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Nonlinear regression with an additional random parameter.
Yi=f(i/nm B,v)+e,i=1,...,n

Y1,...,Y, data
(3 is a parameter of interest (3" its true value)
v~ N(WO,ZW) is an additional random parameter

{e;} arei.i.d. N(0,02)) measurements errors.



Problem with an additional random parameter

Linear models with respect to ~

fi(B,7) = gi1(B)v1 + - - - + gik(B) vk

Y =gn(B )+ + gw(B e+
+81(B") (1 — )+ + &w(B)w — M) + e,

VarY =% = GZ,G” +0,1,G = Hgij(ﬂ*)W’:kl,j:l'



Ordinary least squares method - frequentist approach

Estimate 3 by the least squares metod:

:mﬁnz Yi — f( /n,@‘y))

i=1

Further, | denote ;(3,~) = f(i/n; B,7).



The estimate ,@ is a random variable (vector) due to measurement
errors and additional random parameter(s). Fluctuation around the
true value (3" is given by its distribution. We may use its variance
(or its multidimensional analogue in case of multidimensional 3) to
express an accuracy of the estimate 3. However, if the distribution
is skewed or multimodal, we may ask if the variance is the best
characteristic. This very important when we compare several
models (Design of experiment).



Example 1

Yi=(1-d)log(0)+d0+(1+ad)y+e,i=1,...,n

d=0, Yi=log+~v+e,i=1,...,n,
d=1, Yi=0+Q+a)y+e,i=1,...,n.

Vary =0, = (1/3.3)%, Vare; = 02 = 0.01%, * = 1.1



)

1
= exp (; Z Yi) ~ LN(log 1.1, A = 05 +02/n)
n=10, Ef=1.15, Varf =0.127

d=1,a=0178

~ 1
9:;ZY;NN(l-l,Aa203(1+a)2+05/”)

n=10, EO=11, Varf =0.127
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P(1.1—0.4 <6,y <1.1+04)=0.78,
P(1.1—0.4 <8y <1.1+0.4)=074

P(1.1-0.9 <,y < 1.1+0.9) =0.97,
P(1.1-0.9 < 8y < 1.1+ 0.9) = 0.99.



Linearization method

f(i/n, B) = f( /nﬂ)+Z /nﬂ)( —B5)

VarB ~ (F*TF*) 1 F*T S F*(F*T F*)~1

0y|n P
= Ha/g,(ﬂ*a'Y )H,‘:L/:l'
o2 and max Var~; are small. The approximation is very easy to
compute. For designing an experiment the method we start with.



Monte-Carlo simulations method

We repeatedly generate realizations of « and {e;} from their
distributions to numerically find the argument minimizing the least
squares function. The distribution of B and its characteristics as
the mean, variance, skewness, etc., may then be estimated by their
sample counterparts computed from the set of the obtained values
of {3},

The minimization of the least squares function may be performed
over a dense grid in B or by a more powerful method such as the
Levenberg - Marquardt algorithm.



Finite sample approximation method using
differential geometry
The approximate density hﬁ(ﬁ) of the ordinary least squares

estimate ,@ has the form:

h5(8) =
det Q(8, 3*) 1 . .
G et o (M) © exp { — 5 (F(8) — F(8) TAB)(F(8) - £(8)) }
where
M(3) = F(3)" XF(B),
A(B) = F(B)(M(B))"F(B).
P(3) = ZF(B)(M(8)) ' F(B)T,

and H(B) = ||dﬁazafﬂﬁ||7 17—15— is a three dimensional array.



Example 2

Y1 = cos(0) + v + e,
Ys =sin(f) + e

sinf = cos(0 — w/2), 6 € [0,7].
9*:71'/2, Yi=7v+e, Yo=1+e.

é\:atan(é), Y: >0, é\zw—atan(—%), Y: < 0.
1 1

v ~ N(0,0.9?), e ~ N(0,0.12),i = 1,2.



Exact estimate Var(thetahat)=0.4063
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Linearization in 7/2

™
Yl——(9—§)+7+e1,
Yo=1+e
f=%-v, —53<vi<3,
0=0,v1>%, 0=mYi<-3

0 hNa a trimme(Ni normal distribution with
P(6 =0) = P(6 = ) = 0.04.



Linearization Var(thetahat)=0.7068

7000 T T
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Example 3

EERERRERREY

Y=

L, =0.05m

Initial temperature:
T(0) =0°C

Steps of measurement:
ti=1,...,7s

7T=060s

Fixed thermal capacity:

C = 1700000 Jm—3K~!

R 3

- - - - — — = = = — — e e ——— - - =~

L,=0.05m

© = 25000 Wm—2

v



T(t, %,y A Ay, Cp) = 0x(t; Axs s x) + 0, (8 Ay C oy y),

Ox(t: Ae; Cipix) = fF(%)’
Oy(t; Ay: Cipry) = (%)

with X = (x/2)y/C/A¢, y = (y/2)\/C/A, and
F(z) = eXp / “dv), z>0




Simple application
The thermal conductivity A, =4.7 (Wm~'K~!) and the heat
volumetric capacity C = 1700000 (Jm 3K~') are known.

The conductivity A, (Wm~*K~!) is our parameter of interest and
its true value is \X = 0.6 (Wm1K™1).

The heat flux ¢ (Wm™2) is an additional random parameter

~ N(25000, 100?).

Themperature (°C) is measured at equidistant time points
{1,2,...,60} (s) with i.i.d. measurement errors N(0,0.1%).

We are looking for the optimal position of the sensor on the
bottom boundary, more specifically, in a grid
{(x,y) € [0.002 : 0.0001 : 0.05] x {0}}.



4.5

Var\,

Comparison of variances of A, computed by the proposed methods
- green line -linearization method, blue line - method of simulations
and numerical minimization, magenta line - method based on

differential geometry.
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Conclusions - practical suggestions
Try all three methods if possible.
Look for a set of “almost optimal” designs if possible.

Compute a distribution of the estimate near the “optimal” designs
if possible.
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