Modelling of Microstructure and its Evolution in Shape-Memory-Alloy Single-Crystals, in Particular in CuAlNi

MARTIN KRUŽÍK ${ }^{1,2}$, ALEXANDER MIELKE ${ }^{3,4}$ and TOMÁŠ ROUBÍČEK ${ }^{5,1, *}$
${ }^{1}$ Institute of Information Theory and Automation, Academy of Sciences, Pod vodárenskou věží 4, CZ-18208 Praha 8, Czech Republic; ${ }^{2}$ Faculty of Civil Engineering, Czech Technical University, Thákurova 7, CZ-166 29 Praha 6, Czech Republic; ${ }^{3}$ Weierstraß-Institut für Angewandte Analysis und Stochastik, Mohrenstr 39, D-10117 Berlin, Germany; ${ }^{4}$ Institut für Mathematik, Humboldt-Universität, Rudower Chaussee 23, D-12489 Berlin, Germany; ${ }^{5}$ Mathematical Institute, Charles University, Sokolovská 83, CZ-186 75 Praha 8, Czech Republic

(Accepted: 27 July 2005)

Abstract

A continuum-mechanical description of the stored energy in shape-memory alloys is presented, with its multi-well character giving rise to a microstructure described, with a certain approximation, by special gradient Young measures. A rate-independent phenomenological dissipation is then considered to model a hysteretic response. Isothermal simulations with CuAlNi single crystal are presented.

Key words: Young measures, Laminates, Cubic-to-orthorhombic martensitic transformation, Rateindependent evolution, Energetic formulation, Space-time discretization.

1. Introduction

Shape-memory alloys (=SMAs) as so-called active (or smart) materials have been subjected to intensive theoretical and experimental research during the past decades, since they have been enjoying important applications in medicine and mechanical or aerospace engineering. They exhibit specific hysteretic stress/strain/temperature response, which is called shape-memory effect. This is related with the phenomenon that atoms tend to be arranged in different crystallographic configurations (in particular, having different symmetry groups) depending on temperature. Higher temperatures leads to a higher-symmetry (typically cubic) grid referred to as the austenite phase while lower temperature leads to a lower-symmetric grid (typically tetragonal, orthorhombic, monoclinic, or triclinic) called the martensite phase which may occur in M variants, $M=3,6,12$, or 4 in the mentioned cases, respectively. They can be combined coherently with each other, forming so-called twins of two variants, also called a laminate (cf. Figure 1d). Laminates can be combined in layers-within-layers to second-order (or even higher-order) laminates (cf. Figure 1e), or some other self-organization as wedges or branching like on Figure if can be observed and explained by mere crystallographic arguments (cf. [10-12, 29, 48, 53, 54]). These

[^0]

Figure 1. Schematic explanation of the creation of twinned martensite and a real observation: (a) the parent austenite (cubic), (b) two variants of "orthorhombic" martensite elongated vertically or horizontally, (c) twin occurring by matching two slightly rotated triangles of two martensitic variants, (d) first-order laminate (the gray levels distinguish particular variants), (e) second-order laminate (layers within layers, cf. the rank-1 conditions (3)), (f) a rather chaotic arrangement of martensite in a CuAlNi single crystal; courtesy of V.Novák and P.Šittner, Inst. of Physics, Acad. of Sciences of the Czech Rep.
basic studies address primarily stress-free configurations. Under loading, one has to consider a phenomenological free energy recording energy, dependent on temperature and deformation gradient, stored in vibrating interatomic links. Under greater loading, austenite can usually transform to one (or rather more) variant(s) of martensite, which is referred to as a martensitic phase transformation (=PT) and leads to so-called pseudo-elasticity (sometimes also called super-elasticity). Under lower temperature, rather particular martensitic variants transform to each other, which is called re-orientation of martensite and gives rise to so-called quasi-plasticity. These processes are completely reversible but usually quite dissipative, i.e. mechanical energy transforms to heat (but, in closed cycles, without leading to any change of structure). These processes are activated (i.e. the related dissipation potential is nondifferentiable at that process rate $=0$) and their dissipation is, with exception to fast and substantially anisothermal processes, rate independent (i.e. the dissipation potential is degree1 homogeneous and the stress/strain response is hysteretic).

Mathematical and computational modelling of SMAs represents a certain tool of theoretical understanding of PT processes. It may complete experimental results, may predict response of new materials, or may facilitate the usage of SMAs in engineering applications. The real situation in SMAs is truly multi-scale and creates a variety of possibilities for modelling, see [64] for a survey of a wide menagerie of SMA models ranging from nano- to macro-scales. Here we focus on a mesoscopic model based on continuum mechanics but involving, beside the macroscopic deformation and its gradients also volume fractions and their particular gradients. This seems a fruitful compromise allowing for modelling scales of large single crystals as often used in labs.

The goal of this article is to expose the "mesoscopic" description of the possible laminated microstructure by special so-called Young measures in Section 2 and the basic phenomenological concepts behind SMAs, i.e. the stored and dissipation energies, and the governing variational principles in Sections 3 and 4. Then, in Section 5, we present the evolution model together with its analysis involving some new mathematical results and eventually, in Section 6, we illustrate it on specific experiments with a specific SMA, namely CuAlNi which exhibits cubic-to-orthorhombic PT. We
refer to $[34,65]$ for a simpler cubic-to-tetragonal PT occurring in NiMnGa , which is calculated by only first-order laminates. We will confine ourselves to isothermal processes in single-crystals, and intentionally suppress mathematical technicalities to minimum with a certain exception of Section 5.

2. Mesoscopic Description of Laminated Microstructure as an Approach to Multiscale Modelling

The stress-free parent austenite is a natural state of the material and, in the context of continuum mechanics, it is a natural reference configuration of a specimen occupying, say, a domain $\Omega \subset \mathbb{R}^{3}$. As usual, $y: \Omega \rightarrow \mathbb{R}^{3}$ denotes the deformation and $u: \Omega \rightarrow$ \mathbb{R}^{3} the displacement, related to each other by $y(x)=x+u(x), x \in \Omega$. Hence the deformation gradient equals $F=\nabla y=\mathbb{I}+\nabla u$ with $\mathbb{I} \in \mathbb{R}^{3 \times 3}$ being the identity matrix and ∇ is the gradient operator.

As indicated on Figure 1, the deformation gradient often tends to develop fast spatial oscillations which are due to non-(quasi)convexity of the stored energy density and which are difficult to be modelled in full detail, although some studies in this direction exists, too (cf. [3]). We want to address a "mesoscopic" level recording "limit information" of the faster and faster oscillating deformation gradient when we "zoom it out" towards the macroscopic scale. This can be described, at a current "macroscopic point" $x \in \Omega$, by a probability measure v_{x} on the set of matrices from $\mathbb{R}^{3 \times 3}$ (cf. e.g. [10, 11, $42,48,53]$). The collection $v=\left\{v_{x}\right\}_{x \in \Omega}$ is called a Young measure; more precisely, the map $x \mapsto v_{x}$ is required to be still weakly measurable. In our context, relevant Young measures are only those that are attainable as a limit of gradients (in the sense of (57) below) of deformations $y \in W^{1, p}\left(\Omega ; \mathbb{R}^{3}\right):=\left\{y \in L^{p}\left(\Omega ; \mathbb{R}^{3}\right) ; \nabla y \in L^{p}\left(\Omega ; \mathbb{R}^{3 \times 3}\right)\right\}$, where $L^{p}\left(\Omega ; \mathbb{R}^{3 \times 3}\right):=\left\{z: \Omega \rightarrow \mathbb{R}^{3 \times 3}\right.$ measurable: $\left.\int_{\Omega}|z|^{p} \mathrm{~d} x<+\infty\right\}$, for a suitable exponent $p \in$ $(1,+\infty)$ related with the p-polynomial-type growth and coercivity of the stored energy density. Let us denote by $\mathcal{G}^{p}\left(\Omega ; \mathbb{R}^{3 \times 3}\right)$ the set of such parameterized measures. An example of a Young measure $v \in \mathcal{G}^{p}\left(\Omega ; \mathbb{R}^{3 \times 3}\right)$ describing a so-called first-order laminate (cf. Figure 1d) with a underlying macroscopic deformation $y \in W^{1, p}\left(\Omega ; \mathbb{R}^{3}\right)$ is

$$
\begin{align*}
& \nu=\left\{v_{x}\right\}_{x \in \Omega}, \quad v_{x}=\xi_{0}(x) \delta_{F_{1}(x)}+\left(1-\xi_{0}(x)\right) \delta_{F_{2}(x)}, \tag{1a}\\
& {\left[\xi_{0} F_{1}+\left(1-\xi_{0}\right) F_{2}\right](x)=\nabla y(x), \quad F_{1}(x)-F_{2}(x)=a_{0}(x) \otimes n_{0}(x),} \tag{1b}\\
& 0 \leqslant \xi_{0}(x) \leqslant 1, \quad a_{0}(x), n_{0}(x) \in \mathbb{R}^{3} . \tag{1c}
\end{align*}
$$

This process can be re-iterated: a second-order laminate (cf. Figure 1e) with the macroscopic deformation y as above is $v=\left\{v_{x}\right\}_{x \in \Omega}$, where

$$
\begin{align*}
v_{x}= & \xi_{0}(x) \xi_{1}(x) \delta_{F_{1}(x)}+\xi_{0}(x)\left(1-\xi_{1}(x)\right) \delta_{F_{2}(x)} \\
& +\left(1-\xi_{0}(x)\right) \xi_{2}(x) \delta_{F_{3}(x)}+\left(1-\xi_{0}(x)\right)\left(1-\xi_{2}(x)\right) \delta_{F_{3}(x)} \tag{2}
\end{align*}
$$

with (dropping for simplicity a dependence on x)

$$
\begin{align*}
& F_{1}-F_{2}=a_{1} \otimes n_{1}, \quad F_{3}-F_{4}=a_{2} \otimes n_{2} \tag{3a}\\
& \xi_{1} F_{1}+\left(1-\xi_{1}\right) F_{2}-\xi_{2} F_{3}-\left(1-\xi_{2}\right) F_{4}=a_{0} \otimes n_{0} \tag{3b}\\
& \nabla y=\xi_{0} \xi_{1} F_{1}+\xi_{0}\left(1-\xi_{1}\right) F_{2}+\left(1-\xi_{0}\right) \xi_{2} F_{3}+\left(1-\xi_{0}\right)\left(1-\xi_{2}\right) F_{4} \tag{3c}
\end{align*}
$$

Figure 2. Schematic graph with attributed edges (left), being in fact a binary tree (right), which corresponds to the second-order laminate from (3).
and $0 \leqslant \xi_{i} \leqslant 1, a_{i}, n_{i} \in \mathbb{R}^{3}, i \in\{0,1,2\}$. Analogously, we can get laminates of an arbitrary order which are often called sequential laminates (cf. Figure 2 above).

Unfortunately, not every $v \in \mathcal{G}^{p}\left(\Omega ; \mathbb{R}^{3 \times 3}\right)$ is of the form of a sequential laminate, or even cannot be attained by sequential laminates, which can be interpreted that microstructures might be much more chaotic; this might be partly related with Figure if although some explanation by wedge-like or other type of microstructures suggested by Bhattacharya [12] can be more adequate here. This might be connected with the Šverák's famous counterexample [73] that rank-one convexity does not imply quasiconvexity. Moreover, an efficient description of $\mathcal{G}^{p}\left(\Omega ; \mathbb{R}^{3 \times 3}\right)$ is not available, which is related with lack of a local characterization of quasiconvex functions (cf. [31]).

Starting from 1D-numerical experiments by Nicolaides and Walkington [50], there are numerical studies involving gradient Young measures as e.g. [4, 32, 33, 61] but, due to the mentioned impossibility of an efficient description of the whole set $\mathcal{G}^{p}\left(\Omega ; \mathbb{R}^{3 \times 3}\right)$, they eventually have to deal with laminates of an order $\kappa \geqslant 1$, let us denote this set as

$$
\begin{equation*}
\mathcal{G}_{\text {lam }}^{p, \kappa}\left(\Omega ; \mathbb{R}^{3 \times 3}\right):=\left\{v \in \mathcal{G}^{p}\left(\Omega ; \mathbb{R}^{3 \times 3}\right) ; \quad v_{x} \text { is a } \kappa \text {-order laminate for a.a. } x \in \Omega\right\} . \tag{4}
\end{equation*}
$$

Nevertheless, laminates enable us to describe volume fractions of particular phases/variants at a given material point. The idea of looking at volume fractions (sometimes in simplified situations leading to a transformation strain as an independent variable) occurred in various other models, too (see [6, 7, 19, 20, 37, 52, 70, 77]), often meant for polycrystals so that the fine (and in context of single-crystals very important) issues related with rank-one connections are often not accounted for.

3. Stored Energy and its Minimization

The specific energy stored in the inter-atomic links in the continuum $\hat{\varphi}=\hat{\varphi}(F)$ is phenomenologically described as a function of the deformation gradient F; recall that we consider temperature constant. The frame-indifference, i.e. $\hat{\varphi}(F)=\hat{\varphi}(R F)$ for any $R \in$ $\mathrm{SO}(3)$, the group of orientation-preserving rotations, requires that $\hat{\varphi}$ in fact depends only on the (right) Cauchy-Green stretch tensor $C:=F^{\top} F$. As $F=\mathbb{I}+\nabla u$, we can express the specific stored energy in terms of the displacement gradient as

$$
\begin{equation*}
\varphi=\varphi(\nabla u)=\hat{\varphi}(\mathbb{I}+\nabla u) . \tag{5}
\end{equation*}
$$

The absence of an explicit dependence on x is related to homogenous single crystals considered. The Piola-Kirchhoff stress $\sigma: \mathbb{R}^{3 \times 3} \rightarrow \mathbb{R}^{3 \times 3}$ is given by $\sigma=\varphi^{\prime}(\nabla u)$ with φ^{\prime} denoting the tensor-valued gradient.

We will use a St. Venant-Kirchhoff-like form of the stored energy of each particular phase variants which allows for an explicit reference to measured data and can easily be applied to various materials. We consider M variants of martensite determined, in the stress-free state, by distortion matrices $U_{\ell}, \ell=1, \ldots, M$, while the cubic austenite corresponds to $U_{0}=\mathbb{I}$.

The frame-indifferent stored energy of particular phases or phase variants is considered as a function of the Green strain tensor ε^{ℓ} related to the distortion of this phase (variant). In the simplest case (cf. [54, Section 6.6] e.g.), one can consider a function quadratic in terms of ε^{ℓ} of the form

$$
\begin{equation*}
\hat{\varphi}_{\ell}(F)=\frac{1}{2} \sum_{i, j, k, l=1}^{d} \varepsilon_{i j}^{\ell} \mathcal{C}_{i j k l}^{\ell} \varepsilon_{k l}^{\ell}+d_{\ell}, \quad \varepsilon^{\ell}=\frac{R_{\ell}^{\top}\left(U_{\ell}^{\top}\right)^{-1} F^{\top} F U_{\ell}^{-1} R_{\ell}-\mathbb{I}}{2}, \tag{6}
\end{equation*}
$$

where $\mathcal{C}^{\ell}=\left\{\mathcal{C}_{i j k l}^{\ell}\right\}$ is the fourth-order tensor of elastic moduli satisfying the usual symmetry relations depending also on symmetry of the specific phase (variant) ℓ, d_{ℓ} is some offset; d_{ℓ} depends on temperature which is, however, considered as fixed this dependence differs in various phases due to various heat capacities, which is just what makes the shape-memory effect. (The temperature dependence of the elastic tensors \mathcal{C}^{ℓ} and the distortion matrices U_{ℓ} is usually negligible.) Finally, R_{ℓ} is a rotation matrix transforming the basis of the austenite to the basis of the martensitic variant ℓ, if $\ell \geqslant 1$ (cf. (74)), while $R_{0}=\mathbb{I}$. We will advantageously use it to work with the same tensor of elastic moduli for all martensitic variants, contrary to an alternative method by Auld [5] which modifies the tensor \mathcal{C}^{ℓ} for each particular martensitic variant.

The simplest way to assembly the overall multi-well stored energy $\hat{\varphi}$ relying on that materials naturally tend to minimize stored energy is to put

$$
\begin{equation*}
\hat{\varphi}:=\min _{\ell=0, \ldots, M} \hat{\varphi}_{\ell} \tag{7}
\end{equation*}
$$

although some statistical-physics based formula (with quite the same effect) can be consider, too (cf. [34, 64, 65]).

The total stored energy in the bulk occupying, in its reference configuration, the domain Ω is then

$$
\begin{equation*}
V(u):=\int_{\Omega} \varphi(\nabla u) \mathrm{d} x . \tag{8}
\end{equation*}
$$

Basic variational principle (although not always followed, cf. Section 4) is minimization of the stored energy. Due to the multi-well character φ and here also due to the chosen St.Venant-Kirchhoff form of φ, minimizing sequences of V tend to develop, in general, faster and faster spatial oscillations of their gradients, which is related to development of the finer and finer microstructures when the stored energy is to be minimized, cf. again Figure 1d-f. The minimum of V, under specific boundary conditions for u, say

$$
\left.u\right|_{\Gamma_{\mathrm{D}}}=u_{\mathrm{D}},
$$

where Γ_{D} is a part of the (Lipschitz) boundary $\partial \Omega$ of Ω, need not ever be attained on the space $W^{1, p}\left(\Omega ; \mathbb{R}^{3}\right)$, however. This effect is due to neglecting the (usually small)
energy stored in the interfaces like the twinning plane on Figure 1c, which is certainly relevant approach on meso- and macroscopic level. However, the minimum is attained, under suitable coercivity conditions, on Young measures from Section 2. For this, we need to extend V by continuity for such measures. Considering now the configuration as the couple $(u, \nu) \in W^{1, p}\left(\Omega ; \mathbb{R}^{3}\right) \times \mathcal{G}^{p}\left(\Omega ; \mathbb{R}^{3 \times 3}\right)$, the extended functional is

$$
\begin{equation*}
V(u, v):=\int_{\Omega} \int_{\mathbb{R}^{3 \times 3}} \varphi(A) v_{x}(\mathrm{~d} A) \mathrm{d} x=\int_{\Omega} \int_{\mathbb{R}^{3 \times 3}} \hat{\varphi}(\mathbb{I}+A) v_{x}(\mathrm{~d} A) \mathrm{d} x . \tag{10}
\end{equation*}
$$

The set of admissible configurations is now

$$
\begin{align*}
& \left\{(u, \nu) \in W^{1, p}\left(\Omega ; \mathbb{R}^{3}\right) \times \mathcal{G}^{p}\left(\Omega ; \mathbb{R}^{3 \times 3}\right) ;(9)\right. \text { holds and } \\
& \left.\qquad \int_{\mathbb{R}^{3} \times 3} A v_{x}(\mathrm{~d} A)=\nabla u \text { for a.a. } x \in \Omega\right\} \tag{11}
\end{align*}
$$

and the minimum of \bar{V} on this set is the infimum of V on $W^{1, p}\left(\Omega ; \mathbb{R}^{3}\right)$ under (9). The process of extension V to \bar{V} is called relaxation (cf. [53, 61]).

4. Dissipation Energy and its Maximization

PT in SMAs is, to a large extent, a rate-independent, activated process and leads to a specific dissipation which results in a hysteretic response in stress/strain diagrams. Its modelling is equally important as the stored energy but the related phenomenology is still less understood than the stored-energy one; indeed, as pointed out by Bhattacharya et al. [14], 'much remains unknown concerning the nucleation and evolution of microstructure, and the resultant hysteresis'. Let us recall that the orbits $\mathrm{SO}(3) U_{\ell}$ and $\mathrm{SO}(3) U_{l}$ are rank-one connected if

$$
\begin{equation*}
\exists R \in \mathrm{SO}(3): \quad \operatorname{Rank}\left(U_{\ell}-R U_{l}\right)=1, \tag{12}
\end{equation*}
$$

(cf. also Figure 1b,c). There seems to be two main approaches to the dissipation problem:
(A) the hysteresis (and the related rate-independent dissipation) is determined by the stored-energy landscape, advocated essentially by Abeyaratne and Knowles [2], Ball et al. [8, 9], Goldstein [21], James and Zhang [30], Silhavý [67], Truskinovsky [75], Vainchtein and Rosakis [76], etc. The common philosophy is that, if the orbits $\mathrm{SO}(3) U_{\ell}$ and $\mathrm{SO}(3) U_{l}$ are rank-one connected, then the dissipation within PT between these (phase) variants is small, or rather zero, otherwise it is related with metastability and a stress which the material must inevitably withstand to move out of the bottoms of the wells during the PT.
(B) The hysteresis is quite independent of the stored energy and needs a separate phenomenology (recording, e.g, various impurities and dislocations in the atomic grid that lead to bigger dissipation), advocated essentially (besides authors' own previous works) by Auricchio and Petrini [6], Auricchio et al. [7], Frémond [19], Govindjee et al. [23, 24], Hall and Govindjee [26], Govindjee and Miehe [22], Hackl et al. [25], Lexcellent et al. [37], Vivet and Lexcellent [77], Rajagopal and Srinivasa [57], Souza et al. [70], Stupkiewicz and Petryk [71], and many others.

It is likely that both these approaches combine mutually. Besides, for completeness let us mention that there are attempts to apply a phenomenology like (B) but through a modification of the stored energy which then causes a hysteresis like in the case (A) (see [1, 47, 78]).

Following [62, Formula (33)] and the works [34, 43, 55, 56, 63-65], we adopt a (to some extent quite simplified) standpoint that the amount of dissipated energy within the particular PT between austenite and a martensitic variant or between two martensitic variants can be described by a specific energy (of the dimension $\mathrm{J} / \mathrm{m}^{3}=\mathrm{Pa}$). It has independently been adopted in physics (see [28, 74, 77]). For this, we need to identify the particular phases or phase variants and thus we define a continuous mapping $\mathcal{L}: \mathbb{R}^{3 \times 3} \rightarrow \Delta$ where

$$
\begin{equation*}
\Delta:=\left\{\zeta \in \mathbb{R}^{1+M} ; \zeta_{\ell} \geqslant 0, \quad \ell=0, \ldots, M, \sum_{\ell=0}^{M} \zeta_{\ell}=1\right\} \tag{13}
\end{equation*}
$$

is a simplex with $M+1$ vertexes, $M=$ the number of martensitic variants as in Section 3. As in (5), we assume

$$
\begin{equation*}
\mathcal{L}(\nabla u)=\hat{\mathcal{L}}(\mathbb{I}+\nabla u) \quad \text { with } \hat{\mathcal{L}}: \mathbb{R}^{3 \times 3} \rightarrow \Delta . \tag{14}
\end{equation*}
$$

Here $\hat{\mathcal{L}}$ is related with the material itself and thus is to be frame indifferent. We assume, beside $\hat{\mathcal{L}}_{\ell} \geqslant 0$ and $\sum_{\ell=0}^{M} \hat{\mathcal{L}}_{\ell}=1$, that $\hat{\mathcal{L}}_{\ell}(F)=1$ if F is in the ℓ th (phase) variant, i.e. F is in a vicinity of ℓ th well $\mathrm{SO}(3) U_{\ell}$ of φ, which can be identified according to the stretch tensor $F^{\top} F$ close to $U_{\ell}^{\top} U_{\ell}$ (cf. [44, 46]) and the formula (74). If $\hat{\mathcal{L}}(F)$ is not in any vertex of Δ, then it means that F in the spinodal region where no definite (phase) variant is specified; we assume, however, that the wells are sufficiently deep and the (phase) variants geometrically sufficiently far from each other that the tendency for minimization of the stored energy will essentially prevent F to range the spinodal region and thus the concrete form of $\hat{\mathcal{L}}$ does not seem to be important as long as $\hat{\mathcal{L}}$ enjoys the above properties. Hence \mathcal{L} plays the role of what is often called a vector of order parameters or a vector-valued internal variable.

The dissipation-energy phenomenology itself is considered through the choice of a "norm" on \mathbb{R}^{1+M} (not necessarily Euclidean and even not symmetric), let us denote it by $|\cdot|_{M}$; its physical dimension will be $\mathrm{J} / \mathrm{m}^{3}=\mathrm{Pa}$. The desired meaning is to set up the specific energy $\mathcal{E}_{\ell l}$ needed for PT of a phase (variant) ℓ to l as $\left|e_{\ell}-e_{l}\right|_{M}$, where $e_{\ell}=(0, \ldots, 0,1,0, \ldots, 0) \in \mathbb{R}^{1+M}$ is the unit vector with one at the position ℓ. The set $\left\{\mathcal{E}_{\ell l}\right\}_{\ell, l=0, \ldots, M}$ can reflect both the presence/lack of rank-one connections (A) and the influence of various impurities (B).

Referring to a mesoscopic description through a Young measure $\nu \in \mathcal{G}^{p}\left(\Omega ; \mathbb{R}^{3 \times 3}\right)$ (see Section 2), the mesoscopic volume fractions $\lambda=\lambda(x)$ at a current "macroscopic" point x is then

$$
\begin{equation*}
\lambda(x):=\int_{\mathbb{R}^{3 \times 3}} \mathcal{L}(A) v_{x}(\mathrm{~d} A)=\int_{\mathbb{R}^{3 \times 3}} \hat{\mathcal{L}}(\mathbb{I}+A) v_{x}(\mathrm{~d} A) . \tag{15}
\end{equation*}
$$

As a mesoscopic configuration, we will consider a triple $q=(u, v, \lambda)$, i.e. the macroscopic displacement, the Young measure describing the microstructure, and the volume fraction field; of course, they are linked with each other by (15) and also by the
constraint in (11). In terms of $\frac{\mathrm{d}}{\mathrm{d} t} q$, the (pseudo) potential of dissipative forces R that corresponds to this phenomenology is

$$
\begin{equation*}
R\left(\frac{\mathrm{~d} q}{\mathrm{~d} t}\right)=R\left(\frac{\mathrm{~d} u}{\mathrm{~d} t}, \frac{\mathrm{~d} v}{\mathrm{~d} t}, \frac{\mathrm{~d} \lambda}{\mathrm{~d} t}\right):=\int_{\Omega}\left|\frac{\partial \lambda(t, x)}{\partial t}\right|_{M} \mathrm{~d} x . \tag{16}
\end{equation*}
$$

This means, considering a process over the time interval $\left[t_{1}, t_{2}\right]$, the overall dissipated energy by all undergone PTs in the whole specimen Ω will be

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}} \int_{\Omega}\left|\frac{\partial \lambda}{\partial t}\right|_{M} \mathrm{~d} x \mathrm{~d} t=\int_{\Omega} \operatorname{Var}_{t \in\left[t_{1}, t_{2}\right]} \lambda(t, x) \mathrm{d} x, \tag{17}
\end{equation*}
$$

where the total variation "Var" with respect to the (possibly non-symmetric) norm $|\cdot|_{M}$ counts which PTs (and how many times) have been undergone at the point x. The important property of R is that it satisfies the triangle inequality, i.e.

$$
\begin{equation*}
\forall q_{1}, q_{2}, q_{3} \in Q: \quad R\left(q_{1}-q_{3}\right) \leqslant R\left(q_{1}-q_{2}\right)+R\left(q_{2}-q_{3}\right), \tag{18}
\end{equation*}
$$

which follows immediately from convexity and the degree- 1 homogeneity.
The dissipation mechanism through the convex, degree-1 homogeneous potential R is intimately related with Hill's maximum-dissipation principle [27]. The desired energy balance, i.e. the rate of Helmholtz' stored energy \bar{V} plus the dissipation rate equal to the power of the external force, is

$$
\begin{equation*}
\frac{\mathrm{d} \bar{V}}{\mathrm{~d} t}+R\left(\frac{\mathrm{~d} q}{\mathrm{~d} t}\right)=\left\langle f, \frac{\mathrm{~d} u}{\mathrm{~d} t}\right\rangle \tag{19}
\end{equation*}
$$

where the degree-1 homogeneous dissipation rate R can be written in the form

$$
\begin{equation*}
R\left(\frac{\mathrm{~d} q}{\mathrm{~d} t}\right)=\int_{\Omega} \omega(t, x) \cdot \frac{\partial \lambda(t, x)}{\partial t} \mathrm{~d} x \quad \text { with } \omega(t, x) \in\left[\partial|\cdot|_{M}\right]\left(\frac{\partial \lambda(t, x)}{\partial t}\right) \tag{20}
\end{equation*}
$$

with $\partial|\cdot|_{M}$ denoting the subdifferential of $|\cdot|_{M}$. The last inclusion can be written as

$$
\begin{equation*}
\left\langle\frac{\partial \lambda(t, x)}{\partial t}, \omega(t, x)\right\rangle=\max _{z \in Z}\left\langle\frac{\partial \lambda(t, x)}{\partial t}, z\right\rangle \quad \text { with } Z:=\left[\partial|\cdot|_{M}\right](0) . \tag{21}
\end{equation*}
$$

This says that, for the considered volume-fraction rate $\frac{\partial}{\partial t} \lambda$, the driving stress (or specific activation energies) ω in $\mathrm{Pa}\left(=\mathrm{J} / \mathrm{m}^{3}\right)$ makes the dissipation caused by the PTs maximal among all other admissible driving stresses, i.e. those from the convex set $Z \subset \mathbb{R}^{1+M}$. In plasticity theory, this maximum-dissipation principle can alternatively be expressed as a normality in the sense that the rate of plastic deformation belongs to the cone of outward normals to the elasticity domain (see also [38, 68]), and also [40] for the more general situation of standard generalized materials. Here, this would result in the observation that the rate $\frac{\partial}{\partial t} \lambda(t, x)$ of PTs at (t, x) belongs to the normal cone of the "elasticity domain" Z at the point $\omega(t, x)$. In particular, (21) says that $\frac{\partial}{\partial t} \lambda=0$ (i.e. the volume fractions do not evolve) if $\omega(t, x)$ is inside Z (i.e. there in not enough stress to activate PTs at $(t, x))$. Also recall that ∂R is maximal responsive in the sense of [17]. For a discussion in a 1D-case see also [3, Remark 4.5]. However, we saw that (21) contains, in fact, only a rather small portion of information about the evolution and other principles can be considered at this context, too (cf. also Remark 5.4).

5. Energetic Solution and its Discretization

We want to present briefly the model of evolution of microstructure described "mesoscopically" as in Section 2 governed by the principles from Sections 3 to 4, as well as its mathematical analysis. It exploits the definition of the so-called energetic solution invented in $[44,45]$ (see also the survey article [44]) and the results are then mainly based on [34, 41, 43, 65] (improving substantially the results of [34, 65]) exploiting also some recent results. In accord with Section 6, we consider here a "soft-device" loading through time-varying Neumann's boundary conditions.

We denote the set Q^{0} of the admissible configurations q 's, i.e.

$$
\begin{align*}
& Q^{0}=\{(u, v, \lambda) \in Q ; \quad \lambda=\mathcal{L} \bullet v \text { a.e. }\}, \quad \text { where } \tag{22}\\
& Q:=\left\{q=(u, v, \lambda) \in W^{1, p}\left(\Omega ; \mathbb{R}^{3}\right) \times \mathcal{G}^{p}\left(\Omega ; \mathbb{R}^{3 \times 3}\right) \times L^{1}\left(\Omega ; \mathbb{R}^{1+M}\right) ;\right. \\
& \left.\nabla u(x)=\int_{\mathbb{R}^{3 \times 3}} A v_{x}(\mathrm{~d} A), \quad \lambda(x) \in \Delta \text { a.e. on } \Omega,\left.\quad u\right|_{\Gamma_{\mathrm{D}}}=u_{\mathrm{D}}\right\},
\end{align*}
$$

where we abbreviated

$$
\begin{equation*}
\lambda=\mathcal{L} \bullet v, \quad \text { where }[\mathcal{L} \bullet v](x):=\int_{\mathbb{R}^{3} \times 3} \mathcal{L}(A) v_{x}(\mathrm{~d} A) . \tag{23}
\end{equation*}
$$

We distinguished, just for numerical purposes later, Q, which "forgets" the constraint $\lambda=\mathcal{L} \cdot v$, from Q_{0}.

The Gibbs' stored energy which also counts for the time-dependent boundary conditions and which is regularized by $\rho>0$ is

$$
\begin{align*}
G(t, q) & :=G(t, u, v, \lambda)=\bar{V}(u, v)+\int_{\Gamma_{\mathrm{N}}} f(t, x) \cdot u(x) \mathrm{d} x+\rho|\lambda|_{\alpha, r}^{r} \quad \text { on } Q, \tag{24}\\
G^{0}(t, q) & := \begin{cases}G(t, q) & \text { on } Q^{0}, \\
+\infty & \text { on } Q \backslash Q^{0},\end{cases} \tag{25}
\end{align*}
$$

with \bar{V} from (10), $f:[0, T] \times \Gamma_{\mathrm{N}} \rightarrow \mathbb{R}^{3}$ a prescribed "soft-device" loading, $\Gamma_{\mathrm{N}} \subset$ $\partial \Omega, T>0$ a fixed time horizon, and with the semi-norm in the Sobolev-Slobodetskiĭ space $W^{\alpha, r}\left(\Omega ; \mathbb{R}^{1+M}\right)$ considered as

$$
\begin{equation*}
|\lambda|_{\alpha, r}:=\left(\frac{1}{4} \int_{\Omega} \int_{\Omega} \frac{|\lambda(x)-\lambda(\tilde{x})|^{r}}{|x-\tilde{x}|^{3+r \alpha}} \mathrm{~d} \tilde{x} \mathrm{~d} x\right)^{1 / r} \tag{26}
\end{equation*}
$$

for a fixed parameter $0<\alpha<1$. Such a regularizing term in (24) gives some (possibly very small) energy to spatial variation of mesoscopic volume fractions and is exploited for a rigorous proof of existence of energetic solutions as well as convergence of numerical approximations. Gradients of mesoscopic volume fractions have already been used in Frémond's model [19, p. 364]. Our form (26) corresponds to the only " α-fractional gradient" which is compactifying, namely the embedding $W^{\alpha, r}\left(\Omega ; \mathbb{R}^{1+M}\right) \subset L^{1}\left(\Omega ; \mathbb{R}^{1+M}\right)$ is compact. Also it allows for an element-wise affine approximation of λ, because $W^{\alpha, r}\left(\Omega ; \mathbb{R}^{1+M}\right) \supset W^{1, \infty}\left(\Omega ; \mathbb{R}^{1+M}\right)$ or, if $\alpha<1-3(r-1) / r$ with some $1<r<3 / 2$, for an element-wise constant approximation which has necessarily discontinuities on two-dimensional manifolds requiring then $W^{\alpha, r}\left(\Omega ; \mathbb{R}^{1+M}\right) \supset$
$W^{1,1}\left(\Omega ; \mathbb{R}^{1+M}\right)$; later in (33) we choose the latter option. In $[43,63]$ such a regularization was interpreted as a limit from the Ericksen-Timoshenko model scrutinized by Ren and Truskinovsky [58], Rogers and Truskinovsky [59] who also proposed a nonlocal term like (26) in the 1D case with either positive or also, for different purposes, non-positive kernels. One can interprete the energy (26) as associated to a sort of non-local microstress measuring non-local interactions related to spatial microstructural variations.

DEFINITION 5.1. The process $q:[0, T] \mapsto Q^{0}$ will be called an energetic solution to the problem given by the triple $\left(G^{0}, R, q_{0}\right)$, i.e. by the data $\left(\varphi, \mathcal{L},|\cdot|_{M}, f, u_{\mathrm{D}}, q_{0}, \rho\right)$, if it satisfies the initial condition $q(0)=q_{0}$, the static stability condition:

$$
\begin{equation*}
\forall t \in[0, T] \forall \tilde{q} \in Q^{0}: \quad G^{0}(t, q(t)) \leqslant G^{0}(t, \tilde{q})+R(\tilde{q}-q(t)), \tag{27}
\end{equation*}
$$

and the energy equality

$$
\begin{equation*}
\forall s, t \in[0, T]: \quad G^{0}(t, q(t))+\operatorname{Var}_{R}(q ; s, t)=G^{0}(s, q(s))+\int_{s}^{t} \frac{\partial G^{0}}{\partial \vartheta}(\vartheta, q(\vartheta)) \mathrm{d} \vartheta . \tag{28}
\end{equation*}
$$

Here $\operatorname{Var}_{R}(q ; s, t)$ is the total variation of the process $q=(u, v, \lambda):[0, T] \rightarrow Q$ over the time interval $[s, t]$ with respect to the norm $|\cdot|_{M}$, namely

$$
\begin{equation*}
\operatorname{Var}_{R}(q ; s, t):=\sup \sum_{i=1}^{k} R\left(q\left(t_{i}\right)-q\left(t_{i-1}\right)\right)=\sup \sum_{i=1}^{k} \int_{\Omega}\left|\lambda\left(t_{i}, x\right)-\lambda\left(t_{i-1}, x\right)\right|_{M} \mathrm{~d} x \tag{29}
\end{equation*}
$$

where the supremum is taken over all partition $s=t_{0}<t_{1}<\cdots<t_{k}=t, k \in \mathbb{N}$. The definition of stability (27) and energy balance (28) could also be defined on all of Q, since G^{0} equals $+\infty$ on $Q \backslash Q^{0}$. It will be useful to define the stability set $\mathcal{S}^{0}(t)$ by

$$
\begin{equation*}
\mathcal{S}^{0}(t):=\left\{q \in Q ; G^{0}(t, q)<+\infty, \forall \tilde{q} \in Q: G^{0}(t, q) \leqslant G^{0}(t, \tilde{q})+R(\tilde{q}-q)\right\} . \tag{30}
\end{equation*}
$$

Let us note that the stability (27) just means that $q(t) \in \mathcal{S}^{0}(t)$ for all $t \in[0, T]$.

Remark 5.2. The particular terms in (28) are Gibbs' energy at time t, the dissipated energy over the time interval $[s, t]$, the initial Gibbs' energy, and a (reduced) work of external loading over the time interval $[0, t]$. The adjective "reduced" refers to the by-part integration of the standard work of external loading $\int_{0}^{t} \int_{\Gamma_{\mathrm{N}}} f(s, x)$. $\frac{\partial}{\partial s} u \mathrm{~d} x \mathrm{~d} s$ which balances Helmholtz' (contrary to Gibbs') stored energy (cf. (19)). This by-part integration is an essential trick because it allows, together with the definition (29), to omit any explicit reference to the time derivative $\frac{\mathrm{d}}{\mathrm{d} t} q$ in (27) and (28).

Remark 5.3. The energy balance (28) obviously produces no dissipation (i.e. no hysteresis on stress-strain diagrams) if $R=0$. A similar effect occurs in usual viscos-ity/capillarity-type models if viscosity vanishes and enough capillarity (=gradients of enough higher-order in the stored energy) remains (cf. [56]). Here this effect is due to the regularizing term (26). Hence, incorporation of a dissipation even of type (A) (see Section 4) must be done in this model always through the dissipative-force potential R which may, in addition, involve some other phenomenology (see (B) in Section 4).

Remark 5.4. The energetic definition (27) and (28) is closely related to the socalled doubly-non-linear evolution problem (cf. [42]). Indeed, assuming (here formally) G^{0} Gâteaux differentiable and using (27) and the degree-1 homogeneity of R, we obtain the estimate for the directional derivative

$$
\left[\left[G^{0}\right]_{q}^{\prime}(t, q(t))\right](v)=\lim _{\varepsilon \rightarrow 0+} \frac{G(t, q(t)+\varepsilon v)-G(t, q(t))}{\varepsilon} \geqslant-\frac{R(q(t)+\varepsilon v-q(t))}{\varepsilon}=-R(v) .
$$

Then, if $q(\cdot)$ would be smooth, we can differentiate (28) in t to obtain $\frac{\mathrm{d}}{\mathrm{d} t} G^{0}(t, q(t))+$ $R\left(\frac{\mathrm{~d}}{\mathrm{~d} t} q\right)=\left[G^{0}\right]_{t}^{\prime}(t, q(t))$. Substituting $\frac{\mathrm{d}}{\mathrm{d} t} G^{0}(t, q(t))=\left[G^{0}\right]_{t}^{\prime}(t, q(t))+\left[\left[G^{0}\right]_{q}^{\prime}(t, q(t))\right]\left(\frac{\mathrm{d}}{\mathrm{d} t} q\right)$ and subtracting it from the information we got from (27), we arrive at the variational inequality

$$
\begin{equation*}
\left[\left[G^{0}\right]_{q}^{\prime}(t, q(t))\right]\left(v-\frac{\mathrm{d} q}{\mathrm{~d} t}\right)+R(v) \geqslant R\left(\frac{\mathrm{~d} q}{\mathrm{~d} t}\right) \tag{3}
\end{equation*}
$$

to hold for any v. This is equivalent to the doubly-non-linear evolution problem

$$
\begin{equation*}
\partial R\left(\frac{\mathrm{~d} q}{\mathrm{~d} t}\right)+\left[G^{0}\right]_{q}^{\prime}(t, q(t)) \ni 0, \tag{32}
\end{equation*}
$$

where ∂R denotes standardly the subdifferential of R. On the right-hand side of (32) identifies the driving force $-\left[G^{0}\right]_{q}^{\prime}(t, q(t))$ for the PTs. The inequality (31) just says that $\frac{\mathrm{d}}{\mathrm{d} t} q$ minimizes the functional $v \mapsto\left[\left[G^{0}\right]_{q}^{\prime}(t, q(t))\right](v)+R(v)$, i.e. the sum of the power of elastic forces and the dissipation. This can be interpreted as a certain min-imum-type principle for $\frac{\mathrm{d}}{\mathrm{d} t} q$ opposing the mentioned maximum-dissipation principle for $\frac{\mathrm{d}}{\mathrm{d} t} q$. It is related with the Levitas' realizability principle [36] (see also [46]) claiming that the PTs occur as soon as it is thermodynamically possible, namely when the gain in energy through a particular PT is at least equal to the dissipated energy. In our case, G^{0} is non-smooth, however, and even involves the constraints $\lambda=\mathcal{L} \bullet v$ and $v \in \mathcal{G}^{p}\left(\Omega ; \mathbb{R}^{3 \times 3}\right)$ and the rigorous formulation and more detailed analysis of (32) is not obvious because $G^{p}\left(\Omega ; \mathbb{R}^{3 \times 3}\right)$ is not convex, and then Definition 5.1 helps substantially.

Under some qualification of the data ($\varphi, \mathcal{L},|\cdot|_{M}, f, u_{\mathrm{D}}, q_{0}, \rho$), the existence of some energetic solution can be proved by a constructive way by approximation of the implicit Euler formula and the spacial finite-element-like discretization combined with laminated Young measures (4) and a penalization of the equality (15), which also suggest a numerical strategy. As already emphasized, the set $\mathcal{G}^{p}\left(\Omega ; \mathbb{R}^{3 \times 3}\right)$ cannot be explicitly implemented so we employ the smaller set $\mathcal{G}_{\mathrm{lam}}^{p, k}\left(\Omega ; \mathbb{R}^{3 \times 3}\right)$ from (4), which, however, brings a necessity to treat the relation $\lambda=\mathcal{L} \bullet \nu$ with a "tolerance", because, due to the compactness in λ 's caused by the regularizing non-local ρ-term in (24), it behaves like a constraint which, if treated without any tolerance, might destroy the convergence (cf. [60] or also [61, Proposition 1.3.5]).

To construct approximate solutions, we consider time steps $\tau>0$, assuming that T / τ is integer and that $\tau \rightarrow 0$. Beside of this time discretization we will employ the finite-element method as space discretization. We assume that Ω is a polyhedral domain triangulated by simplicial triangulations, denoted by \mathcal{T}_{h}, where $h>0$ is a mesh parameter satisfying $h \geqslant \max _{S \in \mathcal{I}_{h}} \operatorname{diam}(S)$. We consider a countable set of h 's with $h \rightarrow 0$ which are nested, i.e. $\mathcal{T}_{h_{1}}$ is a refinement of $\mathcal{T}_{h_{2}}$ if $h_{2} \geqslant h_{1}>0$.

We fix an order of lamination $\kappa \geqslant 0$ in (4); the concrete value of κ does not affect the theoretical convergence results but may, of course, substantially influence the rate of convergence and thus numerical results of concrete computational experiments if taken too small. We introduce the spatially discretized state space as

$$
\begin{align*}
Q_{h}= & \left\{q=(u, v, \lambda) \in Q ; v \in \mathcal{G}_{\operatorname{lam}}^{p, \kappa}\left(\Omega ; \mathbb{R}^{3 \times 3}\right) \text { and constant on each simplex of } \mathcal{T}_{h},\right. \\
& \left.\lambda \text { constant on each simplex of } \mathcal{T}_{h}\right\} . \tag{33}
\end{align*}
$$

Note that each u with $(u, v, \lambda) \in Q_{h}$ is inevitably piecewise affine on \mathcal{T}_{h}, since ∇u is piecewise constant.

In addition to the two small parameters $\tau>0$ and $h>0$ we introduce a third small parameter $\varepsilon>0$ which is used to relax the constraint $\lambda=\mathcal{L} \cdot \nu$. For this we introduce the relaxed, spatially discretized energy

$$
G_{h}^{\varepsilon}(t, q)= \begin{cases}G(t, q)+\frac{1}{\varepsilon}\|\lambda-\mathcal{L} \cdot \nu\|^{2} & \text { for } q \in Q_{h}, \tag{34}\\ +\infty & \text { for } q \in Q \backslash Q_{h},\end{cases}
$$

where $\mathcal{L} \bullet v$ is from (23) and where $\|\cdot\| \|$ is the norm in a space to which $L^{\infty}\left(\Omega ; \mathbb{R}^{1+M}\right)+W^{\alpha, r}\left(\Omega ; \mathbb{R}^{1+M}\right)$ is embedded compactly, e.g. the space $H^{-1}\left(\Omega ; \mathbb{R}^{1+M}\right):=$ $W_{0}^{1,2}\left(\Omega ; \mathbb{R}^{1+M}\right)^{*}$; recall that L^{∞} stands, as standard, for the space of measurable essentially bounded functions.

With these definitions, we consider a fully implicit algorithm based on the following incremental problem: Let $q_{\tau}^{0}=q_{0}$ be a given initial condition, and, for $k=$ $1, \ldots, T / \tau$ we define $\left(q_{\tau, h}^{\varepsilon, k}\right)_{k=1, \ldots, T / \tau}$ to be a solution of the minimization problems

$$
\begin{align*}
& \text { Minimize } G_{h}^{\varepsilon}(k \tau, q)+R\left(q-q^{k-1}\right) \text {, } \tag{35}\\
& \text { subject to } q=(u, v, \lambda) \in Q_{h} .
\end{align*}
$$

For $k=0$, we naturally put $q_{\tau, h}^{\varepsilon, k}=q_{0}$, a given initial condition. As R involves only λ, the component λ_{0} of $q_{0}=\left(u_{0}, \nu_{0}, \lambda_{0}\right)$ is what plays role. In general, to ensure the energy estimate (42) below, the initial condition must be stable; here, for simplicity, in (37) we will assume even more special q_{0} used in Section 6. The stability is most easily expressed via the sets of stable states

$$
\begin{equation*}
\mathcal{S}_{h}^{\varepsilon}(t):=\left\{q \in Q ; \quad G_{h}^{\varepsilon}(t, q)<+\infty, \forall \tilde{q} \in Q: G_{h}^{\varepsilon}(t, q) \leqslant G_{h}^{\varepsilon}(t, \tilde{q})+R(\tilde{q}-q)\right\} . \tag{36}
\end{equation*}
$$

The stability condition (27) then means $q(t) \in \mathcal{S}_{h}^{\varepsilon}(t)$ for all $t \in[0, T]$. The condition ($37 \mathrm{c}, \mathrm{d}$) below will guarantee $q_{0} \in \mathcal{S}_{h}^{\varepsilon}(0)$. Also, for simplicity, assume u_{D} constant in time and, again in agreement with Section 6, even zero; cf. Remark 5.9 for a generalization.

Let us denote by $q_{\tau, h}^{\varepsilon}$ the piecewise constant approximate solution, i.e. $q_{\tau, h}^{\varepsilon}(t):=$ $q_{\tau, h}^{\varepsilon, k}$ for $(k-1) \tau<t \leqslant k \tau, k=0, \ldots, T / \tau$. Beside the standard notation for $W^{\alpha, p_{-}}$and L^{p}-spaces already explained, we now use also "BV" for the space of functions with bounded variations. The numerical stability of the proposed scheme is based on the following apriori estimates.

PROPOSITION 5.5. Let, for $\kappa \geqslant 0$ fixed,

$$
\begin{align*}
& f \in W^{1,1}\left(0, T ; W^{1 / p-1, p /(p-1)}\left(\Gamma_{\mathrm{N}} ; \mathbb{R}^{3}\right)\right), \quad u_{\mathrm{D}}=0, \tag{37a}\\
& \varepsilon|A|^{p}-C \leqslant \varphi(A) \leqslant C\left(1+|A|^{p}\right) \quad \text { for some } \varepsilon>0, \quad C<+\infty \tag{37b}\\
& f(0, \cdot)=0 \quad \text { and } \quad q_{0}=\left(u_{0}, v_{0}, \lambda_{0}\right) \in Q^{0} \text { with } \tag{37c}\\
& u_{0}=0, \quad v_{0} \in \mathcal{G}_{\operatorname{lam}}^{p, \kappa}\left(\Omega ; \mathbb{R}^{3 \times 3}\right) \text { spatially constant and minimizing } \varphi . \tag{37d}
\end{align*}
$$

Then the following a priori estimates for $q_{\tau, h}^{\varepsilon}=\left(u_{\tau, h}^{\varepsilon}, v_{\tau, h}^{\varepsilon}, \lambda_{\tau, h}^{\varepsilon}\right):[0, T] \rightarrow Q_{h}$ hold:

$$
\begin{align*}
& \left\|u_{\tau, h}^{\varepsilon}\right\|_{L^{\infty}\left(0, T ; W^{1, p}\left(\Omega ; \mathbb{R}^{3}\right)\right)} \leqslant C_{0}, \tag{38}\\
& \left\|\lambda_{\tau, h}^{\varepsilon}\right\|_{\mathrm{BV}\left(0, T ; L^{1}\left(\Omega ; \mathbb{R}^{1+M}\right)\right)} \cap L^{\infty}\left(0, T ; L^{\infty}\left(\Omega ; \mathbb{R}^{1+M}\right) \cap W^{\alpha, r}\left(\Omega ; \mathbb{R}^{1+M}\right)\right) \tag{39}\\
& \left\|\mathfrak{G}_{\tau, h}^{\varepsilon}\right\|_{\mathrm{BV}(0, T)} \leqslant C_{2} \quad \text { with } \mathfrak{G}_{\tau, h}^{\varepsilon}(t):=G_{h}^{\varepsilon}\left(k \tau, q_{\tau, h}^{\varepsilon, k}\right) \quad \text { for } t \in((k-1) \tau, k \tau] . \tag{40}
\end{align*}
$$

Moreover, $q_{\tau, h}^{\varepsilon}$ is stable in the following sense

$$
\begin{equation*}
\forall \tilde{q} \in Q_{h}: \quad \mathfrak{G}_{\tau, h}^{\varepsilon}(k \tau)=G_{h}^{\varepsilon}\left(k \tau, q_{\tau, h}^{\varepsilon}(k \tau)\right) \leqslant G_{h}^{\varepsilon}(k \tau, \tilde{q})+R\left(q_{\tau, h}^{\varepsilon}(k \tau)-\tilde{q}\right) \tag{41}
\end{equation*}
$$

for all $k=0,1, \ldots, T / \tau$ and satisfies the two-sided discrete energy inequality

$$
\begin{align*}
\int_{0}^{t} \int_{\Gamma_{\mathrm{N}}} \frac{\partial f(s, x)}{\partial s} \cdot u_{\tau, h}^{\varepsilon}(s, x) \mathrm{d} x \mathrm{~d} s & \leqslant \mathfrak{G}_{\tau, h}^{\varepsilon}(t)+\operatorname{Var}_{R}\left(q_{\tau, h}^{\varepsilon} ; 0, t\right)-\mathfrak{G}_{\tau, h}^{\varepsilon}(0) \\
& \leqslant \int_{0}^{t} \int_{\Gamma_{\mathrm{N}}} \frac{\partial f(s, x)}{\partial s} \cdot u_{\tau, h}^{\varepsilon}(s-\tau, x) \mathrm{d} x \mathrm{~d} s \tag{42}
\end{align*}
$$

for $t=\tau k, k=0,1, \ldots, T / \tau$.

Sketch of the proof of Proposition 5.5. The discrete stability condition (41) follows by using successively that $q_{\tau, h}^{\varepsilon, k}$ is a solution to (35) and the triangle inequality (18) for R :

$$
\begin{align*}
G_{h}^{\varepsilon}\left(k \tau, q_{\tau, h}^{\varepsilon, k}\right) & \leqslant G_{h}^{\varepsilon}(k \tau, \tilde{q})+R\left(\tilde{q}-q_{\tau, h}^{\varepsilon, k-1}\right)-R\left(q_{\tau, h}^{\varepsilon, k}-q_{\tau, h}^{\varepsilon, k-1}\right) \\
& \leqslant G_{h}^{\varepsilon}(k \tau, \tilde{q})+R\left(\tilde{q}-q_{\tau, h}^{\varepsilon, k}\right) \tag{43}
\end{align*}
$$

for any $k=1, \ldots, K=T / \tau$.
As to (42), we again use that $q_{\tau, h}^{\varepsilon, k}$ solves (35) and, comparing it with $q_{\tau, h}^{\varepsilon, k-1}$, we get

$$
\begin{align*}
& G_{h}^{\varepsilon}\left(k \psi_{\tau, h}^{\varepsilon, k}\right)-G_{h}^{\varepsilon}\left((k-1) \tau, q_{\tau, h}^{\varepsilon, k-1}\right)+R\left(q_{\tau, h}^{\varepsilon, k}-q_{\tau, h}^{\varepsilon, k-1}\right) \\
& \quad \leqslant G_{h}^{\varepsilon}\left(k \tau, q_{\tau, h}^{\varepsilon, k-1}\right)-G_{h}^{\varepsilon}\left((k-1) \tau, q_{\tau, h}^{\varepsilon, k-1}\right) \\
& \quad=\int_{(k-1) \tau}^{k \tau} \frac{\partial G_{h}^{\varepsilon}\left(t, q_{\tau, h}^{\varepsilon, k-1}\right)}{\partial t} \mathrm{~d} t=\int_{(k-1) \tau}^{k \tau} \int_{\Gamma_{\mathrm{N}}} \frac{\partial f(t, x)}{\partial t} \cdot u_{\tau, h}^{\varepsilon}(t-\tau, x) \mathrm{d} x \mathrm{~d} t \tag{44}
\end{align*}
$$

and then the second estimate in (42) after a summation. As to the first estimate in (42), by the stability (43) written for $q_{\tau, h}^{\varepsilon, k-1}$, we can see that $q_{\tau, h}^{\varepsilon, k-1}$ minimizes the functional $q \mapsto G_{h}^{\varepsilon}((k-1) \tau, q)+R\left(q-q_{\tau, h}^{\varepsilon, k-1}\right)$, and therefore, by inserting $q=q_{\tau, h}^{\varepsilon, k}$, we find

$$
\begin{align*}
& G_{h}^{\varepsilon}\left(k \tau, q_{\tau, h}^{\varepsilon, k}\right)-G_{h}^{\varepsilon}\left((k-1) \tau, q_{\tau, h}^{\varepsilon, k-1}\right)+R\left(q_{\tau, h}^{\varepsilon, k}-q_{\tau, h}^{\varepsilon, k-1}\right) \\
& \geqslant G_{h}^{\varepsilon}\left(k \tau, q_{\tau, h}^{\varepsilon, k}\right)-G_{h}^{\varepsilon}\left((k-1) \tau, q_{\tau, h}^{\varepsilon, k}\right) \tag{45}\\
& \quad=\int_{(k-1) \tau}^{k \tau} \frac{\partial G_{h}^{\varepsilon}\left(t, q_{\tau, h}^{\varepsilon, k}\right)}{\partial t} \mathrm{~d} t=\int_{(k-1) \tau}^{k \tau} \int_{\Gamma_{\mathrm{N}}} \frac{\partial f(t, x)}{\partial t} \cdot u_{\tau, h}^{\varepsilon}(t, x) \mathrm{d} x \mathrm{~d} t . \tag{46}
\end{align*}
$$

By a summation we obtain the first part of (42). Note that, for $k=1$, we used the stability of $q_{\tau, h}^{\varepsilon, 0}=q_{0}$, i.e.

$$
\begin{equation*}
\forall \tilde{q} \in Q_{h}: \quad G_{h}^{\varepsilon}\left(0, q_{0}\right) \leqslant G_{h}^{\varepsilon}(0, \tilde{q})+R\left(\lambda_{0}-\tilde{\lambda}\right), \tag{47}
\end{equation*}
$$

which is assumed in (37c,d).
The BV-bound in the estimate (39) then follows directly from (44), while the L^{∞} bound is obvious since $\lambda_{\tau, h}^{\varepsilon}(t, x) \in \Delta$ for a.a. $(t, x) \in[0, T] \times \Omega$ and $\Delta \subset \mathbb{R}^{1+M}$ is bounded, and eventually by summing (44) for $k=1, \ldots, T / \tau$, we get $G_{\tau, h}^{\varepsilon}\left(t, q_{\tau, h}^{\varepsilon}(t)\right)$ bounded from above uniformly in $t \in[0, T]$ so that, in view of the coercivity (37b) and of $\rho>0$ in (24), the bounds for $\left\|u_{\tau, h}^{\varepsilon}(t)\right\|_{W^{1, p}\left(\Omega ; \mathbb{R}^{3}\right)}$ and for $\left|\lambda_{\tau, h}^{\varepsilon}(t)\right|_{\alpha, r}$ uniform in $t \in[0, T]$ follow by using also (37a) and the discrete Gronwall inequality; note that not k but $k-1$ level occurs on the right-hand side of (44) so no restriction on τ is needed. By (44) and (46) and also by using (38) and (39), it holds

$$
\begin{align*}
\operatorname{Var}\left(\mathfrak{G}_{\tau, h}^{\varepsilon} ; 0, T\right)= & \sum_{k=1}^{T / \tau}\left|G_{h}^{\varepsilon}\left(k \tau, q_{\tau, h}^{\varepsilon, k}\right)-G_{h}^{\varepsilon}\left((k-1) \tau, q_{\tau, h}^{\varepsilon, k-1}\right)\right| \\
\leqslant & \sum_{k=1}^{T / \tau} \max \left(\int_{(k-1) \tau}^{k \tau}\left|\frac{\partial G_{h}^{\varepsilon}\left(t, q_{\tau, h}^{\varepsilon, k-1}\right)}{\partial t}\right| \mathrm{d} t, R\left(q_{\tau, h}^{\varepsilon, k}-q_{\tau, h}^{\varepsilon, k-1}\right)\right. \\
& \left.+\int_{(k-1) \tau}^{k \tau}\left|\frac{\partial G_{h}^{\varepsilon}\left(t, q_{\tau, h}^{\varepsilon, k}\right)}{\partial t}\right| \mathrm{d} t\right) \leqslant \operatorname{Var}_{R}\left(q_{\tau, h}^{\varepsilon} ; 0, T\right) \\
& +\left\|\left.u\right|_{\Gamma_{\mathrm{N}}}\right\|_{L^{\infty}\left(\Omega ; W^{1-1 / p, p}\left(\Gamma_{\mathrm{N}} ; \mathbb{R}^{3}\right)\right)} \left\lvert\, \frac{\partial f}{\partial t}\right. \|_{L^{1}\left(0, T ; W^{1 / p-1, p /(p-1)}\left(\Gamma_{\mathrm{N}} ; \mathbb{R}^{3}\right)\right)} \tag{48}
\end{align*}
$$

proving a bound for $\left\|\mathfrak{G}_{\tau, h}^{\varepsilon}\right\|_{\mathrm{BV}(0, T)}:=\int_{0}^{T}\left|\mathfrak{G}_{\tau, h}^{\varepsilon}\right| \mathrm{d} t+\operatorname{Var}\left(\mathfrak{G}_{\tau, h}^{\varepsilon} ; 0, T\right)$, i.e. (40).
Now we are ready to state the convergence for $(\tau, h, \varepsilon) \rightarrow(0,0,0)$ of the proposed scheme. Under some rather strong "non-buckling" conditions it was shown in a weak form in [34, 65].

The major condition for treating the limit is that G_{h}^{ε} converges in the sense of Γ convergence to towards the limit energy G^{0}, where now all energies are assumed to be defined on Q, but are allowed to take the value $+\infty$. First we specify the sense in which the convergence of sequences is taken:

$$
q_{j}=\left(u_{j}, v_{j}, \lambda_{j}\right) \stackrel{*}{\rightharpoonup} q=(u, v, \lambda) \text { in } Q \Longleftrightarrow \begin{cases}u_{j} \rightharpoonup u & \text { in } W^{1, p}\left(\Omega, \mathbb{R}^{3}\right), \tag{49}\\ v_{j} \stackrel{\rightharpoonup}{v} v & \text { in } \mathcal{G}^{p}\left(\Omega, \mathbb{R}^{3 \times 3}\right), \\ \lambda_{j} \rightharpoonup \lambda & \text { in } W^{\alpha, r}\left(\Omega, \mathbb{R}^{1+M}\right),\end{cases}
$$

where the weak* convergence $\nu_{j} \stackrel{*}{*} v$ means that

$$
\forall h \in L^{1}\left(\Omega ; C_{0}\left(\mathbb{R}^{3 \times 3}\right)\right): \lim _{j \rightarrow \infty} \int_{\Omega} \int_{\mathbb{R}^{3 \times 3}} h(x, A)\left[\nu_{j}\right]_{x}(\mathrm{~d} A) \mathrm{d} x=\int_{\Omega} \int_{\mathbb{R}^{3} \times 3} h(x, A) v_{x}(\mathrm{~d} A) \mathrm{d} x .
$$

We consider this as the major convergence in our extended state space Q. First we note that the dissipation functional R, which is independent of τ, h, and ε, is weakly continuous, namely

$$
\begin{equation*}
q_{j} \stackrel{*}{\rightharpoonup} q \quad \text { and } \quad \tilde{q}_{j} \stackrel{*}{\stackrel{ }{q}} \tilde{q} \quad \text { in } Q \quad \Longrightarrow \quad R\left(q_{j}-\tilde{q}_{j}\right) \rightarrow R(q-\tilde{q}) . \tag{50}
\end{equation*}
$$

Moreover, we need the collection of triangulations $\left\{\mathcal{T}_{h}\right\}_{h>0}$ to be regular, i.e. there is $c>0$ such that, for every finite element $E \in \mathcal{T}_{h}, r_{E} / \ell_{E}>c$ for any $h>0$ where ℓ_{E} is the length of the longest edge (side) and r_{E} is the radius of the largest ball inscribed into E.

The part (i) in the following proposition is a condition on uniform compactness or uniform coercivity with respect to the sequential weak* topology of Q. The parts (ii) and (iii) state exactly that $G^{0}(t, \cdot)$ is the so-called Γ-limit of the family $\left\{G_{h}^{\varepsilon}(t, \cdot)\right\}$ conditioned by a certain numerical-stability criterion $h \leqslant H(\varepsilon)$.

PROPOSITION 5.6. Let (37) hold and let $\left\{\mathcal{T}_{h}\right\}_{h>0}$ be regular. For each $t \in[0, T]$ we have the following three properties:
(i) (Uniform compactness). If the family $\left\{q_{h}^{\varepsilon}\right\}_{\varepsilon, h>0}$ and $t_{\tau} \in[0, T]$ satisfy

$$
\begin{equation*}
\forall \varepsilon, h>0: \quad G_{h}^{\varepsilon}\left(\tau_{\tau}, q_{h}^{\varepsilon}\right) \leqslant E_{0}<+\infty \tag{51}
\end{equation*}
$$

then there exists a subsequence $\left\{q_{h_{k}}^{\varepsilon_{k}}\right\}_{k \in \mathbb{N}}$ and $q \in Q$, such that $q_{h_{k}}^{\varepsilon_{k}} \stackrel{*}{\rightharpoonup} q$ in Q.
(ii) (Relaxation). For each family $\left(q_{h}^{\varepsilon}\right)_{\varepsilon, h}$ in Q with $q_{h}^{\varepsilon} \stackrel{*}{\rightharpoonup} q$ we have

$$
\begin{equation*}
\liminf _{\left(t_{\tau}, h, \varepsilon\right) \rightarrow(t, 0,0)} G_{h}^{\varepsilon}\left(t_{\tau}, q_{h}^{\varepsilon}\right) \geqslant G^{0}(t, q) . \tag{52}
\end{equation*}
$$

(iii) (Recovery sequence). If (51) holds, then there is $H: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$(depending on E_{0} from (51)) such that for all $q \in Q$ there exists a family $\left(q_{h}^{\varepsilon}\right)_{\varepsilon, h}$ with $q_{h}^{\varepsilon} \in Q_{h}$ such that

$$
\begin{equation*}
q_{h}^{\varepsilon} \stackrel{*}{\rightharpoonup} q \quad \text { and } \quad \lim _{\substack{h \leqslant H(\varepsilon) \\\left(t_{t}, h, \varepsilon\right) \rightarrow(t, 0,0)}} G_{h}^{\varepsilon}\left(t_{\tau}, q_{h}^{\varepsilon}\right)=G^{0}(t, q) . \tag{53}
\end{equation*}
$$

Sketch of the proof. Ad (i): Using the assumption (37a,b) together with (51), we obtain the standard coercivity properties implying for $q_{h}^{\varepsilon}=\left(u_{h}^{\varepsilon}, v_{h}^{\varepsilon}, \lambda_{h}^{\varepsilon}\right)$ with $G_{h}^{\varepsilon}\left(t, q_{h}^{\varepsilon}\right) \leqslant E_{0}$ the bounds

$$
\begin{equation*}
\left\|u_{h}^{\varepsilon}\right\|_{W^{1, p}\left(\Omega ; \mathbb{R}^{3}\right)}+\int_{\Omega} \int_{\mathbb{R}^{3} \times 3}\left(1+|A|^{p}\right)\left(v_{h}^{\varepsilon}\right)_{x}(\mathrm{~d} A) \mathrm{d} x+\left\|\lambda_{h}^{\varepsilon}\right\|_{W^{\alpha, r}\left(\Omega ; \mathbb{R}^{1+M}\right)} \leqslant C_{0} \tag{54}
\end{equation*}
$$

where C_{0} depends only on E_{0}. From this, the existence of a weak* convergent subsequence follows by standard arguments.

Ad (ii): We may assume that $\liminf _{\left(t_{\tau}, h, \varepsilon\right) \rightarrow(t, 0,0)} G_{h}^{\varepsilon}\left(t_{\tau}, q_{h}^{\varepsilon}\right)=: \gamma<\infty$, since otherwise there is nothing to be shown. By our assumptions $G(t, q) \geqslant-C_{G}$ and thus, we conclude $\left\|\lambda_{h}^{\varepsilon}-\mathcal{L} \bullet \nu_{h}^{\varepsilon}\right\| \| \leqslant\left(\gamma+C_{G}+1\right) \varepsilon$ for $\left(t_{\tau}, h, \varepsilon\right)$ sufficiently close to ($t, 0,0$). Hence, $q_{h}^{\varepsilon} \stackrel{*}{\rightharpoonup} q=(u, v, \lambda)$ implies $\lambda=\mathcal{L} \bullet v$, which means $q \in Q^{0}$. Moreover, the definition of the convergence $q_{h}^{\varepsilon} \stackrel{*}{\rightharpoonup} q$ implies $G\left(t_{\tau}, q_{h}^{\varepsilon}\right) \rightarrow G(t, q)$, where we essentially use the property of the gradient Young measures in $\mathcal{G}^{p}\left(\Omega ; \mathbb{R}^{3 \times 3}\right)$ and the assumption (37a) which ensures $f\left(t_{\tau}\right) \rightarrow f(t)$ in $W^{1 / p-1, p /(p-1)}\left(\Gamma_{\mathrm{N}} ; \mathbb{R}^{3}\right)$ while we also have $u_{h}^{\varepsilon} \rightharpoonup u$ in $W^{1-1 / p, p}\left(\Gamma_{\mathrm{N}} ; \mathbb{R}^{3}\right)$ so that $\int_{\Gamma_{\mathrm{N}}} f\left(t_{\tau}, x\right) \cdot u_{h}^{\varepsilon}(x) \mathrm{d} x \rightarrow \int_{\Gamma_{\mathrm{N}}} f(t, x) \cdot u(x) \mathrm{d} x$, and eventually $\lambda_{h}^{\varepsilon} \rightharpoonup \lambda$ in $W^{\alpha, r}\left(\Omega ; \mathbb{R}^{1+M}\right)$ implies $\lim \inf _{(h, \varepsilon) \rightarrow(0,0)}\left|\lambda_{h}^{\varepsilon}\right|_{\alpha, r}^{r} \geqslant|\lambda|_{\alpha, r}^{r}$. Because of $q \in Q^{0}$ we thus have

$$
\begin{align*}
G^{0}(t, q)=G(t, q) \leqslant & \lim _{\left(t_{\tau}, h, z\right) \rightarrow(t, 0,0)}\left(G\left(t_{\tau}, q_{h}^{\varepsilon}\right)-\left|\lambda_{h}^{\varepsilon}\right|_{\alpha, r}^{r}\right) \\
& +\liminf _{(h, \varepsilon) \rightarrow(0,0)}\left|\lambda_{h}^{\varepsilon}\right|_{\alpha, r}^{r} \leqslant \liminf _{\left(t_{\tau}, h, \varepsilon\right) \rightarrow(t, 0,0)} G_{h}^{\varepsilon}\left(t_{\tau}, q_{h}^{\varepsilon}\right), \tag{55}
\end{align*}
$$

which is the desired lower estimate of the possible limits.
Ad (iii): First consider the case $q \notin Q^{0}$, which leads to $G^{0}(t, q)=\infty$. Now every sequence with $q_{h}^{\varepsilon} \stackrel{*}{\stackrel{*}{*}} q$ is a recovery sequence. We have $\lambda_{h}^{\varepsilon}-\mathcal{L} \cdot \nu_{h}^{\varepsilon} \stackrel{*}{\rightharpoonup} \lambda-\mathcal{L} \cdot \nu=: g$ and $q \notin Q^{0}$ implies $g \neq 0$. Thus, by lower semi-continuity of the norm we conclude

$$
\begin{equation*}
\liminf _{(h, \varepsilon) \rightarrow(0,0)} \mid\left\|\lambda_{h}^{\varepsilon}-\mathcal{L} \bullet v_{h}^{\varepsilon}\right\| \geqslant\|g\|>0 \tag{56}
\end{equation*}
$$

From this we easily obtain $\liminf _{(h, \varepsilon) \rightarrow(0,0)} G_{h}^{\varepsilon}\left(t, q_{h}^{\varepsilon}\right)=\infty=G^{0}(t, q)$, as desired.
Next, we consider the case $q \in Q^{0}$. By the definition of $\mathcal{G}^{p}\left(\Omega ; \mathbb{R}^{3 \times 3}\right)$, there is a $W^{1, p}$-bounded sequence $\left\{u_{k}\right\}_{k \in \mathbb{N}}$ whose gradients attains v, i.e.

$$
\begin{equation*}
\forall h \in L^{1}\left(\Omega ; C_{0}\left(\mathbb{R}^{3 \times 3}\right)\right): \quad \lim _{k \rightarrow \infty} \int_{\Omega} h\left(x, \nabla u_{k}\right) \mathrm{d} x=\int_{\Omega} \int_{\mathbb{R}^{3} \times 3} h(x, A) v_{x}(\mathrm{~d} A) \mathrm{d} x . \tag{57}
\end{equation*}
$$

Using the assumed regularity of the triangulations, we can further approximate each u_{k} by element-wise affine functions and as well as of $W^{\alpha, r}$-functions by elementwise constant functions. Taking a suitable diagonal sequence, this yields a sequence $\left\{q_{h}\right\}_{h>0}, q_{h} \in Q_{h}$, converging weakly* to q and thus shows that $\bigcup_{h>0} Q_{h}$ is weakly* dense in Q.

Using the compactness proved at the point (i) and the separability of the spaces of the test functions for the weak* convergence (49), we can think about a metric, say ϱ, inducing this convergence on the compact set in question. Restricted our consideration on that compact set, we can consider Q^{0} a closed (hence compact) subset of Q. Due to the density of $\bigcup_{h>0} Q_{h}$ in Q, for some sufficiently small $h_{\delta}>0$, for any $q \in Q^{0}$ there is $\tilde{q} \in Q_{h}, \varrho(q, \tilde{q}) \leqslant \delta$; the proof is by a contradiction: if for any $h>0$ there would be some $q_{h} \in Q^{0}$ whose δ-neighbourhood would be disjoint with Q_{h}, by compactness of Q^{0} we would get a limit q of a subsequence of $\left\{q_{h}\right\}$ converging for $h \rightarrow 0$ whose $\delta / 2$-neighbourhood would still be disjoint with $\bigcup_{h>0} Q_{h}$.

As the norm $\left\|\|\cdot\|\right.$ in (34) is weakly* continuous on $W^{\alpha, r}\left(\Omega ; \mathbb{R}^{1+M}\right)$ as well as on $L^{\infty}\left(\Omega ; \mathbb{R}^{1+M}\right)$ and $L: q=(u, v, \lambda) \mapsto \lambda-\mathcal{L} \bullet v$ is weakly* continuous on Q to $W^{\alpha, r}\left(\Omega ; \mathbb{R}^{1+M}\right)+L^{\infty}\left(\Omega ; \mathbb{R}^{1+M}\right)$, hence continuous with respect to the metric ϱ, for any $\varepsilon>0$ there is $\delta>0$ such that $\varrho(q, \tilde{q}) \leqslant \delta$ implies $\|L(q-\tilde{q})\| \leqslant \varepsilon$.

Linking those two results, we can see that for any $\varepsilon>0$ there is $H(\varepsilon)>0$ sufficiently small, namely $H(\varepsilon)=h_{\delta}$, such that for any $h \leqslant H(\varepsilon)$ and for any $q \in Q_{0}$ there is $\tilde{q} \in Q_{h}$ such that $\varepsilon \geqslant\|L(q-\tilde{q})\|=\|L \tilde{q}\|\|=\| \tilde{\lambda}-\mathcal{L} \cdot \tilde{v}\| \|$. Then we put $q_{h}^{\varepsilon}=\tilde{q}$. Note that $\frac{1}{\varepsilon}\left\|\left\|\lambda_{h}^{\varepsilon}-\mathcal{L} \cdot \nu_{h}^{\varepsilon}\right\|\right\|^{2} \leqslant \frac{1}{\varepsilon} \varepsilon^{2}=\varepsilon \rightarrow 0$.

Further important properties of the underlying system are the weak* closeness of the stable states and the continuity of the energy when restricted to the stable sets. The first property follows easily since the dissipation is continuous. As the energies $G_{h}^{\varepsilon} \Gamma$-converge to G^{0} we already have the lower semi-continuity (52). The second property (58) reflects the fact that stable states are already energetically favourable states. Hence, these states do not contain unnecessary oscillations which could lead to a drop of the energy in the limit $\left(t_{\tau}, \varepsilon, h\right) \rightarrow 0$.

PROPOSITION 5.7. Let (51) hold and $\left(t_{\tau}, h, \varepsilon\right) \rightarrow\left(t_{*}, 0,0\right)$ with $h \leqslant H(\varepsilon)$, let $q_{h}^{\varepsilon} \in$ $\mathcal{S}_{h}^{\varepsilon}\left(t_{\tau}\right)$ with $\mathcal{S}_{h}^{\varepsilon}\left(t_{\tau}\right)$ from (36), and let $q_{h}^{\varepsilon} \stackrel{*}{\rightharpoonup} q_{*}$, then we have

$$
\begin{equation*}
q_{*} \in \mathcal{S}^{0}\left(t_{*}\right) \quad \text { and } \lim _{\substack{h \leqslant H(\varepsilon) \\\left(t_{\tau}, h, s\right) \rightarrow\left(t_{*}, 0,0\right)}} G_{h}^{\varepsilon}\left(\tau_{\tau}, q_{h}^{\varepsilon}\right)=G^{0}\left(t_{*}, q_{*}\right) \tag{58}
\end{equation*}
$$

with \mathcal{S}^{0} from (30) and with the stability criterion $h \leqslant H(\varepsilon)$ from Proposition 5.6(iii).
Proof. For the stability result $q_{*} \in \mathcal{S}^{0}\left(t_{*}\right)$ we have to prove stability with respect to every test state $\tilde{q} \in Q$. As (51) is assumed, Proposition 5.6 (iii) says that, for each such state, there exists a recovery sequence $\tilde{q}_{h}^{\varepsilon}$ with $\tilde{q}_{h}^{\varepsilon} \stackrel{*}{\longrightarrow} \tilde{q}$ and $\lim _{\left(t_{\tau}, h, \varepsilon\right) \rightarrow\left(t_{*}, 0,0\right), h \leqslant H(\varepsilon)} G_{h}^{\varepsilon}\left(t_{\tau}, \tilde{q}_{h}^{\varepsilon}\right)=G^{0}\left(t_{*}, \tilde{q}\right)$. Now the stability of q_{h}^{ε} gives

$$
\begin{equation*}
G_{h}^{\varepsilon}\left(t_{\tau}, q_{h}^{\varepsilon}\right) \leqslant G_{h}^{\varepsilon}\left(t_{\tau}, \tilde{q}_{h}^{\varepsilon}\right)+R\left(\tilde{q}_{h}^{\varepsilon}-q_{h}^{\varepsilon}\right) . \tag{59}
\end{equation*}
$$

On the right-hand side we can pass to the limit using the recovery properties and the weak continuity of R (cf. (50)). On the left-hand side we take the liminf and use Proposition 5.6(iii). Thus, we obtain

$$
\begin{align*}
G^{0}\left(t_{*}, q_{*}\right) & \leqslant \liminf _{\left(t_{\tau}, h, \varepsilon\right) \rightarrow\left(t_{*}, 0,0\right)} G_{h}^{\varepsilon}\left(t_{\tau}, q_{h}^{\varepsilon}\right) \\
& \leqslant \lim _{\substack{h \leqslant H(\varepsilon) \\
\left(t_{\tau}, h, \varepsilon\right) \rightarrow\left(t_{*}, 0,0\right)}} G_{h}^{\varepsilon}\left(t_{\tau}, \tilde{q}_{h}^{\varepsilon}\right)+R\left(\tilde{q}_{h}^{\varepsilon}-q_{h}^{\varepsilon}\right)=G^{0}\left(t_{*}, \tilde{q}\right)+R\left(\tilde{q}-q_{*}\right), \tag{60}
\end{align*}
$$

which is the desired stability. The convergence of the energy follows by choosing $\tilde{q}=$ q_{*} in (60).

Our final result of the states the convergence of the numerical scheme, the implementation of which will be discussed in section 6 . As we have no uniqueness of the solutions we cannot expect that the whole sequence of our approximations will converge. We will show that choosing a suitably converging subsequence we obtain a limit which is an energetic solution, i.e., it satisfies the stability condition (27) and the energy balance (28). In fact, any such limit point obtained from our numerical scheme is automatically a solution. However, we are not able to provide convergence rates since the problem does not have any kind of convexity and smoothness properties, which are usually available in well-posed problems of continuum mechanics.

THEOREM 5.8. Let (37) hold and let $\left\{q_{\tau, h}^{\varepsilon}\right\}_{(\tau, h, \varepsilon)}$ be a family of approximations constructed as above such that $(\tau, h, \varepsilon) \rightarrow 0$, such that

$$
\begin{equation*}
q_{\tau, h}^{\varepsilon}(0) \in \mathcal{S}_{h}^{\varepsilon}(0), \quad q_{\tau, h}^{\varepsilon}(0) \xrightarrow{*} q_{0} \quad \text { and } \quad G_{h}^{\varepsilon}\left(0, q_{\tau, h}^{\varepsilon}(0)\right) \rightarrow G^{0}\left(0, q_{0}\right) . \tag{61}
\end{equation*}
$$

Then, there exists a subsequence $\left\{\left(\tau_{k}, h_{k}, \varepsilon_{k}\right)\right\}_{k \in \mathbb{N}}$ with $\left(\tau_{k}, h_{k}, \varepsilon_{k}\right) \rightarrow(0,0,0)$ for $k \rightarrow \infty$ satisfying the stability criterion $h_{k} \leqslant H\left(\varepsilon_{k}\right)$ from Proposition 5.6(iii) and a limit process $q:[0, T] \rightarrow Q$ with $q(0)=q_{0}$, such that the following holds. (We shortly write $q_{k}=\left(u_{k}, v_{k}, \lambda_{k}\right)$ for $\left.q_{\tau_{k}, h_{k}}^{\varepsilon_{k}}=\left(u_{\tau_{k}, h_{k}}^{\varepsilon_{k}}, v_{\tau_{k}, h_{k}}^{\varepsilon_{k}}, \lambda_{\tau_{k}, h_{k}}^{\varepsilon_{k}}\right)\right)$.
(i) $q:[0, T] \rightarrow Q^{0} \subset Q$ is an energetic solution, i.e., q satisfies (27) and (28), and also it holds $\lambda \in L^{\infty}\left([0, T] ; W^{\alpha, r}\left(\Omega ; \mathbb{R}^{1+M}\right)\right) \cap \operatorname{BV}\left([0, T], L^{1}\left(\Omega ; \mathbb{R}^{1+M}\right)\right)$ and $u:[0, T] \rightarrow$ $W^{1, p}\left(\Omega ; \mathbb{R}^{3}\right)$ is bounded.
(ii) For all $t \in[0, T]$ we have $\lambda_{k}(t) \rightharpoonup \lambda(t)$ in $W^{\alpha, r}\left(\Omega ; \mathbb{R}^{1+M}\right)$.
(iii) For all $t \in[0, T]$ we have $\operatorname{Var}_{R}\left(q_{k} ; 0, t\right) \rightarrow \operatorname{Var}_{R}(q ; 0, t)$.
(iv) For all $t \in[0, T]$ we have $G_{h_{k}}^{\varepsilon_{k}}\left(t, q_{k}(t)\right) \rightarrow G^{0}(t, q(t))$.
(v) $\frac{\partial}{\partial t} G_{h_{k}}^{\varepsilon_{k}}\left(\cdot, q_{k}(\cdot)\right) \xrightarrow{*} \frac{\partial}{\partial t} G^{0}(\cdot, q(\cdot))$ in $L^{\infty}(0, T)$.
(vi) For all $t \in[0, T]$ there is a subsequence $\left\{k_{l}\right\}_{l \in \mathbb{N}}$ such that $q_{k_{l}}(t) \stackrel{*}{\rightharpoonup} q(t)$ in Q.

In fact, (61) is satisfied automatically if (37c,d) is assumed. We pronounced (61) here for its more general character.

Sketch of proof of Theorem 5.8. Our sketch follows the six steps for the existence proof formulated in [42].
Step 1: A priori estimates. This part is exactly the content of Proposition 5.5, which provides uniform bounds for $q_{\tau, h}^{\varepsilon}:[0, T] \rightarrow Q$. In particular, (40) makes (51) hold and we have the results from Propositions 5.6 and 5.7 at our disposal.
Step 2: Selection of subsequences. Since the $\lambda_{\tau, h}^{\varepsilon}:[0, T] \times \Omega \rightarrow \mathbb{R}^{1+M}$ is uniformly bounded in $\operatorname{BV}\left([0, T] ; L^{1}\left(\Omega ; \mathbb{R}^{1+M}\right)\right) \cap L^{\infty}\left([0, T] ; W^{\alpha, r}\left(\Omega ; \mathbb{R}^{1+M}\right)\right)$ and since the scalar functions $\mathfrak{G}_{\tau, h}^{\varepsilon}:[0, T] \rightarrow \mathbb{R}$ and $\mathfrak{D}_{\tau, h}^{\varepsilon}: t \mapsto \operatorname{Var}_{R}\left(q_{\tau, h}^{\varepsilon} ; 0, t\right)$ are uniformly bounded in $\operatorname{BV}([0, T])$, we may apply Helly's selection principle to find a subsequence $\left\{\left(\tau_{k}, h_{k}, \varepsilon_{k}\right)\right\}_{k \in \mathbb{N}}$ such that for all $t \in[0, T]$ we have the following convergence:

$$
\lambda_{\tau_{k}, h_{k}}^{\varepsilon_{k}}(t) \rightharpoonup \lambda(t) \quad \text { in } W^{\alpha, r}\left(\Omega ; \mathbb{R}^{1+M}\right), \quad \mathfrak{G}_{\tau_{k}, h_{k}}^{\varepsilon_{k}}(t) \rightarrow \mathfrak{G}(t), \quad \mathfrak{D}_{\tau_{l}, h_{l}}^{\varepsilon_{l}}(t) \rightarrow \mathfrak{D}(t)
$$

for suitable limit functions λ, \mathfrak{G} and \mathfrak{D}, which lie in the corresponding spaces and satisfy the same bounds as the corresponding sequences. For the λ-component one has to use the Banach-space valued version of Helly's selection principle (see [39, 42]).

This shows that the convergence properties at the point (ii) hold. We further set

$$
\begin{equation*}
\mathfrak{P}_{k}(t)=\frac{\partial}{\partial t} \mathfrak{G}_{\tau_{k}, h_{k}}^{\varepsilon_{k}}\left(t, q_{k}(t)\right) \tag{62}
\end{equation*}
$$

to denote the power of the external forces. Choosing another subsequence (not relabeled), if necessary, we also obtain

$$
\begin{equation*}
\mathfrak{P}_{k} \stackrel{*}{\stackrel{p}{p} \quad \text { in } L^{\infty}([0, T]), ~} \tag{63}
\end{equation*}
$$

since closed balls in $L^{\infty}([0, T])$ are sequentially weakly* compact.

To define the limit function $q(t) \in Q$, we still need to specify the components u and v. For this, we treat now each $t \in[0, T]$ separately. Note that the coupling between different time levels occurs only via the component λ, which is already controlled.

For fixed t, we choose (a t-dependent) subsequence $\left\{q_{K_{l}^{t}}(t)\right\}_{l \in \mathbb{N}}$ of $\left\{q_{k}(t)\right\}_{k \in \mathbb{N}}$ such that, for $l \rightarrow \infty$, we have

$$
\begin{equation*}
\mathfrak{P}_{K_{l}^{t}}(t) \rightarrow \mathfrak{P}(t):=\limsup _{k \rightarrow \infty} \mathfrak{P}_{k}(t) \quad \text { and } \quad q_{K_{l}^{t}}(t) \stackrel{*}{\rightharpoonup} q(t) . \tag{64}
\end{equation*}
$$

The choice of the subsequence is first made such the condition for \mathfrak{P} holds. Afterwards, we choose a further subsequence (not relabeled) to make $q_{K_{l}^{t}}(t)$ convergence. Here we again use the a priori bounds of Step 1. Thus, the limiting process $q \cdot[0, T] \rightarrow$ Q is defined now.

From $\mathfrak{P}_{k}(t)=\int_{\Gamma_{\mathrm{N}}} \frac{\partial}{\partial t} f(t, x) \cdot u_{k}(t, x) \mathrm{d} x$ we easily conclude that $\mathfrak{P}(t)=\frac{\partial}{\partial t} G^{0}(t, q(t))$. Using Fatou's lemma we conclude $\mathfrak{p}(t) \leqslant \mathfrak{P}(t)$.
Step 3: Stability of the limit process. The stability of the limit process q is now a direct consequence of Proposition 5.7. For fixed $t \in[0, T]$ consider the sequence $\left\{q_{K_{l}^{t}}(t)\right\}_{l \in \mathbb{N}}$, which consists of piecewise constant functions. Hence, we have $q_{K_{l}^{t}}(t)=$ $q_{K_{l}^{t}}\left(\hat{t}_{l}\right)$ with $\hat{t}_{l}=\max \left\{\kappa \tau_{K_{l}^{t}} \leqslant t ; \kappa \in \mathbb{N} \cup\{0\}\right\}$ and, by Proposition 5.5, $q_{K_{l}^{t}}\left(\hat{t}_{l}\right) \in \mathcal{S}\left(\hat{t}_{l}\right)$. Since $\hat{t}_{l} \rightarrow t$, we conclude $q(t) \in \mathcal{S}(t)$ as desired.
Step 4: Upper energy estimate. By the convergence properties established above, we immediately see that the two-sided energy estimate (42) leads to the identity

$$
\begin{equation*}
\int_{0}^{t} \mathfrak{p}(s) \mathrm{d} t \leqslant \mathfrak{G}(t)+\mathfrak{D}(t)-\mathfrak{G}(0) \leqslant \int_{0}^{t} \mathfrak{p}(s) \mathrm{d} s \leqslant \int_{0}^{t} \mathfrak{P}(s) \mathrm{d} s \tag{65}
\end{equation*}
$$

Note that the time shift on the right-hand side on (42) has no effect in the limit $t_{k} \rightarrow$ 0 , as $\frac{\partial}{\partial t} f(t, \cdot)$ is continuous in $t \in[0, T]$.

Now we use that the family $G_{\tau, h}^{\varepsilon}$ has the Γ-limit G^{0}, hence we conclude $G^{0}(t, q(t)) \leqslant$ $\lim _{l \rightarrow \infty} \mathfrak{G}_{K_{l}^{t}}\left(t, q_{K_{l}^{t}}(t)\right)=\mathfrak{G}(t)$. Moreover, by (61) we have $\mathfrak{G}(0)=G^{0}(0, q(0))$. Similarly, we have $\operatorname{Var}_{R}(q ; 0, t) \leqslant \mathfrak{D}(t)$. Inserting this into (65) we obtain

$$
\begin{align*}
G^{0}(t, q(t))+\operatorname{Var}_{R}(q ; 0, t)-G^{0}(0, q(0)) & \leqslant \mathfrak{G}(t)+\mathfrak{D}(t)-\mathfrak{G}(0) \\
& \leqslant \int_{0}^{t} \mathfrak{P}(s) \mathrm{d} s=\int_{0}^{t} \frac{\partial}{\partial s} G^{0}(s, q(s)) \mathrm{d} s, \tag{66}
\end{align*}
$$

which is the desired upper energy estimate.
Step 5: Lower energy estimate. The opposite estimate $G^{0}(t, q(t))+\operatorname{Var}_{R}(q ; 0, t)-$ $G^{0}(0, q(0)) \geqslant \int_{0}^{t} \frac{\partial}{\partial s} G^{0}(s, q(s)) \mathrm{d} s$ is a consequence of the stability which is already established in Step 3. We refer to [42] for this technical proof. Thus, we have proved assertion (i), which states that $q:[0, T] \rightarrow Q$ is a solution.
Step 6: Improved convergence. Having energy equality, we conclude that in (65) all the inequalities must be equalities. In particular, this implies

$$
\begin{equation*}
\mathfrak{p}(t)=\mathfrak{P}(t), \quad \mathfrak{G}(t)=G^{0}(t, q(t)) \quad \text { and } \quad \operatorname{Var}(q ; 0, t)=\mathfrak{D}(t) \tag{67}
\end{equation*}
$$

Together with the convergence properties established in Step 2, we obtain the assertions (iii)-(v).

Remark 5.9. Time-varying Dirichlet boundary conditions that would model a "hard-device" loading would need $u_{\mathrm{D}} \in W^{1,1}\left(0, T ; W^{1-1 / p, p}\left(\Gamma_{\mathrm{D}} ; \mathbb{R}^{3}\right)\right)$ and would make the proofs quite technical, exploiting non-trivial tricks from [42] (see also [42]).

6. Modelling of a Stress-induced Transformation in CuAlNi

CuAlNi is the second most popular SMA with a cheaper production cost than the num-ber-one SMA, i.e. NiTi. Depending on composition, this sort of alloys exhibit large variations of transformation temperatures, even over $100^{\circ} \mathrm{C}$. These Cu -based alloys undergo the cubic-to-orthorhombic (called also $\beta \rightarrow \gamma_{1}^{\prime}$) PT as well as the cubic-to-monoclinic (called also $\beta_{1} \rightarrow \beta_{1}^{\prime}$ and $\beta_{1} \rightarrow \beta_{1}^{\prime \prime}$) PT, depending on loading regimes and other circumstances. For example, experimental experience shows that the orthorhombic martensite mostly evolves in single crystals under compression, while the monoclinic one under tension. While the latter PT has a small hysteresis loop, the cubic-to-orthorhombic PT shows significant hysteresis. We opted for modelling of the cubic-to-orthorhombic transformation because of its smaller number of wells of $\hat{\varphi}$, the larger hysteresis, and because the elastic constants which are at disposal for the orthorhombic martensite contrary to the monoclinic one (cf. [66, 80]); even it should be emphasized that these constants, although routinely known for austenite, are not measured for any other SMA in martensite. First modelling studies with CuAlNi are probably by Falk and Konopka who formulated a 3D stored energy potential [18]. The laminated microstructure even with adaptive level of lamination have been used for CuAlNi by Aubri et al. [4] who also used (up to a factor 4) the potential (6)-(7) and by Stupkiewicz and Petryk [71]. A simplified model addressing CuAlNi is by Abeyaratne et al. [1], or Hall and Govindjee [26]. Crystalographic discourse is, e.g., in Bhattacharya [12] and Xiangyang et al. [79]. Experiments with CuAlNi single-crystals are e.g. due to Abeyaratne et al. [1], Novák et al. [49], Otsuka and Shimizu [51], Sedlák et al. [66], Šitner et al. [69], Suezawa and Sumimo [72].

6.1. Stored-energy Data

The atomic-grid lattice constants for the composition $\mathrm{Cu}-14.0 \mathrm{wt} . \% \mathrm{Al}-4.2 \mathrm{wt} . \% \mathrm{Ni}$ we have in mind for the cubic austenite is $a_{0}=0.5835 \mathrm{~nm}$ while the orthorhombic martensite has the lattice constants $a=0.43823 \mathrm{~nm}, b=0.53563 \mathrm{~nm}$, and $c=0.4223 \mathrm{~nm}$ (see [16] or also [51]). In terms of the distortion matrices, this results to the cubic austenitic phase having one orbit $\mathrm{SO}(3) U_{0}$ with $U_{0}=\mathbb{I}$ while the orthorhombic martensite has $M=6$ variants, i.e. six orbits $\mathrm{SO}(3) U_{1}, \ldots, \mathrm{SO}(3) U_{6}$, with the distortion matrices given by

$$
\begin{array}{ll}
U_{1}=\left(\begin{array}{ccc}
\eta_{2} & 0 & 0 \\
0 & \eta_{1} & \eta_{3} \\
0 & \eta_{3} & \eta_{1}
\end{array}\right), & U_{2}=\left(\begin{array}{ccc}
\eta_{1} & 0 & \eta_{3} \\
0 & \eta_{2} & 0 \\
\eta_{3} & 0 & \eta_{1}
\end{array}\right),
\end{array} \quad U_{3}=\left(\begin{array}{ccc}
\eta_{1} & \eta_{3} & 0 \\
\eta_{3} & \eta_{1} & 0 \tag{68}\\
0 & 0 & \eta_{2}
\end{array}\right), ~ 子\left(\begin{array}{ccc}
\eta_{2} & 0 & 0 \\
0 & \eta_{1} & -\eta_{3} \\
0 & -\eta_{3} & \eta_{1}
\end{array}\right), \quad U_{5}=\left(\begin{array}{ccc}
\eta_{1} & 0 & -\eta_{3} \\
0 & \eta_{2} & 0 \\
-\eta_{3} & 0 & \eta_{1}
\end{array}\right), \quad U_{6}=\left(\begin{array}{ccc}
\eta_{1} & -\eta_{3} & 0 \\
-\eta_{3} & \eta_{1} & 0 \\
0 & 0 & \eta_{2}
\end{array}\right), ~ \$
$$

where we used $\eta_{1}=1.04245$ and $\eta_{2}=0.9178, \eta_{3}=0.01945$ in agreement with measurements by Otsuka and Shimizu [51] on the considered $\mathrm{Cu}-14.0 \mathrm{wt} . \% \mathrm{Al}-4.2 \mathrm{wt} . \% \mathrm{Ni}$; the same constants are also in Ball et al. [8] for a slightly different composition, namely $\mathrm{Cu}-14.0 \mathrm{wt} . \% \mathrm{Al}-3.9 \mathrm{wt} . \% \mathrm{Ni}$. The relations with the lattice constants are $\eta_{1}=$ $(a+c) /\left(\sqrt{2} a_{0}\right), \eta_{2}=b / a_{0}$, and $\eta_{3}=(a-c) /\left(\sqrt{2} a_{0}\right)$ (see e.g. [12]).

Using the usual Voigt notation (and $\left\{\mathbb{C}_{i j}^{\ell}\right\}_{i, j=1}^{6}$ instead of the fourth-order tensor \mathcal{C}^{ℓ} from (6)), the energy (6) results to the quadratic form

$$
\begin{align*}
\hat{\varphi}_{\ell}(F)= & \frac{1}{2} \mathbb{C}_{11}^{\ell}\left[\varepsilon_{11}^{\ell}\right]^{2}+\frac{1}{2} \mathbb{C}_{22}^{\ell}\left[\varepsilon_{22}^{\ell}\right]^{2}+\frac{1}{2} \mathbb{C}_{33}^{\ell}\left[\varepsilon_{33}^{\ell}\right]^{2} \\
& +\mathbb{C}_{12}^{\ell} \varepsilon_{11}^{\ell} \varepsilon_{22}^{\ell}+\mathbb{C}_{13}^{\ell} \varepsilon_{11}^{\ell} \varepsilon_{33}^{\ell}+\mathbb{C}_{23}^{\ell} \varepsilon_{22}^{\ell} \varepsilon_{33}^{\ell} \\
& +2 \mathbb{C}_{44}^{\ell}\left[\varepsilon_{23}^{\ell}\right]^{2}+2 \mathbb{C}_{55}^{\ell}\left[\varepsilon_{13}^{\ell}\right]^{2}+2 \mathbb{C}_{66}^{\ell}\left[\varepsilon_{12}^{\ell}\right]^{2}, \tag{69}
\end{align*}
$$

and gives the Cauchy stress $\sigma=\hat{\varphi}_{\ell}^{\prime}\left(\varepsilon^{\ell}\right)$, i.e.

$$
\left(\begin{array}{l}
\sigma_{11} \tag{70}\\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{23} \\
\sigma_{13} \\
\sigma_{12}
\end{array}\right)=\left(\begin{array}{cccccc}
\mathbb{C}_{11}^{\ell} & \mathbb{C}_{12}^{\ell} & \mathbb{C}_{13}^{\ell} & 0 & 0 & 0 \\
\mathbb{C}_{12}^{\ell} & \mathbb{C}_{22}^{\ell} & \mathbb{C}_{23}^{\ell} & 0 & 0 & 0 \\
\mathbb{C}_{13}^{\ell} & \mathbb{C}_{23}^{\ell} & \mathbb{C}_{33}^{\ell} & 0 & 0 & 0 \\
0 & 0 & 0 & \mathbb{C}_{44}^{\ell} & 0 & 0 \\
0 & 0 & 0 & 0 & \mathbb{C}_{55}^{\ell} & 0 \\
0 & 0 & 0 & 0 & 0 & \mathbb{C}_{66}^{\ell}
\end{array}\right)\left(\begin{array}{c}
\varepsilon_{11}^{\ell} \\
\varepsilon_{22}^{\ell} \\
\varepsilon_{33}^{\ell} \\
2 \varepsilon_{23}^{\ell} \\
2 \varepsilon_{13}^{\ell} \\
2 \varepsilon_{12}^{\ell}
\end{array}\right) .
$$

If we denote the vector on the right-hand side by $\bar{\varepsilon}^{\ell}$ we easily see that $\hat{\varphi}_{\ell}(F)=\frac{1}{2} \bar{\varepsilon}^{\ell}$. $\mathbb{C}^{\ell} \bar{\varepsilon}^{\ell}$.

The specific values are determined from experiments; we refer to Sedlák et al. [66]. For $\ell=0$, i.e. for the austenite, by symmetry there are only three non-vanishing elastic moduli, i.e. here

$$
\begin{align*}
& \mathbb{C}_{11}^{0}=\mathbb{C}_{22}^{0}=\mathbb{C}_{33}^{0}=142.8 \mathrm{GPa}, \tag{71a}\\
& \mathbb{C}_{44}^{0}=\mathbb{C}_{55}^{0}=\mathbb{C}_{66}^{0}=93.5 \mathrm{GPa}, \tag{71b}\\
& \mathbb{C}_{12}^{0}=\mathbb{C}_{23}^{0}=\mathbb{C}_{13}^{0}=129.7 \mathrm{GPa}, \tag{71c}
\end{align*}
$$

see also (for nearly the same values) Landa et al. [35] or Suezawa and Sumimo [72]. The specific values for martensite, measured by Sedlák et al. [66] or also (a slightly different alloy, namely $\mathrm{Cu}-14 \mathrm{wt} . \% \mathrm{Al}-3 \mathrm{wt} . \% \mathrm{Ni}$) by Yasunaga et al. [80], are

$$
\begin{array}{lll}
\mathbb{C}_{11}^{\ell}=189 \mathrm{GPa}, & \mathbb{C}_{22}^{\ell}=141 \mathrm{GPa}, & \mathbb{C}_{33}^{\ell}=205 \mathrm{GPa}, \\
\mathbb{C}_{44}^{\ell}=54.9 \mathrm{GPa}, & \mathbb{C}_{55}^{\ell}=19.7 \mathrm{GPa}, & \mathbb{C}_{66}^{\ell}=62.6 \mathrm{GPa}, \\
\mathbb{C}_{12}^{\ell}=124 \mathrm{GPa}, & \mathbb{C}_{13}^{\ell}=45.5 \mathrm{GPa}, & \mathbb{C}_{23}^{\ell}=115 \mathrm{GPa}, \tag{72c}
\end{array}
$$

counted with respect to the co-ordinate system oriented in the atomic lattice of the prism $a \times b \times c$; are the same for $\ell=1, \ldots, 6$. The specific rotations $R_{\ell}, \ell=1, \ldots, 6$, involved in (6) are calculated from the equation $U_{\ell}=R_{\ell} H R_{\ell}^{\top}$, where $H=\operatorname{diag}\left(\eta_{1}+\right.$ $\eta_{3}, \eta_{2}, \eta_{1}-\eta_{3}$), namely:

$$
\begin{array}{lll}
R_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
s & 0 & s \\
s & 0 & -s
\end{array}\right), & R_{2}=\left(\begin{array}{rrr}
-s & 0 & -s \\
0 & -1 & 0 \\
-s & 0 & s
\end{array}\right), & R_{3}=\left(\begin{array}{rrr}
s & 0 & s \\
s & 0 & -s \\
0 & 1 & 0
\end{array}\right), \\
R_{4}=\left(\begin{array}{rrr}
0 & -1 & 0 \\
-s & 0 & -s \\
s & 0 & -s
\end{array}\right), & R_{5}=\left(\begin{array}{rrr}
s & 0 & s \\
0 & 1 & 0 \\
-s & 0 & s
\end{array}\right), & R_{6}=\left(\begin{array}{rrr}
-s & 0 & -s \\
s & 0 & -s \\
0 & -1 & 0
\end{array}\right), \tag{73}
\end{array}
$$

where $s=\sin \left(45^{\circ}\right)=\sqrt{2}$.
Furthermore, the offset d_{ℓ} in (6) has been chosen as 3 MPa . Taking into account that the equilibrium temperature of the austenite and martensite is in this particular alloy about 293 K and that the difference d_{ℓ} between free energies of unstressed austenite and martensite with the temperature at the rate $160 \mathrm{kPa} / \mathrm{K}$ (which, roughly speaking, after being divided by a transformation strain, i.e. here about 6%, yields the so-called Clausius-Clapeyron constant about $2.7 \mathrm{MPa} / \mathrm{K}$), the considered temperature of our experiment results to 312 K .

6.2. Dissipation-ENERGY Data

As to the construction of the phase-indicator function $\mathcal{L}: \mathbb{R}^{3 \times 3} \rightarrow \triangle$ we first calculate for a given $F \in R^{3 \times 3}$ its right Cauchy-Green tensor $F^{\top} F$ and then evaluate the square of its Euclidean distance (i.e. Frobenius' norm $|\cdot|_{\mathrm{F}}$) to $U_{\ell}^{\top} U_{\ell}$ for all $\ell=0, \ldots, M=6$. Taking a smooth function $d: \mathbb{R} \rightarrow \mathbb{R}$ such that $d=1$ in a neighbourhood of 0 and $d=\delta$ otherwise for some $\delta>0$ small, we can put

$$
\begin{equation*}
\hat{\mathcal{L}}(F):=\left\{\frac{d\left(\left|F^{\top} F-U_{\ell}^{\top} U_{\ell}\right|_{\mathrm{F}}^{2}\right)}{\sum_{l=0}^{M} d\left(\left|F^{\top} F-U_{l}^{\top} U_{l}\right|_{\mathrm{F}}^{2}\right)}\right\}_{\ell=0}^{M} \in \Delta . \tag{74}
\end{equation*}
$$

Note that $\hat{\mathcal{L}}$ is frame indifferent.
The dissipation potential R from (16) involves a norm $|\cdot|_{M}$ on \mathbb{R}^{1+M} which we take here simply as $|\lambda|_{M}=\sum_{\ell=0}^{M} \gamma_{\ell}\left|\lambda_{\ell}\right|$ where $\gamma_{\ell}>0$ for all $0 \leqslant \ell \leqslant M$; for more general form

In terms of the PT-energies $\left\{\mathcal{E}_{\ell l}\right\}_{\ell, l=0, \ldots, M}$ (see Section 4), this setting corresponds to the specific dissipation energy $\mathcal{E}_{\ell l}=\gamma_{\ell}+\gamma_{l}$ if $\ell \neq l$ (otherwise $\mathcal{E}_{\ell l}=0$). We can see that we cannot set up these energies entirely arbitrarily, which is due to a simple choice of $|\cdot|_{M}$; for a more general choice $|\lambda|_{M}:=\max _{\omega \in Z} \omega \cdot \lambda$ with Z a polyhedron determining activation stress of particular PTs (cf. (21)) we refer to [46]. We take $\gamma_{0}=0.5 \mathrm{MPa}$ and $\gamma_{\ell}=1 \mathrm{~Pa}$ for $\ell \neq 1, \ldots, M=6$. This choice of γ 's leads here to

$$
\mathcal{E}_{\ell l} \doteq \begin{cases}0.5 \mathrm{MPa} & \text { for } l=0 \text { or } \ell=0, \ell \neq l \tag{75}\\ 0 & \text { otherwise }\end{cases}
$$

i.e. transformations between the austenite and any martensitic variant need (and dissipate) the specific energy $0.5 \mathrm{MJ} / \mathrm{m}^{3}$ while reorientation of martensite in almost non-dissipative. The higher austenite-martensite dissipation is in agreement with an

Figure 3. The hysteretic pseudo-elastic stress-strain response corresponding to the full loading/unloading cycle.
observation by James and Zhang [30] that the transformation between rank-one connected austenite and martensite dissipates significantly less than if there is no rank-one connection, which is just our case and it corresponds to the option (A) in Section 4. Moreover, experimental observations due to Abeyratne et al. [1] show, however, also fairly wide hysteresis loop in the stress/volume fraction diagram during the re-orientation of the martensitic variant 3-6 which are rank-one connected and which perhaps suggest also a non-vanishing dissipation in this case, which suggests also the option (B) in Section 4 to be considered additionally to (A).

6.3. Design of a Particular Experiment and Computer Implementation

Consistently with Section 5, we implemented the 3D-situation by using piecewise affine tetrahedral finite elements with a standard division of a prism into five tetrahedrons. This means that $\nabla u_{\tau, h}^{k}$ is element-wise constant, (cf. (33)). We implemented the second-order laminate, i.e. we put $\kappa=2$ which leads to the four-atomic Young measure v (cf. (3) and Figure 2), where

$$
\begin{equation*}
v_{h}=\xi_{0 h} \xi_{1 h} \delta_{F_{1 h}}+\xi_{0 h}\left(1-\xi_{1 h}\right) \delta_{F_{2 h}}+\left(1-\xi_{0 h}\right) \xi_{2 h} \delta_{F_{3 h}}+\left(1-\xi_{0 h}\right)\left(1-\xi_{2 h}\right) \delta_{F_{4 h}} \tag{76}
\end{equation*}
$$

with

$$
\begin{align*}
& F_{1 h}=\nabla u_{h}-\left(1-\xi_{0 h}\right) a_{h} \otimes n_{h}-\left(1-\xi_{1 h}\right) a_{1 h} \otimes n_{1 h}, \tag{77a}\\
& F_{2 h}=\nabla u_{h}-\left(1-\xi_{0 h}\right) a_{h} \otimes n_{h}+\xi_{1 h} a_{1 h} \otimes n_{1 h}, \tag{77b}\\
& F_{3 h}=\nabla u_{h}+\xi_{0 h} a_{h} \otimes n_{h}-\left(1-\xi_{2 h}\right) a_{2 h} \otimes n_{2 h}, \quad \text { and } \tag{77c}\\
& F_{4 h}=\nabla u_{h}+\xi_{0 h} a_{h} \otimes n_{h}+\xi_{2 h} a_{2 h} \otimes n_{2 h} . \tag{77d}
\end{align*}
$$

Here $0 \leqslant \xi_{i h} \leqslant 1, i=0,1,2$, are element-wise constant. The vectors $a_{i h}$ and $n_{i h}$ are ele-ment-wise constant as well and, moreover, we may choose $\left|n_{i h}\right|=1$ and write it in spherical coordinates. Hence, the whole Young measure v is identified by means of ∇u_{h} and $\left\{\xi_{i h}, a_{i h}, n_{i h}\right\}$.

Our specimen is a prism $\Omega:=(0,4) \times(0,9) \times(0,4)$ (in mm's) and the orientation of the crystal lattice is considered (001). The displacement $u(x)$ is prescribed to be zero on the bottom base, i.e. if $x \in \Gamma_{D}=(0,4) \times\{0\} \times(0,4)$. The specimen is subjected to

Figure 4. Evolution of a second-order laminated microstructure in cubic/orthorhombic austenite/martensite stress-induced transformation at one selected spot of a loaded CuAlNi (001)-oriented single-crystal. Austenite white transforms through two variants $U_{2}=$ gray and $U_{3}=$ black of twinned martensite to a single variant of so-called detwinned martensite. A dozen of snapshots covers the whole loading upper row and unloaded lower row cycle corresponding to Figure 3. Microstructure is reconstructed in accord with calculations on one selected element. The gray level in the specimen reflects the calculated volume fraction of the "mixture" of the martensitic variants two and three and the austenite, i.e. the deformation gradient is in neighbourhoods of $\mathrm{SO}(3) \mathrm{U}_{2}, \mathrm{SO}(3) \mathrm{U}_{3}$ and $\mathrm{SO}(3) \mathrm{U}_{0}$, respectively. The displacement is magnified $3 x$.
a time-periodic surface force f independent of the deformation. This force is applied on the upper base of the specimen, i.e., if $x \in \Gamma_{\mathrm{N}}=(0,4) \times\{9\} \times(0,4)$.

We used 180 tetrahedral elements (cf. Figure 4), which yields 3480 variables and 540 box constraints.

The resulted mathematical-programming problem (35) is solved by the optimization routine "L-BFGS-B" described in [15]. Due to the multi-well character of $\hat{\varphi}$, (35) is a non-convex non-smooth (due to the non-smoothness of the dissipation metric $|\cdot|_{M}$) minimization problem, which, together with rather big number of variables, makes finding a global minimum extremely difficult. As "L-BFGS-B" is designed for local optimization, we need some strategy to rule out at least some of local minima. Successful (at least partly) computations are conditioned by a good initial guess at each time level k. Our initial guess heavily relies on possible rank-one connection between variants or their laminated mixtures. Above all, we see that $\mathrm{SO}(3) U_{l}$ is not rank-one connected to $\mathrm{SO}(3)$ if $l>0$. As all U_{l} are symmetric this can be shown by looking at middle eigenvalues of $U_{l}, l>0$ (cf. [11]). We easily see that no mid-
dle eigenvalue is equal to 1 . However, there are rank-one connections between the austenite and a twinned martensite. We exploit them for getting a initial guess in our calculations. For each two martensitic wells we calculate the appropriate rankone connections (there always exist two such connections; cf. [13]). Having a matrix $F_{l \ell}$ such that $F_{l \ell}=\tilde{\xi} R_{l} U_{l}+(1-\tilde{\xi}) R_{\ell} U_{\ell}$, where $R_{l} U_{l}-R_{\ell} U_{\ell}$ has the rank equal to one and $0<\tilde{\xi}<1$, we find $\tilde{\xi}$ and rotations R_{l} and R_{ℓ} such that $\mathrm{SO}(3) F_{l l}$ is rank-one connected to $\mathrm{SO}(3)$, i.e. to the well of the austenite. This precisely means that $F_{l \ell}^{T} F_{l \ell}$ has positive eigenvalues and the middle one is equal to 1 . A very important piece of information coming from these calculations are normal vectors of laminates between martensitic variants and the twinned martensite and the austenite i.e., $n_{h}, n_{1 h}$, and $n_{2 h}$. We use them as possible starting points during our computational experiments. After evaluating corresponding discrete energies, we pick up a solution with the least energy.

Notice that, since we use a second-order laminate, i.e. $\kappa=2$ and thus a pairwise rank-one-connected four-atomic probability measure, we can reach certain microstructures consisting of no more than four material phases/variants like on Figure 1e without necessity of fast spatial oscillations which would hardly be approached on our quite coarse discretizations. The initial condition is chosen so that $u_{0}=0$ and $[\nu]_{0}=\delta_{0}$, i.e., the stress-free austenite.

However, we dared commit three shortcomings: we eventually did not implement the regularization by (26) of V (and put $\rho=0$ in (24)), we did not implement the penalization in (34) (and took simply $\lambda=\mathcal{L} \cdot v$), and we did not treat the absolute value in the metric $|\cdot|_{M}$ in the dissipation potential as non-smooth but, just for numerical reasons, we replaced it by its regularization $|y| \approx \sqrt{y^{2}+\beta}$ with $\beta=10^{-8}$ which makes the mathematical-programming problem (35) smooth although ill-conditioned as β is small.

6.4. Computer Simulations of a Compression Experiment

As already mentioned, the orthorhombic martensite is more likely to appear during a compression experiment. We implemented the loading $f(\cdot, x)=\left(0, f_{2}(\cdot, x), 0\right)$ having a saw-tooth profile in time. Its amplitude is 10.8 kN , which reflects the maximal compressive stress 300 MPa . The obtained stress-strain diagram in on Figure 3.

We can observe that the area of the hysteresis loop is close to 1 MPa which is twice the preset value from (75) corresponding to two PTs from austenite to martensite and back, although it is not accomplish fully in the whole bulk.

In this particular experiment, we observed only three wells really active which causes that only at most three-atomic Young measures had been observed during the simulation; i.e. the nodes (or leaves) F_{3} and F_{4} (or equally F_{1} and F_{2}) on Figure 2 coincide with each other. From the calculated values of ξ 's, a 's, and n 's in (3), we can aposteriori reconstruct a microstructure (or, more precisely, minimizing sequences for (35) which are schematically displayed in circles on Figures 4 and 5 recording volume fractions ξ 's and orientation of interfaces n 's but not the amplitudes a 's. We can observe interfaces between the austenite (called habit planes) and the twinning planes (cf. Figure 1c) in the twinned martensite.

We finish the presentation of this experiment by displaying how selected quantities, namely energies (Figure 6) and volume fractions (Figure 7), evolve in time.

Figure 5. One snapshot with microstructure displayed at several spots, showing a spatial inhomogeneity of the PT processes.

Due to the boundary conditions on the bottom side, the lower part of the single crystal cannot undergo the PT, (see Figure 4), which is why about 25% of austenite remains in the bulk even under extremely compressed specimen see (Figure 7(left)).

Acknowledgements

The authors are indebted to M. Landa, V. Novák, P. Sedlák, P. Šittner, and U. Stefanelli for helpful discussions, and acknowledge the partial support from the European grants HPRN-CT-2002-00284 "Smart systems" and MRTN-CT-2004-505226 "Multiscale modelling and characterisation for phase transformations in advanced materials". Besides, M.K. is thankful for the support from the grants A 1075402 (GA AV ČR) and VZ 6840770021 (MŠMT ČR) and A.M. was also supported through C7-subproject of

Figure 6. Evolution of the Helmholtz stored energy $\bar{V}(t)$ and the dissipated energy (both in the whole specimen), and the work of external forces $\int_{0}^{t}\left\langle f, \frac{\mathrm{~d}}{\mathrm{~d} t} u\right\rangle \mathrm{d} t$, (cf. (19)).

Figure 7. Evolution of volume fractions averaged over the whole specimen of the austenite (left), the variant U_{2} (middle) and the variant U_{3} (right); the other variants were nonactive.

SFB 404 "Multifield Problems" and C18-subproject of the Research center "Matheon" (both Deutsche Forschungsgemeinshaft), while T.R. recognizes the support also from the grants 201/03/0934 (GA ČR) and MSM 0021620839 (MŠMT ČR). Last but not least, T.R. warmly acknowledges the support from the Alexander von Humboldt Foundation during his stay at the Weierstrass Institute, Berlin.

References

1. Abeyaratne, R., Chu, C. and James, R.D., 'Kinetics of materials with wiggly energies: Theory and application to the evolution of twinning microstructures in a $\mathrm{Cu}-\mathrm{Al}-\mathrm{Ni}$ shape memory alloy', Phil. Mag. A 73 (1996) 457-497.
2. Abeyaratne, R. and Knowles, J.K., 'On the propagation of maximally dissipative phase boundaries in solids', Q. Appl. Math. 50 (1992) 149-172.
3. Arndt, M., Upscaling from Atomistic Models to Higher Order Gradient Continuum Models for Crystalline Solids. PhD.Thesis, Inst. für Numer. Simulation, Universität Bonn, 2004.
4. Aubri, S., Fago, M. and Ortiz, M., 'A constrained sequential-lamination algorithm for the simulation of sub-grid microstructure in martensitic materials', Comp. Meth. Appl. Mech. Engr. 192 (2003) 2823-2843.
5. Auld, B.A., Acoustic Fields and Waves in Solids. Vol I. Wiley, New York, 1973.
6. Auricchio, F. and Petrini, L., 'A three-dimensional model describing stress-temperature induced solid phase transformations: solution algorithm and boundary value problems', Int. J. Numer. Methods Engrg. 61 (2004), 807-836.
7. Auricchio, F., Taylor, R.L. and Lubliner, J., 'Shape-memory alloys: macromodelling and numerical simulations of the superelastic behaviour', Comp. Meth. Appl. Mech. Engr. 146 (1997) 281312.
8. Ball, J.M., Chu, C. and James, R.D., 'Hysteresis during stress-induced variant rearrangement', J. de Physique IV (C8) 5 (1995) 245-251.
9. Ball, J.M., Holmes, P.J., James, R.D., Pego, R.L. and Swart P.J., 'On the dynamics of fine structure', J. Nonlinear Sci. 1 (1991) 17-70.
10. Ball, J.M. and James, R.D., 'Fine phase mixtures as minimizers of energy', Archive Rat. Mech. Anal. 100 (1988) 13-52.
11. Ball, J.M. and James, R.D., 'Proposed experimental tests of a theory of fine microstructure and the two-well problem', Phil. Trans. Royal Soc. Lond. A 338 (1992) 389-450.
12. Bhattacharya, K., Microstructure of Martensite. Why it Forms and How it Gives Rise to the Shape-Memory Effect, Oxford University Press, New York, 2003.
13. Bhattacharya, K., Li, B. and Luskin, M., 'Uniqueness and stability of the simply laminated microstructure for martensitic crystals that undergo a cubic to orthorhombic phase transformation', Archive Rat. Mech. Anal. 149 (1999) 123-154.
14. Bhattacharya, K., Purohit, P. and Craciun, B., 'Mobility of twin and phase boundaries', Journal de Physique IV 112 (Proc. ICOMAT-02) (2003) 163-166.
15. Byrd, R.H., Lu, P., Nocedal J. and Zhu, C., 'A limited memory algorithm for bound constrained optimization', SIAM J. Sci. Comput. 16 (1995) 1190-1208.
16. Duggin, M.J. and Rachinger, W.A., 'The nature of the martensite transformation in a copper-nickel-aluminium alloy', Acta. Metal. 12 (1964) 529.
17. Eve, R.A., Reddy, B.D. and Rockafellar, R.T., 'An internal variable theory of elastoplasticity based on the maximum plastic work inequality', Quarterly Appl. Math. 48 (1990) 59-83.
18. Falk, F. and Konopka, P., 'Three-dimensional Landau theory describing the matrensitic phase transformation of shape-memory alloys', J. Condens. Matter 2 (1990) 61-77.
19. Frémond, M., Non-Smooth Thermomechanics, Springer, Berlin, 2002.
20. Frémond, M. and Miyazaki, S., Shape Memory Alloys, Springer, Wien, 1996.
21. Goldstein, G.H., 'The effective energy and laminated microstructure in martensitic phase transformations', J. Mech. Phys. Solids, 49 (2001) 899-925.

416 Martin Kružík et al.

22. Govindjee, S. and Miehe, C., 'A multi-variant martensitic phase transformation model: formulation and numerical implementation', Comp. Met. Appl. Mech. Eng. 191 (2001) 215-238.
23. Govindjee, S., Mielke, A. and Hall, G.J., 'Free-energy of mixing for n-variant martensitic phase transformations using quasi-convex analysis', J. Mech. Phys. Solids 50 (2002) 1897-1922.
24. Govindjee, S., Mielke, A., Hall, G.J. and Miehe, C., 'Application of notions of quasi-convexity to the modeling and simulation of martensitic and shape memory phase transformations', in: Mang, H.A., Rammerstorfer, F.G. and Eberhardsteiner, J. (eds) Proceeding 5th World Congress on Computational Mechanics, Vienna University of Technology, Austria, (2002).
25. Hackl, K. and Hoppe, U., 'On the calculation of microstructure for inelastic materials using relaxed energies', in: Miehe, Ch. (ed), IUTAM Symposium Comput. Mech. of Solid Materials at Large Strains Kluwer, Dordrecht, 2003, pp. 77-86.
26. Hall, G.J. and Govindjee, S., 'Application of the relaxed free energy of mixing to problems in shape memory alloy simulation', J. Intelligent Mater. Systems \& Struct., in print.
27. Hill, R., 'A variational principle of maximum plastic work in classical plasticity', Q. J. Mech. Appl. Math. 1 (1948) 18-28.
28. Huo, Y. and Müller, I., 'Nonequilibrium thermodynamics of pseudoelasticity', Continuum Mech. Thermodyn. 5 (1993) 163-204.
29. James, R.D. and Hane, K.F., 'Martensitic transformations and shape-memory materials', Acta Mater. 48 (2000) 197-222.
30. James, R.D. and Zhang, Z., 'A way to search for multiferroic materials with "unlikely" combination of physical properties', in Manoza, L. et al. (eds) Interplay of Magnetism and Structure in Functional Materials, Springer, Berlin, 2004.
31. Kristensen, J., 'On the non-locality of quasiconvexity', Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) 1-13.
32. Kružík, M., 'Numerical approach to double-well problem', SIAM J. Numer. Anal. 35 (1998) 1833-1849.
33. Kružík, M. and Luskin, M., 'The computation of martensitic microstructure with piecewise laminates', J. Sci. Comp. 19 (2003) 293-308.
34. Kružík, M. and Roubíček, T., Mesoscopic model of microstructure evolution in shape memory alloys with applications to NiMnGa. Preprint IMA No.2003, University of Minnesota, Minneapolis, November 2004.
35. Landa, M., Plešek, J., Urbánek, P. and Novák, V., 'Evaluation of anisotropic elastic properties by ultrasonic methods', in: Proceedings 40th Intl. Conf. Experimental Stress Anal., Prague, June 3-6, 2002, pp. 141-146.
36. Levitas, V.I., 'The postulate of realizibility: formulation and applications to postbifurcational behavior and phase transitions in elastoplastic materials', Int. J. Eng. Sci. 33 (1995) 921-971.
37. Lexcellent, C., Moyne, S., Ishida, A. and Miyazaki, S., 'Deformation behaviour associated with the stress-induced martensitic transformation in $\mathrm{Ti}-\mathrm{Ni}$ thin films and their thermodynamical modelling', Thin Solid Films, 324 (1998) 184-189.
38. Lubliner J., 'A maximum dissipation principle in generalized plasticity', Acta Mech. 52 (1984) 225-237.
39. Mainik, A. and Mielke, A., 'Existence results for energetic models for rate-independent systems', Calc. Var. 22 (2005) 73-99.
40. Mielke, A., 'Energetic formulation of multiplicative elastoplasticity using dissipation distances', Cont. Mech. Thermodyn. 15 (2003) 351-382.
41. Mielke, A., 'Evolution of rate-independent inelasticity with microstructure using relaxation and Young measures', in: Miehe, C. (ed) IUTAM Symp. Comput. Mech. of Solid Mater. at Large Strains Kluwer, Dordrecht, 2003, pp. 33-44.
42. Mielke, A., 'Evolution of rate-independent systems', in: Dafermos, C. and Feireisl, E. (eds.) Handbook of Differential Equations: Evolutionary Diff. Eqs., North-Holland, Amsterdam, 2005, in press.
43. Mielke, A. and Roubíček, T., 'Rate-independent model of inelastic behaviour of shape-memory alloys', Multiscale Modeling Simul. 1 (2003) 571-597.
44. Mielke, A. and Theil, F., 'A mathematical model for rate-independent phase transformations with hysteresis', in Alder, H.-D., Balean, R. and Farwig, R. (eds.) Models of Continuum Mechanics in Analysis and Engineering, Shaker Verlag, Aachen, 1999, pp. 117-129.
45. Mielke, A. and Theil, F., 'On rate-independent hysteresis models', Nonlin. Diff. Eq. Appl. 11 (2004) 151-189.
46. Mielke, A., Theil, F. and Levitas, V.I., 'A variational formulation of rate-independent phase transformations using an extremum principle', Archive Rat. Mech. Anal. 162 (2002) 137-177.
47. Müller, I. and Xu, H., 'On the pseudoelastic hysteresis', Acta Mettal. Mater. 39 (1991) 261271.
48. Müller, S., 'Variational models for microstructure and phase transitions', Hildebrandt, S. et al. (eds) Lectures Notes in Mathematics 1713 (1999), Springer, Berlin, pp. 85-210.
49. Novák, V, Šittner, P., Vokoun, D. and Zárubová, N., 'On the anisotropy of martensitic transformation in Cu-based alloys', Mater. Sci. Eng. A273-275 (1999) 280-285.
50. Nicolaides, R.A. and Walkington, N.J., 'Computation of microstructure utilizing Young measure representations', in Rogers, C.A. and Rogers, R.A. (eds) Recent Advances in Adaptive and Sensory Materials and their Applications. Technomic Publiction, Lancaster, 1992, pp.131-141.
51. Otsuka, K. and Shimizu, K., 'Morphology and crystallography of thermoelastic Cu-Al-Ni martensite analyzed by the phenomenological theory', Trans. Japan Inst. Metals 15 (1974) 103-113.
52. Patoor, E., Eberhardt A. and Berveiller, M., 'Micromechanical modelling of shape memory alloys behaviour', Arch. Mech. 40 (1988) 775-794.
53. Pedregal, P., Parametrized Measures and Variational Principles, Birkäuser, Basel, 1997.
54. Pitteri, M. and Zanzotto, G., Continuum Models for Phase Transitions and Twinning in Crystals, Chapman \& Hall, Boca Raton, 2003.
55. Plecháč, P. and Roubíček, T., 'Visco-elasto-plastic model for martensitic phase transformation in shape-memory alloys', Math. Methods Appl. Sci. 25 (2002) 1281-1298.
56. Rajagopal, K.R., and Roubíček, T., 'On the effect of dissipation in shape-memory alloys', Nonlin. Anal., Real World Appl. 4 (2003) 581-597.
57. Rajagopal, K.R., and Srinivasa, A.R., 'On the inelastic behaviour of solids - Part 1: Twinning. Int. J. Plasticity 11 (1995), 653-678.
58. Ren, X. and Truskinovsky, L., 'Finite scale microstructures in nonlocal elasticity', J. Elasticity 59 (2000) 319-355.
59. Rogers, R. and Truskinovsky, L., 'Discretization and hysteresis', Physica B 233 (1997) 370-375.
60. Roubíček, T., 'A note on an interaction between penalization and discretization', in: Kurzhanski, A. and Lasiecka, I. (eds) Modelling and Inverse Problems of Control for Distributed Parameter Systems, L.N. in Control and Inf. Sci. 154, Springer, Berlin, 1991, pp.145-150.
61. Roubíček, T., Relaxation in Optimization Theory and Variational Calculus, W. de Gruyter, Berlin, 1997.
62. Roubíček, T., 'Dissipative evolution of microstructure in shape memory alloys', in: Bungartz, H.-J., Hoppe, R. H. W. and Zenger, C. (eds) Lectures on Applied Mathematics, Springer, Berlin, 2000, pp.45-63.
63. Roubíček, T., 'Evolution model for martensitic phase transformation in shape-memory alloys', Interfaces Free Boundaries 4 (2002), 111-136.
64. Roubíček, T., 'Models of microstructure evolution in shape memory materials', in: Ponte Castaneda, P., Telega, J.J. and Gambin, B. (eds) NATO Workshop Nonlinear Homogenization and its Appl. to Composites, Polycrystals and Smart Mater, NATO Sci. Series II/170, Kluwer, Dordrecht, 2004, pp.269-304.
65. Roubíček, T. and Kružík, M., 'Mesoscopic model of microstructure evolution in shape memory alloys, its numerical analysis and computer implementation', in: Miehe, C. (ed) 3rd GAMM Seminar on microstructures, GAMM Mitteilungen, J.Wiley, in press.
66. Sedlák, P., Seiner, H., Landa, M., Novák, V., Šittner, P. and Mañosa, Ll., 'Elastic constants of bcc austenite and 2 H orthorhombic martensite in CuAlNi shape memory alloy', Acta Mat. (2005).
67. Šilhavý, M., 'On the hysteresis in martensitic transformations', in: Podio-Guidugli, P. and Brocato, M. (eds.), Rational Continua, Classical and New, Springer, Berlin, 2003, pp.151-168.
68. Simo, J.C., 'A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition', Comp. Math. Appl. Mech. Engrg. 66 (1988) 199-219, 68 (1988) 1-31.
69. Šittner, P., Hashimoto, K., Kato, M. and Tokuda, M., 'Stress induced martensitic transformations in tension/torsion of CuAlNi single crystal tube', Scripta Mater. 48 (2003), 1153-1159.
70. Souza, A.C., Mamiya, E.N. and Zouain, N. 'Three-dimensional model for solids undergoing stress-induced phase transitions', Eur. J. Mech. A/Solids 15 (1998) 789-806.
71. Stupkiewicz, S. and Petryk, H., 'Modelling of laminated microstructures in stress-induced martensitic transformations', J. Mech. Phys. Solids 50 (2002) 2303-2331.
72. Suezawa, M. and Sumimo, K., 'Behaviour of elastic constants in $\mathrm{Cu}-\mathrm{Al}-\mathrm{Ni}$ alloy in the close vinicity of M_{s}-point', Scr. Metall. 10 (1976) 789-792.
73. Šverák, V., 'Rank-one convexity does not imply quasiconvexity', Proc. R. Soc. Edinb. 120 A (1992) 185-189.
74. Thamburaja, P. and Anand, L., 'Thermomechanically coupled superelastic response of initiallytextured TiNi sheet', Acta Mater. 51 (2003), 325-338.
75. Truskinovsky, L., 'Transition to detonation in dynamic phase changes', Archive Rat. Mech. Anal. 125 (1994) 375-397.
76. Vainchtein, A. and Rosakis, P., 'Hysteresis and stick-slip motion of phase boundaries in dynamic models of phase transitions', J. Nonlin. Sci. 9 (1999) 697-719.
77. Vivet, A. and Lexcelent, C., 'Micromechanical modelling for tension-compression pseudoelastic behaviour of AuCd single crystals', Euro Phys. J. A.P. 4 (1998) 125-132.
78. Wilmanski, K., 'Symmetric model of stress-strain hysteresis loops in shape memory alloys', Int. J. Engr. Sci. 31 (1993) 1121-1138.
79. Xiangyang, Z., Qingping, S. and Shouwen, Y., 'A non-invariant plane model for the interface in CuAlNi single crystal shape memory alloys', J. Mech. Phys. Solids 48 (2000) 2163-2182.
80. Yasunaga, M., Funatsu, Y., Kojima, S., Otsuka, K. and Suzuki, T., 'Measurement of ellastic constants', Scr. Metall. 17 (1983) 1091.
81. Zhang, X.Y., Brinson, L.C. and Sun, Q.P., 'The variant selection criteria in single-crystal CuAlNi shape memory alloys', Smart Mater. Struct. 9 (2000) 571-581.

[^0]: *e-mail: roubicek@karlin.mff.cuni.cz

