivative of the displacement at the crack tip (dv/dx = 0).
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tip/cohesive zone boundary, even though a smooth
closure of crack lips is ensured (Fig. 10b). Indeed, Bare-
nblatt (1959, p. 1013) gives the following expression for
the mode-I crack opening displacement u(x, y)

. k+1
YT 76

with{-values to correspond to the contour of the crack
occupying the region —a =< x < a,y = 0", ie. the
values {= *1 correspond to the crack tips. The
complex function ¢({) which assures finite stresses at
the crack tips is given by

Im($p(0);  (=e" (82)

e ‘ - Qi .
WO =5 - JO g(a cos(1)) sin(A) log<m)‘”"

X
A= - 83
arccos 7 (83)

and the distribution of stresses g(x) to be determined by
px)—Glx) a=x=a+d

g(x) = { p(x) atd=x=-a—d (84
p) — G)

In the above expressions (84) p(x) is the intensity of
the normal tensile stresses at the axis of symmetry,
while G(x) is the intensity of the cohesive forces and d
is the width of the ‘process zone’. By substituting Eqs.
(84) and (83) into Eq. (82) and by performing an
asymptotic analysis close to the crack tip we find

—a—d=x=—«

sin 6 -
(cos § — 1)2 + sin®6’

2Gv= (k + 1)B

B— %[poqé — G(A} — AG(@)],
n

A=m = (7= ),

[2d
AO = —_—.
a
By differentiating Eq. (85) w.r.t. x one may easily
obtain the result
v (k+ 1)Ba
ox 2\/5

In addition, due to Eq. (86) the asymptotical value of

Ppo = g(acos A),

2G (a—x)"? x—>a  (86)

the dislocation density as we approach the crack tip that
is given by n(x) = —0v/dx (Lardner, 1974) turns out to
be infinite. Physically this is not possible, since disloca-
tions cannot be less than a unit Burger’s vector apart.

Sternberg and Muki (1967) have studied the Mode-
I crack problem within the linearized couple-stress
theory of elastic behavior. The problem was reduced
to a system of two Fredholm integral equations of the
second kind. It was found that the shape of the crack
remains elliptical, as in the classical elasticity, and
stress/strain inverse square-root singularities remain,
although the detailed structure of the stress/strain field
is altered. Later, Eringen, Spezialle and Kim (1977)
have attacked the crack problem by using non-local
elasticity. Their work seems to indicate that nonlocal
elasticity eliminates the stress singularity at the crack
tip; however, the solution seems to be approximate, in
the sense that the stress boundary condition at the
crack surface is not satisfied exactly.

Recently, Aifantis and co-workers (Altan and Aifan-
tis, 1992; Aifantis, 1992; Altan and Aifantis, 1997)
investigated the potential of applying gradient elasticity
to crack problems which are considered as traction
boundary value problems. For simplicity, Aifantis and
co-workers studied only the effect of the volume energy
strain gradient term £ whereas the concept of higher
order self-equilibrating stresses w;; doing work on
higher order strain gradients was not introduced. It
was found that this special theory leads to smooth
closure of the crack outside the region occupied by
the crack at infinity before the application of the
load. However, the smooth closure of crack at infi-
nity is an undesirable result of this type of formula-
tion which may be seen in some sense as a constant
load punch problem for a half-space.

6.2. Local solutions of mode-I, -1, -11I crack problems

In this section the three basic crack deformation
modes will be treated by employing the present aniso-
tropic gradient elasticity theory with surface energy
which is defined by Eq. (38)—(40). In contrast to Grif-
fith’s approach the effect of cohesive forces on the
displacements and strains is considered in this theory
by including higher order gradients in the constitutive
equations.

Next, let us consider the mixed-mixed plane strain
boundary value problems of a finite straight mode-I,
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-1I, and -III cracks occupying the line segment —a <
x < a,y=0" subjected to a uniform internal pres-
sure —a,, with o, being a constant positive number,
with no loading at infinity (Sternberg and Muki,
1967). Let S be the complement of the line segment
—a < x < a,y = 0 extended on the half-plane y = 0.
We seek the solution in S subject to the mixed-mixed
boundary conditions derived directly from Egs. (20)
and (21). Vardoulakis et al. (1996); Exadaktylos
(1997) have presented a methodology to reduce the
above basic crack problems to a Fredholm integral
equation of the second kind with a symmetric kernel.

According to the results presented in (Vardoulakis
et al. (1996), Exadaktylos and Aifantis (1996) and
Exadaktylos (1997) the crack shapes are no longer ellip-
tical as predicted by LEFM but given by the formulae

ux,0)=4£ Jw © " @pnp* — x*dp, Mode-1 ]
X

ux,07)=4~4 Jw Y Epnp* — ¥ dp Mode-II | (87)
X

w(x,07) = J’m Yis@pnp* — x¥*dp  Mode-1II
X J

where {¢"(f), ¢"(t), 3(¢)} are continuous functions
that depend on £,£’, a and y = x/£. After integration
by parts and an asymptotic analysis of the solution close
to the crack tip (Vardoulakis et al., 1996; Exadaktylos,
1997; Vardoulakis and Exadaktylos, 1997), expressions
(87) yield the following results

B SN ]
ur,0 )|HO= T\/—amgo (a — *t])ry2 + 0(r5/2) Mode-1
_ 242 .
Mno)LM:A%CaW¢(a—1mﬂ2+oam) Mode-II |
_ 242 .
w(x, 0 )‘Ho: ?fa'”%(a - + o(™?) Mode-IIl
J

(88)

where ¥ = a — x, and 7 is a small length (i.e. n < )
which removes the weak logarithmic singularity of ()
att = afork # 0. According to Eq. (88) the mode-I, -1I
and -III crack shapes predicted by the present gradient
elasticity theory are described by the equation

BEE S
@ B (89)

dx,07) =ux,0 )oru(x,0 )orw(x,0)

where 8 = d(0,0 ). That is, the crack lips form a cusp
of the first kind with zero enclosed angle and zero first
derivative of the displacement at the crack tip (Fig. 10b).
This fact indicates that gradient elasticity theory
predicts the same crack shape with Barenblatt’s
(1962) ‘cohesive-zone’ theory without requiring an
extra assumption on the existence of interatomic forces
at the outset beyond those implied by the gradient terms
in the generalized constitutive equation.

Herein we compare the mode-III crack deformation
solution predicted by the third of Eq. (87) with that
given by Ru and Aifantis (1993). The Newmann
expansion of the present solution for mode-III crack
for zero value of the surface energy term, i.e. k =0,
yields

-8
w(x,0) =~ (@) £ { —5083a° + 1866x%a*

G ) 5806080
—264x*a? + 16x° + 293768 a* — 10368x%a’£>
+ 1152x*0% — 1693448* o> + 48384x°£*

+967680£° 1 (a? — x*)*?, (90)
0==x=a« £ > L
=x=a, ey

On the other hand Ru and Aifantis (R & A) solution
in integral form along the crack surface is given by the
formula

w(x,O)z(%)

o+ x
sh( 7 ) N 3
X 7J sh(a t)\/tz—azdt

£

_ ! J sh(xz t)\/ﬂ —ldr ©1)

Fig. 11 shows the semi-crack profiles predicted by
the above solutions (90) and (91), respectively. It is
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seen that the second solution predicts a wedge-shaped
crack tip with a finite angle in contrast to the proposed
gradient solution which results in a cusp-shaped crack
tip region as is also predicted by asymptotic expan-
sions (88). Furthermore, Fig. 12 depicts the ratio of
mode-III crack displacement at centre of the crack to
the corresponding classical value as a function of the
dimensionless volume energy term £/« in the absence
of surface energy predicted by R & A and the present
gradient formula (87), 3. The ‘cross’ symbols corre-
spond to the numerical solution of the Fredholm inte-
gral equation of the second kind corresponding to the
mode-III crack. Also, in the same figure we have plot
the following approximate representation of R & A
integral expression (91) that is valid for large values
of the relative volume energy term £/«

(2 )
R OIR(O)

92)

From Fig. 12 we may infer that both gradient solu-
tions tend to the classical prediction for £/a — 0 and
the crack displacement diminishes monotonically, or
alternatively the crack becomes ‘stiffer’ in compari-
son to the classical LEFM displacement, as the rela-

Ru & Aifantis

0 02 04 06 08 1
X/ oL

Fig. 11. Mode-III crack profiles predicted by Ru and Aifantis solu-
tion (91) and by the present Neumann solution (90) for £/a = 0.8,
a=1,k=0,and w = w(x,0)/(0o/G).

tive volume energy term increases. The first
observation corrects the assertion made in (Vardoula-
kis et al., 1993), namely that R & A solution tends to a
higher value of crack diplacement than that predicted
by LEFM as £/a — 0. The second observation is due
to the fact that the consideration of forces of cohesion
in both gradient theories always leads to lower displa-
cements that those predicted by the classical theory
which does not consider such forces.

Next, let S from here on stand for the open half-
plane y = 0 together with its bounding edge, i.e. for
the region (—oo0 <y =0, —o0 <x < 00). Introdu-
cing polar coordinates ry, 6;, r, 0, r;, 6,, as it is
shown in Fig. 13, through the relations

erelo, Z_a:rlelel

Lzt a=re” (93)
we seek to determine the behavior of the mode-I,
-II, -II gradient elasticity solutions at the
endpoints of the crack. We obtain the following
asymptotic estimate for the displacements of the
three basic modes, which holds true as r; — 0 for
every fixed positive £

0
2GuU(ry, 0,)=SV2 rlllzsm 5 005271

2 . 36,
—ES\/Zacp'(a—n)rflzsm > + (f’z) Mode-I

0, 0
2Gu(ry, 0;) = SV2 rf/zsm 2 coszj1

2 . 36,
- §S\/2al/l (a—m)ri?sin ==+ >+ o(r)’*) Mode-11

2Gw(ry, 0,) = __S\/_l//';(a — )r13/251n 201

+ 0(r]"*)  Mode-II1 (94)

where throughout this paper the order-of-magni-
tude symbols ‘O’ and ‘o’ are used in their stan-
dard mathematical connotation (Erdélyi, 1956); in
particular, a function is O(1) if it remains bounded
in the underlying limit, whereas it is o(l) if it
vanishes in the underlying limit.

The first derivative of the crack displacement with
respect to x near the crack tip (i.e. the slope of the
crack profile) for each one of the basic crack modes
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can be found from Eq. (94) to be

9 V2a 0
G—U(h, 01)=S—ar1 2 §in@, cos =4 cos,
ox 4 2

(7] 0 .
- 2[c0527l - 2sin27I ]} + SV2a¢" (a — pyrl”?

30 36
><<{sin(91c:osT1 — cosOlsinTl}

+ o(ri"*) Mode-1

d V2a _ 0
2G£(r1, 0)=S ar1 2 §in 0, cos%{cos 0,

2[cos % 2 sin’ 7]}-#5\/_1[/ (a — pri”?

30 30
X{sin 0, cosTl — cos 6, sinTl}
+ o(r;”?) Mode-II
J *
2G8—;V(rl, 0,)=SV2ai;(a — ”r])r}/2

6,

30 3
><{sin6’1cos71 - coselsinT}

+ o(ri?) Mode-III (95)

From the above formula it is interesting to find the
values of the slope in front and behind the crack tip for
the three modes

26 _ {° 0 =0 (96)
ax —S\/Za)(*(a — ‘r])r}/2 0=
where the function x°(-) takes the values

(©" (), ¥ (), Y3 ()), respectively, and d is defined in
Eq. (89). Hence, another important and new result is
that the present gradient-dependent elasticity theory
predicts-in contrast to LEFM-that the slope of the
crack displacement for the three modes is finite and
continuous, 1.€.

lim %(x 0)= hm

x—a

od “x07)=0 97)
ox

On the contrary, as it was shown above R & A
solution predicts a wedge-shaped crack tip with finite
angle, hence the strain at crack tip is nonzero. In fact
from formula (91) it is found

dw
dx

0'0 1

T ()
xja sh( a; t)\/az —2d, y=0 (98)

It is also noted that the finite derivative come from
the first integral of Eq. (91) whereas the second inte-
gral gives a cusping crack. Fig. 14 also illustrates the
dependence of the strain at crack tip on the relative
micromaterial length scale £/« which is predicted by
R & A integral representation Eq. (98). The above
observation, namely of the finiteness of the strain at
crack tip, leads to the direct conclusion that R & A
solution predicts that the first derivative of the displa-
cement on the crack plane (y = 0) with respect to x is
discontinuous. Explicitly

hmf—(xO y=0 # lim —(xo*)_c;éo

r—=-a x——at
99)
1

08l Ru & Aifantis
* +
w(0)

06l T + Fredholm

+
DA + asymptotic R&A
+
/— Np
0.2¢
Neumann -

02 040608 1 12 14 16 18 2
{a

Fig. 12. Comparison of the Mode-III crack displacement at centre of
mode-III crack as a function of the dimensionless volume energy
term predicted by, R & A solution (91) and by the present solution
for k=0, and w = w(x,0)/(cy/G). The Newmann asymptotic
expansion of the present gradient solution is given by Eq. (90)
whereas the asymptotic solution of R & A is given by Eq. (92).
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Fig. 13. Crack and coordinates.

hence the crack profile predicted by the same solution
is physically unrealistic.

In the context of the proposed theory the energy
release during an infinitesimal advancement of the
crack tip by a distance da can be found to be

Sa
SU=G,0a= | o(da— h,0+)dh,—m)dh
0

2

K «
~X (@ = (8,

= 3G da— 0 (100)

where o = {O'yy,O'xy,O'yz} is the nominal stress for
each basic crack deformation mode, K, = oy/ma is
the corresponding SIF and G, (a = LILIII) is the rele-
vant crack-extension force. It should be mentioned
that Barenblatt’s and Dugdale’s stress-finiteness
condition for elastic-brittle and elasto-plastic fracture,
respectively, results to a similar dependence as that
given by Eq. (100), i.e. G, o< éa, 6 — 0, with the
immediate consequence that the energy release rate
turns out to approach zero for an infinitesimal crack
extension. Barenblatt (1962) called this type of cracks
‘equilibrium cracks’, i.e. cracks for which the energy
released by a very small change in the shape of the
crack is equal to zero.

In view of the above result the criterion for crack
growth should be stated as follows (Exadaktylos,
1997)

G,=B6x; (a=I1ILII) (101)

where S« is the minimum crack extension length such
that the above inequality holds true. The quantity 3
called herein ‘modulus of cohesion’, has the dimen-
sions of energy per unit volume, and it is a funda-
mental property of the material with microstructure.
Thus the ‘specific fracture energy’ with dimensions

[v] = FL™! has to depend linearly on é« for crack
tip propagation distances that are not large as
compared to the structure of the elastic-perfectly
brittle material, that is,

v = y(6a) = Béa as da— 0 (102)

Definition (102) is in agreement with the experi-
mental results of Hoagland et al. (1973) who found
that the specific fracture energy or fracture resistance
of Salem limestone was an increasing function of
crack propagation distance at an early stage of crack
extension, but finally reached asymptotically a
constant value corresponding to large—relative to
the grain size—pre-existing flaws in the rock (Fig.
15). y-curve, i.e. the curve of vy as a functon of da,
must start from zero as indicated in Eq. (102); at zero
stress the size of the process zone is zero — it requires
no energy to form a process or microcraking zone of
zero size.

By virtue of definition (102), Griffith’s rupture
criterion is modified as follows

X(a— ;4,2 = B,

2
T O %
Xa— L. L) = =~ —é’ X'(a—n) (103)
2

= K e
_SGXa Ui

357

*  25]
dw/dx

0.2 0.4 0.6 0.8 1
Lo

Fig. 14. Plot of normalized slope at crack tip dw/dx vs. relative
volume energy intrinsic length scale £/« derived from R & A
integral representation (98).
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Fig. 15. Energy dissipation rates measured over an interval of crack length for three orientations of the crack plane and propagation direction in
Salem limestone. The letters A, B, and C denote orientation of the crack plane with respect to the bedding (A) and X,Y,Z denote crack
propagation direction. o/ is the ratio of crack length to the starting slot length (Hoagland et al., 1973).

where the function X in Eq. (103) depends on the
applied pressure on the faces of the crack, on crack
length and on material length parameters £, £’. The
corresponding critical value of K, (a = LILIII) which
represents the fracture resistance of the material is
denoted by K,c and is called ‘fracture toughness’ or
‘critical stress intensity factor’. Note from Eq. (103)
that

88G

K= ,]—DF "
¢ ¢ (a—m)

(104)

The variation of the normalized Kjc with the ratio
a/€ is depicted in Fig. 16 for three values of the
material length ratio, namely for k=~£'/€ =
—0.2, 0, and 0.2, and for Poisson’s ratio v = 0.25.
It can be seen that the resistance to fracture of the
material decreases with increasing relative crack

size; positive values of the surface energy parameter
£’ further enhance the strength of the material,
whereas negative values of the surface energy para-
meter lead to a decrease of the fracture toughness of
the material. The previous result of gradient elasticity
theory agrees qualitatively with experimental results
which indicate that materials with smaller cracks are
more resistant to fracture than those with larger
cracks. It is important to mention here that classi-
cal LEFM does not predict an effect of the size of
the crack on K,c, that is, it considers it as a
constant.

If the classical fracture criterion in plane strain
conditions

1=
( EV)K12

were used to compute the critical energy release rate

=2y (105)
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Fig. 16. Size effect of the normalized K¢ for three values of the
material length ratio k = £'/€ and for Poisson’s ratio of the material
v=1/4.

Gic from the critical stress intensity factor Kjc, the
value of Gjc so determined would be several orders
of magnitude greater than the surface energy 2. Or,
conversely, if Gic were equated to the surface energy,
then unrealistically small failure loads would be
predicted for the material under investigation. The
investigation of the applicability of the Griffith—
Irwin criterion (105) to the fracture of real solids is
displayed in Table 1 and it was presented by Lawn and
Wilshaw (1975). Based on the data presented in this
table, Lawn and Wilshaw commented that:’... energy
dissipation processes other than those involved in
mere surface formation operate at crack tips in
certain solids (G, > 2v).... However, it can be
demonstrated (Vardoulakis et al., 1996; Exadaktylos,
1997) that the modified fracture criterion (101) based
on the consideration of higher order gradients and
double stresses predicts physically reasonable surface
energy and failure stress values for appropriate values
of the parameters £, £, 8, hence we do not need to
introduce ad hoc assumptions of the Irwin—Orowan
type in order to capture this observed discrepancy of
the energy dissipation at the crack tip.

Performing mode-I fracture mechanics experiments
on brittle specimens with known shear modulus G one
then can estimate the critical K, and the modulus of

cohesion B from the slope of the specific fracture
energy 2y against crack length. Accordingly, the char-
acteristic material lengths £, £ can be estimated from
the size effect exhibited by K¢ (e.g. Fig. 16).

From condition (175) for the onset of crack
extension a first order approximation of the breaking
stress o, for £' =0 can be obtained as follows
(Exadaktylos, 1997)

| sEB ¢ LT
”’z‘/mzﬂ)([&]) (106)

In classical elasticity o, o< a ' and clearly if « is

small enough o, may have to exceed the yield strength
of the material in order to initiate cracks. Thus, in
terms of classical elasticity we imply the existence
of a limiting crack size ‘a‘ below which sharp crack
fracture mechanics will not apply. On the other hand,
gradient elasticity has no such restriction, since as it
can be seen from (178) for any value of a whatever
small, the characteristic length scale of the discrete
structure of the material £ should be sufficiently
small at that scale in order for the stress not to exceed
the yield strength of the material at hand.

Furthermore, the above inverse first-power depen-
dence of strength on the size of the crack-like defect
agrees with the experimental results on elastomers
presented by Bueche and Berry (1959). The relation
between the depth of the surface cut and tensile
strength for a polymer found by Bueche and Berry
is displayed in the log—log diagram of Fig. 17. The
solid line is of unit slope (i.e. o, oc o ) and gives a
fair agreement with the experimental points, although of
course the scatter is considerable. On the other hand,
Griffith’s criterion predicts an inverse square-root rela-
tion, so it does not give the correct dependence of the
tensile strength on the size of the pre-existing crack. Itis
to be expected that the above modified rupture criterion
proposed herein, will not apply quantitatively to rubbery
materials, but dimensional requirements indicate that
the above dependence of strength on cut size should
be a good approximation.

7. Conclusions
The following conclusions can drawn at once from

the series of rock mechanics and rock fracture
mechanics examples dealt with in the foregoing
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Table 1

107

Computed surface energy (2y = 2Eb0/172) and measured crack-extension force (G,) for various material classes and for single crystal materials
under plane strain, environment-free conditions (Lawn and Wilshaw, 1975) (E = Young’s modulus, b, = spacing between separating molecular

units). Bold typed entries mark the cases in which G, > 2.

Class Material Cleavage

Covalent C (diamond) Diamond (111)
Si Diamond (111)
Ge Diamond (111)

Covalent-ionic AlL,O;
SiO, (quartz)
SiO,(fused silica)
Soda-lime glass

Tonic MgO NacCl (100)
LiF NaCl (100)
NaCl NaCl (100)
Mica Basal (0001)
Metallic W bee (100)
a-iron (steel) bee (100)
Zn hep (0001)
Be hep (0001)
Polymeric PMMA No preferred cleavage

No preferred cleavage

E (GPa) by (nm) 2y (J/m?) G, (J/m?)
1000 0.15 30 -
130 0.24 6.2 3
100 0.25 5.0 2
350 0.19 13.4 7
80 0.16 2.6 20
72 0.16 24 9
72 0.16 2.4 8
240 0.21 10.0 3

91 0.20 3.6 0.8

43 0.28 24 0.6
200 0.14 5.6 10
390 0.27 22 3
200 0.25 10.0 2x10°

120 0.27 6.4 0.2
300 0.23 14 1x10°
2 1 0.4 4x10°

sections. First, it was demonstrated by virtue of a
simplified 1D geometry of the tension test that the
present 2nd gradient theory predicts non-linear varia-
tion of the displacement field even though the applied
surface tractions are uniform. Also it was shown for
both the tension test and axisymmetric borehole

configurations that the strength of the materials with
structure is a function of the ratio #/€ where h is the
characteristic dimension of the material under inves-
tigation. The surface energy length scale ratio £'/€
depicts the intensity of the size effect due to surface
stress phenomena. Next, the basic static crack

0T TTT T T 1
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Tensile strength {psi)
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Fig. 17. The relation between cut (artificial defect) size and tensile strength of a filled vulcanized silicone elastomer (Bueche and Berry, 1959).
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problems have been investigated in the context of the
proposed gradient elasticity theory that have direct
practical applications in the theory of strength of
materials and mechanics of earthquakes in the earth’s
crust. It was illustrated that the solution of these three
basic crack deformation modes leads to cusping of the
crack tips that is caused by the action of “cohesive”
double forces behind and very close to the tips, that
tend to bring the two opposite crack lips in close contact.
Furthermore, it was demonstrated that the fracture
toughness depends on the size of the crack, and thus it
is not a fundamental property of the material. This latter
outcome agrees with experimental results which indi-
cate that materials with smaller cracks are more resistant
to fracture than those with larger cracks. Hence, the
proposed nonlocal theory allows the rock mechanics
and rock fracture mechanics problems to be described
with a degree of physical insight, simplicity and exact-
ness hitherto unknown.
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