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Abstract

Our study investigates the influence of geometrical parameters of two types of auxetic metamateri-
als on their effective properties. In particular, we focus on three-dimensional lattice structures, which
we represent with discrete beam models of their respective Periodic Unit Cells (PUCs). Limiting the
scope of the study to linear elasticity, we compute the effective response of PUCs by plugging the
kinematic ansatz of the first-order numerical homogenisation into the strain energy expression arising
from the Direct Stiffness Method and minimising the energy with respect to the periodic fluctuation
field. The obtained effective stiffness matrices are post-processed to arrive at elastic parameters such
as Poisson’s ratios coefficients, which are reported in different directions with respect to the key
geometrical parameters. The numerical study is validated against experiments on 3D printed samples
loaded within a Thymos open-hardware test rig equipped with DIC-style optical measurements.
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1 Introduction

Metamaterials are artificial materials with properties beyond those commonly found in nature.
These properties are mainly determined by metamaterials’ microstructure rather than by the chemical
or physical parameters of their bulk constituents [1]. Due to technological advances in recent decades,
complex microstructures of these metamaterials can be produced by manufacturing techniques such
as 3D and even 4D printing [2], optical lithography [3], or electrospinning, which further increases the
appeal of such materials. Mathematical modelling is then needed for efficient design of metamaterials,
as it allows for circumventing lenghty experimental search for their optimal design.

Our study on the influence of geometry on the effective Poisson’s ratio focuses on two variants
(cubic and hexagonal) of a three-dimensional auxetic metamaterial proposed by Bückmann et al. [3]
and shown in Fig. 1. Both designs exhibit a periodic microstructure allowing us to investigate only
the response of a Periodic Unit Cell (PUC) as their Representative Volume Element (RVE).

Figure 1: Two investigated auxetic metamaterials: a cubic variant (top) and a hexagonal variant
(bottom). Insets on the right-hand side show a top view of the microstructures.
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2 Geometry of the investigated metamaterials

The microstructure of the metamaterial is composed of several bow-tie structures, the geometry of
which is controlled by the angle δ between the diagonal beam of the central bow-tie structure in the
upper left quadrant and the yz plane passing through its initial node; see the insets on the right-hand
side in Fig. 2. The 3D metamaterial is created by rotating the central bow-tie structure located
in the xz plane around its vertical centre beams, as shown in Fig. 2. The cubic microstructure is
obtained by rotation by 90°, which subsequently forms the central structure (dark blue). This central
structure is complemented by a similar one (cyan), shifted by half a period in the yz plane. To
create the PUC of the hexagonal variant, we perform 60° and 120° rotations of the bow-tie structure
(purple). The height H of both PUCs will be considered as a single unit height.

Figure 2: Periodic Unit Cells of cubic (top row) and regular hexagonal prismatic (bottom row)
microstructure alongside their corresponding side views with highlighted angle δ, which controls the
geometry of the metamaterial.
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We model a PUC with discrete beams; we know the position of each node and the orientation of
the beams that connect them. For this study, we assume a circular beam cross-section with diameter
d = 0.1H. Consequently, cross-sectional characteristics follow as

A = π

4
⋅ d2

I = π

64
⋅ d4

J = 2I = π

32
⋅ d4 , (1)

where A is the cross-section area, I is the second moment of inertia, and J is the polar moment of
inertia. The volume of PUC is for the cubic variant Vc =H3 and Vh = 3

√

3
8 ⋅H

3 for the hexagonal one.

3 Direct stiffness method

To compute a mechanical response of the PUC model, we use a linear discrete beam model that
can be described by a linear relation

F = Ku , (2)

where the vector F contains the forces and moments applied on all nodes, K is the stiffness matrix
(assembled from individual submatrices Ki for each beam), and u is the displacement vector that
successively contains subvectors of displacements ui, vi, wi and rotations φx,i, φy,i, φz,i of individual
nodes i.

3.1 Local stiffness matrix

The local stiffness matrix Kl
i for the i-th beam follows from the Bernoulli-Euler beam theory

[4] [5] and has size 12 × 12, due to the 6 unknowns located at the beginning (index b) and the end
(index e) node of the beam. Individual parts that contribute to the stiffness matrix can be divided
into 4 submatrices pertinent to:

1. membrane behaviour ⎡⎢⎢⎢⎢⎣

X l
b

X l
e

⎤⎥⎥⎥⎥⎦
= EA

Li

⎡⎢⎢⎢⎢⎣

1 −1
−1 1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

ulb

ule

⎤⎥⎥⎥⎥⎦
, (3)

2. bending in xy plane

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y l
b

M l
z,b

Y l
e

M l
z,e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 2EIz
Li

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
L2
i

3
Li

− 6
L2
i

3
Li

3
Li

2 − 3
Li

1

− 6
L2
i
− 3
Li

6
L2
i
− 3
Li

3
Li

1 − 3
Li

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

vlb

φl
z,b

vle

φl
z,e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

3. bending in xz plane

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Z l
b

M l
y,b

Z l
e

M l
y,e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
2EIy

Li

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
L2
i
− 3
Li
− 6
L2
i
− 3
Li

− 3
Li

2 3
Li

1

− 6
L2
i

3
Li

6
L2
i

3
Li

− 3
Li

1 3
Li

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wl
b

φl
y,b

wl
e

φl
y,e

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)
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4. torsion ⎡⎢⎢⎢⎢⎣

M l
x,b

M l
x,e

⎤⎥⎥⎥⎥⎦
= GJ

Li

⎡⎢⎢⎢⎢⎣

1 −1
−1 1

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

φl
x,b

φl
x,e

⎤⎥⎥⎥⎥⎦
. (6)

In the equations above, Li refers to the length of a corresponding beam, E denotes Young’s
modulus, G stands for the shear modulus, and moments of inertia Iy, Iz are equal to I due to
the circular cross-section of the beam. The local stiffness matrix K l

i is obtained by combining the
submatrices from Eqs. (3) - (6), each contributing to its specific degrees of freedom (DOFs).

3.2 Global stiffness matrix

The beams constituting the PUC’s microstructure have different orientations. Hence, it is
necessary to transform local displacements, rotations and end forces from Eqs. (3) - (6) into a global
coordinate system. In our study, we adopted the approach of constructing a rotation matrix Ri for
the i-th beam with Euler angles.

The beam’s initial position is established by aligning its local coordinate system with the global
one. Afterwards, we execute an extrinsic rotation around the global coordinate axes until the desired
position is achieved. Rotation matrices

Rx =
⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 cosα − sinα
0 sinα cosα

⎤⎥⎥⎥⎥⎥⎦
, (7)

Ry =
⎡⎢⎢⎢⎢⎢⎣

cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

⎤⎥⎥⎥⎥⎥⎦
, (8)

Rz =
⎡⎢⎢⎢⎢⎢⎣

cosγ − sinγ 0
sinγ cosγ 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
, (9)

determine rotation around global x, y, z axes by angles α, β, γ, respectively, while each angle stands
for rotation from the latest beam’s position.

To obtain the rotation matrix Ri, we perform matrix multiplication

Ri = Rz ⋅ Ry ⋅ Rx , (10)

where the sequence of the elements is based on the order in which the beam is rotated, starting with
the rotation around the global x axis.

The nodal displacements and rotations are transformed at each end of the beam equally, so we
can create a transformation matrix Ti by arranging the rotation matrix Ri on its diagonal.

Ti =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Ri 0 0 0
0 Ri 0 0
0 0 Ri 0
0 0 0 Ri

⎤⎥⎥⎥⎥⎥⎥⎥⎦

(11)

The local stiffness matrix is then transformed into the global coordinate system using the relation

Kg
i = T

T
i K

l
iTi , (12)

from which we obtain the global stiffness matrix Kg
i for each beam and localise them to the stiffness

matrix K using Boolean localisation matrices Li.

K =∑
i

LTi K
g
i Li (13)
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4 Homogenisation

The homogenisation process substitutes a heterogeneous PUC at the microscopic level with a
corresponding macroscopic constitutive model, allowing us to study the effective behaviour of the
PUC when treated as a material considering its microstructure. In our study, we are using the
first-order numerical homogenisation to obtain the effective metamaterial properties.

4.1 Displacement decomposition

In the first-order homogenisation, the total displacement field u⃗(x⃗) is assumed in the form

u⃗(x⃗) = u⃗E(x⃗) + u⃗∗(x⃗) , (14)

where u⃗E denotes the macroscopic and u⃗∗ is the fluctuation part of the displacement field caused
by the heterogeneity of the metamaterial [6]. The macroscopic part u⃗E of the displacement field
corresponds to a situation under which an entire cell composed of homogeneous material would be
subjected to a constant macroscopic strain tensor E,

E =
⎡⎢⎢⎢⎢⎢⎣

Exx Exy Exz

Eyx Eyy Eyz

Ezx Ezy Ezz

⎤⎥⎥⎥⎥⎥⎦
, (15)

which results in a displacement field uE given as

u⃗E(x⃗) = E ⋅ x⃗ =
⎡⎢⎢⎢⎢⎢⎣

uE

vE

wE

⎤⎥⎥⎥⎥⎥⎦
. (16)

For the first-order homogenisation, it is further assumed that the volumetric average of the
gradient of the entire displacement field u⃗(x⃗) corresponds to the prescribed macroscopic deformation
E. By applying the symmetric gradient operator ∇s = 1

2(∇ +∇
T) and averaging the result over a

unit cell Ω, we obtain

E = 1

∣Ω∣ ∫Ω
∇su⃗(x⃗)dx⃗ = 1

∣Ω∣ ∫Ω
∇su⃗E(x⃗) +∇su⃗∗(x⃗)dx⃗ , (17)

where Ω represents the microscale domain of interest, being the metamaterial’s macroscopic point [7].
The macroscopic part of the deformation u⃗E(x⃗) in Eq. (16) is defined such that

E = 1

∣Ω∣ ∫Ω
∇su⃗E(x⃗)dx⃗ . (18)

Consequently, the fluctuation part u⃗∗(x⃗) of the displacement field u⃗(x⃗), must have a zero volumetric
average gradient, i.e.

1

∣Ω∣ ∫Ω
∇su⃗∗(x⃗)dx⃗ = 0 . (19)

For our discrete beam model, Eq. (16) in a matrix form reads as

uEi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xi 0 0 0 1
2zi

1
2yi

0 yi 0 1
2zi 0 1

2xi
0 0 zi

1
2yi

1
2xi 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

E = QE
i E (20)
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and couples nodal DOFs with the macroscopic deformation E, which is the vectorial representation
of the symmetric second-order tensor E, namely

E = [Ex Ey Ez Γyz Γxz Γxy]
T
. (21)

Now we can write the original degrees of freedom u depending on the macroscopic deformation E
and the fluctuation unknowns u∗. Let’s define the extended displacement vector

û = [ E
u∗
] , (22)

then we can express degrees of freedom of our discrete beam model as

u = [QE I] [ E
u∗
] = Qû , (23)

where I is the square identity matrix and QE is composed of the blocks QE
i corresponding to the

expression (20).

4.2 Periodic Boundary Conditions

To satisfy the constraint (19), we introduce Periodic Boundary Conditions (PBC), which is
a natural model assumption for materials with periodic microstructures. Let’s denote Π(x⃗) the
mapping from the source part Γs of the boundary Γ onto its periodic image Γi. The fluctuation
DOFs at a periodic point, denoted as u∗(Π(x⃗)), are then equivalent to the corresponding DOFs
u∗(x⃗) at the boundary of the unit cell Γs

u∗(Π(x⃗)) = u∗(x⃗) ∀ x⃗ ∈ Γs . (24)

To this end, we established a new vector a, containing unknown periodic fluctuation DOFs, which
maps to u∗ through the Boolean matrix P∗

u∗ = P∗ a . (25)

This step significantly reduces the number of unknowns in our equations.

Γ

Γ s

Γ i

u (Π     )x( )* →

u x( )* →

Figure 3: Illustration of Periodic Boundary Conditions for a 2D PUC. The fluctuation DOFs at
periodic points u∗(x⃗) at the source part Γs of the PUC boundary are equivalent to DOFs at it’s
periodic image Γi.
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To prevent the PUC from moving as a rigid block during deformation, we prescribe zero fluctuation
displacements at the node in the centre of the top edge of the PUC, illustrated with a black node in
Fig. 4, while rotations remain free. Due to the periodicity, the fluctuation displacements must also
vanish at the node in the centre of the bottom face of the PUC.

Figure 4: Fixed fluctuation displacements at nodes in the centre of the top and bottom face of the
PUC, marked down with the black dots.

Similarly to Eq. (23), matrix P̂ connects the macroscopic deformation E and the fluctuation
unknowns a to the extended DOFs û.

û = [ E
u∗
] = [I P∗] [E

a
] = P̂ â (26)

By connecting the macroscopic and fluctuation parts of the displacement field from Eq. (26) and
considering Eq. (23) we get an expression for full-field displacement DOFs u based on unknown â

u = QP̂ â . (27)

4.3 Energy minimisation

For every macroscopic deformation E, there is a certain state into which the cell deforms, because
it naturally attempts to reach the state with the lowest energy.

The energy E of a discrete beam model, which represents our PUC composed of beams and nodes,
can be written as

E = 1

2
uTKu . (28)

Similarly, for a linear elastic material of volume V that is subjected to a uniform deformation E at
the macroscopic level, the relation for the energy can be expressed as

EM = V
1

2
ETDhomE , (29)

in which Dhom is the material stiffness matrix of the desired homogenised metamaterial and vector
E contains the individual macroscopic components of the deformation tensor in the vectorial form
introduced in Eq. (21).
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Plugging the unknowns from Eq. (27) into Eq. (28) yields an expression for PUC’s energy based
on macroscopic deformations E and fluctuation unknowns a

E(E, a) = 1

2
[E
a
]
T

[K̂EE K̂Ea

K̂aE K̂aa
] [E

a
] = 1

2
âTK̂ â , (30)

where stiffness matrix K̂ and its four submatrices K̂ij pertinent to E and a follow from

K̂ = P̂TQTKQP̂ . (31)

Since we are interested in the response of the homogenised PUC to a prescribed macroscopic
deformation E and not in displacement of its individual nodes, we express a with respect to the
macroscopic deformation E of the cell. To this end, we keep the macroscopic deformation E fixed
and determine the fluctuation displacements a as solution ã(E) that minimises energy E(E, a) for the
given deformation E as

ã(E) = argmin
a∈Rn

1

2
(ETK̂EEE + ETK̂Eaa + aTK̂aEE + aTK̂aaa) , (32)

where n represents the number of unknown fluctuation DOFs. As a result of the matrix K̂ being
both symmetric and positive definite, the quadratic form (30) attains the global minimum at the
point of its zero gradient

∇aE(E, a)∣a=ã(E) = KaEE +Kaaã(E) = 0 . (33)

This provides us with the expression for the minimizer

ã(E) = −K−1aaKaEE . (34)

Substituting the expression above into Eq. (30) yields an energy dependent entirely on the macroscopic
deformations E,

Ẽ(E) = E(E, ã(E)) = 1

2
ET(K̂EE − K̂EaK̂

−1
aa K̂aE) E =

1

2
ETKeffE . (35)

Comparing the expression (35) with the formula for the energy of a homogeneous material of
volume V = ∣Ω∣ subjected to a constant deformation E in Eq. (29), we arrive at the relation for the
homogenised material stiffness of the auxetic metamaterial as

Dhom = 1

V
Keff . (36)

4.4 Effective Poisson’s ratio

The procedure introduced in the previous sections yields the whole effective stiffness matrix.
However, comparing and discussing the entire stiffness matrix is cumbersome. Here, we focus on the
homogenised Poisson’s effect as the primal objective of the auxetic metamaterial.

Because our structures are symmetric in three mutually perpendicular directions, we can expect
the overall orthotropic response. Consequently, there are three different values of the Poisson’s ratio
depending on the direction of the prescribed relative deformation. Clearly, the Poisson’s ratios ν in
the xy and xz planes, νxy and νxz, will be the same due to the symmetry of PUC. Furthermore, νyz
and νzy should be equal for the same reason.
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We will refer to the stress in the metamaterial as Σ to distinguish the macroscopic level from the
microscopic one. The stress-strain relation is linear because we work in the range of Hooke’s law, so
macroscopic stress can be written as

Σ = DhomE , (37)

which can be broken down into individual components as follows

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Σx

Σy

Σz

Σyz

Σxz

Σxy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dxx Dxy Dxz 0 0 0
Dyx Dyy Dyz 0 0 0
Dzx Dzy Dzz 0 0 0
0 0 0 Gyz 0 0
0 0 0 0 Gxz 0
0 0 0 0 0 Gxy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ex

Ey

Ez

Γyz

Γxz

Γxy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (38)

To determine the Poisson’s ratio νij , we perform a virtual uniaxial tension/compression experiment,
in which we prescribe the macroscopic strain in the i-th direction and compute the strain in the
j-th direction for the requirement of zero macroscopic stress in the j-th and k-th direction. This
experiment results in the following relation

ẼEi
j =

DikDjk −DijDkk

DjjDkk −D2
jk

Ei . (39)

Using (39) we can express Poisson’s ratio for any direction, following its definition as a negative ratio
of the derived and prescribed macroscopic strain. Consequently, the effective Poisson’s ratio of an
auxetic metamaterial is given by

νij = −
ẼEi

j

Ei
=
DikDjk −DijDkk

D2
jk −DjjDkk

. (40)

5 Numerical results

In this study, we investigated the range δ ∈ (0°, 45°) for the parametrisation of the two microstruc-
tural geometries (cubic and hexagonal); recall Figs. 1 and 2 from Section 2. This range was chosen to
avoid beams’ overlaps. The resulting values of the effective Poisson’s ratios are plotted in Fig. 5. The
numerical results comply with our assumptions of equal Poisson’s ratio values in following directions:

νxy = νxz (41)
νyx = νzx
νyz = νzy ,

see also overlapping lines in Fig. 5. For the cubic PUC, we observed auxetic behaviour in the whole
range of δ, while the metamaterial with hexagonal PUC exhibits pure auxetic properties only for
angles δ ∈ ⟨10.56°,45°). For the lower values of δ, the metamaterial is auxetic only in the xy and xz
planes, with the highest Poisson’s ratio value of νyz = 0.33, which leads to the lateral contraction
during stretching in the yz plane.

Poisson’s ratios νyx and νzx are the one most influenced by the metamaterial’s geometry and
attain their minimum, within the investigated range of δ, from which their value starts increasing and
slowly approaches remaining Poisson’s ratios. Specifically, for the cubic PUC, the global minimum
νyx = −1.98 is achieved for δ = 13.78°. The hexagonal PUC exhibits its minimal Poisson’s ratio of
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value νyx = −1.55 at the angle δ = 15.92°. The remaining pairs of Poisson’s ratios, i.e. νxy, νxz and
νyz, νzy, on the other hand, tend to decrease with the increasing angle δ across the entire range.

Additionally, we observe certain values of δ, at which selected Poisson’s ratios coincide. In the
cubic PUC, νxy and νyz attain the same value of −0.05 for δ = 3.32°. The hexagonal PUC exhibits two
such values of δ, δ = 16.96° and δ = 36.98°, for which Poisson’s ratios are equal to νxy = νyz = −0.26
and −0.63, respectively. In addition, the hexagonal PUC have equal Poisson’s ratios νxy and νyx of
value νxy = −0.82 at the angle δ = 44.71°.

0 5 10 15 20 25 30 35 40 45
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

xy

xz

yx

zx

yz

zy

0 5 10 15 20 25 30 35 40 45
-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

xy

xz

yx

zx

yz

zy

Figure 5: Poisson’s ratio as a function of angle δ for cubic (top) and regular hexagonal prismatic
(bottom) microstructure. The numerical results, illustrated by lines, are validated with experimental
results marked with crosses for metamaterials with geometry at δ = 15°.
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6 Experimental section

We performed experiments to reinforce the validity of our numerical results. From each of the two
microstructures, we created a 3D model based on the geometry corresponding to δ = 15°, respecting
the relations introduced in Section 2. The sample for the cubic microstructure is composed of 4×4×4
unit cells, which yields a total size of 5.0×5.0×5.0 cm. The sample for the hexagonal variant is
constructed from 6×5×4 unit cells, resulting in a size of 5.5×5.3×4.3 cm.

6.1 3D print

3D models were produced with ELEGOO Mars Pro resin-based 3D printer. This type of printer
uses a technique called stereolithography, which involves curing liquid resin layer by layer using an
ultraviolet light source. For the resin mixture, we worked with two types of resin: tough and flex.
The tough resin was Prusament Resin Tough Prusa and for flex one, we used PrimaCreator Value
UV / DLP Resin FLEX. We experimented with various combinations of tough and flexible resins,
ranging from a tough/flexible ratio of 60/40 to 100/0. Our goal was to find a mixture which is stiff
enough to ensure that beams will remain straight (i.e. they do not buckle) during deformation but,
at the same time, sufficiently flexible, such that beams do not break after a small compression. It
turned out that the optimal choice is to use only the tough resin, which aligns the most with the
behaviour of the numerical model.

After 3D printing, we cleaned the metamaterial from the liquid resin and removed the supports,
which were necessary to print specific material sections, as the printer can only produce rigid material
from the bottom to the top. The resulting 3D samples of the metamaterials are shown in Fig. 6.

Figure 6: 3D printed metamaterials with hexagonal (left) and cubic (right) microstructure.
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6.2 Experimental results

Using the open-hardware Thymos loading machine (shown in Fig. 7) controlled with a computer,
we subjected the metamaterial sample to uniaxial compression. Each loading step involved a
prescribed 0.2 mm vertical compression, which induced horizontal deformation due to Poisson’s effect.
Deformed state was captured by a DSLR camera, supplemented with two LED ligths to provide
optimal lighting conditions. To reduced the friction between the loading plates and the tested sample
and thus mimic the uniaxial compression, we applied a graphite powder to the surface between the
sample and the loading machine. The lateral deformations of the tested sample were measured in
AutoCAD software and then, along with the prescribed deformation, substituted into the formula
for Poisson’s ratio defined in Eq. (40), representing the negative ratio of derived (horizontal) and
prescribed (vertical) deformation.

Our experimental results, depicted as crosses in Fig. 5, demonstrate a highly accurate alignment
with the numerical results. To enhance clarity, we present here the average values from individual
measurements of Poisson’s ratio, since their differences were minimal and not distinctly visible in the
resulting graph. Poisson’s ratio values were determined within the deformation interval corresponding
to the linear deformation assumptions of our numerical model. In this interval, no buckling of beams
was observed and the overall response was linear.

Figure 7: Loading system.
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7 Summary

In this work, we investigated the influence of the geometry controlled by the angle δ in the bow-tie
part of the microstructure on the effective Poisson’s ratios of two three-dimensional metamaterials.
Their PUCs were modelled with discrete beam elements, and the effective metamaterial properties
were determined using Direct Stiffness Method and the first-order numerical homogenisation, resulting
in a connection between their microstructure and macroscopic behaviour. Numerical results were
validated against experiments performed on 3D printed samples loaded in a custom open-hardware
test rig Thymos, showing a good agreement between experiments and numerical predictions.

Given the symmetries of both investigated microstructural geometries, we obtain three distinct
values of Poisson’s ratios as functions of angle δ. Two of these values decrease monotonically with
increasing angle δ, while the remaining value (the same for νyx and νzx) exhibits a minimum within
the studied range of ν. The cubic PUC features the minimum value νyx = −1.98 for δ = 13.78°, while
the hexagonal PUC achieves the minimum value νyx = −1.55 for δ = 15.92°.

In conclusion, only the cubic PUC delivers auxetic behaviour in all directions for all investigated
values of δ. The hexagonal PUC shares the same trait for δ ≥ 10.56°.
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