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Rayleigh wave propagation in intact and damaged geomaterials
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Abstract

An analytical model of an elastically deforming geomaterial with microstructure and damage is assumed to be a material where

the second spatial gradients of strain are included in the constitutive equations. Based on this assumption, a linear second gradient

(or grade-2) elasticity theory is employed, to investigate the propagation of surface waves in either intact or weathered—–although

homogeneous and isotropic at the macroscale—materials with microstructure such as soils, rocks and rock-like materials. First, it is

illustrated that in contrast to classical (grade-1) elasticity theory, the proposed higher-order elasticity theory yields dispersive

Rayleigh waves, as it is also predicted by the atomic theory of lattices (discrete particle theory), as well as by viscoleasticity theory.

Most importantly, it is demonstrated that the theory: (a) is in agreement with in situ non-destructive measurements pertaining to

velocity dispersion of Rayleigh waves in monumental stones, and (b) it may be used for back analysis of the test data for the

quantitative characterization of degree of surface cohesion or damage of Pendelikon marble of the Parthenon monument of Athens.

r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Fig. 1a and b show the damage exhibited by the
marble at the mesoscopic scale (in which the represen-
tative volume element is the grain size) produced during
unconfined compression fatigue tests on Dionysos
marble specimens [1]. This damage is manifested by
calcite grain decohesion and transgranular microcrack-
ing (Fig. 1a). In greater detail (Fig. 1b) fine fragments a
few microns wide, which accumulate in the proximity of
the grain corners may be observed. Obviously, this
damage results to an inhomogeneous strain field even if
the grains have the same properties and great care has
been taken to obtain a uniform strain field inside the
marble specimen.
Speaking in terms of lattice dynamics, classical

elasticity has been developed on the assumption of the
‘‘nearest-neighbor interaction’’ and does not consider
the interaction between imperfections, hence the term
‘‘local’’ theory. One way to include in a continuum

model ‘‘non-local’’ stresses being due to imperfection
interactions is by assuming that the stress at a point of
the medium is a function of the strain at that point, as
well as additional space derivatives of the strain there.
The results are an inhomogeneous strain field in a
problem where the classical approach produces uniform
strain.
In this paper, a linear gradient elasticity theory is

employed to investigate the propagation of surface
waves in a homogeneous (at the macroscopic level) half-
space with polycrystalline or granular structure (e.g.
geomaterials or rock-like materials) that may exhibit
some degree of damage. This theory may be considered
a special case of the general Mindlin’s theory [2] of a
second strain-gradient linear elasticity with microstruc-
ture. In particular, the theory assumes a strain-energy
density expression including, besides the classical terms,
strain-gradient terms and introduces also a microstress
(which works on the strain), a double stress (which
works on the strain gradient), and a total stress obeying
the momentum balance equations. Within this formula-
tion, two characteristic internal length scales of the
medium are introduced. One of them is associated with
an additional term appearing in the strain-energy
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density expression and accounts for the strain gradients.
The other is the characteristic size of the unit cell
of the medium (i.e. crystallite of a polycrystalline rock or
grain of a granular soil or rock material). Such a theory
of elasticity has been successfully employed in [3–10]
to revisit basic problems in Fracture Mechanics, Rock
Mechanics and Theory of Elasticity. In these works
it was shown that this enhanced elasticity theory is
capable to: (a) predict size effect of strength, (b)
eliminate strain singularities in crack tips and in
half-planes under concentrated forces, and (c) to predict
cusp-like instead of elliptical crack profiles. It has
also been shown in [11] that the new theory is capable
of predicting SH surface waves, that is anti-plane
shear motions exponentially decaying with the distance
from the free surface, which of course is in contrast
with the expectations of the classical elasticity theory.
It is noted here that even the non-local linear elasticity
theory of Eringen [12,13], which certainly proved
successful in treating several other problems, is
not capable of predicting surface SH waves (see e.g.
[14]). In another paper [15], it was the first time that
it was shown that the form of the dispersion relation
of surface SH waves predicted by the gradient
theory, resembles that found by Coulson [16] for surface
waves in liquids that possess surface energy. Also,
in a recent paper [17] the classical plane stress/strain
problem of Rayleigh wave propagation was revisited
within the framework of gradient elasticity. Contrary
to the classical result, it was found that this wave
exhibits either normal or anomalous dispersion, a
fact that is in agreement with experimental evidence
referring to preliminary in situ non-destructive surface
wave measurements in the Parthenon of Acropolis of
Athens.
In this work it is shown that the theory may be used

for back analysis of the in situ non-destructive surface
wave test results for the quantitative characterization of
degree of surface cohesion and damage of monumental
Dionysos–Pendelikon marble of the Parthenon monu-
ment of Athens.

2. Basic equations of grade-2 elasticity theory and the

physical meaning of the length scales

In this section, we briefly outline the basic equations
of the grade-2 theory employed to analyze time—
harmonic surface wave motions. With respect to a
Cartesian coordinate system Ox1x2x3; the following
ansatz for the strain-energy density with respect to the
kinematic quantities is assumed

W ¼ W ðeqr;kqrsÞ; ð1Þ

where eqr � ð1=2Þðqruq þ qqurÞ is the usual symmetric
infinitesimal strain tensor defined in terms of the
displacement vector uq; qs � q=qxs; the indices ðq; r; sÞ
span the range (1,2,3), and kqrs � qqcrs is the micro
deformation gradient in which cqr denotes the micro
deformation (Fig. 2). Then, appropriate definitions for
the stresses follow from the variation of W ; i.e.

tqr �
qW

qeqr

; mqrs �
qW

qkqrs

; ð2Þ

Fig. 1. Outer surface of partially loaded Dionysos marble (a) at 2000�magnification (b) Partially-loaded specimen outer surface at

5000�magnification [1].

Fig. 2. Typical components of relative stress aij (aij�sij�tij,) displace-

ment gradient qiuj, micro-deformation cij and relative deformation gij

for the simple case of uniaxial tension.
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in which ðtqr;mqrsÞ are the microstress (symmetric),
and the double-stress tensors, respectively. Further,
from the variational equation of motion (by
taking independent variations duq and dcqr), one
may obtain 12 stress equations of motion and 12
traction boundary conditions. These equations of a
linear continuum with microstructure [2] contain the
equations of a Cosserat linear continuum as a special
case.
In particular, the theory utilized here can be

considered one of the simplest versions of Mindlin’s
theory corresponding to the following strain-
energy density function of an isotropic grade-2 elastic
material [10]

W ¼ ð1=2Þleqqerr þ Geqrerq þ Gc2ðqseqrÞ ðqserqÞ; ð3Þ

where l ¼ En=ð1� 2nÞð1þ nÞ and G ¼ E=2ð1þ nÞ
are the standard constants of Lame, E is Young’s
modulus, n is Poisson’s ratio and c is the strain gradient
coefficient (having dimensions of (length)). One
may notice that the theory approaches the local
elasticity theory in the limit c=0. It may also be proved
that positive definiteness of the strain-energy density
requires the following restrictions of the material
constants

ð3lþ 2GÞ > 0; G > 0; c2 > 0: ð4Þ

The last inequality simply means that c should be a real
and not imaginary number. The stress equation of
motion reads as follows:

qqsqr ¼ r .ur; ð5Þ

where sqr denotes the symmetric total stress tensor
defined as follows:

sqr ¼ tqr � qkmkqr þ
1
3
rh2r2 .ur; ð6Þ

where the last term of the r.h.s. of Eq. (6) refers to the
effect of micro-inertia of solid grains. We remark here
that sqr may be considered as the Cauchy stress tensor
with the associated Cauchy traction or stress vector tr

defined by

tr � nqsqr: ð7Þ

This stress vector is employed for the specification of
‘‘traction’’ boundary conditions. These conditions must
be supplemented with the double traction boundary
conditions

mr ¼ nqnsmqsr; ð8Þ

where ns are the components of the unit vector
outnormal to the boundary, tr is the surface force per
unit area, and mr is the surface double force (without
moment).

Finally, the constitutive equations for the stresses
follow by combining Eqs. (2) and (3)

tqr ¼ ldqress þ 2Geqr;

sqr ¼ ldqrekk þ 2Gðeqr � c2r2eqrÞ

þ ð1=3Þrh2ðqq .urÞ;

msqr ¼ 2Gc2qseqr: ð9Þ

From the last of the above relations we may note that
the double stress is symmetric in the last two indices.
The physical significance of the strain-gradient length

scale c—that is the length scale associated with the
strain gradient ðqseqrÞ—is demonstrated by virtue of an
example from Fracture Mechanics. For this purpose we
consider the simplest case of the anti-plane shear (mode-
III) crack. In contrast to Griffith’s approach, the effect
of cohesive forces on the displacements and strains is
taken into account in this theory by including higher-
order gradients in the constitutive equations. For this
purpose let us consider a homogeneous isotropic
microelastic medium uninterrupted except for the
mode-III crack occupying the line segment �aoxoa;
y ¼ 0 with traction-free faces. The body is subjected
to a constant shear traction syz ¼ tN at infinity.
The approximate solution for mode-III crack has as
follows [18].

uzD
tN
G

� � c�2

5806080
�5083a6 þ 1866x2a4 � 264x4a2
�

þ 16x6 þ 29376c2a4 � 10368x2a2c2 þ 1152x4c2

�169344c4a2 þ 48384x2c4 þ 967680c6
�

� ða2 � x2Þ3=2; 0pxoa; c >
ffiffiffi
2

p
a: ð10Þ

Fig. 3 displays the crack shapes obtained from
Eq. (10) for c/a=0.7,0.8,0.9,1 with the crack displace-
ments lower for higher c/a values.

Fig. 3. Normalized crack face displacements uz/(tN/G) predicted by
the present strain-gradient theory for four values of the relative length

at hand and for a=1.
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Thus, the physical significance of the lengthscale c for
given crack length is to control the stiffness of the crack.
In other words, as the internal length c increases with
respect to the crack length of a given material, the
cohesion of the material increases, hence strain gradient
elasticity theory may be called ‘‘cohesive elasticity
theory’’.
Finally, it may be remarked that the asymptotic

expansion of the crack displacement close to crack tip at
y=0 takes the following cusp—form due to cohesive
forces that act at the crack tip region

uzjx-0D
tN

ffiffiffiffiffi
2a

p
Gc

x3=2 �
1

2c
x5=2 þ o x7=2

h i	 

; ð11Þ

in which o[ 
 ] denotes the order-of-magnitude symbol. It
is worth noting that classical fracture mechanics predicts
elliptical crack profile with uz|x-0px1/2 close to the
crack tip. This is due to the fact that elasticity ignores
the effect of cohesive forces that act at the crack tip
region. From the above formula a new material
parameter may be defined as the product Gc with
dimensions [F 
L�1], where F denotes force and L

denotes length. Herein this new parameter is called
‘‘crack stiffness’’ and below it is demonstrated that it
may be experimentally determined through carefully
performed Rayleigh wave in situ tests.

3. Propagation of Rayleigh surface waves

The possibility of a wave travelling along the free
surface of an elastic half-space, under conditions of
plane strain, such that the disturbance is largely
confined to the neighborhood of the boundary was first
considered by Lord Rayleigh [19]. The classical theory
of linear elasticity predicts no dispersion for these
motions; only including viscoelastic [20] or thermoelastic
[21] effects in the constitutive behavior leads to
dispersive Rayleigh waves. Moreover, in order to explain
the occurrence of dispersion of Rayleigh waves,
Vardoulakis [22] has considered a graded half-space,
that is a material with stiffness increasing with depth.
Here, as it was mentioned above, we take another path

of thought and consider the propagation of Rayleigh
waves in a gradient elastic, macrohomogeneous and
isotropic half-space x2p0 (Fig. 4) having as an objective
of examining the possibility of dispersive behavior.
The boundary conditions for the problem at hand by

requiring that the total stress tensor defined by Eq. (7)
and the double traction tensor defined by Eq. (8) to
vanish at the free surface. Hence, along the planar
boundary of the half-plane the conditions take the form
respectively,

s22 ¼ s21 ¼ 0; m222 ¼ m221 ¼ 0;

�Nox1oN; x2 ¼ 0:
ð12Þ

By considering steady-state harmonic vibrations, i.e.

ui ¼ %uie
iot; ð13Þ

in which o denotes the cyclic frequency of the wave, and
i �

ffiffiffiffiffiffiffi
�1

p
is the usual imaginary unit, we obtain the

solution of the displacement field, which in turn is
substituted into the second and third of the constitutive
equations (9) in order to arrive at the total stress and
double-stress fields, respectively. Then, the appropriate
dispersion or frequency equation is obtained by enfor-
cing the traction and double traction boundary condi-
tions (7) and (8), respectively, along the half-space
surface x2 ¼ 0; i.e.

s22=ðG *b2ei
#bxeiotÞ ¼ �a þ ða þ 2Þ � 2 #b2ðZ2

1 � 1Þ
hn

þ 2 #b2 � 1
3
#h2O2

i
Z2
1

o
A1

þ �a þ ða þ 2Þ � 2 #b2ðZ2
2 � 1Þ

hn
þ2 #b2 � 1

3
#h2O2

i
Z2
2

o
A2

þ i 2� 2 #b2ðZ2
3 � 1Þ �

1
3
#h2O2

h i
Z3A3

þ i 2� 2 #b2ðZ2
4 � 1Þ �

1
3
#h2O2

h i
Z4A4 ¼ 0;

s21=ðG #b2ei
#bxeiotÞ

¼ i �2� 2 #b2ð1� Z2
1Þ � #b2 þ 1

3
#h2O2

h i
Z1A1

þ i �2� 2 #b2ð1� Z2
2Þ � #b2 þ 1

3
#h2O2

h i
Z2A2

þ 1þ Z2
3ð1� #b2Þ þ #b2ð1� Z4

3Þ �
1
3
#h2O2Z3

h i
A3

þ 1þ Z2
4ð1� #b2Þ þ #b2ð1� Z4

4Þ �
1
3
#h2O2Z4

h i
A4

¼ 0 ð14Þ

and

m222=ð2Gc #bei
#bxeiotÞ

¼ � #b2½Z3
1A1 þ Z3

2A2� � i #b2½Z2
3A3 þ Z2

4A4� ¼ 0;

m221=ð�Gc #bei
#bxeiotÞ

¼ �2i #b2½Z2
1A1 þ Z2

2A2� þ #b2½ð1þ Z2
3ÞZ3A3

þ ð1þ Z2
4ÞZ4A4� ¼ 0: ð15ÞFig. 4. Half-space and coordinates.
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In the above equations we have set the following
dimensionless variables

#b ¼ cb; x ¼ x1=c; y ¼ x2=c;

a ¼
2n

1� 2n
; #h ¼

h

c
; O ¼

oc
cT

: ð16Þ

The wavelength of the Rayleigh wave L is inversely
proportional to b such that L=2p/b. From the above
definitions it may be seen that as #b-0; then L/c-N, or
the wavelength cannot ‘‘see’’ the material length c. On
the other hand, as #b-N the volume energy length is
infinitely larger than the wavelength of the Rayleigh
wave. The case #b ¼ p corresponds to the shortest
physically meaningful wavelength (i.e. LX2c).
Eqs. (14) and (15) represent a plane harmonic wave
with varying amplitude functions of the dimensionless
coordinate y travelling in the Ox1-direction and having a
dimensionless wave number #b; a cyclic frequency o, and
attenuation constants #bZi ði ¼ 1;y; 4Þ: Also, Za

(a=1,...,4) are given by

Z2
1 ¼ 1�

#b1
#b

 !2
; Z2

2 ¼ 1þ
#b2
#b

 !2
;

Z2
3 ¼ 1�

#b3
#b

 !2
; Z2

4 ¼ 1þ
#b4
#b

 !2
; ð17Þ

where #bi ¼ cbi ði ¼ 1;y; 4Þ and

Of considerable importance in this problem is the
behavior of the roots (17). The notion of surface waves
means that the deformation is confined in a thin layer
adjacent to the free surface, i.e. the displacement field is
fading exponentially with y, being zero at infinite y; thus

lim
y-�N

%u1 ¼ 0; lim
y-�N

%u2 ¼ 0: ð19Þ

All the roots Zi (i=1,...,4) given by Eqs. (17) and (18)
are positive real if the following inequality holds true

C2p1þ #b2; ð20Þ

wherein C ¼ cR=cT; with cR to be the Rayleigh
wave velocity and cT the shear wave velocity. In the

absence of cohesive forces, i.e. #b ¼ 0; inequality (20)
means that cRocT; that is the velocity of Rayleigh
surface waves cannot exceed the velocity of shear
waves.
The above Eqs. (14) and (15) constitute a homoge-

neous system of equations in terms of the constants A1,
A2, A3 and A4, which can be put in the compact form
[Y]{A}=0. To arrive at non-trivial solutions of the
homogeneous system, the matrix [Y] must be singular,
that is either the determinant of the system must be zero,
or one of its four eigenvalues must vanish (eigenvalue
problem), i.e.

JðO; #b; nÞ ¼ detð½Y �Þ ¼ 0 or l1l2l3l4 ¼ 0; ð21Þ

where li (i=1,y,4) are the four eigenvalues of the 4� 4
matrix [Y]. This is the Rayleigh determinant for ‘‘non-
local’’ elastic surface waves. Then we fix the wave
number #b; as well as Poisson’s ratio, and we consider
the equation for the determinant as an equation for
the dimensionless frequency O. It is not difficult to verify
that for #b ¼ 0; the determinant equation reduces to
the classical Rayleigh function whose roots are given
by Eringen and Suhubi [23] for various Poisson’s
ratios n. It is also clear that the root of the determi-
nant equation is a function of c, consequently in
contrast to the classical theory the Rayleigh wave
velocity predicted by the proposed gradient elasticity
theory is dispersive.

As it is illustrated in Fig. 5 the various relations
among the two length scales c and h lead to different
shapes of the dispersion curve. In the same graph the
constant relative phase velocity curve predicted by the
classical elasticity theory,

cR

cT
¼
0:87þ 1:13n

1þ n
ð21aÞ

is also displayed by a bold curve.
The following observations can be made from the

theoretical analysis presented in Fig. 5:

(1) If the strain-gradient length scale c is small
compared to the characteristic wavelength of the

b1 ¼
1

2c


cL

cT

	 
4
þ8

o
cT

	 
2
c2 þ

1

9

ho
cT

	 
4
�
2

3

ho
cT

	 
2
cL

cT

	 
2s
�

cL

cT

	 
2
þ
1

3

ho
cT

	 
2vuut ;

b2 ¼
1ffiffiffi
2

p o
ccTb1

	 

;

b3 ¼
1ffiffiffi
2

p
c


1þ 4

o
cT

	 
2
c2 �

2

3

ho
cT

	 
2
þ
1

9

ho
cT

	 
4s
� 1þ

1

3

ho
cT

	 
2
;

vuut
b4 ¼

o
ccTb3

	 

: ð18Þ
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Rayleigh wave, that is O-0, then the results
obtained from gradient and classical elasticities
coincide.

(2) For hp2c the dispersion curve initially decreases
with the frequency O and then increases. The
gradient theory predicts larger Rayleigh wave
velocities than the classical theory above some
value of the dimensionless frequency. On the other
hand, for hp2c the dispersion curve decreases
monotonically with O and resembles the curve
derived from atomic lattice calculations [24].

(3) Measured dispersion curves through carefully per-
formed Rayleigh wave experiments on geomaterials
with known mean grain or crystallite size h,
Poisson’s ratio n and transverse wave velocity cT,
may be used to establish the strain gradient length
scale c.

4. Non-destructive characterization of surface cohesion

and damage of Dionysos–Pendelikon marble via surface

wave measurements

Surface wave measurements at various frequencies in
the range of 100–1000 kHz were performed in the
Athens Akropolis Parthenon—that was constructed
for the second time in 447–438 BC—in order to develop
an acoustic technique for surface wave damage identi-
fication and quantification.1 Measurements were per-
formed in four different classes of stone blocks:

Class 1: Virgin (reference) Dionysos marble which is
used for restoration of the monument and it
is considered as an undamaged stone.

Class 2: South wall blocks.

Class 3: North wall blocks, which according to the on
site archeologists are more damaged than the
South wall due to various causes of environ-
mental weathering.

Class 4: East drum blocks. Three blocks were tested,
a restored block where major cracks were
filled with cement, an unrestored block and a
block, which had been exposed to high-
temperature variations due to a fire and
should be more damaged due to thermal
cracking.

A portable acoustic system designed for pulse
transmission was used in this experimental study. A
schematic drawing of the system is shown in Fig. 6 and
it consists of the following units:

(a) Function generator (HP 33120 A).
(b) Power amplifier (ENI Model 2100L).
(c) Digital oscilloscope (Yokogawa DL 1300 A).
(d) Portable lap-top PC for storage of full waveforms.
(e) Acoustic transducers.

The function generator generates an electric pulse,
a one-swing sine wave, which is amplified and converted
to an acoustic signal by the emitting transducer.
The acoustic signal propagates through the sample
and is received and converted back to an electrical
signal by the receiving transducer. The signal is recorded
by a digital oscilloscope, transferred to the lap-top PC
and stored on the hard disk. MATLAB has been
used for plotting and analysis of the recorded signal.
The acoustic signals are recorded by the laptop through
an acquisition program written in LABVIEW.
The communication between the laptop and the
operating units (oscilloscope and function generator)
is performed through GPIB transmission lines. The
function generator and oscilloscope are controlled
through the acquisition program and their settings are
stored in the computer together with the acoustic
signals.
Transducers for surface wave tests should have a

small diameter, such that an accurate estimate of the
distance between the emitting and receiving transducer
can be made. In addition, the transducers must produce
surface waves with enough energy to be detected clearly
by the receiving transducer. Different transducers, both
commercial and in-house made, were tested and the in-
house manufactured transducers were found to be the
most suitable ones; see [25] for a detailed description of
the selection work. The in-house made transducers
contain a piezo-electric disc from Ferroperm A/S in
Denmark. They are 5mm in diameter, 1mm thick and
made by a ceramic called PZT27 (lead zirconium
titanate). The frequency of the thickness mode is
1.95MHz.The transducer backing is 8mm in diameter
and 7mm in length and made from a mixture of

Fig. 5. Effect of the length scale ratio h/c on the form of dispersion

curve of Rayleigh waves for n=0.3. In the same graph the solution of
classical elasticity is shown with a bold line.

1 It is known that the maximum depth of penetration of Rayleigh

waves is 2L.
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tungsten particles and epoxy. The backing is covered
with conductive silver paint to reduce the electrical noise
in the signal. The transducers are not very robust and
only a few test series can be performed by a transducer
pair. The tests reported in this study are therefore
generally performed with different transducer pairs.
A photograph of the acoustic system used in the

Athens Akropolis Parthenon is shown in Fig. 7. The
computer is seen in the middle of the photograph, placed
on top of one of the transporting boxes, while the
oscilloscope is seen to the right of the computer. It is
placed on top of the function generator, which in turn is
placed on top of the amplifier. Neither the function
generator nor the amplifier is seen on the photograph.
Four blocks of Dionysos marble is seen to the left of the
photographs. The remaining blocks are original marble
from the Parthenon. Dionysos marble, exhibits very
similar properties with Pentelikon marble that was used

by the Athenians to build the Parthenon, and it is used
currently for the restoration of the Parthenon. It
consists of an equidimensional mosaic of fine calcite
grains with straight to gently curved boundaries having
an average size of 2 hD400 mm. Its representative
mineralogical composition by weight is calcite 98%,
quartz 0.5%, muscovite 0.5%, sericite 0.5%, chlorite
0.5%, and some small percentage of dolomite may be
also present in its composition. This type of quasi-
homogeneous rock has a unit weight of 2.67 (� 105N/
m3), porosity 0.371%, and water absorption coefficient
by weight 0.11%.
The surface wave velocities found from the tests on

each site scatters from test series to test series. However,
the general trend should be that the material at each site
should have about the same amount of damage. The
damping of the signal gives a low ratio between the
signal and the noise level, which results in an uncertainty
in the picking of the arrival time of the wave. The first
break of the surface wave should theoretically be
independent of the frequency for a homogeneous linear
elastic material. The measured velocities, however, are
clearly frequency dependent. The face-to-face tests have
shown that the first top of the signal is small compared
to its maximum amplitude. Because of damping and
noise in the signal, the selection of the first break moves
towards the first top. The distance from first break to
first top decreases with increasing frequency. A
frequency change from 100 to 600 kHz gives thus a
decrease of 2.08 ms in arrival time. From the recorded
waveforms, the surface wave velocity and its dispersion
were calculated. The velocities were calculated using the
first break method to find the arrival time ta. The
velocity cR is given as cR ¼ s=ta where s is the distance
between the transducers. The velocity was found to
differ by 10–50m/s (B1.5%) in the waveforms within
one-test series for the same source frequency. This could
be because the selection of waveform arrivals is affected

GPIB Connection

Trigger Connection

Oscilloscope

Generator

Portable lap top

Rock sample

Power Amplifier

Fig. 6. Schematic of the portable acoustic system.

Fig. 7. Photograph of Dionysos marble blocks (seen to the left)

together with the acoustic system. The test was performed on block

number two from the front. The other blocks are original marble from

the monument. Parts of the South wall are shown in the middle of the

photograph.
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by the quality, the noise and the frequency of the signal,
or because the transducers are slightly moved during the
measurement. If the transducers are moved 1mm
relatively to each other, which is about 1% for the
measurements at Akropolis, the velocity of the recorded
surface wave will also change by 1%.
The surface wave velocities at 500 kHz source

frequency were found to vary from 2630m/s in the East
drum block transected by thermal fractures, to 3012m/s
in the virgin Dionysos marble as shown in Fig. 8. The
same figure shows the mean value of the surface wave
velocities for each test site versus source frequency. Note
that the velocities found for South Wall tests are higher
than the corresponding velocities found for North wall
and both are below the velocities found for undamaged
material. This corresponds well with the fact that the
North wall is expected to be more damaged than the
South wall. The velocities found at East drum are higher
than the velocities for the North and South walls except
for the test on the block with thermal cracks which
showed lower velocities, as expected.
The next task is to estimate the values of the

transverse wave velocity cT and internal length scale c
of each class of marble. This estimation will be based on
the following data:

(i) The transverse wave velocity cT=3160m/s of the
virgin Dionysos marble [25].

(ii) The dynamic Poisson’s ratio n=0.31 of the virgin
Dionysos marble [25].

(iii) The mean grain size of the calcite crystals of
Dionysos marble 2h=0.4mm.

(iv) The dispersion curves displayed in Fig. 8 above.

First, the values of the transverse wave velocity of
each type of marble was found by requiring that the
normalized wave velocity as h/c-0 should be equal to
that predicted by the local linear elasticity theory for a
material with Poisson’s ratio n=0.31, that is cR/
cT=0.928 for O-0. In a second step, the values of the
gradient length scale c for the five types of marble were

found by a constrained non-linear minimization routine
of the sum S of the squares of differences between the
predicted Rayleigh wave velocities cR,i

pred from the
exposed strain gradient theory above and the measured
velocities cR,i

meas at each wave frequency oi (i=1,y,N),
that is to say

S ¼ min
XN

j¼1

ðcpredR; j � cmeasR; j Þ
2

" #
pe; ð22Þ

where N is the total number of measurements at the
corresponding surface wave frequencies and e is the
prescribed small error tolerance. After best fitting the
experimental data with the theoretical model, Table 1
was constructed. In the same table the dynamic shear
modulus and damage of the various marble categories
that are calculated by employing the following equations
are also displayed

G ¼ rc2T; *G ¼ r*c2T; ð23aÞ

D ¼ 1�
*G

G
¼ 1�

*c2T
c2T
; ð23bÞ

in which r denotes the density of the material, *G; *cT
denote the effective dynamic shear modulus and
transverse wave velocity of the damaged marble,
respectively. The respective quantities without the curly
overbar correspond to the virgin undamaged Dionysos
marble.
From the above table it is seen that h/cD0.13–0.25,

hence there is no effect of grain size on the dispersion of
all classes of marble. Second, it is shown that, despite the
fact that both virgin Dionysos marble and East drum
test materials have a more or less equal transverse wave
velocity and consequently the same level of surface
damage, the marble of the East drum is characterized by
a much lower cohesion of its superficial layers or
microcrack stiffness Gc. Hence, both these parameters
should be considered for the characterization of

Fig. 8. Mean surface wave velocities versus source frequency at all

sites.

Table 1

Best estimations of the strain-gradient length scale and the transverse

wave velocity of each class of marble. The estimations of the dynamic

shear modulus, crack stiffness, quality factor and damage are also

displayed

Marble class c (mm) cT (m/s) *G c *G Q D

(GPa) (� 106N/m)

Dionysos virgin 1.474 3162 26.7 39.4 11.7 0.000

East drum 0.898 3153 26.5 23.8 28.3 0.006

South wall 1.093 3035 24.6 26.9 18.7 0.079

North wall 0.865 2965 23.5 20.3 26.7 0.121

East drum with

thermal crack

0.822 2787 20.7 17.0 28.4 0.223
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mechanical properties of a geomaterial. As it was
expected and also noted from the above table, the
microcrack stiffness decreases as the damage of marble
increases.
Finally, after appropriate normalization of all the test

data we have constructed the corresponding dispersion
data that are illustrated in Fig. 9. In the same figure the
theoretical dispersion curve derived from the proposed
theory that corresponds to h/cD0 is also displayed.2

Another explanation for the frequency dependency of
the velocity may be given by assuming that the material
behaves like a viscoelastic solid. When a mechanical
pulse propagates through a viscoelastic solid it is
dispersed, as the high-frequency components travel
faster and are attenuated more rapidly that those of
lower frequency. Kolsky [26] proposed the following
expression for the wave velocity *cR as a function of the
frequency o

*cR ¼ cR 1þ
ln o

o0

� �
pQ

0
@

1
A; ð24Þ

where o0 is a reference frequency and Q is the quality
factor of the stone that represents the ratio of stored to
dissipated energy. Fitting the data in Fig. 10 for the
reference Dionysos marble gives a quality factor
Q=11.67. Such a value appears to be rather low for
marble. A more representative value should have been
an order of magnitude larger, in which case the
frequency dependency of the velocity would have been
lower. Further, Fig. 10 and Table 1 present the best
fitting curves and Q-values, respectively, for the other
four marble classes.
Also, from Fig. 11a it may be seen that a linear trend

exists separately between (a) the crack stiffness and (b)

the quality factor and the damage of marble, although
the former has a negative slope and the latter a positive
slope, as it was intuitively expected. Although these
linear relations have a relatively low correlation
coefficient it is worth noticing from Fig. 11b that Q

and Gc are linearly related with a high correlation
coefficient.

Fig. 10. Best predictions of the measured dispersion curve of each

marble class by strain gradient elasticity and viscoelasticity.

Fig. 11. (a) Dependence of the crack stiffness parameter and quality

factor on the damage of Pendelikon marble. (b) Empirical relation of

quality factor with crack stiffness parameter of Pendelikon marble.

Fig. 9. Dimensionless surface wave velocities versus dimensionless

source frequency predicted by gradient elasticity and measured in situ.

2 It may be shown that the dispersion curves for h=cD0:1320:25
almost coincide with the curve corresponding to h=cD0:
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5. Conclusions

A new continuum micromechanics theory that takes
into account the role of strain gradients is proposed
in this work. Subsequently, this theory is applied for
the back analysis of in situ surface wave propagation
tests at Parthenon. The following main conclusions
may be drawn from this theoretical and experimental
study:

* Within this formulation, two characteristic internal
length scales of the medium are introduced. One of
them, c, is associated with an additional term
appearing in the strain-energy density expression
and accounts for the influence of strain gradients near
boundaries (i.e. grain boundaries and microcracks).
The other, h, is the characteristic size of the unit cell
of the medium (i.e. crystallite of a polycrystalline
rock or grain of a granular soil or rock material).

* Also, a new material parameter defined as the
product Gc (G is the shear modulus) has been shown
to control the stiffness of a microcrack in a material
or alternatively the cohesion of the material sur-
rounding the microcrack.

* It is demonstrated that this theory predicts dispersive
Rayleigh waves in contrast to classical Elasticity
Theory. Depending on the ratio of material length
scales h/c the theory yields increasing or decreasing
surface wave phase velocity with frequency. The first
case is also predicted by viscoelasticity theory
although the dispersion curve is concave downwards
(e.g. Fig. 10). The second case resembles very closely
that predicted by the atomic lattice theory.

* The back analysis of the surface wave measurements
in reference to Dionysos–Pendelikon marble and at
various sites in the Athens Akropolis Parthenon with
the proposed strain-gradient (microelasticity) theory
showed that surface cohesion—that may be expressed
with crack stiffness parameter c *G—as well as damage
D, can be quantitatively estimated through velocity
dispersion tests. It is shown that an approximate
linear relation exists between the crack stiffness
parameter with damage of the marble. An interesting
outcome of the proposed micromechanical theory is
that it links the propagation of surface waves with the
mechanical behavior of cracked rocks that is depicted
by the damage which influences the elastic constants
and by the intrinsic length scale c that influences the
crack opening displacement and initiation [7]. It is
remarked here that the weathering of marble is
manifested by both the change of its microfabric at a
depth that is reached by the surface waves and some
surface alteration (roughness) of the a priori perfectly
smooth monumental marble. However, both altera-
tions are manifestations of surface damage of the
marble.

* In an alternative fashion, the in situ test results are
interpreted with viscoelasticity theory. In this case
also the quality factor Q of the four marble classes is
correlated linearly with the surface damage of the
marble. However, it is remarked that the estimated
Q-values appear to be rather low for marble (it varies
between 11.7 and 28.5). For rocks the value of Q is
found to vary between 30 and 300 [27]. Finally, a very
good linear relation of quality factor Q with c *G is
found for the Dionysos–Pendelikon marble.

An improved test method is proposed here based on
the above experimental and theoretical results. This
method aims to identify cohesion and damage of a stone
close to the surface. A set up with one source transducer
and three receivers is proposed, as shown in Fig. 12. The
transducers should be mounted on line at fixed
distances. This allows the calculation of the velocities
with better precision and the calculation of the wave
attenuation with distance. This configuration allows also
the identification of refracted or reflected waves since the
waveforms at various distances from the source can be
compared. The attenuation is known also to depend on
the surface roughness and the proposed test configura-
tion can then give a measure of the surface roughness
based on a few tests. The attenuation is also frequency
dependent and using different frequencies will give a
measure of the size of the surface cracks/inhomogene-
ities. The transducers should be broad banded and able
to measure frequencies between 100 kHz and 1MHz.Ty-
pical frequencies used in a study should be 250, 500 and
750 kHz, which would give a corresponding wavelength
of 12, 6 and 4mm. This will provide the necessary
distance between source and receiver in order to avoid
near field effects and provide information of the surface
up to 12mm depth in the stone. A test series on a surface
should typically consist of tests with minimum three
different source frequencies and several tests with the
same source center frequency which allow us to stack
the data to get rid of noise.
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