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Abstrakt

Dizertační práce se zabývá různými aspekty metody diskrétních prvků (DEM) a její aplikací
pro modelování porušování betonu a také kombinací DEM s metodou konečných prvků
(FEM).

Základní vlastnosti náhodných hustých částicových shluků (jelikož tyto jsou obvyklé
počáteční nastavení DEM simulací) jsou analyzovány pro různý počet částic. Pružné vlast-
nosti takovýchto shluků jsou zkoumány analyticky i numericky. Numerické výrazy jsou od-
vozeny na základě mikroploškové teorie. Numerické výsledky jsou získány pomocí DEM
a FEM simulací. Velmi dobré shody mezi analytickými a numerickými výsledky je dosa-
ženo pro interakční poměr větší než 1.25. Analyticky odvozený plný tenzor pružné tuhosti
se velmi dobře shoduje s numerickými výsledky i pro nižší hodnoty interakčního poměru,
avšak hodnoty Youngova modulu pružnosti a Poissonova součinitele odvozené za před-
pokladu rovnoměrného rozdělení směrů vazeb vykazují jistou odchylku od numerických
výsledků.

Nespojitost je základní vlastností DEM. V některých situacích je však žádoucí převést
nespojité veličiny (např. síly) na odpovídajíci spojitou veličinu (např. tenzor napětí). Je před-
staveno vyhodnocení tenzoru napětí a couple stress tenzoru z nespojitých sil. Metoda je
založena na principu virtuálních prací. Jsou představeny nové výrazy pro couple stress ten-
zor, jejichž výsledek je jedinečný a nezávislý na volbě počátku souřadnicového systému.

DEM i FEM mají své oblasti použití, někdy ale spolu mohou být vhodně zkombinovány.
V souběžných kombinačních přístupech běží DEM i FEM simulace současně. Je před-
stavena kombinace FEM programu OOFEM a DEM programu YADE. Je popsáno několik
různých přístupů (jmenovitě povrchové, objemové, víceúrovňové a kontaktní), každý z nich
ilustrovaný na jednoduchém případě.

Sériová DEM–FEM kombinace (kdy DEM simulace probíhá první a její výsledek je pře-
veden jako počáteční stav FEM simulace) poškozujícího se betonového materiálu je před-
stavena na příkladu jednoosého tlaku. Metoda prokázala schopnost poměrně dobře vy-
stihnout přechod z DEM do FEM pro různé módy zatížení – mapování v různých stádiích
(pružná oblast, vrchol pevnosti, změkčení atd.). Výsledky se nejvíce liší v těch oblastech
zatížení, kde se samotné DEM a FEM materiálové modely liší nejvíce.

Ve stavební praxi je beton obvykle idealizován jako homogenní izotropní materiál. Ně-
které aplikace však vyžadují popis betonu na nižší úrovni a musí se uvažovat nestejnoro-
dosti. Je představen vývoj a výsledky nového mezoúrovňového modelu pro beton. Model
uvažuje nestejnorodou mezoúroveň betonu (t.j. zrna kameniva a zónu rozhraní mezi kame-
nivem a matricí). Validace vzhledem k experimentálním výsledkům přebraným z literatury
prokázala schopnost modelu realisticky vystihnout trendy různých materiálových vlastností
(modulu pružnosti, tahové a tlakové pevnosti, lomové energie) vzhledem k mezoúrovňové
struktuře materiálu.

Klíčová slova: Metoda diskrétních prvků, metoda konečných prvků, kombinování metod,
Python, beton, mezoúroveň
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Abstract

The presented thesis deals with various aspects of the discrete element method (DEM) with
application to modeling of concrete failure and combination of DEM with the finite element
method (FEM).

Basic properties (e.g., isotropy) of random densely packed particle assemblies (as
a usual initial DEM packing configuration) are analyzed for various numbers of particles.
Elastic properties of such packings are investigated both analytically and numerically. The
analytical formulas are derived based on the microplane theory. The numerical results are
obtained by DEM and FEM simulations. A very good agreement between analytical and
numerical results is found for interaction ratios greater than 1.25. For lower values of the
interaction ratio, the analytically derived full stiffness tensor corresponds to the numerical
results very well, however, the values of Young’s modulus and Poisson’s ratio estimated
based on the assumption of uniform distribution of link directions exhibit a certain discrep-
ancy from the numerical results.

The discrete nature is an essential feature of DEM. However, in some cases it is desir-
able to transform such discrete information (contact forces for instance) into its continuum
counterpart (e.g., stress tensor). The evaluation of the stress tensor and couple stress ten-
sor from discrete forces based on the principle of virtual work is reviewed. New formulas for
the couple stress tensor, yielding a unique value of the couple stress tensor independent
on the choice of the coordinate reference point, are presented and discussed.

Both DEM and FEM have their fields of application, however, in certain cases they
can be combined and used together. In the concurrent coupling approach, both DEM and
FEM simulations are run at the same time. Coupling of FEM code OOFEM and DEM
code YADE is described. Several classes of coupling approaches (namely surface, direct
volume, multiscale and contact) are addressed and illustrated on simple examples.

A DEM to FEM sequential coupling (in which case the DEM simulation is run first and
the resulting state is converted into an initial state of the FEM simulation) of damaged
concrete material is presented for the case of uniaxial compression. The method is proven
to be able to capture the transition from DEM to FEM relatively well for several different
loading scenarios – mapping at different stages (elastic range, peak load, softening regime,
with or without unloading etc.). The most divergent results are obtained for the stages of
loading where the DEM and FEM material models themselves differ the most.

In practical civil engineering, concrete is usually idealized as a homogeneous isotropic
material. However, certain applications require description of concrete on a lower scale
and heterogeneity has to be taken into account. The development and results of a new
mesoscale discrete element model for concrete is described. The model takes into ac-
count the heterogeneous mesoscale structure of concrete (i.e., aggregates and interfacial
transition zone between aggregates and matrix). The validation against experimental data
from literature shows the ability of the model to realistically capture trends of various ma-
terial properties (elastic modulus, tensile and compressive strength, fracture energy) with
respect to the actual mesoscale structure of the material.

Keywords: Discrete Element Method, Finite Element Method, multimethod coupling,
Python, concrete, mesoscale
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1 INTRODUCTION 1

1 Introduction

Concrete is a composite material composed of inclusions (gravel and sand aggregates)
embedded in a cement (or similar binder) matrix and is the most widely used building ma-
terial. Therefore it has been in various contexts subjected to extensive research. From
material modeling point of view, the objective is to describe the behavior of concrete under
different circumstances and help to predict its behavior in specific situations, e.g., predict
deflections of a concrete bridge during its lifetime. The range of methods and approaches
to describe concrete behavior is wide – models on different scales (from atomistic to struc-
tural level), applicability to specific load cases (from statics to explosive impact dynamics,
uniaxial vs. multiaxial loadings . . . ), application in the context of different numerical meth-
ods, etc. The right approach depends on purpose, resources (on computational simulation
time for instance), available input data and so on.

In practical civil engineering, concrete is usually idealized as a homogeneous isotropic
material. Indeed, considering heterogeneities (aggregates) in analyses of building-sized
structures would be very impractical or even impossible. However, certain applications
require description of concrete on lower than structural scales and heterogeneity (e.g.,
presence of aggregates) has to be taken into account.

The basic behavior and structural response of concrete structures may be described
analytically (for example a beam structure in the elastic range). Introducing more and more
enhancements and features of the models leads to analytical unsolvability and numerical
methods, usually with the help of computers, have to be introduced.

Numerical simulations are an indispensable part of the current engineering and science
development. For different engineering areas there are different numerical methods used.
In solid phase mechanics, the leading methods are the finite element method (FEM) and
the discrete (distinct) element method (DEM). FEM is rigorously derived from the contin-
uum theory and is being used for the description of deformable continuous bodies, while
DEM describes particulate materials, usually modeled by perfectly rigid particles and their
interactions determined from fictitious overlaps of these rigid particles.

Often, an engineering problem can be modeled using only one of the aforementioned
methods. A steel beam would be simulated by FEM, a small assembly of gravel particles
by DEM. But what if we wanted to simulate an impact of the steel bar on the gravel? One
possible approach would be to split the problem into two domains (the steel part modeled
by FEM and the gravel part modeled by DEM) and appropriately couple them.

Usually, the solution is performed by a computer program, which is focused on a nar-
rower or wider class of problems (such as solid mechanics, fluid dynamics, heat analysis,
DEM etc.). If a combination of two classes of problems is required (coupling of mechanical
and heat analysis for instance), it is often possible to find a code allowing such approach.
However, in some cases, there exists no program that can solve the desired combination
of problems. For instance, it is possible to couple mechanical and heat analysis within the
chosen code, but we would like to use a special material model for mechanical analysis,
which is not implemented.

One possible approach to deal with such situation would be to write a new or extend an
existing program implementing the requested features. Another possible approach would
be to use existing independently developed codes, each one focused on a specific class of
problems, and “glue” them together.
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There are countless software programs for both FEM and DEM. Some of them are
commercial (usually) without possibility to change the code and adjust the behavior to
our requirements (combination with another software for instance). However, there exist
programs with open source code, which the user can modify, possibly for coupling with
other programs. In this thesis, coupling of FEM code OOFEM and DEM code YADE is
described and illustrated.

The presented research was partially supported by an industrial partner. Some results
are not presented due to confidentiality reasons.

The LATEX source code of the thesis and errata together with the source code of all
presented simulations and results will be available on the author’s GitHub sites.

1.1 Research objectives

The principal research objectives of this thesis are:

1. To investigate basic properties of particle models, namely the relation between micro-
and macroscopic elastic properties of random dense packings in terms of analytical
formulas and results of numerical simulations. Preparation and properties of random
dense packings should be investigated beforehand.

2. To develop open source tools for combination of the discrete element method and
the finite element method. Several classes of combination approaches together with
simple examples should be addressed.

3. To develop a mesoscale discrete element model for concrete. The model should take
into account the effect of aggregates and the interfacial transition zone (ITZ) between
aggregates and the matrix. The model should be validated against experimental data
from available literature.
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1.2 Thesis outline

The thesis is organized into several main parts.

∙ The first part deals with the discrete element method in general. A general intro-
duction to DEM is the topic of chapter 2. It also contains a brief description of the
cohesive particle model for concrete (CPM) which is used at several places in the
thesis. Chapter 3 investigates the relation of micro- and macroscopic properties of
particle models. Analytical formulas are described in detail and are compared to the
results of DEM and FEM numerical simulations. The last chapter of the first part gives
an review of the evaluation of the stress tensor and couple stress tensor from discrete
forces. New formulas for the couple stress tensor are presented and discussed.

∙ The topic of the second part is the combination of the finite element method and the
discrete element method. Concurrent coupling methods (in which case both FEM and
DEM simulations are run at the same time) are described in chapter 5. Sequential
DEM–FEM coupling (in which case the DEM simulation is run first and the resulting
state is converted into an initial state of the FEM simulation) with the application to
uniaxial compression of concrete is described in chapter 6.

∙ The third part describes the development and results of the new mesoscale discrete
element model for concrete. The literature overview is given in chapter 7. The new
model itself is presented in chapter 8.

∙ Appendix A summarizes mathematical and physical notation, terminology, conven-
tions and “generally known” theory used throughout the thesis.

∙ Publications of the author are listed in appendix B.
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Discrete Element Method
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2 Discrete element method

The discrete (or distinct) element method (DEM) is a widely used numerical tool of solid
mechanics, mostly for dynamic problems, yet most widely for short-time events. DEM
represents the material as a set of perfectly rigid units (referred to as discrete elements,
particles, bodies etc.). The name particle(s) will be used in this thesis for individual discrete
element(s). Particles interact with each other according to defined constitutive law(s).

DEM solves numerically equations of motion of individual particles P.

f = mü c = I · �̈�𝜑𝜑𝜑 (2.1)

f, m, ü, c, I and �̈�𝜑𝜑𝜑 denotes force vector, mass, acceleration vector, force moment (also re-
ferred as couple) vector, inertia tensor and angular acceleration vector, respectively. Forces
and moments occurring in the equations of motion can be of prescribed nature (e.g., gravity,
drag force or imposed boundary conditions) or are the result of inter-particle interactions.
According to the specific use, these interactions are also denoted as links, bonds etc. The
name link(s) will be used in this thesis for individual inter-particle interactions.

In its basic version, DEM is naturally applicable for modeling of granular materials (as
in its very first application [21]). Using different particle shapes and different contact laws,
DEM can take various forms. See, e.g., [91] or the next classification section for more
information.

From computational point of view, detection of new contacts is an important part of the
numerical solution. A naive approach (testing each particle with all particles) has O(n2)
complexity and therefore more sophisticated approaches must be applied for larger scale
problems. Nowadays standard collision detection algorithms work with O(n log n) complex-
ity [91]. For special cases, contact detection algorithms even with linear complexity O(n)
were invented. The topic of contact detection is not addressed in this thesis in detail, inter-
ested readers are referred to [91, 65].

The equations of motion can be solved numerically using an implicit or explicit scheme.
The collisions (and therefore the stiffness matrix of the system) are not known in advance.
A “small” change of positions of particles can cause a sudden (“big”) change of the stiffness
of the system. For this reason, implicit integration schemes are in general not suitable
for numerical solution and an explicit time integration scheme is usually applied to solve
equations of motion (considering only the current configuration of the system to evaluate
the configuration in the next time step). Using an explicit integration scheme implies using
a sufficiently short time step to keep the simulation stable.

2.1 Brief classification

In general, DEM can be classified and its variants differ by many aspects. Some of them
are listed in this section.

Spatial dimensions

The solution can be formulated in 2D or 3D. In all cases below, the 3D case is consid-
ered, although the corresponding 2D alternative is possible. For instance, 2 translations
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and 1 rotation in 2D instead of 3 translations and 3 rotations in 3D or ellipse 2D analogy to
3D ellipsoid.

Shapes

Particles can be of various shapes. The simplest case is spherical shape. Other shapes
may be ellipsoids, polyhedrons, Minkowski sums (“rounded polyhedrons”), surfaces defined
by harmonic functions etc.

Discretization

DEM particles can either represent real particles (e.g., sand or gravel grains, masonry
stones or bricks etc.) or may be just artificial discretization units (as shown, e.g., in part III).

Degrees of freedom

Particles can possess 3 degrees of freedom (translation) or 6 degrees of freedom
(translation and rotation).

Constitutive laws and contact kinematics

Interaction constitutive laws define the interaction force (force to be applied on both
interacting particles with opposite direction) based on mutual configuration of interacting
particles. Simple models (including those described in this thesis) evaluate force based
on the mutual displacement and/or rotation of interacting particles. Other options (not
considered further in the thesis, see [91] for more details) may be force dependent on the
overlapping volume (used in YADE for polyhedral particles) or potential particles approach.

The basic mutual displacement-rotation-based modes are normal displacement, shear
displacement, bending mode and twisting mode. The considered mutual displacement-
rotation modes are strongly related to the considered constitutive law. For instance, if the
constitutive law is defined only in terms of the normal and shear force, evaluation of the
bending and twisting modes is omitted to save computational time. In the case of normal
and shear displacement and normal and shear forces, the basic constitutive quantities are
normal and shear stiffness k̄N and k̄T . The physical dimension of such stiffness is [N/m] as
it relates force [N] and displacement [m].

DEM works with discrete forces and displacements. However, it is usual that constitutive
models are formulated in terms of stresses and strains. The link is then considered as
a fictitious bar with fictitious length L, cross section area A and material stiffness Ē and
Ḡ. Strain can be defined as displacement divided by the fictitious length, stress as force
divided by the fictitious cross section area. The basic constitutive quantities are then normal
modulus Ē and shear modulus Ḡ of the fictitious material. The physical dimension of such
stiffness is [N/m2] as it relates stress [N/m2] and strain [-]. The relation of the stiffnesses is
given as

k̄N = Ē
A
L

. (2.2)

For instance, the length may be considered as the sum of radii of interacting particles
and cross section proportional to the average radius of interacting particles (e.g., A = r 2 or
A = 𝜋r 2).
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Cohesive links

Links between particles may be non-cohesive – they are deleted if there is no overlap of
the interacting particles – or cohesive – force is transmitted even if the interacting particles
are “farther away” from each other. Usually the cohesive approach models an initially
continuous material with the possible generation of discontinuities. If a DEM model contains
cohesive links (bonds), it is sometimes referred to as Bonded Particle Model (BPM).

2.2 YADE

YADE (Yet Another Dynamic Engine) [91] is an open source software for DEM analysis.
Its core is written in C++ (providing efficient execution of time consuming routines), user
interface is written in Python (modern dynamic object oriented scripting language, provid-
ing easy to use scripting while preserving the C++ efficiency). Extensible object oriented
architecture allows independent implementation of new features - new material model or
new particle shapes for instance.

All DEM results presented in this thesis were computed using YADE software.

2.3 DEM extensions

Clumps - rigid compounds

Several particles can be clumped together to form a multi-particle rigid body. This ap-
proach can be applied to increase the mass of “macro-particles” and thus increase the
critical time step or to approximate a complex shape with a set of simple shapes (to ap-
proximate a polyhedron with spheres for instance). In the latter case, the mass and inertia
of the resulting compound are defined independently of its constituents.

Clumps are one option how to model stiffer and stronger grains, e.g., concrete aggre-
gates within mortar matrix.

Periodic boundary conditions

Periodic boundary conditions (or more precisely periodic contact detection and interac-
tion evaluation) is a technique to avoid boundary effects or to decrease the domain size of
problems with uniform strain or a theoretically infinite domain.

Periodic contact detection takes into account also interaction of particles with periodic
images of other particles. See figure 2.1 for illustration. The periodic interaction evaluation
(between particles JK for instance) is then performed as if particle K was placed at position
K ′ instead of its real position.

The periodicity is defined by the size of the periodic cell and its transformation (the
deformation gradient F). Change of the transformation F influences the position of periodic
images of real particles and therefore inter-particle forces (see figure 2.1). The change of
F can thus be used to impose macroscopic deformation.

See [91, 92] for more technical details (description of periodic contact detection algo-
rithms for instance). As discussed in [88], this kind of periodic boundary conditions is not
suitable for modeling problems that involve strain localization.
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J

J ′

K

K ′

Figure 2.1: 2D illustration of a periodic packing with initial (left) and deformed
(right) periodic cell

2.4 Initial packing

The initial particle packing is an important part of DEM simulations (similarly to FEM mesh
generation). Regular packings are easy and quick to generate, but are often not suitable
for realistic simulations (exhibiting predefined directions of defects, having given anisotropy
etc.). Therefore the initial sample is usually a random packing of particles. Although being
random, it must at the same time satisfy certain criteria and properties (porosity, particle
size distribution, coordination number, packing fraction etc.).

Two main classes of approaches exist for the initial packing preparation: geometric (see,
e.g., [48]) and dynamic (see, e.g., [91]). The geometric approaches generate positions and
sizes of particles purely based on geometry (once again similarly to mesh generation),
while dynamic approaches run actually an auxiliary DEM simulation (to prepare initial data
for the desired DEM simulation).

Dynamic approaches usually start with random loose packing (which is easy to gener-
ate) and continue with compaction. The compaction stage may be, e.g., gravity deposition
or triaxial compression. In the case of the triaxial compression, the sample is first com-
pressed up to a certain level of hydrostatic stress and then unloaded to a defined residual
stress level.

A problem of dynamic packing generation is that the required time increases signifi-
cantly for the increasing number of particles. For the case of triaxial compression as the
compaction phase, one possible solution to save time is to compress only a limited amount
of particles periodically, resulting in a periodic unit cell. The periodic cell is then copied
wherever needed for the desired initial sample and cropped to meet geometric require-
ments. With this approach, a sample of any size is generated at (almost) constant time.

Figure 2.2 shows packing fractions of the periodic compaction for various numbers of
particles with a convergence to the value ≈ 0.61. Figure 2.3 shows spatial isotropy of inter-
particle links. For the evaluation, only link directions with absolute value of z coordinate
less than 0.7 were extracted. Then they were projected into xy plane, converted to angle
in the range [0, 𝜋) and put into 32 bins. Amounts of directions in corresponding bins are
plotted. The grey circle means average value.

As a consequence of this geometric isotropy, the resulting elastic material parameters
are (almost) isotropic, too. See chapter 3 for more information.
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Figure 2.2: Packing fraction of dynamic periodic compaction for various
numbers of particles

Figure 2.3: Isotropy of links for N = 4000 and 𝜄r = 1.5

2.5 Cohesive particle model for concrete

The cohesive particle model for concrete (CPM) is a material model for the discrete element
method with the aim to model concrete failure. The model is described in detail in [92]
together with its extensions for confined loadings and loading at high strain rates. Only its
basic version needed for the purposes of the thesis is reviewed in this section. Furthermore,
only the version for spherical packings with uniform radius is considered.

The model is formulated in terms of stress and strain. It evaluates normal and shear
stress based on normal and shear strain, material parameters and history variables. Mate-
rial parameters and history variables are listed in table 2.1. Strain and stress evaluation is
described in the following subsections.

2.5.1 Contact kinematics

Consider two spherical particles J and K with centers pJ and pK , respectively.
When a link (cohesive or not) between the two particles is created, the original length

of the link
L = ||p0

K − p0
J ||. (2.3)

is computed and stored. The superscript 0 denotes the value at the time of the link creation.

2.5.1.1 Normal strain

Normal contact displacement of the link is defined as the difference between the current
and original link length

uN = ||pK − pJ || − L. (2.4)
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See figure 2.4.
The normal strain is simply the normal displacement divided by the original length of

the link:

𝜀N =
uN

L
𝜀N = 𝜀Nn. (2.5)

p0
J p0

K
pJ

pKuN

Figure 2.4: 2D illustration of the normal displacement of the link

2.5.1.2 Shear strain

While the normal displacement and strain are computed directly, the situation with shear
displacement and strain is somewhat more complicated. The link geometry is defined by
the two centers, uniquely defining the contact point

c =
1
2

(pJ + pK ), (2.6)

the link direction expressed by a unit vector

n =
pK − pJ

||pK − pJ ||
(2.7)

and a plane perpendicular to this direction. The local coordinate system is therefore not
uniquely defined. For this reason, the shear components are evaluated in the global coor-
dinate system. In YADE implementation, the shear displacement is updated incrementally
in each integration step. The increment consists in projecting the previous shear displace-
ment such that it remains perpendicular to the current direction vector. Then the actual
shear displacement increment is computed with respect to current n and linear and angu-
lar velocities of interacting spheres

vJK = (vK + dK n × 𝜔K ) − (vJ + dJn × 𝜔J) (2.8)

projected to the direction vector

v⊥
JK = vJK − n(n · vJK ) (2.9)

The values dP are distance from the contact point to the center of corresponding particle P

dP = ||c − pP ||, (2.10)
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which reduces to
dJ = dK =

1
2
||pK − pJ || (2.11)

for the case of equally sized spheres.
Shear displacement increment is computed as the shear velocity multiplied by time

increment
ΔuT = v⊥

JKΔt . (2.12)

See [91, 92] or figure 2.5 for more details.

uT

Figure 2.5: 2D illustration of the shear displacement of the link

2.5.2 Constitutive law

Table 2.1: CPM material parameters and history variables

Material parameter symbol units

normal modulus Ē Pa

limit elastic strain 𝜀0 -

strain defining softening 𝜀f -

shear modulus Ḡ Pa

initial cohesion c0 Pa

friction angle 𝜙 -

History variable symbol units

damage variable 𝜔 -

historically maximum strain 𝜅 -

shear plastic strain 𝜀p
T -

Forces needed by the DEM program for equations of motion are simply the stress val-
ues multiplied by the cross section area:

fN = A𝜎N fN = fNn fT = A𝜎T . (2.13)

The cross section area is considered as

A = 𝜋r 2, (2.14)

where r is the radius of the spheres.
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2.5.2.1 Normal stress

𝜀0 𝜀0 + 𝜀f

1

Ē
𝜎

N

𝜀N

Figure 2.6: Physical meaning of CPM material parameters in normal direction

strain

stress

1
(1 − 𝜔)Ē

Figure 2.7: CPM in normal direction - illustration of unloading and reloading
and stiffness reduction due to damage

Constitutive law in the normal direction is inspired by (1D) damage mechanics and
defines normal stress 𝜎N in terms of normal strain 𝜀N

𝜎N = [1 − 𝜔H(𝜀N)]Ē𝜀N . (2.15)

Ē is the normal modulus and defines the elastic slope in the normal direction. 𝜔 ∈ [0, 1]
is the damage variable which influences stiffness for unloading and reloading in the tensile
regime. The Heaviside function H(𝜀N) deactivates damage influence in compression, which
physically corresponds to crack closure. 𝜔 is computed based on the damage evolution
function g defined in terms of historically maximum normal strain 𝜅 and material parameters
𝜀0 and 𝜀f :

𝜅 = max
t

(𝜀N) (2.16)

𝜔 = g(𝜅) = 1 − 𝜀0

𝜅
exp

(︂
−𝜅− 𝜀0

𝜀f

)︂
(2.17)

𝜀0 defines the elastic limit strain (the product Ē𝜀0 equals the link tensile strength). 𝜀f defines
the initial softening slope and therefore controls the softening branch. See figures 2.6 and
2.7 for illustration.
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2.5.2.2 Shear stresses

𝜎N

±||𝜎T ||

c1
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�̇�p

T
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𝜎T2�̇�p
T

Figure 2.8: Plasticity surface in shear direction

c − 𝜎N tan𝜙

1

Ḡ

1

Ḡ||𝜎
T
||

||𝜀T ||

Figure 2.9: Stress strain diagram in shear direction

Constitutive law in the shear direction is inspired by plasticity and defines shear stress
𝜎T in terms of shear strain 𝜀T

𝜎T = Ḡ(𝜀T − 𝜀p
T ). (2.18)

Ḡ is the shear modulus and defines the elastic slope in the shear direction. 𝜀p
T is the shear

plastic strain.
The shear stress is limited by the Mohr-Coulomb-like plasticity condition

f (𝜎N ,𝜎T ) = ||𝜎T || − (c − 𝜎N tan𝜙) ≤ 0 c = (1 − 𝜔)c0. (2.19)

Cohesion c is computed from material parameter initial cohesion c0 and the damage vari-
able 𝜔 and defines the limit shear stress in pure shear loading. Internal angle 𝜙 determines
the influence of normal stress on the plasticity condition. See figures 2.8 and 2.9 for illus-
tration.

The non-associated plastic flow rule

�̇�p
T = �̇�

𝜎T

||𝜎T ||
(2.20)

is chosen for computational reasons. The stress return is then simply the radial return,
which can be evaluated directly (does not involve any iterative method). Furthermore, the
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plasticity in shear does not influence the normal direction. As a result, the normal stress
can be directly evaluated first (independently on the shear direction) and the shear stress
is directly evaluated afterwards (with already known damage variable 𝜔).

2.5.3 Structural behavior

Figure 2.10 shows results of uniaxial tension and uniaxial compression tests for several
sets of material parameters. The tests were performed on a 50×50×50 mm cubic sample
containing ≈ 50,000 particles, each of size (diameter) 2 mm. The boundary conditions are
imposed by prescribing the velocity of top and bottom boundary layers of particles. The
boundary particles are free to move in the lateral direction. The initial cohesive links were
created considering interaction ratio 𝜄r = 1.5.

In this illustrative example, the results are structural (macroscopic) Young’s modulus E ,
tensile strength ft and compressive strength fc. The material parameters are Ē , Ḡ, 𝜀0, 𝜀f , c
and 𝜙, see table 2.1. In general, the macroscopic quantities could be considered to depend
on all material parameters:

E = f (Ē , Ḡ, 𝜀0, 𝜀f , c,𝜙) (2.21)

ft = f (Ē , Ḡ, 𝜀0, 𝜀f , c,𝜙) (2.22)

fc = f (Ē , Ḡ, 𝜀0, 𝜀f , c,𝜙). (2.23)

Using the dimensional analysis, both micro- and macroscopic parameters can be trans-
formed into a set of dimensionally independent or dimensionless parameters. The initial
functions f (∙) are transformed into new functions 𝜋(∙). Firstly, macroscopic elastic param-
eters depend only on microscopic elastic parameters (as discussed in chapter 3):

E = Ē𝜋E

(︂
Ḡ
Ē

)︂
. (2.24)

The inelastic parameters are transformed in a similar way:

ft = Ē𝜀0𝜋ft

(︂
𝜀f

𝜀0
,

c
Ē𝜀0

,𝜙
)︂

(2.25)

fr =
fc
ft

= 𝜋fr

(︂
𝜀f

𝜀0
,

c
Ē𝜀0

,𝜙
)︂

. (2.26)

Ē𝜀0 represents the link tensile strength, 𝜀f/𝜀0 relative ductility and c/(Ē𝜀0) relative cohe-
sion.

Figure 2.10 shows results for varying link stiffness, link strength and both link stiffness
and link strength. The other quantities (𝜀0, 𝜙, 𝜀f/𝜀0 and c/(Ē𝜀0)) are the same for all
four simulations. The macroscopic response is close to the theoretical expectations and
therefore the macroscopic stiffness and strength can be easily estimated based on the link
stiffness and link tensile strength. This approach is applied in chapter 8.
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Table 2.2: Material parameters used for illustrative stress-strain curves in
figure 2.10

simulation Ē/Ē1 (Ē𝜀0)/(Ē/𝜀0)1

1 1 1

2 1 2

3 2 1

4 2 2
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Figure 2.10: Uniaxial tension and compression results of CPM model with
material parameters according to table 2.2
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3 Macroscopic elastic properties of DEM
models

The particle model investigated in this chapter consists of rigid spheres with uniform ra-
dius r connected by links that can transmit normal stress and shear stress. Each particle
possesses six degrees of freedom, three translations and three rotations.

Initially, particles whose center distance L is less than 2r 𝜄r (where 𝜄r is called interaction
ratio) are connected by cohesive links. Each link is characterized by its length L (distance
between centers of connected particles), unit normal vector n and fictitious cross section
area

A = 𝛼r 2. (3.1)

𝛼 may differ for specific constitutive law formulations, usual values are 𝛼 = 1 or 𝛼 = 𝜋.
Links in our model have normal and shear (or transversal) elastic fictitious material

stiffness Ē and Ḡ [Pa] and normal and shear link stiffness k̄N = ĒA
L and k̄T = ḠA

L [N/m] (see
section 2.5).

In a cube of dimension C and volume V = C3 consider a random, densely packed
assembly of spherical particles with radius r (see section 2.4). If the number of particles
N is high enough, the assembly behaves macroscopically as an isotropic material. The
elastic properties of that macroscopic material are determined by two material constants,
for example Young’s modulus E and Poisson ratio 𝜈. In a very general case, we can express
the macroscopic material properties as functions of all relevant variables:

E = fE
(︀
Ē , Ḡ, r , 𝜄r , C, N, A

)︀
(3.2)

𝜈 = f𝜈
(︀
Ē , Ḡ, r , 𝜄r , C, N, A

)︀
(3.3)

Using dimensional analysis we can identify two dimensionally independent variables
(e.g., Ē and r ) and two dimensionless variables 𝜄r and N. Applying Buckingham 𝜋 theorem,
we can rewrite equations (3.2) and (3.3) in terms of new dimensionless variables as

E
Ē

= 𝜋E

(︂
Ḡ
Ē

,
r 2

A
,

r
C

, 𝜄r , N
)︂

(3.4)

𝜈 = 𝜋𝜈

(︂
Ḡ
Ē

,
r 2

A
,

r
C

, 𝜄r , N
)︂

(3.5)

Based on physical considerations, most of the dimensionless variables on the right side of
(3.4) and (3.5) can be eliminated:

In principle, the number of particles N could be considered as independent of the rel-
ative particle size r/C. However, we are interested in the behavior of densely packed
assemblies of particles, which are prepared by a simulated compaction process. It turns
out that, for large values of N, the packing fraction

PF =
Vparticles

Vtotal
=

4𝜋Nr 3

3C3
(3.6)

tends to a constant, approximately equal to 0.612, which is close to the value 0.64 (theoret-
ical maximum packing fraction for random close packing [96]), see section 2.4. Therefore,
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the ratio r/C for such dense assemblies can be determined from N and does not need to
be considered as an independent variable.

Furthermore, as N tends to infinity, the macroscopic properties approach a certain limit,
which represents the effective properties of an equivalent elastic continuum. If it is chosen
sufficiently high, the corresponding periodic cell is a representative volume element and its
properties are close to the theoretical limit. Therefore, N does not need to be considered
as a variable influencing the results, it just has to be chosen sufficiently high.

The ratio r 2/A is taken as constant, according to equation (3.1). Even if it was not,
the dependence of the macroscopic properties on this ratio would be very simple. Young’s
modulus (or any other elastic stiffness) would be inversely proportional to r 2/A and the
Poisson’s ratio would not depend on it at all.

After all these considerations, we can rewrite the relationship between macro- and mi-
croscopic material parameters as

E
Ē

= 𝜋E

(︂
Ḡ
Ē

, 𝜄r

)︂
(3.7)

𝜈 = 𝜋𝜈

(︂
Ḡ
Ē

, 𝜄r

)︂
(3.8)

The specific forms of equations (3.7) and (3.8) are addressed in following sections.

3.1 Theoretical analytical values

The presented derivation of analytical evaluation of elastic constants is a generalized ver-
sion of [51].

Given a vector v and a unit vector n, v can be split into the part parallel to n and the
part perpendicular to n denoted by subscript N and T , respectively:

v = vN + vT

vN = (v · n)n = vNn
vN = v · n
vT = v − vN = v − (v · n)n = v − vNn.

(3.9)

The stiffness tensor DDDDe is derived bases on the stress tensor 𝜎 induced by the pre-
scribed strain tensor 𝜀𝜀𝜀𝜀. Displacement of particles is assumed to be linear governed by
strain tensor

uP = xP · 𝜀𝜀𝜀𝜀. (3.10)

Each link c is considered as a fictitious bar connecting particles J and K with branch
vector lc, length Lc and unit direction (normal) vector nc related as

lc = xK − xJ Lc = ||lc|| =
√

lc · lc nc =
lc

||lc||
=

lc

Lc
lc = Lcnc. (3.11)

The change of the branch vector (relative displacement) is given by the displacement of
particles as

Δlc = uK − uJ = xK · 𝜀𝜀𝜀𝜀− xJ · 𝜀𝜀𝜀𝜀 = (xK − xJ) · 𝜀𝜀𝜀𝜀 = lc · 𝜀𝜀𝜀𝜀. (3.12)

According to (3.9), the relative displacement can be split into normal and shear component:

Δlc = ΔLc
Nnc + ΔlcT . (3.13)
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Applying relations (3.9) and (3.11) and kinematic constraints (3.12):

ΔLc
N = Δlc · nc = lc · 𝜀𝜀𝜀𝜀 · nc = Lcnc · 𝜀𝜀𝜀𝜀 · nc = Lc(nc ⊗ nc) : 𝜀𝜀𝜀𝜀 = LcNc : 𝜀𝜀𝜀𝜀 (3.14)

ΔlcT = Δlc − ncΔLc
N = lc · 𝜀𝜀𝜀𝜀− nc(Lcnc ⊗ nc : 𝜀𝜀𝜀𝜀) = Lcnc · 𝜀𝜀𝜀𝜀− Lc(nc ⊗ nc ⊗ nc) : 𝜀𝜀𝜀𝜀 =

= Lcnc · IIIIS : 𝜀𝜀𝜀𝜀− Lc𝒩 c : 𝜀𝜀𝜀𝜀 = Lc𝒯 : 𝜀𝜀𝜀𝜀
(3.15)

where

N = n ⊗ n (3.16)
𝒩 = n ⊗ n ⊗ n = N ⊗ n = n ⊗ N (3.17)
NNNN = n ⊗ n ⊗ n ⊗ n = N ⊗ N (3.18)

𝒯 = n · IIIIS − n ⊗ n ⊗ n = n · IIIIS −𝒩 (3.19)

𝒯 T = IIIIS · n −𝒩 (3.20)

TTTT = 𝒯 T · 𝒯 = (IIIIS · n −𝒩 ) · (n · IIIIS −𝒩 ) =

= (IIIIS · n) · (n · IIIIS) − (IIIIS · n) ·𝒩 −𝒩 · (n · IIIIS) + 𝒩 ·𝒩 =

= (IIIIS · n) · (n · IIIIS) − NNNN− NNNN + NNNN = (IIIIS · n) · (n · IIIIS) − NNNN
(3.21)

are projection and auxiliary tensors.
Constitutive law assumes independent normal and shear direction and thus resulting

normal and shear forces are parallel to normal and shear relative displacements:

fc = ncf c
N + fc

T (3.22)

f c
N = k̄ c

NΔLc
N =

ĒAc

Lc
ΔLc

N (3.23)

fc
T = k̄c

TΔlcT =
ḠAc

Lc
ΔlcT . (3.24)

Substituting kinematic assumptions (3.14) and (3.15) yields

f c
N =

ĒAc

Lc
ΔLc

N = ĒAcNc : 𝜀𝜀𝜀𝜀 (3.25)

fc
T =

ḠAc

Lc
ΔlcT = ḠAc𝒯 c : 𝜀𝜀𝜀𝜀. (3.26)

Stress tensor is defined according to equation (4.56). Because both the strain tensor
𝜀𝜀𝜀𝜀 and the desired elastic stiffness tensor DDDDe is symmetric, we consider only the symmetric
part of the stress tensor in the derivation.

𝜎 =
1
V

∑︁
c

(lc ⊗ fc)S =
1
V

∑︁
c

(Lcnc ⊗ (ncf c
N + fc

T ))S =
1
V

∑︁
c

Lc(nc ⊗ ncf c
N + nc ⊗ fc

T )S =

=
1
V

∑︁
c

Lc(Ncf c
N + (nc ⊗ fc

T )S)

(3.27)
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The last term can be rewritten as

(n ⊗ fT )S = (fT ⊗ n)S = IIIIS : (fT ⊗ n) = (IIIIS · n) · fT −𝒩 · fT =

= (IIIIS · n −𝒩 ) · fT = 𝒯 T · fT .
(3.28)

The term 𝒩 ·fT is zero (normal vector n is perpendicular to the shear force fT ) and is added
to get consistent formalism.

Substituting constitutive assumptions (3.26) yields

𝜎 =
1
V

∑︁
c

Lc
(︁

Ncf c
N + 𝒯 cT · fc

T

)︁
=

=
1
V

∑︁
c

Lc
(︁

Nc
(︀
ĒAcNc : 𝜀𝜀𝜀𝜀

)︀
+ 𝒯 cT ·

(︀
ḠAc𝒯 c : 𝜀𝜀𝜀𝜀

)︀)︁
=

=
1
V

∑︁
c

LcAc
(︁

Ē
(︀
Nc ⊗ Nc

)︀
: 𝜀𝜀𝜀𝜀 + Ḡ

(︁
𝒯 cT · 𝒯 c

)︁
: 𝜀𝜀𝜀𝜀
)︁

=

=
1
V

∑︁
c

LcAc
(︀
ĒNNNNc + ḠTTTTc

)︀
: 𝜀𝜀𝜀𝜀.

(3.29)

Comparison to the elastic stress-strain law (A.119)

𝜎 = DDDDe : 𝜀𝜀𝜀𝜀 (3.30)

yields the expression of stiffness tensor

DDDDe =
1
V

∑︁
c

LcAc
(︀
ĒNNNNc + ḠTTTTc

)︀
. (3.31)

According to [51], sum of terms dependent on direction nc can be approximated with
an integral over solid angle

Nc∑︁
c

f
(︀
nc
)︀

=
Nc

4𝜋

∫︁
Ω

f (n) dΩ. (3.32)

The integration domain here is the surface of the unit sphere and Nc is number of contacts.
Using identities (A.127) and (A.128)∫︁

Ω

NNNN dΩ =
∫︁
Ω

n ⊗ n ⊗ n ⊗ n dΩ =
4𝜋
15

(︀
3IIIIV + 2IIIIS

)︀
(3.33)

∫︁
Ω

TTTT dΩ =
∫︁
Ω

(︀
IIIIS · n

)︀
·
(︀
n · IIIIS

)︀
− NNNN dΩ =

∫︁
Ω

(︀
IIIIS · n

)︀
·
(︀
n · IIIIS

)︀
dΩ−

∫︁
Ω

NNNN dΩ =

=
4𝜋
3
IIIIS − 4𝜋

15

(︀
3IIIIV + 2IIIIS

)︀
=

4𝜋
5

(︀
IIIIS − IIIIV

)︀
,

(3.34)

applying approximation (3.32) and assuming the uniform distribution of branch lengths and
cross section areas gives∑︁

c

LcAcf
(︀
nc
)︀
≈
∑︁

c

∑︀
c LcAc

Nc
f (nc) =

∑︀
c LcAc

Nc

∑︁
c

f (nc) ≈

≈
∑︀

c LcAc

Nc
· Nc

4𝜋

∫︁
Ω

f (n) =
∑︀

c LcAc

4𝜋

∫︁
Ω

f (n)

(3.35)
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yields

DDDDe =
1
V

∑︁
c

LcAc
(︀
ĒNNNNc + ḠTTTTc

)︀
≈ Nc

4𝜋V

∫︁
Ω

LcAc
(︀
ĒNNNN + ḠTTTT

)︀
dΩ ≈

≈
∑︀

LcAc

4𝜋V

∫︁
Ω

ĒNNNN + ḠTTTT dΩ =
∑︀

LA
4𝜋V

(︂
Ē

4𝜋
15

(︀
3IIIIV + 2IIIIS

)︀
Ḡ

4𝜋
5

(︀
IIIIS − IIIIV

)︀)︂
=

=
∑︀

LcAc

5V

(︀
Ē − Ḡ

)︀
IIIIV +

∑︀
LcAc

15V

(︀
2Ē + 3Ḡ

)︀
IIIIS.

(3.36)

Comparing with the Hooke’s law (A.123)

DDDDe =
3E𝜈

(1 + 𝜈)(1 − 2𝜈)
IIIIV +

E
1 + 𝜈

IIIIS (3.37)

yields the approximation of macroscopic elastic constants

E =
∑︀

LcAc

3V
·

Ē
(︀
2Ē + 3Ḡ

)︀
4Ē + Ḡ

𝜈 =
Ē − Ḡ
4Ē + Ḡ

. (3.38)

See also codes/scripts/tests/macroelastic.py.

3.2 Static FEM solution

The links fictitiously connect centers of particles and can be represented by bars with length
L and cross section area A. In the FEM solution described below, particles are modeled as
nodes with six degrees of freedom, three displacements and three rotations

u = {u1, u2, u3}T 𝜑𝜑𝜑𝜑 = {𝜑1,𝜑2,𝜑3}T (3.39)

respectively. Links are modeled as beam-like finite elements.
Each particle (node) P has center pP and a nodal displacement vector

dP =

{︃
u
𝜑𝜑𝜑𝜑

}︃
= {u1, u2, u3,𝜑1,𝜑2,𝜑3}T. (3.40)

A nodal displacement vector of a link (finite element) is constructed by merging the
displacement vectors of connected particles J and K

d =

{︃
dJ

dK

}︃
= {uJ1, uJ2, uJ3,𝜑J1,𝜑J2,𝜑J3, uK 1, uK 2, uK 3,𝜑K 1,𝜑K 2,𝜑K 3}T. (3.41)

The values of d uniquely defines the contact displacement, i.e, the fictitious mutual dis-
placement at the center of the link, expressed in the local coordinate system of the link

uc =

{︃
uN

uT

}︃
=

⎧⎪⎨⎪⎩
uN

uT 1

uT 2

⎫⎪⎬⎪⎭ (3.42)

and the equivalent strain of the link

𝜀 =
1
L

uc. (3.43)
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The local coordinate system eN , eT 1, eT 2 is defined such that the first base vector

eN =
pK − pJ

||pK − pJ ||
, (3.44)

is a normalized vector given by the centers of connected particles, eT1 is chosen arbitrarily
but must be perpendicular to eN and finally the last base vector is defined by the cross
product

eT 2 = eN × eT 1. (3.45)

Its matrix representation is an orthogonal matrix with rows equal to local base vectors

R =

⎡⎢⎣ eT
N

eT
T1

eT
T2

⎤⎥⎦ , RT = R−1 (3.46)

and can be used to transform a vector from the global to the local coordinate system and
vice versa:

Ru = ul , R𝜑𝜑𝜑𝜑 = 𝜑𝜑𝜑𝜑l , RTul = u, RT𝜑𝜑𝜑𝜑l = 𝜑𝜑𝜑𝜑 (3.47)

The transformation matrix T transforms nodal displacement vector d from the global
coordinate system:

Td = dl , TTdl = d (3.48)

Because of the structure of d (3.41) and using (3.47) it has the form

T =

⎡⎢⎢⎢⎣
R · · ·
· R · ·
· · R ·
· · · R

⎤⎥⎥⎥⎦ . (3.49)

The relation between nodal displacements and equivalent strains can be rewritten in
the matrix form as

𝜀 = Bd = Bldl , (3.50)

where

Bl =
1
L

⎡⎢⎣−1 · · · · · 1 · · · · ·
· −1 · · · −L

2 · 1 · · · −L
2

· · −1 · L
2 · · · 1 · L

2 ·

⎤⎥⎦ (3.51)

is a strain-displacement (or geometric) matrix of the element with respect to the local coor-
dinate system. Using (3.50) and (3.48), the global geometric matrix B is defined as

𝜀 = Bd = Bldl = BlTTTdl = BlTd → B = BlT. (3.52)

Link stress vector

𝜎 =

{︃
𝜎N

𝜎T

}︃
=

⎧⎪⎨⎪⎩
𝜎N

𝜎T 1

𝜎T 2

⎫⎪⎬⎪⎭ =

⎧⎪⎨⎪⎩
Ē𝜀N

Ḡ𝜀T1

Ḡ𝜀T2

⎫⎪⎬⎪⎭ (3.53)

can be expressed in the matrix form
𝜎 = D𝜀 (3.54)
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with

D =

⎡⎢⎣Ē 0 0
0 Ḡ 0
0 0 Ḡ

⎤⎥⎦ (3.55)

being material stiffness matrix.
The link stiffness matrix is computed using the standard formula

K =
∫︁

V
BTDB dV = ALBTDB. (3.56)

Nodal forces can then be expressed as

f = Kd = ALBTDBd = ALBT𝜎. (3.57)

uJ1

uJ2 uK 1

uK 2

uN

uT 1

x1

x2
eN

eT 1

pJ

pK

Figure 3.1: Illustration of the global (left) and local (right) coordinate system of
the link

3.2.1 Periodic boundary conditions

J

J ′

K

K ′

Figure 3.2: 2D example of periodic cell and “periodic” links

Numerical simulations have been done on a representative cell with periodic boundary
conditions. The implementation of the periodic boundary conditions is analogous to the
implementation described by [40]. Elements crossing the boundary of the bounding cube
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(connecting one particle inside the cell with another particle physically located in one of
the neighboring cells) is modified in a special way. Consider such an element connecting
particles J ′ and K and a corresponding element connecting periodic images of these par-
ticles, denoted as J and K ′ (see Figure 3.2). Both elements are real links of the structure,
but for the analysis purposes only one of them is taken into account when setting up the
equilibrium equations (in our example we chose link JK ′).

Consider a macroscopic deformation

E = {E11, E22, E33, E23, E31, E12}T . (3.58)

Periodic boundary conditions are imposed by the set of constraint equations that contain
the components of E:

uK ′1 = uK 1 + E11k1C +
1
2

E12k2C +
1
2

E31k3C

uK ′2 = uK 2 + E22k2C +
1
2

E12k1C +
1
2

E23k3C

uK ′3 = uK 3 + E33k3C +
1
2

E31k1C +
1
2

E23k2C

𝜑K ′1 = 𝜑K 1

𝜑K ′2 = 𝜑K 2

𝜑K ′3 = 𝜑K 3

(3.59)

C is the dimension of the cubic periodic cell, constants k have integer values (usually −1,
0 or 1) and specify the position of the particle outside the cell according to the relations

xK ′1 = xK 1 + k1C
xK ′2 = xK 2 + k2C
xK ′3 = xK 3 + k3C.

(3.60)

Using equations (3.59), the displacement of connected particles J and K ′ (periodic image
of particle K ) can be written in terms of the displacements of particles J and K and the
macroscopic deformation as {︃

uJ

uK ′

}︃
= P

⎧⎪⎨⎪⎩
uJ

uK

E

⎫⎪⎬⎪⎭ (3.61)

The upper block (first 12×12 components out of 12×18) of the transformation matrix P
corresponds to the identity matrix, and the only non-zero components of the lower block
are in rows 7-9 and in columns 13-18:

13 14 15 16 17 18

P(7−9,13−18) = C

⎡⎢⎣k1 0 0 0 1
2k3

1
2k2

0 k2 0 1
2k3 0 1

2k1

0 0 k3
1
2k2

1
2k1 0

⎤⎥⎦ 7

8

9

(3.62)

Using the transformation matrix P, the modified stiffness matrix of the “periodic” ele-
ments (with 18 rows and 18 columns) can be expressed in the form

K = ALPTBTDBP. (3.63)
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The components of macroscopic deformation E are therefore considered as global degrees
of freedom. The corresponding “load” components are directly related to the macroscopic
stress (they are equal to the stress components multiplied by the volume of the cell). To
prevent displacement of the assembly as a rigid body, one particle needs to be “supported”
by setting its three displacements to zero.

3.2.2 OOFEM implementation

The results presented in this thesis are computed with OOFEM, version 2.0.

Particles are implemented in Particle class, which is derived from Node class. Inter-
actions are implemented in CohesiveSurface3d class, derived from StructuralElement
class.

For the periodic solution, a link finite element has three nodes – two physical nodes and
one node representing macroscopic deformation. The particle representing macroscopic
deformation has (by convention) coordinates equal to dimensions of the periodic cell and
has to be the third particle of the element. See the source codes for more information.

The implementation files of CohesiveSurface3d class were slightly refactored to corre-
spond with the description in the section (especially the computation of strain-displacement
matrix B) and can be found in the file codes/oofemyade/oofem-2.0/src/sm.

3.2.3 Evaluation

To obtain the macroscopic elastic stiffness matrix of a particle assembly, the assembly
is subjected to six simulations. In each simulation, one component of the macroscopic
deformation E is set to one while all the others are prescribed as zeros. The individual
components of the macroscopic stress then represent the coefficients in the corresponding
column of the macroscopic stiffness matrix De.

3.3 Dynamic DEM solution

For the sake of completeness, the results obtained by DEM are also presented. Periodic
boundary conditions according to section 2.3 are used. The macroscopic deformation is
controlled by the deformation of the periodic cell. Numerical damping helps to remove
kinetic energy from the system.

The evaluation is similar to the FEM case. The assembly is subjected to six simulations.
In each simulation, one component of the macroscopic deformation is set to a “small”
value 𝜀 while all the others are prescribed as zeros. The transformation matrix of the
periodic cell is adjusted according to the desired macroscopic deformation and the model
is relaxed to (almost) static equilibrium. The individual components of the macroscopic
stress divided by the value of 𝜀 then represent the coefficients in the corresponding column
of the macroscopic stiffness matrix De.



30 3 MACROSCOPIC ELASTIC PROPERTIES OF DEM MODELS

3.4 Results

3.4.1 Isotropy of elastic constants

Firstly, macroscopic isotropy and stability of results for a variable number of particles N has
been studied.

Ce = D−1
e =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
E1

−𝜈21
E2

−𝜈31
E3

· · ·
−𝜈12

E1

1
E2

−𝜈32
E3

· · ·
−𝜈13

E1
−𝜈23

E2

1
E3

· · ·
· · · 1

G23
· ·

· · · · 1
G31

·
· · · · · 1

G12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3.64)

Several particle assemblies have been analyzed and the macroscopic constants E and
𝜈 have been evaluated for a number of values of the dimensionless quantities 𝜄r and k̄T/k̄N .

The resulting material is first considered as orthotropic, with compliance matrix Ce

(3.64), from which E1, E2, E3, 𝜈12, 𝜈21, 𝜈13, 𝜈31, 𝜈23, and 𝜈32 are easily extracted. In the
ideal case of an isotropic material, all Young’s moduli and Poisson’s ratios would be iden-
tical. To verify that the results indeed closely correspond to an isotropic behavior is one of
the goals of this study.

The isotropy has been evaluated based on the following quantities:

∙ Relative anisotropy of Young’s modulus E

ΔE
E

=
maxi |Ei − Eavg|

Eavg
. (3.65)

Ei denotes i th computed modulus and Eavg their average value.

∙ Relative anisotropy of Poisson’s ratio

Δ𝜈

𝜈
=

maxij |𝜈ij − 𝜈avg|
𝜈avg

(3.66)

∙ Relative anisotropy of shear modulus

ΔG
G

=
maxi

⃒⃒⃒
Gi − Eavg

2(1+𝜈avg)

⃒⃒⃒
Eavg

2(1+𝜈avg)
(3.67)

∙ In the stiffness or compliance matrix of the isotropic material, there are a few zero
elements. However, these elements are nonzero in the result of numerical simula-
tions. The last studied quantity is therefore the relative deviation from zero of these
elements

Δ

E
=

maxij
(︀
|Dij |

)︀
Eavg

. (3.68)

Dij denotes elements, which are zero for isotropic material.

The findings can be summarized as:
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∙ The mean material parameters E and 𝜈 are almost independent of the number of
particles, even for N less than 100. For more than 200 particles per periodic cell, the
values of mean material parameters do not change for any type of simulation (i.e., for
any ratio k̄T/k̄N and any interaction ratio 𝜄r ). See figure 3.3.

∙ The relative anisotropy of Young’s modulus decreases with increasing number of par-
ticles. The convergence is faster for higher 𝜄r and for higher k̄T/k̄N . See figure 3.4.

∙ The relative anisotropy of Poisson’s ratio 𝜈 has a similar trend: for an increasing
number of particles, its relative anisotropy decreases. In contrast to the case of
Young’s modulus, the slowest convergence (or even no convergence at all) has been
observed for ratio k̄T/k̄N close to 1. This is caused by the fact that for k̄T/k̄N = 1, the
Poisson’s ratio 𝜈 has a theoretical value 0 and the relative error is therefore higher.
See figure 3.5.

∙ The theoretically vanishing components of the stiffness matrix of the macroscopic
material are indeed almost zero, again for increasing N the error is smaller. Faster
convergence has been observed on samples with higher 𝜄r and for k̄T/k̄N closer to
1. See figure 3.6.

∙ The relative error of the formula G = E
2(1+𝜈) gets smaller for increasing N. The conver-

gence is faster for k̄T/k̄N closer to 1. See figure 3.7.

∙ All of the general trends described above are consistent with our expectations.
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Ḡ/Ē = 0.1
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3.4.2 Comparison of analytical and numerical results

The mean values of Young’s modulus and Poisson’s ratio according to section 3.4.1 have
been considered as the results of numerical tests to compare analytical and numerical
results. The numerical relation between macro- and microscopic parameters has been
computed for several values of 𝜄r and compared to the analytical values.

In graphs, points represent numerically obtained data and data according to equation
(3.31). The line represents the analytical dependence according to equation (3.38).

The numerical results of static FEM, quasi-static DEM simulations and equation (3.31)
are practically indistinguishable from each other. Certain discrepancy can be found for
larger values of Ḡ/Ē → ∞ because then Young’s modulus tends to zero relatively to the
shear modulus.

As seen from the graphs, the agreement between analytically and numerically obtained
data is very good for higher values of 𝜄r . On the other hand, the analytical formula under-
estimates the actual (numerically determined) values of Poisson’s ratio and overestimates
the actual values of Young’s modulus for 𝜄r < 1.3. For all values of 𝜄r , the value of Pois-
son’s ratio in the limit case for Ḡ/Ē → ∞ (Ē = 0) is −1 (the extreme theoretical value
for Poisson’s ratio), while the maximum attainable value is 1

4 for higher values of 𝜄r , which
corresponds to equation (3.38). A higher value of Poisson’s ratio, up to 0.335, is obtained
for 𝜄r = 1.05.
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Ḡ/Ē

eq. (3.38)
eq. (3.31)

YADE
OOFEM

−1

−0.5

0

0.5

10−3 10−2 10−1 100 101 102 103 104

𝜈 a
vg

Ḡ/Ē
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4 Discrete stress tensor

Discrete nature is an essential feature of DEM. However, in some cases one would like to
transform such discrete information (contact forces for instance) into its continuum coun-
terpart (e.g., stress tensor). To give an example, assume a sample of sand, which is on
lower level definitely discrete domain, thus discrete forces may be used as a model for
description of mutual interaction between individual grains. On the other hand, on a higher
scale (e.g., building construction), investigation of each individual sand grain would not be
meaningful (or even possible) and the same material is considered as a continuum.

The evaluation of equivalent stress from discrete forces is a topic much older than DEM
itself [58] described in many papers [4, 17, 8], but until these days it is a subject of debates
in specialized literature [11, 7, 52, 9, 10]. A brief summary of current knowledge and
author’s new ideas are presented in this chapter.

The discrete elements in DEM possess 6 degrees of freedom, namely 3 displacements
and 3 rotations. Classical Boltzmann continuum assumes 3 degrees of freedom (3 dis-
placements) in each material point. Therefore a higher order (Cosserat for instance) model
should be used for continuum approximation of DEM in its general form [4]. Readers not
familiar with Cosserat continuum are referred to section A.3.

Consider a system of rigid particles P represented as mass points xP . The particles
mutually interact with each other by fictitious links c with resulting contact (internal) forces
and couples acting at contact points c. We consider external body forces f, body couples c,
surface forces t and surface couples m as Dirac delta distributions transforming boundary
and volume integrals into discrete sums over points of application e in terms of external
forces fe and external couples ce:∫︁

V
f · 𝛿u dV +

∫︁
S

t · 𝛿u dS =
∑︁

e

fe · 𝛿u (4.1)∫︁
V

x ⊗ f dV +
∫︁

S
x ⊗ t dS =

∑︁
e

x ⊗ fe (4.2)∫︁
V

c · 𝛿u dV +
∫︁

S
m · 𝛿u dS =

∑︁
e

ce · 𝛿u (4.3)∫︁
V

x ⊗ c dV +
∫︁

S
x ⊗ m dS =

∑︁
e

x ⊗ ce. (4.4)

4.1 Derivation based on virtual work

The principle of virtual displacements in Cosserat continuum (see section A.3.3)∫︁
V
𝜎 : (∇⊗ 𝛿u) dV =

∫︁
V

f · 𝛿u dV +
∫︁

S
t · 𝛿u dS (4.5)∫︁

V
𝜇 : (∇⊗ 𝛿𝜑𝜑𝜑𝜑) dV −

∫︁
V
𝜎 : (1 × 𝛿𝜑𝜑𝜑𝜑) dV =

∫︁
V

c · 𝛿𝜑𝜑𝜑𝜑 dV +
∫︁

S
m · 𝛿𝜑𝜑𝜑𝜑 dS. (4.6)

is expressed in terms of the stress tensor 𝜎, couple stress tensor 𝜇, and external load
fields. The virtual fields are displacement 𝛿u and its gradient 𝛿U = ∇⊗ 𝛿u and rotation 𝛿𝜑𝜑𝜑𝜑
and its gradient (curvature tensor) 𝛿𝜅 = ∇⊗ 𝜑𝜑𝜑𝜑.
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The equivalent (couple) stress tensor is derived under the assumption that virtual work
of discrete forces is equal to the virtual work of an equivalent continuum. We assume the
macro (couple) stress to be one constant value, which is expressed by overlined symbols,
e.g., 𝜎. The virtual fields are considered to be (at most) linear functions and therefore their
gradients are constant (or zero).

The derivation is presented for both external and internal discrete forces. For example,
in the case of one rigid particle, no internal forces are present and only the derivation based
on virtual work of discrete external forces is meaningful. On the other hand, no external
forces are present in the equilibrium case of a periodic cell and only the derivation based
on virtual work of discrete internal forces is meaningful.

The internal forces of one particle may not be in equilibrium, but are required to be in
equilibrium with (possibly zero) external load acting at the particle’s reference point. This
corresponds to static nonequilibrium case and the balancing load corresponds to inertial
forces. The external loads are required to satisfy force and moment equilibrium conditions∑︁

f = 0
∑︁

c +
∑︁

x × f = 0. (4.7)

4.1.1 Virtual work of discrete external forces

Consider an external force fe and couple ce acting at point xe. Together with virtual dis-
placement 𝛿ue and rotation 𝛿𝜑𝜑𝜑𝜑e, the virtual work of these quantities is simply

𝛿W e = fe · 𝛿ue + ce · 𝛿𝜑𝜑𝜑𝜑e. (4.8)

The total virtual work of external forces is the sum of contributions of individual discrete
points e:

𝛿W =
∑︁

e

𝛿W e =
∑︁

e

fe · 𝛿ue +
∑︁

e

ce · 𝛿𝜑𝜑𝜑𝜑e. (4.9)

4.1.1.1 Virtual displacement

We start from the part of continuum virtual work principle which depends on virtual dis-
placement (A.104) ∫︁

V
𝜎 : 𝛿U dV =

∫︁
V

f · 𝛿u dV +
∫︁

S
t · 𝛿u dS. (4.10)

The right hand side is the virtual work of external forces. The external forces are considered
as Dirac delta distributions (4.4), which coincide with the virtual work of discrete external
forces (4.9): ∫︁

V
f · 𝛿u dV +

∫︁
S

t · 𝛿u dS =
∑︁

e

fe · 𝛿ue. (4.11)

According to the assumption of constant macro quantities, the left hand side can be rewrit-
ten to the form ∫︁

V
𝜎 : 𝛿U dV = 𝛿U : V𝜎. (4.12)

Virtual work equation (4.10) can then be rewritten as

𝛿U : V𝜎 =
∑︁

e

fe · 𝛿ue. (4.13)
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Assuming constant 𝛿u (𝛿U = 0) yields

0 =
∑︁

e

fe · 𝛿ue (4.14)

∀𝛿u=const−−−−−→∑︁
e

fe = 0 (4.15)

the external force equilibrium condition.
Assuming homogeneous 𝛿U

𝛿u = x · 𝛿U (4.16)

yields the expression for discrete stress tensor

𝛿U : V𝜎 =
∑︁

e

xe · 𝛿U · fe =
∑︁

e

𝛿U : (xe ⊗ fe) (4.17)

∀𝛿U−−→

V𝜎 =
∑︁

e

xe ⊗ fe. (4.18)

In general, the stress tensor may be non-symmetric, as illustrated in section 4.3.

4.1.1.2 Virtual rotation

We start from the part of continuum virtual work principle which depends on virtual rotation
(A.105) ∫︁

V
𝜇 : 𝛿𝜅 dV =

∫︁
V
𝜎 : (1 × 𝛿𝜑𝜑𝜑𝜑) dV +

∫︁
V

c · 𝛿𝜑𝜑𝜑𝜑 dV +
∫︁

S
m · 𝛿𝜑𝜑𝜑𝜑 dS. (4.19)

One part of the right hand side is the virtual work of external couples. The external couples
are considered as Dirac delta distributions (4.4), which coincide with the virtual work of
discrete couples (4.9) ∫︁

V
c · 𝛿𝜑𝜑𝜑𝜑 dV +

∫︁
S

m · 𝛿𝜑𝜑𝜑𝜑 dS =
∑︁

e

ce · 𝛿𝜑𝜑𝜑𝜑e. (4.20)

According to the assumption of constant macro quantities, the left hand side of (4.19) can
be rewritten to the form ∫︁

V
𝜇 : 𝛿𝜅 dV = 𝛿𝜅 : V𝜇. (4.21)

Using equation (A.55) and again assuming constant macro quantities yields∫︁
V
𝜎 : (1 × 𝛿𝜑𝜑𝜑𝜑) dV =

∫︁
V

(1 × 𝜎) · 𝛿𝜑𝜑𝜑𝜑 dV = (1 × 𝜎) ·
∫︁

V
𝛿𝜑𝜑𝜑𝜑 dV . (4.22)

Virtual work equation (4.19) can then be rewritten to the form

𝛿𝜅 : V𝜇− (1 × 𝜎) ·
∫︁

V
𝛿𝜑𝜑𝜑𝜑 dV =

∑︁
e

ce · 𝛿𝜑𝜑𝜑𝜑e. (4.23)
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Assuming constant 𝛿𝜑𝜑𝜑𝜑 (𝛿𝜅 = 0) yields

−(1 × 𝜎) ·
∫︁

V
𝛿𝜑𝜑𝜑𝜑 dV =

∑︁
e

ce · 𝛿𝜑𝜑𝜑𝜑e (4.24)

∀𝛿𝜑𝜑𝜑𝜑=const−−−−−→

−1 × V𝜎 =
∑︁

e

ce (4.25)

antisymmetric part of stress tensor. Equation (4.25) can also be derived from (4.18) using
identity (A.56) ∑︁

e

ce = −1 × V𝜎 = 1 ×
∑︁

e

xe ⊗ fe =
∑︁

e

xe × fe (4.26)

because we assume the forces and couples to be equilibrated according to equation (4.7).
Assuming homogeneous 𝛿𝜅

𝛿𝜑𝜑𝜑𝜑 = x · 𝛿𝜅 (4.27)

yields

(1 × 𝜎) ·
∫︁

V
𝛿𝜑𝜑𝜑𝜑 dV =

∫︁
V

x · 𝛿𝜅 dV · (1 × 𝜎) = 𝛿𝜅 :
∫︁

V
x dV ⊗ (1 × 𝜎) =

= 𝛿𝜅 : Vx0 ⊗ (1 × 𝜎)
(4.28)

and ∑︁
e

ce · 𝛿𝜑𝜑𝜑𝜑e =
∑︁

e

xe · 𝛿𝜅 · ce =
∑︁

e

𝛿𝜅 : (xe ⊗ ce) (4.29)

and then the expression for discrete couple stress tensor

𝛿𝜅 : V𝜇 = 𝛿𝜅 : Vx0 ⊗ (1 × 𝜎) +
∑︁

e

𝛿𝜅 : (x ⊗ ce) (4.30)

∀𝛿𝜅−−→

V𝜇 = Vx0 ⊗ (1 × 𝜎) +
∑︁

e

xe ⊗ ce. (4.31)

∫︀
V x dV = Vx0 is the first moment of volume according to equation (A.149).

4.1.2 Virtual work of discrete internal forces

Internal forces (couples) act at contact points c. The forces (couples) act with opposite
orientation on two rigid particles J and K with reference points xJ and xK . The internal
forces are considered attached to the particles, i.e., the virtual displacement (rotation) is
determined from the relative virtual displacement and rotation of particles J and K , see
figure 4.1.

We will only consider constant virtual fields

𝛿u = const 𝛿U = 0 (4.32)
𝛿𝜑𝜑𝜑𝜑 = const 𝛿𝜅 = 0 (4.33)

or linear virtual fields such that

𝛿u = x · 𝛿U 𝛿𝜑𝜑𝜑𝜑 = x · 𝛿𝜅. (4.34)
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Figure 4.1: Illustration of virtual work of internal forces acting on rigid particles

4.1.2.1 Virtual displacement

Assuming linear virtual displacement (4.34), the virtual work dependent on virtual displace-
ment of one contact reads

𝛿W c
u = fc · 𝛿uK − fc · 𝛿uJ = (𝛿uK − 𝛿uJ) · fc = (xK · 𝛿U − xJ · 𝛿U) · fc =

= (xK − xJ) · 𝛿U · fc = lc · 𝛿U · fc = 𝛿U :
(︀
lc ⊗ fc

)︀ (4.35)

with lc = xK − xJ being the branch vector of contact c.
The total virtual work of internal forces dependent on virtual displacement is the sum of

contributions of individual discrete points c:

𝛿Wu =
∑︁

contact

𝛿W c
u =

∑︁
c

𝛿U : (lc ⊗ fc) = 𝛿U :
∑︁

c

lc ⊗ fc. (4.36)

Comparing to the virtual work of the equivalent continuum yields the expression for
discrete stress tensor ∫︁

V
𝜎 : 𝛿U dV = 𝛿U : V𝜎 = 𝛿U :

∑︁
c

lc ⊗ fc (4.37)

∀𝛿U−−→

V𝜎 =
∑︁

c

lc ⊗ fc. (4.38)

4.1.2.2 Virtual rotation

We assume equivalence of virtual work of internal forces and virtual work of equivalent
continuum:

𝛿𝜅 : V𝜇− (1 × 𝜎) ·
∫︁

V
𝛿𝜑𝜑𝜑𝜑 dV = 𝛿W𝜑. (4.39)
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The virtual work dependent on virtual rotation of one contact reads

𝛿W c
𝜑 = cc · 𝛿𝜑𝜑𝜑𝜑K − cc · 𝛿𝜑𝜑𝜑𝜑J + fc · (𝛿𝜑𝜑𝜑𝜑K × (c − xK )) − fc · (𝛿𝜑𝜑𝜑𝜑J × (c − xJ)) =

= (𝛿𝜑𝜑𝜑𝜑K − 𝛿𝜑𝜑𝜑𝜑J) · cc + (𝛿𝜑𝜑𝜑𝜑K × (c − xK ) − 𝛿𝜑𝜑𝜑𝜑J × (c − xJ)) · fc.
(4.40)

The total virtual work of internal forces is the sum of contributions of individual discrete
points c:

𝛿W𝜑 =
∑︁

c

𝛿W c
𝜑 . (4.41)

Assuming constant virtual rotation (𝛿𝜑𝜑𝜑𝜑J = 𝛿𝜑𝜑𝜑𝜑K ) in (4.40) yields

𝛿W c
𝜑=const = 𝛿𝜑𝜑𝜑𝜑× (c − xK − c + xJ) · fc = 𝛿𝜑𝜑𝜑𝜑× (−xK + xJ) · fc =

= 𝛿𝜑𝜑𝜑𝜑× (−lc) · fc = 𝛿𝜑𝜑𝜑𝜑 · (−lc) × fc.
(4.42)

and substituting into (4.39) yields the expression for the antisymmetric part of stress tensor

𝛿𝜅 : V𝜇− (1 × 𝜎) ·
∫︁

V
𝛿𝜑𝜑𝜑𝜑 dV = 𝛿𝜑𝜑𝜑𝜑 · (−lc) × fc (4.43)

∀𝛿𝜑𝜑𝜑𝜑=const−−−−−→

1 × V𝜎 =
∑︁

c

lc × fc (4.44)

Assuming linear virtual rotation (4.34) yields

(xK · 𝛿𝜅− xJ · 𝛿𝜅) · cc = 𝛿𝜅 : (xK − xJ) ⊗ cc = 𝛿𝜅 : lc ⊗ cc (4.45)

𝛿𝜑𝜑𝜑𝜑× x · f = x · 𝛿𝜅× x · f = 𝛿𝜅 : (x ⊗ x × f) (4.46)

(𝛿𝜑𝜑𝜑𝜑K × (c − xK ) − 𝛿𝜑𝜑𝜑𝜑J × (c − xJ)) · fc = 𝛿𝜅 : (xK ⊗ (c − xK ) − xJ ⊗ (c − xJ)) × fc =
= 𝛿𝜅 : (xK ⊗ c − xK ⊗ xK − xJ ⊗ c + xJ ⊗ xJ) × fc = 𝛿𝜅 : Xc × fc

(4.47)

𝛿W c
𝜑=homo = 𝛿𝜅 : lc ⊗ cc + 𝛿𝜅 : Xc × fc. (4.48)

and substituting into (4.39) and using (4.28) yields the expression for the discrete couple
stress tensor

𝛿𝜅 : V𝜇− (1 × 𝜎) ·
∫︁

V
𝛿𝜑𝜑𝜑𝜑 dV = 𝛿W𝜑 (4.49)

𝛿𝜅 : V𝜇 = 𝛿𝜅 : Vx0 ⊗ (1 × 𝜎) + 𝛿𝜅 :
∑︁

c

lc ⊗ cc + 𝛿𝜅 :
∑︁

c

Xc × fc (4.50)

∀𝛿𝜅−−→

V𝜇 = Vx0 ⊗ (1 × 𝜎) +
∑︁

c

lc ⊗ cc +
∑︁

c

Xc × fc, (4.51)

where
Vx0 =

∫︁
V

x dV (4.52)

is the first moment of volume according to (A.149) and Xc is

Xc = xK ⊗ c − xK ⊗ xK − xJ ⊗ c + xJ ⊗ xJ . (4.53)
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4.1.3 Summary

Based on the equivalence of macro virtual work and virtual work of discrete external forces,
the stress and couple stress are defined as

V𝜎 =
∑︁

e

x ⊗ fe (4.54)

V𝜇 = Vx0 ⊗ (1 × V𝜎) +
∑︁

e

x ⊗ ce (4.55)

The resulting (couple) stress tensor does not depend on the choice of the point of moment
equilibrium. The resulting (couple) stress tensor does not depend on the choice of particles’
reference points.

Based on the equivalence of macro virtual work and virtual work of discrete internal
forces, the stress and couple stress are defined as

V𝜎 =
∑︁

c

l ⊗ fc (4.56)

V𝜇 = Vx0 ⊗ (1 × 𝜎) +
∑︁

c

lc ⊗ cc +
∑︁

c

Xc × fc (4.57)

The resulting (couple) stress tensor does not depend on the choice of the point of moment
equilibrium. The resulting (couple) stress tensor does not depend on the choice of par-
ticles’ reference points. The independence of the choice of reference points is required
by [17], who also proposed a derivation independent on the choice of particle’s reference
points. However, the independence is only valid in the absence of body forces and couples
(i.e., self-equilibrated internal forces of each particle), which is a rare case in real DEM
simulations.

The resulting stress tensor may be asymmetric only in the presence of external couples
(either directly applied or as the result of unbalanced internal forces).

[11] and [17] agreed that based on the virtual work principle, only equivalent values of
the sum of couple stress and moment of stress (not couple stress itself) can be derived.
According to the author’s knowledge, the expressions for couple stress tensor 𝜇 using pre-
computed macro stress tensor 𝜎 and first moment of volume Vx0 have not been published
before. A more detailed analysis and literature research (if the result is really a new one)
could/should be realized in the future.

4.2 Derivation based on equilibrium conditions

4.2.1 External forces

Equilibrium conditions are the consequence of the virtual work principle, therefore the
derivation based on equilibrium conditions results in the same formulas as the derivation
based on the virtual work principle.

Consider a region (e.g., one DEM particle) with volume V , centroid x0 and applied
external discrete forces fe and couples ce.

Expressing the (couple) stress tensor using its derivatives and position vector (A.82),
using divergence theorem (A.76), Cauchy’s stress theorem (A.95) and (A.96), local equilib-
rium conditions (A.99) and (A.100) and considering surface and body loads as Dirac delta
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distributions (4.4), we can write discrete stress as a volume average of stress tensor

V𝜎 =
∫︁

V
𝜎 dV =

∫︁
V
∇ m· (x ⊗ 𝜎) − x ⊗ (∇ · 𝜎) dV =

=
∫︁

S
x ⊗ n · 𝜎 dS −

∫︁
V

x ⊗ (∇ · 𝜎) dV =
∫︁

S
x ⊗ t dS +

∫︁
V

x ⊗ f dV =

=
∑︁

e

x ⊗ fe

(4.58)

and discrete couple stress as a volume average of couple stress tensor

V𝜇 =
∫︁

V
𝜇 dV =

∫︁
V
∇ m· (x ⊗ 𝜇) − x ⊗ (∇ · 𝜇) dV =

=
∫︁

S
x ⊗ n · 𝜇 dS −

∫︁
V

x ⊗ (∇ · 𝜇) dV =
∫︁

S
x ⊗ m dS +

∫︁
V

x ⊗ (c + 1 × 𝜎) dV =

=
∫︁

S
x ⊗ m dS +

∫︁
V

x ⊗ c dV +
∫︁

V
x dV ⊗ (1 × 𝜎) =

= Vx0 ⊗ (1 × 𝜎) +
∑︁

e

x ⊗ ce.

(4.59)

∫︀
V x dV = Vx0 is the first moment of volume according to equation (A.149).

4.2.2 Internal forces

This approach is also applicable for internal forces [11, 21]. Each particle is treated sep-
arately considering internal forces (couples) with surrounding particles as external forces
(couples) with respect to the particle. The overall (couple) stress tensor is evaluated as a
volume average of the (couple) stress tensor of each particle.

However, the result depends on the volume assigned to the particles. If the particles
represent physical grains, the assigned volume is defined uniquely. If the particles are an
artificial discretization, the assigned volume is not defined uniquely.

4.3 Examples

Table 4.1 shows evaluated stress tensor, and couple stress tensor for simple 2D situations.
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Table 4.1: 2D illustrations of stress and couple stress tensors

𝜎 𝜇⎡⎢⎣· · ·
· · ·
· · ·

⎤⎥⎦
⎡⎢⎣· · ·
· · ·
· · ·

⎤⎥⎦
⎡⎢⎣2 · ·
· · ·
· · ·

⎤⎥⎦
⎡⎢⎣· · ·
· · ·
· · ·

⎤⎥⎦
⎡⎢⎣1 · ·
· · ·
· · ·

⎤⎥⎦
⎡⎢⎣· · ·
· · ·
· · ·

⎤⎥⎦
⎡⎢⎣ · 2 ·

2 · ·
· · ·

⎤⎥⎦
⎡⎢⎣· · ·
· · ·
· · ·

⎤⎥⎦

𝜎 𝜇⎡⎢⎣· · ·
· · ·
· · ·

⎤⎥⎦
⎡⎢⎣· · 2
· · ·
· · ·

⎤⎥⎦
⎡⎢⎣· · ·
· · ·
· · ·

⎤⎥⎦
⎡⎢⎣· · 1
· · ·
· · ·

⎤⎥⎦
⎡⎢⎣· 2 ·
· · ·
· · ·

⎤⎥⎦
⎡⎢⎣· · ·
· · ·
· · ·

⎤⎥⎦
⎡⎢⎣ · · ·

1 · ·
· · ·

⎤⎥⎦
⎡⎢⎣· · ·
· · ·
· · ·

⎤⎥⎦
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There exist two main approaches to modeling of the mechanical behavior of solid ma-
terials. One approach is based on the continuum theory and the finite element method
(FEM) is usually used for numerical solution, while the other approach considers the mate-
rial as a set of discrete units (particles) and the discrete element method (DEM) is the main
numerical solution method. Both approaches have their fields of application, however, in
certain cases they can be combined and used together.

The finite element method is a tool for approximate solution of partial differential equa-
tions. In the context of solid mechanics, such equations describe the mechanical behavior
of a continuous material. FEM underwent intensive development from both engineering
and mathematical points of view and is being used for solution of various engineering
and scientific problems. Different enhancements and features (adaptive meshing, im-
plicit/explicit solution schemes etc.) were investigated to reduce computational costs or
improve usability and performance for different model features/purposes. Despite these
facts, FEM is considered not to be suitable for modeling of a large number of discon-
tinuities (i.e., massive fragmentation), especially if a significant number of new contacts
between individual “particles” is assumed.

The discrete element method (or particle models in other words) was originally devel-
oped for modeling of granular materials, i.e., discontinuous matter. Later on, the method
was extended to bonded (or cohesive) particle models, resulting in a continuum-like be-
havior of discrete particles in the elastic range. However, due to its discrete nature, beyond
the elastic range the creation of discontinuities (like cracks, damage or even massive frag-
mentation) together with large displacement effects is very naturally included in the DEM
formulation. DEM is usually solved in an explicit sense, which allows easy computer im-
plementation and straightforward contact law definitions, but makes the whole simulation
computationally expensive at the same time.

The combination of FEM and DEM methods can be performed in several ways, depend-
ing on the context. The vast majority of scientific papers dealing with this topic is aimed
at concurrent FEM – DEM coupling, i.e., modeling situations in which the process mod-
eled by DEM and the process modeled by FEM take place at the same time and at least
one of them influences the other. Several classes of combination approaches have been
developed, as will be discussed later.

In the concurrent approach (see chapter 5), both DEM and FEM simulations have to run
at the same time, increasing computational time costs. In the case of multiscale coupling,
each FEM integration point possesses its own DEM simulation (where the stress–strain law
is determined from the actual microstructure evolution) and the computational costs grow
even more due to this fact.

The classification complementary to the concurrent combination is the sequential ap-
proach. It assumes that the processes are separable in time and therefore only the former
process (a bridge column subjected to an impact load, for example) influences the lat-
ter process (e.g., further bridge loading), but not vice versa (further bridge loading does
not backward influence the impact). In chapter 6, a DEM to FEM sequential mapping of
damaged concrete material is presented. Usually some kind of homogenization techique is
used to determine FEM model parameters at the beginning of the latter (e.g., further bridge
loading) process from the final state of the former (e.g., an impact on the column) process.

Concurrent coupling methods are computationally expensive. On the other hand, the
sequential mapping, due to its “one way” nature, allows, e.g., to use different FEM meshes
while running the DEM part only once, reducing additional computation time. Which ap-
proach is more suitable depends always on specific physical and simulation context.
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5 Concurrent DEM – FEM coupling

As an example of the concurrent coupling of the two methods, consider a dynamic soil
compaction. The compacted soil could be modeled by DEM, the compactor by FEM (here
we have surface coupling) and the rest of the soil domain by FEM (soil is usually consid-
ered as continuous material on a larger scale). The soil DEM / soil FEM interface would
probably be of a volume coupling kind. Of course, the FEM soil could be modeled using
the multiscale approach, where a certain small representative volume around integration
points of the FEM mesh is modeled by DEM (reflecting the discrete nature of the material
on lower scale). And we could go in coupling further and further. . .

This example was just to show the variety of possible coupling combinations and that
there are a variety of real world problems, where such coupled methods could be useful.
Together with the simplicity of creating, modifying and running such simulations and exten-
sibility of the used programs (due to the open source character of the code) it makes this
approach attractive for a variety of engineering problems.

There are countless software programs for both FEM and DEM. Some of them are
commercial (usually) without possibility to change the code and adjust the behavior to our
requirements (combination with another software for instance). However, there exist pro-
grams with open source code, which the user can modify, possibly for coupling with other
programs. In the present work, coupling of FEM code OOFEM [74, 73] and DEM code
YADE [92, 90, 91, 93] is presented. Both programs have the core written in C++ (providing
efficient execution of time consuming routines), user interface written in Python (modern
dynamic object oriented scripting language, providing easy to use scripting while preserv-
ing the C++ efficiency) and extensible object oriented architecture allowing independent
implementation of new features - new material model or new particle shapes for instance.

Basic principles and examples of different coupling strategies (surface, volume, multi-
scale and contact coupling) are explained in the following sections. All the methods and
examples are considered as dynamic problems solved by an explicit scheme. An implicit
static solution would be possible, but with much more effort (DEM is not suitable for implicit
schemes as discussed in the beginning of chapter 2). One example for each method is pre-
sented in this thesis. More examples should be available on the GitHub sites of the author.
The source code to the examples is available at codes/external/fem-dem/examples and
on GitHub, too.

5.1 Surface coupling

The so called surface coupling [64, 70, 101, 32, 66] is probably the most straightforward
FEM–DEM coupling strategy.

The principle is to split the whole problem into two separated domains, one modeled by
FEM and the other by DEM. As an illustrative example, consider a steel beam modeled by
FEM falling into an assembly of gravel particles modeled by DEM. Both domains interact
with each other, but are physically separated during the entire time of the process.

If there exists a contact between a finite element and a DEM particle, the repulsive
interaction force acts (with opposite direction) on both the DEM particle and on the FEM
element. The interaction forces are used as an external load for each domain. The dis-
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FEMDEM

load

displacement

Figure 5.1: Surface coupling illustration

placements of the FEM domain has to be taken into account in the DEM domain.
In the current OOFEM/YADE implementation, the boundary (surface) of the FEM mesh

is copied into the DEM part as special triangular particles. Then, in the case of explicit
dynamic simulation, in each time step:

∙ the DEM part is solved;

∙ the FEM part is solved;

∙ forces acting on DEM facets are interpolated into vertices and applied on FEM as
nodal loads;

∙ positions of DEM facets are updated according to FEM displacements.

5.1.1 Example

This very simple example is aimed to test the approach, mainly correct contact detection
and interaction evaluation. A cantilever is “bombarded” by three particles. One particle hits
the cantilever “directly”, while two particles hit the cantilever outside its original position (one
aspect of the testing). The cantilever is modeled by FEM with linear brick elements. The
bottom of the cantilever has fixed displacements. The cantilever surface (set of quadrilateral
faces) is triangulated and copied to the DEM part of the simulation. The DEM “impactors”
can have different shapes, e.g., spherical or polyhedral. The visual results are shown in
figure 5.7, the animation can be found at text/figs/couupling/surf1.

5.2 Volume coupling

Volume coupling [82, 107, 5, 105] is similar to the surface coupling. The difference is that
the two subdomains overlap each other.
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Figure 5.2: Volume coupling illustration

The possible usage of this approach could be a model of concrete beam subjected
to an impact load (blast for example). The whole beam would be modeled by FEM and
only a small volume of the concrete (the volume to be fragmented and crushed) would be
modeled by DEM. To preserve continuous nature of the beam, a transition zone (containing
both FEM and DEM) would be included.

There are two basic strategies how to model transition between FEM and DEM do-
mains [107]. The first one, “direct” or “master/slave” method [5], considers DEM particles
overlapping with FEM as direct slaves of the FEM mesh (using standard “master/slave” or
“hanging nodes” approach). The second one, the “weak” or “Arlequin” method [82, 105],
considers a transition bridging zone, where the total response is superposed from contri-
butions of the two models and is interpolated between both domains. In the thesis, only the
former (master/slave) approach is described.

In the current OOFEM/YADE implementation, hanging nodes are created at centers of
overlapping spheres. Then, in the case of explicit dynamic simulation, in each time step:

∙ the DEM part is solved;

∙ the FEM part is solved;

∙ forces acting on DEM overlapping particles are applied on the corresponding FEM
hanging nodes as nodal loads;

∙ position of overlapping DEM particles are updated according to displacements of the
corresponding FEM hanging nodes.

5.2.1 Example

In this example, a simply supported 2D beam subjected to a missile impact was simulated.
The sides of the beam body were simulated by FEM as a plane stress problem using
quadrilateral elements and linear elastic material law. The central part was modeled by
DEM using a regular packing and CPM material model (described in section 2.5). The
material parameters and initial conditions are artificially set to get “nice” results. The visual
results are shown in figure 5.5, the animation can be found at text/figs/coupling/vol1.
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5.3 Multiscale coupling

IP

strain

stress

Figure 5.3: Multiscale coupling illustration

The idea of multiscale simulations is to model the problem on the large (macro) scale
using information from a lower (micro) scale [80, 105]. In the current context, the (first
order) homogenization [35] is presented.

Geometric information (strain) from macro scale – integration points (IPs) of FEM mesh
– is transferred to the micro scale (representative volume element - RVE - modeled by
DEM). On the micro scale, the boundary value problem (BVP) governed by the transferred
prescribed strain is solved using periodic boundary conditions [89]. The output of the micro-
scale problem is the stress tensor (sufficient for explicit solution scheme) and possibly
also the constitutive characteristics (stiffness tensor, needed by implicit solution schemes),
which are transferred back to the macro-scale problem.

As an example of such approach, consider a sample of sand. In reality, it is composed of
individual grains, therefore DEM could be the right modeling approach. However, because
of very high computational costs of DEM, the sand is considered as a continuum from the
macroscopic point of view and FEM is used for macroscopic description. To preserve the
particular nature of the sample, the stress–strain law in each integration point is determined
not from predefined formulas, but rather from microscale simulations performed on smaller
sand samples solved by DEM. Thus we do not need any explicit expression of the material
law on the FEM scale (it is determined from the actual micro RVE response).

In the current OOFEM/YADE implementation, separate RVE is generated according
to certain criteria for selected integration points. Then, in the case of explicit dynamic
simulation, in each time step:

∙ the FEM part is solved;

∙ the DEM part is solved;

∙ strains at IPs are applied to the corresponding RVEs;

∙ stresses of RVEs are evaluated and adjusted to the corresponding IPs.

5.3.1 Example

Uniaxial strain (oedometric test) of a sample consisting of three different (linear elastic)
materials is simulated in this example. The macro-scale problem is modeled by three brick
elements. Each FEM element has eight integration points. The upper one is a pure FEM
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element. For each integration point of the two bottom elements, different DEM micro-scale
RVE simulations are performed.

The visual results are shown in figure 5.8, the animation can be found at text/figs/coupling/multi1.
In each “DEM” element, one micro RVE result is displayed. The results of linear elastic
behavior are not extremely spectacular indeed, but using a nonlinear behavior of RVEs
(resulting in a higher stiffness when more inter-particle contacts occur for instance) could
be very useful for certain applications.

5.4 Contact coupling

DEM FEM

Figure 5.4: Contact coupling illustration

The idea of contact analysis [33] is very simple and opposite to the multiscale approach.
The material on the large scale is considered to be of a particulate nature and is modeled
by particles using DEM. Each such particle is deformable and further modeled by FEM.

There is no strict border between the cases when the solution can be considered as
a contact FEM analysis and when it is already DEM. For only a few particles we would prob-
ably use the former one, but when the number of particles increases, the DEM modeling
(with its efficient contact detection algorithms) would be more appropriate. This strategy
can be actually considered as full FEM, only the contact detection and contact constitutive
law is “borrowed” from the DEM program.

In the current OOFEM/YADE implementation, the FEM “particles” are copied into DEM
part as polyhedrons. Then, in the case of explicit dynamic simulation, in each time step:

∙ the DEM part is solved;

∙ the FEM part is solved;

∙ forces acting on DEM polyhedrons are interpolated into vertices and applied on FEM
as nodal loads;

∙ position and shape of DEM polyhedrons are updated according to the displacement
of the FEM mesh.

5.4.1 Example

In this example, collision of three elastic bodies is presented. All three particles are mod-
eled by FEM, only a detection algorithm is borrowed from DEM. The visual results are
shown in figure 5.6, the animation can be found at text/figs/coupling/contact1.
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Figure 5.5: Impact on a simply supported beam at different stages

Figure 5.6: Collision of three elastic particles at different stages
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Figure 5.7: Impact on a cantilever at different stages. DEM particles can be
spheres (top) or polyhedrons (bottom).

Figure 5.8: Uniaxial strain test at different stages
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6 Sequential DEM – FEM coupling

In this chapter, a sequential mapping method from DEM to FEM applied to modeling of frac-
ture of concrete is presented. For example, consider an impact load on a bridge column
and then further bridge loading. The two processes are clearly separable in time, where the
impact influences the behavior of the bridge under further loading, but not vice versa. From
the physical nature, the impact is a dynamic process involving fragmentation and is there-
fore suitable for DEM. On the other hand, further bridge loading could be a (quasi)static
“large-scale” process and is therefore suitable for FEM. The aim of the mapping method is
to take the information from a DEM simulation (e.g., damage and stress distribution) and
use it within a FEM simulation.

The CPM, cohesive particle model for concrete [92], is chosen for the DEM part. CPM
was developed for numerical modeling of concrete under dynamic loading with possibility
of massive fragmentation (e.g., crushing) and can be used for simulations of the impact
influence.

The DPM, damage-plastic model for concrete failure [39], is chosen for the FEM part.
DPM was developed for numerical modeling of concrete under (quasi)static conditions and
can be used for further bridge loading simulations.

Theoretically, both impact and further bridge loading processes could be modeled only
with CPM model using DEM as a solution tool. However, because of the aforementioned
significant computational costs of DEM method, such approach is practically impossible
and only a small volume around the impact directly subjected to fragmentation is modeled.
Similarly, FEM could be used for both the impact and further bridge loading simulations,
but FEM was found, as already mentioned, not to be suitable for modeling of massive
fragmentation, which is the case of the impact.

As a conclusion, both methods are used to model different stages of concrete bridge
lifetime.

According to the physical background of both CPM and DPM (see section 6.1), the
force/stress quantities and damage quantities have to be transferred from CPM to DPM.
The proposed method is based on microplane theory and homogenization of discrete
forces into the continuous stress tensor and damage in discrete point into the continu-
ous damage. According to the knowledge of the author, no similar work is published in the
literature.

The basics and features of both combined models are reviewed in section 6.1. The
actual mapping method is described in section 6.2 and illustrated on simple examples in
section 6.3.

6.1 Background

In this section, the common features of as well as differences between the DPM and CPM
models will be shown. Based on the following equations and relations, the mapping process
itself will be derived in section 6.2.
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6.1.1 Damage–plastic model for concrete

Some material models (e.g., the DPM model described below) consider the history of load-
ing. Commonly the concept of a model with internal variables is used. Such internal
variables (damage for instance) are evaluated and stored only at integration points.

The Damage-Plastic Model (DPM) for concrete [39, 99] is a continuum-based model for
concrete failure combining the theories of plasticity and damage. The model is described
in detail in the aforementioned papers, thus only the basics of the model are summarized
here. This summary is mainly focused on the features used further for combination with
the CPM model.

The combination of plasticity and isotropic damage is expressed in the constitutive
stress-strain law

𝜎 = (1 − 𝜔)𝜎 = (1 − 𝜔)DDDDe(𝜀𝜀𝜀𝜀− 𝜀𝜀𝜀𝜀p), (6.1)

where 𝜎 denotes stress, 𝜎 effective stress, 𝜔 damage, DDDDe elastic stiffness, 𝜀𝜀𝜀𝜀 total strain,
𝜀𝜀𝜀𝜀p plastic strain and 𝜀𝜀𝜀𝜀− 𝜀𝜀𝜀𝜀p = 𝜀𝜀𝜀𝜀e elastic strain.

The plastic part of the constitutive law is governed by the yield function fp (which de-
pends on all three invariants of the effective stress tensor 𝜎 and the hardening variable 𝜅P)
and a non-associated flow rule derived from the plastic potential gp

fp(𝜎,𝜅P) ≤ 0, gp(𝜎,𝜅P) ̸= fp(𝜎,𝜅P), 𝜅P = 𝜅P(�̇�𝜀𝜀𝜀p). (6.2)

𝜀

𝜎
plasticity

damage

𝜔ft

ft

Figure 6.1: Stress-strain diagram of DPM model in uniaxial tension.

The damage part is expressed by the damage evolution function g and the relationships
between internal variables 𝜅D and 𝜅P

damage

⎧⎪⎨⎪⎩
𝜅P < 1 → 𝜔 = 0 (a)
𝜅P = 1 → 𝜔 = 0 (b)
𝜅P > 1 → 𝜔 = g(𝜅D),𝜅D = 𝜅P − 1 (c).

(6.3)

Damage evolution is driven by the plastic strain 𝜀𝜀𝜀𝜀p, see (6.2) and (6.3). If 𝜅P < 1 (6.3a), no
damage occurs. When 𝜅P = 1 (6.3b), the plasticity surface takes its final form. After this
point, 𝜅P > 1 (6.3c) and damage evolution begins.

The law is (due to damage and possible strain localization) dependent on the finite
element size.

For the mapping part, the physical meaning of the damage variable 𝜔 is important.
As is expressed in equation (6.1) and visually in figure 6.1, the physical meaning of DPM
damage is the relative reduction of effective stress (or in other words, the relative reduction
of strength).
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6.1.2 Cohesive particle model for concrete

The Cohesive Particle Model (CPM) for concrete (see [92] and section 2.5) is a discrete
model for concrete failure. Figure 6.2 recall the tensile response in normal direction. The
physical meaning of damage 𝜔 (unlike in the case of DPM model, see figure 6.2) is the
stiffness reduction. This difference between DPM and CPM is discussed more in detail in
section 6.2.2.1.

𝜀

𝜎

1
(1 − 𝜔)Ē

�̂�ft

𝜀0 𝜅

r

ft

Figure 6.2: Uniaxial stress-strain diagram of one link of CPM model.

6.2 Theory

In this section, the actual mapping method is described. We want to transfer information
from the CPM model (used, e.g., for an impact simulation) to the DPM model (used, e.g., for
further bridge loading simulations). Because the starting model is discrete and the target
model is continuum-based, the required operation is to map discrete quantities into their
continuous counterparts.

6.2.1 Stress tensor

The stress tensor is computed according to equation 4.54. Because the considered FEM
model is formulated for classical Boltzmann continuum, only the symmetric part is consid-
ered.

V𝜎 =

(︃∑︁
e

x ⊗ fe

)︃S

(6.4)

V , e, x and fe denotes volume assigned to the particle, contact points, position vector of
a contact point and force acting on the particle at the contact point, respectively.

6.2.2 Concrete damage

For the purpose of damage mapping, we have to transform damage from both models into
a variable with a consistent physical meaning. Because the DPM model is the target of
the mapping, the physical meaning of this model (the relative strength reduction) will be
chosen. Furthermore, the DPM model uses a scalar damage variable, whereas the CPM
model represents damage of individual links containing also directional information. We
can therefore define the DEM damage in its tensorial nature.
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6.2.2.1 Consistent physical meaning

The following derivation is based on figures 6.1 and 6.2. For each link, the CPM damage 𝜔
is converted to the DPM–like damage �̂�. Firstly, the original and current tensile strengths
(ft and r respectively) are evaluated in terms of material properties E and 𝜀0 and internal
variables 𝜅 and 𝜔:

ft = E𝜀0, r = (1 − 𝜔)E𝜅. (6.5)

Comparing figures 6.1 and 6.2, we can write

�̂� = 1 − r
ft

= 1 − (1 − 𝜔)E𝜅

E𝜀0
= 1 − (1 − 𝜔)𝜅

𝜀0
(6.6)

which is the expression of the CPM damage in the DPM physical meaning.

6.2.2.2 Per-particle overall damage

nc

�̂�c

Figure 6.3: Contact points, normals and damage.

The derivation of the damage tensor is inspired by section 3.1. We define the dam-
age tensor Ω as a symmetric second-order tensor such that the difference between link
damage �̂�c and the projection of the damage tensor Ω to the link direction nc is minimal
in the least-square sense. Note that the DPM–like damage quantity is used from now on.
In mathematical terms, Ω minimizes the following function:∑︁

c

(nc ·Ω · nc − �̂�c)2 = min, (6.7)
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which means

0 =
𝜕

𝜕Ω

[︃∑︁
c

(nc ·Ω · nc − �̂�c)2

]︃
=
∑︁

c

2(nc ·Ω · nc − �̂�c)nc ⊗ nc =

= 2Ω :
∑︁

c

nc ⊗ nc ⊗ nc ⊗ nc − 2
∑︁

c

�̂�cnc ⊗ nc

Ω :
∑︁

c

nc ⊗ nc ⊗ nc ⊗ nc =
∑︁

c

�̂�cnc ⊗ nc.

(6.8)

According to [51] and equation (3.32), the approximation of a discrete set of normal
vectors by uniformly distributed normals can be written as

1
N

∑︁
c

nc ⊗ nc ⊗ nc ⊗ nc ≈ 1
4𝜋

∫︁
Ω

nc ⊗ nc ⊗ nc ⊗ nc dΩ. (6.9)

Substituting equation (6.9) into (6.8) and using (A.127) (A.49) and (A.52) we can write

Ω : (3IIIIV + 2IIIIS) =
15
N

∑︁
c

�̂�cnc ⊗ nc

3ΩV + 2Ω =
15
N

∑︁
c

�̂�cnc ⊗ nc.
(6.10)

To solve equation (6.10), firstly the trace of the damage tensor tr(Ω) is evaluated with
the help of identities (A.36) and (A.63):

tr
(︀
3ΩV + 2Ω

)︀
= tr

(︃
15
N

∑︁
c

�̂�cnc ⊗ nc

)︃
5tr(Ω) =

15
N

∑︁
c

�̂�c → tr(Ω) =
3
N

∑︁
c

�̂�c.
(6.11)

This means that the mean value of the damage tensor

Ωm =
1
3

tr(Ω) =
1
N

∑︁
c

�̂�c (6.12)

is the average of individual discrete damages, which has a clear physically meaning.
When the trace of the damage tensor tr(Ω) is known according to (6.11), the actual

damage tensor can be expressed as:

3ΩV + 2Ω = tr(Ω) 1 + 2Ω =
15
N

∑︁
c

�̂�cnc ⊗ nc

Ω = −1
2

tr(Ω) 1 +
15
2N

∑︁
c

�̂�cnc ⊗ nc = −1
3

2N

∑︁
c

�̂�c +
15
2N

∑︁
c

�̂�cnc ⊗ nc.
(6.13)

As shown by equation (6.12), the mean value of the damage tensor always equals the
average damage, thus it is always in the range [0, 1]. However, its principal values may be
negative or greater than 1, as shown in examples below.
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Examples

The approach is illustrated on an artificial arrangement of axis aligned directions. Table
6.1 shows computed principal values for different values of damage in different directions.
Because the presented damage tensor evaluation assumes uniform distribution of direc-
tions (which is not the case for 3 directions), the results sometimes differ from intuitively
expected values. On the other hand, the examples naturally illustrates the possibility of
negative values or values greater than 1.

Script codes/scripts/damageTensor/example.py shows convergence to expected
results (the damage is artificially set as �̂�c = nc ·Ω·nc) as the number of direction increases.

6.2.3 Mapping

Auxiliary formulas derived in the previous sections will be used in this section for the actual
mapping. The mapping method is sequential, i.e., firstly the DEM simulation is run and
the stress tensor and damage tensor are saved for all particles. This information is then
included in the FEM simulation. Both simulations can be run independently, e.g., the FEM
simulation can be done with different meshes without the need of recomputing the DEM
part, or the DEM part can be run independently of the FEM mesh. This approach also
allows to use independent averaging methods.

In DEM simulations, the stress tensor 𝜎 and damage tensor Ω are computed for each
particle according to formulas (6.4) and (6.13), respectively. Before the FEM simulation,
the mesh to be used must be known (in particular the coordinates of integration points).
For each integration point, the stress tensor and damage tensor are averaged and passed
to the FEM simulation. The averaging may be of any type.

In the DPM part of the mapping, the following process is performed for each integration
point. The damage scalar is evaluated from the averaged damage tensor (in particular from
its principal values), generally

𝜔 = 𝜔(Ω) = 𝜔(Ω1,Ω2,Ω3). (6.14)

The specific form of the 𝜔(Ω1,Ω2,Ω3) function is dependent on material properties and
typical loading scenarios for given situation.

For the known damage scalar 𝜔, the corresponding internal variables 𝜅D and 𝜅P have to
be evaluated. Because the DPM damage law 𝜔 = g(𝜅D) (relating 𝜅D and 𝜔) is element-size
dependent, the following operations are done, when the element size is already known:{︃

𝜔 ≤ m → 𝜅D = 0, 𝜅P = 𝜅P(𝜔), 𝜔 = 0
𝜔 > m → 𝜅D = g−1(𝜔) 𝜅P = 𝜅D + 1.

(6.15)

For very low values of resulting damage, less than a certain m, the corresponding DPM
material state would be plastic (before the onset of damage). Therefore the first 𝜅P = 𝜅P(𝜔)
is computed and then 𝜔 = 0 is further considered. See the example in the next section for
illustration.

At the beginning of the FEM simulation, the actual total strain is not known. Therefore
we assume the total strain to be zero. To preserve the elastic strain consistent with the
stress tensor, a fictitious value of the plastic strain tensor (i.e., a value which does not
necessarily correspond to the real physical plastic strain) is evaluated according to the
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Table 6.1: Principal values of damage tensor for various damages

𝜔x

𝜔y

𝜔z

(Ωx ,Ωy ,Ωz)
tr(Ω)

3

0
0

0

(0, 0, 0) 0

1
1

1

(1, 1, 1) 1

0.5
0.5

0.5

(0.5, 0.5, 0.5) 0.5

1
1

0

(1.5, 1.5, -1)
2
3

0.5
0.5

0

(0.75, 0.75, -0.5)
1
3

1
0

0

(2, -0.5, -0.5)
1
3

0.5
0

0

(1, -0.25, -0.25)
1
6
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DPM stress–strain law (6.1):

𝜎 = (1 − 𝜔)DDDDe : (𝜀𝜀𝜀𝜀− 𝜀𝜀𝜀𝜀p) 𝜀𝜀𝜀𝜀=0→ 𝜀𝜀𝜀𝜀p = − 1
1 − 𝜔

DDDD−1
e : 𝜎 (6.16)

The evaluated plastic strain therefore corresponds to the real plastic strain minus the un-
known initial total strain.

After this point, the FEM simulation is run in the usual way.

6.3 Example - uniaxial compression

In this section, the results of proposed method are shown on simple “one element” tests.
The simulated prismatic specimen is subjected to uniaxial compression. In the case of
a one-element FEM simulation, the definition of boundary conditions is straightforward.
In the DEM simulation, the axial strain is imposed by prescribed displacements at the top
and bottom boundary layers. In the lateral directions, the particles are free to move. For
the graphical post-processing, the stress values from DEM simulation are obtained as the
normal component in the axial direction of the average stress.

The DEM and FEM material parameters are set such that the resulting stress-strain
diagrams are as similar as possible. Figure 6.4 shows a very good agreement of the two
models in both pre-peak and post-peak regime. However, the two models differ at the peak
load (the CPM softening starts prior to the DPM softening).

The DEM specimen is loaded at a certain level and then possibly unloaded. At the final
stage of the DEM simulation, relevant quantities are mapped onto the one-element FEM
simulation and the FEM simulation is run. The average stress tensor and average dam-
age tensor are evaluated from all “ordinary” particles (not belonging to the layer imposing
boundary conditions).

Based on numerical testing, the damage transformation law

𝜔 = 2.09 (0.85Ω1 + 0.15Ω3)4.7 (6.17)

was chosen. Ω1 denotes the maximum principal value of the damage tensor and Ω3 the
minimum one. See figure 6.5.

For the DPM plastic stage before damage onset (6.15),

if 𝜔 ≤ m then 𝜅D = 0,𝜅P = 𝜅P(𝜔),𝜔 = 0, (6.18)

the following value and formula

m = 5 · 10−4 𝜅P = 0.3 + 900𝜔 (6.19)

were chosen after numerical testing.
Graphs in figures 6.6 and 6.7 show results of the CPM simulation (grey) and contin-

uation with the mapped DPM model (black). The presented results show a reasonable
approximation of the FEM behavior after the transformation from DEM. The biggest error is
obtained, if the mapping occurs around the peak (or after unloading from around the peak)
where the results of two presented models differ the most.
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Figure 6.4: Stress-strain diagrams for individual models

−50

−40

−30

−20

−10

0

−3 −2 −1 0
−0.25

0

0.25

0.5

0.75

1

st
re

ss
[M

P
a]

da
m

ag
e

[-]

strain [10−3]

CPM
Ω1
Ω2
Ω3

eq. (6.17)

Figure 6.5: Chosen damage transformation law reflecting residual strength of
CPM model
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Figure 6.6: Results of mapping at monotonic loading
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Figure 6.7: Results of mapping at unloaded state









Part III.

Mesoscale Discrete Element Model
for Concrete





MESOSCALE DISCRETE ELEMENT MODEL FOR CONCRETE 77

For description of a homogeneous material, only the overall geometry of investigated
region and one set of material properties are needed. If the heterogeneities are considered,
their geometry (position, shape and orientation) together with more than one set of material
properties have to be specified The material properties can be assumed as a function
of position, i.e, each material point can have unique properties, or the situation may be
simplified with the assumption that the properties of a material point depend only on the
constituent and do not vary within the constituent.

In science and engineering, concrete is described on different scales, depending on the
purpose. In practical civil engineering, concrete is usually described as a homogeneous
isotropic material. However, for some applications, the heterogeneous internal structure of
concrete plays a crucial role.

Investigated on mesoscale, concrete may be considered as a composition of continuous
binder (usually hardened cement paste) matrix with inserted aggregates (such as crushed
rocks, gravel or sand) and air voids (pores).

For modeling purposes, the interface transition zone (ITZ) between aggregates and
matrix plays a special role.

This chapter describes the development of a discrete mesoscale model for concrete.
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7 State of the art

Various approaches of mesoscale concrete modeling have been published. All of them
consider concrete as a matrix-based composite with aggregates as inclusions, possibly
also with pores. The approaches may be classified from several points of view.

The first significant difference is whether the model is formulated in two dimensions
(see, e.g., [6, 44, 104, 55, 56, 61, 72, 75, 84, 103, 108, 111, 112, 78, 43, 40, 41, 113, 36])
or in three dimensions (see, e.g., [19, 55, 55, 86, 97, 106, 49, 15, 109, 62, 22, 23, 25, 24,
50, 27, 26]). Although the 3D models describe the heterogeneous geometry (apart from
very special cases) more realistically, some ideas and approaches from 2D models may be
useful and applicable also for the 3D case.

According to the numerical method used, the approaches can be divided into contin-
uum and discrete based. Although the main purpose of this work is to develop a discrete
mesoscale model, continuum based approaches can be very inspiring, especially in the
context of ITZ material models. Most of the continuum based works use FEM as a numer-
ical solution tool [19, 44, 104, 55, 56, 71, 75, 84, 86, 108, 111, 112, 87, 15, 113], but also
other methods (meshfree methods [36] or SPH method [60] for instance) are used.

The discrete element method can model disintegration of materials and is therefore
also very popular in the context of concrete modeling, especially for scenarios like frag-
mentation, impact or explosion problems etc. How DEM is used for mesoscale concrete
modeling, see, e.g., [6, 16, 42, 45, 47, 54, 57, 61, 72, 97, 103, 78, 43, 40, 41, 109, 62, 22,
23, 25, 24, 27, 26].

7.1 Mesoscale geometry

The concrete heterogeneous geometry (i.e, amount, sizes, shapes and orientation of ag-
gregates and pores) plays an important role in the realistic description of concrete meso-
scale behavior. The authors use various ways of definition of aggregate geometry, from
extremely simplified regular uniformly sized hexagonal particles (see [84] and figure 7.1
top left) through commonly used spherical/circular (see, e.g., [6, 19, 75, 86, 103, 106, 108,
111, 112, 110, 49, 43, 40, 41, 109, 62, 50, 68, 27, 26] and figure 7.1 top middle) or ellip-
soidal/elliptical (see, e.g., [42, 44, 55, 56, 87, 49] and figure 7.1 top right) representation to
more sophisticated approximation by polygons/polyhedrons [53, 72, 75, 49, 78, 113] and
figure 7.1 bottom left, or representation of aggregates by the series of harmonic functions
[34, 44, 83] and figure 7.1 bottom right.

For method testing and validation, there also exist experiments with artificially created
mesoscale geometries, where large aggregates have predefined size, position and orien-
tation, see [98, 14] and figure 7.2.

The aggregates are modeled as one rigid particle [43, 103, 109, 27, 26] or as a cluster
of particles/elements (e.g., spheres in DEM), see figure 7.3 [6, 40, 41, 42, 49, 72, 78].
Such clustered particles may be rigid or deformable.
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Figure 7.1: Examples of geometrical representation of aggregates: hexagonal
[84] (top left), circular [6] (top middle), ellipsoidal [44] (top right), polyhedral

[15] (bottom left) and using spherical harmonics [83] (bottom right)

7.2 Material models for mortar and aggregates

For practical and computational reasons, both matrix and individual aggregates are mod-
eled as homogeneous components. Some authors (e.g., [15, 19, 22, 36, 40, 41, 43])
consider aggregates as non damageable, so cracks and damage can only propagate in
the matrix. This assumption is reasonable for certain loading scenarios, but is not appli-
cable in a general case, where cracks can propagate also through aggregates (e.g., for
light-weight concrete or for dynamic loading).

Although all three phases of concrete composite material may be modeled with different
material models [111, 110], many authors use for matrix, aggregates and ITZ the same
material model [6, 42, 43, 49, 63, 72, 84, 103, 109, 112].

In the case of continuous (FEM) models, the material model for matrix and aggregates
is usually based on damage-plasticity models.

The discrete models usually work with a more or less complex contact law and a link
failure envelope. See, e.g., [23, 43, 47, 78, 97, 103] or figure 7.5.

Several rock material models (usable for aggregate description) are published in the
literature [31, 46, 18, 67, 76, 81, 85, 59, 94, 102]. Some of them (see, e.g., [67, 85, 59] or
figure 7.6) are quite similar to the models of concrete or mortar.

7.3 Interface transition zone

Apart from separated matrix and aggregates, the interface between these components
needs to be properly specified for realistic modeling of inelastic processes (crack initiation
and propagation for instance). The interface is a very special region of concrete, occupying
a minimal volume, but having a significant influence on resulting concrete properties.
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Figure 7.2: Examples of artificial geometry: [98] left and [14] right

Figure 7.3: Illustration of aggregate representation as a cluster of DEM
particles: [42] (left), [78] (middle) and [72] (right)

The special role of ITZ is given by both mechanical and chemical reasons, being inves-
tigated mathematically and experimentally [30, 37, 38, 79].

From the simulation point of view, the ITZ is often described by the same type of material
model as the other constituents, but is considered as the weakest part of the concrete
composite, which is reflected in the material parameters choice; see figure 7.7.
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Figure 7.4: Interface model according to [15] (left) and [108] (right)
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Figure 7.5: Illustration of material models according to [23] (top left), [43] (top
middle), [47] (top right), [78] (bottom left), [97] (bottom middle) and [103]
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8 New mesoscale discrete element model for
concrete

According to the best knowledge of the author, no three-dimensional mesoscale spherical
discrete element model for concrete, sufficiently validated against experiments, is pub-
lished in the literature. Spherical-like Voronoi diagram based lattice models (e.g., [16, 22,
41, 47, 103, 109]) might seem to be a solution, but such models do not consider new con-
tacts, the link representation is different from classical spherical discrete elements, etc. As
a consequence, a new model is proposed.

8.1 New model definition

According to the presented literature study, the author’s experience and available simulation
tools, the new mesoscale concrete particle model (MCPM) development is summarized in
this section.

The discrete element method, using open-source software YADE, is used as a numeri-
cal simulation tool.

The material model considered is the CPM, summarized in section 2.5. The model
considers concrete as a three-phase composite composed of cement paste/mortar ma-
trix, (disordered) aggregates and interfacial transition zone (ITZ) between matrix and ag-
gregates. The same material model (with different parameters) is considered for all the
constituents.

The presented approach considers two types of DEM particles - particles belonging to
aggregates and particles belonging to cement mortar. As a consequence, 3 types of links
are possible: aggregate-aggregate, mortar-mortar and aggregate-mortar. The aggregate-
mortar type of links will be called interface links in this thesis. The material of particles is
determined according to the center and size of the particle and according to the geomet-
rical representation (size, shape and orientation) of aggregates. Figure 8.1 illustrates the
approach.

Figure 8.1: Illustration of MCPM geometry definition. Light particles
correspond to mortar, dark particles to aggregates and thick links to interface

The material models for all constituents (mortar, aggregates, and ITZ) is modeled by
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the Concrete Particle Model [92]. The same model for individual phases is usual among
other authors, see section 7.

The material properties are constant within mortar and single aggregates (but different
aggregates may have different parameters, e.g., simulating concrete with several different
aggregate types). Using this approach, no parts of material are considered as rigid and
every part of material may exhibit nonlinear behavior (i.e., aggregates will be deformable
and damageable), see figure 8.2 for illustration.

Figure 8.2: Illustration of clustered aggregate according to [42]. Different
shades indicates different materials

In YADE default implementation, parameters of links connecting particles with different
materials are averaged. The newly implemented algorithm sets parameters of interfacial
links based on the matrix material, with further possibility of stiffness, strength and charac-
teristic length modification.

Numerical studies of other authors [6, 49, 50, 53, 41, 43, 40, 77, 78, 87, 95, 98, 109]
consider the interface less stiff and weaker than matrix, see figure 8.3. This phenomenon
is also supported experimentally [95].

For computational reasons, spherical DEM particles with uniform size are used as dis-
crete elements. The concept of interaction ratio is used in the beginning of the simulation to
create cohesive links between mortar-mortar, aggregate-aggregate and mortar-aggregate
particles, the latter representing ITZ.

8.2 Model validation

To validate the model for mesoscale concrete, the model should use one set of parameters
and should be compared with a set of experiments. The experimental data of mechanical
properties dependent on different aggregate grading curves were chosen for this purpose.

In the literature, there are some studies on this topic, but not all of them suit our pur-
pose. Some investigate different grading curves, but the aggregates are artificially made,
with lower stiffness and strength than the matrix [29]. Some studies investigate concrete
containing a single spherical steel aggregate [3, 2, 1]. Others have incomplete input data
(e.g, the experiment was intended for a different purpose than we want) [37, 38].

The papers are useful anyway providing references to other articles and also sum-
marizing literature research. Figure 8.4 shows increasing fracture energy for increasing
maximum aggregate size [13]. Figure 8.5 shows influence of maximum aggregate size on
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Figure 8.3: ITZ models in literature [6, 49, 50, 53, 41, 43, 40, 77, 78, 87, 95,
98, 109]
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various concrete mechanical properties [29]. Black arrows indicate increase, gray dashed
arrows decrease and thick gray lines approximately no change. For increasing maximum
aggregate size, fracture energy Gf always increased, but for other quantities (ft and E), the
trend is not so indubitable.
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Figure 8.4: Influence of maximum aggregate size on fracture energy [13]

Table 8.1: Cement and water content for concrete compositions [kg/m3] (top)
and grading curves [kg/m3] (bottom). The first row of the lower table refers to

maximum aggregate size

c w

low strength 325.8 187.0

high strength 422.4 160.7

9.5 mm 12.5 mm 19.0 mm

limestone powder 205 205 205

sand 917 917 917

4.75 - 9.5 mm 750 300 300

9.5 - 12.5 mm - 450 300

12.5 - 19.0 mm - - 150

8.2.1 Experiment [12, 13, 69]

From the studied literature, the experiment from [12, 13, 69] was chosen. The experi-
ments investigate the influence of different aggregate sizes (different grading curves) on
concrete material properties (ft , fc, Gf , E). Two concrete compositions (low strength and
high strength) are examined, each with three different aggregate grading curves, see tables
8.1.

Figures 8.6 show the comparison between simulations and experimental data. Since
the absolute values of macroscopic quantities can be relatively easily estimated (see sec-
tion 2.5.3), only values relative to the results for the smallest aggregate size are plotted.
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Reference w/c %Aggr Size (mm) GF (J/m
2) E (GPa) ft (MPa)

Saouma et al. [6] 0.55 0.44 19 (max) 173 18.0 2.81
0.55 0.54 38 (max) 223 16.9 2.67
0.55 0.62 76 (max) 226 16.5 2.41

Li et al. [9] 0.50 0.48 5–40 420 24.6 1.80
0.50 0.69 5–150 490 43.1 1.58

Tasdemir et al. [7] a 0.36 0.49 5–10 106 38 4.58
a 0.36 0.49 10–20 142 37.2 3.45

b 0.36 0.49 5–10 87 37.5 5.42
b 0.36 0.49 10–20 87 37 4.03

Petersson [2] 0.5 0.5 8 (max) 85 43.2 4
0.5 0.5 12 (max) 88 42 3.8
0.5 0.5 16 (max) 96 41.9 3.5

Mihashi et al. [4,5] – – Mortar 105 3.5
0.40 0.44 5–10 129 3.2
0.40 0.44 10–15 158 3
0.40 0.44 15–20 160 3.4
0.40 0.44 20–30 188 3.6

Rao and Prasad [8] a 0.32 0.44 4.75 (max) 77 37 2.39
a 0.32 0.44 6.3 (max) 98 39 2.7
a 0.32 0.44 12.5 (max) 103 40 2.9
a 0.32 0.44 20.0 (max) 142 42 3.06

b 0.32 0.44 4.75 (max) 122 39 2.55
b 0.32 0.44 6.3 (max) 137 40 3.31
b 0.32 0.44 12.5 (max) 151 42 4.01
b 0.32 0.44 20.0 (max) 165 43 3.8

Chen and Liu [10] – – Mortar 110 2.04a

0.37 0.42 5–10 175 2.61a

0.37 0.42 10–16 195 2.67a

0.37 0.42 16–20 240 2.58a

Kleinschrodt and Winkler [3] 8 (max) 122.3 25.3
16 (max) 152.9 26.9

Zhang et al. [11] 7.5 153 30 4.44
13 202 30 3.57
18 202 30 2.14
22.5 208 30 2.46

7.5 180 35 4.95
13 182 35 4.74
18 199 35 4.73
22.5 227 35 3.48

Figure 8.5: Influence of maximum aggregate size on mechanical properties
[29]
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Each point in the graphs is the averaged simulation result from 3 runs. For each run, the
same aggregate sizes were considered (according to the corresponding concrete compo-
sition and grading curve) and their positions were chosen randomly. The simulations were
performed on 50 mm cubic samples with 2 mm DEM particle size (diameter). If particles
should be considered as mortar or aggregate particles (and consequently identifying ITZ
links) was determined according to figure 8.1

Several combinations of input parameters were tested. The results are plotted for ag-
gregates 2.5 time stiffer and 5 time stronger than matrix and for ITZ 2 times less stif and 2
times weaker than mortar links. Results 2 refer to 2 times more brittle ITZ than results 1.

The model results reasonably correspond to the trends observed in the experiments,
although the precise values are fitted with a certain discrepancy.
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Figure 8.6: Comparison of simulations and experiment [12, 13, 69] for low
strength (top) and high strength (bottom) concrete.
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9 Conclusions

The following research objectives were accomplished in the present thesis:

∙ The relation between micro- and macroscopic elastic parameters was investigated
both analytically and numerically. The analytical formulas were derived based on the
microplane theory. The numerical results were obtained by DEM and FEM simula-
tions. Very good correspondence of the numerical and analytical results is found for
packings with interaction ratio greater than 1.25. For lower values of the interaction
ratio, the analytical estimation of Young’s modulus and Poisson’s ratio based on the
assumption of uniform distribution of directions of links differs from the numerical re-
sults. However, the analytical formula for the full stiffness tensor corresponds to the
numerical results very well for all tested values of the interaction ratio.

∙ The derivation of the stress tensor and couple stress tensor based on the virtual work
principle was reviewed and new formulas for the couple stress tensor were proposed
and discussed. For the defined volume, the new formulas yield a unique value of
the couple stress tensor independent of the choice of the coordinate reference point,
which (according to the author’s knowledge) has not yet been published in the litera-
ture.

∙ Various classes of FEM–DEM concurrent coupling strategies (namely the surface,
direct volume, multiscale and contact coupling) were described. Existing software
packages OOFEM and YADE (both providing Python user interface) were chosen
for the coupling. Each strategy was illustrated on a simple example. The examples
together with the unifying framework form a new open source code project.

∙ A mapping of the final state of a DEM simulation onto the initial state of the FEM
simulation (also referred to as a sequential coupling) was illustrated on uniaxial com-
pression of a concrete material. The method was proven to be able to capture the
transition from DEM to FEM relatively well for several different loading scenarios –
mapping at different stages (elastic range, peak load, softening regime, with or with-
out unloading etc.). The most divergent results were obtained for the stages of load-
ing where the DEM and FEM material models themselves differed the most.

∙ A new discrete element model for concrete taking into account the heterogeneous
mesoscale structure of concrete (i.e., aggregates and ITZ between aggregates and
matrix) was proposed and tested. The validation against experimental data from the
literature shows the ability of the model to realistically capture trends of various ma-
terial properties (elastic modulus, tensile and compressive strength, fracture energy)
with respect to the actual mesoscale structure of the material.
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A Mathematical and physical
concepts and notations

Because the reader may be used to a different notation or terminology, “generally known”
mathematical and physical theory is summarized in this chapter.

Some identities and equations of this chapter are referenced multiple times from the
core part of the thesis, which was another motivation to create this appendix.

This chapter also contains some “generally known” derivations or derivations which
themselves are not so important for the results provided by this thesis, but which are,
according to the author’s opinion, worth to be mentioned.

A.1 Tensors

Both index notation
a, ai , Aij , Aijk , Aijkl (A.1)

and symbolic notation
a, a, A,𝒜,AAAA (A.2)

are used in this thesis. The two lines of symbols above show notation for a zero (scalar),
first (vector), second, third and fourth order tensor, respectively. The notations are inter-
changeable, but there are situations, where one is preferable to the other.

The so called Einstein summation rule is used for index notation, for instance

Ail = AijCjkDmmkl ≡
∑︁

j

∑︁
k

∑︁
m

AijCjkDmmkl . (A.3)

This thesis works with Cartesian coordinate system, so there is no need to distinguish
between covariant, contravariant or mixed tensors.

A.1.1 Algebraic operations and properties

The following algebraic operations, written usually in both index and symbolic notation, are
used throughout the thesis. Some symbols (e.g., ℰ , 1 or IIII) are defined in the next section
A.1.2.

A.1.1.1 Contraction

a = b · c, a = bici (A.4)
a = B · c, ai = Bijcj (A.5)
a = b · C, ai = bjCji (A.6)
A = B · C, Aij = BikCkj (A.7)
A = b m· 𝒞 Aij = bkCikj (A.8)
A = ℬ · c Aij = Bijkck (A.9)
AAAA = ℬ · 𝒞 Aijkl = BijmCmkl (A.10)

The operator m· denotes contraction with respect to the middle index.
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A.1.1.2 Double contraction

a = A : B, a = AijBij (A.11)
A = BBBB : C, Aij = BijklCkl (A.12)
A = B : CCCC, Aij = BklCklij (A.13)
a = ℬ : C, Ai = BijkCjk (A.14)
A = ℬ : 𝒞, Aij = BiklCklj (A.15)
AAAA = BBBB : CCCC, Aijkl = BijmnCmnkl (A.16)

A.1.1.3 Dyadic (outer, tensor, direct) product

A = a ⊗ b, Aij = aibj (A.17)
AAAA = B ⊗ C Aijkl = BijCkl (A.18)

A.1.1.4 Cross product

c = a × b = b · ℰ · a = −b × a ci = 𝜀ijkajbk = bk𝜀kijaj = −𝜀ijkakbj (A.19)
C = 1 × b = ℰ · b Cij = 𝜀ijkbk (A.20)
c = 1 × B = ℰ : B, ci = 𝜀ijkBjk (A.21)

ℰ , 𝜀ijk is the Levi-Civita permutation symbol (A.39).

A.1.1.5 Transposition of a second order tensor

AT AT
ij = Aji (A.22)

A.1.1.6 Symmetric and antisymmetric second order tensor, axial vector, decompo-
sition

Any symmetric second order tensor S equals its transposition:

S = ST Sij = Sji (A.23)

Any antisymmetric second order tensor W equals minus its transposition:

W = −WT Wij = −Wji (A.24)

Any antisymmetric second order tensor W can be expressed in terms of its dual (axial)
vector w such that for any b

∀b; b · W = w × b, ∀bi ; biWij = 𝜀jkiwkbi , (A.25)

therefore

W = ℰ · w = 1 × w Wij = 𝜀jkiwk = 𝜀ijkwk W =

⎡⎢⎣ 0 w3 −w2

−w3 0 w1

w2 −w1 0

⎤⎥⎦ (A.26)

w =
1
2
ℰ : W =

1
2

1 × W wk =
1
2
𝜀kijWij w = {W23, W31, W12}T. (A.27)
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The duality of the last equations can be easily shown using properties of ℰ and substituting
(A.27) into (A.26) or vice versa:

w =
1
2
ℰ : W =

1
2
ℰ : ℰ · w =

1
2

2 1 · w = w

wk =
1
2
𝜀kijWij =

1
2
𝜀kij𝜀ijlwl =

1
2

2𝛿klwl = wk

(A.28)

W = ℰ · w =
1
2
ℰ · ℰ : W =

1
2

2IIIIA : W = W

Wij = 𝜀ijkwk = 𝜀ijk
1
2
𝜀klmWlm =

1
2

(𝛿il𝛿jm − 𝛿im𝛿lj )Wlm =
1
2

(Wij − Wji ) = Wij

(A.29)

Any second order tensor can be decomposed into the symmetric and the antisymmetric
part.

A = AS + AA Aij = AS
ij + AA

ij (A.30)

AS =
1
2

(︀
A + AT

)︀
= IIIIS : A AS

ij =
1
2

(︀
Aij + Aji

)︀
=

1
2

(𝛿ik𝛿jl + 𝛿il𝛿jk )Akl (A.31)

AA =
1
2

(︀
A − AT

)︀
= IIIIA : A AA

ij =
1
2

(︀
Aij − Aji

)︀
=

1
2

(𝛿ik𝛿jl − 𝛿il𝛿jk )Akl (A.32)

A.1.1.7 Trace of a second order tensor

A trace of a second order tensor is the sum of its diagonal elements. The trace is the first
invariant of a second order tensor.

tr(A) = A11 + A22 + A33 (A.33)

It can be computed as a double contraction with the second order identity tensor.

tr(A) = A : 1 = 1 : A tr
(︀
Aij
)︀

= Aij𝛿ij = 𝛿ijAij = Aii = A11 + A22 + A33 (A.34)

A.1.1.8 Volumetric part of a second order tensor

A volumetric (hydrostatic, spherical, isotropic) part of a second order tensor is a product of
its mean value (one third of its trace) and the second order identity tensor

AV =
tr(A)

3
1 =

1
3

(A : 1)1 =
1
3

1 ⊗ 1 : A AV
ij =

Akk

3
𝛿ij =

1
3
𝛿ij𝛿klAkl . (A.35)

Trace of the volumetric part equals trace of the original tensor

tr
(︀
AV
)︀

= tr
(︂

tr(A)
3

1
)︂

=
tr(A)

3
tr(1) =

tr(A)
3

3 = tr(A) (A.36)

A.1.2 Special tensor instances and identities

A.1.2.1 Second order identity tensor

A matrix representation of the second order identity tensor is the identity matrix. For the
index notation, Kronecker delta is used.

1 =

⎡⎢⎣1 0 0
0 1 0
0 0 1

⎤⎥⎦ 𝛿ij =

{︃
1 if i = j
0 if i ̸= j

(A.37)
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∀A; 1 · A = A · 1 = A ∀Amn; 𝛿ikAkj = Aik𝛿kj = Aij . (A.38)

A.1.2.2 Levi-Civita permutation symbol

ℰ 𝜀ijk =

⎧⎪⎨⎪⎩
+1 if (i , j , k ) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}
−1 if (i , j , k ) ∈ {(3, 2, 1), (1, 3, 2), (2, 1, 3)}

0 if i = j or j = k or k = i

(A.39)

therefore
𝜀ijk = 𝜀jki = 𝜀kij = −𝜀kji − 𝜀ikj = −𝜀jik (A.40)

and

ℰ : ℰ = 2 1 𝜀ikl𝜀klj = 2𝛿ij (A.41)

ℰ · ℰ = 2IIIIA 𝜀ijm𝜀mkl = 𝛿ik𝛿jl − 𝛿il𝛿jk . (A.42)

A.1.2.3 Fourth order identity tensors

IIII Iijkl = 𝛿ik𝛿jl (A.43)
TIIII TIijkl = 𝛿il𝛿jk (A.44)

IIIIS =
1
2

(IIII + TIIII) IS
ijkl =

1
2

(𝛿ik𝛿jl + 𝛿il𝛿jk ) (A.45)

IIIIA =
1
2

(IIII− TIIII) =
1
2
ℰ · ℰ IA

ijkl =
1
2

(𝛿ik𝛿jl − 𝛿il𝛿jk ) (A.46)

with following properties

∀A; IIII : A = A : IIII = A ∀Amn; 𝛿ik𝛿jlAkl = Aij , Aij𝛿ik𝛿jl = Akl (A.47)

∀A; TIIII : A = A : TIIII = AT ∀Amn; 𝛿il𝛿jkAkl = Aji , Aij𝛿il𝛿jk = Alk (A.48)

∀A; IIIIS : A =
1
2

(IIII + TIIII) : A =
1
2

(A + AT) = AS

∀A; A : IIIIS = A :
1
2

(IIII + TIIII) =
1
2

(A + AT) = AS
(A.49)

∀A; IIIIA : A =
1
2

(IIII− TIIII) : A =
1
2

(A − AT) = AA

∀A; A : IIIIA = A :
1
2

(IIII− TIIII) =
1
2

(A − AT) = AA
(A.50)

A.1.2.4 Fourth order volumetric projection tensor

The volumetric part of a second order tensor (A.35) can be rewritten to the form

AV =
1
3

1 ⊗ 1 : A = IIIIV : A AV
ij =

1
3
𝛿ij𝛿klAkl = IV

ijklAkl , (A.51)

where

IIIIV =
1
3

1 ⊗ 1 IV
ijkl =

1
3
𝛿ij𝛿kl (A.52)

is the fourth order volumetric projection tensor.
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A.1.2.5 Special identities

a · B · c = B : (a ⊗ c) = (a ⊗ c) : B aiBijcj = Bijaicj = aicjBij (A.53)
a · B · a = B : (a ⊗ a) = (a ⊗ a) : B aiBijaj = Bijaiaj = aiajBij (A.54)

A : (1 × b) = (1 × A) · b Aij (𝜀ijkbk ) = (𝜀kijAij )bk (A.55)

1 × (b ⊗ c) = b × c 𝜀ijkbjck (A.56)

A.1.2.6 Unit vectors

A unit vector n is a vector with its norm equal to 1

||n|| =
√

n · n = 1 ||n|| =
√

nini = 1 (A.57)
n · n = 1 nini = 1 (A.58)

resulting into useful identities(︀
IIIIS · n

)︀
· (n ⊗ n ⊗ n) = IS

ijabnbnanknl = ninjnknl = n ⊗ n ⊗ n ⊗ n, (A.59)

(n ⊗ n ⊗ n) ·
(︀
n · IIIIS

)︀
= ninjnanbIS

bakl = ninjnknl = n ⊗ n ⊗ n ⊗ n, (A.60)

(n ⊗ n ⊗ n) · (n ⊗ n ⊗ n) = ninjnananknl = ninjnknl = n ⊗ n ⊗ n ⊗ n, (A.61)

(︀
IIIIS · n

)︀
·
(︀
n · IIIIS

)︀
= IS

ijabnbncIS
cakl =

1
2

(︀
𝛿ia𝛿jb + 𝛿ib𝛿ja

)︀
nbnc

1
2

(𝛿ck𝛿al + 𝛿cl𝛿ak ) =

=
1
4

(︀
𝛿ia𝛿jb𝛿ck𝛿al + 𝛿ia𝛿jb𝛿cl𝛿ak + 𝛿ib𝛿ja𝛿ck𝛿al + 𝛿ib𝛿ja𝛿cl𝛿ak

)︀
nbnc =

=
1
4

(︀
njnk𝛿il + njnl𝛿ik + nink𝛿jl + ninl𝛿jk

)︀
.

(A.62)

Trace of a tensor n ⊗ n equals 1:

tr(n ⊗ n) = 1 : (n ⊗ n) = n · 1 · n = n · n = 1 tr
(︀
ninj
)︀

= 𝛿ijninj = nini = 1 (A.63)

A.2 Differential calculus

The notation and terminology for differential calculus used in the thesis is summarized here.
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Gradient

b = ∇a =
𝜕a
𝜕x

bi = ∇ia =
𝜕a
𝜕xi

(A.64)

B = ∇⊗ a bij = ∇iaj =
𝜕aj

𝜕xi
(A.65)

B = a ⊗∇ bij = ai∇j =
𝜕ai

𝜕xj
(A.66)

The symmetric gradient is the symmetric part of the gradient

B = ∇S ⊗ a = (∇⊗ a)S =
1
2

(∇⊗ a + a ⊗∇) (A.67)

bij = ∇S
i aj = (∇iaj )S =

1
2

(︂
𝜕ai

𝜕xj
+
𝜕aj

𝜕xi

)︂
(A.68)

The antisymmetric gradient is the antisymmetric part of the gradient

B = ∇A ⊗ a = (∇⊗ a)A =
1
2

(a ⊗∇−∇⊗ a) (A.69)

bij = ∇A
i aj = (∇iaj )A =

1
2

(︂
𝜕ai

𝜕xj
− 𝜕aj

𝜕xi

)︂
(A.70)

Divergence

b = ∇ · a b = ∇iai =
𝜕ai

𝜕xi
(A.71)

b = ∇ · A bj = ∇iAij =
𝜕Aij

𝜕xi
(A.72)

B = ∇ m· 𝒜 bij = ∇kaikj =
𝜕Aikj

𝜕xk
. (A.73)

∇ m· means differentiation with respect to the middle index.

Divergence theorem

Divergence theorem (also known as Gauss’s and/or Ostrogradsky’s theorem) is “multi-
dimensional integration by parts”∫︁

V
∇ · a dV =

∫︁
S

n · a dS
∫︁

V
∇iai dV =

∫︁
S

niai dS (A.74)∫︁
V
∇ · A dV =

∫︁
S

n · A dS
∫︁

V
∇iAij dV =

∫︁
S

niAij dS (A.75)∫︁
V
∇ m· 𝒜 dV =

∫︁
S

n m· 𝒜 dS
∫︁

V
∇kaikj dV =

∫︁
S

nkaikj dS (A.76)

V and S denotes volume and surface of the integration domain, respectively.
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Derivatives of products

∇ · (A · b) = (∇ · A) · b + A : (∇ · b) ∇i
(︀
Aijbj

)︀
=
(︀
∇iAij

)︀
bj + Aij

(︀
∇ibj

)︀
(A.77)

∇ m· (a ⊗ B) = (a ⊗∇) · B + a ⊗ (∇ · B) ∇j
(︀
aiBjk

)︀
=
(︀
ai∇j

)︀
Bjk + ai

(︀
∇jBjk

)︀
(A.78)

Gradient of position vector

A derivative of a vector with respect to itself is the second order identity tensor

𝜕a
𝜕a

= 1
𝜕ai

𝜕aj
= 𝛿ij . (A.79)

Then it directly follows that the gradient of the position vector is the second order identity
tensor

∇⊗ x = 1 ∇ixj =
𝜕xj

𝜕xi
= 𝛿ij

x ⊗∇ = 1 ∇jxi =
𝜕xi

𝜕xj
= 𝛿ij .

(A.80)

Expressing a second order tensor using derivatives and position vector

Using equations (A.38) (A.78) and (A.80) yields

Aij = 𝛿ikAkj = (xi∇k ) Akj = ∇k
(︀
xiAkj

)︀
− xi

(︀
∇kAkj

)︀
(A.81)

A = 1 · A = (x ⊗∇) · A = ∇ m· (x ⊗ A) − x ⊗ (∇ · A) . (A.82)

A.3 Cosserat micropolar continuum mechanics

Basic concepts and conventions of Cosserat micropolar continuum are summarized in this
section. Equations in this section are derived for the geometrically linear case from engi-
neering point of view extending classical Boltzmann continuum knowledge.

Cosserat continuum (named after Cosserat brothers [20]) considers rotation of material
points as an independent variable, therefore it can be used for the description of granular
media. The presence of rotational degrees of freedom results in non-symmetric stress and
strain tensors.

For more details, see [28, 20, 4, 100].
Consider a material domain with volume V and surface S. Each material point has

reference position x and undergoes displacement u and independent rotation 𝜑𝜑𝜑𝜑. Body
force f and body couple c act at each inner point x ∈ V and surface force t and surface
couple m act at each surface point x ∈ S. All force and moment quantities may have zero
values.

A.3.1 Kinematic equations

The displacement gradient

U = ∇⊗ u Uij = ∇iuj (A.83)
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defines displacement du of an infinitesimal line segment dx as

du = dx · U (A.84)

and can be decomposed into the symmetric and antisymmetric part, representing macro
strain tensor 𝜀𝜀𝜀𝜀M and rotation tensor ΦM (or corresponding axial vector 𝜑𝜑𝜑𝜑M), respectively:

US = 𝜀𝜀𝜀𝜀M = ∇S ⊗ u =
1
2

(∇⊗ u + u ⊗∇) (A.85)

UA = ΦM = ∇A ⊗ u =
1
2

(∇⊗ u − u ⊗∇) = 1 × 𝜑𝜑𝜑𝜑M . (A.86)

The difference between the independent rotation degree of freedom 𝜑𝜑𝜑𝜑 and the macro rota-
tion 𝜑𝜑𝜑𝜑M is additional quantity, the so called micro rotation 𝜑𝜑𝜑𝜑m:

𝜑𝜑𝜑𝜑m = 𝜑𝜑𝜑𝜑− 𝜑𝜑𝜑𝜑M . (A.87)

𝜑𝜑𝜑𝜑m represents “rotation of material points”, see subsection A.3.1.1. Cosserat strain is then
defined as the macrostrain plus the contribution of the microrotation:

𝜀𝜀𝜀𝜀 = 𝜀𝜀𝜀𝜀M − 1 × 𝜑𝜑𝜑𝜑m, (A.88)

which can also be rewritten to the form

𝜀𝜀𝜀𝜀 = US − 1 × (𝜑𝜑𝜑𝜑− 𝜑𝜑𝜑𝜑M) = US + UA − 1 × 𝜑𝜑𝜑𝜑 = U − 1 × 𝜑𝜑𝜑𝜑 (A.89)

A more rigorous derivation is given by, e.g., [100].
Gradient of the rotation vector is the curvature tensor

𝜅 = ∇⊗ 𝜑𝜑𝜑𝜑. (A.90)

A.3.1.1 2D example, simple shear

Consider an elementary cube whose points have displacement u = {ky , 0}T and total
rotation 𝜑 = 𝜑M + 𝜑m. The displacement gradient is

U = ∇⊗ u =

[︃
0 0
k 0

]︃
, dx · U = {dx , dy}T ·

[︃
0 0
k 0

]︃
= {kdy , 0} = du (A.91)

𝜀𝜀𝜀𝜀M = US =

[︃
0 1

2k
1
2k 0

]︃
ΦM = UA =

[︃
0 −1

2k
+1

2k 0

]︃
𝜑M = −1

2
k (A.92)

Now consider the microstrain with the value

𝜑m = +
1
2

k Φm =

[︃
0 +1

2k
−1

2k 0

]︃
. (A.93)

The resulting Cosserat strain reads

𝜀𝜀𝜀𝜀 = 𝜀𝜀𝜀𝜀M − 1 × 𝜑m = 𝜀𝜀𝜀𝜀 = 𝜀𝜀𝜀𝜀M −Φm =

[︃
0 1

2k
1
2k 0

]︃
−

[︃
0 +1

2k
−1

2k 0

]︃
=

[︃
0 0
k 0

]︃
(A.94)

Table A.1 illustrates individual components of the displacement gradient and strain tensor,
especially the values 𝜀12 = 0 (no relative shear deformation between particles) and 𝜀21 = k
(existent relative shear deformation between particles).
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Table A.1: 2D representation of Cosserat strain

U US = 𝜀𝜀𝜀𝜀M UA ≡ 𝜑M 𝜑m 𝜀𝜀𝜀𝜀 = 𝜀𝜀𝜀𝜀M −1×𝜑𝜑𝜑𝜑m

[︃
0 0
0 0

]︃ [︃
0 0
0 0

]︃
0 0

[︃
0 0
0 0

]︃

[︃
0 v
v 0

]︃ [︃
0 v
v 0

]︃
0 0

[︃
0 v
v 0

]︃

[︃
0 −v
v 0

]︃ [︃
0 0
0 0

]︃
−v 0

[︃
0 0
0 0

]︃

[︃
0 0
0 0

]︃ [︃
0 0
0 0

]︃
0 v

[︃
0 −v
v 0

]︃

[︃
0 0

2v 0

]︃ [︃
0 v
v 0

]︃
−v 0

[︃
0 v
v 0

]︃

[︃
0 0

2v 0

]︃ [︃
0 v
v 0

]︃
−v v

[︃
0 0

2v 0

]︃
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f1
c3

𝜎11(Δx1)

𝜎12(Δx1)

𝜎11(0)

𝜎12(0)

𝜎21(Δx2)

𝜎22(Δx2)

𝜎21(0)

𝜎22(0)

𝜇13(Δx1)𝜇13(0)

𝜇23(Δx1)

𝜇23(0)

Figure A.1: 2D representation of stresses and couple stresses on elementary
cube

A.3.2 Equilibrium equations

The material point can be represented by an infinitesimal cube with dimensions Δx.
The stress state of material point is expressed by second order stress tensor 𝜎 and

second order couple stress tensor 𝜇, see figure A.1 for illustration. For the sake of simplic-
ity, the two opposite corners have coordinates 0 and Δx, but the same results would hold
for corners x and x + Δx.

The ij component of stress (couple stress) tensor equals surface force (surface couple)
acting on the surface with normal ei in direction ej . Surface force t and surface couple m
acting on surface with general normal n can be expressed as the so called Cauchy’s stress
theorem

t = n · 𝜎 tj = ni𝜎ij (A.95)
m = n · 𝜇 mj = ni𝜇ij . (A.96)

Equilibrium equations are expressed in terms of body forces f and body couples c and
can be derived from equilibrium on an infinitesimal cube considering its dimensions as
a limit ||Δx|| → 0. For example, force equilibrium (2D) in direction 1 yields

−Δx2𝜎11(0) + Δx2𝜎11(Δx1) −Δx1𝜎21(0) + Δx1𝜎21(Δx2) + f1Δx1Δx2 = 0
Δx2𝜎11(Δx1) −Δx2𝜎11(0)

Δx1
+
Δx1𝜎21(Δx2) −Δx1𝜎21(0)

Δx2
+ f1 = 0

limΔxi→0−−−−→
∇1𝜎11 + ∇2𝜎21 + f1 = 0

(A.97)
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and moment equilibrium yields

−Δx2𝜇13(0) + Δx2𝜇13(Δx1) −Δx1𝜇23(0) + Δx1𝜎23(Δx2)+
+Δx2𝜎12Δx1 −Δx1𝜎21Δx2 + c3Δx1Δx2 = 0

Δx2𝜇13(Δx1) −Δx2𝜇13(0)
Δx1

+
Δx1𝜇23(Δx2) −Δx1𝜇23(0)

Δx2
+ 𝜎12 − 𝜎21 + c3 = 0

limΔxi→0−−−−→
∇1𝜇13 + ∇2𝜇23 + 𝜎12 − 𝜎21 + c3 = 0.

(A.98)

Generalization of (A.97) and (A.98) yields full form of equilibrium equations (which can
be derived more rigorously from linear momentum and angular momentum balance or
virtual work principle, see section A.3.3):

∇i𝜎ij + fj = 0 ∇ · 𝜎 + f = 0 (A.99)
∇i𝜇ik + 𝜀kij𝜎ij + ck = 0 ∇ · 𝜇 + 1 × 𝜎 + c = 0. (A.100)

A.3.3 Principle of virtual work

The virtual work principle (specifically the principle of virtual displacement) postulates that
the virtual work of internal forces is equal to the virtual work of external forces∫︁

V
𝜎 : 𝛿𝜀𝜀𝜀𝜀 dV +

∫︁
V
𝜇 : 𝛿𝜅 dV =

∫︁
V

f ·𝛿u dV +
∫︁

V
c ·𝛿𝜑𝜑𝜑𝜑 dV +

∫︁
S

t ·𝛿u dS+
∫︁

S
m ·𝛿𝜑𝜑𝜑𝜑 dS (A.101)

for any admissible virtual displacement 𝛿u and virtual rotation 𝛿𝜑𝜑𝜑𝜑. Applying kinematic
constraints (A.88) and (A.90) on the virtual fields

𝛿𝜀𝜀𝜀𝜀 = 𝛿U − 1 × 𝛿𝜑𝜑𝜑𝜑 = ∇⊗ 𝛿u − 1 × 𝛿𝜑𝜑𝜑𝜑 (A.102)
𝛿𝜅 = ∇⊗ 𝛿𝜑𝜑𝜑𝜑 (A.103)

yields two independent equations∫︁
V
𝜎 : (∇⊗ 𝛿u) dV =

∫︁
V

f · 𝛿u dV +
∫︁

S
t · 𝛿u dS (A.104)∫︁

V
𝜇 : (∇⊗ 𝛿𝜑𝜑𝜑𝜑) dV −

∫︁
V
𝜎 : (1 × 𝛿𝜑𝜑𝜑𝜑) dV =

∫︁
V

c · 𝛿𝜑𝜑𝜑𝜑 dV +
∫︁

S
m · 𝛿𝜑𝜑𝜑𝜑 dS. (A.105)

Using (A.77) and (A.75), equation (A.104) can be rewritten to the form∫︁
V
𝜎 : (∇⊗ 𝛿u) dV =

∫︁
V
∇ · (𝜎 · 𝛿u) dV −

∫︁
V

(∇ · 𝜎) · 𝛿u dV =

=
∫︁

S
n · 𝜎 · 𝛿u dS −

∫︁
V

(∇ · 𝜎) · 𝛿u dV =
∫︁

V
f · 𝛿u dV +

∫︁
S

t · 𝛿u dS
(A.106)

∀𝛿u−−→
∇ · 𝜎 + f = 0 (A.107)

t = n · 𝜎 (A.108)

yielding equilibrium equations (A.99) and (A.95).
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Using (A.77) and (A.55), the first term of equation (A.105) can be rewritten to the form∫︁
V
𝜇 : (∇⊗ 𝛿𝜑𝜑𝜑𝜑) dV =

∫︁
V
∇ · (𝜇 · 𝛿𝜑𝜑𝜑𝜑) dV −

∫︁
V

(∇ · 𝜇) · 𝛿𝜑𝜑𝜑𝜑 dV =

=
∫︁

S
n · 𝜇 · 𝛿𝜑𝜑𝜑𝜑 dS −

∫︁
V

(∇ · 𝜇) · 𝛿𝜑𝜑𝜑𝜑 dV
(A.109)

and the whole equation (A.105) can be rewritten to the form∫︁
V
𝜇 : (∇⊗ 𝛿𝜑𝜑𝜑𝜑) dV −

∫︁
V
𝜎 : (1 × 𝛿𝜑𝜑𝜑𝜑) dV = (A.110)

=
∫︁

S
n · 𝜇 · 𝛿𝜑𝜑𝜑𝜑 dS −

∫︁
V

(∇ · 𝜇) · 𝛿𝜑𝜑𝜑𝜑 dV −
∫︁

V
(1 × 𝜎) · 𝛿𝜑𝜑𝜑𝜑 dV =

∫︁
V

c · 𝛿𝜑𝜑𝜑𝜑 dV +
∫︁

S
m · 𝛿𝜑𝜑𝜑𝜑 dS

∀𝛿𝜑𝜑𝜑𝜑−−→
∇ · 𝜇 + 1 × 𝜎 + c = 0 (A.111)

m = n · 𝜇 (A.112)

yielding equilibrium equations (A.100) and (A.96).
Or the other way around, contracting local equlibrium equations (A.107), (A.108), (A.111)

and (A.112) with virtual displacement and virtual rotation and applying inverse modifica-
tions yields the equivalence of internal and external virtual work (A.101).

A.3.4 Classical Boltzmann continuum

Classical Boltzmann continuum is a special case of Cosserat continuum, specifically the
case when the microstrain, couples and couple stress tensor are zero:

𝜑𝜑𝜑𝜑m = 0 c = 0 m = 0 𝜇 = 0 (A.113)

Then rotation is defined by the antisymmetric part of the displacement gradient

𝜑𝜑𝜑𝜑 = 𝜑𝜑𝜑𝜑M 1 × 𝜑𝜑𝜑𝜑 = 1 × 𝜑𝜑𝜑𝜑M = UA, (A.114)

strain tensor (A.88) is the symmetric part of the displacement gradient

𝜀𝜀𝜀𝜀 = 𝜀𝜀𝜀𝜀M = US = ∇S ⊗ u, (A.115)

and stress tensor (A.100) is symmetric

1 × 𝜎 = 0. (A.116)

The virtual work principle (A.101) simplifies to (replacing the symmetric part of gradient
with the gradient because of symmetry of the stress tensor)∫︁

V
𝜎 : 𝛿𝜀𝜀𝜀𝜀 dV =

∫︁
V
𝜎 : (∇S⊗𝛿u) dV =

∫︁
V
𝜎 : (∇⊗𝛿u) dV =

∫︁
V

f·𝛿u dV+
∫︁

S
t·𝛿u dS (A.117)

yielding (unchanged) local equilibrium conditions (A.107) and (A.108):

∇ · 𝜎 + f = 0 n · 𝜎 = t (A.118)
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A.3.4.1 Linear elasticity

The linear constitutive law
𝜎 = DDDDe : 𝜀𝜀𝜀𝜀 (A.119)

for linear isotropic material can be written in terms of Lamé coefficients 𝜆 and 𝜇

𝜎 = 2𝜇𝜀𝜀𝜀𝜀 + 𝜆1tr(𝜀𝜀𝜀𝜀) = 2𝜇IIIIS : 𝜀𝜀𝜀𝜀 + 3𝜆IIIIV : 𝜀𝜀𝜀𝜀 =
(︀
2𝜇IIIIS + 3𝜆IIIIV

)︀
: 𝜀𝜀𝜀𝜀 (A.120)

with elastic stiffness tensor
DDDDe = 2𝜇IIIIS + 3𝜆IIIIV. (A.121)

Lamé coefficients can be expressed in terms of Young’s modulus E and Poisson’s ratio 𝜈
and vice versa:

𝜆 =
E𝜈

(1 + 𝜈)(1 − 2𝜈)
𝜇 = G =

E
2(1 + 𝜈)

𝜈 = 𝜇
3𝜆 + 2𝜇
𝜆 + 𝜇

𝜈 =
𝜆

2(𝜆 + 𝜇)
.

(A.122)

The elastic stiffness tensor can then be expressed as

DDDDe =
E

1 + 𝜈
IIIIS +

3E𝜈

(1 + 𝜈)(1 − 2𝜈)
IIIIV. (A.123)

A.4 Surface integrals over unit sphere

Values of surface and volume integrals over the unit sphere (over the solid angle Ω) of
special tensorial functions ∫︁

Ω

dΩ = 4𝜋 (A.124)

∫︁
Ω

ninj dΩ =
4𝜋
3
𝛿ij

∫︁
Ω

n ⊗ n dΩ =
4𝜋
3

1 (A.125)

∫︁
Ω

ninjnknl dΩ =
4𝜋
15

(︀
𝛿ij𝛿kl + 𝛿ik𝛿jl + 𝛿il𝛿jk

)︀
=

4𝜋
15

(︀
3IV

ijkl + 2IS
ijkl

)︀
(A.126)∫︁

Ω

n ⊗ n ⊗ n ⊗ n dΩ =
4𝜋
15

(︀
3IIIIV + 2IIIIS

)︀
(A.127)

∫︁
Ω

(IIIIS · n) · (n · IIIIS) dΩ =
4𝜋
3
IIIIS

∫︁
Ω

IS
ijabnbncIS

cakl dΩ =
4𝜋
3

IS
ijkl (A.128)

are derived in this section. The simple surface integral (A.124) is mentioned here for the
sake of completeness.

The validity of the formulas can be shown by mere component by component analytical
integration using spherical coordinate system, or can be derived in more general way using
special identities and rules mentioned earlier in this chapter.
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y

z

x

(𝜌,𝜙, 𝜃)

𝜃

𝜙

Figure A.2: Spherical coordinate system

A.4.1 Spherical coordinate system

Spherical coordinate system specifies a point by three coordinates:

∙ azimuth angle 𝜃 (0 ≤ 𝜃 < 2𝜋),

∙ zenith angle 𝜙 (0 ≤ 𝜃 < 𝜋),

∙ radial distance 𝜌.

The xyz components of position x expressed by spherical coordinates are

x =

⎧⎪⎨⎪⎩
𝜌 sin𝜙 cos 𝜃
𝜌 sin𝜙 sin 𝜃

𝜌 cos𝜙

⎫⎪⎬⎪⎭ . (A.129)

Integration of a function f over the surface or volume of the unit sphere requires the
expression for surface and volume element dΩ and dV in spherical coordinates as follows:∫︁

Ω

f dΩ

dΩ = sin𝜙 d𝜙 d𝜃

∫︁
V

f dV

dV = 𝜌2 sin𝜙d𝜌 d𝜙 d𝜃.
(A.130)

Integral
∫︀
Ω

dΩ is simply the surface area of the unit sphere∫︁
Ω

dΩ =
∫︁ 2𝜋

0

∫︁ 𝜋

0
sin𝜙 d𝜙 d𝜃 = 4𝜋. (A.131)

Similarly,
∫︀

V dV is simply the volume of the unit sphere∫︁
V

dV =
∫︁ 2𝜋

0

∫︁ 𝜋

0

∫︁ 1

0
𝜌2 sin𝜙d𝜌 d𝜙 d𝜃 =

4𝜋
3

. (A.132)

A special value of the volume integral of the squared distance from the unit sphere’s
center (used in the following section)

x · x = xixi = x2 + y2 + z2 = 𝜌2, (A.133)
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equals∫︁
V

x · x dV =
∫︁

V
xixi dV =

∫︁ 2𝜋

0

∫︁ 𝜋

0

∫︁ 1

0
𝜌4 sin𝜙 d𝜌 d𝜙 d𝜃 = 4𝜋

∫︁ 1

0
𝜌4d𝜌 =

4𝜋
5

. (A.134)

Assuming n = x

n =

⎧⎪⎨⎪⎩
sin𝜙 cos 𝜃
sin𝜙 sin 𝜃

cos𝜙

⎫⎪⎬⎪⎭ (A.135)

and 𝜌 = 1 for the points on the surface of unit sphere, the validity of the following expres-
sions can easily be shown by component-by-component analytical integration (A.130).∫︁

Ω

ninj dΩ =
4𝜋
3
𝛿ij

∫︁
Ω

n ⊗ n dΩ =
4𝜋
3

1 (A.136)∫︁
Ω

ninjnknl dΩ =
4𝜋
15

(︀
𝛿ij𝛿kl + 𝛿ik𝛿jl + 𝛿il𝛿jk

)︀
= 4𝜋

(︂
3

15
IV
ijkl +

2
15

IS
ijkl

)︂
∫︁
Ω

n ⊗ n ⊗ n ⊗ n dΩ = 4𝜋
(︂

3
15

IIIIV +
2
15

IIIIS

)︂ (A.137)

∫︁
Ω

(︀
IIIIS · n

)︀
·
(︀
n · IIIIS

)︀
dΩ =

4𝜋
3
IIIIS

∫︁
Ω

IS
ijabnbncIS

cakl dΩ =
4𝜋
3

IS
ijkl (A.138)

The validity of the analytical integration is shown in the script
codes/scripts/tests/intsolidangle.py.

A.4.2 A more general derivation

A more general approach is presented below. The method is based on divergence theorem
(A.75), identity (A.80) and the fact that n = x on unit sphere surface.

A.4.2.1 Identity (A.125)∫︁
Ω

ninj dΩ =
∫︁
Ω

nixj dΩ =
∫︁

V
∇ixj dV =

∫︁
V
𝛿ij dV =

4𝜋
3
𝛿ij∫︁

Ω

n ⊗ n dΩ =
∫︁
Ω

n ⊗ x dΩ =
∫︁

V
∇⊗ x dV =

∫︁
V

1 dV =
4𝜋
3

1
(A.139)

A.4.2.2 Identity (A.127)

First we investigate the relation between expressions
∫︀
Ω

n · n dΩ and
∫︀

V x · x dV (because
of the need to evaluate the derivative of a product, we begin with index notation). Using
aforementioned tricks and identity (A.134):∫︁

Ω

ninj dΩ =
∫︁
Ω

ninjnknk dΩ =
∫︁
Ω

nixjxkxk dΩ =
∫︁

V
∇i
(︀
xjxkxk

)︀
dV =

=
∫︁

V

(︀
∇ixj

)︀
xkxk + xj (∇ixk ) xk + xjxk (∇ixk ) dV =

=
∫︁

V
𝛿ijxkxk + xj𝛿ikxk + xjxk𝛿ik dV =

∫︁
V
𝛿ijxkxk + xixj + xixj dV =

= 2
∫︁

V
xixj dV + 𝛿ij

4𝜋
5

= 2
∫︁

V
xixj dV +

3
5

∫︁
Ω

ninj dΩ

(A.140)
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Comparing the leftmost and the rightmost part of equation (A.140) and using (A.139)∫︁
V

xixj dV =
1
5

∫︁
Ω

ninj dΩ =
4𝜋
15

𝛿ij∫︁
V

x · x dV =
1
5

∫︁
Ω

n · n dΩ =
4𝜋
15

1,
(A.141)

∫︀
Ω

ninjnknl dΩ can be rewritten to the form∫︁
Ω

ninjnknl dΩ =
∫︁
Ω

nixjxkxl dΩ =
∫︁

V
∇i (xjxkxl ) dV = (A.142)

=
∫︁

V
(∇ixj )xkxl + (∇ixk )xjxl + (∇ixl )xjxk dV = (A.143)

=
∫︁

V
𝛿ijxkxl + 𝛿ikxjxl + 𝛿ilxjxk dV . (A.144)

Recalling identity (A.141):∫︁
Ω

ninjnknl dΩ =
∫︁

V
𝛿ijxkxl + 𝛿ikxjxl + 𝛿ilxjxk dV =

4𝜋
15

(︀
𝛿ij𝛿kl + 𝛿ik𝛿jl + 𝛿il𝛿jk

)︀
(A.145)

and definitions (A.52) and (A.45):∫︁
Ω

ninjnknl dΩ =
4𝜋
15

(︀
𝛿ij𝛿kl + 𝛿ik𝛿jl + 𝛿il𝛿jk

)︀
=

4𝜋
15

(︀
3IV

ijkl + 2IS
ijkl

)︀
∫︁
Ω

n ⊗ n ⊗ n ⊗ n dΩ =
4𝜋
15

(︀
3IIIIV + 2IIIIS

)︀ (A.146)

A.4.2.3 Identity (A.128)

With the help of (A.62), (A.139) and (A.146):∫︁
Ω

IS
ijabnbncIS

cakl dΩ =
∫︁
Ω

1
4

(︀
njnk𝛿il + njnl𝛿ik + nink𝛿jl + ninl𝛿jk

)︀
dΩ =

=
1
4

(︂∫︁
Ω

njnk𝛿il dΩ +
∫︁
Ω

njnl𝛿ik dΩ +
∫︁
Ω

nink𝛿jl dΩ +
∫︁
Ω

ninl𝛿jk dΩ
)︂

=

=
1
4

(︂
𝛿il

∫︁
Ω

njnk dΩ + 𝛿ik

∫︁
Ω

njnl dΩ + 𝛿jl

∫︁
Ω

nink dΩ + 𝛿jk

∫︁
Ω

ninl dΩ
)︂

=

=
1
4

(︂
𝛿il

4𝜋
3
𝛿jk + 𝛿ik

4𝜋
3
𝛿jl + 𝛿jl

4𝜋
3
𝛿ik + 𝛿jk

4𝜋
3
𝛿il

)︂
=

=
4𝜋
3

1
4

(︀
𝛿il𝛿jk + 𝛿ik𝛿jl + 𝛿jl𝛿ik + 𝛿jk𝛿il

)︀
=

4𝜋
3

1
4

(︀
2𝛿ik𝛿jl + 2𝛿il𝛿jk

)︀
=

4𝜋
3

1
2

(︀
𝛿ik𝛿jl + 𝛿il𝛿jk

)︀
(A.147)

∫︁
Ω

(︀
IIIIS · n

)︀
·
(︀
n · IIIIS

)︀
dΩ =

4𝜋
3
IIIIS

∫︁
Ω

IS
ijabnbncIS

cakl dΩ =
4𝜋
3

IS
ijkl (A.148)
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A.5 Miscellaneous

Geometric center

The geometric center or centroid x0 of a region V is a point defined as

x0 =

∫︀
V x dV

V
, Vx0 =

∫︁
V

x dV . (A.149)

∫︀
V x dV is the first moment of volume with respect to the origin {0, 0, 0}T.

∫︀
V x − xa dV is

the first moment of volume with respect to the point xa. Using the definition (A.149), it can
be easily shown that the first moment of volume with respect to the centroid is zero:∫︁

V
x − x0 dV =

∫︁
V

x dV −
∫︁

V
x0 dV =

∫︁
V

x dV − Vx0 = 0. (A.150)
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