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CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Civil Engineering
Department of Mechanics

Abstract
Dynamic Analysis of Grandstands

by Ondřej Rokoš

Nowadays, civil engineers are facing a lack of design suggestions in the field of grandstand
problems mainly in the case of synchronized and lively crowds, when the resonance effects
can occur. Some heuristic bounds restricting generally the spectrum of the structure are
available; the question remains, however, how to tackle with the dynamic effects. Several
procedures covering relatively wide variety of approaches were suggested ranging from
simple static loads with dynamic coefficients, truncated Fourier series, approximations
of the human-grandstand system with two-degree-of-freedom oscillators up to the Monte
Carlo simulations based on recently developed algorithms reflecting the load most ac-
curately. Clearly, based on the list given above, all procedures gradually try to reflect
randomness such inevitably inherent to this type of structures. The question is, whether
there is any possibility or benefit in employing analytical methods of stochastic calculus,
random processes and the theory of probability. If the answer was affirmative, there would
be a possibility of a systematic treatment of this kind of structures in order to estimate
their performance and reliability, or just to test whether a particular structure is cap-
able to withstand realistic load (the design load in standards is usually static or purely
periodic as already mentioned). In the familiar context of the Finite Element Method
together with well established Reduced Order Modelling, it would be moreover possible
to employ numerical models developed in the previous design stages, supplemented with
a specification of nodes where the spectators can possibly be situated. As will be shown
later on in this text, in some cases, it is possible to estimate efficiently the response of
the human-grandstand system by means of the Gaussian processes which cover the major
source of the randomness—an active crowd—and to asses serviceability or reliability of
the system. For the sake of completeness, the other sources of randomness are mainly
random spatial distribution of a crowd and random parameters of the biodynamic models
employed to reflect a passive crowd.

It would seem that the problem is not actual enough; hence, let us name several ex-
isting structures where the problems persist, cf also [9, 34] and references therein: at the
Millennium stadium in Cardiff steel props are still added before concerts; Old Trafford sta-
dium, where the third deck is used only during football matches excluding pop concerts;
Anfield Stadium, where steel columns were additionally installed to newly constructed
upper deck to raise its natural frequencies and stiffen the structure after the excessive
vibrations were reported; Maracanã stadium, where excessive deflections led to the devel-
opment of cracks in cantilever beams. Such situations would be avoided and more efficient
structures with better sights, accommodating higher number of spectators, architecturally

xix
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xx ABSTRACT

of more interesting appearance would be projected if realistic and reliable design proced-
ures were available, reflecting the loading scenarios and dynamic effects accurately. Hence,
this thesis is interested in these procedures, and as was already mentioned, it approaches
the problem mainly from the probabilistic point of view.



ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Fakulta stavebńı
Katedra mechaniky

Abstrakt
Dynamická analýza konstrukćı tribun

Ondřej Rokoš

V současné době projektanti civilńıch staveb čeĺı jistému nedostatku v normách týka-
j́ıćıho se problematiky navrhováńı tribun, zejména v př́ıpadě synchronizovaného tem-
peramentńıho davu, kdy se mohou objevit rezonančńı efekty. Některá heuristická do-
poručeńı omezuj́ıćı obecně frekvenčńı spektrum konstrukce jsou k dispozici, nicméně
zbývá otázka, jak se vypořádat s dynamickými efekty. V literatuře bylo navrženo několik
postup̊u pokrývaj́ıćıch relativně široké spektrum možnost́ı, jež sahaj́ı od jednoduchých
statických zat́ıžeńı s dynamickými koeficienty, zkrácené Fourierovy řady, jednoduché ap-
proximace systémů divák-tribuna prostřednictv́ım oscilátor̊u se dvěma stupni volnosti až
po simulace typu Monte Carlo, založených na nedávno navržených algoritmech zachy-
cuj́ıćıch zat́ıžeńı nejpřesněji. Na základě tohoto výčtu je zřejmé, že jednotlivé metody
se snaž́ı postupně zachycovat náhodnosti nevyhnutelně spojené s t́ımto typem konstrukćı.
Otázkou z̊ustává, zda je možnost či nějaký př́ınos v použit́ı analytických metod stochas-
tického kalkulu, náhodných proces̊u a teorie pravděpodobnosti. Bude-li odpověd pozitivńı,
otev́ıraj́ı se možnosti systematického př́ıstupu k tomuto typu konstrukćı slouž́ıćıho k od-
hadu jejich kvality a spolehlivosti, či pouze testuj́ıćıho, zda konkrétńı konstrukce vydrž́ı
realistické zat́ıžeńı (normové návrhové zat́ıžeńı je obvykle statické či čistě periodické, jak
již bylo zmı́něno). Ve velmi dobře známém kontextu konečných prvk̊u společně s meto-
dami redukuj́ıćımi počet stupň̊u volnosti by pak bylo možné využ́ıt numerické modely
vyvinuté v předchoźıch stádíıch návrhu, doplněné pouze o specifikaci pozic pro diváky.
Jak vyplyne dále z textu této práce, v některých př́ıpadech je možné efektivně odhad-
nout odezvu systému divák-konstrukce prostřednictv́ım Gaussovských náhodných pro-
ces̊u pokrývaj́ıćıch hlavńı zdroj náhodnost́ı, totiž aktivńı dav, a k odhadnut́ı použitelnosti
či únosnosti daného systému. Pro úplnost poznamenejme, že ostatńı zdroje náhodnost́ı
jsou zejména nahodilé rozmı́stěńı davu a nejisté parametry biodynamických model̊u re-
prezentuj́ıćıch pasivńı dav.

Mohlo by se zdát, že problematika neńı dostatečně aktuálńı; popǐsme tedy několik
konstrukćı, u nichž problémy stále přetrvávaj́ı, porovnejte také s [9, 34] a referencemi
tam uvedenými: stadion Millennium v Cardiffu, kde jsou před koncerty vždy přidány
ocelové podpěry; stadion Old Trafford, kde je třet́ı tribuna využ́ıvána pouze pro fotba-
lové zápasy a nikoliv pro koncerty; stadion v Anfieldu, kde byly přidány ocelové sloupy
u nově přistavěné horńı tribuny z d̊uvodu zvýšeńı vlastńıch frekvenćı a celkového ztužeńı
konstrukce poté, co byly zaznamenány nadměrné vibrace; Maracanã stadion, na němž
došlo v d̊usledku nadměrných deformaćı k rozvoji trhlin u konzolových nosńık̊u. Ta-
kovýmto situaćım bychom se nicméně mohli vyhnout a realizovat konstrukce s lepš́ımi
výhledy, poj́ımaj́ıćı dostatečný počet divák̊u a zároveň architektonicky zaj́ımavé, nicméně

xxi

http://intranet.cvut.cz/cs?set_language=cs
http://www.fsv.cvut.cz//index.php.cz
http://mech.fsv.cvut.cz/web/index.php?&lang=cz


xxii ABSTRAKT

za předpokladu znalosti realistických a spolehlivých návrhových postup̊u odrážej́ıćıch
veškeré dynamické efekty a zp̊usoby zat́ıžeńı. Tato práce se zabývá jedńım z možných po-
stup̊u, a jak již bylo zmı́něno, k problematice přistupuje zejména z pravděpodobnostńıho
hlediska.



Notation

Abbreviations

AR(p) auto-regression process of the p-th order
CDF cumulative distribution function
CF crest factor
DLF dynamic load factor
DOF degree of freedom
FEM finite element method
FRF frequency response function
GB gigabyte
GLF generated load factor
HOSA higher order spectral analysis
iid independent, identically distributed
KS Krylov subspace
MC Monte Carlo
MDOF multi-degree-of-freedom
MS modal synthesis
MTVV maximum transient vibration value
PDF probability density function
POD proper orthogonal decomposition
RAM random-access memory
RMS root mean square value
ROM reduced-order model/modelling
SDE stochastic differential equation
SDOF single-degree-of-freedom
SOAR second order Arnoldi algorithm
TMD tuned mass damper
VDV vibration dose value
2 DOF two-degree-of-freedom

Symbols – coefficients and constants

ai, bi constants in linear combination of artificial force generator
C (ns) coordination factor for ns spectators
fp basic jumping frequency, [Hz], fp = 1/Tp, typically fp ∈ (1, 3.5)

fHi
, ξHi

modal parameters of a biodynamic model, [Hz], [–]
fi i-th eigenfrequency, [Hz]

Fmax peak dynamic load, [kN], Fmax = maxt∈T |F (t)|
Fv (t) total load of an active crowd counting na spectators, [kN]
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g acceleration of gravity, [m/s2]
G static human weight, [kN]
Gv total weight of an active crowd counting na spectators, [kN]

Ik impulse size, [kJ], Ik =
∫ tp/2
−tp/2 F (t) dt

kp impact factor kp = Fmax/G (or number of physical parameters
of a biodynamic model)

kHi
, mHi

, cHi
physical parameters of a biodynamic model, [kN/m], [kg], [kNs/m]

mH total mass of a passive crowd, [kg]
mS total mass of a grandstand, [kg]
N number of MC simulations
na number of active spectators
nDOF number of DOFs of a crowd-grandstand system
nDOF,H number of DOFs of a passive crowd
nDOF,S number of DOFs of the grandstand
np number of passive spectators
ns number of spectators
nsnap number of snapshots
Pi i-th structure nodal point of interest
qk imposed surface load, [kN/m2]
Qk imposed point load, [kN]
rk dynamic load factors
tk centroid of k-th jumping impulse, [s]
tp contact time, [s]
Tp jumping period, [s]
α contact ratio, α = tp/Tp
α, β coefficients of the linear combination for the Rayleigh damping
αk, βk Fourier series coefficients of the approximate mean jumping process
γ mass ratio γ = mH/mS

ζ damping ratio
ν angular frequency of SDOF system, [rad−1]
φk phase shifts according to dynamic load factors, [rad](
n
k

)
binomial coefficient,

(
n
k

)
= n!

k!(n−k)!

Symbols – vectors, matrices and algebra

A, B real or complex matrices
A ◦B Hadamard product, (A ◦B)ij = AijBij

A⊗B Kronecker product, (A⊗B)ijkl = AijBkl

A⊕B Kronecker sum, A⊕B = A⊗ InB×nB
+ InA×nA

⊗B
ASS, ASH , AHH submatrices of the crowd-grandstand system,

A represents stiffness, mass or damping
C crowd-structure system damping matrix
CH passive crowd damping matrix
Cr reduced system damping matrix
CS structure damping matrix
diag diagonal matrix
ei, ẽi i-th canonical basis vector
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f (t) deterministic load vector
G load distribution matrix

Gn (A,B;u) second-order Krylov subspace
In×n identity matrix of the size n
K crowd-structure system stiffness matrix
KH passive crowd stiffness matrix
Kr reduced system stiffness matrix
KS structure stiffness matrix
M crowd-structure system mass matrix
MH passive crowd mass matrix
M r reduced system mass matrix
MS structure mass matrix
na set of code numbers where active spectators can be situated
np set of code numbers where passive spectators can be situated
ns set of code numbers where spectators can be situated
nz number of nonzero elements of a matrix
r (t) residual vector

span [•] linear hull of the vectors •
u, v real or complex vectors
u · v dot product, simple contraction, u · v = uivi
vi, ψi i-th eigenvector
V , W vector spaces
z (t) deterministic crowd-grandstand system displacement vector
δij Kronecker delta, δij = 0 for i 6= j and 1 for i = j
λi i-th eigenvalue
Λ spectral matrix, Λ = diag [λ1, . . . , λn]

ΠV,W projector onto V parallel to W , V = span [V ], W = span [W ]
ρij horizontal distance between two active spectators
Ψ modal matrix, Ψ = [ψ1, . . . ,ψn]
||•||F Frobenius norm of a matrix •
•T transpose of a matrix •
•† Hermitian transpose of a matrix •

Symbols – analysis and functions

aw (t) weighted acceleration, [m/s2]
C set of complex numbers
eA matrix exponential, eA =

∑∞
k=0

1
k!
Ak

F (f (τ )) (ξ) Fourier transform of f (τ )
g1 (x) nonlinear, monotonic function of x
H (ξ) frequency response function
H (s) transfer function
Hk Hermite polynomials
i imaginary unit, i =

√
−1

Im (z) imaginary part of a complex number z, Im (z) = 1
2i

(z − z̄)
N set of natural numbers
R set of real numbers
R+ set of positive real numbers
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Re (z) real part of a complex number z, Re (z) = 1
2

(z + z̄)
t, τ time domain parameters, [s]
wi integration weights

X (t−) left limit, X (t−) = lims↑tX (s)

Ẋ (t) derivative with respect to time, Ẋ (t) = d
dt
X (t)

z̄ complex conjugate of z = x+ iy, z̄ = x− iy
∆t time step, time increment

∆X (t) jump discontinuity of X right continuous at t, ∆X (t) = X (t)−X (t−)
θ (t) Green function or unit impulse response
ξ frequency domain parameter, [Hz]
1U indicator function of a set U , 1U (x) = 1 for x ∈ U , 1U (x) = 0 for x /∈ U
||•||L2 L2 norm of •

Symbols – probability, random variables and processes

ai coefficients of AR process
a drift matrix, possibly random
A σ-field of events
b diffusion matrix, possibly random

b(p,q) quasimoments of a random vector of order p and q
B (t) vector valued Brownian motion, Wiener process
c covariance matrix, function
cv coefficient of variation, cv = σ/µ
C (t) compound Poisson process
cov covariance of random variables,

cov (X, Y ) = E [(X − EX) (Y − EY )]
d load distribution matrix as a part of the drift matrix a

EX (ω) expectation operator, EX (ω) =
∫

Ω
X (ω)P (dω)

E [X|G ] conditional expectation with respect to σ-field G
fmax (x) PDF of the local maxima of a random process
F (t) random load vector
Fn n-dimensional distribution function

(Ft)t≥0 filtration
g (ξ) one-sided spectral density
h distribution matrix of the mean force

IT (ξ) periodogram
KHi

, MHi
, CHi

random physical parameters of a biodynamic model
L random differential operator
m mass matrix of the state space system, possibly random

M (dt, dy) Poisson random measure
n+
x (T ) total number of x-upcrossings in the time interval (0, T ),

n+
x (T ) =

∫ T
0
ν+
x (t) dt

N (t) Poisson counting process
N (µ, σ2) normal distribution with mean µ and variance σ2

P probability measure on A
rX correlation matrix, function, rX = E

[
XXT

]
s (ξ) spectral density
s3 (ξ) bi-spectra
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ŝ (ξ) spectral density estimate
S (ξ) spectral distribution function
Tk stopping times

U (a, b) uniform distribution with support (a, b)
vi derivative of the mass matrix, vi = ∂

∂χi
m (χ)

Vi sensitivity factors

var variance of a random variable X, E [X − E (X)]2

wi derivative of the drift matrix, wi = ∂
∂χi
a (χ)

W (t) vector-valued Gaussian white noise process,
formally W (t) = dB (t) /dt

WP (t) Poisson white noise process, formally WP (t) = dC (t) /dt

X̃ centered, i.e. zero mean, random variable
X (t) state space variable of the system, a random vector process
X̄ mean value of a random vector X

Ỹ (t) autoregression approximation of a centered forcing
Z (t) crowd-structure system displacement vector
γ3 coefficient of skewness
γ4 coefficient of kurtosis

Θ = [Θi, . . . ,Θn] random parameters
κ3 (τ ) third order cumulant
λ intensity of the Poisson process

λk spectral moments λk =
∫∞
−∞ (2πξ)k s (ξ) dξ

µ• mean value of a variable •, possibly a function of time
ν+
x (t) mean x-upcrossing rate at time t

νS (x), νG (x), νT (x) approximation of the x-uprcrossing rate based on
Gram-Charlier series, Gaussian process, translation process

ρ (τ) correlation coefficient function
ρij correlation coefficient

σ2
X , σ̇2

X , σ̈2
X variances of stationary random processes X (t), Ẋ (t), Ẍ (t)

φ (x) standard Gaussian PDF, φ (x) = 1√
2π

exp (−x2/2)

φ (y1, y2; ρ) bivariate standard Gaussian PDF with correlation coefficient ρ
Φ (x) standard Gaussian CDF, Φ (x) =

∫ x
−∞ φ (y) dy

χi random indicator variables with state space 0 and 1
χ matrix of indicator variables χ = diag (χ1, . . . , χn)
χn expanded diagonal matrix of the indicator variables
ω sample point of a sample space Ω
Ω sample space

[X] quadratic variation process
[X]c continuous part of the quadratic variation process

[X, Y ] quadratic covariation process
(Ω,A ,P) probability space(

Ω,A , (Ft)t≥0 ,P
)

filtered probability space





”As far as the laws of mathematics refer to reality, they are not certain; as far as they

are certain, they do not refer to reality.”

Albert Einstein





Introduction

In recent years, sport stadia found a multipurpose utilization and serve more as an enter-
tainment centres hosting wide palette of events from sermons via sport matches to rock or
pop concerts housing a large number of spectators. Great seating capacities and require-
ments on clear sight lines led to cantilever upper tiers, increasingly slender, lightweight
and flexible. All these facts follow from the intentions of stadium owners to maximize a
utilization of objects, economical aspects and requirements of the spectators.

Grandstand structures are of particular interest, since dense and lively crowds may
cause serviceability or safety issues owing to highly synchronized movements. Although
the question is actual (e.g. Millennium stadium in Cardiff, where steel props are added
before pop concerts), the most advanced guidelines available [22, 25, 33] still indicate that
the problem is not understood properly and further research is needed.

Difficulties of predicting stadia performance arise mainly from capability of the spectat-
ors to modify dynamic properties of the structural systems, ability to absorb a significant
amount of vibrational kinetic energy and random nature of induced loading. Since all
these effects depend on time, it is almost impossible to develop accurate or even exact
models and approximations are needed. Contemporary approaches consider spectators as
biodynamical spring-mass systems added to the structure and forced by Fourier series or
time approximations of the human-induced loads.

Excluding simple methods such as equivalent static load with the dynamic magnifica-
tion factor or bounds for eigenfrequencies of assembly structures, current state-of-the-art
approaches prefer 3-DOF models [27], each DOF represents successively a structure, a
passive crowd and an active crowd (in the case of bouncing). These models are capable to
reflect vertical vibrations in dominant mode only, but no detailed information is available
and the method can be viewed as oversimplified. Other possible approach relates to the
modelling of individuals in complex FEM-based numerical system within a stochastic con-
text using geometries, material properties and other parameters from the models for static
analysis. No publications, however, on such an approach or even comparison indicating
its accuracy and usability yet exist. Filling this gap is the main objective of this thesis.
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Chapter 1

State of the Art

1.1 European and Czech standards

Standards are the first place where to look for general design principles, load and structure
assessment. Nevertheless, in the case of European and hence Czech standards, no partic-
ular recommendations for the case of lively and synchronized crowds concerning load or
serviceability limits are given.

1.1.1 Load and structure assessment

The list of Czech and European standards mentioning directly grandstands, spectator
facilities or amusement structures include

• ČSN EN 1990, Eurocode: Basis of structural design

• ČSN EN 1991-1-1, Eurocode 1: Actions on structures – Part 1-1: General actions –
Densities, self-weight, imposed loads for buildings

• ČSN EN 13200-5, Spectator facilities – Part 5: Telescopic grandstands

• ČSN EN 13200-6, Spectator facilities – Part 6: Demountable (temporary) stands

• ČSN EN 13814, Fairground and amusement park machinery and structures – Safety.

In subsequent paragraphs, a brief description of each standard from the above list will be
given:

ČSN EN 1990 covers general principles of design, vibration and dynamic load. It
suggests, basically, that the eigenfrequencies of a structure should be sufficiently above
the loading spectrum. If this is not the case, in-depth dynamical analysis taking into
account structural damping should be performed. No particular instructions, however,
or design procedures are described. Grandstands are assigned into the RC3 class of high
damage consequences.

ČSN EN 1991-1-1 lists primarily static loads acting on structures and the question
of dynamic effects on grandstands answers with words: ”Where the danger of significant
structural response to synchronized rhythmical movement of people, dancing or jumping
exists, then in dynamic analysis the relevant load model should be considered, efficient
for the verification of relevant structural response”. Then, references to other sources,

3
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Category of
loaded areas qk [kN/m2] Qk [kN]

C2 3 – 4 2.5 – 7

C5 5 – 7.5 3.5 – 4.5

Table 1.1: Characteristic magnitudes of imposed loads, ČSN EN 1991-1-1, part of
Tab. 6.2

e.g. ČSN EN 1990, are listed. Further recommendations comprise only bridges and foot-
bridges.

ČSN EN 13200, parts 5 and 6 determine horizontal and vertical imposed loads. Grand-
stands are of category C2 and C5, cf Tab. 1.1, where the static load is presented. In the
case of dynamic effects, appropriate model should be developed for special analysis. Let
us point out the load case where the orthogonal web of 1 kN point forces and 0.5 m
spacing is used. Horizontal effects are considered as 6 % of the vertical load. Moreover,
possible presence of lively crowd should be considered taking into account also the state
of resonance. All mentioned levels of load are considered as lower bounds.

ČSN EN 13814 again specifies analogous values of imposed loads as ČSN EN 13200.
Moreover, horizontal load of railing, barriers, ect are specified.

1.1.2 Human exposure to vibrations

From the serviceability point of view, an adverse impact of vibrations to human health and
comfort should be considered. Such a question is quite satisfactorily treated in ČSN ISO 2631,
Mechanical vibration and shock – Evaluation of human exposure to whole-body vibration.
Here, basic factors are combined in order to asses an overall level of exposition. Frequency
range is divided into two subintervals

• 0.1 – 0.5 Hz for motion sickness

• 0.5 – 80 Hz for health, comfort and perception.

Application excludes individual impacts with extreme magnitude, but is valid for
whole-body vibrations transferred through the interfaces, e.g. feet of a standing person
and back of a sitting person. Such a kind of vibrations occur in buildings with working
machinery, vehicles, etc. Transferred vibrations are measured at the interface between the
human body and the structure. Measured signal should be frequency-weighted. Human
response to vibrations can be further influenced by many factors such as age, gender,
physical fitness, experience and expectation. Vibration assessment comprises two follow-
ing methods.

Basic evaluation method This method makes use of RMS [m/s2], an effective accel-
eration value, computed according to

RMS =

√
1

T

∫ T

0

aw (t)2 dt, (1.1)
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where aw (t) is weighted acceleration (translational or angular) as a function of time, and T
denotes the integration time. Frequency weights corresponding to different directions can
be found in Fig. 1.1. The basic method is suitable for crest factor CF ≤ 9, where CF =
maxt∈[0,T ] |aw(t)| /RMS. Other criteria are to be found in Eq. (1.4).
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Figure 1.1: Frequency weighting curves in ISO 2631-1

Alternative additional methods These should be used when the basic method is
insufficient, i.e. CF > 9 and in the case of impulsive or transient vibrations.

1. Floating RMS method
In this case, a short integration interval in Eq. (1.1) floating through [0, T ], is used.
Level of vibrations is then defined as a peak value of moving average RMS (t0),
called maximum transient vibration value MTVV = maxt0∈[0,T ] RMS (t0), where

RMS (t0) =

√
1

τ

∫ t0

t0−τ
aw (t)2 dt, (1.2)

and where τ denotes an integration period and t0 an observation time. For MTVV,
τ = 1 is recommended.

2. Fourth power vibration dose method
Employing the fourth power instead of the second, the method becomes more sens-
itive to peaks and impulses. Vibration dose value (VDV [m/s1.75]), is then defined
according to

VDV =
4

√∫ T

0

aw (t)4 dt. (1.3)

Additional methods are appropriate for vibration assessment if the following criteria are
fulfilled (depending on additional method)

MTVV

RMS
≥ 1.5

VDV

RMS · T 1/4
≥ 1.75,

(1.4)



6 CHAPTER 1. STATE OF THE ART

or together for CF > 9. Recommended thresholds for particular methods and various
exposure durations are also listed in ISO 2631, but with rather ambiguous meaning in the
context of grandstands and hence are not given here.

1.2 Other standards and recent research papers

Since further standards are regularly updated, in particular British and Canadian, they
will be included in this section jointly with recent research papers. General overview of
the present subject matter will be divided into three parts successively comprising the
main cornerstones of the grandstand problem.

1.2.1 Load models for human-induced vibrations

Several types of human motion are considered to represent the dynamic effects induced
by spectators on grandstands. After Jones et al. [27], these are namely

• walking and running

• jumping

• bouncing (bobbing, jouncing)

• swaying

• foot-stamping and hand-clapping

• abrupt rising

• rhythmic exercise loads.

The most significant vertical load that a human is capable to generate is often considered
as jumping, and as such it is in the forefront of the interest. Original work by Parkhouse
and Ewins [37] continued by Sim [51] and recently by Racic and Pavic [40, 41] address
these effects and suggest advanced models for jumping individuals and small groups,
namely using the MC (Monte Carlo) generators, cf also Chap. 3 of this thesis, which can
be supplemented by human body weights, e.g. [21]. Nevertheless, elementary and mostly
used estimates for individuals and groups are based on the time and frequency domain
approximations. The former are described as half-sine pulses

F (t) =

 kpG sin

(
πt

tp

)
, 0 ≤ t ≤ tp

0, tp ≤ t ≤ Tp

(1.5)

where G denotes the static human weight, kp = Fmax/G the impact factor, Fmax the peak
dynamic load, tp the contact time, Tp the jumping period and α = tp/Tp is the contact
ratio. Several authors have suggested a number of contact ratio values specifying the type
of the load. Frequency domain approach utilizes truncated Fourier series expansion in the
form

F (t) = G

[
1 +

n∑
k=1

rk sin

(
2kπt

Tp
+ φk

)]
, t ∈ R, (1.6)
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where total of n harmonics are considered, usually set to n = 3. Fourier coefficients
(known also as DLFs, dynamic load factors) are denoted by rk, and phase shifts by φk.
Different sets of values rk, φk describe different types and intensities of human-induced
effects (jumping, bouncing, etc.).

Expansion from individuals to crowds, e.g. in the ISO guidelines [22], is performed as
a multiplication of individual load time history by a coordination factor C (na) reflecting
the inability of the crowd to synchronize perfectly, namely

Fv (t) = C (na)Gv

[
1 +

n∑
k=1

rk,v sin

(
2kπt

Tp
+ φk,v

)]
, t ∈ R, (1.7)

where Fv (t) denotes the total load of an active crowd counting na spectators, Gv its weight
and the other quantities has analogous meaning to the quantities introduced in Eq. (1.6).

Jumping is typically characterized by an intermittent contact of the spectator with the
structure described via contact ratio α and worse overall crowd synchronization. Ideally,
this kind of load can be represented by forcing terms neglecting their influence to structure
properties, cf [14]. On the other hand, bouncing or bobbing, considered as the second
most onerous load, is specific with continuous contact of the spectators with the structure,
better overall synchronization and higher loading frequencies. Induced forces are smaller
in amplitudes compared to jumping, and loading scenario is considered as less intensive.
Hence, bouncing spectators are represented as an internal force couple, or actuator, after
Dougill et al [12], through an SDOF system attached to the structure. Accepting such a
representation, DLFs are referred to as GLFs (generated load factors) for distinction.

Swaying and horizontal induced forces are still not addressed properly. Only recent
works by Nhleko et al. [34, 36] focus on modelling horizontal front-to-back and side-to-
side forces based on thorough measurements applying frequency domain fit, cf Eq. (1.6).
Preceding works, e.g. [38], treat horizontal effects as equivalent to the fraction of the
vertical induced loads, namely 6 – 10 %, cf [25].

It is worth mentioning that all types of the introduced contact forces are displacement
and acceleration dependent, i.e. magnitudes and time histories of human-induced loads
depend on the level of the structure excitation. The range of validity of given force
approximations in Eqns. (1.5) – (1.7), is up to 0.8 g according to [27], where g denotes
the acceleration of gravity.

1.2.2 Passive crowd models

Human body is a complex spatial nonlinear dynamical system with variable parameters
depending on the posture, level of the excitation, physical condition, etc. Excluding rigid
masses thought as unsatisfactory, simplest models reduce to linear and time invariant
systems with lumped parameters attached to the structure, usually reproducing only the
overall vertical response of a human body. Despite such simplifications, major effects
are still preserved; e.g. changes in eigenfrequencies of the structural system, variations
in system damping and dissipation of considerable amount of kinetic energy. Parameters
of biodynamic models are given in available literature, e.g. [32, 46, 47, 49, 56, 58] and
references therein, cf also Chap. 3 of this thesis.
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1.2.3 Measures of the structure response

Discussion relating to appropriate measures of the serviceability limits is still going on
among experts. Question is complex, since acceptable levels of vibration depend on many
conditions such as duration, frequency of the vibration, human posture, physical condition,
occupant attention, crowd density. It has been determined, however, that humans are able
to detect acceleration as low as 0.005 g in vertical direction [28]. Upper comfort limits
have been also established, e.g. [22–24] in terms of RMS or VDV acceleration values.
Furthermore, two situations are to be treated separately: comfort and panic. Levels are
determined as 10 % g of 10 s RMS, cf Eq. (1.2) where τ = 10 s, for comfort and 20 % g
of 1 s RMS for panic according to [22]. Recent thorough work performed by Browning [9],
examine many variables which can be considered as the vibration serviceability limits.
Regression analysis of statistical data collated on a group of people suggested two suitable
single variable models: RMS acceleration for sitting spectators and RMS displacement for
jumping spectators. Limit values are determined for accepted percentage of unsatisfied
spectators spanning intervals 0.44 – 0.95 m/s2 RMS for 5 – 20 % and high energy events
(1.3 m/s2 RMS being an extreme limit for 100 % unsatisfied spectators).

It is worth noting briefly also the reliability aspects. These are closely related to fatigue
and fracture mechanics. Measures of the structure performance are mainly quantified in
terms of stress amplitudes, number of cycles and in the field of stochastic structural
dynamics it is the mean up-crossing rate, cf [6, 7].



Chapter 2

Objectives of the thesis

The main motivation for writing this thesis was a lack of design suggestions in European
as well as in Czech standards, and non-existence of systematic FEM-based approaches
concerning design of grandstands, or more generally concerning human-structure inter-
action. As presented in previous chapter, elaborate methods exist, but mainly of purely
deterministic manner.

Present work attempts to approach the problem from stochastic point of view, of which
nature the subject clearly is. The crowd-grandstand system and its parts are viewed as
equivalent to the system with uncertain data. This approach is also supported with the
fact that the serviceability limits obtained by means of the RMS values are actually the
second order moment properties in context of the stochastic systems. In this specific case,
several sources of randomness concerning mainly the right hand side of the system arise.
The crowd on a structure is divided into two groups

• an active crowd

• a passive crowd.

An active crowd—throughout this thesis it is understood as a subset of all the spectators
occupying the structure that are continuously and synchronously jumping, cf Sec. 3.5.1—
acts as a forcing term which is characterized with a certain level of the overall synchron-
ization if any stimulus is present, typically external audio-visual stimulus during pop and
rock concerts or internal in the sense of various chants during sport events. Nevertheless,
every forcing term is unique in some sense, which can be reflected through inherent ran-
domness of the time loading history. Within the set of all possible positions for spectators,
an active crowd can be distributed randomly, in groups, or can follow some other pattern.
A passive crowd—understood as a subset of all the spectators (naturally disjoint with
the set of an active crowd) that are at rest (standing or seated)—acts up to some extent
as a TMD (tuned mass damper) and is again more or less of a random nature. Within
many other effects, a passive crowd dissipates significant amount of kinetic energy, adjusts
physical parameters of the structure such as mass and stiffness which leads to changes
in the spectrum of the system and to changes in its overall behaviour. Again, spatial
distribution can be random, in some groups, etc.
Note that a crowd—the union of an active and a passive crowd, but subset of all the pos-
sible positions for spectators over the structure—is assumed fixed within the experiment,
meaning that an active spectator cannot become a passive during the time and vice versa;
moreover, both subsets are uncertain in their cardinality.

9
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For the purposes of the mathematical description, FEM (finite element method) is em-
ployed with advantage. The passive spectators are described through biodynamic models
and discretized problem is written as a system of the second order stochastic differential
equations

M (ω) Z̈ (t, ω) +C (ω) Ż (t, ω) +K (ω)Z (t, ω) = GF (t, ω) , t ≥ 0, (2.1)

where ω ∈ Ω, (Ω,A ,P) being a product probability space of all random variables and
functions for simplicity; Z (t, ω) and F (t, ω) are nDOF and na-valued stochastic vector
processes; M (ω), C (ω) and K (ω) are (d/2, d/2) matrices of structure mass, viscous
damping and stiffness, G being (d/2, na) input distribution matrix. On the basis of the
above discussion, the main uncertainties of the system include

• forcing terms resulting from active crowd movements, especially synchronized jump-
ing,

• the uncertainties of the parameters in discrete biodynamic models—randomness of
stiffness, mass and damping matrices,

• the size and spatial distribution of an active crowd and a passive crowd.

Further generalizations taking into account various kinds of nonlinearities, e.g. geomet-
rical and material non-linearities and nonlinearities of biodynamic models, see [58], are in
principle possible, nevertheless they cause superfluous complications with doubtful bene-
fits and hence will be omitted. Moreover, the material parameters of the structure will be
treated as deterministic, since their influence is negligible in comparison with the sources
listed above and the scope of the overall response.

Ergo, the main objectives of submitted thesis can be summarized as follows:

1. Approach the grandstand problem from stochastic point of view reflecting at least
the most relevant sources of randomness inherent to the system.

2. Measure the quality of the approximation based on analytical tools of the probability
theory in comparison with direct MC simulation and compare the computational
demands.

3. Demonstrate the approach on academic and real-world examples.

A more detailed description of all the chapters and partial objectives is following: after the
introductory Chapter 1, leaving aside Chap. 2 and 3, the thesis is divided into three main
parts of increasing model complexity taking into account different sources of randomness.

Chapter 3 summarizes again some input data of the model based on available liter-
ature, especially lists particular parameters of used biodynamic models and examines MC
generators for an active crowd. Then, MC simulation comprising all kinds of randomness
is described. For the case of efficiency, some methods reducing the order of the system
are reviewed. A brief discussion of the spatial distribution of a crowd is given, finding
also that one which yields the mean-worst response in preselected node. Eventually, a few
MC convergence tests are performed in order to acquire a notion about their rate.

Chapter 4 treats the right hand side of the system in Eq. (2.1), i.e. the stochastic
processes of an active crowd and its spatial distribution. Firstly, the Gaussian approxima-
tion in terms of a linear combination of AR(2) processes (continuous-time auto-regression
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of the second order) is performed. Random distribution of an active crowd is realized
via random indicator variables, with possible mutual interactions assumed by means of
homogeneous isotropic covariance field. Secondly, non-Gaussian approximations are per-
formed, namely by means of translation and Poisson white noise processes. Polyspectra
and solution in frequency domain is also briefly reviewed.

Chapter 5 generalizes properties of the biodynamic models to being random, i.e. as-
sumes the differential operator of Eq. (2.1) random, but independent of the right hand
side. Referring to previous chapter, only the second-order moment properties are treated
employing Taylor series method.

Chapter 6 encompass all the previously introduced sources of randomness into the
final global model. Naturally, the resulting system comprises the stochastic differential
operator and right hand side with large uncertainties, moreover with mutual dependen-
cies. Hence, the second-order moment properties are obtained with more difficulties. An
attempt was, however, made.

The last Chapter 7 brings concluding summary with remarks, design recommenda-
tions and future prospects of the introduced method. Overall efficiency and performance
is compared on the basis of MC simulation throughout the thesis and here is only briefly
summarized.

In the first appendix, Appendix A, there it is given a short overview of the concepts
from the theory of probability and stochastic processes employed widely throughout the
thesis. Some references of the literature concerning these subjects are listed.

Since all the theoretical considerations were implemented in MATLAB environment
with supporting *.mex files written and compiled in C++, Appendix B gives a short
overview of implementation including also the MC simulation.

Finally, in Appendix C the list of toy structures employed throughout the thesis is
presented. More detailed information about structure geometry, modal properties mater-
ials and possibilities for spectators is given.





Chapter 3

Monte Carlo Simulation

3.1 Introduction

Monte Carlo simulation provides a powerful tool for estimation of the response statistics.
Generality and complexity are the main advantages of this robust method. Nevertheless,
serious limitation is the computational overhead when highly complex systems or states
with low probabilities are treated. Overall flow-chart in Fig. 3.1 shows the main parts
of this method: first, N samples of random variables and functions in order to asses
the system and its inputs are generated; then, N independent deterministic dynamic
analysis are performed together with a statistical data processing of the calculated outputs;
assessment of the structure safety and serviceability concludes the analysis. The only
condition in order to employ the MC is the existence of computer algorithms for solving
corresponding deterministic problems, appropriate generators of random variables and
processes.

Sample generation
N = sample size

N deterministic
dynamic analzes

Response statistics
Performance criteria

reliability, serviceability

System performance

Figure 3.1: Flow-chart of MC simulation

In subsequent chapters, MC will be employed mainly for verification of the analytical or
semi-analytical methods which will be introduced using the SDEs (stochastic differential
equations). Let us note that total of N simulations require generation of Nna random
forcing processes, na being the number of active spectators, and Nnpkp random variables

13
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with prescribed distributions describing passive crowd models, np being the number of
passive spectators and kp the number of parameters describing a single biodynamic model.
For more reliable representation of the output at least hundreds or rather thousands of
realizations are needed, cf Sec. 3.6.

3.2 Forcing terms

In this section, more detailed description of a single realization of the force measured at
the force plate and of two MC generators will be given, i.e. of the components of F (t, ω)
in Eq. (2.1). Particular realization comprise a sequence of pulses located on the time axis
with jumping period equal to Tp = 1/fp, up to some scatter, where fp denotes the basic
jumping frequency, typically fp ∈ (1, 3.5) Hz. Shapes of individual impulses are frequency-
dependent, cf Fig. 3.2. Whereas for fp ≥ 2 the approximation based on segments of

(a) fp < 2 Hz (b) fp ∼ 2 Hz (c) fp > 2 Hz

Figure 3.2: Three characteristic pulse shapes after Sim [51], (a) double peaked, (b) mer-
ging, (c) single peaked

trigonometric functions or their powers is sufficient, for lower jumping frequencies it is not.
More sophisticated characterization can be based e.g. on linear combination of Gaussian
bell-shaped functions [41], or on the analogy with time-dependent mass SDOF system [35].

For further purposes, procedure according to Sim [51] will be described and sub-
sequently employed. Generator is capable to simulate only realizations of discrete jump-
ing frequencies, fp = 1.5, 2.0, 2.67 and 3.5 Hz. The main idea is to capture the lack of
synchronization between the individual’s timing subjected to some periodic audio-visual
stimulus, e.g. metronome beep, tk − tbeep,k where tk denotes the centroid of k-th impulse.
Mean delay, mostly positive and generally equal to 0.1 s for all jumping frequencies, its
scatter and the relations between them are modelled through one or several random vari-
ables. As a matter of fact, the best coordination in terms of the mean delay is for fp = 2
and 2.67 Hz, and in terms of the scatter it is for fp = 2.67 Hz. Mean delay and its scatter
are treated as independent, nevertheless in each realization the mean delay is fixed, and
the delay scatter is treated as AR(1) time series having a short memory. For all jumping
frequencies, the normalized impulse shapes are assumed in the form

F (t) = kp cos2

(
πt

tp

)
, −tp

2
≤ t ≤ tp

2
, (3.1)

cf analogous Eq. (1.5). With the help of the conservation of linear momentum and
assuming tp → 0 for ideally elastic collision, the relation between the impulse size Ik =∫ tp/2
−tp/2 F (t) dt = kptp

2
and its timing is derived as Ik = (tk+1 − tk−1) /2. Finally, the contact
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ratio is described as a Gaussian random variable. Further details and implementation
technicalities are given in [51]; several weight normalized realizations for particular fps
are depicted in Fig. 3.3.
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Figure 3.3: Typical realizations of single, weight normalized jumping processes according
to Sim [51]

For completeness, let us briefly describe more recently developed approach due to Racic
and Pavic [40], generalizing concepts introduced by Sim in several ways. Generator is
capable to simulate individual processes with jumping frequencies in the whole range fp ∈
(1.4, 2.8) Hz employing electrocardiogram techniques. Sequence of the time differences tk−
tk−1 is regarded as a random series with prescribed spectral density, tk represents now
the beginning of a k-th pulse, normalized impulse sizes are treated as AR(1) series. The
method also captures asymmetry, pulse shapes being described as

F (t) =
n∑
i=1

aie
(t−ti)

2

2bi , 0 ≤ t ≤ tp, (3.2)

where ai and bi denote appropriate constants.
Phenomenon of synchronization is recognised when a group of spectators attempt to

jump in phase with a given frequency. Degree of coordination is expressed as the ratio
of the real to the ideally synchronized load. Model after Sim achieves group effect equal
to 0.82 which is independent of a crowd size, while the measurements performed by Tuan
and Ebrahimpour gives 0.65 and 0.53, cf [55].

3.3 Biodynamic models

The purpose of this section is to give a short overview of discrete biodynamic models
available in the literature. Having on mind a reasonable degree of simplicity, we will
restrict ourselves only to the case of discrete uni-axial models. These are with one or
several DOFs in serial or parallel connection, possibly supplemented with attached rigid
mass. Their parameters can be treated as deterministic, cf Tab. 3.1 and [47], or as
random variables. In Tab. 3.2, mean values and standard deviations of modal and some
physical characteristics published in [51] are given; Tab. 3.3 then gives the probabilistic
characteristics of the physical quantities for SDOF model with a rigid mass based upon
data published in [56]. The meaning of particular variables used for description is captured
in Fig. 3.4. Let us note that in the case of MDOF models, the parameters do not reflect
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Figure 3.4: Scheme of a discrete uni-axial biodynamic model with physical meaning of
individual parameters

the individual parts of a human body, but are derived rather on the basis of the best
agreement of the model with the measured data, usually in terms of mechanical impedance
or apparent mass. The modal characteristics specify several first eigenfrequencies of entire
human body, corresponding eigenmodes are then typically caused by the longitudinal
vibrations of human skeleton and shear vibrations of soft tissues together with internal
organs. Generalizations to two or three-dimensional models are also available.

3.4 Computational aspects

As was mentioned in introductory Chap. 2, the continuous mechanical system representing
a grandstand is discretized via FEM, yielding a large system of the second order differ-
ential equations with constant, sparse and generally random coefficient matrices. Active
spectators are introduced as forcing terms and passive as added DOFs. The dynamic
analysis is performed N times, and hence it is convenient to project the problem onto
some subspace to be specified hereafter in order to lower the computational burden.

3.4.1 FEM discretization

Since the system is assumed linear, FEM discretization is employed in its standard,
simplest and well known form, as is presented in many excellent theoretical books e.g. [10,
44] or in those more applied, such as [4, 5, 59, 60]. The output of the FEM discretization
procedure consists of the system matrices KS, MS, CS ∈ RnDOF,S×nDOF,S , nDOF,S ∼ 105

or 106, sparse, symmetric and positive definite. For computation, it is convenient to em-
ploy the Rayleigh damping which expresses the damping matrix as CS = αKS + βMS,
where α and β are coefficients acquired from measured, estimated or a priory known
damping coefficients of any two given eigenfrequencies, cf [4]. nDOF,S denotes the number
of DOFs of the structure, i.e. generalized coordinates, numbered with code numbers; the
subset of code numbers where the passive spectators are situated is denoted np, for the
full discussion please refer to Sec. 3.5.1. The system of biodynamic models is introduced
trough matrices KHH , MHH , CHH ∈ RnDOF,H×nDOF,H , nDOF,H ∼ 103 or 104; in the case
of SDOF models, the matrices are diagonal with entries from Tab. 3.1, nDOF,H = np.
Coupling with the structure is provided trough KSH , CSH ∈ RnDOF,S×nDOF,H , KHS,
CHS ∈ RnDOF,H×nDOF,S , KSH = KT

HS, CSH = CT
HS matrices with nonzero entries in

those rows taken from the set np. Coupled human-grandstand system is described by K,
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Damped SDOF system – seated spectator

Model Physical characteristics Modal characteristics

Coermann 19621

mH 86.20 kg fH 5.00 Hz

kH 85.25 kN/m ξH 0.32

cH 1.72 kNs/m

Damped two DOF system – seated spectator

Wei and Griffin 1998 (parallel)2

mH1 36.20 kg fH1 4.90 Hz

kH1 35.01 kN/m ξH1 0.36

cH1 0.82 kNs/m

mH2 8.90 kg fH2 9.70 Hz

kH2 33.25 kN/m ξH2 0.44

cH2 0.48 kNs/m

mH0 5.60 kg

Suggs 19693

mH1 36.30 kg fH1 4.50 Hz

kH1 28.45 kN/m ξH1 0.23

cH1 0.47 kNs/m

mH2 12.50 kg fH2 5.50 Hz

kH2 15.03 kN/m ξH2 0.31

cH2 0.27 kNs/m

Damped SDOF system – standing spectator

Brownjohn 1999

mH 80.00 kg fH 4.90 Hz

kH 82.00 kN/m ξH 0.37

cH 1.95 kNs/m

Damped 2 DOF system – standing spectator

ISO 5982 (parallel)

mH1 62.00 kg fH1 5.00 Hz

kH1 62.00 kN/m ξH1 0.37

cH1 1.46 kNs/m

mH2 13.00 kg fH2 12.50 Hz

kH2 80.00 kN/m ξH2 0.46

cH2 0.93 kNs/m

1 Based on the mechanical impedances of 8 men
2 Based on apparent masses of 60 people
3 Based on the mechanical impedances of 11 men

Table 3.1: Parameters of the discrete biodynamic models, [47]
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Position / Parameters

Eigfreqvency Hz Relative damping

f1 f2 ξ1 ξ2

µ σ µ σ µ σ µ σ

Seated man 5.1 0.58 9.3 2.01 0.311 0.1011 0.437 0.4341

Seated woman 5.3 1.06 9.2 2.85 0.385 0.1490 0.317 0.1163

Seated children 5.2 5.16 15.9 24.20 0.375 0.3923 0.312 0.3635

Standing men 5.8 0.54 12.6 2.34 0.331 0.0721 0.459 0.1721

Position / Parameters

Total mass kg Partial mass kg

MH MH0 MH1 MH2

µ σ µ σ µ σ µ σ

Seated man 58.2 14.00 7.6 3.01 37.4 10.36 13.7 7.01

Seated woman 50.8 6.70 7.3 1.75 32.0 6.02 11.1 5.45

Seated children 35.9 8.08 3.9 1.84 28.1 4.40 4.6 5.61

Standing men 73.9 7.57 — — 43.1 16.90 28.5 19.07

Table 3.2: Mean values µ and standard deviations σ of undamped eigenfrequencies,
relative dampings and masses of biodynamic models, [51]

MH0 MH1 KH1 CH1

MH0 4.470e− 5 −2.366e− 5 −1.159e− 2 −1.041e− 3

MH1 −2.366e− 5 2.292e− 4 1.570e− 1 4.956e− 3

KH1 −1.159e− 2 1.570e− 1 225.110 4.390

CH1 −1.041e− 3 4.956e− 3 4.390 1.468e− 1

E (•) 8.554e− 3 50.200e− 3 51.904 1.367

Table 3.3: The first two moments of physical parameters of SDOF model with a rigid
mass for seated man, data published in [56]; upper square matrix is the covariance

matrix, the last row is the mean vector; units t, kN/m and kNs/m

M and C ∈ RnDOF×nDOF matrices, nDOF = nDOF,S + nDOF,H , in Eq. (2.1),

A =

[
ASS ASH

AHS AHH

]
(3.3)

where A stands for mass, stiffness or damping matrix. ASS are derived from AS by
adding constants of biodynamic models on i-th diagonal positions, i ∈ np. Note also
that biodynamic models are of nonproportional damping, hence C eventually cannot be
expressed as a linear combination of K and M .

Solution of the initial value problem, already discretized in space, is performed by dis-
cretization in the time domain and employing methods such as Newmark, Hilber-Hughes-
Taylor and Central difference. Stability, accuracy, time step selection, and other issues are
discussed in [4, 26, 30, 59]. All examples introduced in Appendix C and used throughout
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this thesis are three-dimensional beam structures with Hermitian basis functions. Ap-
propriate procedures are implemented in MATLAB R© environment and described briefly
in Appendix B. Any external FEM solver can be employed since only the matrices KSS,
MSS and CSS are of interest.

Example 3.1. Assembly mass M and stiffness K matrices for the real grandstand in
Appendix C.3 are depicted in Fig. 3.5 with indicated partition to particular submatrices
and a total number of nonzero elements nz.
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(a) mass matrix M
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(b) stiffness matrix K

Figure 3.5: Mass and stiffness matrices of the real grandstand in Appendix C.3, nz being
a number of nonzero elements

3.4.2 Reduced-order modelling

ROM (reduced-order model) plays an important role in the human-structure interaction
as in many computational problems, and provides an efficient tool to replace the large-
scale model by a smaller one, approximate, capable of capturing the dynamical behaviour
while preserving essential properties of the larger one. Many reduced-order methods has
been presented in the literature, nevertheless only some of them will be discussed further.

To describe briefly the general approach, for details see e.g. [16, 43], let us start
with a deterministic counterpart of the full-order model in Eq. (2.1), where z ∈ RnDOF

and f ∈ Rna . The aim is to obtain a ROM

M rz̈r (t) +Crżr (t) +Krzr (t) = Grf (t) , t ∈ T, (3.4)

where zr ∈ Rk, Kr, M r, Cr ∈ Rk×k, k � nDOF. Write

z (t) ≈ z̃ (t) , z̃ (t) = V zr (t) , (3.5)

V ∈ RnDOF×k being a full-column rank matrix representing a time invariant basis of V =
span [V ]. The residual r (t) ∈ RnDOF , accounting for the fact that z̃ (t) is not the exact
solution, is constraint to be orthogonal to a subspace W = span [W ] defined by a test
basis W ∈ RnDOF×k, a full-column rank matrix, W Tr(t) = 0. Hence, left-multiplying
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Eq. (2.1) after the insertion from Eq. (3.5) leads to the Petrov-Galerkin projection-based
Eqns. (3.4), where

Kr = W TKV , M r = W TMV
Cr = W TCV , Gr = W TG.

(3.6)

Hence, the solution z̃ (t) is understood as a projection ΠV ,Wz (t) onto V parallel to W ,
ΠV ,W being a projector. If W = V , the method is called a Galerkin projection. The
objective is to find an appropriate spaces with their bases capable to reproduce most
accurately the behaviour of the system yielding so-called high-fidelity models.

3.4.2.1 Modal superposition

The first method, most common in structural dynamics, is the modal superposition, or
singular value decomposition. In this case W = V = [v1, . . . ,vk], vi being the eigen-
vectors of the generalized eigenvalue problem Kvi = λiMvi, under the assumption of a
negligible damping. To reflect the behaviour of the system excited by an active crowd, the
frequency interval at least of [0, 10] Hz should be considered. Since the eigenfrequencies of
all biodynamic models are about 5 Hz according to Tab. 3.1, the number of eigenmodes k
in V is significantly increased and the method is hence inappropriate.

Example 3.2. The spectrum with the effect of damping for cantilever and real grand-
stand, Appendices C.2 and C.3, for the case of empty and fully occupied structures with
a passive crowd according to Coermann, Tab. 3.1, are depicted in Fig. 3.6 below in the
complex plain. It is seen that in both cases the number of eigenfrequencies is increased
by the number of biodynamic models, eigenvalues cumulate near 4.7 · 2π ≈ 30 rad/s.
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Figure 3.6: Spectrum of the cantilever and real grandstand, the case of empty and fully
occupied structures with a passive crowd; biodynamic models according to Coermann

used

3.4.2.2 Krylov subspace projection

KS (Krylov subspace) method comprises a projection onto a second-order Krylov sub-
space Gn (A,B;u), A, B ∈ RnDOF×nDOF , u ∈ RnDOF , Gn (A,B;u) = span [v0, . . . ,vk−1],
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cf [2], where

v0 = u

v1 = Av0

vj = Avj−1 +Bvj−2.

(3.7)

It is known that the projection is equivalent to Padé approximation, matching the mo-
ments of the transfer function H (s), expressed as a Laplace transform of the differential
operator in Eq. (2.1),

H (s) =
(
s2M + sC +K

)−1
, s ∈ C. (3.8)

To shift the expansion about the point s0, the following substitution is introduced

A = −
(
s2

0M + s0C +K
)−1

(C + 2s0M )

B = −
(
s2

0M + s0C +K
)−1

M .
(3.9)

The appropriate basis is obtained with the SOAR (second-order Arnoldi algorithm), cf [3].
Under the symmetry assumptions of the K, M and C matrices, the ROM matches the
first 2k moments of the full system.

3.4.2.3 Proper orthogonal decomposition

POD (proper orthogonal decomposition) [16], also known as Karhunen-Loève decomposi-
tion, is a powerful tool for finding an orthogonal projector ΠV ,V of fixed rank k minimizing

J (ΠV ,V ) =

∫
t∈T
||z(t)−ΠV ,V z(t)||2L2 dt, (3.10)

where ||•||L2 denotes the L2 norm of •. The subspace V = span [V ] minimizing J (•) is
the invariant subspace of KPOD ∈ RnDOF×nDOF ,

KPOD =

∫
t∈T
z (t) zT (t) dt. (3.11)

The data are usually discrete, so-called ”snapshots”, z (ti), i = 1, . . . , nsnap. Hence,
the integration is replaced with a sum, KPOD = ZZT, where Z ∈ RnDOF×nsnap , Z =[
z(t1)

√
w1, . . . ,z(tnsnap)

√
wnsnap

]
, wi being the integration weights. Since the non-zero ei-

genvalues of KPOD are the same as of RPOD = ZTZ, RPOD ∈ Rnsnap×nsnap , nsnap � nDOF,
eigenproblem RPODψi = λiψi, is solved instead for KPOD with the transformation V =

ZΨΛ−1/2, Ψ =
[
ψ1, . . . ,ψnsnap

]
, Λ = diag

[
λi, . . . , λnsnap

]
. Analogue to KPOD in fre-

quency domain, or Balanced POD can be also employed. Method consists in a training
on quite short realizations with subsequent projection.

3.4.2.4 Modal synthesis

This last method, MS (modal synthesis), is based on rather heuristic considerations.
Namely, the system is divided into two subsystems, a grandstand and a passive crowd. The
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Model Exact KS POD MS

Time [s] 29.6 1.4 4.6 0.5

Table 3.4: Time consumptions of ROMs in comparison with the full system, k = 50

bases V SS =
[
vS,1, . . . ,vS,neig,S

]
and V HH =

[
vH,1, . . . ,vH,neig,H

]
are computed separately.

In the case of the grandstand, the generalized eigenproblem KSSvS,i = λS,iMSSvS,i in
standard form is solved. Since the matrices KHH and MHH are diagonal for the SDOF
biodynamic models, only one eigenvalue λH of multiplicity np with ambiguous, linearly
independent basis in RnDOF,H solve the problem. The simplest approach seems to be a
projection of V SS onto Rnp , considering only the DOFs from the set np. Any other basis,
e.g. trigonometric is also possible. Eventually, the global basis is assembled as

W = V =

[
V SS 0nDOF,S×neig,H

0np×neig,S
V HH

]
. (3.12)

Example 3.3. The real grandstand in Appendix C.3 is fully occupied by a passive crowd.
Vertical response is measured in P1 node, an input is applied in P3 node. Problem form a
single-input single-output system, the comparison of time solutions is depicted in Fig. 3.7
together with the relative error, e = zex

P1
(t)− z•P1

(t), • standing for any of ROM methods,
zex
P1

(t) for full order solution and z•P1
(t) for a ROM solution. Krylov subspace for s0 = 0

used, comparison of the overall computational efficiency is summarized in Tab. 3.4, Fig. 3.8
then captures the Bode plots.
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Figure 3.7: Response of the P1 node and relative error as a function of the subspace
dimension dim (V) = k

3.5 Spatial crowd distribution

This part of the MC simulation is quite intricate, since almost no relevant assumptions
can be made about the spatial distribution of an active crowd. Some conclusions, however,
concerning the number of jumping spectators can still be derived from the anticipated use
of the structure or planned types of events, e.g. pop and rock concerts, sport events.



3.5. SPATIAL CROWD DISTRIBUTION 23

10
0

10
1

10
2

10
−8

10
−6

10
−4

f [Hz]

m
ag

ni
tu

de

 

 
Exact
KS
POD
MS

10
0

10
1

10
2

−3

−2

−1

0

1

2

3

f [Hz]

ph
as

e

 

 

Exact
KS
POD
MS

10
0

10
1

10
2

10
−4

10
−2

10
0

f [Hz]

re
l. 

er
ro

r 
m

ag
ni

tu
de

 

 

KS
POD
MS

Figure 3.8: Bode plot of the FRF for k = dim (V) = 50 and relative error for example
in Appendix C.3

3.5.1 Random distribution of an active crowd

The set of code numbers where the spectators can be situated is denoted ns having
the cardinality #ns = ns. Assuming fully occupied structure, particular realization of
the spatial crowd distribution consists in a disjoint decomposition of ns, ns = na ∪ np,
where na ∩ np = ∅, #na = na and #np = np. na and np are sets of those code numbers
where the active and the passive spectators are situated. In the case of an active crowd
only, it suffices to pick a subset na of ns with np = ∅. Knowing the loading scenario,
which can be specified as the ratio na/ns, the spatial distribution is realized. For further
details see Sec. 4.2.2, where uncertain spatial distribution of an active crowd is realized
trough random indicator variables.

3.5.2 Mean-worst spatial distribution of an active crowd

Another approach consists in finding the worst response that the crowd is capable to
excite. Clearly, such a distribution can be found in the mean sense for an active crowd
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only, with no passive spectators damping the system and complicating unbearably the
procedure. The occurrence of such a state is, however, questionable. Having ns positions
for spectators yields

(
ns

na

)
possibilities of their spatial distribution resulting in low prob-

abilities. As will be shown later on in Chap. 4, the mean value of the forcing term can be
satisfactorily approximated with a truncated Fourier series, cf also Eq. (1.6). Omitting G,
this expression is rewritten as

µF (t) = 1 +
n∑
k=1

rk sin (2kπfpt+ φk) =
n∑
k=0

rkIm
[
ei(2kπfpt+φk)

]
, (3.13)

where r0 = 1, φ0 = π/2, Im denotes the imaginary part and i is the complex unit.
The solution is then found using the FRF (frequency response function). Left hand side
operator in Eq. (2.1) is now deterministic and no passive spectators occupy the structure,
hence taking the expectation yields

Mµ̈Z (t) +Cµ̇Z (t) +KµZ (t) = G
n∑
k=0

rke
iφkei2kπfpt, t ∈ R, (3.14)

rk = [rk, rk, . . . ]
T, EZ (t) = µZ (t). Taking the unitary Fourier transform gives

H−1 (ξ) µ̂Z (ξ) = G
n∑
k=0

rke
iφkδ (kfp − ξ) , ξ ∈ R, (3.15)

where δ (ξ) is the Dirac delta distribution, µ̂Z (ξ) = F (µZ (t)) (ξ), H (ξ) denotes the FRF
with the analytical form

H(ξ) =
[
−(2πξ)2M + i2πξC +K

]−1
, ξ ∈ R, (3.16)

H (ξ) = H (s)|s=i2πξ, ξ being an ordinary frequency. Taking the imaginary part of the
inverse Fourier transform of Eq. (3.15) yields the solution

µZ (t) = Im

[
n∑
k=0

H (kfp)Grke
i(2kπfpt+φk)

]
, t ∈ R. (3.17)

Hence, it is necessary only to solve one real and n complex systems of linear equations.
Let us fix some particular code number, say m, with respect to which the worst

spatial distribution of the crowd will be sought, ns = [I1, . . . , Ins ]. Then, an m-th row of
Eq. (3.17) for a fully occupied structure by an active crowd is rewritten as

µZ,m (t) =
∑
i∈ns

Im

[
n∑
k=0

Hmi (kfp) rke
i(2kπfpt+φk)

]
=

ns∑
j=1

uj (t) , t ∈ R, (3.18)

where uj (t) gives the displacement of an m-th code number owing to all harmonics of
the load applied at j-th code number and time t. For a fixed time, each uj (t) can be
considered whether contributes positively or negatively to µZ,m (t), and based on their
signs such a subset of ns chosen to yield an extreme value. Repeating this procedure for
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Occupancy µpeak
Z,P1

[m] µ̈peak
Z,P1

[m/s2]

fully occupied 1.852e− 2 34.447

Fig. 3.9a 4.014e− 2 48.088

Fig. 3.9b 3.370e− 2 52.534

Table 3.5: Peak vertical displacements and accelerations in P1 node for various occupa-
tion by an active crowd; the case of real grandstand in Appendix C.3

all t ∈ [0, Tp] with a time step ∆t gives the approximate global extreme and corresponding
set of code numbers.

From computational point of view, it is convenient to rewrite uj (t) as element-by-

element product of H̃ , R, E ∈ Rns×n matrices,

uj (t) = Im

[
n∑
k=0

Ujk

]
, Ujk (t) = H̃ ◦R ◦E (t) , (3.19)

where Ujk (t) stores a contribution of the k-th harmonic of the load applied at code number
Ij and at fixed time t. (R ◦E)ij = RijEij with summation not implied over indices i and
j is the Hadamard product, and

H̃ = [Hnsm (0fp) ,Hnsm (1fp) , . . . ,Hnsm (nfp)] , (3.20)

Hnsm (kfp) being an ns-subvector of the m-th column of the FRF computed as the
solution of linear system obtained replacing the right hand side in Eq. (3.15) with em, a
column vector with 1 at m-th position,

R =

 r0 r1 . . . rn
...

...
. . .

...
r0 r1 . . . rn

 , E =

 ei(2·0πfpt+φ0) ei(2·1πfpt+φ1) . . . ei(2·nπfpt+φn)

...
...

. . .
...

ei(2·0πfpt+φ0) ei(2·1πfpt+φ0) . . . ei(2·nπfpt+φn)

 .
(3.21)

Procedure is simply generalized to the set of code numbers m1,m2, . . . ,mq and when
dynamic rather than peak displacement is of interest, it suffices to take k = 1, . . . , n
instead of k = 0, . . . , n. Spatial distribution in terms of peak acceleration is obtained
twice differentiating Eqns. (3.18) and (3.19) with respect to time.

Example 3.4. Results for the real grandstand in Appendix C.3 are given in Fig. 3.9
where indicators yielding the extreme response in P1 node are depicted. Fundamental
harmonic fp = 2.7 Hz, Fourier coefficients after [15] used, the first four amplitudes are 9/5,
9/7, 2/3, 9/55 and phase shifts −π/3, −2π/3, −π, 2π/3. Tab. 3.5 compares particular
displacements and accelerations.

3.6 MC convergence analysis

In this short paragraph we will give some convergence tests of the MC simulation on
particular example to have an idea about the number of simulations N needed. Clearly,
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Figure 3.9: Two mean-worst spatial distributions of an active crowd, Fourier coefficients
after Ellis [15], with respect to peak displacement and acceleration

in the case of the mean upcrossing rates the convergence strongly depends on the chosen
level x, hence introduced example serves only as a demonstration.

Example 3.5. Convergence for the total mean upcrossings in the time interval t ∈ [0, T ] s,
n+
x (T ) for the cantilever grandstand in Appendix C.2 and the level x is depicted in

Fig. 3.10. The response is measured in point P1, fixed and random spatial distribution of
the mixed crowd assumed, structure is fully occupied. Corresponding measures are based
on the interval of the stable response, excluding the transient part.
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3.7 Conclusion

In this chapter, an overview of the MC simulation has been given with emphasis laid upon
the reduced modelling and the mean-worst spatial distribution of an active crowd. It has
been shown that significant reduction of the model order is possible with several methods,
however large errors were encountered when the model was oversimplified, including SDOF
systems employed in some design approaches. For the purposes of the safety assessment,
method for the mean-worst spatial distribution of an active crowd has been given. MC
convergence analysis proved that at least hundreds, or better thousands of simulations
have to be performed in order to obtain an accurate and reliable results.





Chapter 4

Deterministic system and stochastic
input

4.1 Introduction

Our objective in this chapter is to give an overview of a possible approach to solution
of the grandstand problem defined by Eq. (2.1) where only the vector processes F (t, ω)
and Z (t, ω) are random, assuming the coefficient matrices deterministic and constant
in time. From the physical point of view, this situation is equivalent to the fixed spatial
distribution of a passive crowd with deterministic biodynamic models. Spatial distribution
of an active crowd can possibly follow a random pattern.

Although the input forces are non-Gaussian, cf Fig. 3.3, the right hand side F (t, ω) is
assumed to be a Gaussian coloured vector process in the first approximation, cf also [45].
Such an approach can be justified in the first place by the fact that the RMS values, i.e. the
second order moment properties, yield serviceability limits assessment, in the second place
by the Central Limit and Rosenblatt theorems. Moreover, since only the quasi-stationary
generators of an active crowd exist, the stationary probability distribution of the state
vector is our principal objective.

Assessing the reliability limits of the structure, the Gaussian approximation can be
considered as too coarse. Hence, the translation processes are employed to obtain a better
agreement in the marginal distribution of the output displacements and upcrossing rates.

4.2 Gaussian input1

To simplify subsequent expressions, let us apply expectation operator E in Eq. (2.1) and
substract the result from it. We arrive at the set of two equations

Mµ̈Z (t) +Cµ̇Z (t) +KµZ (t) = GµF (t) , t ≥ 0, (4.1)

M ¨̃Z (t, ω) +C ˙̃Z (t, ω) +KZ̃ (t, ω) = GF̃ (t, ω) , t ≥ 0, (4.2)

for the mean value µZ (t) = EZ (t) and centered process Z̃ (t, ω) = Z (t, ω) − µZ (t),
forcing term is assumed in the form F (t, ω) = µY (t) + Ỹ (t, ω), EỸ (t, ω) = 0, µF (t) =

1Partly reproduced from: O. Rokoš, J. Máca. The response of grandstands driven by filtered Gaussian
white noise processes. Advances in Engineering Software, 72(0):85 – 94, 2014.

29
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µY (t) and F̃ (t) = Ỹ (t) in this particular case. Under certain conditions process Z̃ (t)
is approximately normal, and since SDE (4.2) is linear with deterministic coefficients, it
is reasonable to accept Gaussian approximation also for Ỹ (t). This consideration leads
us to the Itô’s calculus. Under Gaussian assumptions, the response will be completely

specified by its mean µZ (t) and covariance cZ (t, s) = E
[
Z̃ (t) Z̃ (s)T

]
.

4.2.1 Deterministic distribution of a crowd

Assuming deterministic distribution of a crowd, the required quantities can be obtained
from the time domain or from the frequency domain.

4.2.1.1 Solution in the time domain

Eq. (4.1) can be solved by direct integration or, more conveniently, by a Fourier series (or
Fourier transform) assuming periodic mean µY (t), cf Sec. 3.5.2. Let us rewrite Eq. (4.2)
as

d

dt

[
Z̃ (t)
˙̃Z (t)

]
=

[
0 I

−M−1K −M−1C

][
Z̃ (t)
˙̃Z (t)

]
+

[
0

M−1G

]
Ỹ (t) , t ≥ 0, (4.3)

or, in a more compact form,

˙̃X (t) = aX̃ (t) + bỸ (t) , t ≥ 0, (4.4)

where X̃ is an Rd-valued state-space vector stochastic process with zero mean, and a
and b are (d, d) and (d, na)-matrices. The solution of this differential equation is given in
the form

X̃ (t) = θ (t) X̃ (0) +

∫ t

0

θ (t− s) bỸ (s) ds, (4.5)

where θ (t− s) denotes the Green function or the unit impulse response satisfying

∂θ (t− s)
∂t

= aθ (t− s) , t ≥ s ≥ 0, (4.6)

θ (0) = I the identity and θ (t− s) = exp [a (t− s)] can be expressed as a matrix exponen-
tial, cf [53]. Initial conditions X̃ (0) will be set to zero for simplicity. Forcing term Ỹ (t)
can also satisfy its own SDE driven by Gaussian white noise W (t) = dB (t) /dt. For
example, let Ŷ1 (t) be a continuous-time Gaussian autoregression scalar process of or-
der p, denoted as AR(p), cf [8]. Then Ŷ1 (t) = eT1S1 (t) where the state vector S1 (t) =
[S1,1 (t) , . . . , S1,p (t)]T satisfies the Itô’s equation

dS1 (t) = A1S1 (t) dt+ b1dB (t) , (4.7)

A1 =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−ap −ap−1 −ap−2 . . . −a1

 , e1 =


1
0
...
0
0

 and b1 =


0
0
...
0
a0

 .
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Processes of this kind are also called filtered white noise processes or coloured processes,
and they have a specific frequency content. Let us assume that Ỹi (t) of Ỹ (t) =[
Ỹ1 (t) , . . . , Ỹna (t)

]T
are mutually independent AR(pi) processes. Then we can merge

Eqns. (4.3) and (4.7) to obtain one coupled system

d


Z̃ (t)
˙̃Z (t)
S1 (t)

...
Sna (t)

 =


0 I 0 . . . 0

−M−1K −M−1C M−1Gd1e
T
1 . . . M−1Gdnae

T
na

0 0 A1 . . . 0

0 0 0
. . . 0

0 0 0 . . . Ana




Z̃ (t)
˙̃Z (t)
S1 (t)

...
Sna(t)

 dt

+


0 . . . 0
0 . . . 0
b1 . . . 0

0
. . . 0

0 . . . bna

 dB (t) ,

(4.8)
where di are column vectors with the unit in i-th position, and B (t) is an Rna-valued
Brownian motion. This approach is called a state augmentation method [19]. An extension
to the case Ỹi (t) =

∑n
k=1 Ŷk (t), where Ŷk (t) are mutually independent AR(p) processes,

is carried out in an obvious manner. Eq. (4.8) can again be rewritten in compact form

dX (t) = aX (t) dt+ bdB (t) , t ≥ 0, (4.9)

and employing the Itô’s formula, cf Appendix A, we arrive at the system of evolutionary
equations for the response mean µX (t) and covariance cX (t, s)

µ̇X (t) = aµX (t) , t ≥ 0, (4.10)

ċX (t, t) = acX (t, t) + cX (t, t)aT + bbT, t ≥ 0, (4.11)

∂cX (t, s)

∂t
= acX (t, s) , t > s ≥ 0. (4.12)

Since the driving forces dB (t) are Gaussian white noise and the coefficients are constant in
time, the solution is an Ornstein-Uhlenbeck process with an existing stationary solution.
In our case, stationary mean µX = 0 and covariance ċX (t, t) = ċX (t− t) = ċX = 0
which leads to the so-called continuous Lyapunov equation

0 = acX + cXa
T + bbT. (4.13)

For details and further developments, see [19]. Since the stationary matrix cX contains
only response displacements and velocities, the variances of the acceleration have to be
computed through the following formula which is valid for weakly stationary processes

cẊ = −d
2cX (t)

dt2

∣∣∣∣
t=0

= −a2cX , (4.14)



32 CHAPTER 4. DETERMINISTIC SYSTEM AND STOCHASTIC INPUT

where a2 denotes matrix power and cẊ denotes the stationary covariance matrix of ve-
locities and accelerations. Equation (4.14) is evaluated employing (4.12), which in our
special case simplifies to

cX (t) = θ (t) cX = exp [at] cX . (4.15)

4.2.1.2 Solution in the frequency domain

Employing spectral decomposition of stationary random processes, the response variances
are acquired through spectral density matrices SỸ Ỹ and SZ̃Z̃ , (SỸ Ỹ (ξ))ii = ŝỸ (ξ), i =
1, . . . , na, where ŝỸ (ξ) is a spectral density estimate of the centered forcing term,

ŝỸ (ξ) = E

∫ ∞
−∞

b (x− ξ) IT (ξ) dx, (4.16)

b (x) being some weight function, cf [1], and IT (ξ) denotes the corresponding periodogram

IT (ξ) =

∣∣∣∣∫ T

0

Ỹ (t) e−i2πtξ dt

∣∣∣∣2 , −∞ < ξ <∞. (4.17)

The diagonal form of SỸ Ỹ suggests that we treat all input processes as independent.
Knowing the spectral density matrix of the input, we obtain the spectral density matrix
of the output process according to [53]

SZ̃Z̃ (ξ) = H (ξ)GSỸ Ỹ (ξ)GTH† (ξ) (4.18)

where H† (ξ) denotes a Hermitian transpose to H (ξ), to the FRF. The variance of the
stationary scalar process Z̃ (t) with two-sided spectral density sZ̃ (ξ) or with one-sided
spectral density gZ̃ (ξ) is evaluated as

σ2
Z̃

=

∫ ∞
−∞

sZ̃ (ξ) dξ =

∫ ∞
0

gZ̃ (ξ) dξ (4.19)

and the variance of time derivative ˙̃Z (t)

σ2
˙̃Z

= σ̇2
Z̃

=

∫ ∞
−∞

(2πξ)2 sZ̃ (ξ) dξ =

∫ ∞
0

(2πξ)2 gZ̃ (ξ) dξ. (4.20)

By analogy for higher time derivatives, applying higher powers of angular frequency 2πξ,
we compute so-called spectral moments λk =

∫∞
0

(2πξ)k gZ̃ (ξ) dξ.
Solution in frequency domain can be performed also through linearized FRF (in ξ)

based on Eq. (4.4) instead of Eq. (4.2), now having the form

H(ξ) = (i2πξId×d − a)−1 , (4.21)

where Id×d ∈ Rd×d is an identity matrix.

4.2.1.3 Reduced-order modelling

All matrices in Eq. (4.3) are transformed according to Eq. (3.6) to obtain a ROM of
Eq. (4.13). It is also possible to apply ROM techniques directly on Eq. (4.3), cf Eq. (4.21),
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using KS, POD, etc. We will pursue further, however, only the firstly mentioned approach.
Concerning the Lyapunov equation (4.13) of the reduced system, we can decrease the

computational effort by some prior information. Let us assume that the system response
is described through Eq. (4.8) with pi = 2. Splitting all matrices leads to[

a11 a12

a21 a22

] [
c11 c12

c21 c22

]
+

[
c11 c12

c21 c22

] [
aT

11 aT
21

aT
12 aT

22

]
+

[
02k×2k 02k×l
0l×2k bbT22

]
= 0, (4.22)

where

a11 =

[
0k×k Ik×k

−M−1
r Kr −M rKr

]
, (4.23)

k = dim (V), l =
∑na

i=1 pi, a21 = 0 and remaining submatrices have obvious structure.
Dropped subscript X at covariance matrix c emphasizes a projection onto some subspace.
Since bbT is symmetric, in fact diagonal, the solution will be also symmetric, c12 = cT21.
In the case of AR(2) processes, submatrix c22 can be computed explicitly; single AR(2)
process has uncorrelated state variables S1, S2 and varS1 = a2

0/ (2a1a2), varS2 = a2
0/ (2a1),

cf Eq. (4.7), based on moment equations, thus c22 is a diagonal matrix. Introduced
considerations reduce the system of four equations in Eq. (4.22) in expanded form, to the
set of two coupled equations

a11c12 + c12a
T
22 + a12c22 = 0 (4.24)

a11c11 + c11a
T
11 + c12a

T
12 + a12c

T
12 = 0 (4.25)

for unknowns c12 and c11. The set resembles Sylvester and Lyapunov equations respect-
ively with reduced size. Backward transformation c̄X = V c̄W T gives covariance matrix
for displacement or velocity vector, where c̄ denotes an appropriate submatrix.

4.2.1.4 Performance of the Gaussian processes

As was mentioned in introductory Chap. 1, for grandstand serviceability and reliability
assessment, properties such as RMS values and the mean upcrossing rates have to be
computed. Together with the distribution of the maxima, they represent the content of
this short section.

Level Crossings One of the measures of system performance is level crossing. Under
some circumstances, it can be shown that upcrossing is directly connected with the reli-
ability of the system. Employing Rice formula (A.1), the x-upcrossing rate of a Gaussian
process X (t) with non-stationary mean value µ (t) and stationary variance σ2 is estimated
as [53]

ν+
x (t) =

σ̇

σ

[
φ

(
µ̇ (t)

σ̇

)
+
µ̇ (t)

σ̇
Φ

(
µ̇ (t)

σ̇

)]
φ

(
x− µ (t)

σ

)
, (4.26)

where ν+
x (t) is the x-upcrossing rate of level x at time t, φ (α) = 1/

√
2π exp (−α2/2),

Φ (u) =
∫ u
−∞ φ (α) dα, σ2 = varX (t), σ̇2 = varẊ (t). The total mean number of upcross-

ings in time interval [0, T ] is computed according to

n+
x (T ) =

∫ T

0

ν+
x (t) dt. (4.27)
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The relations can be generalized to D-outcrossings of a d-valued stochastic process,
where D is some set in Rd.

Distribution of maxima The probability density function of the local maxima is ex-
pressed as, [53]

fmax (x) =

√
1− ν2

σ
φ

(
x√

1− ν2

)
+
νx
√

2π

σ
φ
(x
σ

)
Φ

(
νx√

σ (1− ν2)

)
, (4.28)

where ν = σ̇2/ (σσ̈), and φ (α), Φ (u), σ, σ̇ have the same meaning as in Eq. (4.26),
σ̈2 = varẌ (t).

RMS values Another measure of the system performance from the point of view of
serviceability is the root mean square value. Since 1) the shortest integration time in the
floating RMS value is τ = 1 s for the case of panic, cf [27], 2) the jumping frequencies are
roughly within the interval fp ∈ (1.4, 3.5) Hz and the mean value is a function of higher
harmonics, 3) superposed noise is also frequency limited from below at least with 1 Hz
and 4) available generators simulate ”stationary” signals, it results that except for the
initial transient part at the onset of loading, the response of the system is ”stationary”,
the floating RMS averages are ”constant”, and can be approximated by

RMS =

√
1

T

∫ T

0

X (t)2 dt =

√
1

T

∫ T

0

µX (t)2 dt+ σ2, (4.29)

where µX (t) = EX (t). Then, the limit stationary solution is viewed as an approximate
averaged value providing an estimate. Analogous formulas are valid for velocity and
acceleration.

4.2.1.5 Applications to the response of grandstands

As was noted in introductory Chap. 1, an active spectator can be treated as a time-
dependent forcing process. Figure 4.1 shows a single realization and corresponding spectral
density of a unit process, i.e. of the process with G = 1, where G denotes the weight of a
spectator, jumping frequency fp = 2.7 Hz. Spectral densities were computed from (4.16)
with Parzen weight. The realization was generated according to [51]. Since this function
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Figure 4.1: Single time history and power spectral density of 10,000 realizations of
forcing term Y (t) generated according to [51]
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is highly periodic, we will search the mean value in the form

µY (t) = α0 +

p∑
k=1

αk cos (2kπfpt) + βk sin (2kπfpt) . (4.30)

Then vector α̂ of the estimated parameters α̂0, α̂1, β̂1, . . . , α̂p, β̂p can be found by the linear
Least Squares Method as

α̂ =
(
ΦTΦ

)−1
ΦTµ̄Y , (4.31)

where

Φ =


1 cos

(
2πf̄t1

)
sin
(
2πf̄t1

)
. . . cos

(
p · 2πf̄t1

)
sin
(
p · 2πf̄t1

)
1 cos

(
2πf̄t2

)
sin
(
2πf̄t2

)
. . . cos

(
p · 2πf̄t2

)
sin
(
p · 2πf̄t2

)
...

...
...

. . .
...

...
1 cos

(
2πf̄tn

)
sin
(
2πf̄tn

)
. . . cos

(
p · 2πf̄tn

)
sin
(
p · 2πf̄tn

)
 ,

t1, . . . , tn is a fine enough and equidistant partition of the time interval,
µ̄Y = [µ̄Y (t1) , . . . , µ̄Y (tn)]T with

µ̄Y (ti) =
1

N

N∑
k=1

Yk (ti) , (4.32)

are means over N realizations Yk (ti) in time instants ti. Generating 10,000 trajectories
provides the coefficients given in Tab. 4.1. Realization centered with the mean value ac-

fp = 1.5 Hz fp = 2.0 Hz

α̂0 0.9940 α̂0 0.9944

α̂1 0.7559 β̂1 0.7068 α̂1 0.8009 β̂1 1.0233

α̂2 −0.0056 β̂2 0.1471 α̂2 −0.0930 β̂2 0.3415

α̂3 −0.0044 β̂3 0.0008 α̂3 −0.0304 β̂3 0.0102

α̂4 0.0003 β̂4 −0.0001 α̂4 0.0005 β̂4 0.0002

fp = 2.7 Hz fp = 3.5 Hz

α̂0 0.9958 α̂0 0.9966

α̂1 0.2939 β̂1 1.1170 α̂1 −0.3197 β̂1 0.9566

α̂2 −0.2471 β̂2 0.0984 α̂2 −0.0916 β̂2 −0.0997

α̂3 −0.0037 β̂3 −0.0153 α̂3 −0.0003 β̂3 0.0004

α̂4 −0.0008 β̂4 −0.0001 α̂4 0.0007 β̂4 −0.0003

Table 4.1: Coefficients α̂ for an approximation of the mean value in Eq. (4.30)

cording to Eq. (4.30) and the coefficients from Tab. 4.1 is depicted in Fig. 4.2 together with
the spectral density and a normalized histogram, i.e. a histogram of the process Ȳ (t) =
[Y (t)− µ (t)] /σY = Ỹ (t) /σY where σY =

√
varY (t) =

√
0.7486 for fp = 2.7 Hz is the

stationary standard deviation. The centered process resembles non-Gaussian coloured
noise and within approximations will be treated in further considerations as stationary
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Figure 4.2: Single centered time history of Ỹ (t) (a), the corresponding power spec-
tral density of 10,000 realizations (b), a normalized histogram with standard normal
density (c) and a normalized histogram of a non-unit process scaled with G [kN] ∼

N (0.7709, 0.0167) (d), variance varY (t) (e) and mean value EY (t) (f)

and ergodic, cf Fig. 4.2e and 4.2f where the true nonstationary variance and the mean
value as functions of time are depicted. To quantify the stationary difference, for Ȳ (t) we
have µȲ = 0 for the mean, varȲ = 1 for the variance, γ3,Ȳ = 0.424 for the coefficient of
skewness, and γ4,Ȳ = 4.076 for the coefficient of kurtosis, cf also Tab. 4.5. For comparison,
the standard Gaussian process has coefficients 0, 1, 0 and 3.

Example 4.1. Let us briefly analyze the response of a harmonic oscillator with unit mass
forced by jumping process Y (t) with fp = 2.7 Hz, employing MC to justify the normal-
ity assumptions. The coefficients of skewness and kurtosis of the state vector X (t) =[
Z (t) , Ż (t)

]T
as functions of the oscillator eigenfrequency f1 for two different values of

viscous damping ζ are depicted in Fig. 4.3. Note that for frequency range 0.5 − 7 Hz
the response is approximately Gaussian. As was expected, worse convergence is achieved
for higher damping values, cf the Rosenblatt theorem [18]. Normalized histograms of
displacement for eigenfrequencies f1 = 4 and 12 Hz and both damping values are depicted
in Fig. 4.4. Other techniques can be applied for approximations of the response outside
this frequency range, e.g. memoryless transformations of Brownian coloured white noise,
cf also Sec. 4.3.1. Based on heuristic arguments and the Central Limit Theorem, we
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Figure 4.4: Histograms of normalized displacement Z̄ (t) with standard normal density
based on 1,000 MC realizations assuming ergodicity

can assume that the higher the number of active spectators, and the more complex the
grandstand geometry is, the more Gaussian the response will be.

A spectral density approximation of the forcing process for the frequency domain
solution, Fig. 4.2b, cannot be further simplified. This is because the FRF of the structure
has sharp peaks, and thus exact function values are needed. Any approximation employing
indicator functions in the vicinities of significant harmonics preserving variance would be
inaccurate.

We can employ, however, filtered white noise processes AR(2), which arise as solutions
of the second order equations

c2,i
¨̂
Yi (t) + c3,i

˙̂
Yi (t) + c1,iŶi (t) = W (t) , t ≥ 0, (4.33)
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with spectral densities

si (ξ, c) =
1[

c1,i − c2,i (2πξ)
2]2 + (2πξc3,i)

2
, (4.34)

where {c1,i, c2,i, c3,i} correspond to the stiffness, mass and damping of a harmonic oscil-

lator. This function has a sharp peak positioned at f1 =
√
c1/c2/2π if we neglect shifts

caused by damping effects. For a closer approximation, we assume Ỹ (t) ≈
∑n

i=1 Ŷi (t),

where Ŷi (t) are mutually independent AR(2) processes. Identification leads to a nonlinear
optimization problem: find such ck,i, k = 1, 2, 3 and i = 1, . . . , n, that minimize L2 norm
of the difference

e (ξ, c) = ŝỸ (ξ)−
n∑
i=1

si (ξ, c) , (4.35)

min
c={c1,1,...,c3,n}

||e (ξ, c)||L2 , ξ ∈ A ⊂ R+ connected, (4.36)

where ŝỸ denotes a spectral density estimate of the centered force term Ỹ (t). The prob-
lem can be solved by the Nonlinear Least Squares method, by Simulated Annealing etc,
with easily estimated initial vector c0. Optimized coefficients for n = 6 of the centered
process Ỹ (t) are presented in Tab. 4.2, and the corresponding spectral density and spec-
tral distribution function are presented in Fig. 4.5 for fp = 2.0 and 3.5 Hz. Note that
the spectral density is two-sided, and only one half was integrated in the spectral dis-
tribution function, thus the variance indicated is 0.7486/2 = 0.3743 for fp = 2.0 Hz,
and 0.6824/2 = 0.3412 for fp = 3.5 Hz.

Let us briefly note the situation when the forcing process Y (t) is not a unit process,
i.e. G 6= 1. Since we are limiting our considerations to Gaussian approximation, only the
first two moments of G will apply. The deterministic weight corresponds to a singular
case varG = 0. Then the forcing term has the form YG (t) = GY (t) and alter its mean
value by multiplication with EG and its spectral density by multiplication with EG2. Then
the mean response reads µZ,G (t) = E [G]µZ (t) and stationary response variance σ2

Z,G =
E [G2]σ2

Z , where µZ (t) and σ2
Z are the response mean and the variance of the structure

loaded by the unit forcing term Y (t). Nevertheless, we should be aware that even when
process F (t) was a Gaussian, process FG (t) as a product of a random variable with a
stochastic process, is not Gaussian. To quantify the influence of such scaling, compare the
histograms in Fig. 4.2c and 4.2d, where G has normal distribution with mean value 0.7709
and variance 0.0167.

In the rest of this section, the quality of the approximation in the time or frequency
domain will be compared with MC simulation. A total of four mechanical systems will be
tested: a harmonic oscillator, a simply supported beam, a simple cantilever grandstand,
and a realistic grandstand with 1, 4, 72 and 630 positions for spectators respectively,
cf Appendix C. Centered normed response histograms for an active crowd only, based on
MC simulation, are depicted in Fig. 4.6. Note also that assumptions on convergence to
normal distribution are approximately fulfilled. All examples are artificial, not realistic,
so the measured responses would be unacceptable. Remind also that the forcing is scaled
such that G = 1.
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fp = 1.5 Hz fp = 2.0 Hz

i c1,i c2,i c3,i fi i c1,i c2,i c3,i fi

1 32.1868 0.3740 0.0926 1.48 1 35.9984 0.2313 0.0639 1.99

2 28.4744 0.3206 0.0755 1.50 2 35.4762 0.2214 0.0624 2.02

3 32.1054 0.3503 0.0885 1.52 3 85.4862 0.1363 0.0426 3.99

4 56.5951 0.1603 0.0655 3.00 4 90.3709 0.1420 0.0431 4.02

5 107.2460 0.2981 0.0903 3.02 5 203.8343 0.1434 0.0677 6.00

6 165.2705 0.2069 0.1449 4.50 6 753.2156 0.2982 0.1909 8.00

fp = 2.7 Hz fp = 3.5 Hz

i c1,i c2,i c3,i fi i c1,i c2,i c3,i fi

1 43.0323 0.1546 0.0450 2.66 1 60.8293 0.1258 0.0349 3.50

2 42.8054 0.1504 0.0442 2.69 2 74.0274 0.1510 0.0432 3.52

3 106.3256 0.0949 0.0343 5.33 3 71.5957 0.1501 0.0434 3.58

4 132.7502 0.1172 0.0380 5.36 4 104.3139 0.0585 0.2817 6.72

5 370.5087 0.1463 0.0794 8.01 5 131.9751 0.0682 0.0340 7.00

6 1641.3390 0.3646 0.2983 10.68 6 1709.7792 0.3931 0.3047 10.50

Table 4.2: Coefficients ck,i, k = 1, 2, 3 and i = 1, . . . , 6 of the six independent
AR(2) members used for approximation of the centered forcing term Ỹ (t) in frequency

range 0.5− 10 Hz

Example 4.2. Let us assume a harmonic oscillator with unit mass, two values of viscous
damping ζi, i = 1, 2, and variable stiffness. The mean value response is presented in
Fig. 4.7. The response was acquired by direct integration of (4.1), starting at t = 0.5 s.
The approximation utilizes Eq. (4.30) and the coefficients in Tab. 4.1. A comparison of
the total mean upcrossings n+

x (T ) in the time interval [0, T ], T = 160 s, as functions of
oscillator eigenfrequency f1 for two values of viscous damping ζ = 0.001 and ζ = 0.07 and
for two fixed levels x = 0.002 and x = 0.005 m are depicted in Fig. 4.8, employing formu-
las (4.26) and (4.27). The size of time interval T is based on heuristic considerations about
the average length of the musical compositions. The time domain solution is based on the
sum of six independent AR(2) processes with the coefficients in Tab. 4.2. The stationary
response variances are computed according to formulas (4.24), (4.25) and (4.14). The fre-
quency domain approximation employs Eqns. (4.18) – (4.20). The spectral density estim-
ate ŝỸ (ξ) of the centered input process has 307 values over the frequency range 0−10 Hz,
using variable partition. Fig. 4.8 shows that the results are roughly in agreement with MC
in the frequency range 0.2− 10 Hz. Note that the total number of mean zero-upcrossings
for a deterministic periodic function with frequency 2.7 Hz is 160 · 2.7 ≈ 432, cf Fig. 4.8c
and 4.8d, where distinct plateaux are found. The results for MC are based on 1,000
realizations 160 s in length.

Example 4.3. The next example is a simply supported beam in Appendix C.1. Poor
approximations are anticipated, since the structure is quite stiff with high eigenfrequencies,
see the results for the harmonic oscillator. Two cases are studied: a structure occupied
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Figure 4.5: Spectral densities and spectral distribution functions of centered for-
cings Ỹ (t) and of their approximations

∑6
i=1 Ŷi (t), where Ŷi (t) are independent AR(2)

processes with the coefficients in Tab. 4.2 based on spectral optimization for fp = 2.0
and 3.5 Hz

by an active crowd only; and a structure occupied by a mixed crowd. In the second
case, the two left hand side positions are loaded by forces and the two right hand side
positions are occupied by passive spectators. Deterministic biodynamic models according
to Coermann [11] are used, cf Tab. 3.1. Results are presented for the point P1. The
total mean upcrossings for the first case n+

x (160) as a function of level x are depicted in
Fig. 4.9a. The RMS values for acceleration are 1.947 m/s2 for the MC solution, 2.135 m/s2

for the frequency domain solution, and 1.914 m/s2 for the time domain solution. All
input processes are treated as independent, so matrix SỸ Ỹ in Eq. (4.18) has nonzero
only diagonal entries. The mean value response is depicted in Fig. 4.9f with a single
realization 4.9e. PDFs of local maxima fmax (x) for the centered response are compared
in Figs. 4.9c and 4.9d. The total upcrossings for a mixed crowd are depicted in Fig. 4.9b,
and the RMS values are 1.048 m/s2 for the MC solution, 1.094 m/s2 for the frequency
domain solution, and 0.990 m/s2 for the time domain solution. Let us also recall our
assumption of fixed spatial distribution of the crowd, mass coefficient γ = mH/mS = 0.1.
Results for MC are based on 2,000 realizations. The approximate shape of the total
upcrossings, especially for a mixed crowd, differ from the MC simulation because of the
non-Gaussian response owing to high structure eigenfrequencies.

Example 4.4. This system is the cantilever grandstand described in Appendix C.2. The
total upcrossings of the response displacement for the point P1 and fully occupied structure
by active spectators are depicted in Fig. 4.10a, single realization and the mean response
are depicted in subfigures 4.10e and 4.10f, RMS accelerations 5.583 m/s2 for the MC
solution, 5.682 m/s2 for the frequency domain solution, and 5.616 m/s2 for the time domain
solution. For 36 spectators chosen to be passive according to Coermann with uniformly
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Figure 4.6: Normed histograms of the displacement assuming ergodicity, structures fully
occupied by an active crowd only
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Figure 4.7: Response mean displacement in comparison with an approximation based
on the first four harmonics for a harmonic oscillator, f1 = 5 Hz and ζ = 0.07

random but fixed positions, the resulting upcrossings are depicted in subfigure 4.10b, mass
coefficient γ = 0.17. The acceleration RMS values in this case appear to be 1.327 m/s2

for the MC solution, 1.347 m/s2 for the frequency domain solution, and 1.309 m/s2 for
the time domain solution. Comparison of the PDFs for local maxima of centered response
are depicted in Figs. 4.10c and 4.10d showing a good agreement. The results for MC are
again based on 2,000 realizations 160 s in length.

Example 4.5. In this concluding example, let us briefly examine the response for a real
grandstand in Appendix C.3 and the point P1. Results for the structure loaded by an
active crowd only are depicted in Figs. 4.11a, 4.11c, 4.11e and 4.11f. The acceleration RMS
values appear to be 5.546 m/s2 for the MC solution, 5.565 m/s2 for the frequency domain
solution, and 5.597 m/s2 for the time domain solution. In the second case, 315 positions
are occupied by passive spectators according to Coermann, mass coefficient γ = 0.18. The
results for this case are presented in Figs. 4.11b and 4.11d, RMS accelerations 1.905 m/s2

for the MC solution, 1.904 m/s2 for the frequency domain solution, and 1.919 m/s2 for
the time domain solution. MC simulation was again based on 2,000 realizations. For
comparison, Fig. 4.11g captures a convergence of the normalized variances varZP1 , varŻP1
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Figure 4.8: Total mean upcrossings n+
x (T ) and acceleration RMS values as functions

of f1 for a harmonic oscillator, distinct levels x and viscous damping ζ, T = 160 s

and varZ̈P1 for MS ROM with respect to dim (V) where dim (V) = dim (VS) + dim (VH)
and dim (VH) = dim (VS) /3 rounded to nearest lover integer value.

The time consumption for the different solution techniques is summarized in Tab. 4.3,
where the demands of MC simulation are presented for 100 realizations only. This value
is based on the convergence tests of total upcrossings, cf Sec. 3.6, clearly highly sensitive
to level x. Hence, the value used can be considered as a lower bound. The size of the
time integration step was chosen to be h = 0.005 ∼ 0.01 s depending on the structure;
Newmark integration scheme used. The number of DOFs of each system is also men-
tioned. For the purposes of comparison, the time consumptions for MS ROM technique
are also summarized together with the size of the projection subspace dim (V). All sim-
ulations were performed on core i7 with a 16 GB RAM computer, MATLAB R© parallel
implementation.

4.2.2 Random distribution of an active crowd

In this section, a brief generalization to the case where only an active crowd with a random
spatial distribution occupies the structure will be given. Possibly some passive spectators
can occupy the structure, but in that case, np is assumed fixed. Let us accept the following
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Figure 4.9: Total mean upcrossings n+
x (T ) of a simply supported beam in Appendix C.1

as functions of x, T = 160 s, distribution of maxima fmax(x), single realization and mean
responses for an active crowd and for a mixed crowd

form of the forcing term in Eq. (2.1),

F (t, ω) = χ (ω)
[
µY (t) + Ỹ (t, ω)

]
, t ≥ 0, (4.37)

where µY (t) and Ỹ (t, ω) were introduced earlier. A square, diagonal random matrix χ ∈
Rna×na , χ = diag (χ1, . . . , χna), where χi are identically distributed random indicator
variables, or Bernoulli trials

χi =

{
1, P [χi = 1] = p
0, P [χi = 0] = 1− p (4.38)

for p ∈ [0, 1] with moments Eχki = p, k = 1, 2, . . . . In this context, the probability p
can be interpreted as an intensity factor describing an overall loading scenario. Hence,
F (t, ω) = µF (t) + F̃ (t, ω), where µF (t) = Eχ (ω)µY (t) and F̃ (t, ω) = χ̃ (ω)µY (t) +
χ (ω) Ỹ (t, ω), χ̃ (ω) = χ (ω) − Eχ (ω). Mean response can be obtained directly from
Eq. (4.1) taking GµF (t) for the right hand side leading simply to pµZ (t), where µZ (t)
is the mean response of the system forced by µY (t). Eq. (4.11) holds in this case
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Figure 4.10: Total mean upcrossings of a cantilever grandstand in Appendix C.2, dis-
tribution of maxima, single realization and mean responses for an active crowd and for

a mixed crowd

too, but with slight adjustments. Assume again the zero mean forcing Ỹ (t, ω) approx-
imated as a linear combination of an n AR(2) processes as usual, and denote χn =
diag [χ1,1, . . . , χ1,n, . . . , χna,1, . . . , χna,n]. Then, Eq. (4.9) reads

dX (t) = aX (t) dt+ hχ̃µY (t) dt+ bχndB (t) , t ≥ 0, (4.39)

with b in analogy to Eq. (4.8), dB (t) ∈ Rnan, and

h =

 0k×na

M−1G
0l×na

 (4.40)

where k = nDOF for brevity, l = dim (S) = 2nan. It is also possible, even more con-
veniently, to introduce the indicator variables χ into the drift matrix a; nevertheless, in
order to emphasize the fact that the random spatial distribution of an active crowd is
just a matter of the forcing term, we have chosen the representation in Eq. (4.39), cf also
Chaps. 5 and 6 where the randomness of the operator and of the right hand side are strictly
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Figure 4.11: Total mean upcrossings of a real grandstand in Appendix C.3, distribution
of maxima, single realization and mean responses for an active crowd and for a mixed

crowd; convergence of normalized variances with respect to dim (V)

separated. Hence, the corresponding covariance differential equation, cf Eq. (4.11), is ad-
justed as follows: the diffusion term is now bE

[
χnχ

T
n

]
bT = pbbT, since E

[
χnχ

T
n

]
=

diag
(
Eχ2

1,1, . . . ,Eχ
2
na,n

)
= pInan×nan. Further, an additional term q (t, t) + qT (t, t) ap-

pears. The Itô’s formula gives

∂

∂s
qij (t, s) =

∂

∂s
Ehirχ̃rqµY,q (t)Xj (s)

= Ehirχ̃rqµY,q (t) ajmXm (s) + Ehirχ̃rqµY,q (t)hjuχ̃uvµY,v (s) +

Ehirχ̃rqµY,q (t) bjuχn,uvdBv (s)︸ ︷︷ ︸
=0

,

(4.41)
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Full system

Method/Struct. Harm. osc. Beam Cant. grand. Real. grand.

nDOF,S 1 29 504 4,068

MC 100 1.202 s 40.156 s 760.902 s 10,968 s

Freq. domain 0.106 s 2.672 s 74.639 s 4,178 s

Time domain 0.112 s 2.392 s 38.915 s 6,507 s

MS ROM, cf Chap. 3.4.2 and Eqns. (4.22) – (4.25)

dim (V) — 10 15 60

MC 100 — 7.083 s 26.201 s 208 s

Freq. domain — 0.014 s 0.635 s 56 s

Time domain — 0.036 s 0.072 s 22 s

Table 4.3: Comparison of computational demands

or in compact form
∂

∂s
qT (t, s) = aqT (t, s) +QT (t, s) , (4.42)

which, assuming homogeneous initial conditions, has the solution

qT (t, s) =

∫ s

0

ea(s−τ)Q (τ, t) dτ, (4.43)

where

QT (t, τ) = Q (τ, t) = E [hχ̃µY (τ)] [hχ̃µY (t)]T = hE
[
χ̃µY (τ)µY (t)T χ̃T

]
hT. (4.44)

Separating a as in Eq. (4.22) yields

eat =
∞∑
k=0

tk

k!
ak =

[
ea11t (�)2k×l
0l×2k ea22t

]
, (4.45)

where (�) 6= 0. Hence

ea(s−τ)Q (τ, t) =

[
ea11(s−τ)Q11 (τ, t) 02k×l

0l×2k 0l×l

]
, (4.46)

where

Q11 (τ, t) =

 0k×k 0k×k

0k×k M−1GE
[
χ̃µY (τ)µY (t)T χ̃T

]
︸ ︷︷ ︸

(•)

GTM−T

 . (4.47)

Here, expectation of the terms in square brackets can be rewritten as (•)ij (τ, t) =
Eχ̃imχ̃jnµY,m (τ)µY,n (t) = Eχ̃iχ̃jµY,i (t)µY,j (τ) where the summation over i, k indices
is not implied in the last equality. In compact form using the Hadamard product we
obtain (•) (τ, t) = cov (χi, χj) ◦

[
µY (τ)µT

Y (t)
]
, cf Eq. (3.19), cov (χi, χj) ∈ Rna×na , and
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can be expressed for µY (t) = [1, . . . , 1]T µY (t), which is our case, also as

cov (χi, χj) ◦
[
µY (τ)µT

Y (t)
]

= µY (τ) Ina×na︸ ︷︷ ︸
to be integrated

cov (χi, χj)µY (t)︸ ︷︷ ︸
to be separated

(4.48)

yielding na mean value problems efficiently solved in the frequency domain. ROM is
employed in straightforward manner, replacing all matrices with their reduced order
counterparts, cf Sec. 3.4.2 and 4.2.1.3. Equation (4.25) is then extended with a time
average q11 + qT11, cf also the following text.

Interactions of active spectators can be introduced through χi variables to better
capture the behaviour of an active crowd. Reasonable assumptions are

• spatially independent spectators,

• spatially correlated spectators, e.g. homogeneous isotropic covariance field,

cf Eq. (4.49) where corresponding relations are given in explicit form. In the first case,
interactions between active spectators are omitted. In the second case, interactions depend
on mutual distance, leading to a covariance field in the exponential form. Some spatial or
directional dependencies could be adopted in principle, however, are omitted in further
considerations since, to our best knowledge, no relevant information is available in the
literature.

Eχ̃iχ̃j =

{
p (1− p) δij χis are iid, no interaction
p (1− p) e−αρij homogeneous isotropic interaction,

(4.49)

where α > 0 and ρij = |ri − rj| denotes the horizontal distance between i-th and j-th
spectator, ri being the projections of the position vector to the horizontal plane.

Having set some assumptions on χi, discussion of solution estimates can be carried out.
Non-stationary term q (t, t)+qT (t, t), cf Eq. (4.43), can be managed in several ways: exact
time integration of Eq. (4.42) and modified Eq. (4.11); neglecting q (t, t); approximation

with time averages, e.g. time-mean q = 1
T

∫ T
0
q (t, t) dt. It is worth saying also that the

spatial correlations of active spectators in Eq. (4.49) influence results only through q (t, t)
term. Therefore, approaches neglecting this term also neglect the differences between δ-
correlated and spatially correlated active spectators. The procedure will be demonstrated
on the following two examples.

Example 4.6. Let us have a harmonic oscillator with following equation of motion and
homogeneous initial conditions

Z̈ (t) + 2ζνŻ (t) + ν2Z (t) = χ [W (t) + a sin (ηt)] , t ≥ 0. (4.50)

In the state-space form we have Eq. (4.39) together with

X (t) =

[
Z (t)

Ż (t)

]
, a =

[
0 1
−ν2 −2ζν

]
, G = M = 1, b =

[
0√
σ

]
(4.51)

where W (t) = dB (t) /dt is the Gaussian white noise with intensity
√
σ; a, ζ, ν > 0 denote

amplitude, damping ratio and undamped natural frequency. The steady-state mean value
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response is obtained in the form

EX (t) = Eχaϑ

[
sin (ηt+ ϕ)
η cos (ηt+ ϕ)

]
, t ≥ 0, (4.52)

where ϑ = 1√
(2νζ)2+(ν2−η2)2/η2

and ϕ = arctan
(

2ηνζ
η2−ν2

)
. Covariance function ċX (t, t) fulfils

ċX (t, t) = acX (t, t) + cX (t, t)aT + Eχ2bbT + q (t, t) + qT (t, t) . (4.53)

Here

Q (τ, t) = a2var (χ)

[
0

sin (ητ)

] [
0 sin (ηt)

]
, (4.54)

qT (t, s) =

∫ s

0

ea(t−s)Q (τ, t) dτ = var (χ)

∫ s

0

ea(t−s)
[

0
a sin (ητ)

]
dτ
[

0 a sin (ηt)
]
.

(4.55)
The integration yields EX (s) /Eχ, hence

qT (t, t) =
var (χ)

Eχ
EX (t)

[
0 a sin (ηt)

]
= a2ϑvar (χ)

[
0 sin (ηt+ ϕ) sin (ηt)
0 η cos (ηt+ ϕ) sin (ηt)

]
.

(4.56)
Results for exact and steady state solutions are depicted in Fig. 4.12 together with a time
average for comparison. Since Eq. (4.53) is linear, the two parts of its right hand side can

be treated separately. Stationary response due to Eχ2bbT term is cbX = σEχ2

4ζν

[
1
ν2

0
0 1

]
.

Equation ċqX (t, t) = acqX (t, t)+cqX (t, t)aT+q (t, t)+qT (t, t) is resolved numerically with
respect to cqX (t, t), and for stationary estimate the Lyapunov equation is solved. Results
can be found in Fig. 4.13 below. The graphs indicate that the stationary solution
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Figure 4.12: qij (t, t) for a = 1, ν = 2π5, ζ = 0.05, η = 2π4, varχ = 0.25 and σ = 1;
red – exact, blue – stationary solution, green – time average

using simply the time average of q (t, t) performs well. Since all quantities are known,
i.e. EF (t) and EX (t), resulting stationary approximation of additional term restricts
only to evaluation of their tensor product time average in this simple example. Based on
comparison with Eχ2bbT, the additional term q can be occasionally neglected.

Example 4.7. Let us further review the results in P1 point of the cantilever grandstand
in Appendix C.2 obtained by MC and by the above analytical solution, load level set
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Figure 4.13: cqii (t, t) for the same data as in Fig. 4.12, cb11 = 8.063e−5, cb22 = 7.958e−2;
red – exact, green – time average

to p = 0.5. For results cf Fig. 4.14 and Tab. 4.4, where the following abbreviations
are used: Anl δ – analytical solution with spatially δ-correlated active crowd without
additional term q; Anl δ add – analytical solution with δ-correlated active crowd and
time averaged additional term; MC 1,000 – MC simulation based on 1,000 realizations
for δ-correlated active crowd; Anl ρ – analytical solution with spatially correlated crowd
according to Eq. (4.492) for α = −2 ln (0.5) and time averaged additional term. Such
a covariance means that the correlation coefficient of two 0.5 m distant spectators is 0.5.
Clearly, in this particular case, the additional term q can be neglected when only RMS
values are of our interest, since the error is less than 5 %, cf the results in Tab. 4.4. Note
that all computations were performed in time domain employing MS ROM.

Fig. 4.15a and 4.15b capture the behaviour of varZ̈P1 (p) resp. RMS Z̈P1 (p) for p ∈
[0, 1] and several values of α. Note that varZ̈P1 (p) is linear in p neglecting q, hence the
departure from the straight line reflects the influence of the q term which is quadratic
in p, cf Eq. (4.49). Figs. 4.15c, 4.15d capture varZ̈P1 (α) resp. RMS Z̈P1 (α) for α ∈
[1e− 4, 100] with fixed probability p. Note that α → ∞ is a limit for δ-correlation, i.e.
a diagonal matrix cov (χi, χj), and α → 0 is a limit for a unit spatial correlation, i.e.
a degenerate case with rank one matrix cov (χi, χj) of no particular interest. Steepest
descend is attained for α = 0.302, i.e. α = −2 ln (0.860), meaning that the correlation
coefficient of two 0.5 m distant spectators is 0.860, rather strong correlation. Fig. 4.15e
captures a single acceleration trajectory Z̈P1 (t) together with RMS value in comparison
with estimate in Eq. (4.29) and floating RMS in Eq. (1.2) for τ = 1 and 10 s.

Model varZP1 [m2] varZ̈P1 [m2/s4] RMS ZP1 [m] RMS Z̈P1 [m/s2] Time [s]

Anl δ 1.468e− 6 1.843 3.187e− 3 2.991 0.202

Anl δ add 1.702e− 6 2.016 3.223e− 3 3.020 7.187

MC 1,000 1.793e− 6 2.181 3.150e− 3 2.928 30.2021)

Anl ρ 2.499e− 6 2.657 3.345e− 3 3.124 7.270

Table 4.4: Comparison of variances, RMS values and time consumptions for p = 0.5;
1) time for 100 realizations



50 CHAPTER 4. DETERMINISTIC SYSTEM AND STOCHASTIC INPUT

−2 0 2 4 −2 0 2

−2
−1

0
1
2
3

YX

Z

(a) realization of ran-
dom crowd distribution

0 1 2 3 4 5
−5

0

5

10
x 10

−3

t [s]
di

sp
l. 

m
ea

n 
[m

]
 

 
MC
Fourier series

(b) mean response

−5 0 5
0

0.1

0.2

0.3

0.4

Data

D
en

si
ty

 

 

(c) displ. histogram

Figure 4.14: Realization of uniform δ-correlated random crowd distribution, mean re-
sponse and histogram assuming ergodicity for cantilever grandstand in Appendix C.2

4.3 Non-Gaussian input

It was observed in Sec. 4.2.1.5 that the centered forcing term resembles a non-Gaussian
coloured noise. Nevertheless, it was assumed that the outputs and hence inputs are
Gaussian processes as an approximation. This section attempts to model the forcing of
the deterministic system in Eq. (2.1) as non-Gaussian processes, and to solve higher-order
moment equations in order to achieve a better agreement in upcrossing rates. Translation
and Poisson white noise processes will be considered for this purpose assuming only the
deterministic distribution of a crowd. Finally, several other possibilities will be mentioned
and discussed.

4.3.1 Translation processes

Firstly, the input forces are approximated with the memoryless translation processes to
approach a better agreement in the marginal distribution. This cannot be achieved,
however, without affecting the covariance function or the spectral density. Hence, this
effect will be discussed in more detail.

4.3.1.1 Approximation of the input

A scalar translation process, cf [18], is a process of the form

F̃ (t) = g1

(
Ỹ (t)

)
= F−1

1

[
Φ
(
Ỹ (t)

)]
, (4.57)

where g1 is a monotonic function, Ỹ (t) a stationary Gaussian process with zero mean, unit
variance, covariance function ρ (τ) = EỸ (t+ τ) Ỹ (t), and marginal distribution Φ (y) =

P
[
Ỹ (t) ≤ y

]
, previously introduced as AR(pi) or as a linear combination of AR(2) pro-

cesses. Assuming that the marginal distribution function F1 has no atoms, the translation
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value as functions of α (c) and (d); single trajectory of Z̈P1 (t), RMS, floating RMS

for τ = 1 resp. 10 s and the stationary estimate in Eq. (4.29) in (e)

process F̃ (t) follows the marginal distribution

P
[
F̃ (t) ≤ x

]
= P

[
F−1

1

(
Φ
(
Ỹ (t)

))
≤ x

]
= P

[
Ỹ (t) ≤ Φ−1 (F1 (x))

]
= F1 (x)

(4.58)

for all x, since g1 is a monotonic function, with moments

E
[
F̃ (t)

]k
= E

[
g1

(
Ỹ (t)

)]k
=

∫ ∞
−∞

[g1 (y)]k φ (y) dy (4.59)
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and the correlation function

rF̃ (τ) = EF̃ (t+ τ) F̃ (t) = Eg1

(
Ỹ (t+ τ)

)
g1

(
Ỹ (t)

)
=

∫ ∞
−∞

∫ ∞
−∞

g1 (y1) g1 (y2)φ (y1, y2; ρ (τ)) dy1dy2,
(4.60)

where φ (y1, y2; ρ (τ)) is the standard bivariate Gaussian density. Covariance cF̃ (τ) can be
obtained from the Price theorem, cf [18], or from Eqns. (4.59) and (4.60). Since |cF̃ (τ) /cF̃ (0)| ≤
|ρ (τ)|, it is not always possible to find such a ρ (τ) to yield the target covariance cF̃ (τ)
under the transformation in Eq. (4.57). Anyway, new optimization should be performed
in order to achieve the best agreement, or to obtain unit variance of Ỹ (t), cf Sec. 4.2.1.5.

One of the many possibilities for the memoryless approximation F̃ (t) is the Hermite
polynomial approximation,

F̃ ∗ (t) = g∗1

(
Ỹ (t)

)
=

n∑
k=0

akHk

(
Ỹ (t)

)
, (4.61)

where Hk (y), k = 0, . . . , n are probabilists’ Hermite polynomials. The minimization

of e (a0, . . . , ak) = E
(
F̃ ∗ (t)− F̃ (t)

)2

yields

E

[(
n∑
l=0

alHl

(
Ỹ (t)

)
− F̃ (t)

)
Hk

(
Ỹ (t)

)]
= 0, k = 0, . . . , n, (4.62)

with the solution

ak =
1

k!
E
[
F̃ (t)Hk

(
Ỹ (t)

)]
, k = 0, . . . , n, (4.63)

owing to the orthogonality of Hk (y) with respect to the Gaussian measure. Substituting
from Eq. (4.57), we arrive at

ak =
1

k!
E
[
g1

(
Ỹ (t)

)
Hk

(
Ỹ (t)

)]
=

1

k!

∫ ∞
−∞

F−1
1 [Φ (y)]Hk (y)φ (y) dy. (4.64)

Integration is performed numerically on bounded interval; F1, its inverse and subsequent
composition with Φ is based on CDF obtained from MC simulation, cf histograms in
Figs. 4.2c and 4.2d, evaluated in discrete points with inhomogeneous partition.

Another possibility assuming only the mild nonlinearity of g1 is a linear form of Hermite
polynomials

F̃ ∗ (t) = σỸ (t) + σ

n∑
k=2

βkHk

(
Ỹ (t)

)
(4.65)

yielding to

F̃ ∗ (t) = σỸ (t) + σ
γ3

6
H2

(
Ỹ (t)

)
+ σ

γ4 − 3

24
H3

(
Ỹ (t)

)
(4.66)

for n = 3, where σ2, γ3 and γ4 are variance, coefficient of skewness and kurtosis of F̃ (t).
Results for both approaches are summarized in Fig. 4.16, where the particular depend-
encies and their approximations are depicted for fp = 2.7 Hz, and in Tab. 4.5, where the
coefficients ak are presented for k = 0, . . . , 6 and for all frequencies fp.
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Figure 4.16: Inverse of the marginal distribution F1, Gaussian CDF Φ, translation
function g1 = F−1

1 Φ and its approximations in Eqns. (4.61) and (4.66)

Coeff. fp = 1.5 Hz fp = 2.0 Hz fp = 2.7 Hz fp = 3.5 Hz

a0 0 0 0 0

a1 0.8690 0.8039 0.8639 0.8151

a2 0.0853 0.0508 0.0546 0.0465

a3 0.0351 0.0552 0.0355 0.0131

a4 0.0013 −0.0011 −0.0032 −0.0048

a5 −0.0043 −0.0082 −0.0076 −0.0045

a6 0.0012 0.0009 0.0009 0.0010

σ2 0.7865 0.6824 0.7486 0.6788

γ3 0.7000 0.4765 0.4243 0.3504

γ4 4.8919 5.0459 4.0761 3.4354

Table 4.5: Coefficients ak in Eq. (4.61) for an arbitrary level n; variance σ2, coefficient
of skewness γ3 and kurtosis γ4 for centered unit processes of jumping frequencies fp;

values based on 3,000 MC realizations

Having performed the approximation, we refer back to covariance function and its
changes because of nonlinear transformation. Based on explicit expressions for Hermite
polynomials and Isserlis’ theorem for zero mean unit variance Gaussian variables, it can
be shown that

cF̃ ∗ (τ) = a2
1ρ (τ) + 2a2

2ρ (τ)2 for n = 2. (4.67)

Relations between the scaled covariances and their Gaussian images are depicted in
Fig. 4.17a for approximation in Eq. (4.61) with coefficients from Tab. 4.5, and F̃ ∗ (t) =
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Ỹ 3 (t) for comparison. To quantify changes in the spectral density, Fig. 4.17b captures the
behaviour based on 500 MC simulations. Although the scaled covariance functions are al-
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Figure 4.17: Relations between normalized covariance functions, fp = 2.7 Hz; compar-
ison of spectral densities for Ỹ (t) a linear combination of two AR(2) processes

most indistinguishable, we note from Fig. 4.17b that the spectral density is non-negligibly
altered, but somewhat in positive manner. This phenomenon can be perhaps explained
such that the transformation g1 is equivalent to some nonlinear dynamical system, yield-
ing super- and sub-harmonics of the input. This could be also utilized in the second order
moment approximation to lower the number of AR(2) processes employed in the approx-
imation of Ỹ (t). The price is, however, the solution of Eq. (4.71), which is too high. Note
also that varF̃ ∗ (t) 6= varF̃ (t), since varF̃ ∗ (t) = cF̃ ∗ (0) = a2

1 + 2a2
2 = 0.7523 and is slightly

different from the target variance 0.7486 in the case fp = 2.7 Hz and n = 2. For complete-
ness, Tab. 4.6 summarizes the coefficients for two AR(2) processes approximating Ỹ (t) in
Eq. (4.61) normalized to a unit variance.

fp = 1.5 Hz fp = 2.0 Hz

i c1,i c2,i c3,i fi i c1,i c2,i c3,i fi

1 12.0710 0.1358 0.0525 1.50 1 17.8514 0.1130 0.0425 2.00

2 40.4630 0.1139 0.0509 3.00 2 44.6022 0.0706 0.0285 4.00

fp = 2.7 Hz fp = 3.5 Hz

i c1,i c2,i c3,i fi i c1,i c2,i c3,i fi

1 22.4105 0.0796 0.0309 2.67 1 25.8621 0.0535 0.0222 3.50

2 63.6593 0.0565 0.0243 5.34 2 106.0087 0.0548 0.0283 7.00

Table 4.6: Coefficients ck,i, k = 1, 2, 3 and i = 1, 2 of the two independent AR(2)
members used for approximation of the centered unit variance forcing term Ỹ (t) in

frequency range 0.5− 10 Hz

4.3.1.2 System response

In this section, the moment equations of the system output up to the third order will be

derived assuming F̃ (t) = a1H1

(
Ỹ (t)

)
+a2H2

(
Ỹ (t)

)
, i.e. at most quadratic, Ỹ (t) being
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an AR(pi) process for simplicity. It is known fact, cf [19], that the moment equations of
the system driven by polynomials of Gaussian processes are closed. SDE in Eqns. (4.8)
resp. (4.9) are assumed in separate form, cf also Eq. (4.22),

d

[
X̃ (t)
S (t)

]
=

[
a11 a12

02k×2k a22

] [
X̃ (t)
S (t)

]
dt+

[
g (S (t))

0l×na

]
dt+

[
02k×na

b

]
dB (t) , (4.68)

where X̃ (t) =

[
Z̃

T
(t) , ˙̃Z

T

(t)

]T
, S (t) =

[
ST

1 (t) , . . . ,ST
na

(t)
]T

, b = diag (b1, . . . , bna),

and

g =

[
0k×na

M−1G

] ĝ∗1 (S1)
...

ĝ∗na
(Sna)

 , (4.69)

k = nDOF for brevity, and l =
∑na

i=1 pi; ĝ
∗
i (•) is a quadratic part of g∗1 (•) in Eq. (4.61),

constant part is zero, cf Tab. 4.5, and the linear part is included into the diffusion term b.
Then, the Itô’s formula yields nine systems of the linear equations to be solved sequen-
tially, written in tensor notation and skipping the function arguments for brevity, Einstein
summation implied. The mean value equation reads

d

dt
EX̃p = a11

puEX̃u + Egp (4.70)

yielding nonzero mean, since the second order moments of Si constitute the right hand
side. To solve the correlation matrix, following third-order moments are required

d

dt
EX̃pSqSr = a11

puEX̃uSqSr + a12
pv ESvSqSr︸ ︷︷ ︸

=0

+EgpSqSr+

EX̃p

[
a22
qvSvSr + Sqa

22
rvSv

]
+ EX̃p

(
bbT
)
qr
,

(4.71)

the second term on the right hand side being zero owing to the properties of the zero
mean Gaussian variables. Then, separating again into two subsystems as in Eqns. (4.24)
and (4.25), the correlation can be computed as

d

dt
EX̃pSq = EX̃pa

22
qvSv + a11

puEX̃uSq + a12
pvESvSq + EgpSq︸ ︷︷ ︸

=0

(4.72)

d

dt
EX̃pX̃q = EX̃pa

11
quX̃u + a11

puEX̃uX̃q + EX̃pgq + EgpX̃q+

a12
pvESvX̃q + EX̃pa

12
qvSv.

(4.73)
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Eventually, in order to obtain the third order moments of X̃p, following systems of linear
equations have to be solved sequentially

d

dt
EX̃pSqSrSs = a11

puEX̃uSqSrSs + a12
pvESvSqSrSs + EgpSqSrSs︸ ︷︷ ︸

=0

+

EX̃p

[
a22
qvSvSrSs + Sqa

22
rvSvSs + SqSra

22
svSv

]
+

EX̃p

[(
bbT
)
qr
Ss + Sr

(
bbT
)
sq

+ Sq
(
bbT
)
rs

]
,

(4.74)

d

dt
EX̃pX̃qSr = a11

puEX̃uX̃qSr + a12
pvESvX̃qSr + EgpX̃qSr + EX̃pa

11
quX̃uSr+

EX̃pa
12
qvSvSr + EX̃pgqSr + EX̃pX̃qa

22
rvSv,

(4.75)

d

dt
EX̃pSqSrSsSt = a11

puEX̃uSqSrSsSt + a12
pvESvSqSrSsSt︸ ︷︷ ︸

=0

+EgpSqSrSsSt+

EX̃p

[
a22
qvSvSrSsSt + Sqa

22
rvSvSsSt + SqSra

22
svSvSt + SqSrSsa

22
tvSv

]
+

EX̃p

[(
bbT
)
qr
SsSt +

(
bbT
)
qs
SrSt + SrSs

(
bbT
)
qt

+ Sq
(
bbT
)
rs
St+

SqSs
(
bbT
)
rt

+ SqSr
(
bbT
)
st

]
,

(4.76)
d

dt
EX̃pX̃qSrSs = a11

puEX̃uX̃qSrSs + a12
pvESvX̃qSrSs + EgpX̃qSrSs+

EX̃pa
11
quX̃uSrSs + EX̃pa

12
qvSvSrSs + EX̃pgqSrSs+

EX̃pX̃q

[
a22
rvSvSs + Sra

22
svSv

]
+ EX̃pX̃q

(
bbT
)
rs
,

(4.77)

d

dt
EX̃pX̃qX̃r = a11

puEX̃uX̃qX̃r + EX̃pa
11
quX̃uX̃r + EX̃pX̃qa

11
ruX̃u + a12

pvESvX̃qX̃r+

EX̃pa
12
qvSvX̃r + EX̃pX̃qa

12
rvSv + EgpX̃qX̃r + EX̃pgqX̃r + EX̃pX̃qgr.

(4.78)

All coefficient tensors are mapped onto matrices using multiple Kronecker product or dir-
ect assembly; multidimensional unknown tensors are vectorized to yield a linear matrix-
vector systems of equations. Taking all time derivatives as equal to zero yields a station-
ary solution. Note that coefficient matrices are mostly non symmetric, increasing overall
computational overhead. ROM is performed in standard form; we will not go further into
details, since the introduced equations are quite cumbersome and yield many technicalit-
ies. Note also that the second order cumulant closure, expressing the third moments in
terms of lower order moments, yields high relative errors measured in the Frobenius norm
and hence is not even discussed.

4.3.1.3 Upcrossing estimates

For structure safety assessment, the mean upcrossing rates are required. The Rice formula,
Eq. (A.1), integrates the joint density f (x, ẋ) of a random process X (t) which can be
approximated having the knowledge of the joint third moments of X (t) and Ẋ (t). This
is, however, the fundamental objective of the so-called problem of moments. For our
purposes, following two methods will be employed: Gram-Charlier type A series and
translation approximation.
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Gram-Charlier series The first approximation is based on the series expansion of the
joint density f (x, ẋ) into the Hermite polynomials, cf [18]. Then, in the stationary case,
the mean x-upcrossing rate of the level x is approximated by

νS (x) = νG (x)

1 +

nS∑
k=3

1

k!

∑
p+q=k
p,q≥0

b(p,q)

σpσ̇q
Hp

(
x− µ
σ

)
hq

 , (4.79)

where Hp (•) denotes the Hermite polynomial of order p, coefficients hq are equal to 1,√
π/2, 1, 0 for q = 0, . . . , 3, µ is the mean of X (t) and σ, σ̇ are standard deviations

ofX (t), Ẋ (t) and b(p,q) are quasimoments of the vector
[
X (t) , . . . , X (t) , Ẋ (t) , . . . , Ẋ (t)

]T
where X (t) repeats p times and Ẋ (t) repeats q times. In our case nS = 3 since only
the third order moments are available. Denoting µ(p,q) = EXp (t) Ẋq (t), the quasimo-
ments b(p,q) are expressed as

σ2 = µ(2,0) − µ2
(1,0),

σ̇2 = µ(0,2) − µ2
(0,1),

b(3,0) = µ(3,0) − 3µ(1,0)µ(2,0) + 2µ3
(1,0),

b(0,3) = µ(0,3) − 3µ(0,1)µ(0,2) + 2µ3
(0,1),

b(1,2) = µ(1,2) − 2µ(1,1)µ(0,1) − µ(0,2)µ(1,0) + 2µ2
(0,1)µ(1,0),

b(2,1) = µ(2,1) − 2µ(1,1)µ(1,0) − µ(2,0)µ(0,1) + 2µ2
(1,0)µ(0,1).

(4.80)

Translation approximation The second approach, cf [18], utilizes again the transla-
tion process introduced in Eq. (4.57), where F̃ (t) ≡ X (t) and Ỹ (t) ≡ Y (t) for simplicity,
and a Gaussian hypothesis stating that X (t) and Ẋ (t) are independent random variables,
Ẋ (t) being Gaussian and X (t) with marginal distribution F1. According to these assump-
tions, mean x-upcrossing rate of X (t) is estimated as

νT (x) =
σẎ
2π

exp

[
−1

2

(
g−1

1 (x)
)2
]
, (4.81)

where σẎ is the standard deviation of Ẏ (t) computed from EẊ (t)2 = σ2
Ẏ
Eg′1 (Y (t)), ob-

tained easily since Y (t) is a stationary Gaussian unit variance random process, EẊ (t)2 be-
ing known from moment equations. Approximation of g1 with g∗1 can be again based on
Hermite polynomials, cf Eq. (4.61). Here, the coefficients ak are determined from the
condition that the differences between the marginal moments

e (a1, . . . , an) =
3∑

k=1

(
E
[
Xk (t)

]
− E

[
X∗k (t)

])2
(4.82)

are minimized, yielding a nonlinear minimization problem resolved numerically. The
covariance function is assumed unchanged for simplicity. Mildly nonlinear transformation
in Eq. (4.66) can be also employed with advantage.
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Example 4.8. To verify correctness of the implementation, Eqns. (4.70) – (4.78), an
SDOF system forced by F̃ (t) = Ỹ (t)+ Ỹ (t)2, where Ỹ (t) = Ŷ1 (t)+ Ŷ2 (t) with unit vari-
ance, Ŷi (t) ∼ AR(2) processes from Tab. 4.6 for fp = 2.7 Hz, cf Eqns. (4.57) and (4.50),
will be compared on the basis of MC simulation. Results for the first three moments are
summarized in Tab. 4.7, ν = 2π5 and ζ = 0.07. Since all relative errors are within 3.7 %
bounds, the implementation is assumed without substantial errors.

Quantity MC mom. Eqns. Quantity MC mom. Eqns.

EZ (t) 1.049e− 3 1.059e− 3 EŻ (t) −4.871e− 7 0.0

varZ (t) 2.359e− 5 2.444e− 5 varŻ (t) 2.369e− 2 2.455e− 2

γ3 (Z (t)) 5.610e− 1 5.512e− 1 γ3

(
Ż (t)

)
−9.323e− 2 −9.321e− 2

Table 4.7: Comparison of the first three moments of SDOF system based on moment
equations and MC simulation

Example 4.9. Next example compares the stationary mean x-upcrossing ν+
x (t) and the

third moments of the response in P1 point of the simply supported beam in Appendix C.1,
occupied by two active and two passive spectators, cf also Ex. 4.3, active spectators
jumping with frequency fp = 3.5 Hz. Centered forces are approximated with translation
processes in Eq. (4.61) with coefficients in Tab. 4.5 and Tab. 4.6. Fig. 4.18 captures
stationary mean x-upcrossing of centered response based on 1,000 MC realizations 160 s in
length, moment equations with Gram-Charlier series in Eq. (4.79) and moment equations
with translation approximation in Eq. (4.82). The first three moments are compared in
Tab. 4.8. Results are quite in agreement with the simulation.
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Figure 4.18: Mean stationary x-upcrossing rates of centered response in P1 point of
example in Appendix C.1; ratios of exact to approximate upcrossing rates

4.3.2 Poisson white noise process

Based on heuristic arguments, loading process can be idealized by series of impulses and
thus modeled with Poisson white noise, which is viewed as a formal derivative of the com-
pound Poisson process C (t) =

∑N(t)
k=1 Yk =

∑∞
k=1 Yk1[t≥Tk], where N (t) is a Poisson count-

ing process with intensity λ and jump times Tk, Yk are real-valued iid random variables
independent of N (t), 1[t≥Tk] denotes the indicator function of the time interval t ≥ Tk.
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Quantity MC mom. Eqns. frekv. sol.

varZP1 (t) 8.898e− 7 8.437e− 7 8.780e− 7

γ3 (ZP1 (t)) 1.034e− 1 0.956e− 1 0.769e− 1

varŻP1 (t) 1.312e− 3 1.200e− 3 1.275e− 3

γ3

(
ŻP1 (t)

)
−5.731e− 2 −7.260e− 2 —

Table 4.8: Comparison of the first three moments of simply supported beam in Ap-
pendix C.1 and in the point P1 based on moment equations, MC simulation and higher

order spectra
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Figure 4.19: Sample of the compound Poisson process C (t) and its formal time deriv-
ative WP (t) = dC (t) /dt

Realization and its formal derivative are depicted in Fig. 4.19. The intensity is interpreted
as a jumping frequency λ = fp and Yk are understood as impulse sizes. Since Tk and Yk
in Poisson process are independent, poor quality of the model is expected, because de-
pendencies between Tk−1 and Tk, Yk−1 and Yk, Tk−1 and Yk were observed, cf [51] and
Sec. 3.2. Adopting independence, the distribution of Yk corresponds to Erlang with the
density fY (y; 2, 2fp) = (2fp)

2 ye−2fpy since, cf Eq. (3.1) and the discussion therein, the
impulse size is Ik = (Tk + Tk−1) /2, Tk being exponential with the mean value 1/λ. Let
us compare the performance of this approximation on following simple example.

Example 4.10. In the case of Poisson white noise and a harmonic oscillator, Eq. (4.4) is
of the form

d

[
X (t)

Ẋ (t)

]
=

[
0 1
−ν2 −2ζν

] [
X (t)

Ẋ (t)

]
dt+

∫
R

[
0
y

]
M (dt, dy) , t ≥ 0, (4.83)

where M (dt, dy) is Poisson random measure, cf [19] and Appendix A, with EM =
λ dt dFY (y) used for convenience. Here, FY denotes the distribution function of a y-valued
random variable, λ denotes the intensity of homogeneous Poisson counting process N (t)
in C (t). Substituting g (X (t)) = X (t)p Ẋ (t)q into the Itô’s formula gives

dg (X) =
[
pXp−1ẊqẊ + qXpẊq−1

(
−ν2X − 2ζνẊ

)]
dt+∫

R

[
Xp
(
Ẋ + y

)q
−XpẊq

]
M (dt, dy)

(4.84)



60 CHAPTER 4. DETERMINISTIC SYSTEM AND STOCHASTIC INPUT

yielding the moment equations in the form

µ̇ (t; p, q) = pµ (t; p− 1, q + 1)− ν2qµ (t; p+ 1, q − 1)− 2ζνqµ (t; p, q) +

λ

q∑
k=1

q!

k! (q − k)!
µ (t; p, q − k)EY k

1 , t ≥ 0,
(4.85)

where µ (t; p, q) = EX (t)p Ẋ (t)q with the convention µ (t; p, q) = 0 if at least one of the p
or q is strictly negative. EY k

1 denotes the moments of order k of the variable Y1. Since
Eq. (4.83) is linear, corresponding system of moment equations is closed and can be solved
without any closure techniques. Stationary solution of Eqns. (4.85) up to fourth order as
a function of oscillator eigenfrequency f1 = ν/2π and for two values of relative damping ζ
leads to results depicted in Fig. 4.20, where we notice rather poor quality of approximation
of the simulated process except for stationary mean value.
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Figure 4.20: Resulting moments as functions of SDOF eigenfrequency f1 for two relative
dampings ζ = 0.001 and ζ = 0.07 and the case of Poisson white noise excitation

4.3.3 Frequency domain solution

It is possible to obtain higher-order moments also in the frequency domain employing
FRF and so-called polyspectra. Since we have computed only the third moments in time
domain, we will restrict our attention to bi-spectra [42], generalization to higher-order
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statistics causing no complication, cf [31]. Bi-spectra for a stationary process is defined as

an R2 Fourier transform of the third order cumulant κ3,F̃ (τ ) = E
[
F̃ (t) F̃ (t+ τ1) F̃ (t+ τ2)

]
s3,F̃ (ξ) = F (κ3 (τ )) (ξ) =

∫
R2

κ3,F̃ (τ ) e−i2πτ ·ξ dτ , (4.86)

where ξ = [ξ1, ξ2] and τ = [τ1, τ2]. s3,F̃ (ξ) can be estimated in analogy to the spectral
density employing bi-periodograms and various window functions not discussed here. The
bi-spectra of the output vector process Z̃ (t) is obtained according to

SZ̃Z̃Z̃,ijk (ξ) = H†il (ξ1 + ξ2)GlrHju (ξ1)GusHkv (ξ2)GvtSF̃ F̃ F̃ ,rst (ξ) , (4.87)

where SF̃ F̃ F̃ (ξ) ∈ Rna×na×na is an input bi-spectra tensor, cf also Sec. 4.2.1.2 and [20].

Note that H (ξ) is symmetric in our case and hence H† (ξ) = H (ξ). The third cumulant
of the centered process Z̃i (t) is then evaluated as

EZ̃i (t)
3 = κ3,Z̃i

(0) =

∫
R2

SF̃ F̃ F̃ ,iii (ξ) dξ. (4.88)

ROM techniques are employed in standard fashion using also various kinds of symmetries
of s3,F̃ (ξ) with advantage. Compare the displacement results of the simply supported
beam in Appendix C.1 obtained in the frequency domain summarized in Tab. 4.8 of
Ex. 4.9 and Fig. 4.21 below.
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Figure 4.21: Bi-spectra of centered forcing process with jumping frequency fp = 3.5 Hz
based on MC according to [51], HOSA package used [54]

4.3.4 Other non-Gaussian inputs

Many other approaches can be employed in order to face the problem stated in Eq. (2.1)
in terms of non-Gaussian processes, e.g. time series and filtered Poisson processes with
nonstationary intensity λ (t) and nonstationary diffusions b (t) of the Gaussian processes.
Attractive seems to be also processes with random parameters and parametric represent-
ations such as Fourier series and Karhunen-Loève decomposition. These methods can be
perhaps the objective of further study.
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4.4 Conclusion

This chapter has presented in its first part a study of the vibration of grandstands loaded
by an active crowd using Gaussian approximation of the forcing terms and of the response.
The main results of the first part can be summarized as follows:

1. A mathematical description of the response of a mechanical system employing spec-
tral and time domain solutions for weakly stationary Gaussian excitations has been
recalled. Transformations of ROM techniques have been discussed briefly.

2. A motivating example of a harmonic oscillator has shown that the normalized dis-
placement and velocity have approximately normal distribution under the conditions
on eigenfrequencies and damping.

3. Taking this fact into account, the forcing process was approximated by mean value
with superposed Gaussian coloured stationary noise. The mean value was further
expressed as a truncated Fourier series and the spectral density of the fluctuating
part was found by means of the periodogram and Parzen window. For the time
domain solution, a linear combination of independent autoregression processes of
the second order with L2-optimal coefficients has been employed.

4. Three different examples of varying complexity have shown the quality of the re-
sponse approximation in terms of total displacement up-crossings, distribution of
maxima and acceleration RMS in comparison with Monte Carlo simulation. Lim-
itations following from a simple oscillator have been confirmed on multi-degree-of-
freedom systems.

5. The computational demands have been measured and summarized in terms of the
time consumptions, and the applicability of techniques has been proved.

6. On the basis of developed force approximation, a random spatial distribution of
an active crowd has been described through random indicator variables. Two basic
forms of a crowd interaction have been proposed by means of the indicator covariance
function.

Since the forcing and hence also the response processes are non-Gaussian, a short
excursion into translation and Poisson white noise processes has been performed in the
second part of this chapter in order to improve the description of the output statistics.
The main results of the second part include:

7. Solution in the time domain in terms of translation processes has been performed.
Hermite polynomials employed for an approximation of the nonlinear transforma-
tion proved to be sufficient for the third order moments. Random functions entering
the transformation were assumed as a linear combination of two AR(2) processes of
the overall unit variance; transformation affected the correlation and spectral dens-
ity functions in rather positive manner. Eventually, moment equations have been
derived for two Hermite polynomials, i.e. for quadratic memoryless transformation.

8. Knowing the third order moments of the outputs, two methods for upcrossing es-
timates have been mentioned: the Gram-Charlier type A series and the translation
approximation, again in polynomial form. These methods significantly contributed
to the improvement of the upcrossing approximation.
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9. A short discussion of the possibilities offered by Poisson white noise were discussed
and demonstrated on simple example. Poor results have been, however, achieved.

10. Eventually, solution of the third-order moments by means of polyspectra and transfer
function was briefly mentioned. All approaches were demonstrated on two examples
compared with Monte Carlo simulation.

The quality of the output distributions is undoubtedly increased employing higher-order
moments, but it has to be stressed that in spite of the significant model order reduction,
all the non-Gaussian approaches are computationally intensive and hence their utilization
in context of real structures is questionable.





Chapter 5

Random parameters of a passive
crowd

5.1 Introduction

Complementary conditions in the sense of spectators to that introduced in Chap. 4 will
be now assumed. Namely, a passive crowd will be described by means of stochastic
biodynamic models, cf Tab. 3.2 and 3.3, possibly with a random spatial distribution over
the structure. This leads to random and time-invariant coefficient matrices K (ω), M (ω)
and C (ω) in Eq. (2.1) which defines the grandstand problem. The active spectators
will be, contrary to passive ones, assumed to have spatially fixed positions, and will be
described through independent AR(p) processes.

Such level of complexity leads to a random operator equation arising from Eq. (2.1)
which can be rewritten as

L (ω)Z (t, ω) = GF (t, ω) , t ≥ 0. (5.1)

Here, F (t, ω) is a random forcing term induced by an active crowd, Z (t, ω) is a displace-
ment variable and L (ω) is a random differential operator. At this level, no dependencies
between the right hand side and the system operator exist. Thanks to the growing com-
plexity, we will restrict our attention only to the second order moment approximations
despite clear non-Gaussianity of the outputs. Equation (5.1) is manageable in terms of
Adomian, Perturbation, Taylor series and other approximate methods.

5.2 Sensitivity analysis

In this short section, the sensitivity factors of the structure response reflecting the ran-
domness of the biodynamic model parameters, cf Sec. 3.3 and Tab. 3.3, will be derived.
The analysis is given by means of Taylor series method under the deterministic load,
cf [19, 29]; let the state of the mechanical system be described as

L (Θ (ω))Z (t,Θ (ω)) = Gf (t) , t ≥ 0, (5.2)

65
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where the differential operator is of the second order

L (Θ) = M (Θ)
d2

dt2
+C (Θ)

d

dt
+K (Θ) , (5.3)

Θ (ω) =
[
Θ1, . . . ,Θnpkp

]
is an Rnpkp-valued random variable, np being the number of

passive spectators and kp the number of random variables describing the single biodynamic
model,G is the load distribution matrix, f (t) a deterministic load,K,M andC matrices
have the usual meaning of system stiffness, mass and viscous damping. As indicated, Z
is now viewed also as a function of Θ. Then, the functions Vi (t,EΘ) = ∂Z (t,EΘ) /∂Θi

provide a measure of the sensitivity of Z to perturbations about EΘ and are called
sensitivity factors; they satisfy

L (EΘ)Vi (t,EΘ) = −∂L (Θ)

∂Θi

∣∣∣∣
Θ=EΘ

Z (t,EΘ) , t ≥ 0. (5.4)

The process Z (t,EΘ) satisfies the equation

L (EΘ)Z (t,EΘ) = Gf (t) , t ≥ 0. (5.5)

Eventually, the resulting process Z (t,Θ) is approximated according to

Z (t,Θ) ≈ Z (t,EΘ) +

npkp∑
i=1

Vi (t,EΘ) (Θi − EΘi) (5.6)

with the mean value EZ (t,Θ) = Z (t,EΘ) and the second moment properties

cZ (s, t) ≈
npkp∑
i,j=1

Vi (s,EΘ)VT
j (t,EΘ) cov (Θi,Θj) . (5.7)

Example 5.1. Let us perform the sensitivity analysis of the simplest possible example
with two DOFs, one representing a structure and one a passive crowd. Particular data
for Z = [ZS, ZH ]T are

K =

[
kS +KH1 −KH1

−KH1 KH1

]
, M =

[
mS +MH0 0

0 MH1

]
, C =

[
cS + CH1 −CH1

−CH1 CH1

]
(5.8)

with Θ = [KH1 ,MH1 , CH1 ,MH0 ] being the parameters of the biodynamic model introduced
in Tab. 3.3; kS, mS and cS describe the grandstand. Partial derivatives of the operator
with respect to Θi read

∂L (Θ)

∂Θ1

=

[
1 −1
−1 1

]
,

∂L (Θ)

∂Θ2

=

[
0 0
0 1

]
d2

dt2
,

∂L (Θ)

∂Θ3

=

[
1 −1
−1 1

]
d

dt
,

∂L (Θ)

∂Θ4

=

[
1 0
0 0

]
d2

dt2
,

(5.9)

L (EΘ) = EL (Θ). Force distribution matrix is G = [1, 0]T since only the grandstand is
loaded, f (t) being the mean value of the jumping process for fp = 2.7 Hz, cf Eq. (4.30) and
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Tab. 4.1. Results for particular data are depicted in Fig. 5.1; dependencies of L2 (T1, T2)
norms for all constituents cijZ (t, t), as functions of the mass ratio γ and of the eigenfre-
quency f1 of an empty grandstand are given in Fig. 5.2. cijZ,kl (t, t) denotes the k-th row,
l-th column of an ij-th constituent in Eq. (5.7) and time s = t.
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Figure 5.1: Behaviour of Z (t,EΘ) and Vi (t,EΘ) for the displacement of the struc-
ture (a); decomposed variance of the structure displacement varZS (t) (b); γ = 0.5,

ζS = 0.05, f1 = 3.5 Hz
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Figure 5.2: L2 (T1, T2) norms of members cijZ,11 (t, t) constituting the variance of the
structure displacement cZ,11 (t, t) = varZS (t) as functions of the mass ratio γ and eigen-
frequency f1 of an empty structure, T1 = 10 and T2 = 20 s; for the legend cf Fig. 5.1b

It can be concluded from given results that the most significant contribution to the
structure response variance is due to c22

11 (t, t), i.e. due to the randomness in the vibrating
mass MH1 . The second most significant constituent is c12

11 (t, t) + c21
11 (t, t) reflecting the

stochastic dependency between KH1 and MH1 . Peak values in Fig. 5.2 are achieved for γ =
0.54 and f1 = 3.49 Hz. The former one is caused by growing influence of the human mass
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being most significant for the case of approximate equality attaining also the state of
resonance; the second peak is due to the fact that the first eigenfrequency of the coupled
two DOF system is equal to fp, hence it is the state of resonance.

It should be also noted that the Taylor series method is only an approximate one,
reflecting the behaviour of a stochastic system in certain bounds of a small randomness.
To quantify the difference, Fig. 5.2 captures an L2 (T1, T2) norm of the response variance
caused by the randomness in MH1 estimated by MC simulation which is based on 500
realizations. The mass is represented as MH1 ∼ U (a, b), where a, b > 0 are chosen such
that to yield the same first two moments; remind that the coefficient of variation for MH1

is cv = σ/µ = 0.302. Then, MH1 has support in R+ and hence the mass matrix M
is positive definite almost surely. We notice that the Taylor series method performs
acceptably for γ < 0.35 and for non resonant case. High structure damping ζS also
contributes positively to the accuracy of the approximation.

5.3 Deterministic distribution of a passive crowd

On the basis of the sensitivity analysis results, we will assume in this section only the
randomness inherent to vibrating mass of the SDOF biodynamic models. Taylor series
method can be employed to estimate the variance of the response in the case of real
structures, nevertheless, np problems analogous to Eq. (4.11) have to be solved under the
assumption of stochastic forcing. Having on mind the dimensions and the overall scope of
the real structures, other methods such as Perturbation with only the first two terms can
be efficiently employed. Except for light weight temporary grandstands, the requirement
for the mass ratio γ < 0.35 is usually fulfilled, cf Appendix A where the maximal value
is γ = 0.37, nevertheless remind that these structures are not representative for real
grandstands.

5.3.1 Taylor series method

For further considerations, we will again reduce the grandstand problem in Eq. (2.1) to
the Cauchy form in analogy to Eq. (4.3) and approximate the forcing terms F (t, ω) =
µF (t) + Ỹ (t, ω) where Ỹ (t, ω) is a linear combination of independent AR(2) processes
with state variable S (t) as usual. In rewritten form, we have

L (Θ)X (t,Θ, ω) = hµY (t) + bW (t, ω) , t ≥ 0, (5.10)

whereX =
[
ZT, Ż

T
,ST

]T
. Unlike the previously used notation, now L (Θ) = m (Θ) d/dt−

a with explicitly introduced mass matrix m, where

m =

 Ik×k 0k×k 0k×l
0k×k M 0k×l
0l×k 0l×k I l×l

 ,a =

 0k×k Ik×k 0k×l
−K −C Gd
0l×k 0l×k A

 ,h =

 0k×na

G
0l×na

 , b =

 0k×r
0k×r
bA

 ,
(5.11)

k = nDOF, l = dim (S), r = nan, n being a number of AR(2) processes used for an
approximation of the jumping process, W (t) ∈ Rr. Compare also Eq. (4.8) for the
particular meaning of A, d and bA. Moreover, only a diagonal submatrix MHH (Θ) is
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random, Θ (ω) =
[
MH1,1, . . . ,MH1,np

]
, MH1,i being iid. Since L (EΘ) = Em (Θ) d/dt −

a = m̄d/dt− a, the mean process X (t,EΘ, ω) = X0 (t) satisfies the Itô’s SDE

dX0 (t) = m̄−1aX0 (t) dt+ m̄−1hµY (t) dt+ m̄−1bdB (t) , t ≥ 0, (5.12)

which can be solved for µX0
(t) and cX0 employing methods reviewed in Sec. 4.2. As-

suming X0 (t) = µX0
(t) + X̃0, the sensitivity factors X i (t) =

[
VT
i , V̇T

i

]T
, cf Sec.(5.2),

satisfy

dX i (t) = m̄−1
11 a11X i (t) dt− m̄−1

11 vidX0 (t)

= m̄−1
11 a11X i (t) dt− m̄−1

11 viµ̇X0
(t) dt− m̄−1

11 vim̄
−1aX̃0 (t) dt−

m̄−1
11 vim̄

−1bdB (t)︸ ︷︷ ︸
=0

, t ≥ 0,
(5.13)

with matrices

m11 =

[
Ik×k 0k×k
0k×k M

]
, a11 =

[
0k×k Ik×k
−K −C

]
,

∂L (Θ)

∂Θi

∣∣∣∣
2k×(2k+l)

= vi
d

dt
=

[
0v×v 0v×np 0v×l
0np×v ẽi ⊗ ẽi 0np×l

]
d

dt
,

(5.14)

in analogy to Eq. (4.23) since S (t) is separated out and moreover is of no interest. v =
2nDOF − np for simplicity; ẽi ∈ Rnp is an i-th canonical basis vector. Employing Itô’s

formula, the stationary covariance matrices of X̃ i satisfy

0 = cXi
aT

11m̄
−T
11 + m̄−1

11 a11cXi
+ EX̃ iX̃

T

0a
Tm̄−TvTi m̄

−T
11 + m̄−1

11 vim̄
−1aEX̃0X̃

T

i (5.15)

with auxiliary Sylvester equation

0 = EX̃0X̃
T

i a
T
11m̄

−T
11 + m̄−1aEX̃0X̃

T

i + cX0a
Tm̄−TvTi m̄

−T
11 . (5.16)

Mean value is again solved separately in the frequency domain with advantage. Again
employing a time average and denoting ĉXi

= cXi
+ 1

T

∫ T
0
µXi

(t)µT
Xi

(t) dt, the resulting
variance in analogy to Eq. (5.6) reads

cX = c̄X0 +

np∑
i=1

ĉXi
var (MH1) , (5.17)

where c̄X0 is an appropriate submatrix of cX0 without state variables of the forcing
terms S (t); mean value solution is µX0

(t). The solution can be, with advantage, per-
formed also in the frequency domain, or employing the ROM methods. Note, however,
that instead of computing sensitivity factors for a diagonal matrix MHH with independ-
ent entries, it is possible upon employing MS ROM to compute sensitivity factors for a
symmetric matrix V T

HHMHHV HH much smaller in dimension, cf Eq.(3.12), but with
dependent entries. This is, however, out of scope of this thesis, and is viewed rather as a
matter of efficient implementation.
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Example 5.2. Let us compare the influence of the random vibrating mass of the SDOF
biodynamic model MH1 , in the scope of the approximation of the jumping spectators
introduced in Sec. 4.2. Jumping processes are scaled with human iid weights Gi ∼
U (0.414, 1.310) yielding EGi = 0.862 kN and EG2

i = (1 + 0.32) · 0.8622 = 0.810 kN2,
i ∈ na. Structure in Appendix C.2 with randomly generated, but fixed distribution of a
crowd, is used. Then, SDOF biodynamic models according to Coermann are employed;
mass is assumed random with coefficient of variation cv = 0.3, response is measured in P1

point. Results for the case of 36 active and 36 passive spectators with randomly gener-
ated but fixed spatial distribution are summarized in Tab. 5.1, MC simulation is based
on 1,000 realizations 160 s in length. Clearly, in this particular case and the scope of

Time sol. MC

rand. mass det. mass rand. mass det. mass

varZP1 3.981e− 7 3.920e− 7 4.370e− 7 4.248e− 7

varŻP1 3.713e− 4 3.644e− 4 4.038e− 4 3.903e− 4

varZ̈P1 4.444e− 1 4.365e− 1 4.946e− 1 4.796e− 1

Time 7.825 0.765 34.4791) 30.8251)

Table 5.1: Stationary variances of structure response measured in P1 point for random
and deterministic mass of the SDOF biodynamic models, 36 active and 36 passive

spectators, example in Appendix C.2; 1) time for 100 realizations

the randomness induced by the forcing, the influence of the uncertainty of the biody-
namic models can be neglected since the relative increase in variance is lower than 3.5 %
in all cases. Mean value response also shows a good agreement with the MC and is
not presented. Note that ||c̄X0||F = 2.487e − 2,

∣∣∣∣var (MH1)
∑np

i=1 cXi

∣∣∣∣
F

= 3.595e − 4

and
∣∣∣∣∣∣var (MH1)

∑np

i=1
1
T

∫ T
0
µXi

(t)µT
Xi

(t) dt
∣∣∣∣∣∣

F
= 10.788e − 4, where ||•||F stands for the

Frobenius norm of a matrix •.

5.4 Random distribution of a passive crowd

In this section, a generalization of the grandstand problem to the case of a random spatial
distribution of a passive crowd will be given. For simplicity, deterministic SDOF biody-
namic models will be assumed, randomness being rather matter of a spatial distribution.
Then, employing indicator variables already introduced in Eq. (4.38), cf also notation
and the discussion therein together with Sec. 3.4.1, we can write the system matrices as

A (χ) =

[
AS +AH (χ) AT

HS

(
Inp×np − χ

)T(
Inp×np − χ

)
AHS

(
Inp×np − χ

)
AHH

]
, (5.18)

where A represents stiffness, mass or the damping matrix, AH (χ) =
∑np

i=1 enp(i) ⊗
enp(i)aH (1− χi), ei ∈ RnDOF,S , aH denoting kH1 , mH0 or cH1 . Complementary indicator
variables 1 − χi are used because an arbitrary position from the set ns can be occupied
either with a passive or an active spectator, χi represent the switch. This question will
be further discussed in Chap. 6. Reducing the system to the Cauchy form and approx-
imating the forcing terms, we arrive at Eq. (5.10) with L (χ) = m (χ) d/dt − a (χ).
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Then, L (Eχ) = EL (χ) = Em (χ) d/dt− Ea (χ) = m̄d/dt− ā. Since E
(
Inp×np − χ

)
=

(1− p) Inp×np , the mean drift matrix m̄−1ā has a simple form, but is not given here
because of the space requirements. Then,

−∂L (χ)

∂χi

∣∣∣∣
2k×(2k+l)

=

(
−∂m (χ)

∂χi

d

dt
+
∂a (χ)

∂χi

)∣∣∣∣
2k×(2k+l)

= −vi
d

dt
+wi, (5.19)

where

vi =

[
0k×k 0k×k 0k×l
0k×k

∂M(χ)
∂χi

0k×l

]
, wi =

[
0k×k 0k×k 0k×l
−∂K(χ)

∂χi
−∂C(χ)

∂χi
0k×l

]
, (5.20)

together with
∂M (χ)

∂χi
=

[
−enp(i) ⊗ enp(i)mH0 0nDOF,S×np

0np×nDOF,S
−ẽi ⊗ ẽimH1

]
,

∂A (χ)

∂χi
=

[
−enp(i) ⊗ enp(i)aH −AT

HSẽi ⊗ ẽi
−ẽi ⊗ ẽiAHS −ẽi ⊗ ẽiaH

]
,

(5.21)

where ei ∈ RnDOF,S and A stands now only for stiffness or damping. X0 then satisfy
Eq. (5.12) with ā instead of a and X i, i = 1, . . . , np satisfy the following system of SDEs,
having an analogous form to Eq. (5.13), namely

dX i (t) = m̄−1
11 ā11X i (t) dt+ m̄−1

11 [−vidX0 (t) dt+wiX0 (t) dt] =

m̄−1
11 ā11X i (t) dt+ m̄−1

11

[(
wi − vim̄−1ā

)
X̃0 (t) dt+

wiµX0
(t) dt− viµ̇X0

(t) dt− vim̄−1bdB (t)︸ ︷︷ ︸
=0

]
, i = 1, . . . , np, t ≥ 0.

(5.22)

The covariance matrices cXi
, satisfying

0 = cXi
āT

11m̄
−T
11 + m̄−1

11 ā11cXi
+ EX̃ iX̃

T

0Q
T +QEX̃0X̃

T

i (5.23)

with Q = m̄−1
11 (wi − vim̄−1ā) in analogy to Eq. (5.15), require the solution of auxiliary

Sylvester equation

0 = EX̃0X̃
T

i ā
T
11m̄

−T
11 + m̄−1āEX̃0X̃

T

i + cX0Q
T. (5.24)

Clearly, Eqns. (5.23) and (5.24) can be included into one global system. Nevertheless,
since the solution of the Lyapunov equation requires O (n3) operations, n being the size
of the state space variable, it is expedient to solve sequentially a system of smaller equa-
tions. For resulting variance, Eq. (5.17) is employed replacing var (MH1) with var (χi).
Here, however, comes a drawback: if χi were correlated, cf Sec. 4.2.2 and Eq. (4.49),
crosscorrelations EX iXj would be required yielding np (np + 1) /2 problems instead of np
resulting eventually in one global Lyapunov equation as mentioned earlier. This can be
in principle handled, but with significant increase in computational effort.

Example 5.3. This example provides a sense of the introduced issue together with the
restrictions implied and the area of validity. A harmonic oscillator, representing a grand-
stand, is forced by the Gaussian white noise W (t). With probability 1 − p, second
harmonic oscillator representing a passive spectator is attached. Corresponding matrices
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read

m =


1 0 0 0
0 1 0 0
0 0 mS 0
0 0 0 (1− χ)mH

 , b =


0
0
1
0

 ,

a =


0 0 1 0
0 0 0 1

− (kS + (1− χ) kH) (1− χ) kH − (cS + (1− χ) cH) (1− χ) cH
(1− χ) kH − (1− χ) kH (1− χ) cH − (1− χ) cH

 ,

v1 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −mH

 , w1 =


0 0 0 0
0 0 0 0

kH −kH cH −cH
−kH kH −cH cH

 ,
(5.25)

with kH , mH and cH being physical constants describing the biodynamic model after
Coermann as usual, and kS, mS and cS constants describing the grandstand. In this
simple case, the analytical solution can be obtained by means of conditional analysis with
averaging degenerated to the sum over the atoms/states of χ yielding to a linear interpol-
ation between the response of SDOF and two DOF system forced by W (t). Dependency
of varZS on the eigenfrequency of an empty grandstand f1, on the probability p and on
the mass ratio γ are depicted in Fig. 5.3. The results indicate that for reasonable mass
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Figure 5.3: Dependencies of the structure displacement variance varZS on the mass
ratio γ, on the empty grandstand eigenfrequency f1 and on the probability p

ratios, the approximation is acceptable. Note, however, that the quality of results highly
depends on ζS; for ζS < 0.01, the approximation is very poor.

Example 5.4. Let us compare here a performance of the method on the structure de-
scribed in Appendix C.2. To this end, 36 active spectators with a random but fixed
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spatial distribution over the structure are assumed. Jumping processes are approximated
similarly as in Ex. 5.2. Then, 36 passive spectators occupy the reminder of the seats,
each of them is assumed to appear independently with a probability 1 − p. Response
of the structure is measured in the point P1. Variances varZP1 and varZ̈P1 as functions
of p are depicted in Figs. 5.4a and 5.4b in comparison with MC simulation based on 500
realizations, 160 s in length; contribution of cX0 is also captured. Figures 5.4c and 5.4d
display the comparison of the mean value solutions. Results show an acceptable accuracy
in comparison with the MC. Noting that computation of cX0 is order of magnitude faster
than that of cX , the results based only on the variance of X0 (t) are also acceptable and
can serve as a first estimate of the results.
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Figure 5.4: Dependencies of the structure displacement and acceleration variances on
the probability p; mean value solutions and normalized histograms with standard normal

density for p = 0.5, ergodicity in variance assumed

5.5 Conclusion

This chapter focused mainly on the random properties of the operator appearing in the
grandstand problem equation under both the deterministic and the stochastic loading.



74 CHAPTER 5. RANDOM PARAMETERS OF A PASSIVE CROWD

Stochastic loading was again assumed in the form introduced in Sec. 4.2. The list of the
main contributions include:

1. As a first step, the sensitivity analysis of the simple coupled human-grandstand
system comprising all possible randomness of the SDOF biodynamic model under
deterministic harmonic loading was performed. It turned out that the vibrating
mass has the most significant contribution to the response variance.

2. Upon results achieved in the sensitivity analysis, a general approach in the case of
MDOF structures and stochastic loadings was reviewed, assuming only the human
mass matrix random. As a result, on the basis of example used, it turned out that
within the scope of the overall randomness, the contribution of the random mass
is only up to 3.5 %. Hence, the randomness in the mass was neglected in further
considerations.

3. Random spatial distribution of the passive crowd was introduced by means of com-
plements of the indicator variables. Despite the large randomness and utilization of
the Taylor series method, overall results proved to be in an acceptable agreement
with the MC and the scope of the employed examples.



Chapter 6

Stochastic system and input

6.1 Introduction

This section tries to approach the grandstand problem in Eq. (2.1) from the most general
direction and to reflect all the major sources of randomness under the assumption of the
fully occupied structure, i.e. no empty seats. This leads to the random forcing, already
approximated in Sec. 4.2, to the random spatial distribution of an active crowd, outlined
in Sec. 4.2.2 and to the complementary random distribution of a passive crowd discussed in
Sec. 5.4. It is also possible to reflect random masses of the biodynamic models representing
the passive spectators as reviewed in Sec. 5.3, however, such uncertainty will be neglected.
Hence, this concluding chapter can be, to some extent, understood as a synthesis of all
the methods introduced so far. Adopting all the assumptions, the operator form of our
problem reads, cf Eq. (5.1),

L (χ)Z (t,χ, ω) = GF (t,χ, ω) , t ≥ 0, (6.1)

or, assuming approximation in terms of the linear combination of the AR(2) processes,
the corresponding Itô’s SDE reads

m (χ) dX (t) = a (χ)X (t) dt+ hχµY (t) dt+ bχndB (t) , t ≥ 0. (6.2)

Unlike the previous Chap. 5, the operator and the right hand side are mutually dependent,
having moreover correlation equal to one. However is our attempt condemned to failure
right from the beginning, we will try to derive some moment equations and to compare
the results.

6.2 Random distribution of a crowd

At all possible locations included in ns, we are alternating between an active and a passive
spectator by means of iid indicator variables χi, i = 1, . . . , ns, i.e. between the force on
the right hand side of Eq. (6.1) and the biodynamic model appearing in, and enlarging
the matrices K, M and C of the operator L . Resulting Itô’s formula is in Eq. (6.2);
employing again the Taylor series method, X (t,Eχ, ω) = X0 (t) satisfies

m̄dX0 (t) = āX0 (t) dt+ phµY (t) dt+ pbdB (t) , t ≥ 0, (6.3)
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since Eχ = pIns×ns and Eχn = pInsn×nsn; forcing is dB (t) ∈ Rnsn. Sensitivity factors
∂X (t,Eχ, ω) /∂χi = X i (t) are of the same dimension as X0 (t) and fulfil

m̄dX i (t) = āX i (t) dt+ hiµY (t) dt+ bidB (t) +
(
wi − vim̄−1ā

)
X̃0 (t) dt+

wiµX0
(t) dt− viµ̇X0

(t) dt− pvim̄−1bdB (t)︸ ︷︷ ︸
=0

, t ≥ 0, (6.4)

with m̄ and ā introduced in Sec. 5.4, vi and wi in Eq. (5.20) but not restricted to 2k ×
(2k + l), and

hi =
∂hχ

χi
= hẽi ⊗ ẽi, bi = b

ni∑
j=n(i−1)+1

ei ⊗ ei, i = 1, . . . , ns, (6.5)

with ẽi ∈ Rns and ei ∈ Rnsn, for h and b see Eq. (5.11). Then, the stationary covariance
function cX0 satisfies

0 = m̄−1ācX0 + cX0ā
Tm̄−T + pbbT, (6.6)

with the mean value µX0
(t) solved separately; stationary covariances cXi

fulfil

0 = m̄−1ācXi
+ cXi

āTm̄−T + EX̃ iX̃
T

0Q
T +QEX̃0X̃

T

i + bib
T
i , (6.7)

where Q = m̄−1 (wi − vim̄−1ā), with auxiliary Lyapunov equation

0 = EX̃0X̃
T

i ā
Tm̄−T + m̄−1āEX̃0X̃

T

i + cX0Q
T + pbbTi . (6.8)

Employing the time average, the resulting covariance cX is again of the form introduced in
Eq. (5.17) with var (χi) instead of var (MH1) for independent spectators. The performance
and the quality of approximation will be compared on following two examples.

Example 6.1. Let us have a harmonic oscillator representing a grandstand with two
positions for spectators, cf Fig. 6.1, where only one of them can be occupied by an active
spectator with probability p, or a passive spectator with probability 1 − p, and where
the forcing terms are independent Gaussian white noise processes for simplicity. The

Figure 6.1: Simple example of harmonic oscillator with two positions for spectators,
forced with two mutually independent white noise processes Wi (t)
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governing equation reads[
mS 0
0 (1− χ)mH

] [
Z̈S
Z̈H

]
+

[
cS + (1− χ) cH − (1− χ) cH
− (1− χ) cH (1− χ) cH

] [
ŻS
ŻH

]
+[

kS + (1− χ) kH − (1− χ) kH
− (1− χ) kH (1− χ) kH

] [
ZS
ZH

]
=

[
W1 + χW2

0

]
.

(6.9)

There are several approximation techniques with different levels of accuracy for the
solution of stated SDE: moment equations under some closure techniques, Perturbation
method, Taylor series reviewed in Chap. 5, Decomposition method, etc. Let us stress
again that only the second order moments are of our interest.

1. Moment closure

Equation (6.9) in Cauchy form reads

dX (t) = aX (t) dt+ χ̃w1X (t) dt+ bdB (t) , t ≥ 0, (6.10)

where a = m̄−1ā, and

w1 =
1

mS


0 0 0 0
0 0 0 0
kH −kH cH −cH
0 0 0 0

 , b =
1

mS


0 0
0 0
1 χ
0 0
0 0

 , (6.11)

dB (t) ∈ R2 and X =
[
ZS, ZH , ŻS, ŻH

]T
, for the remaining matrices refer to

Eq. (5.25) in Ex. 5.3. Employing the Itô’s formula, moment equations are derived.
Mean value is clearly zero and the second order moments satisfy Lyapunov equa-
tion extended with the term E

[
w1χ̃XX

T + χ̃XXTwT
1

]
which is cubic. The only

nonzero element in the diffusion term is
(
bbT
)

3,3
= (1 + Eχ2) /m2

S = (1 + p) /m2
S.

Hence, adopting the Gaussian closure (assumes that moments of X of order q ≥ 3
have the same properties as the corresponding moments of Gaussian vectors, i.e.
odd moments are zero and even are expressed through correlations), the additional
terms disappear and we are led to the same equation as Eq. (4.11), but with adjusted
drift and diffusion matrices.

Assuming higher order moments and denoting cχ = E
[
χ̃XXT

]
, auxiliary Lyapunov

equation has to be solved

0 = acχ + cχaT +
[
w1E

(
χ̃2XXT

)
+ E

(
χ̃2XXT

)
wT

1

]
+
(
bbT
)χ
, (6.12)

where
(
bbT
)χ

3,3
= E [χ̃χ2] /m2

S = p (1− p) /m2
S. Several assumptions can be made:

fourth order closure, i.e. E
[
χ̃2XXT

]
= 0 leads to sequential solution of the Lya-

punov systems with rather stable results; separation in the form E
[
χ̃2XXT

]
=

E [χ̃X]E [χ̃X]T would lead to nonlinear system of equations, nevertheless the un-
knowns are independent and solution eventually gives E [χ̃X] = 0, hence higher
order moment equations would be required for further information; attractive sep-
aration or local independence assumption in the form E

[
χ̃2XXT

]
= E [χ̃2] cX gives
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a coupled system, but with somewhat unstable and erroneous solution. Some of the
results can be found in Fig. 6.2.

2. Algebraic approach

Stationary solution of our problem is written as

0 = a (χ) cX (χ) + cX (χ)aT (χ) + b (χ) bT (χ) , (6.13)

where cX (χ) is now a random matrix. Employing the Kronecker sum, we can
rewrite Lyapunov Eq. (6.13) as a linear system of equations

[a⊕ a] vec (cX) = vec
(
bbT
)
, (6.14)

where the vectorization operator vec (•) transforms a matrix • columnwise to a
vector; the dependencies on χ were skipped for brevity. For Kronecker sum the
followings holds, cf [57]: eA ⊗ eB = eA⊕B, A ⊕ B = A ⊗ InB×nB

+ InA×nA
⊗

B, where nA, nB are sizes of the square matrices A and B. Together with the
fact

∫∞
0
e−Lt dt = L−1 for a regular L, the resulting Lyapunov equation can be

rewritten in the form of Eq. (6.14). The solution is a function of χ, which can
be eliminated by averaging the result with respect to this random variable. Hence,
only the mean solution EcX (χ) is of our interest and can be obtained by appropriate
methods, namely MC, Iteration method, etc.

3. Exact solution

Clearly, such an example can be easily solved with analytical tools employing the
conditional analysis, since the situation is equivalent with probability p to the har-
monic oscillator driven by Gaussian white noise of intensity 1 + χ; and with prob-
ability 1 − p to two-degrees-of-freedom system driven by the unit Gaussian white
noise. Ergo, averaging among these two states leads to a linear interpolation in p
between the two results. Nevertheless, contrary to approximation techniques in-
troduced earlier, conditional analysis cannot be applied in general cases of many
positions for spectators since too many combinations occur.

Graphs in Figs. 6.2a and 6.2b capture dependencies of varZS and varŻS as functions of p ∈
[0, 1] for particular data kS = 170 kN/m, mS = 2 · 0.0862 t, cS = 0.07 · 2 ·

√
kSmS kNs/m,

f1 = 5 Hz, passive spectator according to Coermann used. Figures 6.2c and 6.2d capture
dependencies of L2 (0, 1) norms of relative errors on the empty structure eigenfrequency f1
and on the mass ratio γ,

err2 (f1, γ) =

∫ 1

0
[varZe

S (p, f1, γ)− varZ•S (p, f1, γ)]2 dp∫ 1

0
(varZe

S (p, f1, γ))2 dp
, (6.15)

where varZe
S stands for the exact analytical solution and varZ•S for an approximate one;

• denotes arbitrary one of the mentioned approximate methods. Graphs show quite poor
agreement of the approximations in comparison with the exact solution even for high
relative damping ζS = 0.07, cf also Fig. 5.3.

Example 6.2. The last example will demonstrate on the structure in Appendix C.2 the
performance of the Taylor series method when random distribution of a crowd is assumed.
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Figure 6.2: Dependencies of the structure displacement and acceleration variances on
the probability p; relative errors in Eq. (6.15) as functions of f1 and γ; MC based on

algebraic approach in Eq. (6.14)

All spectators are treated as independent. Figures 6.3a and 6.3b show varZP1 and varZ̈P1 as
functions of p, and Figs. 6.3c and 6.3d compare the mean value solutions for p = 0.5. MC
is based on 500 realizations of 160 s in length. It can be concluded from the results that
the Taylor series method represents somewhat an upper estimate to the MC solution, and
follows quite closely the overall evolution of the response variance along the probability p.
Nevertheless, the computational burden was comparable with that of the MC solution for
all realizations and hence, no computation times are listed.

6.3 Conclusion

In this chapter, it has been presented an approximation of the grandstand problem com-
prising random forcing and random distribution of both an active and a passive crowd
in terms of Taylor series method. It has been shown, upon used complex example, that
it is possible to approximate the resulting first two moments of the system response in
acceptable bounds. Computational cost was, however, comparable with that one of the
MC simulation, nevertheless further simplifications and reductions are possible in order
to lower the computational burden. Some other approximate methods, namely Gaussian
closure, higher order moment closure and algebraic approach were also briefly discussed
and presented on a simple example.
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, p = 0.5

Figure 6.3: Dependencies of the structure displacement and acceleration variances on the
probability p; mean value solutions and normalized response histograms with standard

normal density for p = 0.5, ergodicity in variance assumed



Chapter 7

Conclusion and future prospects

This thesis has provided, in its very beginning, a short overview of some generally accepted
approaches in the field of grandstands. A brief inspection of Czech standards indicated
a lack of systematic design methods available to engineers in the case of synchronized
lively crowds. Other standards, such as Canadian or British, possess some instructions,
nevertheless basically from the deterministic point of view. The model and the design
procedures should take account of the evident randomness, especially the random forcing
and the spatial distribution of a crowd.

After a short literature review and state of the art, submitted thesis has concen-
trated on the MC simulation with an emphasis on reduced order modelling. Analysis
and examples carried out indicated that much richer projection basis is required than
only one or two-dimensional unlike suggestions in some design procedures reducing the
grandstand and passive crowd to simple two-degree-of-freedom systems; significant re-
duction can be, however, still achieved. Since many load models for active spectators
are based on truncated Fourier series expansion—valid also for the approximation of the
load mean value—the third chapter was concluded with the method for finding the worst
crowd distribution or the mean-worst crowd distribution with respect to displacement or
acceleration in some preselected node.

The first of the three main chapters, Chap. 4, pursued the approximation of the forcing
terms, i.e. an active crowd. Under the simplifying assumptions, e.g. short contact time,
the random forcing was approximated with nonstationary mean value by means of the
truncated Fourier series with superposed zero mean weakly stationary ergodic Gaussian
coloured noise. Subsequently, the theory of stochastic differential equations in terms of
the Itô’s calculus was briefly reviewed. Employing some heuristic arguments together
with central limit and Rosenblatt theorems, the response was close to Gaussian, the res-
ult was supported with several examples. As a measure of the approximation quality, the
mean upcrossing, distribution of maxima, stationary variances etc were employed; the
convergence was improved for vanishing damping. On the basis of the overall time con-
sumptions, though resulting only from a MATLAB implementation, the method proved
to be quite efficient in comparison with the MC simulation. The forcing terms were then
generalized to a random distribution of an active crowd introducing the random indic-
ator variables which provide a switch between an active spectator and an empty seat.
Introduced correlations between indicators correspond to some interaction between active
spectators. A short digression concerning possibilities of the non-Gaussian processes was

81
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then performed by means of the translation processes and bi-spectra. Other options were
discussed providing also some hints for directions of further development.

The second main part reviewed the theory of random operator equations, namely in
terms of the Taylor series method introducing randomness in biodynamic models; overall
approach was nevertheless restricted only to the second order moments. Immediately, it
was shown that the randomness in the biodynamic models yields up to 3.5 % of the total
variance in the scope of the randomness caused by an active crowd, and the effect was
neglected in further considerations; random distribution of a passive crowd yields much
greater impact. So, the passive spectators were introduced in terms of the complementary
indicator variables. Note that the Taylor series method is more stable and accurate for
increasing damping which yields somewhat contradictory requirements: vanishing damp-
ing contributes to the improved Gaussianity of the response while increasing damping
contributes to better convergence of the Taylor series method. Achieved approximation
was, in the scope of examples used, found to be in quite satisfactory agreement with MC
simulation.

Concluding chapter finally presented the most general approach within the scope of
the thesis and the methods introduced herein. Active spectators were approximated
by random forcing discussed previously with a random spatial distribution realized via
indicator variables; remaining seats were filled with a passive spectators assuming fully
occupied structure. Clearly, such a problem is a stochastic differential equation, moreover
with the operator being fully correlated with the forcing. Again, the Taylor series method
was employed performing quite satisfactorily for mass ratios small enough (γ ≤ 0.35). The
computational burden in this case was comparable with that of the MC simulation; in
all approaches there is, however, a possibility of really efficient implementation which can
change slightly the overall balance.

Developed approach proceeds inductively from simple models to complex ones and
describes the possibilities of analytical methods in comparison with direct simulation.
Nevertheless, it is not indicated which model should be employed for the best description
of complex reality; certainly, knowing the distribution of a crowd leading to the extreme
vertical displacement or acceleration in some preselected node is of some practical interest
as well as knowing the response of the structure under stationary random spatial distri-
bution of a crowd. But a model which can be described through a few variables reflecting
the loading scenario and also capturing ”typical” situation is much more sophisticated
than the most complex one described in this thesis, i.e. in Chap. 6.

Introduced methods can be extended in many directions, the most important being the
comparison of achieved results with the measurements on the real structures with indic-
ation which one suits best. All approximations, however fine or accounting of whichever
area of randomness, are only stationary ones (up to the mean value), and hence cannot be
realistic. All forcing processes are actually nonstationary; a crowd as a whole is evolving
in time—active spectators become passive during the time and vice versa—and hence the
models adopted cannot reflect such a phenomena in its full complexity. Spectral densities,
being based on MC simulators available in the literature evaluated for discrete frequencies
can be generalized to cover the whole frequency interval, preferably being fitted directly
to measured data instead of artificial ones and also taking account of other types of loads
such as bouncing and jouncing. Further generalization could be performed in terms of
enlargement of the state space of the indicator variables in order to account for active
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spectators, passive spectators and empty seats. Generalization of the forcing in terms of
the discussion at the end of the Chap. 4 is also possible.

The main contributions of submitted thesis can be summarized as:

1. Development of systematic FEM-based approach for modelling a crowd-grandstand
system in terms of semi-analytical solution avoiding direct MC simulation.

2. The method is capable to reflect major sources of system randomness, namely ran-
dom forces induced by an active crowd, random distribution of a crowd and random
parameters of biodynamic models representing a passive crowd.

3. Relative efficiency of the method in comparison with direct MC simulation method
and transparency providing quantities required for serviceability (and possibly reli-
ability) assessment of the crowd-grandstand system.

Among many possible options in continuation or generalization, the work can be ex-
tended mainly in following directions:

1. Comparison of introduced methods with measurements on real structures.

2. Spectral densities based on MC simulators available in the literature evaluated for
discrete frequencies can be generalized to cover the whole frequency interval prefer-
ably being fitted directly to measured data and taking account also of other types
of loads.

3. Reflect nonstationarity and non-Gaussianity of the forcing terms and the response
in more detail.

4. Introduce wider state space of the random switch variables, e.g. to reflect an active
spectator, a passive spectator and an empty seat; include the time evolution of a
crowd – switching variables can be treated as random processes.

Apparently, the grandstand problem is quite complex and much work remains to be
done to achieve a transparent, reliable and efficient design procedures. It is believed that
this thesis will positively contribute to this endeavour and will provide some ideas how to
improve or generalize present concepts.





Appendix A

Fractions of the probability theory

A brief overview of some basic notions from the probability theory and the theory of
stochastic processes employed throughout the thesis is given below; for details and further
discussions see [13, 17, 19, 39, 48, 50, 52, 53].

A.1 Basic concepts

The probability space is denoted (Ω,A ,P), where Ω is the sample space, A the σ-field
of events and P : A → [0, 1] is the probability measure.

A measurable function X : (Ω,A )→ (R,B), where B is the Borel σ-field, is called a
random variable; a function X : (Ω,A )→

(
Rd,Bd

)
is called a d-valued random vector.

The distribution of X is the probability induced by the mapping X : Ω → R, that
is, Q (B) = P (X−1 (B)), B ∈ B; the distribution function of X is for B = (−∞, x],
x ∈ R, that is, F (x) = P [X−1 ((−∞, x])] = P {ω : X (ω) ≤ x} = P (X ≤ x).

The expectation operator E [•] of • is defined as E [g (X)] =
∫

Ω
g (X (ω))P (dω) =∫

R g (x)Q (dx) =
∫
R g (x) dF (x). If the distribution function is absolutely continuous,

then also E [g (X)] =
∫
R g (x) f (x) dx with f (x) = F′ (x). If the random variable X is

discrete, i.e. the distribution function is atomic, the integral degenerates into a sum over
all atoms.

The conditional expectation E [X| G] of X with respect to a σ-field G is defined to be
the class of G-measurable functions satisfying

∫
Λ
X dP =

∫
Λ
E [X| G] dP, ∀Λ ∈ G.

Moments of order p of a random variable X are computed according to µ(p) = EXp,

the mean value is µ = µ(1) = EX, variance var (X) = σ2 = E (X − µ)2, coefficient

of variation cv = σ/µ, coefficient of skewness γ3 = E (X − µ)3 /σ3 and the coefficient
of kurtosis γ4 = E (X − µ)4 /σ4. In the case of random vectors, the mean µ = EX,

covariance c = cij = cov (Xi, Xj) = E
[
(X − µ) (X − µ)T

]
, correlation r = c+µµT, and

correlation coefficient ρij = cij/ (σiσj).

A.2 Stochastic processes

A function X : T × Ω → Rd of two arguments, t ∈ T , T ⊂ R+, and ω ∈ Ω, (Ω,A ,P)
being a probability space, is said to be an Rd-valued random process, or vector process,
if for each t ∈ T it is an Rd-valued random variable on (Ω,A ,P). X (•, ω) for fixed ω
is called a realization, or a sample; for fixed t, X (t, •) is a random variable. If T is an
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interval, X is a continuous time stochastic process, if T is discrete, it is called a discrete
time stochastic process or time series.

A finite dimensional distributions of X of order p ∈ N are the distributions of the
random vector [X (t1) , . . . ,X (tp)], that is,
Fp (x1, . . . ,xp; t1, . . . , tp) = P

(⋂p
i=1

{
X (ti) ∈ Xdk=1 (−∞, xi,k]

})
, x = (xi,1, . . . , xi,d) ∈ Rd

and p ≥ 1.
After Kolmogorov, upon satisfying consistency and symmetry conditions, the finite

dimensional distributions Fp, p = 1, 2, . . . can be used to define a stochastic process.
Usually, the information available is restricted to the first and second order distributions.

An Rd-valued process X is said to be stationary in the strict sense or stationary
if Fp (x1, . . . ,xp; t1, . . . , tp) = Fp (x1, . . . ,xp; t1 + τ, . . . , tp + τ), τ being a time shift.

A stochastic process X is said to be ergodic if ensemble averages equal time averages,

E [g (X (t))] = limτ→∞
1
τ

∫ τ/2
−τ/2 g (X (t)) dt.

A stochastic process X has independent or orthogonal increments if the random vari-
ables X (t)−X (s) and X (v)−X (u), s < t ≤ u < v, are independent; moreover, if the
distribution of X (t) −X (s) depends only on the time lag t − s, the process is said to
have stationary independent increments.

A process X is called Gaussian if all its finite dimensional distributions are Gaussian.
In analogy to random variables, the mean value is µ (t) = E [X (t)], the covari-

ance function c (t, s) = E
[
(X (t)− µ (t)) (X (s)− µ (s))T

]
, and the correlation func-

tion r (t, s) = c (t, s) + µ (t)µ (s)T. The second moment properties of the process X are
given by the pairs µ, c or µ, r. In the case of a Gaussian process, this pair contains the
complete information.

A process X is said to be weakly stationary if the mean value µ (t) = µ is constant
and if the correlation and covariance functions depend only on the time lag, i.e. c (t, s) =
c (t− s), r (t, s) = r (t− s).

The correlation function r (τ) of real, weakly stationary process X (t) is a positive
definite function; then, there exists a real, increasing and bounded function S called
spectral distribution function, such that r (τ) =

∫∞
−∞ e

i2πξτ dS (ξ). If S is absolutely
continuous, then there exists a function s (ξ) = dS (ξ) /dξ, called spectral density or
power spectral density. The correlation and spectral density functions are Fourier pairs.

A random variable Xn is said to converge in the mean square to X, notation
l.i.mn→∞Xn = X, if E

[
(Xn −X)2] = 0. Concept of mean square continuity, differenti-

ation and integration is then developed. For example, a real valued process X (t) is mean

square differentiable at t if l.i.mh→0
X(t+h)−X(t)

h
exists.

For a complex, weakly stationary and mean square continuous process X with the
spectral distribution function S and the spectral density function s there exist a com-
plex process U with orthogonal increments such that the mean square integral X (t) =∫∞
−∞ e

i2πξt dU (ξ) exists for every t; EU (ξ) = 0, E |U (ξ)|2 = S (ξ) and E |dU (ξ)|2 =
dS (ξ) = s (ξ) dξ, U is called spectral process associated with X.

For a mean square differentiable process X (t), the mean x-upcrossing rate is expressed
by means of the Rice’s formula

ν+
x (t) =

∫ ∞
0

yfX,Ẋ (x, y) dy, (A.1)
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where fX,Ẋ (x, y) is the joint density of
[
X (t) , Ẋ (t)

]
.

A collection of increasing sub σ-fields (Ft)t≥0 of A is called a filtration in (Ω,A )

and
(
Ω,A , (Ft)t≥0 ,P

)
is called a filtered probability space. If a process X is Ft-

measurable function for all t ≥ 0, then it is said to be Ft-adapted.
A real stochastic process X defined on a filtered probability space is an Ft-martingale

if E |X (t)| <∞, X is Ft-measurable and E [X (t)|Fs] = X (s) almost surely for all s ≤ t.
If T : Ω → [0,+∞] is a random variable defined on

(
Ω,A , (Ft)t≥0 ,P

)
such that

{ω : T ≤ t} ∈ Ft for all t ≥ 0, then T is called an Ft-stopping time.
A real process X is an Ft-local martingale if there exists an increasing sequence Tk,

k = 1, 2, . . . of Ft-stopping times, Tk ≤ Tk+1, limk→∞ Tk = ∞ almost surely, and the
stopped process XTk (t) is an Ft-martingale for each k.

If a process X is of the form X (t) = X (0) + M (t) + A (t) where M (0) = A (0) = 0,
M is a local martingale and A is a right continuous process with left limits and is of finite
variation, then X is called a semimartingale.

For X and Y semimartingales, each t ≥ 0 and each sequence of partitions pn =(
0 = t

(n)
0 , . . . , t

(n)
mn = t

)
of [0, t] and refining for n → ∞ a quadratic covariation pro-

cess [X, Y ] is defined as
∑mn

k=1

(
X
(
t
(n)
k

)
−X

(
t
(n)
k

))(
Y
(
t
(n)
k

)
− Y

(
t
(n)
k

))
ucp−−→ [X, Y ] (t),

where ucp stands for uniformly on compacts in probability; [X,X] (t) = [X] (t) is called
a quadratic variation, [X] is decomposed into continuous part [X]c and pure jump part.

A centered Gaussian random process B starting from 0 with almost surely con-
tinuous samples, with stationary independent Gaussian increments and covariance func-
tion E [B (t)B (s)] = min (t, s) is called a Brownian motion or a Wiener process; quadratic
variation is [B] = [B]c = t, B is a semimartingale.

For Tk, k = 1, 2, . . . strictly increasing sequence with T0 = 0 almost surely, N (t) =∑
k≥1 1[t≥Tn] is called a counting process. Moreover, if the process is of stationary incre-

ments, i.e. N (t) − N (s), t > s has the same distribution as N (t− s), it is called the

Poisson counting process; P [N (t) = k] = e−λt (λt)k

k!
, with λ > 0 called an intensity.

The compound Poisson process C is of the form C (t) =
∑N(t)

k=1 Yk =
∑∞

k=1 Yk1[t≥Tk],
Yk are iid, with EC (t) = λtEY1, c (t, s) = λmin (t, s)E [Y 2

1 ]. The process WP (t) =∑N(t)
k=1 Ykδ (t− Tk), where δ (•) denotes the Dirac delta function, is called a Poisson white

noise. M (t, dy) being a random measure which gives the number of jumps of C in (y, y + dy]
during the time interval (0, t], an alternative definition is given in the form C (t) =∫
R yM (t, dy), EM (t, dy) = λtdF (y), F denotes the distribution of Y1. The quadratic

variation is [C] (t) =
∑N(t)

k=1 Y
2
k with [C]c = 0, C is a pure jump semimartingale.

A.3 Itô’s formula and stochastic differential equa-

tions

The Itô’s formula is an extension of the change of variable formula of the classical calculus
to integrals with integrands being adapted left continuous processes with right limits and
semimartingale integratos.

For Y an Rd-valued semimartingale and g : Rd → R with continuous second order
partial derivatives, g (Y ) is a semimartingale and the integral form of the Itô’s formula
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reads

g (Y (t))− g (Y (0)) =
d∑
i=1

∫ t

0+

∂

∂yi
g (Y (s−)) dYi (s)

+
1

2

d∑
i,j=1

∫ t

0+

∂2

∂yi∂yj
g (Y (s−)) d [Yi, Yj]

c (s)

+
∑

0<s≤t

[
g (Y (s))− g (Y (s−))−

d∑
i=1

∂

∂yi
g (Y (s−)) ∆Y (s)

]
,

(A.2)

Y (s−) = limu↑s Y (u) denotes the limit from the left and ∆Y (s) = Y (s)−Y (s−) denotes
the jump discontinuity of Y at time s.

A random process X is a solution to the stochastic differential equation

dX (t) = a (X (t−) , t) dt+ b (X (t−) , t) dY (t) , t ≥ 0 (A.3)

if

X (t) = X (0) +

∫ t

0

a (X (s−) , s) ds+

∫ t

0

b (X (s−) , s) dY (s) , t ≥ 0, (A.4)

where a, b are Rd×1 and Rd×d′ matrices, Y is an Rd′-valued semimartingale and X is
an Rd-valued stochastic process; the integrals are interpreted in the mean square and in
the Itô sense respectively.



Appendix B

MATLAB implementation

A short description of required procedures for the computation of the grandstand problem
implemented in MATLAB R© environment is listed below.

B.1 General overview

Geometry, material parameters, boundary conditions etc are given in the input file *.m

comprising several key matrices and vectors:

1. Lm, the matrix of the structure geometry and corresponding code numbers. Colum-
nwise, it stores a node number i, xi, yi and zi-coordinates of the i-th node followed
by the six code numbers.

2. Con denotes the matrix of connectivity, material and cross sections. Columnwise, it
stores a label of the beam element j, number of starting and ending node m and n,
identification of the cross-sectional and material parameters.

3. rp vector stores prescribed Dirichlet boundary conditions set to zero as default.
DOFs with Dirichlet boundary conditions are situated at the end of the list.

4. cond matrix saves the information about elements having condensed some DOFs.
Columnwise, it contains element number, twelve positions then comprise indicators;
if 1 occupy an i-th position, i = 1, . . . , 12, then i-th local DOF is condensed.

5. crosssect and matconst carry information about the cross sectional properties
and material constants; cross sectional area A, second moments of area Iy, Iz, polar
moment Ik with respect to local coordinates of the beam, shear coefficients βy and βz.
Material constants are Young modulus E, Poisson ratio ν, mass density ρ and
relative damping coefficients ζS,i and ζS,j for two modes i and j according to Rayleigh
model of proportional damping.

6. Vector ns stores the code numbers or DOFs which can be occupied either by active
or passive spectators. Further data such as jumping frequency, type of biodynamic
models are specified as single variables.

Subsequently, a preprocessor routine is called which creates a field struct comprising
all elements with their particular data; for cycle spanning all the elements then assembles
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required matrices KS, MS. The generalized eigenvalue problem is solved efficiently via
MATLAB routine eigs for sparse matrices yielding necessary information for an assembly
of the damping matrix CS.

Assembled matrices are then adjusted in adjustMatrix function such that to comprise
also biodynamic models, cf Eq. (3.3). Then, using arbitrary one of the methods discussed
in Sec. 3.4.2 and employing additional routines, the transformation basis V is computed;
MS is, however, preferred because of its simplicity and relative accuracy.

B.2 MC simulation

MC is mainly based on simulation of the artificial loading processes, which is described in
detail in [51]. Random variables are generated employing wide variety of MATLAB tools
capable to simulate a number of customary distributions. The core of the MC is the time
integration of the system of deterministic second order differential equations in Eq. (2.1)
or in Eq. (3.4) to obtain an output realizations. To this end, Newmark integration scheme
was implemented.

Statistical processing of the output realizations is also readily carried out due to MAT-
LAB functions such as var, std, rms evaluating variance, standard deviation, RMS values.
Many other handy functions are available too.

B.3 Moment equations

After assembly of the drift and diffusion matrices, the main problems referred to many
times are the Lyapunov and Sylvester equations. This matrix problem can, however, be
solved efficiently calling the lyap routine, which is capable to solve both of the mentioned
problems depending on the input data. Higher order moments are solved with the help
of the external *.mex files written in C++ which supplement the basic code. These are
employed to assemble the problems and to transform higher order tensor equations to the
matrix-vector equations, cf Eqns. (4.71) – (4.78). Resulting systems of linear equations
are solved via MATLAB resources, e.g. using \ or linsolve. Finally, a brief diagram
capturing the structure of the implementation is depicted in Fig. B.1.

Input file

assembly →KS, MS, CS KHH , MHH , CHH , coupling

MC
– sample generation
– Newmark solution
– µ (t), c, ν+

x (t), etc.

Freq. domain sol.
– H (ξ), Eqns. (4.18)
and (4.87)
– µ (t), SZ̃Z̃ , γ3

Time domain sol.
– assemble a, b
– Lyapunov/Sylvester Eqns.
– higher order moments

Figure B.1: Implementation diagram



Appendix C

Description of toy structures used

Test examples employed throughout the thesis in order to demonstrate introduced ap-
proaches and their performance are described below in this appendix in more detail.

C.1 Simply supported beam

Examples 4.3 and 4.9. The first, geometrically simplest structure is a straight, simply
supported beam of 2 m length comprising four positions for spectators denoted with
vertical red lines, cf Fig. C.1, where also three vertical egienmodes are depicted together
with the point of interest P1. Rayleigh damping with ζ1 = 0.05 and ζ2 = 0.08 for the first
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(d) bending mode, f3 = 40.3 Hz

Figure C.1: Geometry, labelled point of interest, positions for spectators and the first
three bending modes of simply supported beam

two vertical modes are used, total mass 1700 kg. Maximal mass ratio γ = mH/mS = 0.20,
where mH denotes the total mass of passive spectators and mS denotes the total mass
of the grandstand. Structure is discretized with 5 beam finite elements, has 6 nodes
and 27 DOFs.
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C.2 Cantilever grandstand

Examples 3.2, 3.5, 4.4, 4.7, 5.2, 5.4 and 6.2. This system is made of reinforced concrete
and has total mass 18.2 t, possesses 72 positions for spectators of 0.5 m spacing in the row,
Rayleigh damping with ζ1 = 0.05 and ζ2 = 0.08 is used for the first two vertical modes.
See Fig. C.2 for geometry, cross-sections, spectator positions and the first two bending
modes; Tab. C.1 contains the list of the first five vertical eigenfrequencies. Cantilever
beams have rectangular cross-sections while simply supported cross-beams are L-shaped,
cf Fig. C.2b. Points of interest are depicted in Fig. C.2c, maximal mass ratio γ = 0.34.
Structure comprise 92 beam finite elements, 87 nodes and 504 DOFs.

(a) geometry, dimensions in [m]

(b) cross-sections, dimensions in [mm]
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(e) bending mode, f2 = 7.0 Hz

Figure C.2: Geometry, cross-sections, positions for spectators, labelled points of interest
and the first two bending modes of cantilever grandstand
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f1 f2 f3 f4 f5

fi [Hz] 5.4 7.0 8.2 25.1 28.4

Table C.1: The first five eigenfrequencies of the cantilever grandstand corresponding to
vertical bending modes [Hz]

C.3 Real grandstand

Examples 3.1, 3.2, 3.3, 3.4 and 4.5. This concluding structure represents a real grandstand
depicted in Fig. C.3 with 630 positions for spectators of 0.5 m spacing in the row. For
the points of interest and positions for spectators see Fig. C.4a and C.4b. The supporting
structure is made of steel and consists of two outer and two inner bearing trusses all with
curved upper edge, one lower edge horizontal and one sloping; geometrically are identical,
but with different cross-sections of their bars. Structure is supported with eight columns
and stiffen with a bracing. For cross sections of particular elements refer to Fig. C.3 and
Tab. C.2. Grandstand deck girders are again L-shaped, simply supported and made of
reinforced concrete, cf Fig. C.2b, but now with width 1,000 mm, height 400 mm and
thickness 200 mm.

Dynamic properties of the structure are presented in Tab. C.3, where the first eight
vertical eigenfrequencies are summarized, and in Fig. C.4c and C.4d, where two vertical
bending modes are depicted. Rayleigh damping with ζ1 = 0.01 for the first and ζ2 = 0.02
for the sixth vertical mode is used. Total mass of the structure is 148.6 t, maximal mass
ratio γ = 0.37, structure is discretized with 815 beam elements, 684 nodes and 4068 DOFs.

element of/
ID

outer bearing
truss

inner bearing
truss bracing columns

1 TR 245×6.3 TR 245×12.5 — —

2 TR 168×5 TR 127×5 — —

3 TR 89×3.6 TR 89×3.6 — —

4 — — TR 127×5 —

5 — — TR 89×3.6 —

6 — — — TR 245×6.3

7 — — — TR 127×5

Table C.2: Table of cross-sections for the real grandstand, cf Fig. C.3; TR A×B rep-
resents a circular pipe with outer diameter A [mm] and wall thickness B [mm]

f1 f2 f3 f4 f5 f6 f7 f8

fi [Hz] 2.5 2.6 3.8 4.5 4.8 4.9 5.4 6.0

Table C.3: The first eigenfrequencies of the real grandstand corresponding to vertical
bending modes [Hz]
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Figure C.3: Geometry of the real grandstand kindly provided by Ing. David Jermoljev
from Excon company, identification of particular elements, dimensions in [m], for spe-

cification cf Tab. C.2; seating deck L-beams are not included contrary to Fig. C.4

http://www.excon.cz/en/
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(c) bending mode, f2 = 2.6 Hz
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Figure C.4: Geometry, positions for spectators, labelled points of interest and the two
bending modes of the real grandstand
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[2] Z. Bai. Krylov subspace techniques for reduced-order modeling of large-scale dynam-
ical systems. Applied Numerical Mathematics, 43:9–44, 2002.

[3] Z. Bai and Y. Su. Soar: A second-order arnoldi method for the solution of the
quadratic eigenvalue problem. SIAM J. Matrix Anal. Appl., 26(3):640–659, 2005.

[4] K.J. Bathe. Finite Element Procedures. Prentice-Hall Inc., 1996.

[5] Z. Bittnar and J. Šejnoha. Numerical Methods in Structural Mechanics. Amer Society
of Civil Engineers, 1996.

[6] V.V. Bolotin. Statistical Methods in Structural Mechanics. Holden-Day, Inc., 1969.

[7] V.V. Bolotin. Random vibrations of elastic systems. Martinus Nijhoff Publishers,
1969.

[8] P.J. Brockwell, R.A. Davis, and Y. Yang. Continuous-time gaussian autoregression.
Statistica Sinica, 17:63–80, 2007.

[9] G.G. Browning. Human Perception of Vibrations due to Synchronized Crowd Loading
in Grandstands. PhD thesis, University of Bath, 2011.

[10] P.G. Ciarlet. The Finite Element Method for Elliptic Problems. Siam, 2002.

[11] R.R. Coermann. The mechanical impedance of the human body in sitting and stand-
ing position at low frequencies. Human Factors, (4):227–253, 1962.

[12] J.W. Dougill, J.R. Wright, J.G. Parkhouse, and R.E. Harrison. Human structure
interaction during rhytmic bobbing. The Structural Engineer, 22:32–39, 2006.
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dedicated to Professor Zdeněk Bittnar on the occasion of his Seventieth Birthday:
Part 2.
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