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1 Introduction

In the [?] field [1] of [?] engineering design we come across many complex problems,
the mathematical formulation of which is tedious and usually not possible by analytical
methods. At such instants we resort to the use of numerical techniques. Here lies the
importance of Finite Element Method (FEM), which is a very powerful tool for getting
the numerical solution of a wide range of engineering problems. The basic concept is that
a body or structure may be divided into smaller elements of finite dimensions called Finite
Elements.

Contrary to FEM and mesh-based methods in general there exist situations where
some of the meshless methods is convenient to use. This project is based on analysing
Fast Fourier Transform based method in one dimension.

The document is structured into following parts. Section 2 provide information about
the method and leads to a differential equation that is consequently solved in Section
4 using Fourier transform technique described in Section 3. Finally, Section 5 provides
detailed convergence analysis of the method in one dimensional space.

2 Setting the initial equations

This Section provides theoretical approach to the Fast Fourier Transform Based Method.
Information about this method are gained from Michel [?]. It is based on analyzing
periodically repeating medium with heterogeneities. In this work one dimensional case
is considered and it is necessary to note that the cross-section of the structure is set to
one and thus it is not considered in the sequel. The medium is composed from basic cell
which is characterized with E(x) stiffness defined at the interval [a, b] (a, b are boundary
points of the cell) and the boundary condition for strain have to be satisfied. It means
that:

ε(a) = ε(b) ∧ E(a) = E(b)

The infinite one dimensional rod is loaded with average strain ε0. For the needs of the
FFT based method the strain along the rod ε(x) is decomposed into:

ε(x) = ε0 + ε1(x)

where ε1(x) is a complement to ε(x) strain along the rod.
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To obtain some information about ε1(x) strain, we deduce that:

1

b− a

b∫
a

(x)dx =0 ⇒ 1

b− a

b∫
a

0 +1 (x)dx =0 ⇒

⇒ 0

b− a

b∫
a

dx+

b∫
a

1(x)dx =0 ⇒
b∫

a

1(x)dx = 0,

i.e. the overall strain 1(x) at the cell equals to zero.
Because of loading just with average strain 0, the equilibrium state can be described

with the following equation:
d

dx

(
E(x)ε(x)

)
= 0 (1)

For the use of the method the (EH −EH) term is added to the equation. The stiffness
EH is an auxiliary value of the analogical homogeneous problem with same strains ε0,
ε1(x) and the same boundary condition. Hence Equation (1) follows:

d

dx

[(
EH − EH + E(x)

)
ε(x)

]
= 0

d

dx

(
EHε(x)

)
= − d

dx

[(
E(x)− EH

)
ε(x)

]
(2)

Noticing that d
dx

(
EHε0

)
= 0, Equation (2) leads to:

d

dx

(
EHε1(x)

)
= − d

dx

[(
E(x)− EH

)
ε(x)

]
The left side of the equation can be interpreted as homogeneous rod deformed with

ε1(x) strain. Hence, the right side of the equation can be interpreted as generalized load
f(x) causing 1(x) strain:

f(x) = − d

dx

[(
E(x)− EH

)
ε(x)

]
Hence, it is necessary to solve following equation:

EH
dε1(x)

dx
= f(x) (3)

that can be classified as a first order linear differential equation with constant coefficients.

3 Fourier transform

In order to solve Equation (3) and differential equations in general, it is useful to use
some integral transform. The advantage of this approach is that it is possible to express
the differential equation as an integral equation.
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In this case of periodically distributed heterogeneities, it is convenient to use Fourier
transform [?]. It is an operator F that transform function f(x) into some another function
f̂(t) according to following formula:

F{f(x)} = f̂(t) =

∞∫
−∞

f(x)e−ixtdx

It is necessary to note that only absolutely integrable functions are considered for the
transform.

The inverse Fourier transform is defined as follows:

F−1
{
f̂(t)

}
= f(x) =

1

2π

∞∫
−∞

f(t)eixtdt

For suitable set of functions it has a following property:

F−1 {F{f(x)}} = f(x)

The Fourier transform F is an linear operator meaning:

F{αf(x) + βg(x)} = α · F{f(x)}+ β · F{g(x)} (4)

The other useful property is transform of function derivative f ′(x):

F{f ′(x)} = it · F{f(x)} (5)

The convolution of two function can be expressed as multiplication of Fourier trans-
form:

h(x) = f(x) ∗ g(x) =

∞∫
−∞

f(x− ξ)g(ξ)dξ ⇐⇒ F{h(x)} = F{f(x)} · F{g(x)} (6)

where binary operation ∗ means convolution.
Note that the original equation is posed on interval [a, b]. Therefore, we formally

extend all functions by zero outside of [a,b] to comply with the Fourier settings.

4 Solution of the differential equation

This section provides solution of Equation (3) using Fourier transform. Hence, it can be
written as:

EH
′
1(x) = f(x) =⇒ F{EH

′
1(x)} = F{f(x)}

Using linearity (4) and property (5) of fourier transform, we can write:

EHitF{1(x)} = F{f(x)}

and consequently, the Fourier transform of the searched function 1(x) can be written as:

F{1(x)} =
1

EHit
F{f(x)} (7)
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The function 1
EH it

from the last equation can be substituted as:

F{g(x)} =
1

EHit
(8)

and thus Equation (7) leads to:

F{1(x)} = F{g(x)}F{f(x)}
It can be note that the function g(x) is usually called Green function.

Now, it is possible to express multiplication of Fourier transform with the help of
convolution theorem (6):

1(x) =

∞∫
−∞

g(x− ξ)f(ξ)dξ

This equation can be integrated by parts, thus heading to:

1(x)
P.P.
=

∞∫
−∞

∂g(x− ξ)
∂ξ

F (ξ)dξ + g(x− ξ)F (ξ)
∣∣∣∞
−∞

(9)

where F (x) is a function satisfying the condition F ′(x) = f(x) and it can be determined
as:

f(x) = − d

dx

[(
E(x)− EH

)
ε(x)

]
⇒ F (x) =

(
EH − E(x)

)
ε(x)

Noting that the second term of Equation (9) is equal to zero due to boundary conditions.
Hence, the strain 1(x) can be expressed as:

1(x) = g′(x) ∗ F (x)

and then its Fourier transform with the help of convolution yields:

F{1(x)} = F{g′(x)} · F{F (x)}
After expression of Fourier transform of g′(x), it leads to:

1(x) = F−1 {itF{g(x)} · F{F (x)}}
Now, it possible to use the expression for F{g(x)} from Equation (8) that leads to

following equation:

1(x) = F−1

{
1

EH

· F{F (x)}
}

In order to satisfy the zero average conditions, it is necessary to comply with the
following equation:

b∫
a

1(x)dx = 0⇒
b∫

a

1(x)e−ixtdx = 0, for t = 0⇒ 1̂(0) = 0

Hence, it is possible to introduce following function:

K̂per(t) =

{
0 for t = 0

1
EH

for t 6= 0

to obtain:

1(x) = F−1
{
K̂per(t)F̂ (x)

}
(10)

where F (x) =
(
EH − E(x)

)
(y) and F̂ (x) = F{F (x)}.
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5 Discretization

This section provide the discretization of the rod that concerns the process of transferring
continuous models and equations into discrete one.

It means that the continuous Fourier transform would became the discrete Fourier
transform, hence the algorithms for Fast Fourier transform can be used with the great
benefit of shorter time for calculation.

The one dimensional case provide an opportunity to express Equation (10) in analytical
form. It can be written:

1(x) = F−1
{
K̂per(t)F̂ (x)

}
⇒ 1(x) =

b∫
a

Kper(x− ξ)F (ξ)dξ ⇒

⇒ 1(x) =

b∫
a

δ(x− ξ)
EH

(
EH − E(ξ)

)
(ξ)dξ − 1

b− a

b∫
a

EH − E(ξ)

EH

ε(ξ)dξ (11)

where the δ(x− ξ) is Dirac distribution satisfying the property that

b∫
a

δ(x− ξ)f(ξ)dξ = f(x)

and the second term of Equation (11) satisfies the boundary condition that
∫ b

a 1(x) = 0

and it has the same meaning as the property of K̂per function saying that K̂per(0) = 0.
Hence, Equation (11) can be written in following form:

ε1(x) =
EH − E(x)

EH

ε(x)− 1

b− a

b∫
a

EH − E(ξ)

EH

ε(ξ)dξ (12)

For the sake of following analysis of the method, it is necessary to provide some other
emendations. Firstly we have to discretize the interval [a, b] into N nodes that change the
integral over continuous field into the sum. It is necessary to note that the discretization
leads to a loss in exactness over the continuous field. The first point is set at the beginning
of the interval (x1 = a) and the last point at the end of the interval (xN = b). The rest of
the nodes are regularly distributed into the interval, so the difference between coordinates
of two adjacent points is h = b−a

N−1
. This discretization change Equation (12) to:

ε1(xj) =
EH − E(xj)

EH

ε(xj)−
1

N

N∑
i=1

EH − E(xi)

EH

ε(xi), for j = 1, 2, . . . , N (13)

The second modification has to be done with the stiffness EH as it is auxiliary value
of imaginary case of homogeneous rod it cannot be known until the strain of the rod is
calculated. Hence the EH stiffness is estimated with some reference stiffness Eref . The
inaccurate estimation of this Eref value leads to inexact solution of the strain thus the
iteration approach to solution has to be applied. The appropriate setting of the Eref value
is the main point of the efficiency or even successfulness of the iteration method.
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Using Equation (13) the (k + 1)th iteration of the algorithm can be written as:

ε1(xj, k + 1) =
Eref − E(xj)

Eref

ε(xj, k)− 1

N

N∑
i=1

Eref − E(xi)

Eref

ε(xi, k), for j = 1, 2, . . . , N

(14)
It is necessary to note that the initial strain is set to zero:

ε1(x, 0) = 0

Convergence study of FFT based method This section provides analytical solution of
heterogeneous rod using the FFT based method. It means that the studied sequence
ε1(x, k) defined with recurrence formula is being expressed directly using initial strain
ε1(x, 0). The convergence of the sequence with regard to Eref parameter is also discussed
here.

A binary heterogeneous rod with two stiffnesses E0 and E0(1 + p), p ∈ (−1,∞〉 is
considered. A arbitrary node with coordinate x and stiffness E0 is marked as xE0 and
analogically with stiffness E0(1 + p) as xE0(1+p). The periodic cell is discretised using N
nodes and we can assume that stiffness E0(1 + p) occurs in m cases. Hence, it is obvious
that stiffness E0 occurs in (N −m) cases. All used variables related to both sequences
are shown in Table 1. The definition domain of these variables are provided in Table 2
(noting that the set R+ = {x ∈ R : x > 0}).

Table 1: Sequences and related variables

studied sequence coordinate iteration stiffness E(x) nodes frequency volume fraction

ε1(xE0 , k) xE0 k E0 N N −m N−m
N = 1− c

ε1(xE0(1+p), k) xE0(1+p) k E0(1 + p) N m m
N = c

Table 2: Definition scope of variables

variables E0, E0(1 + p), Eref p x N m (N −m) c k

def. domain R+ (−1,∞〉 〈a, b〉 N N N 〈0, 1〉 N0

Now, we can take a look at ε1 strain in the characteristic node xE0 . Using Equation
(14), the recurrence relation for the strain ε1 as the kth iteration can be written as follows:

εk+1
1 (xE0 , k + 1) =

Eref − E0

Eref

εk(xE0 , k)−

− 1

N

[
(N −m)

Eref − E0

Eref

εk(xE0 , k) +m
Eref − E0(1 + p)

Eref

εk(xE0(1+p), k)

]
(15)

Subsequently, we can use condition that average strain of ε1(x, k) is equal to zero,
yielding:

N∑
i=1

ε1(xi, k) = 0 ⇒ (N −m)ε1(xE0 , k) +mε1(xE0(1+p), k) = 0 ⇔ (16)

6



⇔ ε1(xE0(1+p), k) =

(
1− N

m

)
ε1(xE0 , k) (17)

It is necessary to note that even the initial strain ε1(x, 0) has to satisfy condition (17).
It can be noticed that both Equation (15) and (17) can be rewritten using

c =
m

N
(18)

where c ∈ 〈0, 1〉. In particular, substituting (18) into (15) and using (17) leads to:

ε1(xE0 , k + 1) =
Eref − E0

Eref

[
ε0 + ε1(xE0 , k)

]
− (1− c)Eref − E0

Eref

[
ε0 + ε1(xE0 , k)

]
+

+ c · Eref − E0(1 + p)

Eref

[
ε0 +

1− c
c

ε1(xE0 , k)

]
(19)

In the following text, ε1(xE0 , k) is being abbreviated to ε1(k). Hence, after several
algebraic emendations, Equation (19) leads to:

ε1(k + 1) =
Eref − E0(1 + p− cp)

Eref

· ε1(k) +
E0ε0cp

Eref

(20)

After following substitution:

a =
Eref − E0(1 + p− cp)

Eref

, b =
E0ε0cp

Eref

(21)

Equation (20) can be written as:

ε1(k + 1) = a · ε1(k) + b (22)

and this equation can be classified as linear inhomogeneous recurrence relation with con-
stant coefficients. To solve this equation, we first convert the recurrence relation into
homogeneous form. We start with writing a formula for the following member of the
sequence:

ε1(k + 2) = a · ε1(k + 1) + b (23)

Subtraction of Equation (22) and (23) leads to homogeneous form of linear recurrence
relation:

ε1(k + 2)− (a+ 1)ε1(k + 1) + aε1(k) = 0 (24)

Now, we are going to find solution in the following form:

ε1(k) = rtk (25)

where r ∈ R and t ∈ C.
If the assumption about solution written in Equation (25) is correct it has to satisfy

the recurrence formula from Equation (24). Thus, it leads to:

rtk+2 − (a+ 1) · rtk+1 + a · rtk = 0 ⇒ rtk
(
t2 − (a+ 1)t+ a

)
= 0

In order to find nontrivial solution the variables c and t has to be nonzero, thus the
solution leads to a problem of finding roots of quadratic equation:

t2 − (a+ 1)t+ a = 0
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which are:
t1 = 1, t2 = a (26)

It means that both ε1(k) = r1t
k
1 and ε1(k) = r2t

k
2, r1, r2 ∈ R are solution of the

recurrence Equation (24). It can be shown that even the sum

ε1(k) = r1t
k
1 + r2t

k
2, r1, r2 ∈ R (27)

is solution of that recurrence equation as we can write:

ε1(k + 2)−
(
a+ 1

)
· ε1(k + 1) + a · ε1(k) =

=
(
r1t

k+2
1 + r2t

k+2
2

)
+
(
r1t

k+1
1 + r2t

k+1
2

)
+
(
r1t

k
1 + r2t

k
2

)
=

= r1t
k
1

[
t21 − (a+ 1)t1 + a

]
+ r2t

k
2

[
t22 − (a+ 1)t2 + a

]
= 0

In order to determine r1 and r2 coefficients, we have to satisfy two linearly independent
equations obtained for two members of the studied sequence:

ε1(0) = r1t
0
1 + r2t

0
2

ε1(1) = r1t
1
1 + r2t

1
2

=⇒ ε1(0) = r1 + r2
a · ε1(0) + b = r1 + r2a

and the solution is following:

r1 =
b

1− a
, r2 = ε1(0) +

b

a− 1
(28)

noting that 1−a > 0, so we do not divide with zero. Using (27), (26) and (21) in Equation
(28), the formula for the searched sequence can be written as:

ε1(k) =
ε0cp

1 + p− cp
+

(
ε1(0)− ε0cp

1 + p− cp

)(
1− E0(1 + p− cp)

Eref

)k

(29)

Now, we investigate the sequence behaviour in respect to Eref parameter. Firstly, we
consider the following situation:

ε1(0) =
ε0cp

1 + p− cp

it implies:

ε1(k) =
ε0cp

1 + p− cp
and it is constant sequence regardless the parameter Eref .

Next, we consider that:

ε1(0) 6= ε0cp

1 + p− cp
In order to investigate the sequence behaviour in respect to Eref parameter, it is necessary
to find a following limit:

lim
k→∞

ε1(k)

which converge if and only if:

−1 < t2 < 1 ⇔ −1 < 1− E0(1 + p− cp)
Eref

< 1 ⇔ 0 <
E0(1 + p− cp)

Eref

< 2 ⇔
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⇔ E0

2
(1 + p− cp) < Eref (30)

If the condition written in Equation (30) is satisfied then the sequence converge to:

lim
k→∞

ε1(k) =
ε0cp

1 + p− cp
(31)

If the condition (30) is not satisfied, (limk→∞ ε1(k) does not exist because the following
inequality is always fulfilled:

t2 < 1 ⇔ E0(1 + p− cp) > 0

due to the definition domain of the variables (see Table 2). It can be added that, the
sequence is absolutely convergent (limk→∞ |ε1(k)| =∞) for t2 < −1.

Next, it can be noticed that if the following condition is satisfied

1− E0(1 + p− cp)
Eref

= 0 ⇔ Eref = E0(1 + p− cp) (32)

then the sequence has special property that:

∀k > 0 : ε1(k) =
ε0cp

1 + p− cp

Hence, it can be said that Equation (32) describes condition for the optimal convergence
of the studied sequence as it is get convergent in the first iteration step.

Now, we can have a look at sequence

ε1(xE0(1+p), k)

describing arbitrary point with E0(1 + p) stiffness. The quality of this sequence can be
determined from Equation (16) saying that in each iteration step k the average strain
of ε1 is equal to zero. Thus, it implies that both sequences have the same domain of
convergence.
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For the sake of lucidity, all significant qualities of the both sequences are provided in
Table 3.

Table 3: The sequences behaviour in regard to Eref parameter

Eref ε1(xE0 , k) ε1(xE0(1+p), k)
E0
2 (1 + p− cp) < Eref limk→∞ ε1(xE0 , k) = ε0

cp
1+p−cp limk→∞ ε1(xE0(1+p), k) = ε0

p(1−c)
1+p−cp

E0
2 (1 + p− cp) ≥ Eref limk→∞ ε1(xE0 , k) do not exist limk→∞ ε1(xE0(1+p), k) do not exist

E0(1 + p− cp) = Eref ∀k > 0 : ε1(k) = ε0
cp

1+p−cp ∀k > 0 : ε1(k) = p(1−c)
1+p−cp
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