
DOI 10.1007/s11012-005-2106-1
Meccanica (2005) 40: 389–418 © Springer 2005

Modelling of Microstructure and its Evolution
in Shape-Memory-Alloy Single-Crystals, in Particular in CuAlNi
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Abstract. A continuum-mechanical description of the stored energy in shape-memory alloys is pre-
sented, with its multi-well character giving rise to a microstructure described, with a certain approxi-
mation, by special gradient Young measures. A rate-independent phenomenological dissipation is then
considered to model a hysteretic response. Isothermal simulations with CuAlNi single crystal are
presented.
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1. Introduction

Shape-memory alloys (=SMAs) as so-called active (or smart) materials have been
subjected to intensive theoretical and experimental research during the past decades,
since they have been enjoying important applications in medicine and mechanical
or aerospace engineering. They exhibit specific hysteretic stress/strain/temperature
response, which is called shape-memory effect. This is related with the phenom-
enon that atoms tend to be arranged in different crystallographic configurations
(in particular, having different symmetry groups) depending on temperature. Higher
temperatures leads to a higher-symmetry (typically cubic) grid referred to as the aus-
tenite phase while lower temperature leads to a lower-symmetric grid (typically tetrag-
onal, orthorhombic, monoclinic, or triclinic) called the martensite phase which may
occur in M variants, M=3,6,12, or 4 in the mentioned cases, respectively. They can be
combined coherently with each other, forming so-called twins of two variants, also
called a laminate (cf. Figure 1d). Laminates can be combined in layers-within-lay-
ers to second-order (or even higher-order) laminates (cf. Figure 1e), or some other
self-organization as wedges or branching like on Figure 1f can be observed and
explained by mere crystallographic arguments (cf. [10–12, 29, 48, 53, 54]). These
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Figure 1. Schematic explanation of the creation of twinned martensite and a real observation: (a) the
parent austenite (cubic), (b) two variants of “orthorhombic” martensite elongated vertically or hor-
izontally, (c) twin occurring by matching two slightly rotated triangles of two martensitic variants,
(d) first-order laminate (the gray levels distinguish particular variants), (e) second-order laminate (lay-
ers within layers, cf. the rank-1 conditions (3)), (f ) a rather chaotic arrangement of martensite in a
CuAlNi single crystal; courtesy of V.Novák and P.Šittner, Inst. of Physics, Acad. of Sciences of the
Czech Rep.

basic studies address primarily stress-free configurations. Under loading, one has to
consider a phenomenological free energy recording energy, dependent on tempera-
ture and deformation gradient, stored in vibrating interatomic links. Under greater
loading, austenite can usually transform to one (or rather more) variant(s) of mar-
tensite, which is referred to as a martensitic phase transformation (=PT) and leads to
so-called pseudo-elasticity (sometimes also called super-elasticity). Under lower tem-
perature, rather particular martensitic variants transform to each other, which is
called re-orientation of martensite and gives rise to so-called quasi-plasticity. These
processes are completely reversible but usually quite dissipative, i.e. mechanical energy
transforms to heat (but, in closed cycles, without leading to any change of structure).
These processes are activated (i.e. the related dissipation potential is nondifferentiable
at that process rate = 0) and their dissipation is, with exception to fast and substan-
tially anisothermal processes, rate independent (i.e. the dissipation potential is degree-
1 homogeneous and the stress/strain response is hysteretic).

Mathematical and computational modelling of SMAs represents a certain tool of
theoretical understanding of PT processes. It may complete experimental results, may
predict response of new materials, or may facilitate the usage of SMAs in engineering
applications. The real situation in SMAs is truly multi-scale and creates a variety of
possibilities for modelling, see [64] for a survey of a wide menagerie of SMA models
ranging from nano- to macro-scales. Here we focus on a mesoscopic model based on
continuum mechanics but involving, beside the macroscopic deformation and its gra-
dients also volume fractions and their particular gradients. This seems a fruitful com-
promise allowing for modelling scales of large single crystals as often used in labs.

The goal of this article is to expose the “mesoscopic” description of the possible
laminated microstructure by special so-called Young measures in Section 2 and the
basic phenomenological concepts behind SMAs, i.e. the stored and dissipation ener-
gies, and the governing variational principles in Sections 3 and 4. Then, in Section 5,
we present the evolution model together with its analysis involving some new math-
ematical results and eventually, in Section 6, we illustrate it on specific experiments
with a specific SMA, namely CuAlNi which exhibits cubic-to-orthorhombic PT. We
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refer to [34,65] for a simpler cubic-to-tetragonal PT occurring in NiMnGa, which
is calculated by only first-order laminates. We will confine ourselves to isothermal
processes in single-crystals, and intentionally suppress mathematical technicalities to
minimum with a certain exception of Section 5.

2. Mesoscopic Description of Laminated Microstructure as an Approach to
Multiscale Modelling

The stress-free parent austenite is a natural state of the material and, in the context
of continuum mechanics, it is a natural reference configuration of a specimen occupy-
ing, say, a domain �⊂R

3. As usual, y:�→R
3 denotes the deformation and u:�→

R
3 the displacement, related to each other by y(x)=x +u(x), x ∈�. Hence the defor-

mation gradient equals F =∇y = I+∇u with I∈R
3×3 being the identity matrix and ∇

is the gradient operator.
As indicated on Figure 1, the deformation gradient often tends to develop fast spa-

tial oscillations which are due to non-(quasi)convexity of the stored energy density and
which are difficult to be modelled in full detail, although some studies in this direction
exists, too (cf. [3]). We want to address a “mesoscopic” level recording “limit informa-
tion” of the faster and faster oscillating deformation gradient when we “zoom it out”
towards the macroscopic scale. This can be described, at a current “macroscopic point”
x ∈�, by a probability measure νx on the set of matrices from R

3×3 (cf. e.g. [10, 11,
42, 48, 53]). The collection ν ={νx}x∈� is called a Young measure; more precisely, the
map x �→ νx is required to be still weakly measurable. In our context, relevant Young
measures are only those that are attainable as a limit of gradients (in the sense of (57)
below) of deformations y ∈ W 1,p(�;R

3) := {y ∈ Lp(�;R
3); ∇y ∈ Lp(�;R

3×3)}, where
Lp(�;R

3×3) :={z :�→R
3×3 measurable :

∫
�

|z|pdx <+∞}, for a suitable exponent p∈
(1,+∞) related with the p-polynomial-type growth and coercivity of the stored energy
density. Let us denote by Gp(�;R

3×3) the set of such parameterized measures. An
example of a Young measure ν ∈ Gp(�;R

3×3) describing a so-called first-order lami-
nate (cf. Figure 1d) with a underlying macroscopic deformation y ∈W 1,p(�;R

3) is

ν ={νx}x∈�, νx = ξ0(x)δF1(x) + (1−ξ0(x)) δF2(x), (1a)
[
ξ0F1 + (1−ξ0)F2

]
(x)=∇y(x), F1(x)−F2(x)=a0(x)⊗n0(x), (1b)

0� ξ0(x)�1, a0(x), n0(x)∈R
3. (1c)

This process can be re-iterated: a second-order laminate (cf. Figure 1e) with the mac-
roscopic deformation y as above is ν ={νx}x∈�, where

νx = ξ0(x)ξ1(x)δF1(x) + ξ0(x) (1−ξ1(x)) δF2(x)

+ (1−ξ0(x)) ξ2(x)δF3(x) + (1−ξ0(x)) (1−ξ2(x)) δF3(x) (2)

with (dropping for simplicity a dependence on x)

F1 −F2 =a1 ⊗n1, F3 −F4 =a2 ⊗n2, (3a)

ξ1F1 + (1−ξ1)F2 − ξ2F3 − (1−ξ2)F4 =a0 ⊗n0, (3b)

∇y = ξ0ξ1F1 + ξ0(1−ξ1)F2 + (1−ξ0)ξ2F3 + (1−ξ0)(1−ξ2)F4 (3c)
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Figure 2. Schematic graph with attributed edges (left), being in fact a binary tree (right), which
corresponds to the second-order laminate from (3).

and 0 � ξi � 1, ai, ni ∈ R
3, i ∈ {0,1,2}. Analogously, we can get laminates of an arbi-

trary order which are often called sequential laminates (cf. Figure 2 above).
Unfortunately, not every ν ∈Gp(�;R

3×3) is of the form of a sequential laminate,
or even cannot be attained by sequential laminates, which can be interpreted that mi-
crostructures might be much more chaotic; this might be partly related with Figure 1f
although some explanation by wedge-like or other type of microstructures suggested
by Bhattacharya [12] can be more adequate here. This might be connected with the
Šverák’s famous counterexample [73] that rank-one convexity does not imply quas-
iconvexity. Moreover, an efficient description of Gp(�;R

3×3) is not available, which
is related with lack of a local characterization of quasiconvex functions (cf. [31]).

Starting from 1D-numerical experiments by Nicolaides and Walkington [50], there
are numerical studies involving gradient Young measures as e.g. [4, 32, 33, 61]
but, due to the mentioned impossibility of an efficient description of the whole set
Gp(�;R

3×3), they eventually have to deal with laminates of an order κ � 1, let us
denote this set as

Gp,κ

lam(�;R
3×3) :={ν ∈Gp(�;R

3×3); νx is a κ-order laminate for a.a. x ∈�
}
. (4)

Nevertheless, laminates enable us to describe volume fractions of particular phases/vari-
ants at a given material point. The idea of looking at volume fractions (sometimes in
simplified situations leading to a transformation strain as an independent variable)
occurred in various other models, too (see [6, 7, 19, 20, 37, 52, 70, 77]), often meant
for polycrystals so that the fine (and in context of single-crystals very important) issues
related with rank-one connections are often not accounted for.

3. Stored Energy and its Minimization

The specific energy stored in the inter-atomic links in the continuum ϕ̂ = ϕ̂(F ) is phe-
nomenologically described as a function of the deformation gradient F ; recall that we
consider temperature constant. The frame-indifference, i.e. ϕ̂(F )= ϕ̂(RF) for any R ∈
SO(3), the group of orientation-preserving rotations, requires that ϕ̂ in fact depends
only on the (right) Cauchy-Green stretch tensor C := F	F . As F = I + ∇u, we can
express the specific stored energy in terms of the displacement gradient as

ϕ =ϕ(∇u)= ϕ̂(I+∇u). (5)

The absence of an explicit dependence on x is related to homogenous single crystals
considered. The Piola–Kirchhoff stress σ :R3×3 →R

3×3 is given by σ =ϕ′(∇u) with ϕ′

denoting the tensor-valued gradient.
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We will use a St.Venant–Kirchhoff-like form of the stored energy of each particular
phase variants which allows for an explicit reference to measured data and can easily
be applied to various materials. We consider M variants of martensite determined, in
the stress-free state, by distortion matrices U�, �=1, . . . ,M, while the cubic austenite
corresponds to U0 = I.

The frame-indifferent stored energy of particular phases or phase variants is con-
sidered as a function of the Green strain tensor ε� related to the distortion of this
phase (variant). In the simplest case (cf. [54, Section 6.6] e.g.), one can consider a
function quadratic in terms of ε� of the form

ϕ̂�(F )= 1
2

d∑

i,j,k,l=1

ε�
ijC�

ijklε
�
kl +d�, ε� = R	

� (U	
� )−1F	FU−1

� R� − I

2
, (6)

where C� = {C�
ijkl} is the fourth-order tensor of elastic moduli satisfying the usual

symmetry relations depending also on symmetry of the specific phase (variant) �, d�

is some offset; d� depends on temperature which is, however, considered as fixed –
this dependence differs in various phases due to various heat capacities, which is just
what makes the shape-memory effect. (The temperature dependence of the elastic ten-
sors C� and the distortion matrices U� is usually negligible.) Finally, R� is a rotation
matrix transforming the basis of the austenite to the basis of the martensitic variant
�, if ��1 (cf. (74)), while R0 =I. We will advantageously use it to work with the same
tensor of elastic moduli for all martensitic variants, contrary to an alternative method
by Auld [5] which modifies the tensor C� for each particular martensitic variant.

The simplest way to assembly the overall multi-well stored energy ϕ̂ relying on that
materials naturally tend to minimize stored energy is to put

ϕ̂ := min
�=0,... ,M

ϕ̂� (7)

although some statistical-physics based formula (with quite the same effect) can be
consider, too (cf. [34, 64, 65]).

The total stored energy in the bulk occupying, in its reference configuration, the
domain � is then

V (u) :=
∫

�

ϕ(∇u)dx. (8)

Basic variational principle (although not always followed, cf. Section 4) is minimiza-
tion of the stored energy. Due to the multi-well character ϕ and here also due to the
chosen St.Venant–Kirchhoff form of ϕ, minimizing sequences of V tend to develop,
in general, faster and faster spatial oscillations of their gradients, which is related
to development of the finer and finer microstructures when the stored energy is to
be minimized, cf. again Figure 1d–f. The minimum of V , under specific boundary
conditions for u, say

u|
D =uD, (9)

where 
D is a part of the (Lipschitz) boundary ∂� of �, need not ever be attained
on the space W 1,p(�;R

3), however. This effect is due to neglecting the (usually small)
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energy stored in the interfaces like the twinning plane on Figure 1c, which is cer-
tainly relevant approach on meso- and macroscopic level. However, the minimum is
attained, under suitable coercivity conditions, on Young measures from Section 2. For
this, we need to extend V by continuity for such measures. Considering now the con-
figuration as the couple (u, ν)∈W 1,p(�;R

3)×Gp(�;R
3×3), the extended functional is

V (u, ν) :=
∫

�

∫

R3×3
ϕ(A) νx(dA)dx =

∫

�

∫

R3×3
ϕ̂(I+A)νx(dA)dx. (10)

The set of admissible configurations is now
{
(u, ν)∈W 1,p(�;R

3)×Gp(�;R
3×3); (9) holds and

∫

R3×3
Aνx(dA)=∇u for a.a. x∈�

}
(11)

and the minimum of V̄ on this set is the infimum of V on W 1,p(�;R
3) under (9).

The process of extension V to V̄ is called relaxation (cf. [53, 61]).

4. Dissipation Energy and its Maximization

PT in SMAs is, to a large extent, a rate-independent, activated process and leads to a
specific dissipation which results in a hysteretic response in stress/strain diagrams. Its
modelling is equally important as the stored energy but the related phenomenology is
still less understood than the stored-energy one; indeed, as pointed out by Bhattach-
arya et al. [14], ‘much remains unknown concerning the nucleation and evolution of
microstructure, and the resultant hysteresis’. Let us recall that the orbits SO(3)U� and
SO(3)Ul are rank-one connected if

∃R ∈SO(3) : Rank(U� −RUl)=1, (12)

(cf. also Figure 1b,c). There seems to be two main approaches to the dissipation
problem:

(A) the hysteresis (and the related rate-independent dissipation) is determined by the
stored-energy landscape, advocated essentially by Abeyaratne and Knowles [2],
Ball et al. [8, 9], Goldstein [21], James and Zhang [30], Šilhavý [67], Truskinovsky
[75], Vainchtein and Rosakis [76], etc. The common philosophy is that, if the
orbits SO(3)U� and SO(3)Ul are rank-one connected, then the dissipation within
PT between these (phase) variants is small, or rather zero, otherwise it is related
with metastability and a stress which the material must inevitably withstand to
move out of the bottoms of the wells during the PT.

(B) The hysteresis is quite independent of the stored energy and needs a separate
phenomenology (recording, e.g, various impurities and dislocations in the atomic
grid that lead to bigger dissipation), advocated essentially (besides authors’ own
previous works) by Auricchio and Petrini [6], Auricchio et al. [7], Frémond [19],
Govindjee et al. [23, 24], Hall and Govindjee [26], Govindjee and Miehe [22],
Hackl et al. [25], Lexcellent et al. [37], Vivet and Lexcellent [77], Rajagopal and
Srinivasa [57], Souza et al. [70], Stupkiewicz and Petryk [71], and many others.
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It is likely that both these approaches combine mutually. Besides, for completeness
let us mention that there are attempts to apply a phenomenology like (B) but through
a modification of the stored energy which then causes a hysteresis like in the case (A)
(see [1, 47, 78]).

Following [62, Formula (33)] and the works [34, 43, 55, 56, 63–65], we adopt a (to
some extent quite simplified) standpoint that the amount of dissipated energy within
the particular PT between austenite and a martensitic variant or between two mar-
tensitic variants can be described by a specific energy (of the dimension J/m3=Pa).
It has independently been adopted in physics (see [28, 74, 77]). For this, we need
to identify the particular phases or phase variants and thus we define a continuous
mapping L: R

3×3 →� where

� :=
{

ζ ∈R
1+M; ζ� �0, �=0, . . . ,M,

M∑

�=0

ζ� =1
}

(13)

is a simplex with M+1 vertexes, M = the number of martensitic variants as in Section
3. As in (5), we assume

L(∇u)= L̂(I+∇u) with L̂: R
3×3 →�. (14)

Here L̂ is related with the material itself and thus is to be frame indifferent. We
assume, beside L̂� �0 and

∑M
�=0 L̂� =1, that L̂�(F )=1 if F is in the �th (phase) var-

iant, i.e. F is in a vicinity of �th well SO(3)U� of ϕ, which can be identified accord-
ing to the stretch tensor F	F close to U	

� U� (cf. [44, 46]) and the formula (74). If
L̂(F ) is not in any vertex of �, then it means that F in the spinodal region where no
definite (phase) variant is specified; we assume, however, that the wells are sufficiently
deep and the (phase) variants geometrically sufficiently far from each other that the
tendency for minimization of the stored energy will essentially prevent F to range the
spinodal region and thus the concrete form of L̂ does not seem to be important as
long as L̂ enjoys the above properties. Hence L plays the role of what is often called
a vector of order parameters or a vector-valued internal variable.

The dissipation-energy phenomenology itself is considered through the choice of a
“norm” on R

1+M (not necessarily Euclidean and even not symmetric), let us denote
it by | · |M ; its physical dimension will be J/m3 =Pa. The desired meaning is to set up
the specific energy E�l needed for PT of a phase (variant) � to l as |e� − el|M , where
e� = (0, . . . ,0,1,0, . . . ,0)∈R

1+M is the unit vector with one at the position �. The set
{E�l}�,l=0,... ,M can reflect both the presence/lack of rank-one connections (A) and the
influence of various impurities (B).

Referring to a mesoscopic description through a Young measure ν∈Gp(�;R
3×3)

(see Section 2), the mesoscopic volume fractions λ=λ(x) at a current “macroscopic”
point x is then

λ(x) :=
∫

R3×3
L(A)νx(dA)=

∫

R3×3
L̂(I+A)νx(dA). (15)

As a mesoscopic configuration, we will consider a triple q = (u, ν, λ), i.e. the macro-
scopic displacement, the Young measure describing the microstructure, and the vol-
ume fraction field; of course, they are linked with each other by (15) and also by the
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constraint in (11). In terms of d
dt

q, the (pseudo) potential of dissipative forces R that
corresponds to this phenomenology is

R

(
dq

dt

)

=R

(
du

dt
,

dν

dt
,

dλ

dt

)

:=
∫

�

∣
∣
∣
∂λ(t, x)

∂t

∣
∣
∣
M

dx. (16)

This means, considering a process over the time interval [t1, t2], the overall dissipated
energy by all undergone PTs in the whole specimen � will be

∫ t2

t1

∫

�

∣
∣
∣
∂λ

∂t

∣
∣
∣
M

dx dt =
∫

�

Var
t∈[t1,t2]

λ(t, x)dx, (17)

where the total variation “Var” with respect to the (possibly non-symmetric) norm
| · |M counts which PTs (and how many times) have been undergone at the point x.
The important property of R is that it satisfies the triangle inequality, i.e.

∀q1, q2, q3 ∈Q : R(q1 −q3)�R(q1 −q2)+R(q2 −q3), (18)

which follows immediately from convexity and the degree-1 homogeneity.
The dissipation mechanism through the convex, degree-1 homogeneous potential

R is intimately related with Hill’s maximum-dissipation principle [27]. The desired
energy balance, i.e. the rate of Helmholtz’ stored energy V̄ plus the dissipation rate
equal to the power of the external force, is

dV̄

dt
+R

(
dq

dt

)

=
〈
f,

du

dt

〉
, (19)

where the degree-1 homogeneous dissipation rate R can be written in the form

R

(
dq

dt

)

=
∫

�

ω(t, x) · ∂λ(t, x)

∂t
dx with ω(t, x)∈ [∂| · |M

]
(

∂λ(t, x)

∂t

)

(20)

with ∂| · |M denoting the subdifferential of | · |M . The last inclusion can be written as
〈∂λ(t, x)

∂t
,ω(t, x)

〉
=max

z∈Z

〈∂λ(t, x)

∂t
, z
〉

with Z := [∂| · |M
]
(0). (21)

This says that, for the considered volume-fraction rate ∂
∂t

λ, the driving stress (or spe-
cific activation energies) ω in Pa (=J/m3) makes the dissipation caused by the PTs
maximal among all other admissible driving stresses, i.e. those from the convex set
Z ⊂ R

1+M . In plasticity theory, this maximum-dissipation principle can alternatively
be expressed as a normality in the sense that the rate of plastic deformation belongs
to the cone of outward normals to the elasticity domain (see also [38, 68]), and also
[40] for the more general situation of standard generalized materials. Here, this would
result in the observation that the rate ∂

∂t
λ(t, x) of PTs at (t, x) belongs to the normal

cone of the “elasticity domain” Z at the point ω(t, x). In particular, (21) says that
∂
∂t

λ=0 (i.e. the volume fractions do not evolve) if ω(t, x) is inside Z (i.e. there in not
enough stress to activate PTs at (t, x)). Also recall that ∂R is maximal responsive in
the sense of [17]. For a discussion in a 1D-case see also [3, Remark 4.5]. However, we
saw that (21) contains, in fact, only a rather small portion of information about the
evolution and other principles can be considered at this context, too (cf. also Remark
5.4).
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5. Energetic Solution and its Discretization

We want to present briefly the model of evolution of microstructure described “meso-
scopically” as in Section 2 governed by the principles from Sections 3 to 4, as well as
its mathematical analysis. It exploits the definition of the so-called energetic solution
invented in [44, 45] (see also the survey article [44]) and the results are then mainly
based on [34, 41, 43, 65] (improving substantially the results of [34, 65]) exploiting
also some recent results. In accord with Section 6, we consider here a “soft-device”
loading through time-varying Neumann’s boundary conditions.

We denote the set Q0 of the admissible configurations q’s, i.e.

Q0 ={(u, ν, λ)∈Q; λ=L • ν a.e.
}
, where (22)

Q :=
{
q = (u, ν, λ)∈W 1,p(�;R

3)×Gp(�;R
3×3)×L1(�;R

1+M);

∇u(x)=
∫

R3×3
Aνx(dA), λ(x)∈� a.e. on �, u|
D =uD

}
,

where we abbreviated

λ=L • ν, where
[
L • ν
]
(x) :=

∫

R3×3
L(A) νx(dA). (23)

We distinguished, just for numerical purposes later, Q, which “forgets” the constraint
λ=L • ν, from Q0.

The Gibbs’ stored energy which also counts for the time-dependent boundary con-
ditions and which is regularized by ρ >0 is

G(t, q) :=G(t, u, ν, λ)= V̄ (u, ν)+
∫


N

f (t, x)·u(x)dx +ρ
∣
∣λ
∣
∣r
α,r

on Q, (24)

G0(t, q) :=
{

G(t, q) on Q0,

+∞ on Q\Q0,
(25)

with V̄ from (10), f : [0, T ] × 
N → R
3 a prescribed “soft-device” loading, 
N ⊂

∂�,T >0 a fixed time horizon, and with the semi-norm in the Sobolev–Slobodetskiı̆
space Wα,r(�;R

1+M) considered as

∣
∣λ
∣
∣
α,r

:=
(

1
4

∫

�

∫

�

∣
∣λ(x)−λ(x̃)

∣
∣r

|x − x̃|3+rα
dx̃ dx

)1/r

(26)

for a fixed parameter 0 < α < 1. Such a regularizing term in (24) gives some (pos-
sibly very small) energy to spatial variation of mesoscopic volume fractions and is
exploited for a rigorous proof of existence of energetic solutions as well as con-
vergence of numerical approximations. Gradients of mesoscopic volume fractions
have already been used in Frémond’s model [19, p. 364]. Our form (26) corresponds
to the only “α-fractional gradient” which is compactifying, namely the embedding
Wα,r(�;R

1+M) ⊂ L1(�;R
1+M) is compact. Also it allows for an element-wise affine

approximation of λ, because Wα,r(�;R
1+M)⊃W 1,∞(�;R

1+M) or, if α <1−3(r−1)/r

with some 1<r <3/2, for an element-wise constant approximation which has neces-
sarily discontinuities on two-dimensional manifolds requiring then Wα,r(�;R

1+M) ⊃
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W 1,1(�;R
1+M); later in (33) we choose the latter option. In [43, 63] such a regulari-

zation was interpreted as a limit from the Ericksen–Timoshenko model scrutinized by
Ren and Truskinovsky [58], Rogers and Truskinovsky [59] who also proposed a non-
local term like (26) in the 1D case with either positive or also, for different purposes,
non-positive kernels. One can interprete the energy (26) as associated to a sort of
non-local microstress measuring non-local interactions related to spatial microstruc-
tural variations.

DEFINITION 5.1. The process q: [0, T ] �→Q0 will be called an energetic solution to
the problem given by the triple (G0,R, q0), i.e. by the data (ϕ,L, | · |M,f,uD, q0, ρ), if
it satisfies the initial condition q(0)=q0, the static stability condition:

∀t ∈ [0, T ] ∀q̃ ∈Q0 : G0 (t, q(t))�G0(t, q̃)+R (q̃ −q(t)) , (27)

and the energy equality

∀s, t∈[0, T ] : G0 (t, q(t))+VarR(q; s, t)=G0 (s, q(s))+
∫ t

s

∂G0

∂ϑ
(ϑ, q(ϑ)) dϑ. (28)

Here VarR(q; s, t) is the total variation of the process q = (u, ν, λ): [0, T ]→Q over the
time interval [s, t ] with respect to the norm | · |M , namely

VarR(q; s, t) := sup
k∑

i=1

R (q(ti)−q(ti−1))= sup
k∑

i=1

∫

�

∣
∣λ(ti, x)−λ(ti−1, x)

∣
∣
M

dx, (29)

where the supremum is taken over all partition s = t0 <t1 < · · ·<tk = t, k∈N. The defi-
nition of stability (27) and energy balance (28) could also be defined on all of Q,
since G0 equals +∞ on Q\Q0. It will be useful to define the stability set S0(t) by

S0(t) :={q∈Q ; G0(t, q)<+∞, ∀q̃∈Q : G0(t, q)�G0(t, q̃)+R(q̃−q)
}
. (30)

Let us note that the stability (27) just means that q(t)∈S0(t) for all t ∈ [0, T ].

Remark 5.2. The particular terms in (28) are Gibbs’ energy at time t , the dissi-
pated energy over the time interval [s, t ], the initial Gibbs’ energy, and a (reduced)
work of external loading over the time interval [0, t ]. The adjective “reduced” refers
to the by-part integration of the standard work of external loading

∫ t

0

∫

N

f (s, x) ·
∂
∂s

udx ds which balances Helmholtz’ (contrary to Gibbs’) stored energy (cf. (19)).
This by-part integration is an essential trick because it allows, together with the defi-
nition (29), to omit any explicit reference to the time derivative d

dt
q in (27) and (28).

Remark 5.3. The energy balance (28) obviously produces no dissipation (i.e. no
hysteresis on stress–strain diagrams) if R =0. A similar effect occurs in usual viscos-
ity/capillarity-type models if viscosity vanishes and enough capillarity (=gradients of
enough higher-order in the stored energy) remains (cf. [56]). Here this effect is due to
the regularizing term (26). Hence, incorporation of a dissipation even of type (A) (see
Section 4) must be done in this model always through the dissipative-force potential
R which may, in addition, involve some other phenomenology (see (B) in Section 4).
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Remark 5.4. The energetic definition (27) and (28) is closely related to the so-
called doubly-non-linear evolution problem (cf. [42]). Indeed, assuming (here formally)
G0 Gâteaux differentiable and using (27) and the degree-1 homogeneity of R, we
obtain the estimate for the directional derivative

[
[G0]′

q
(t,q(t))](v)= lim

ε→0+
G(t,q(t)+εv)−G(t,q(t))

ε
�−R(q(t)+εv−q(t))

ε
=−R(v).

Then, if q(·) would be smooth, we can differentiate (28) in t to obtain d
dt

G0(t, q(t))+
R( d

dt
q) = [G0]′t (t, q(t)). Substituting d

dt
G0(t, q(t)) = [G0]′t (t, q(t)) + [[G0]′q(t, q(t))]( d

dt
q)

and subtracting it from the information we got from (27), we arrive at the variational
inequality

[
[G0]′q(t, q(t))

]
(

v − dq

dt

)

+R(v)�R

(
dq

dt

)

(31)

to hold for any v. This is equivalent to the doubly-non-linear evolution problem

∂R

(
dq

dt

)

+ [G0]′
q
(t, q(t))�0, (32)

where ∂R denotes standardly the subdifferential of R. On the right-hand side of (32)
identifies the driving force −[G0]′q(t, q(t)) for the PTs. The inequality (31) just says
that d

dt
q minimizes the functional v �→ [[G0]′q(t, q(t))](v) + R(v), i.e. the sum of the

power of elastic forces and the dissipation. This can be interpreted as a certain min-
imum-type principle for d

dt
q opposing the mentioned maximum-dissipation principle

for d
dt

q. It is related with the Levitas’ realizability principle [36] (see also [46]) claim-
ing that the PTs occur as soon as it is thermodynamically possible, namely when
the gain in energy through a particular PT is at least equal to the dissipated energy.
In our case, G0 is non-smooth, however, and even involves the constraints λ=L • ν

and ν ∈Gp(�;R
3×3) and the rigorous formulation and more detailed analysis of (32)

is not obvious because Gp(�;R
3×3) is not convex, and then Definition 5.1 helps

substantially.

Under some qualification of the data (ϕ,L, | · |M,f,uD, q0, ρ), the existence of
some energetic solution can be proved by a constructive way by approximation of
the implicit Euler formula and the spacial finite-element-like discretization combined
with laminated Young measures (4) and a penalization of the equality (15), which
also suggest a numerical strategy. As already emphasized, the set Gp(�;R

3×3) cannot
be explicitly implemented so we employ the smaller set Gp,k

lam(�;R
3×3) from (4), which,

however, brings a necessity to treat the relation λ=L • ν with a “tolerance”, because,
due to the compactness in λ’s caused by the regularizing non-local ρ-term in (24), it
behaves like a constraint which, if treated without any tolerance, might destroy the
convergence (cf. [60] or also [61, Proposition 1.3.5]).

To construct approximate solutions, we consider time steps τ > 0, assuming that
T/τ is integer and that τ → 0. Beside of this time discretization we will employ
the finite-element method as space discretization. We assume that � is a polyhedral
domain triangulated by simplicial triangulations, denoted by Th, where h > 0 is a
mesh parameter satisfying h � maxS∈Th

diam(S). We consider a countable set of h’s
with h→0 which are nested, i.e. Th1 is a refinement of Th2 if h2 �h1 >0.
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We fix an order of lamination κ �0 in (4); the concrete value of κ does not affect
the theoretical convergence results but may, of course, substantially influence the rate
of convergence and thus numerical results of concrete computational experiments if
taken too small. We introduce the spatially discretized state space as

Qh ={q = (u, ν, λ)∈Q; ν ∈Gp,κ

lam(�;R
3×3) and constant on each simplex of Th,

λ constant on each simplex of Th

}
. (33)

Note that each u with (u, ν, λ)∈Qh is inevitably piecewise affine on Th, since ∇u is
piecewise constant.

In addition to the two small parameters τ >0 and h>0 we introduce a third small
parameter ε>0 which is used to relax the constraint λ=L • ν. For this we introduce
the relaxed, spatially discretized energy

Gε
h(t, q)=

{
G(t, q)+ 1

ε

∣
∣
∣
∣
∣
∣λ−L • ν

∣
∣
∣
∣
∣
∣2 for q ∈Qh,

+∞ for q ∈Q\Qh,
(34)

where L • ν is from (23) and where ||| · ||| is the norm in a space to which
L∞(�;R

1+M)+Wα,r(�;R
1+M) is embedded compactly, e.g. the space H−1(�;R

1+M) :=
W

1,2
0 (�;R

1+M)∗; recall that L∞ stands, as standard, for the space of measurable essen-
tially bounded functions.

With these definitions, we consider a fully implicit algorithm based on the fol-
lowing incremental problem: Let q0

τ = q0 be a given initial condition, and, for k =
1, . . . , T /τ we define (q

ε,k
τ,h)k=1,... ,T /τ to be a solution of the minimization problems

Minimize Gε
h(kτ, q)+R(q−qk−1),

subject to q = (u, ν, λ)∈Qh.
(35)

For k = 0, we naturally put q
ε,k
τ,h = q0, a given initial condition. As R involves only

λ, the component λ0 of q0 = (u0, ν0, λ0) is what plays role. In general, to ensure the
energy estimate (42) below, the initial condition must be stable; here, for simplicity,
in (37) we will assume even more special q0 used in Section 6. The stability is most
easily expressed via the sets of stable states

Sε
h(t) :={q∈Q; Gε

h(t, q)<+∞, ∀q̃∈Q : Gε
h(t, q)�Gε

h(t, q̃)+R(q̃−q)
}
. (36)

The stability condition (27) then means q(t) ∈ Sε
h(t) for all t ∈ [0, T ]. The condi-

tion (37c,d) below will guarantee q0 ∈ Sε
h(0). Also, for simplicity, assume uD con-

stant in time and, again in agreement with Section 6, even zero; cf. Remark 5.9 for
a generalization.

Let us denote by qε
τ,h the piecewise constant approximate solution, i.e. qε

τ,h(t) :=
q

ε,k
τ,h for (k−1)τ < t � kτ, k = 0, . . . , T /τ . Beside the standard notation for Wα,p- and

Lp-spaces already explained, we now use also “BV” for the space of functions with
bounded variations. The numerical stability of the proposed scheme is based on the
following apriori estimates.
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PROPOSITION 5.5. Let, for κ �0 fixed,

f ∈W 1,1(0, T ;W 1/p−1,p/(p−1)(
N;R
3)), uD =0, (37a)

ε|A|p −C �ϕ(A)�C(1+|A|p) for some ε >0, C <+∞, (37b)

f (0, ·)=0 and q0 = (u0, ν0, λ0)∈Q0 with (37c)

u0 =0, ν0 ∈Gp,κ

lam(�;R
3×3) spatially constant and minimizing ϕ. (37d)

Then the following a priori estimates for qε
τ,h = (uε

τ,h, ν
ε
τ,h, λ

ε
τ,h): [0, T ]→Qh hold:

∥
∥uε

τ,h

∥
∥

L∞(0,T ;W 1,p(�;R3))
�C0, (38)

∥
∥λε

τ,h

∥
∥

BV(0,T ;L1(�;R1+M)) ∩ L∞(0,T ;L∞(�;R1+M)∩Wα,r (�;R1+M))
�C1, (39)

∥
∥Gε

τ,h

∥
∥

BV(0,T )
�C2 with Gε

τ,h(t) :=Gε
h(kτ, q

ε,k
τ,h) for t ∈ ((k−1)τ, kτ ]. (40)

Moreover, qε
τ,h is stable in the following sense

∀ q̃ ∈Qh: Gε
τ,h(kτ )=Gε

h(kτ, qε
τ,h(kτ ))�Gε

h(kτ, q̃)+R(qε
τ,h(kτ )− q̃) (41)

for all k =0,1, . . . , T /τ and satisfies the two-sided discrete energy inequality
∫ t

0

∫


N

∂f (s, x)

∂s
·uε

τ,h(s, x)dx ds �Gε
τ,h(t)+VarR(qε

τ,h;0, t)−Gε
τ,h(0)

�
∫ t

0

∫


N

∂f (s, x)

∂s
·uε

τ,h(s − τ, x)dx ds (42)

for t = τk, k =0,1, . . . , T /τ .

Sketch of the proof of Proposition 5.5. The discrete stability condition (41) follows
by using successively that q

ε,k
τ,h is a solution to (35) and the triangle inequality (18)

for R:

Gε
h(kτ, q

ε,k
τ,h)�Gε

h(kτ, q̃)+R(q̃ −q
ε,k−1
τ,h )−R(q

ε,k
τ,h −q

ε,k−1
τ,h )

�Gε
h(kτ, q̃)+R(q̃ −q

ε,k
τ,h) (43)

for any k =1, . . . ,K =T/τ .
As to (42), we again use that q

ε,k
τ,h solves (35) and, comparing it with q

ε,k−1
τ,h , we get

Gε
h(kτ,q

ε,k
τ,h)−Gε

h

(
(k−1)τ, q

ε,k−1
τ,h

)
+R
(
q

ε,k
τ,h−q

ε,k−1
τ,h

)

�Gε
h

(
kτ, q

ε,k−1
τ,h

)
−Gε

h

(
(k−1)τ, q

ε,k−1
τ,h

)

=
∫ kτ

(k−1)τ

∂Gε
h(t, q

ε,k−1
τ,h )

∂t
dt =

∫ kτ

(k−1)τ

∫


N

∂f (t, x)

∂t
·uε

τ,h(t − τ, x)dx dt (44)

and then the second estimate in (42) after a summation. As to the first estimate in (42),
by the stability (43) written for q

ε,k−1
τ,h , we can see that q

ε,k−1
τ,h minimizes the functional

q �→Gε
h((k−1)τ, q)+R(q−q

ε,k−1
τ,h ), and therefore, by inserting q =q

ε,k
τ,h, we find
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Gε
h

(
kτ, q

ε,k
τ,h

)
−Gε

h

(
(k−1)τ, q

ε,k−1
τ,h

)
+R
(
q

ε,k
τ,h−q

ε,k−1
τ,h

)

�Gε
h

(
kτ, q

ε,k
τ,h

)
−Gε

h

(
(k−1)τ, q

ε,k
τ,h

)
(45)

=
∫ kτ

(k−1)τ

∂Gε
h(t, q

ε,k
τ,h)

∂t
dt =

∫ kτ

(k−1)τ

∫


N

∂f (t, x)

∂t
·uε

τ,h(t, x)dx dt. (46)

By a summation we obtain the first part of (42). Note that, for k = 1, we used the
stability of q

ε,0
τ,h =q0, i.e.

∀q̃ ∈Qh : Gε
h (0, q0)�Gε

h (0, q̃)+R
(
λ0 − λ̃

)
, (47)

which is assumed in (37c,d).
The BV-bound in the estimate (39) then follows directly from (44), while the L∞-

bound is obvious since λε
τ,h(t, x) ∈ � for a.a. (t, x) ∈ [0, T ] × � and � ⊂ R

1+M is
bounded, and eventually by summing (44) for k = 1, . . . , T /τ , we get Gε

τ,h(t, q
ε
τ,h(t))

bounded from above uniformly in t ∈ [0, T ] so that, in view of the coercivity (37b)
and of ρ >0 in (24), the bounds for ‖uε

τ,h(t)‖W 1,p(�;R3) and for |λε
τ,h(t)|α,r uniform in

t ∈ [0, T ] follow by using also (37a) and the discrete Gronwall inequality; note that
not k but k − 1 level occurs on the right-hand side of (44) so no restriction on τ is
needed. By (44) and (46) and also by using (38) and (39), it holds

Var(Gε
τ,h;0, T )=

T/τ∑

k=1

∣
∣Gε

h(kτ, q
ε,k
τ,h)−Gε

h((k−1)τ, q
ε,k−1
τ,h )

∣
∣

�
T/τ∑

k=1

max

⎛

⎜
⎝

kτ∫

(k−1)τ

∣
∣
∣
∂Gε

h(t, q
ε,k−1
τ,h )

∂t

∣
∣
∣dt , R

(
q

ε,k
τ,h−q

ε,k−1
τ,h

)

+
kτ∫

(k−1)τ

∣
∣
∣
∂Gε

h(t, q
ε,k
τ,h)

∂t

∣
∣
∣dt

⎞

⎟
⎠�VarR(qε

τ,h;0, T )

+∥∥u|
N

∥
∥

L∞(�;W 1−1/p,p(
N;R3))

∥
∥
∥
∂f

∂t

∥
∥
∥

L1(0,T ;W 1/p−1,p/(p−1)(
N;R3))
(48)

proving a bound for ‖Gε
τ,h‖BV(0,T ) := ∫ T

0 |Gε
τ,h|dt +Var(Gε

τ,h;0, T ), i.e. (40).
Now we are ready to state the convergence for (τ, h, ε)→ (0,0,0) of the proposed

scheme. Under some rather strong “non-buckling” conditions it was shown in a weak
form in [34, 65].

The major condition for treating the limit is that Gε
h converges in the sense of 
-

convergence to towards the limit energy G0, where now all energies are assumed to
be defined on Q, but are allowed to take the value +∞. First we specify the sense
in which the convergence of sequences is taken:

qj = (uj , νj , λj )
∗

⇀ q = (u, ν, λ) in Q ⇐⇒
⎧
⎨

⎩

uj ⇀u in W 1,p(�,R
3),

νj

∗
⇀ ν in Gp(�,R

3×3),

λj ⇀λ in Wα,r(�,R
1+M),

(49)



Modelling of Microstructure 403

where the weak* convergence νj

∗
⇀ ν means that

∀h∈L1(�;C0(R
3×3)) : lim

j→∞

∫

�

∫

R3×3
h(x,A) [νj ]x(dA)dx =

∫

�

∫

R3×3
h(x,A) νx(dA)dx.

We consider this as the major convergence in our extended state space Q. First we
note that the dissipation functional R, which is independent of τ, h, and ε, is weakly
continuous, namely

qj

∗
⇀ q and q̃j

∗
⇀ q̃ in Q �⇒ R(qj−q̃j )→R(q−q̃). (50)

Moreover, we need the collection of triangulations {Th}h>0 to be regular, i.e. there is
c > 0 such that, for every finite element E ∈ Th, rE/�E > c for any h > 0 where �E is
the length of the longest edge (side) and rE is the radius of the largest ball inscribed
into E.

The part (i) in the following proposition is a condition on uniform compactness
or uniform coercivity with respect to the sequential weak* topology of Q. The parts
(ii) and (iii) state exactly that G0(t, ·) is the so-called 
-limit of the family {Gε

h(t, ·)}
conditioned by a certain numerical-stability criterion h�H(ε).

PROPOSITION 5.6. Let (37) hold and let {Th}h>0 be regular. For each t ∈ [0, T ] we
have the following three properties:

(i) (Uniform compactness). If the family {qε
h}ε,h>0 and tτ ∈ [0, T ] satisfy

∀ε, h>0 : Gε
h(tτ , q

ε
h)�E0 <+∞ (51)

then there exists a subsequence {qεk

hk
}k∈N and q ∈Q, such that q

εk

hk

∗
⇀ q in Q.

(ii) (Relaxation). For each family (qε
h)ε,h in Q with qε

h

∗
⇀ q we have

lim inf
(tτ ,h,ε)→(t,0,0)

Gε
h(tτ , q

ε
h)�G0(t, q). (52)

(iii) (Recovery sequence). If (51) holds, then there is H : R
+ → R

+ (depending on E0

from (51)) such that for all q ∈ Q there exists a family (qε
h)ε,h with qε

h ∈ Qh such
that

qε
h

∗
⇀ q and lim

h�H(ε)

(tτ ,h,ε)→(t,0,0)

Gε
h(tτ , q

ε
h)=G0(t, q). (53)

Sketch of the proof. Ad (i): Using the assumption (37a,b) together with (51),
we obtain the standard coercivity properties implying for qε

h = (uε
h, ν

ε
h, λ

ε
h) with

Gε
h(t, q

ε
h)�E0 the bounds

‖uε
h‖W 1,p(�;R3) +

∫

�

∫

R3×3

(
1+|A|p) (νε

h)x(dA)dx +∥∥λε
h

∥
∥

Wα,r (�;R1+M)
�C0, (54)

where C0 depends only on E0. From this, the existence of a weak* convergent
subsequence follows by standard arguments.
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Ad (ii): We may assume that lim inf (tτ ,h,ε)→(t,0,0) G
ε
h(tτ , q

ε
h) =: γ < ∞, since other-

wise there is nothing to be shown. By our assumptions G(t, q)�−CG and thus, we
conclude

∣
∣
∣
∣
∣
∣λε

h−L • νε
h

∣
∣
∣
∣
∣
∣� (γ+CG+1)ε for (tτ , h, ε) sufficiently close to (t,0,0). Hence,

qε
h

∗
⇀ q = (u, ν, λ) implies λ = L • ν, which means q ∈ Q0. Moreover, the definition

of the convergence qε
h

∗
⇀ q implies G(tτ , q

ε
h) → G(t, q), where we essentially use the

property of the gradient Young measures in Gp(�;R
3×3) and the assumption (37a)

which ensures f (tτ ) → f (t) in W 1/p−1,p/(p−1)(
N;R
3) while we also have uε

h ⇀ u in
W 1−1/p,p(
N;R

3) so that
∫

N

f (tτ , x) · uε
h(x)dx → ∫


N
f (t, x) · u(x)dx, and eventually

λε
h ⇀λ in Wα,r(�;R

1+M) implies lim inf (h,ε)→(0,0) |λε
h|rα,r � |λ|rα,r . Because of q ∈Q0 we

thus have

G0(t, q)=G(t, q)� lim
(tτ ,h,ε)→(t,0,0)

(
G(tτ , q

ε
h)−|λε

h|rα,r

)

+ lim inf
(h,ε)→(0,0)

|λε
h|rα,r � lim inf

(tτ ,h,ε)→(t,0,0)
Gε

h(tτ , q
ε
h), (55)

which is the desired lower estimate of the possible limits.
Ad (iii): First consider the case q �∈ Q0, which leads to G0(t, q) = ∞. Now every

sequence with qε
h

∗
⇀ q is a recovery sequence. We have λε

h−L • νε
h

∗
⇀ λ−L • ν =:g and

q �∈Q0 implies g �=0. Thus, by lower semi-continuity of the norm we conclude

lim inf
(h,ε)→(0,0)

∣
∣
∣
∣
∣
∣λε

h−L • νε
h

∣
∣
∣
∣
∣
∣�
∣
∣
∣
∣
∣
∣g
∣
∣
∣
∣
∣
∣>0. (56)

From this we easily obtain lim inf (h,ε)→(0,0) G
ε
h(t, q

ε
h)=∞=G0(t, q), as desired.

Next, we consider the case q ∈ Q0. By the definition of Gp(�;R
3×3), there is a

W 1,p-bounded sequence {uk}k∈N whose gradients attains ν, i.e.

∀h∈L1(�;C0(R
3×3)) : lim

k→∞

∫

�

h(x,∇uk)dx =
∫

�

∫

R3×3
h(x,A) νx(dA)dx. (57)

Using the assumed regularity of the triangulations, we can further approximate each
uk by element-wise affine functions and as well as of Wα,r -functions by element-
wise constant functions. Taking a suitable diagonal sequence, this yields a sequence
{qh}h>0, qh ∈ Qh, converging weakly* to q and thus shows that

⋃
h>0 Qh is weakly*

dense in Q.
Using the compactness proved at the point (i) and the separability of the spaces of

the test functions for the weak* convergence (49), we can think about a metric, say
�, inducing this convergence on the compact set in question. Restricted our consid-
eration on that compact set, we can consider Q0 a closed (hence compact) subset of
Q. Due to the density of

⋃
h>0 Qh in Q, for some sufficiently small hδ > 0, for any

q ∈ Q0 there is q̃ ∈ Qh,�(q, q̃) � δ; the proof is by a contradiction: if for any h > 0
there would be some qh ∈Q0 whose δ-neighbourhood would be disjoint with Qh, by
compactness of Q0 we would get a limit q of a subsequence of {qh} converging for
h→0 whose δ/2-neighbourhood would still be disjoint with

⋃
h>0 Qh.

As the norm
∣
∣
∣
∣
∣
∣ · ∣∣∣∣∣∣ in (34) is weakly* continuous on Wα,r(�;R

1+M) as well as
on L∞(�;R

1+M) and L : q = (u, ν, λ) �→ λ − L • ν is weakly* continuous on Q to
Wα,r(�;R

1+M) + L∞(�;R
1+M), hence continuous with respect to the metric �, for

any ε >0 there is δ >0 such that �(q, q̃)� δ implies
∣
∣
∣
∣
∣
∣L(q − q̃)

∣
∣
∣
∣
∣
∣� ε.
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Linking those two results, we can see that for any ε > 0 there is H(ε) > 0 suffi-
ciently small, namely H(ε)=hδ, such that for any h�H(ε) and for any q ∈Q0 there
is q̃ ∈Qh such that ε �

∣
∣
∣
∣
∣
∣L(q − q̃)

∣
∣
∣
∣
∣
∣= ∣∣∣∣∣∣Lq̃

∣
∣
∣
∣
∣
∣= ∣∣∣∣∣∣λ̃−L • ν̃

∣
∣
∣
∣
∣
∣. Then we put qε

h = q̃. Note
that 1

ε

∣
∣
∣
∣
∣
∣λε

h −L • νε
h

∣
∣
∣
∣
∣
∣2 � 1

ε
ε2 = ε →0.

Further important properties of the underlying system are the weak* closeness
of the stable states and the continuity of the energy when restricted to the stable
sets. The first property follows easily since the dissipation is continuous. As the ener-
gies Gε

h
-converge to G0 we already have the lower semi-continuity (52). The second
property (58) reflects the fact that stable states are already energetically favourable
states. Hence, these states do not contain unnecessary oscillations which could lead
to a drop of the energy in the limit (tτ , ε, h)→0.

PROPOSITION 5.7. Let (51) hold and (tτ , h, ε) → (t∗,0,0) with h � H(ε), let qε
h ∈

Sε
h(tτ ) with Sε

h(tτ ) from (36), and let qε
h

∗
⇀ q∗, then we have

q∗ ∈S0(t∗) and lim
h�H(ε)

(tτ ,h,ε)→(t∗,0,0)

Gε
h(tτ , q

ε
h)=G0(t∗, q∗) (58)

with S0 from (30) and with the stability criterion h�H(ε) from Proposition 5.6(iii).

Proof. For the stability result q∗ ∈ S0(t∗) we have to prove stability with
respect to every test state q̃ ∈ Q. As (51) is assumed, Proposition 5.6(iii) says
that, for each such state, there exists a recovery sequence q̃ε

h with q̃ε
h

∗
⇀ q̃ and

lim(tτ ,h,ε)→(t∗,0,0), h�H(ε) G
ε
h(tτ , q̃

ε
h)=G0(t∗, q̃). Now the stability of qε

h gives

Gε
h(tτ , q

ε
h)�Gε

h(tτ , q̃
ε
h)+R(q̃ε

h−qε
h). (59)

On the right-hand side we can pass to the limit using the recovery properties and
the weak continuity of R (cf. (50)). On the left-hand side we take the lim inf and use
Proposition 5.6(iii). Thus, we obtain

G0(t∗, q∗)� lim inf
(tτ ,h,ε)→(t∗,0,0)

Gε
h(tτ , q

ε
h)

� lim
h�H(ε)

(tτ ,h,ε)→(t∗,0,0)

Gε
h(tτ , q̃

ε
h)+R(q̃ε

h−qε
h)=G0(t∗, q̃)+R(q̃−q∗), (60)

which is the desired stability. The convergence of the energy follows by choosing q̃ =
q∗ in (60).

Our final result of the states the convergence of the numerical scheme, the imple-
mentation of which will be discussed in section 6. As we have no uniqueness of the
solutions we cannot expect that the whole sequence of our approximations will con-
verge. We will show that choosing a suitably converging subsequence we obtain a
limit which is an energetic solution, i.e., it satisfies the stability condition (27) and
the energy balance (28). In fact, any such limit point obtained from our numerical
scheme is automatically a solution. However, we are not able to provide convergence
rates since the problem does not have any kind of convexity and smoothness prop-
erties, which are usually available in well-posed problems of continuum mechanics.
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THEOREM 5.8. Let (37) hold and let {qε
τ,h}(τ,h,ε) be a family of approximations con-

structed as above such that (τ, h, ε)→0, such that

qε
τ,h(0)∈Sε

h(0), qε
τ,h(0)

∗
⇀ q0 and Gε

h(0, qε
τ,h(0))→G0(0, q0). (61)

Then, there exists a subsequence {(τk, hk, εk)}k∈N with (τk, hk, εk)→ (0,0,0) for k →∞
satisfying the stability criterion hk � H(εk) from Proposition 5.6(iii) and a limit pro-
cess q : [0, T ] → Q with q(0) = q0, such that the following holds. (We shortly write
qk = (uk, νk, λk) for q

εk

τk,hk
= (u

εk

τk,hk
, ν

εk

τk,hk
, λ

εk

τk,hk
)).

(i) q: [0, T ]→Q0 ⊂Q is an energetic solution, i.e., q satisfies (27) and (28), and also
it holds λ ∈ L∞([0, T ];Wα,r(�;R

1+M)) ∩ BV([0, T ],L1(�;R
1+M)) and u: [0, T ] →

W 1,p(�;R
3) is bounded.

(ii) For all t ∈ [0, T ] we have λk(t)⇀λ(t) in Wα,r(�;R
1+M).

(iii) For all t ∈ [0, T ] we have VarR(qk;0, t)→VarR(q;0, t).
(iv) For all t ∈ [0, T ] we have G

εk

hk
(t, qk(t))→G0(t, q(t)).

(v) ∂
∂t

G
εk

hk
(·, qk(·)) ∗

⇀ ∂
∂t

G0(·, q(·)) in L∞(0, T ).

(vi) For all t ∈ [0, T ] there is a subsequence {kl}l∈N such that qkl
(t)

∗
⇀ q(t) in Q.

In fact, (61) is satisfied automatically if (37c,d) is assumed. We pronounced (61)
here for its more general character.

Sketch of proof of Theorem 5.8. Our sketch follows the six steps for the existence
proof formulated in [42].
Step 1: A priori estimates. This part is exactly the content of Proposition 5.5, which
provides uniform bounds for qε

τ,h: [0, T ]→Q. In particular, (40) makes (51) hold and
we have the results from Propositions 5.6 and 5.7 at our disposal.
Step 2: Selection of subsequences. Since the λε

τ,h : [0, T ] × � → R
1+M is uni-

formly bounded in BV([0, T ];L1(�;R
1+M)) ∩ L∞([0, T ];Wα,r(�;R

1+M)) and since
the scalar functions Gε

τ,h : [0, T ] → R and Dε
τ,h : t �→ VarR(qε

τ,h;0, t) are uniformly
bounded in BV([0, T ]), we may apply Helly’s selection principle to find a subsequence
{(τk, hk, εk)}k∈N such that for all t ∈ [0, T ] we have the following convergence:

λ
εk

τk,hk
(t)⇀λ(t) in Wα,r(�;R

1+M), Gεk

τk,hk
(t)→G(t), Dεl

τl ,hl
(t)→D(t)

for suitable limit functions λ,G and D, which lie in the corresponding spaces and sat-
isfy the same bounds as the corresponding sequences. For the λ-component one has
to use the Banach-space valued version of Helly’s selection principle (see [39, 42]).

This shows that the convergence properties at the point (ii) hold. We further set

Pk(t)= ∂
∂t

Gεk

τk,hk
(t, qk(t)) (62)

to denote the power of the external forces. Choosing another subsequence (not rela-
beled), if necessary, we also obtain

Pk

∗
⇀ p in L∞([0, T ]), (63)

since closed balls in L∞([0, T ]) are sequentially weakly* compact.
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To define the limit function q(t) ∈ Q, we still need to specify the components
u and ν. For this, we treat now each t ∈ [0, T ] separately. Note that the coupling
between different time levels occurs only via the component λ, which is already con-
trolled.

For fixed t , we choose (a t-dependent) subsequence {qKt
l
(t)}l∈N of {qk(t)}k∈N such

that, for l →∞, we have

PKt
l
(t)→P(t) := lim sup

k→∞
Pk(t) and qKt

l
(t)

∗
⇀ q(t). (64)

The choice of the subsequence is first made such the condition for P holds. After-
wards, we choose a further subsequence (not relabeled) to make qKt

l
(t) convergence.

Here we again use the a priori bounds of Step 1. Thus, the limiting process q: [0, T ]→
Q is defined now.

From Pk(t) = ∫

N

∂
∂t

f (t, x)·uk(t, x)dx we easily conclude that P(t) = ∂
∂t

G0(t, q(t)).
Using Fatou’s lemma we conclude p(t)�P(t).
Step 3: Stability of the limit process. The stability of the limit process q is now
a direct consequence of Proposition 5.7. For fixed t ∈ [0, T ] consider the sequence
{qKt

l
(t)}l∈N, which consists of piecewise constant functions. Hence, we have qKt

l
(t) =

qKt
l
(t̂l) with t̂l =max{κτKt

l
� t ; κ ∈N∪{0}} and, by Proposition 5.5, qKt

l
(t̂l)∈S(t̂l). Since

t̂l → t , we conclude q(t)∈S(t) as desired.
Step 4: Upper energy estimate. By the convergence properties established above, we
immediately see that the two-sided energy estimate (42) leads to the identity

∫ t

0
p(s)dt �G(t)+D(t)−G(0)�

∫ t

0
p(s)ds �

∫ t

0
P(s)ds. (65)

Note that the time shift on the right-hand side on (42) has no effect in the limit tk →
0, as ∂

∂t
f (t, ·) is continuous in t ∈ [0, T ].

Now we use that the family Gε
τ,h has the 
-limit G0, hence we conclude G0(t, q(t))�

liml→∞ GKt
l
(t, qKt

l
(t))=G(t). Moreover, by (61) we have G(0)=G0(0, q(0)). Similarly,

we have VarR(q;0, t)�D(t). Inserting this into (65) we obtain

G0(t, q(t))+VarR(q;0, t)−G0(0, q(0))�G(t)+D(t)−G(0)

�
∫ t

0
P(s)ds =

∫ t

0

∂

∂s
G0(s, q(s))ds, (66)

which is the desired upper energy estimate.
Step 5: Lower energy estimate. The opposite estimate G0(t, q(t)) + VarR(q;0, t) −
G0(0, q(0)) �

∫ t

0
∂
∂s

G0(s, q(s))ds is a consequence of the stability which is already
established in Step 3. We refer to [42] for this technical proof. Thus, we have proved
assertion (i), which states that q: [0, T ]→Q is a solution.
Step 6: Improved convergence. Having energy equality, we conclude that in (65) all the
inequalities must be equalities. In particular, this implies

p(t)=P(t), G(t)=G0(t, q(t)) and Var(q;0, t)=D(t). (67)

Together with the convergence properties established in Step 2, we obtain the asser-
tions (iii)–(v). �
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Remark 5.9. Time-varying Dirichlet boundary conditions that would model a
“hard-device” loading would need uD ∈W 1,1(0, T ;W 1−1/p,p(
D;R

3)) and would make
the proofs quite technical, exploiting non-trivial tricks from [42] (see also [42]).

6. Modelling of a Stress-induced Transformation in CuAlNi

CuAlNi is the second most popular SMA with a cheaper production cost than the num-
ber-one SMA, i.e. NiTi. Depending on composition, this sort of alloys exhibit large
variations of transformation temperatures, even over 100◦C. These Cu-based alloys
undergo the cubic-to-orthorhombic (called also β →γ ′

1) PT as well as the cubic-to-mono-
clinic (called also β1 →β ′

1 and β1 →β ′′
1 ) PT, depending on loading regimes and other

circumstances. For example, experimental experience shows that the orthorhombic mar-
tensite mostly evolves in single crystals under compression, while the monoclinic one
under tension. While the latter PT has a small hysteresis loop, the cubic-to-orthorhom-
bic PT shows significant hysteresis. We opted for modelling of the cubic-to-orthorhom-
bic transformation because of its smaller number of wells of ϕ̂, the larger hysteresis,
and because the elastic constants which are at disposal for the orthorhombic martensite
contrary to the monoclinic one (cf. [66, 80]); even it should be emphasized that these
constants, although routinely known for austenite, are not measured for any other SMA
in martensite. First modelling studies with CuAlNi are probably by Falk and Konopka
who formulated a 3D stored energy potential [18]. The laminated microstructure even
with adaptive level of lamination have been used for CuAlNi by Aubri et al. [4] who
also used (up to a factor 4) the potential (6)–(7) and by Stupkiewicz and Petryk [71]. A
simplified model addressing CuAlNi is by Abeyaratne et al. [1], or Hall and Govindjee
[26]. Crystalographic discourse is, e.g., in Bhattacharya [12] and Xiangyang et al. [79].
Experiments with CuAlNi single-crystals are e.g. due to Abeyaratne et al. [1], Novák
et al. [49], Otsuka and Shimizu [51], Sedlák et al. [66], Šittner et al. [69], Suezawa and
Sumimo [72].

6.1. Stored-energy Data

The atomic-grid lattice constants for the composition Cu-14.0 wt.%Al-4.2 wt.%Ni we
have in mind for the cubic austenite is a0 = 0.5835 nm while the orthorhombic mar-
tensite has the lattice constants a = 0.43823 nm, b = 0.53563 nm, and c = 0.4223 nm
(see [16] or also [51]). In terms of the distortion matrices, this results to the cubic
austenitic phase having one orbit SO(3)U0 with U0 = I while the orthorhombic mar-
tensite has M = 6 variants, i.e. six orbits SO(3)U1, . . . ,SO(3)U6, with the distortion
matrices given by

U1 =
⎛

⎝
η2 0 0
0 η1 η3

0 η3 η1

⎞

⎠ , U2 =
⎛

⎝
η1 0 η3

0 η2 0
η3 0 η1

⎞

⎠ , U3 =
⎛

⎝
η1 η3 0
η3 η1 0
0 0 η2

⎞

⎠ ,

U4 =
⎛

⎝
η2 0 0
0 η1 −η3

0 −η3 η1

⎞

⎠, U5 =
⎛

⎝
η1 0 −η3

0 η2 0
−η3 0 η1

⎞

⎠, U6 =
⎛

⎝
η1 −η3 0
−η3 η1 0
0 0 η2

⎞

⎠,

(68)
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where we used η1 = 1.04245 and η2 = 0.9178, η3 = 0.01945 in agreement with mea-
surements by Otsuka and Shimizu [51] on the considered Cu-14.0 wt.%Al-4.2 wt.%Ni;
the same constants are also in Ball et al. [8] for a slightly different composition,
namely Cu-14.0 wt.%Al-3.9 wt.%Ni. The relations with the lattice constants are η1 =
(a + c)/(

√
2a0), η2 =b/a0, and η3 = (a − c)/(

√
2a0) (see e.g. [12]).

Using the usual Voigt notation (and {C�
ij }6

i,j=1 instead of the fourth-order tensor
C� from (6)), the energy (6) results to the quadratic form

ϕ̂�(F )= 1
2C

�
11[ε�

11]2 + 1
2C

�
22[ε�

22]2 + 1
2C

�
33[ε�

33]2

+ C
�
12ε

�
11ε

�
22 +C

�
13ε

�
11ε

�
33 +C

�
23ε

�
22ε

�
33

+ 2C
�
44[ε�

23]2 +2C
�
55[ε�

13]2 +2C
�
66[ε�

12]2, (69)

and gives the Cauchy stress σ = ϕ̂′
�(ε

�), i.e.

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

σ11

σ22

σ33

σ23

σ13

σ12

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

C
�
11 C

�
12 C

�
13 0 0 0

C
�
12 C

�
22 C

�
23 0 0 0

C
�
13 C

�
23 C

�
33 0 0 0

0 0 0 C
�
44 0 0

0 0 0 0 C
�
55 0

0 0 0 0 0 C
�
66

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ε�
11

ε�
22

ε�
33

2ε�
23

2ε�
13

2ε�
12

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (70)

If we denote the vector on the right-hand side by ε̄� we easily see that ϕ̂�(F )= 1
2 ε̄� ·

C
�ε̄�.

The specific values are determined from experiments; we refer to Sedlák et al.
[66]. For �=0, i.e. for the austenite, by symmetry there are only three non-vanishing
elastic moduli, i.e. here

C
0
11 =C

0
22 =C

0
33 =142.8 GPa, (71a)

C
0
44 =C

0
55 =C

0
66 =93.5 GPa, (71b)

C
0
12 =C

0
23 =C

0
13 =129.7 GPa, (71c)

see also (for nearly the same values) Landa et al. [35] or Suezawa and Sumimo [72].
The specific values for martensite, measured by Sedlák et al. [66] or also (a slightly
different alloy, namely Cu-14 wt.%Al-3 wt.%Ni) by Yasunaga et al. [80], are

C
�
11 =189 GPa, C

�
22 =141 GPa, C

�
33 =205 GPa, (72a)

C
�
44 =54.9 GPa, C

�
55 =19.7 GPa, C

�
66 =62.6 GPa, (72b)

C
�
12 =124 GPa, C

�
13 =45.5 GPa, C

�
23 =115 GPa, (72c)

counted with respect to the co-ordinate system oriented in the atomic lattice of the
prism a × b × c; are the same for �= 1, . . . ,6. The specific rotations R�, �= 1, . . . ,6,
involved in (6) are calculated from the equation U� = R�HR	

� , where H = diag(η1 +
η3, η2, η1 −η3), namely:
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R1 =
⎛

⎝
0 1 0
s 0 s

s 0 −s

⎞

⎠ , R2 =
⎛

⎝
−s 0 −s

0 −1 0
−s 0 s

⎞

⎠ , R3 =
⎛

⎝
s 0 s

s 0 −s

0 1 0

⎞

⎠ ,

(73)

R4 =
⎛

⎝
0 −1 0

−s 0 −s

s 0 −s

⎞

⎠ , R5 =
⎛

⎝
s 0 s

0 1 0
−s 0 s

⎞

⎠ , R6 =
⎛

⎝
−s 0 −s

s 0 −s

0 −1 0

⎞

⎠ ,

where s = sin(45◦)=√
2.

Furthermore, the offset d� in (6) has been chosen as 3 MPa. Taking into account
that the equilibrium temperature of the austenite and martensite is in this particu-
lar alloy about 293 K and that the difference d� between free energies of unstressed
austenite and martensite with the temperature at the rate 160 kPa/K (which, roughly
speaking, after being divided by a transformation strain, i.e. here about 6%, yields the
so-called Clausius–Clapeyron constant about 2.7 MPa/K), the considered temperature
of our experiment results to 312 K.

6.2. Dissipation-energy Data

As to the construction of the phase-indicator function L: R
3×3 →� we first calculate

for a given F ∈R3×3 its right Cauchy–Green tensor F	F and then evaluate the square
of its Euclidean distance (i.e. Frobenius’ norm | · |F) to U	

� U� for all �=0, . . . ,M =6.
Taking a smooth function d : R → R such that d = 1 in a neighbourhood of 0 and
d = δ otherwise for some δ >0 small, we can put

L̂(F ) :=
⎧
⎨

⎩

d
(∣
∣F	F −U	

� U�

∣
∣2
F

)

∑M
l=0 d

(∣
∣F	F −U	

l Ul

∣
∣2
F

)

⎫
⎬

⎭

M

�=0

∈�. (74)

Note that L̂ is frame indifferent.
The dissipation potential R from (16) involves a norm | · |M on R

1+M which we
take here simply as |λ|M =∑M

�=0 γ�|λ�| where γ� > 0 for all 0 � � � M; for more
general form

In terms of the PT-energies {E�l}�,l=0,... ,M (see Section 4), this setting corresponds
to the specific dissipation energy E�l = γ� + γl if � �= l (otherwise E�l = 0). We can see
that we cannot set up these energies entirely arbitrarily, which is due to a simple
choice of | · |M ; for a more general choice |λ|M := maxω∈Z ω ·λ with Z a polyhedron
determining activation stress of particular PTs (cf. (21)) we refer to [46]. We take
γ0 =0.5 MPa and γ� =1 Pa for � �=1, . . . ,M =6. This choice of γ ’s leads here to

E�l
.=
{

0.5 MPa for l =0 or �=0, � �= l,

0 otherwise, (75)

i.e. transformations between the austenite and any martensitic variant need (and
dissipate) the specific energy 0.5 MJ/m3 while reorientation of martensite in almost
non-dissipative. The higher austenite-martensite dissipation is in agreement with an
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Figure 3. The hysteretic pseudo-elastic stress–strain response corresponding to the full loading/unload-
ing cycle.

observation by James and Zhang [30] that the transformation between rank-one con-
nected austenite and martensite dissipates significantly less than if there is no rank-one
connection, which is just our case and it corresponds to the option (A) in Section 4.
Moreover, experimental observations due to Abeyratne et al. [1] show, however, also
fairly wide hysteresis loop in the stress/volume fraction diagram during the re-orienta-
tion of the martensitic variant 3–6 which are rank-one connected and which perhaps
suggest also a non-vanishing dissipation in this case, which suggests also the option
(B) in Section 4 to be considered additionally to (A).

6.3. Design of a Particular Experiment and Computer Implementation

Consistently with Section 5, we implemented the 3D-situation by using piecewise
affine tetrahedral finite elements with a standard division of a prism into five tetrahe-
drons. This means that ∇uk

τ,h is element-wise constant, (cf. (33)). We implemented the
second-order laminate, i.e. we put κ =2 which leads to the four-atomic Young measure
ν (cf. (3) and Figure 2), where

νh = ξ0hξ1hδF1h
+ ξ0h(1−ξ1h)δF2h

+ (1−ξ0h)ξ2hδF3h
+ (1−ξ0h)(1−ξ2h)δF4h

(76)

with

F1h =∇uh − (1−ξ0h)ah ⊗nh − (1−ξ1h)a1h ⊗n1h, (77a)

F2h =∇uh − (1−ξ0h)ah ⊗nh + ξ1ha1h ⊗n1h, (77b)

F3h =∇uh + ξ0hah ⊗nh − (1−ξ2h)a2h ⊗n2h, and (77c)

F4h =∇uh + ξ0hah ⊗nh + ξ2ha2h ⊗n2h. (77d)

Here 0�ξih �1, i =0,1,2, are element-wise constant. The vectors aih and nih are ele-
ment-wise constant as well and, moreover, we may choose |nih| = 1 and write it in
spherical coordinates. Hence, the whole Young measure ν is identified by means of
∇uh and {ξih, aih, nih}.

Our specimen is a prism � := (0,4)× (0,9)× (0,4) (in mm’s) and the orientation of
the crystal lattice is considered (001). The displacement u(x) is prescribed to be zero
on the bottom base, i.e. if x ∈
D = (0,4)×{0}× (0,4). The specimen is subjected to
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Figure 4. Evolution of a second-order laminated microstructure in cubic/orthorhombic austenite/martens-
ite stress-induced transformation at one selected spot of a loaded CuAlNi (001)-oriented single-crystal.
Austenite white transforms through two variants U2 =gray and U3 =black of twinned martensite to a sin-
gle variant of so-called detwinned martensite. A dozen of snapshots covers the whole loading upper row
and unloaded lower row cycle corresponding to Figure 3. Microstructure is reconstructed in accord with
calculations on one selected element. The gray level in the specimen reflects the calculated volume fraction
of the “mixture” of the martensitic variants two and three and the austenite, i.e. the deformation gradient
is in neighbourhoods of SO(3)U2, SO(3)U3 and SO(3)U0, respectively. The displacement is magnified 3x.

a time-periodic surface force f independent of the deformation. This force is applied
on the upper base of the specimen, i.e., if x ∈
N = (0,4)×{9}× (0,4).

We used 180 tetrahedral elements (cf. Figure 4), which yields 3480 variables and
540 box constraints.

The resulted mathematical-programming problem (35) is solved by the optimiza-
tion routine “L-BFGS-B” described in [15]. Due to the multi-well character of ϕ̂,
(35) is a non-convex non-smooth (due to the non-smoothness of the dissipation met-
ric | · |M ) minimization problem, which, together with rather big number of variables,
makes finding a global minimum extremely difficult. As “L-BFGS-B” is designed for
local optimization, we need some strategy to rule out at least some of local min-
ima. Successful (at least partly) computations are conditioned by a good initial guess
at each time level k. Our initial guess heavily relies on possible rank-one connection
between variants or their laminated mixtures. Above all, we see that SO(3)Ul is not
rank-one connected to SO(3) if l > 0. As all Ul are symmetric this can be shown
by looking at middle eigenvalues of Ul, l > 0 (cf. [11]). We easily see that no mid-
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dle eigenvalue is equal to 1. However, there are rank-one connections between the
austenite and a twinned martensite. We exploit them for getting a initial guess in
our calculations. For each two martensitic wells we calculate the appropriate rank-
one connections (there always exist two such connections; cf. [13]). Having a matrix
Fl� such that Fl� = ξ̃RlUl + (1− ξ̃ )R�U�, where RlUl −R�U� has the rank equal to one
and 0<ξ̃ <1, we find ξ̃ and rotations Rl and R� such that SO(3)Fl� is rank-one con-
nected to SO(3), i.e. to the well of the austenite. This precisely means that FT

l�Fl�

has positive eigenvalues and the middle one is equal to 1. A very important piece of
information coming from these calculations are normal vectors of laminates between
martensitic variants and the twinned martensite and the austenite i.e., nh, n1h, and
n2h. We use them as possible starting points during our computational experiments.
After evaluating corresponding discrete energies, we pick up a solution with the least
energy.

Notice that, since we use a second-order laminate, i.e. κ = 2 and thus a pair-
wise rank-one-connected four-atomic probability measure, we can reach certain mi-
crostructures consisting of no more than four material phases/variants like on Figure
1e without necessity of fast spatial oscillations which would hardly be approached
on our quite coarse discretizations. The initial condition is chosen so that u0 =0 and
[ν]0 = δ0, i.e., the stress-free austenite.

However, we dared commit three shortcomings: we eventually did not implement
the regularization by (26) of V (and put ρ = 0 in (24)), we did not implement the
penalization in (34) (and took simply λ=L • ν), and we did not treat the absolute value
in the metric | · |M in the dissipation potential as non-smooth but, just for numerical
reasons, we replaced it by its regularization |y|≈

√
y2 +β with β = 10−8 which makes

the mathematical-programming problem (35) smooth although ill-conditioned as β is
small.

6.4. Computer Simulations of a Compression Experiment

As already mentioned, the orthorhombic martensite is more likely to appear during
a compression experiment. We implemented the loading f (·, x) = (0, f2(·, x),0) hav-
ing a saw-tooth profile in time. Its amplitude is 10.8 kN, which reflects the maximal
compressive stress 300 MPa. The obtained stress-strain diagram in on Figure 3.

We can observe that the area of the hysteresis loop is close to 1 MPa which is
twice the preset value from (75) corresponding to two PTs from austenite to mar-
tensite and back, although it is not accomplish fully in the whole bulk.

In this particular experiment, we observed only three wells really active which
causes that only at most three-atomic Young measures had been observed during the
simulation; i.e. the nodes (or leaves) F3 and F4 (or equally F1 and F2) on Figure 2
coincide with each other. From the calculated values of ξ ’s, a’s, and n’s in (3), we can
aposteriori reconstruct a microstructure (or, more precisely, minimizing sequences for
(35) which are schematically displayed in circles on Figures 4 and 5 recording vol-
ume fractions ξ ’s and orientation of interfaces n’s but not the amplitudes a’s. We can
observe interfaces between the austenite (called habit planes) and the twinning planes
(cf. Figure 1c) in the twinned martensite.

We finish the presentation of this experiment by displaying how selected quanti-
ties, namely energies (Figure 6) and volume fractions (Figure 7), evolve in time.



414 Martin Kružı́k et al.

Figure 5. One snapshot with microstructure displayed at several spots, showing a spatial inhomogene-
ity of the PT processes.

Due to the boundary conditions on the bottom side, the lower part of the single
crystal cannot undergo the PT, (see Figure 4), which is why about 25% of austenite
remains in the bulk even under extremely compressed specimen see (Figure 7(left)).

Acknowledgements

The authors are indebted to M. Landa, V. Novák, P. Sedlák, P. Šittner, and U. Stefa-
nelli for helpful discussions, and acknowledge the partial support from the European
grants HPRN-CT-2002-00284 “Smart systems” and MRTN-CT-2004-505226 “Multi-
scale modelling and characterisation for phase transformations in advanced materials”.
Besides, M.K. is thankful for the support from the grants A 107 5402 (GA AV ČR) and
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