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Czech Technical University

Faculty of Civil Engineering

Abstract

Analysis of Mechanical Properties of Fiber-reinforced Composites with

Random Microstructure

by Jan Zeman

Effective elastic properties of the graphite-epoxy unidirectional fiber composite with fibers

randomly distributed within the transverse plane section are found. To enhance the efficiency

of numerical analysis the complicated real microstructure is replaced by a material represen-

tative volume element consisting of a small number of particles, which statistically resembles

the real microstructure.

First, various statistical descriptors suitable for the microstructure characterization of a

random media are considered. Several methods for the determination of these descriptors

are proposed and tested for some simple theoretical models of microstructures. Moreover, a

validity of various statistical hypotheses usually accepted for a random heterogenous media

is checked for the present material as well.

Successively, the unit cell is derived from the optimization procedure formulated in terms

of these statistical descriptors. A variety of deterministic as well as stochastic optimization

algorithms is examined to solve this problem. It is shown that for this particular applica-

tion stochastic method based on genetic algorithm combined with the simulated annealing

method is superior to other approaches.

Finally, the estimates of elastic properties are found for the resultant unit cells using

the Finite Element Method. Results suggest that the proposed approach, which effectively

x



exploits the knowledge of material’s statistics of the composite, is more reliable then various

averaging techniques or simple unit cell models based on the regular fiber distribution.
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Chapter 1

INTRODUCTION AND HISTORICAL REVIEW

The elastic as well as the inelastic behavior of composite materials in strongly dependent

on the geometrical arrangement of distinct phases of the composite – microstructure. On

the contrary, conventional methods for the prediction of thermo-mechanical response of

composite materials are either based on limited microstructural information such as volume

fraction of phases (see eg. [Gibson, 1994]) or deal with a regular distribution of phases (see

eg. [Aboudi, 1991, Teplý and Dvořák, 1988]).

Figure 1.1: A real micrograph of a transverse plane section of the graphite fiber tow

Unfortunately, microstructure of real composite materials is typically quite complicated.

To illustrate this fact, we present a high-contrast micrograph of a part of the graphite fiber

tow impregnated by the polymer matrix, Fig. 1.1. Evidently, such a composite can hardly be

characterized by a simple periodic unit cell commonly used for the rectangular and hexagonal
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arrangement of fibers. The characterization of microstructure by the volume fractions of fiber

or matrix only do not captures evident clustering of fibers. On the other hand it appears

possible to select such a micrograph directly as a objective of analysis. However, once we

realize, that this particular sample contains approximately 300 particles it becomes clear that

the resulting analysis will be extremely difficult, especially in the inelastic regime. To tackle

this problem, one can substitute the whole complex microstructure by its representative

volume element (RVE) and perform the analysis on the RVE instead on the whole sample.

1.1 Concept of a representative volume element

The crucial question now is how to determine such a volume element. In his classical work

[Hill, 1963], Hill states that:

This phrase (representative volume) will be used when referring to a sample

that (a) is structurally entirely typical of the whole mixture on average, and

(b) contains sufficient number of inclusions for the apparent overall moduli to

be effectively independent of the surface values of traction and displacement, so

long as these values are ‘macroscopically uniform’.

The above conditions imply that the RVE should contain a large number of inhomo-

geneities to include all possible configurations appearing in the composite. This leads to a

general, quite vague, suggestion that the RVE should be “sufficiently large” compared to the

typical size of the inhomogeneity.

Another perhaps more rigorous approach proposed by [Povirk, 1995] relies on the descrip-

tion of the original microstructure by a certain statistical function and then requires the RVE

to approximate the original function as good as possible. In order to provide “sufficient”

number of particles and meet the aforementioned conditions, periodicity of such a RVE is

often considered – we presume that the RVE is surrounded by the periodic replicas of itself.

This procedure enables us to substitute complicated original microstructure by the periodic
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unit cell which consists of a small number of reinforcement only but still carries non-trivial

statistical informations and is capable of capturing the real response of composite material.

This approach is used in this work.

1.2 Description of microstructure morphology

A literature offers a number of statistical descriptors of a random composite media. The

most suitable for the present purpose are the n-point probability function Sn defined in

[Torquato and Stell, 1982], which gives the probability of simultaneously finding n points in

the matrix or fiber phase and the generic n-particle probability density ρn [Boubĺık, 1996,

Quintanilla and Torquato, 1997], which gives the probability density for finding particle cen-

ters in given n points. Unfortunately, obtaining these descriptors for values of n higher than

two for real materials is prohibitively difficult, so the higher-order correlation functions are

of little practical importance.

Pioneering work devoted to determination of Sn-type functions for micrographs of real

media is attributed to [Corson, 1974]. Despite the fact that the proposed procedure was ex-

tremely cumbersome (it was based on manual evaluation of photographs taken from samples

of the real material) the principle itself (evaluation of the Sn function on some sampling grid

and then averaging of the corresponding values) was used and extended in following works.

In [Berryman, 1984] Corson’s procedure was automated by the use of image processing tech-

nique and finally, [Smith and Torquato, 1988] proposed simple simulation method for the

determination of functions Sn, which is suitable for non-digitized media as well.

The approach for obtaining ρn -type function used in this work is based on the second or-

der intensity function K(r) defined by [Ripley, 1977], which can be easily determined for par-

ticulate microstructure. Unlike the preceding method this procedure is not simulation-based

and therefore K(r) can be evaluated very rapidly for a reasonable number of reinforcements.
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1.3 Genetic algorithms and simulated annealing method

Genetic algorithms (GAs) are adaptive methods which may be used to solve general search

and optimization problems. The basic idea behind these methods are the genetic processes

of biological organisms – namely the evolution and self-organization of natural systems over

many generation according to the principle of natural selection and “survival of the fittest”.

In reality, individuals of one population compete with each other for natural resources and for

attracting a mate. Those which succeed in obtaining resources and attracting mates will have

large number of offsprings, while individuals performing poorly will produce lesser number of

descendants. So the abilities of successful individuals are more likely to be passed to following

generations and result in the best adaption to the environment. GAs closely mimic all these

natural processes – they work with a population of individuals, each represents a solution to

a given problem. A score or fitness is assigned to each individual depending on how good

solution it presents. The individuals with higher fitness are more likely to reproduce by

crossover and to pass their characteristics to their offsprings. Moreover, an individual can

also undergo a mutation if appropriate. In this way, over a number of successive population,

the good characteristic of individuals are mixed and spread over all population, so the

population converges to the optimal solution.

The earliest work on this subject was in fact Darwin’s Origin of species where afore-

mentioned principles were stated. The basic principles of GAs were first rigorously laid

down by [Holland, 1975], their detailed discussion is given eg. in [Beasley et al., 1993a,

Goldberg, 1989, Michalewicz, 1992]. In their classical formulation, GAs work with the bi-

nary representation of objective variables. Michalewicz in [Michalewicz, 1992] proposed the

GAs, which use the floating-point representation of search variables and showed their supe-

riority for the real-valued function optimization.

The Simulated annealing (SA) method is based on physical rather than biological princi-

ples – the algorithm effectively exploits the analogy between optimization problem and the

annealing process of solid bodies. In the physical process of annealing the temperature of
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Figure 1.2: Principle of simulated annealing method

a solid is kept rather high initially and then decreases sufficiently slowly, so the individual

particles have the possibility to attain the state with the minimal energy for a given con-

stant temperature. As the temperature gradually decreases the energy of the whole body

decreases as well and finally reaches the minimal value. SA algorithm works on the same

principle - initial solution is generated randomly, some artificial parameter called tempera-

ture is set to initial value and new solutions are randomly generated. If the new solution

is better than preceding in terms of fitness, it is accepted automatically and replaces the

original solution. However, if the new solution is worse than the preceding one, it has still

the chance to replace the original solution – this probability depends on the difference of

objective function and actual temperature – which enables the solution to escape from local

minimum (see Fig. 1.2). This procedure is repeated a number of times for constant tempera-

ture and then the temperature is decreased until it reaches certain prescribed minimal value.

This version of algorithm was first proposed by [Kirkpatrick et al., 1983] and independently

by [Cerny, 1985]. Detailed discussion of basic principles and further aspects of simulated

annealing method can be found eg. in [Ingber, 1993, Ingber, 1995, Kvasnička, 1999].

In [Mahfoud and Goldberg, 1992] the efficient combination of GAs and SA methods was

proposed. It exploits the essentials of GAs (a population of chromosomes, rather than one
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point in space is optimized) together with the basic concept guiding the search towards

minimal energy states. Some additional suggestions and methods for implementation are

given in [Kvasnička, 1993].

1.4 Effective properties of composite materials

Pioneering work devoted to the problem of determination of effective properties of composite

media is attributed to [Voight, 1887] and [Reuss, 1929]. However, most of the essential

discoveries over the last decades are based on the famous Eshelby’s finding [Eshelby, 1957]

that the stress field in a ellipsoidal inclusion subjected to a uniform remote stress field

is also uniform. This results allows to estimate the stress and strain fields in composite

aggregate in terms of the phase elastic properties and certain stress and strain concentration

tensors. These quantities can be generally derived either by employing a rigorous bounding

procedures or by using some approximation techniques.

The first approach of the determination of elastic properties uses well known energy

principles of elasticity to obtain bounds on effective elastic properties. The most noticeable

contributors are [Hashin and Shtrikman, 1963, Beran, 1968, Milton, 1982] to name but a

few.

A variety of approximation methods were proposed in the past 40 years. The most

common procedures include dilute approximation, self-consistent method [Hill, 1965] and the

Mori-Tanaka method [Mori and Tanaka, 1973, Benveniste, 1987]. In particular, the Mori-

Tanaka method seems to be the most popular one due to it’s simplicity and explicit estimates

of the overall elastic moduli of composites.

When periodic media are under the consideration, it is possible to determine the local

fields with the aid of a certain numerical method such as the Finite Element Method. However

some constraints must be imposed on the objective fields in this case to take into account the

periodicity of the media (see eg. [Teplý and Dvořák, 1988, Suquet, 1987] and the overview



7

[Michel et al., 1999]). However, once the local fields are known the procedure of the deter-

mination of effective properties is quite simple and straightforward.

1.5 Present work

The main objective of the present work is to apply previously introduced principles to anal-

ysis of the unidirectional fiber composite with carbon fibers embedded in polymer matrix

- it means two-phase material generated by identical fibers of circular cross section whose

generators are parallel. Morphology of such a material can be uniquely determined by its

cross-section only so that the examined medium can be considered as a two-dimensional for

statistical description as well as for proceeding numerical analysis.

Chapter 2 presents basic statistical descriptors for the two-phase media. First, the con-

cept of an ensemble is briefly discussed and the principle of ensemble averaging is outlined.

Successively, various hypotheses commonly applied to random composite materials are pre-

sented and discussed. Microstructural descriptors suitable for the characterization of the

two-phase two-dimensional media are presented and methods for their determination for

given materials are discussed and tested for some elementary theoretical configurations of

particles. Finally, testing of some properties of statistical descriptors as well as their deter-

mination for the material displayed in Fig. 1.1 are performed.

Chapter 3 outlines determination of the RVE with the help of a certain minimization

problem. A variety of deterministic and stochastic optimization algorithms is presented and

their performance for the given problem is examined.

Chapter 4 briefly describes the evaluation of effective properties for a heterogenous ma-

terial. Finite Element Method is employed here to calculate the volume averages of local

fields, which provide effective elastic properties of resulting composite media. The quality of

unit cells resulting from optimization is compared with the results for the hexagonal array

of fibers and with unit cells selected as a random cut of real microstructure.
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1.6 Notation

Standard tensor and vector/matrix notation is used throughout the thesis. Tensor quantities

are denoted either by lightface Greek letters eg. σij, Lijkl ; (3 × 1) and (6 × 1) vectors are

denoted by lower-case boldface italic letters eg. σ, (6× 6) and (3× 3) matrices are denoted

by upper boldface Roman letters eg. L and scalars are denoted by lightface eg. r.

The inverse of non-singular matrix is denoted by L−1 and LT stands for transpose of

matrix L. Standard contracted notation is adopted when appropriate, thus 1 ≡ 11, 2 ≡ 22,

3 ≡ 33, 4 ≡ 23, 5 ≡ 13 and 6 ≡ 12.



Chapter 2

QUANTIFICATION OF MICROSTRUCTURE MORPHOLOGY

This Chapter provides introduction to basic principles and methods of statistical de-

scription of the random two-phase composite material. Initially, two basic approaches to

microstructure description are outlined, for each case the microstructure of a random media

is described by some general n-order statistical moments. Then, functions which incorporate

statistical informations up to the two-point level are examined in more details. Despite the

limitedness of such a description, these functions still carry sufficient amount of statisti-

cal informations to provide efficient tool for fulfilling the objective of this work - the RVE

definition.

Section 2.1 explores basic concepts and hypotheses for the microstructure description

of random composites. Section 2.2 introduces microstructural functions used in this work;

their evaluation for different types of microstructure is presented in Section 2.3. Moreover,

the connection between different approaches to the microstructure classification is examined

and proposed methods are tested for some simple models of microstructures. Finally, these

principles are in Section 2.4 applied to the analysis of micrographs taken from the real

material.

2.1 Basic concepts and hypotheses

Consider again the micrograph displayed in Fig 1.1. In this particular case, arrangement

of phases is exactly known (to a level of the microscope resolution) and one may assume

that it completely describes the morphology of the whole composite. Unfortunately, when

micrographs are taken from other parts of the specimen, microstructure of each sample is
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substantially different (see Fig. 2.7). At this point, situation becomes quite complicated - the

questions is, which of these micrographs is the most suitable for the foregoing analysis. To

answer this question, one has to recognize the random nature of geometrical arrangements

of phases - it means that the particular microstructure of a given sample yields only one

possible arrangement of phases. Therefore, instead of determining the exact value of some

quantity at a given point (which depends on actual sample), attention has to be turned to its

expected or averaged or macroscopic value, which incorporates informations from all samples

taken from a material.

2.1.1 Concept on an ensemble

To reflect the random character of the media under the consideration it is convenient to

introduce the concept of an ensemble – the collection of a large number of systems which are

different in their microscopical details but they are entirely identical within a point of view

of macroscopic details (see eg. [Beran, 1968, Boubĺık, 1996]). Within this concept, effective

or expected value of some quantity corresponds to the process of its averaging through all

systems, forming the ensemble.

To formalize this idea, let us introduce a sample space U , identify individual members of

this space by α and define p(α) as the probability density of α in U([Drugan and Willis, 1996,

Kohler and Papanicalou, 1982]). Then ensemble average of function F (x, α) at point x is

provided by

F (x) =
∫
U
F (x, α)p(α)dα. (2.1)

In the context of the quantification of microstructure morphology, ensemble represents

the collection of material micrographs taken from different samples of the material. To

follow the above definitions literary, experimental determination of the ensemble average of

function F (x, α) for a given point x leads to the cumbersome procedure of manufacturing

a large number of samples (which form the ensemble space U), measuring F (x, α) for every

sample and then its averaging for all samples. So it appears to be meaningful to introduce
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some hypotheses about the ensemble average, which substantially simplify this task.

2.1.2 Ergodic hypothesis

This hypothesis demands all states available to an ensemble of the systems to be available

to every member of the system in the ensemble as well ([Beran, 1968]). Once this hypothesis

is adopted, spatial or volume average of function F (x, α) given by

〈F (x, α)〉 = lim
V→∞

1

V

∫
V
F (x+ y, α)dy (2.2)

is independent of α and identical to the ensemble average,

〈F (x)〉 = F (x). (2.3)

This hypothesis allows to examine only one arbitrary member of the sample space, pro-

vided that the sample is “sufficiently large” (see Eq. (2.2)). One possible way how to fulfill

this condition is to assume periodic composite with a unit cell Ω. Then,

lim
V→∞

1

V

∫
V
F (x+ y, α)dy =

1

Ω

∫
Ω
F (x+ y, α)dy (2.4)

so for the ergodic periodic composite medium, the ensemble average is equal to the volume

average taken over the unit cell.

2.1.3 Statistical homogeneity

Let us consider the situation when function F depends on n vectors x1, . . . ,xn rather

than one vector x. Then, statistical homogeneity assumptions means that value of the

ensemble average is independent of the position of coordinate system origin [Beran, 1968,

Torquato and Stell, 1982], so the expression

F (x1, . . . ,xn) = F (x1 − y, . . . ,xn − y) (2.5)

holds for an arbitrary value of y. The most common choice is to set y = x1, so

F (x1, . . . ,xn) = F (0,x2 − x1, . . . ,xn − x1) = F (x12, . . . ,x1n), (2.6)
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where xij = xj − xi.Therefore, if statistical homogeneity condition holds, ensemble average

of F is a function of n − 1 variables only. Note that for periodic media this condition is

satisfied automatically.

2.1.4 Statistical isotropy

When making the statistical isotropy assumption, we further extend the statistical homo-

geneity hypothesis. In this case, the ensemble average is not only independent on the position

of the coordinate system origin but on the coordinate system’s rotation as well. Under this

hypothesis, the ensemble average depends on the absolute value of vectors x12, . . . ,x1n only:

F (x12, . . . ,x1n) = F (r12, . . . , r1n), (2.7)

where rij = ‖xij‖.

2.2 Microstructure description

This Section presents basic statistical functions suitable for description of the microstructure

of a random media. Although two different approaches to the microstructure characterization

are employed here, in both cases statistical descriptors are obtained by similar procedure –

initially, some fundamental random function relevant to the microstructure configuration

is presented and then statistical moments of this function are identified as descriptors of

microstructure morphology. Properties of the first and second order moments are thoroughly

discussed in the sequel. Finally, connection between these two approaches is demonstrated.

2.2.1 Microstructure description for general composites

Fundamental function and statistical moments. The stepping stone of a general de-

scription of a random composite media is the introduction of the random stochastic function–

characteristic or indicator function χr(x, α), which is equal to one when point x lies in phase
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r in the sample α and equal to zero otherwise [Beran, 1968, Torquato and Stell, 1982],

χr(x, α) =

 1 x ∈ Dr(α)

0 otherwise.
(2.8)

The symbol Dr(α) denotes here the domain occupied by r-th phase, r is further assumed

to take values m for the matrix phase and f for the fiber phase respectively. Characteristic

functions χf (x, α) and χm(x, α) are related, since the point x must be located either in the

matrix or in the fiber phase,

χm(x, α) + χf (x, α) = 1. (2.9)

With the aid of this function, general n-point probability function Sr1,...,rn can be found us-

ing the ensemble average of the product of characteristic functions [Torquato and Stell, 1982,

Beran, 1968, Drugan and Willis, 1996],

Sr1,...,rn(x1, . . . ,xn) = χr1(x1, α) · · ·χrn(xn, α). (2.10)

Thus, Sr1,...,rn gives the probability of finding n points x1, . . . ,xn randomly thrown into

media located in the phases r1, . . . , rn.

Functions of the first and second order. Hereafter, we limit our attention to functions

of the order of one and two, since higher-order functions are quite difficult to determine in

practice. Therefore, description of the random media will be provided by the one-point

probability function Sr(x)

Sr(x) = χr(x, α), (2.11)

which simply gives the probability of finding the phase r at x and by the two-point probability

function Srs(x,x
′)

Srs(x,x
′) = χr(x, α)χs(x′, α), (2.12)

which denotes the probability of finding simultaneously phase r at x and phase s at point

x′.
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Moreover, these functions can be further simplified employing assumptions of statistical

isotropy, homogeneity and ergodicity, as presented is the Section 2.1. In particular for

statistically homogeneous media we have

Sr(x) = Sr, (2.13)

Srs(x,x
′) = Srs(x− x′). (2.14)

Suppose further that the medium is statistically isotropic. Then Srs(x− x′) reduces to

Srs(x− x′) = Srs(‖x− x′‖). (2.15)

The ergodicity assumption makes possible to substitute the one-point correlation function

of the statistically homogeneous media by its volume average ie. volume concentration or

volume fraction of the r-th phase cr,

Sr = cr. (2.16)

Limiting values. In addition, the two-point probability function Srs depends on the one-

point probability function Sr for certain values of its arguments such that

for x→ x′ : Srs(x,x
′) = δrsSr(x), (2.17)

for ‖x− x′‖ → ∞ : lim
‖x−x′‖→∞

Srs(x,x
′) = Sr(x)Ss(x

′), (2.18)

where symbol δrs stands for Kronecker’s delta. Relation (2.17) states that probability of

finding two different phases at one point is equal to 0 (see also Eq. (2.9)) or is given by

the one-point probability function if phases are identical. Equation (2.18) manifests that for

large distances points x and x′ are statistically independent. This relation is often denoted

as the no-long range orders hypothesis (see eg. [Willis, 1977]).

Finally, according to Eq. (2.9) we may determine one and two-point probability functions

for all phases provided that these functions are given for one arbitrary phase. For one-point

probability function of statistically homogeneous and ergodic media, this relation assumes

trivial form:

cm = 1− cf . (2.19)
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Relations for two-point probability functions of statistically isotropic and ergodic medium

are summarized in Table 2.1. Note that symbol r which stands for ‖x‖ in Table 2.1 should

not be mistaken with subscripted r used as a phase index heretofore.

Known function

Smm(r) Smf (r) Sff (r)

Smm(r) Smm(r) cm − Smf (r) cm − cf + Sff (r)

Smf (r) cm − Smm(r) Smf (r) cf − Sff (r)

Sff (r) cf − cm + Smm(r) cf − Smf (r) Sff (r)

Table 2.1: Relation of two-point probability functions

2.2.2 Microstructure description for particulate composites

Another approach to the microstructure characterization can be adopted when the composite

material is particulate - it consists of particles with identical specific shape (eg. ellipsoids,

cylinders etc.) embedded in a matrix phase. Microstructure morphology of such a composite

can be described using only centers of particles. This approach is frequently used in the

statistical mechanics of liquids (see eg. [Boubĺık, 1996, Chapter 6]). Its principles will be

applied here.

Fundamental function and statistical moments. To be more specific, suppose that

each sample α in U is formed by N distinguishable particles with centers located at dis-

tinct points x1
α, . . . ,x

N
α placed in a matrix of volume (area) V . Such a system of random

points can be described by the random field density function ψ(x, α) (see [Markov, 1998,

Ponte Casteñada and Willis, 1995] and references herein)

ψ(x, α) =
N∑
i=1

δ(x− xiα), (2.20)

where δ(·) stands for Dirac’s function.
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Foregoing procedure is similar as in the Section 2.2.1. The generic n-particle proba-

bility density function1 ρn(x1, . . . ,xn) ([Boubĺık, 1996, Quintanilla and Torquato, 1997]) for

distinct points x1, . . . ,xn is found by ensemble averaging the product of basic functions,

ρn(x1, . . . ,xn) = ψ(x1, α) · · ·ψ(xn, α), (2.21)

which gives the probability density of finding a particle center in all points x1, . . . ,xn ran-

domly thrown into the material.

Functions of the first and second order. As in the previous Subsection, we turn our

attention to one and two-particle functions only. Thus, description of a material will be

carried out by generic one-particle probability density function

ρ1(x) = ψ(x, α), (2.22)

which gives the probability density for finding an inclusion centered at x, and by generic

two-particle probability density function provided by

δ(x− x′)ρ1(x) + ρ2(x,x′) = ψ(x, α)ψ(x′, α), (2.23)

which denotes the probability density of finding one inclusion centered at x and the second

one in x′. The first term in Eq. (2.23) is added to take into account the situation, when

points x and x′ coincide (see also discussion bellow).

Again, under the assumption of statistical isotropy, homogeneity and ergodicity these

functions simplify substantially. Hence, for statistically homogeneous media

ρ1(x) = ρ1 (2.24)

ρ2(x,x′) = ρ2(x− x′). (2.25)

1 The generic n-particle probability density function can be derived via specific n-particle probability density

function [Boubĺık, 1996, Quintanilla and Torquato, 1997]. However, this procedure is purely formal and

of no practical use, so is omitted here.
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Furthermore, if the material is statistically isotropic the ρ2(x− x′) reduces to

ρ2(x− x′) = ρ2(‖x− x′‖). (2.26)

To this end, assuming the ergodicity of the media, one may equal the value of the one-

point correlation function of statistically homogeneous media to the number of particle cen-

ters per unit volume ,

ρ1 = ρ = lim
V→∞

N

V
. (2.27)

Limiting values. For this approach it is meaningless to investigate the situation x→ x′

for the function ρ2(x,x0), since one point x cannot be occupied by two centers of distinguish-

able particles. However, recall that ψ(x, α)ψ(x′, α) gives the probability density of finding

particle centers located at points x and x′ randomly thrown into sample. When points x

and x′ coincide, this probability density is simply equal to the probability density of finding

a particle center at point x. Therefore,

for x→ x′ : ψ(x, α)ψ(x′, α) = ψ(x, α) = ρ1(x). (2.28)

Fortunately, the two-particle probability density function ρ2(x,x′) for statistically homo-

geneous medium attains under the no-long range hypothesis similar form as the two-point

probability functions

for ‖x− x′‖ → ∞ : lim
‖x−x′‖→∞

ρ2(x,x′) = ρ1(x)ρ1(x′). (2.29)

Since for the statistically isotropic and ergodic medium ρ1(x)ρ1(x′) = ρ2 it is convenient

to normalize this function to one for large distances of points x and x′. This requirement

yields the definition of the radial or pair distribution function g2(x − x′) [Axelsen, 1995,

Boubĺık, 1996, Pyrz, 1994]

g2(x− x′) =
ρ2(x− x′)

ρ2
. (2.30)

Sometimes it is useful to describe the media by function, which is equal to zero rather than

to one for large distances of points x and x′. The total correlation function h(x − x′)
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[Boubĺık, 1996] given by

h(x− x′) = g2(x− x′)− 1 (2.31)

is an example of such a function.

The definition of function ρn as a probability density results in its complicated determi-

nation for given microstructures. To overcome this problem, for statistically isotropic and

ergodic media [Ripley, 1977] defined the second order intensity function K(r) which gives

the number of further points expected to lie within a radial distance r of an arbitrary point

divided by the number of particles (fibers) per the unit area. This function is related to the

radial distribution function by

g2(r) =
1

2πr

dK(r)

dr
. (2.32)

At the end, let us briefly discuss the situation, when composite media under consideration

are formed by non-overlapping particles. This condition implies that ρ2(x,x′) is equal to

zero for (x−x′) ∈ Ωd ; it means that some “secure area” Ωd cannot be occupied by another

particle center. For example, if we consider the unidirectional fiber composite with identical

circular fibers of radius R, Ωd is cylinder with center at point x and radius 2R.

2.2.3 Relating S and ρ functions for particulate microstructures

As noted before, the description of a media by functions ρn is suitable for material systems

consisting of particles with specific shape, while the definition of functions Sn needs no

such a type of initial assumption. The obvious question is how to relate this two types of

approaches. To answer this question, it is necessary to establish the connection between

characteristic function of one phase χr(x, α) and probability density function ψ(x, α). It is

easy to notice, that for the composite formed by impenetrable particles, this relation holds

[Ponte Casteñada and Willis, 1995]:

χf (x, α) =
∫
ψ(y, α)m(x− y)dy, (2.33)

where m(y) is the characteristic function of one inclusion with center at the origin of coor-

dinate system.
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Performing ensemble averaging and using Eq. (2.23), one gives

Sff (x1,x2) =
∫ ∫

m(x1 − x3)m(x2 − x4)
[∫

ψ(x3, α)ψ(x4, α)p(α)dα
]

dx3dx4

=
∫ ∫

m(x1 − x3)m(x2 − x4) [δ(x3 − x4)ρ1(x3) + ρ2(x3,x4)] dx3dx4.

Considering statistically homogeneous ergodic media and using total correlation function

h(x3,x4) rather than ρ2(x3,x4), we arrive at expression

Sff (x1 − x2) = ρΩint(x1 − x2) + ρ2Ω2 +

+ ρ2
∫ ∫

h(x3 − x4)m(x1 − x3)m(x2 − x4)dx3dx4, (2.34)

where Ωint(x1 − x2) stands for the intersection volume (area) of two particles with centers

located at points x1 and x2 and Ω is the volume (area) of one particle. Once the Sff function

is known, one may obtain all the remaining functions with the help of relations summarized

in Table 2.1. For example, the two-point matrix-matrix probability function is after some

elementary manipulation provided by

Smm(x1 − x2) = 1− ρΩu(x1 − x2) + ρ2Ω2 +

+ ρ2
∫ ∫

h(x3 − x4)m(x1 − x3)m(x2 − x3)dx3dx4, (2.35)

where Ωu(x1 − x2) = 2Ω − Ωint(x1 − x2) is the union volume (area) of two particles with

centers located at points x1 and x2. This relation is equivalent to formulas obtained by

Torquato in [Torquato and Stell, 1985] using slightly different procedure.

To make Eq. (2.35) as simple as possible, let us consider statistically isotropic two-

dimensional composite formed by identical circles with radius R. For this particular case,

Eq. (2.35) yields

Smm(r12) = 1− ρΩu(r12) + ρ2Ω2 + ρ2
∫ ∫

h(r34)m(r13)m(r23)dx3dx4, (2.36)

where Ω equals to πR2. Further, functions m(x) and Ωu(x) depend on r = ‖x‖ only and

are given by

m(r) =

 1 r ≤ R

0 otherwise
, (2.37)
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Ωu(r) =

 2R2
[
π − arccos(r/2R) + r/2R

√
1− (r/2R)2

]
r < 2R

2πR2 r ≥ 2R
. (2.38)

Thus, the only unknown term in Eq. (2.35) now is the integral

M(r12) =
∫ ∫

h(r34)m(r13)m(r24)dr3dr4. (2.39)

Evaluation of this expression becomes simple once we realize that M(r) is a double

convolution. In such a case the Fourier transform of M is given as a multiplication of

Fourier transforms of individual functions (see eg. [Rektorys, 1995a, Chapter 28])

M̂(t) = ĥ(t)m̂(t)m̂(t). (2.40)

After some manipulations, which are outlined in Appendix A, we arrive at

m̂(t) =
2πR

t
J1(R t) (2.41)

ĥ(t) = 2π
∫ ∞

0
h(t)J0(rt) r dr = t

∫ ∞
0

K̃(r)J1(rt)dr, (2.42)

where J0(·) and J1(·) in above equations are the Bessel functions of the first kind, zero and

first order, respectively and K̃(r) = K(r)− πr2 is a counterpart of function h(r).

Finally, the inverse Fourier transform can be then written as

M(r) =
1

2π

∫ ∞
0

M̂(t)J0(rt)t dt. (2.43)

2.3 Determination of microstructural statistics for real materials

This Section exploits individual methods suitable for the determination of microstructure

descriptors defined in the previous Section. For the n-point probability functions a simple

simulation technique is proposed, while the determination of radial distribution function

is performed by deterministic procedure. Finally, precision of these methods is tested for

simple two-dimensional models of microstructure.

For all procedures, medium is supposed to be formed by N identical circles with radius

R and centers located at positions x1, . . . ,xN embedded in the rectangle with dimensions

〈0;H1〉 × 〈0;H2〉. Furthermore, periodicity of the media is assumed.
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Figure 2.1: Example of sampling template

2.3.1 Functions Sn

The procedure of Sn functions determination is based directly on their definition - recall that

for statistically homogeneous media eg. function Sm gives the chance of finding the randomly

placed point located in the matrix phase. To determine this quantity, simple Monte-Carlo

like simulation can be performed - we throw randomly point in the microstructure and count

successful “hits“ into the matrix phase. Then, the value of function Sm can be estimated as

Sm ≈
n′

n
, (2.44)

where n′ is the number of successful hits and n denotes the total number of throws. Similar

procedure can be used to determine values of Smm(x).

In [Smith and Torquato, 1988] faster procedure for the determination of function Smm(x)

was proposed. Instead of tossing a line corresponding to x into a medium, sampling template

is formed (see Fig. 2.1). The center of such a sampling template is randomly thrown into

a medium and corresponding successful hits are computed. Furthermore, if the medium

under consideration is statistically isotropic, values found for points located on the same
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Figure 2.2: Correction factor

circumference can be averaged as well, which allows large number of tests to be performed

within one placement of the template.

2.3.2 Functions ρn

As stated in Section 2.2.2, the definition of ρn-type functions as the probability density

functions makes their determination quite complicated. On the other hand, a function

which is given as an integral value of function ρn can be easily determined. An example of

such a function is the second-order intensity function given by Eq. (2.32). According to its

definition, function K(r) can be computed as [Axelsen, 1995, Pyrz, 1994]

K(r) =
A

N2

N∑
k=1

Ik(r)

wk
, (2.45)

where Ik(r) is the number of points within a circle with center at particle k and radius r, N

is the total number of particles (fibers) in the sample, A is the sample area and wk stands

for correction factor, which takes into account points outside the sampling area if they are

not used for the calculation of Ik(r). The correction factor wk is equal to 1 if periodicity of

the microstructure is assumed, otherwise it can be determined as (see Fig. 2.2)

wk =
πr2

A′
. (2.46)
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As is evident from Eq. (2.45), for a given microstructure and fixed r, to obtain the

value of function K one needs to determine number of points within a distance r from all

particle centers in the sample. Provided that particle centers are sorted with respect to one

coordinate, this task can be performed by very simple projection method with computational

complexity O(N [log2(N) + k]), where k ≤ N (see eg. [Hudec, 1999, Chapter 4]). Therefore,

this procedure can perform rather poorly for a very large number of particles, but for the

samples under consideration it was found to be sufficiently rapid. Once function K(r) is

known, radial distribution function can be determined according to Eq. (2.32) by numerical

differentiation of the K function.

The principal disadvantage of functions K(r) and g2(r) is the fact, that they can be

determined by this procedure only for statistically isotropic and ergodic media. Therefore,

validity of these hypotheses must be confirmed first before using these functions for the

description of a random media.

2.3.3 Microstructural statistics for some theoretical models of microstructures

Now we test proposed methods for two simple cases of statistically isotropic models of mi-

crostructure - hexagonal arrangement of particles and model of equisized fully penetrable

cylinders. For both configuration, functions K(r) are known in the closed form while the ex-

pression for the function Smm(r) was found only for the model of fully penetrable cylinders.

In both cases, microstructures are assumed to be periodic.

Hexagonal array of cylinders. The hexagonal arrangement of particles in the matrix

can be uniquely specified by the periodic unit cell displayed in the Fig. 2.3. The dimensionless

constant ξ is given by

ξ4 =
4

3

π2

c2
f

. (2.47)
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Figure 2.3: Unit cell for hexagonal lattice of fibers

By a simple geometric consideration, function K(r) will have jumps corresponding to regular

distances between particles denoted as 1r (corner fibers) and 2r (central fibers),

1r2 = ξ2 R2(3i2 + j2), (2.48)

2r2 =
ξ2

4
R2
[
3(2i+ 1)2 + (2j + 1)2

]
, (2.49)

where i, j = 0, . . . ,∞. Because there are exactly six additional fibers found for every fiber

at a given jump of the function, from Eq. (2.45) we obtain the value of ∆K for every jump

in the form

∆K =
6π

cf
R2. (2.50)

With the aid of these relations, the value of the function K(r) can be determined for every r.

However, to obtain correct results one must carefully inspect the values of 1r and 2r in order

to avoid taking one step into consideration twice. The graph of function K for different values

of cf is displayed in Fig. 2.4. Solid lines correspond to values predicted by aforementioned

procedure, while dots denote discrete values obtained by numerical procedure.

Fully penetrable cylinders This model assumes that positions of particle centers are

totally independent. Thus, value of ρ2(r) is constant and equal to ρ2. Then, g2(r) = 1 and,
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Figure 2.4: Function K(r) for hexagonal packing of fibers

from Eq. (2.32), K(r) is trivially equal to πr2.

To determine the value of Smm(x,x′) one needs to find the probability that union of

two cylinders with radius R and centers located in points x and x′ is not occupied by

any particle center. Once we recognize, that this type of microstructure can be described

by Poisson probability distribution (see eg. [Rektorys, 1995a, p. 662]) with the intensity

ρΩu(x,x
′), we arrive at the relation

Smm(x,x′) = exp(−ρΩu(x,x
′)). (2.51)

For the statistically isotropic medium, this expression reduces to [Torquato, 1991]

Smm(r) = exp(−ρΩu(r)), (2.52)

where Ωu(r) is the union area of two identical cylinders with radius R and centers separated

by distance r. Finally, recognizing that the matrix volume fraction is according to Eq. (2.17)

given by

Smm(r = 0) = cm = exp(−ρ πR2) (2.53)
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we may determine the number of particles per unit area for the prescribed value of cm.

To test individual methods we generated 20 different configurations containing 100 par-

ticles for fixed value of cm. For each of these configurations the value of function Smm was

determined by template made of concentric circles as displayed in Fig. 2.1 with the number

of random throws set to 5,000. K(r) was determined by aforementioned procedure. Results

in Fig. 2.5 display averaged value of functions found for particular configurations.
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Figure 2.5: Microstructural functions for fully penetrable cylinders.

To conclude, results displayed in Fig. 2.4 and Fig. 2.5 show that proposed methods are

sufficiently exact to provide reliable values of given statistical functions.

2.4 Analysis of real microstructure

In this Section, the preceding procedures are applied to the analysis of the micrograph shown

in Fig. 1.1. As the first step, the idealized binary image of the micrograph is found using

LUCIDA software to determine the radius and position of all particles in the sample. In

the following analysis, assumption of statistical homogeneity is applied so every considered

micrograph is assumed to be surrounded by periodic replicas of itself.
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Figure 2.6: Idealized binary image of a transverse cross-section of a fiber tow

Before analyzing the present micrograph, check of the validity of ergodic assumption

and the statistical isotropy hypothesis is performed. Provided that these tests justify the

assumptions, all previously defined statistical functions can be used for description of the

present media.

2.4.1 Testing ergodic hypothesis

To test the ergodic hypothesis it is necessary to form the ensemble space U . When sampling

individual members of U we started with three micrographs of the fiber tow taken from

three specimens at approximately the same location. Each member of the ensemble was

then found through a random cut of a part of a given micrograph subjected to condition of

the “same” fiber volume fraction. This condition actually supplements the lack of infinity of

our composite medium. Fig. 2.7 shows six such individuals generated from the micrograph

displayed in Fig. 2.6. In view of the above comments we shall only require that

cr =
1

n

n∑
i=1

Sir, r = f,m , (2.54)

where n is the number of members in the ensemble. Functions Sir can be derived by randomly

placing a point in the member i in a certain number of times while counting the number
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Figure 2.7: Selected members of the sample space
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Figure 2.8: Two-point matrix probability function Smm(x−x0) and variation coefficient v(φ)

of Smm(r, φ) plotted as a function of r/R.

of hits in the phase r and then dividing by the total number of throws. When setting the

number of throws equal to 500 we found Sf = 0.42, which agrees well with the average fiber

volume fraction cf = 0.435. A better agreement can be expected for larger n. Although

an ultimate justification of an ergodic assumption would require to prove equality of higher

moments as well, we argue that the presented results are sufficient for the medium to be

considered as ergodic, providing the medium is indeed statistically homogeneous. In the

sense of an ergodic assumption we suggest that a single micrograph can be used hereafter

for evaluation of the required statistical descriptors.

2.4.2 Test of statistical isotropy

To check the statistical isotropy of the medium under consideration we plotted the distribu-

tion of the two-point matrix probability function Smm for a statistically uniform medium as

a function of the absolute difference of points x and x′ and orientation φ, Fig. 2.8(a). These

results were obtained by 100,000 random throws of sampling template shown in Fig. 2.1.

Should the material be statistically isotropic (independent of orientation) the variation coef-



30

0.0 2.0 4.0 6.0 8.0 10.0

r/R

(a)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

S
m

m

n = 500
n = 1000
n = 5000
n = 10000
n = 50000

0.0 2.0 4.0 6.0 8.0 10.0

r/R

(b)

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

S
2

Smm
Sfm
Sff
Smm + Sfm
Sfm + Sff
1 - (Smm + 2Sfm + Sff)

Figure 2.9: Two-point matrix probability Smm(r) and unique relations for the general two-

point probability function Srs(r).

ficient v(φ) of Smm(φ)|r/R for a given ratio r/R would be equal to zero. For the purpose of our

next study, however, the material shall be treated as statistically isotropic, and the maximum

5% variation evident from Fig. 2.8(b) is taken as an acceptable error of the assumption.

2.4.3 Microstructure describing functions

Once all the assumptions were verified to some extent, all microstructure describing functions

can be determined for the current microstructure.

Two-point probability functions. First, the effect of the number of random throws

on the value of function Smm was inspected. Results appear in Fig. 2.9(a). It is evident

that for the present microstructure 5,000 repetitions are sufficient, which represent approxi-

mately 1 minute long computation for PC computer with Intel Pentium 200MMX processor.

Fig 2.9(b) further shows certain unique relationships for the isotropic and ergodic medium,

which are based on relations given in Table 2.1. As evident, proposed relations hold very

well. Therefore obtained functions are sufficiently precise.
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Figure 2.10: Second order intensity function K(r) and radial distribution function g2(r)

The two-particle probability density based functions. We start with the determina-

tion of function K(r). Results are shown in Fig. 2.10(a) for the determination of K(r) with

the help of correction factor and periodicity conditions. The slight declination of curves

shows that results obtained by correction factor are partially biased, especially for larger

values of r. Even bigger differences are expected to be found for micrographs with a smaller

number of particles.

The function g2(r) was determined from function K(r) by numerical differentiation. Re-

sults displayed in Fig. 2.10(b) are found by central difference formula with various values

of steps used for numerical differentiation. As it can be anticipated, obtained results are

strongly dependent on the step size, furthermore for smaller values of ∆r function oscillates

substantially.

Finally, the relation between function Smm and functions K(r) and g2(r) is inspected.

To evaluate integrals (2.42, 2.43), adaptive Simpson’s integration scheme was used (see

[Burden and Faires, 1989]) with prescribed tolerance 10−4. Results shown in Fig. 2.11 are

obtained from K(r) or g2(r) functions and simulation for 50,000 repetitions of sampling
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procedure. Coincidence of individual curves is evident. It it necessary to note that this

procedure took approximately only 1 second on PC computer with Intel Pentium 200MMX

processor, when most of the time computation was consumed by the numerical integration.

The time needed for the determination of function K(r) itself was negligible.

2.4.4 Conclusions

To conclude, the medium under the consideration was tested to some extent for the ergodic

assumption and for the statistical isotropy. These hypotheses were confirmed for the current

micrograph of a unidirectional fiber tow. The relation between presented functions makes

possible to choose any of these functions as a basic statistical descriptor; in the foregoing

optimization procedure the function K(r) will be considered as the basic microstructure

describing function, because its evaluation is the quickest from all the functions mentioned

heretofore.



Chapter 3

CONSTRUCTION OF THE PERIODIC UNIT CELL

In Chapter 2, microstructure characterizing functions were identified and their applica-

bility to the current microstructure description was examined. This Chapter is devoted to

the principle objective of this work - determination of the periodic unit cell, which pos-

sesses similar statistical properties as the original microstructure. Similarity of these two

materials in terms of microstructure configuration is measured by some objective function

incorporating a certain statistical descriptor.

Section 3.1 defines such a objective function using the second order intensity function

K(r) as a basic statistical descriptor of the media and certain geometrical parameters of the

unit cell (location of the particle centers and dimensions of the unit cell) as a free param-

eters of this function. The process of finding the minimum value of the objective function

is divided into two steps - finding the optimal positions of fibers for fixed dimension of the

unit cell and then finding the optimal dimensions of the unit cell. The second step of this

procedure represents the one-dimensional minimization problem, which can be easily solved

by an elementary optimization procedure. However, to solve the first step, minimization

of multi-dimensional, multi-modal function with a large number of local minima must be

performed, which is a very difficult task itself. A variety of deterministic and stochastic al-

gorithms is tested in Sections 3.2 and 3.3., respectively. Section 3.4 presents some additional

improvements relating to stochastic optimization procedures. Finally, Section 3.5 is devoted

to the determination of resultant unit cells.
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3.1 Objective function and problem definition

Figure 3.1: Geometry of the periodic unit cell

Consider the periodic unit cell consisting of N particles displayed in Fig. 3.1. The geom-

etry of such a unit cell is determined by the values of dimensions H1 and H2 of the unit cell

and x and y coordinates of all particles. The principal problem now is to select these values

in such a way that material formed by this periodic unit cell is as much similar to some given

original microstructure as possible. In order to be able to quantify the similarity between

two distinct microstructures, it is convenient to introduce certain objective function which

incorporates some characteristics pertinent to both microstructural configurations.

The relevant characteristics can be in the present context provided by any microstructure

describing functions, presented in Chapter 2. For the current situation, the objective function

is chosen to be

F (xN , H1, H2) =
Nm∑
i=1

(
K0(ri)−K(ri)

πr2
i

)2

, (3.1)

where vector xN = {x1, y1, . . . , xN , yN} stands for the position of particle centers of the

periodic unit cell, xi and yi correspond to x and y coordinates of the i-th particle, H1 and

H2 are the dimensions of the unit cell, K0(ri) is the value of K function corresponding to
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the original media calculated in point ri and Nm is the number of points, in which both

functions are evaluated.

The choice of function K(r) for the optimization problem is primarily attributed to its

simplicity and a very rapid evaluation for a reasonable number of particlesN . In addition, the

selected form of the objective function F (namely the “normalization” term πr2), Eq. (3.1),

is quite useful since it serves directly as a “natural” penalization when particles happen

to overlap. Therefore, no additional algorithmic labor necessary for avoiding unacceptable

solutions [Povirk, 1995] is needed if the material is formed by impenetrable particles.

To find the optimal periodic unit cell the values of xN , H1 and H2 which provide the

minimum value of function F must be determined. To solve this problem in its fully gener-

ality is prohibitively difficult; therefore it is convenient to split the minimization procedure

in two separate problems, namely:

Optimal fiber configuration. For a given number of fibersN , dimensions of a unit cell

H1 and H2 and values of the original function K0(r) evaluated in points ri, i = 1, . . . , Nm

find the configuration of particle centers xN(H1, H2) such that:

(P1)xN(H1, H2) = arg min
xN∈S

F (xN , H1, H2),

where S denotes a set of admissible vectors xN .

The noteworthy feature of this formulation is that the set S of admissible vectors can be

defined in different ways as is advantageous for a given optimization procedure:

• When we take into account the periodicity of the unit cell the individual components of

vector xN can take arbitrary values so the problem can be treated as an unconstrained

one.

• Another possibility is to restrict the position of fibers only to unit cell by

0 ≤ xi ≤ H1, 0 ≤ yi ≤ H2, i = 1, . . . , N, (3.2)

so the problem becomes bound-constrained.
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• Finally, in Section 3.4.2 the impenetrability condition will be imposed, which with the

use of some additional tricks results in substantial improvement of the optimization

procedure performance.

Once this problem is solved, the only unknown parameters are the values of H1 and H2.

Furthermore, if we require that the periodic unit cell must have the same volume fraction

of phases cr as the original microstructure, the problem reduces to finding the optimal ratio

η = H1/H2 only. Thus, the second problem can be stated as

Optimal ratio H1/H2 . For known values of xN(η) and for fixed volume fraction of

phases, find the value of ratio ηN such that:

(P2)ηN = arg min
η∈〈ηa;ηb〉

F (xN(η)),

where values ηa and ηb should be chosen to cover all the reasonable dimensions of the

unit cell.

While problem (P2) presents one-variable function optimization problem only, solving the

problem (P1) requires to locate the global minimum of multi-dimensional function. More-

over, for the present problem the function F is a multi-modal, noisy, with a large number of

plateaus and local minima (see Fig. 3.2(b)). This further complicates the situation. There-

fore, we first turn our attention to the solution of problem (P2); various approaches developed

for solving the problem (P1) are discussed in Sections 3.2–3.4.

Let us suppose for the moment, that we are able to solve the problem (P1). Then, the

simplest algorithm suitable for one-dimensional optimization is the Golden Section search

method [Press et al., 1992, Chapter 10.1]. Roughly speaking, given initial triplet of points

a, b, c this algorithm is based on generating a new point in locations, which divide intervals

〈a; b〉 or 〈b; c〉 in some prescribed ratio – Golden section. The new point then replaces one of

the points a, b, c according to its function value and position. The principle of this method

is shown in Algorithm 3.1.
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1 supply values a < b < c such that f(a) > f(b) ∧ f(c) > f(b)

2 while((c− a) < ε) {

3 determine new point d

4 if (f(d) < f(b))

5 b = d, update a, c with respect to step 1

6 else

7 if(d < b) a = d

8 else c = d

9 }

Algorithm 3.1: Golden Section search

Step 1 The initial points a and b corresponds in the present context to values ηa and ηb

in (P2) and the function value f(·) represents here the minimum value of function F

found for the optimization problem (P1) for given side ratio.

Step 3 The new point is located in the larger of two intervals 〈a; b〉 and 〈b; c〉, its distance

from point b is (3−
√

5)/2 times the length of larger interval.

For all computations performed here, the parameters ηa and ηb were set to 1.0 and 2.0

respectively.

To check, whether the values ηa and ηb are consistent with the requirements of the step

1 of Algorithm 3.1, let us recall the results obtained in Section 2.3.3 for function K(r)

associated with the hexagonal packing of fibers. As was shown here, every regularity of

microstructure results in the jump of function K(r) with the amplitude corresponding to

the number of fibers located at the same distance from a given particle. Therefore, for the

side ratio η = 1.0 as well as for η = 2.0 and eg. for values of r = iH1, i = 1, . . . ,∞, four
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other fibers are always found, while this situation does not occur for the intermediate values

of η. Because function K(r) relevant to the original microstructure does not posses such

jumps (see Fig. 2.10) the value of function F for η ∈ (1; 2) should be always smaller than

for the interval endpoints.

3.2 Deterministic algorithms

In previous Section, the procedure for the determination of periodic unit cell was established

provided that we are able to find the optimal fiber configuration for given size of a unit cell.

Some commonly used deterministic optimization procedures will be presented here to obtain

the solution of problem (P1).

The most widely used approach for finding the global minimum relies on restarting the

optimization procedure from widely varying points [Press et al., 1992, p. 394] and then

identify the lowest value of function found as a global minimum. In [Yuret, 1994] simple

method was proposed to enhance this procedure. Instead of the random determination of

starting points it rather explores the portions of search space far from previously found local

minima in order to avoid trapping into the same minimum again. The method is summarized

in Algorithm 3.2, where X corresponds to a set of obtained solutions, L and U correspond

to vector of lower and upper bounds for given components of x.

The Local optimize procedure in Step 4 of Algorithm 3.2 corresponds to a given opti-

mization algorithm. In the present work, three methods were tested - namely Dynamic Hill

Climbing, Powell’s method and BFGS algorithm were implemented. Because all these local

optimizers are formulated for the case of unconstrained optimization problem, periodicity

of the unit cell is taken into account to allow individual components of vector xN to take

arbitrary values.

Finally, self-explanating Algorithm 3.3 shows procedure for generating the distant points

used in this work.
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1 X = {L,U}

2 while (not termination-condition) {

3 x0 =Distant point(X )

4 x =Local optimize(x0)

5 X = X ∪ x

6 }

Algorithm 3.2: Principle of deterministic optimizations

1 for each dimension d {

2 sort xi ∈ X by xi[d]

3 find j : (xj[d]− xj−1[d]) is maximal

4 x[d] = u(xj−1[d],xj[d])

5 }

Algorithm 3.3: The Distant point algorithm
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3.2.1 Powell’s method (POWELL)

The principle of Powell’s method is to perform sequence of one-dimensional line-minimization

(similar to the one given by Algorithm 3.1) along the set of given directions, typically taken

as unit vectors. Hovewer, in the numerical tests performed here the modification of this

classical approach based on heuristic choice of minimization directon (see [Press et al., 1992,

Chapter 10.5] for details) was used.

3.2.2 Dynamic Hill Climbing (DHC)

Another non-derivative based method is the Dynamic Hill Climbing procedure proposed

by Yuret. This method combines certain heuristic rules to enhance the performance of

optimization - variable lenght of a step size, which expands when better solutions are found

and shrinks when no progress is made, combined with short-term memory. For the more

information inspect [Yuret, 1994].

3.2.3 BFGS method

Finally, the BFGS method was chosen as a representative of a gradient-based methods. The

implementation of this method was again taken from [Press et al., 1992, Chapter 10.7]. The

values of gradients were obtained here by forward difference formula with step ∆h = εxi or

∆h = εyi respectively.

3.2.4 Test example

To test individual methods we assumed a square periodic unit cell consisting of 10 fibers with

the same volume fraction as the real specimen. The function K0(r) and K(r) were fitted in

five points (Nm = 5). Sampled points were spaced by fiber diameter. Each algorithm with

parameters displayed in Appendix B, Table B.1 was run 20 times. The iteration process was

terminated, if one of the following conditions was met:

• Algorithm returned value F (x) ≤ ε = 6× 10−5.
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Figure 3.2: An admissible unit cell

• Number of function evaluations exceeded 250,000.

• Number of discovered local minima exceeded 10,000.

For each run the number of function evaluations was recorded together with the minimum

attained value of the objective function.

To manifest the problem complexity, an admissible unit cell consisting of 10 fibers to-

gether with an example of the objective function F is shown in Fig. 3.2. Coordinates x1 and

y1 on Fig. 3.2(b) represent locations of the filled fiber center. Positions of remaining fibers

are fixed. The minimum of function F for the present configuration is marked by a hollow

circle.

Results and discussion. Table 3.1 shows the minimum, maximum, and average of min-

ima found by different local optimization procedures. These values show that the perfor-

mance of all methods for the current problem is quite poor. The worst result is delivered

by the BFGS method, which was unable to locate the prescribed value of the objective

function for all runs. This fact is probably caused by the presence of plateus found in our

objective function (see Fig. 3.2(b)) where derivatives of the objective function vanish. The
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performance of Powell’s method is slightly better since the returned values of the objective

function are substantially smaller than for BFGS algorithm. However, this method still suc-

ceded only once in finding the required value of the objective function. The DHC method

is clearly the most succesfull of all proposed methods. Still, the chance like 1:3 of locating

the presribed value of the objective function is simply not satisfactory. Moreover, to obtain

such results, quite large number of function evaluations must be performed (see Table 3.2).

To reduce this quantitiy it is necessary to provide more promising starting points x0 than

those supplied by Algorithm 3.3.

3.3 Stochastic optimization methods

Results obtained in the previous Section imply that to locate the global minimum of the

current objective function, it is necessary to explore the search space S more thoroughly

instead of starting a determininstic optimizer from a quasi-randomly generated points.

A variety of stochasic methods uses such an approach. In the sequel, a number of the

evolutionary algorithms is formulated to solve given optimization problem. Namely four

different modifications of a simple genetic algorithm and method of differential evolution is

adressed. Moreover, the algorithm based on a simulated annealing procedure is proposed

here. At the end, the performance of these algorithms is compared with those presented in

the previous Section.

To define search space S one may now adopt the second option mentioned in Section 3.1

Algorithm Number Returned value ×105

found Min Avg Max

POWELL 1/20 6.0 34.9 122.3

DHC 7/20 5.9 9.7 25.4

BFGS 0/20 2030.8 6992.5 11617.3

Table 3.1: Minimum values of function



43

Algorithm Number of evaluations

Min Avg Max

POWELL 244,258 244,258 244,258

DHC 99,128 147,706 216,586

BFGS - - -

Table 3.2: Number of function evaluations for deterministic optimizers

and restrict the position of fibers to the area of the unit cell only.

3.3.1 Principle of genetic algorithm

Genetic algorithms (GAs), as stated in the introductory part, are formulated using a direct

analogy with evolution processes observed in nature, a source of fundamental difference

between traditional optimizers and GAs.

Genetic algorithms, in contrast to traditional methods presented in the previous Section,

work simultaneously with a population of individuals, exploring a number of new areas in

the search space in parallel, thus reducing a probability of being trapped in a local minimum.

As in nature, individuals in a population compete with each other for surviving so that fitter

individuals tend to progress into new generations, while the poor ones usually die out. This

process is briefly described in Algorithm 3.4.

Algorithm 3.4 provides basic steps of a single GA cycle; reproduction phase (step 5),

recombination (step 6), and selection of a new population (step 7). In the next Subsection

we first explore mechanisms of selections of new individuals, which undergo genetic process

(step 5), and then we proceed with basic operators controling the step 6. Steps 5 and

7 will be explained in more details when formulating various algorithms for solving the

optimization problem.
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1 t = 0

2 generate P0, evaluate P0

3 while (not termination-condition) {

4 t = t+ 1

5 select Mt from Pt−1 (apply sampling mechanism)

6 alter Mt (apply genetic operators)

7 create Pt from Mt and evaluate Pt (insert new individuals into Pt)

8 }

Algorithm 3.4: Principle of genetic algorithm

3.3.2 Sampling mechanisms

In step 5 of Algorithm 3.4 individuals selected for the reproduction are copied to the “mating”

pool according to their relative performance reffered to as their “fitness”, or “figure of merit”.

In the case of function optimization it is simply equal to the function value or rather its

inverse when solving minimization problem. An expected number of copies each individual

should receive in the mating pool Mt is given by

ei =
si∑P
j=1 sj

M, si =
1

δ + fi
, fi ≥ 0 (3.3)

where P is the number of individuals in the population M is the number of individuals in

a mating pool Mt and fi is the function value associated with the i-th individual; si = fi

when solving maximization problem. Parameter δ is a small positive number which prevents

division by zero. The procedure which allocates the new individuals into mating pool Mt

according to Eq. (3.3) and thus turns expected number of offspring (which is a real number)

into provided number of offsprings (which is a integer number) is called sampling mechanism.

In the sequel the procedures used to perform this step are summarized.
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Fitness scaling. Usually it is not desirable to sample individuals according to their raw

fitness. In such a case the best individuals may receive a large number of copies in a single

generation, so after a small number of GA cycles all individuals start to look alike and

the algorithm usually converges prematurely to a local minimum. To compress the range

of fitness a linear scaling (shifting) of the fitness function is incorporated into sampling

procedures [Goldberg, 1989]. Then, the relation between the raw fitness s and the scaled

fitness s′ is simply s′ = as + b. The standard procedure for the determination of constants

a and b is to require the average raw fitness savg and scaled fitness s′avg to be the same.

The second condition is then provided by prescribing the value of maximal scaled fitness by

s′max = Cmults
′
avg, where the values Cmult ∈ 〈1.2; 2〉 are usually used.

Roulette wheel selection. In this method the probability of selecting i-th individual is set

to pi = s′i/
∑P
j=1 s

′
j. As the first step of a selection, a real number p with uniform distribution

on the interval 〈0; 1〉 is generated and then the first individual for which its cumulative

probability
∑j
i=1 pi exceeds p is inserted into the mating pool. This procedure is repeated

until the mating pool is full. More details can be found in [Goldberg, 1989, Kvasnička, 1993].

Note that this procedure is often described as an analogy of a single spin of roulette wheel

with one marker, where parts of wheel corresponding to individual members are allocated

with respect to the value pi.

Stochastic universal sampling (SUS). Stochastic universal sampling is a generalization

of previous selection method proposed by Baker in [Baker, 1987]. The standard roulette

wheel is marked with equally spaced pointers indicating the happy individual selected for

reproduction. A number of pointers indicates a number of desired individuals used for

reproduction, which are again obtained by the single spin of roulette wheel.

Remainder Stochastic Independent Sampling (RSIS). [Baker, 1987] This method

firstly allocates individuals according to the integer part of their ei. Then, to sample the
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fractional parts, we first generate a random real number r uniformly distributed within the

range 〈0; 1〉. Then we check, whether the fractional part of the i-th individual is greater

than r. If yes, the individual is added to the mating pool and its fractional part is set equal

to zero. If not, we move to the next individual. These steps are repeated until the number

of individual in the mating pool equals M .

For the sake of completeness we also briefly mention two selection methods which are not

based on the expected number of copies in mating pool each individuals should receive. The

main advantage of this approach is that it principally prevents the best individuals from

causing the premature convergence of the whole population.

Tournament selection. Whenever an individual is to be selected to the mating pool,

two individuals are picked randomly from the original generation. Then the individual with

higher fitness is copied into the mating pool. This procedure is repeated until the mating

pool is full. More details about this procedure can be found in [Beasley et al., 1993a].

Normalized geometric ranking. In this method, the probability of individual’s selection

is based on its rank or position in the population rather than on the value of fitness. For this

particular method (see [Houck et al., 1995]), probabilities are assigned to each individual

exponentially and are normalized to provide the cumulative probability of selection equal

to 1. Thus, the probability of selection of i-th individual is

pi = q′(1− q)r−1,

where q is the probability of selecting the best individual in the population , r is the rank

of i-th individual with respect to its raw fitness, and q′ = q/(1− (1− q)P ).

3.3.3 Genetic operators

Let us now proceed with step 6 of Algorithm 3.4, where individual members of the population

breed in order to combine their (we hope) good characteristics to produce (we hope) a better
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offspring.

To accomplish this procedure, solution vector xN must transformed into the genetic in-

formation - chromosome formed by sequence of genes. Then the mating process is provided

by applying the genetic operators to the individual members of population. In the classical

version of genetic algorithm [Goldberg, 1989] the chromosomes are represented by binary

numbers and only two basic operators are used - single-point crossover and mutation. Un-

fortunately, this representation is not suitable for the considered problem where the solution

is formed by multi-dimensional real vectors. To encode this vector into binary representa-

tion with a reasonable precision, huge chromosome must be used, which leads to the poor

performance of the algorithm.

In view of this general conclusion we now abandon the binary representation of param-

eters and turn our attention to a floating-point representation of genes instead. This step

brings a number of advantages. First of all, using real numbers easily allows representation to

the machine precision. In addition, the search operators work directly in the search domain

thus no mapping between the representation space and the search space is required. This is

a direct consequence of the floating point implementation, where each chromosome vector

is coded as a vector of floating point numbers, of the same length as the solution vector.

Particularly, each individual – a configuration of particles in the unit cell – is represented

by a real-valued chromosome X = {x1, . . . , x2N}. Individual components of this vector are

related to actual fiber centers as follows

x2i−1 = xi and x2i = yi for i = 1, . . . , N,

whereN is the number of fibers within the unit cell, xi and yi represent the x and y coordinate

of i-th particle.

Moreover, different representation of genes calls for the suitable choice of genetic op-

erators. Michalewicz in [Michalewicz, 1992, Michalewicz et al., 1994] proposed a group of

real-valued genetic operators which are formulated for the convex search space S, so they

can be directly used for the solution of considered problem. The description of these opera-
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tors follows.

Let Li and Ui represent the lower and upper bound for each variable xi, respectively.

Further assume that vector X represents a parent, whereas vector X ′ corresponds to an

offspring; u(a, b) is a real number and u[a, b] is an integer number with uniform distribution

defined on a closed interval 〈a; b〉. The following operators can be now defined:

Uniform mutation: Let j = u[1, 2N ] and set:

x′i =

 u(Li, Ui), if i = j

xi, otherwise

Boundary mutation: Let j = u[1, 2N ], p = u(0, 1) and set:

x′i =


Li, if i = j, p < .5

Ui, if i = j, p ≥ .5

xi, otherwise

Non-uniform mutation: Let j = u[1, 2N ], p = u(0, 1) and set:

x′i =


xi + (Li − xi)f(t), if i = j, p < .5

xi + (Ui − xi)f(t), if i = j, p ≥ .5

xi, otherwise

where f(t) = u(0, 1)(1 − t/tmax)
b, t is the current generation, tmax is the maximum

number of generations and b is the shape parameter. This operator allows for a local

tuning as it searches the space uniformly initially and very locally at later stages.

Multi-non-uniform mutation: Non-uniform mutation applied to all variables of X.

Simple crossover: Let j = [1, 2N ] and set:

x′i =

 xi, if i < j

yi, otherwise
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y′i =

 yi, if i < j

xi, otherwise

Simple arithmetic crossover: Let j = u[1, 2N ], p = u(0, 1) and set:

x′i =

 pxi + (1− p)yi, if i = j

xi, otherwise

y′i =

 pyi + (1− p)xi, if i = j

yi, otherwise

Whole arithmetic crossover: Simple arithmetic crossover applied to all variables of X.

Heuristic crossover: Let p = u(0, 1) and set:

X ′ = (1 + p)X − pY

Y ′ = X

where X is better individual than Y in terms of fitness. If X ′ 6∈ S, then a new random

number p is generated until the feasibility condition (X ′ ∈ S) is met or the maximum

allowed number of heuristic crossover applications is exceeded.

Now when the principal steps of genetic algorithms were explored we proceed with four

particular examples of genetic algorithm. For each of these algorithms, relevant steps of

Algorithm 3.4 are discussed more thoroughly.

3.3.4 Genetic algorithm I (GA I)

Let us start with the most simple one usually termed as Steady State GAs. Reproduction is

implemented through the weighted roulette wheel and only one or two offspring are created

within each generation. For better understanding we now review the relevant steps:
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Step 5 By spinning the roulette wheel select the r individuals from population Pt−1 required

for mating (one individual for mutation, two individuals when the crossover operator

is applied). These individuals are temporarily stored in the mating pool Mt. Linear

scaling is used to reduce a common threat of premature convergence to a local optimum.

Step 6 Altering Mt by applying either crossover or mutation operators. In our case, the

mutation operators are used twice as often as the crossover operators.

Step 7 Based on a number of new offspring created select a corresponding number of in-

dividuals from Pt−1 to die using the inverse roulette wheel. Insert new offspring into

Pt−1 to create Pt.

3.3.5 Genetic algorithm II (GA II)

This algorithm closely resembles the simple genetic algorithm described in [Goldberg, 1989]

with only minor changes. To reduce statistical errors associated with the roulette wheel

selection the Remainder Stochastic Independent Sampling procedure is employed in this case.

As for GA I we now review the important steps of Algorithm 3.4:

Step 5 By applying the RSIS sample individuals from Pt−1 and copy them into the mating

pool Mt. Note that precisely P individuals are selected for reproduction. This sampling

method thus falls into category of preservative and generational selections according

to the classification of [Michalewicz, 1992]. Similar actions as in GAR I are taken to

deal with the premature convergence.

Step 6 Genetic operators are applied to all individuals in Mt. Each operator is used in a

prescribed number of times depending on the population size, and new individuals are

placed into a temporary population P ′t . Parents for breeding are selected uniformly.

Step 7 Create a new population Pt by successively replacing the worst individual from Pt−1

by individuals from the temporary population P ′t .
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3.3.6 Genetic algorithm III (GA III)

This algorithm is essentially a replica of the Michalewicz modGA algorithm presented in

[Michalewicz, 1992, p. 59]. It employs the stochastic universal sampling mechanism because

it allows us to select arbitrary number of individuals to the mating pool by a single wheel

spinning. This is particularly appreciable when applying the modGA, which is characterized

by following steps:

Step 5a Using the SUS select a subset of n individuals from Pt−1 for reproduction and copy

them to Mt. Note that each member of Mt can appear only once in the reproduction

cycle.

Step 5b Again using the SUS select exactly P − n individuals from Pt−1 and copy them

to a new population Pt.

Step 6 Select uniformly parents from Mt to produce exactly n offsprings (as in GAR II,

but in this case the genetic operators act only on n individuals stored in the mating

pool).

Step 7 Add new offsprings to population Pt.

3.3.7 Hybrid genetic algorithm (HGA)

GAs are generally very efficient in finding promising areas of the searched solution. On the

other hand, they may perform rather poorly when shooting for the exact solution with a high

degree of precision (premature convergence, convergence to a local minimum, etc.). Therefore

it appears logical (see also discussion in Section 3.2.5) to combine GAs exploring the search

space initially with a deterministic optimizer exploiting promising solutions locally.

As natural for GAs, this procedure can be implemented in a number of ways. When

experimenting with this approach, various ideas suggested up to date were combined, which

eventually led to a reliable and efficient algorithm. It works with relatively small population
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sizes, which makes computationally feasible to restart the genetic algorithm after a given

convergence criterion is met. Each restart is associated with a certain number of new mem-

bers entering the initial population to maintain a sufficient diversity among chromosomes.

Consequently, mutation operators can be excluded from reproduction. Individual steps of

this algorithm are now discussed in a sequel:

Step 2 Randomly generate a small population.

Steps 5&6 Perform standard genetic operations until convergence or the maximum number

of generations exceeded. To select chromosomes for reproduction stochastic tournament

selection scheme is applied. Only crossover operators are used.

Step 7a Select n best individuals for local search. We adopt the Dynamic Hill Climbing

method of Yuret (Section 3.2.2) to seek for the desired optimum with a starting point

provided by the GA. When the local optimizer converges copy new individuals into Pt.

Step 7b Add P − n randomly generated individuals to fill population Pt. This ensures

diversity among chromosomes. Goto step 5 and restart the GA.

3.3.8 Differential evolution (DE)

Differential evolution is very simple stochastic optimization method proposed by Storn and

Price [Storn and Price, 1995]. This method is reported to have very good results in various

minimization problems [Storn, 1996].

To reveal its similarities and differences with previous algorithms the principle of this

method will be demonstrated within the particular steps of Algorithm 3.4.1

1 In this work only one variant – called DE1 in [Storn and Price, 1995] – was tested. Interested reader can

inspect http://http.icsi.berkley.edu/~storn for additional variants of this method.
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Step 2 The initial population should be spread as much as possible over the solution space

S. The size of the initial population should be ≈ 10D, where D is the dimension of a

problem.

Step 5 Individuals subjected to the operation are picked from population sequentially, no

attention is paid to the value of their fitness.

Step 6 First, a new perturbed vector Y ′ is generated according to

Y ′ = Xj + F (Xk −X l),

where j, k, l are mutually different indexes, generated as integer random numbers with

uniform distribution of interval 〈1;P 〉, F is the parameter of the method and super-

scripts refer to the position of an individual in the population. Then, this new individ-

ual is subjected to two-point crossover with starting point n = u[1, D] and endpoint

(n + L)%D, where L it the length of the exchange interval and % stands for modulo,

such that probability Pr(L ≥ n) = CR(n−1), where crossover rate CR is the second

user-defined parameter (see [Storn and Price, 1995] for more details). New individual

is then given by:

x′i =

 y′i for i = n, . . . , (n+ L− 1)%D

xi otherwise.

Step 7 New individual is inserted into new population only if it is better in terms of fitness.

3.3.9 Augmented simulated annealing (AUSA)

When talking about stochastic optimization algorithms, it would be unfair not to mention

another popular method using random choice to explore the solution space, namely the

Augmented simulated annealing method presented by [Mahfoud and Goldberg, 1992]. This

method effectively exploits the essentials of GAs (a population of chromosomes, rather than

a single point in space, is optimized) together with the basic concept of simulated annealing

method guiding the search towards minimum energy states.
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If we wish to put GAs and the AUSA on the same footing, we may relate the AUSA to a

group of Steady state and On the fly methods [Michalewicz, 1992], in which offspring replaces

its parents immediately. The replacement procedure is controlled by the Metropolis criterion,

which allows a worse child to replace its better parent with only a certain probability. The

probability of accepting a worse solution is reduced as the procedure converges to the “global”

minimum.

The following algorithm describes an implementation of the AUSA:
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1 T = Tmax, t = 0

2 generate P0, evaluate P0

3 while (not termination-condition) {

4 counter = success = 0

5 while( counter < countermax ∧ success < successmax) {

6 counter = counter + 1, t = t+ 1

7 select operator O

8 select individual(s) It from Pt

9 modify It by O

10 select individual(s) I ′t from Pt

11 p = exp ((F (I ′t)− F (It))/T )

12 if (u(0, 1) ≤ p) {

13 success = success+ 1

14 insert It into Pt instead of parents

15 evaluate Pt

16 }

17 }

18 decrease T

19 }

Algorithm 3.5: Augmented Simulated Annealing

Step 7 It is recommended to choose mutation operators with much higher probabilities

than crossovers. In [Kvasnička, 1993] ratio ≈ 0.1 is proposed.

Step 8 New individuals are selected using the normalized geometric ranking method.
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Step 11 The temperature Tmax should be chosen such that the ratio of accepted solutions

to all solutions is ≈ 50%.

Step 18 This step is called the cooling schedule. We use a very simple form of cooling

schedule Ti+1 = TmultTi. In this step we also perform reannealing if necessary. If the

actual temperature is lower than a given parameter Tmin, we set T = Tmax and copy

a half of the current population to a new one. Remaining part of a new population is

generated randomly.

3.3.10 Test example

To test the performance of proposed methods the same problem as in Section 3.2.4 was con-

sidered. As in previous case, each algorithm was run independently 20 times with parameters

given in Appendix B. Again, the minimum, maximum and average values of function eval-

uation and value of the objective function of the best chromosome in the population were

recorded. Initial population was generated purely randomly in all runs.

Moreover, for all algorithms a simple procedure was implemented to maintain a sufficient

diversity in a population. Before inserting an offspring X into population, we first search

for an individual X 0 which satisfies

F (X) = F (X 0) max
i
|xi − x′i| < ε, i = 1, . . . , 2N,

where ε is set here to 1× 10−5. If such an individual exists, it is replaced by X. Otherwise

an individual X enters a population following step 7 of Algorithm 3.4.

Results and conclusions. As it is evident from Table 3.3, the results obtained by various

genetic algorithms and by the augmented simulated annealing are substantially better than

results obtained by deterministic algorithms and the method of differential evolution, which

performs rather poorly for this particular example. From different versions of genetic algo-

rithms only GA I was not able to find the value of objective function 6 × 10−5 two times.
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Algorithm Number Returned value ×105

found Min Avg Max

GA I 18/20 6.0 7.2 16.4

GA II 20/20 5.9 6.0 6.0

GA III 20/20 5.9 6.0 6.0

DE 0/20 106.0 210.7 295.9

HGA 20/20 5.9 6.0 6.0

AUSA 20/20 5.9 6.0 6.0

Table 3.3: Characteristics of the best individual

It can be seen that the performance of algorithms GA II, GA III, HGA and AUSA are

similar. But, from the point of view of function evaluation shown in Table 3.4 the HGA

and AUSA algorithms are slightly better than the other ones.

Finally, it is interesting to compare the results of the DHC listed in Table 3.1 and the

HGA given in Table 3.3. It it evident that combination of genetic algorithm with local

optimizer is very advantageous - the algorithm was able to find the required value of the

objective function 6 × 10−5 in all cases and the average number of function evaluations is

approximately only 5% of the original value.

3.4 Some additional improvements

In this Section, we try to further improve the performance of the stochastic optimizers

implementing more advanced techniques used for genetic algorithms. Particularly, the adap-

tive operator probabilities and incorporation of the problem-dependent information into the

genetic operators are inspected.
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Algorithm Number of evaluations

Min Avg Max

GA I 8,896 74,562 193,600

GA II 6,956 17,270 55,296

GA III 4,484 12,037 26,224

DE - - -

HGA 1,613 8,856 24,404

AUSA 3,490 8,709 26,314

Table 3.4: Number of function evaluations for stochastic optimizers

3.4.1 Adaptive operator probabilities

The one of the most difficult problems faced when using a stochastic algorithm is the proper

setting of algorithms parameters. As shown in Appendix B, this task is far from trivial - eg.

AUSA method needs to set up seventeen different parameters. Moreover, it is well known,

that the role of different operators during the optimization run changes (see discussion in

[Michalewicz et al., 1994] for current operators).

In [Davis, 1989], method for determination of adaptive operator probabilities was estab-

lished. The key idea of his approach is that operators, which produce better offsprings should

be used more often than those performing poorly. Further, besides rewarding the operator

which produced the good offspring the operator responsible for creating the parent should

be rewarded as well.

Let us briefly outline, how these informations are gathered. Whenever a new member

is added to a population in step 7 of Algorithm 3.4 a pointer is set to its parent(s) and

to the operator which created it. Further, a check is performed if the new individual is

the best one in the current population. If yes, the amount that it is better is stored as a

“local delta”. These information are stored in some “adaptation window” which contains

last W inserted members with parents considered M generations back. Then, after each
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I inserted new individuals, performance of each operator is computed. In the first step,

every offspring in adaptation window passes P times its local delta to its parents and this

parent(s) passes P portion of this value back to their parents etc. Then, delta is summed for

all members in adaptation window for all operators and operator probabilities are updated

- each operator keeps S portion of its original value and remaining part is redistributed

according to operators performance. For more information see [Davis, 1989].

This procedure was used for the AUSA algorithm. As the first step, the initial oper-

ator probabilities were determined by the procedure suggested in [Davis, 1989] – initially,

every operator was given the same probability and parameter S was set to 0.01. Then, the

algorithm was run 20 times until the first adaptation took place. The adapted values from

20 runs were averaged to obtain the initial probabilities of various operators. The setting

of adaptation parameters is given in Table B.8 and the resulting operator probabilities are

displayed in Table 3.5. It is evident that for the initial parts of the optimization process

most of the progress is done by the boundary mutation and simple arithmetic crossover.

Operator Initial probability

Uniform mutation 0.150

Boundary mutation 0.278

Non-uniform mutation 0.063

Multi-non uniform mutation 0.048

Simple crossover 0.040

Simple arithmetic crossover 0.233

Whole arithmetic crossover 0.097

Heuristic crossover 0.088

Table 3.5: Initial operator probabilities resulting from adaptation procedure

Then, the algorithm was run 20 times using this initial values of operator probabilities.

The adaptivity setting was the same as in the previous example, only value of S was set to .7.
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Number Returned value ×105 Number of evaluations

found Min Avg Max Min Avg Max

12/20 5.9 11.8 36.9 2,092 6,358 25,316

Table 3.6: AUSA algorithm with adaptive operator probabilities

Results of this test are shown in Table 3.6.

Unfortunately, this approach does not seem to be useful for our particular problem.

The reason is obvious - the optimization procedure gets trapped in a local minimum. This

is primarily caused by the fact, that during optimization run the probability of crossover

operators gets higher and higher (because they produce good offspring) so the the diversity

of population is quickly decreasing. On the other hand, if this algorithm succeeds in locating

the required value, it is done more faster than for the stand alone algorithm.

3.4.2 Problem-dependent operators

It is no secret that the performance of genetic algorithms can be substantially improved

by putting in use the knowledge of the problem nature for the chromosome coding or for

developing the problem-specific operators (see [Beasley et al., 1993b, Michalewicz, 1992]).

The latter approach is explored in this section.

Suppose that the parent configuration we selected for reproduction meets the impene-

trability constraint imposed on the fibers arrangement. In the recombination step we wish

to introduce only such operators, which yield an offspring configuration complying with the

impenetrability condition as well. To state this in more formal manner, we define the search

space as

S =
{
xi ∈ 〈0;H1〉 , yi ∈ 〈0;H2〉 :

√
(xi − xj)2 + (yi − yj)2 ≥ 2R ; i, j = 1, . . . , N

}
. (3.4)

The simplest way to fulfill the above condition may rely on randomly generating a vector

x′ until the condition x′ ∈ S is met (death penalty to an infeasible individual (see eg.
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Figure 3.3: Allowable position of particle

[Povirk, 1995, Yeong and Torquato, 1998]). Clearly, this process may become prohibitively

expensive, especially for a higher concentration of fibers.

To deal with this problem, it is more efficient to first determine a set of possible locations

of all particles and successively generate a new particle or particles, which belong to this

set. Unfortunately, solving this problem in its full generality is rather complicated. Thus,

instead of identifying allowable locations of all particles, we limit our attention to a set of

possible locations of one particle permitted to translate either in the x or y direction, while

the coordinates of the remaining fibers are kept fixed. We shall denote these sets as

S|yi =
{
xi ∈ 〈0;H1〉 : x ∈ S

}
S|xi =

{
yi ∈ 〈0;H2〉 : x ∈ S

}
. (3.5)

To construct the above sets imagine a collection of identical cylinders, surrounded by a

certain concentric protective cylindrical surface with diameter equal to 2R (see also discussion

in Section 2.2.2). In view of the impenetrability constraint the secure cylinder cannot be

occupied by another fibers’ center. In particular, to identify space S|yi with the i-th particle

we draw a line x = xi, which intersects the protective surfaces around all remaining fibers

in n− 1 intervals
〈
a′j; b

′
j

〉
where j = 1, . . . , (n− 1). Then the set S|yi of allowable locations
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of the particle i is given by (see Fig 3.3)

S|yi = 〈0;H1〉 \
n−1⋃
j=1

〈
a′j; b

′
j

〉
=

n⋃
j=1

〈aj; bj〉 . (3.6)

Similarly we write

S|xi = 〈0;H2〉 \
n−1⋃
j=1

〈
a′j; b

′
j

〉
=

n⋃
j=1

〈aj; bj〉 . (3.7)

In the spirit of Eqs. (3.6) and (3.7) we can now define the following set of problem-specific

operators (see also [Michalewicz et al., 1994]):

Uniform mutation Generate an integer number i = u[1, N ] with uniform distribution

on a closed interval 〈1;N〉, select the x or y coordinate, evaluate S|xi or S|yi , select

k = u[1, n] and set:

x′i = xi + u(ak, bk)

or

y′i = yi + u(ak, bk),

while fixing the remaining coordinates.

Non-uniform mutation Select i = u[1, N ] and the x or y coordinate, evaluate S|xi or S|yi .

Select k such that xi ∈ 〈ak; bk〉 or yi ∈ 〈ak; bk〉, generate a real number p = u(0, 1) with

uniform distribution on a closed interval 〈0; 1〉 and set:

x′i =

 xi + (bk − xi)f(t), if p < .5

xi + (ak − xi)f(t), if p ≥ .5

or

y′i =

 yi + (bk − yi)f(t), if p < .5

yi + (ak − yi)f(t), if p ≥ .5
,

while fixing the remaining coordinates. The number f(t) is the same as in Section 3.3.3.

Multi-non-uniform mutation Non-uniform mutation applied successively to all coordi-

nates of X.
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Simple two-point crossover Select i = u[1, n] and j = u[1, n] ∧ i < j. Repeat for k =

i, . . . , j :

1x′k = 1xk(1− α) +2 xkα

2x′k = 1xkα +2 xk(1− α),

and

1y′k = 1yk(1− α) +2 ykα

2y′k = 1ykα +2 yk(1− α),

where eg. 2xk corresponds to the x coordinate of k-th particles of the second parent.

The parameter α is set to 1 initially. If x′k 6∈ S|yi or y′k 6∈ S|xi respectively, decrease α

by 1/nd; nd is the user-defined parameter (number of decreasing steps). This procedure

is repeated until x′k ∈ S|yi or y′k ∈ S|xi holds (this condition is always met for α = 0).

These operators were implemented to AUSA algorithm and the proof test was run again.

Initial population consisted of non-penetrable particles. Parameters of the method are given

in Appendix B. Results in Table 3.7 show, that this approach is very efficient since the

required value of the objective function was found for all 20 runs and the average number of

evaluations was reduced by 50%.

Number Returned value ×105 Number of evaluations

found Min Avg Max Min Avg Max

20/20 5.9 6.0 6.0 543 4,403 11,516

Table 3.7: AUSA algorithm with problem-dependent operators

3.4.3 Sampling grid refinement

To check the quality of the resultant unit cell let us plot the second order intensity function

for the original microstructure (K0(r)) against the one associated with a unit cell chosen



64

0 5 10 15 20 25

(a)

0

5

10

15

20

25

0 2 4 6 8 10

r/R

(b)

0

500

1000

1500

2000

2500

3000

K
(r

/R
)

Original microstructure
Unit cell for Nm = 5
Unit cell for Nm = 10

Figure 3.4: Periodic unit cells with corresponding second order intensity functions

as the minimum from 20 independent runs. Results, which appear in Fig. 3.4(b), were

again derived via the AUSA method. Evidently, both functions agree well at sampled

points. Unfortunately, a significant deviation is distinct in all other points. To improve

coincidence of both curves the number of sampled points Nm must be increased. Fig. 3.4

shows results of such procedure. It is interesting to note that when running for example the

AUSA for Nm = 10 from the beginning, we arrived at the minimum equal to 1.63 × 10−4

after approximately 173,000 function evaluations. However, when starting with Nm = 5

and then continuing with Nm = 10 we received the desired minimum after 115,000 function

evaluations only. Thus, using the results obtained for coarser grid of sampling points as a

initial population for foregoing optimization can save large amount of function evaluations.

3.5 Determination of periodic unit cell

In this Section, method used for the determination of a periodic unit cell is described in

more details. Results obtained by this procedure are demonstrated and discussed.

Finding optimal fiber configuration. Optimal fiber configuration was determined by

the AUSA method (Algorithm 3.5) with the problem-specific operators (see Section
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Figure 3.5: Variation of the objective function with the number of particles in the PUC.

3.4.2). Parameter settings are given in Appendix B, Table B.9. Optimization was first

performed only for Nm = 4 with fibers spaced by one fiber diameter. Then, value of

Nm was raised to 8,16,24 and 32. Sampled points were biased towards the value of

r = 2R in order to capture an apparent correlation of individual space points within

the sample. Best 50% of individuals were copied into new population to provide good

initial guesses for subsequent optimization.

Termination conditions. For each value of Nm, iteration was terminated when one of the

following conditions was met:

• Algorithm returned value F (xN , H1, H2) < ε = 10−4.

• Number of function evaluation exceeded 250,000.

The first condition is usually fulfilled for small values of Nm, while the second one

takes effect in remaining cases. As the value of the objective function F (xN , H1, H2)

for given H1 and H2 the result obtained for Nm = 32 was used.
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Figure 3.6: Evolution of the 10 particles PUC

Finding the optimal side ratio. This step was performed by Golden Section search me-

thod (Algorithm 3.1) with values ηa = 1.0, ηb = 2.0 and ε = .05.

Results for a different number of particles within the unit cell are shown in Fig. 3.5. Values

of objective function are relatively high, eg. the value of objective function lesser than

10−2 is firstly reached for 10-fiber periodic unit cell. To explain this fact, let us consider

the results obtained for the periodic unit cell with 10 particles (Fig. 3.6). Evolution of

the unit cell with increasing accuracy of the solution is plotted in Fig. 3.6(a), whereas

Fig. 3.6(b) displays a variation of the normalized second order intensity function K(r)/πr2

corresponding to various stages of the solution process. From this Figure, two facts are

evident – first : for all values of Nm it is clear, that there is the jump of the objective

function located at r corresponding to side length of unit cell, which results in quite large

deviation of these two functions. Secondly, function corresponding to the periodic media

agrees well in sampled points but in the neighboring points is quite noisy. This is probably

caused by the relatively small number of particles in the unit cell comparing to the original

microstructure. Nevertheless, to judge the quality of unit cells one should take into account

the effective behavior of resultant periodic composite material rather than measuring the
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quality of obtained unit cells by an artificially defined objective function. This is the objective

of following Chapter.

Finally, some examples of the resulting unit cells are given in Fig. 3.7 together with the

hexagonal lattice shown for comparison. It is evident, that periodic unit cells resulting from

optimization capture the clustering of particles in the original micrograph to some extent.
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(a)

(c)

(b)

(d)

Figure 3.7: Periodic unit cells: (a) Hexagonal lattice, (b) 2-fibers PUC, (c) 5-fibers PUC,

(d) 10-fibers PUC.



Chapter 4

EFFECTIVE PROPERTIES OF PERIODIC COMPOSITE

MEDIUM

This Chapter is devoted to the testing of resultant periodic unit cells obtained by op-

timization procedure in Chapter 3 from the effective elastic behavior point of view. The

effective elastic properties of the material formed by the periodic unit cell are obtained by

the Finite Element Method and compared with results provided by the Mori-Tanaka method

and by the periodic unit cell with hexagonal arrangement of fibers.

Section 4.1 outlines basic relation pertinent to evaluation of the effective elastic prop-

erties of unidirectional composites. Then, in Section 4.2 and 4.3 two specific procedures

determining the effective properties – namely the Mori-Tanaka method and numerical pro-

cedure based on the Finite Element analysis – are discussed. Finally, Section 4.4 shows

various numerical results obtained for different periodic unit cells.

4.1 Basic relations

A common approach when dealing with composite structures is to replace their inhomoge-

neous microstructure with some homogenized or effective material which exhibits the same

overall behavior as the non-homogeneous one. Since in this work only the elastic behavior

of the composite material is considered, the homogenized medium is uniquely characterized

by its effective material stiffness or compliance tensor.
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The elastic behavior of such a material is determined by displacement, strain and stress

fields given by

εij(x) =
1

2

(
∂ui(x)

∂xj
+
∂uj(x)

∂xi

)
, (4.1)

σij(x) = Lijkl(x) : εkl(x),

εij(x) = Mijkl(x) : σkl(x), (4.2)

∂σij(x)

∂xj
= fi(x), (4.3)

where ui is the displacement field, εij and σij stand for the strain and stress field, Lijkl is the

tensor of material stiffness, Mijkl is the tensor of material compliance such that L−1
ijkl = Mijkl

and fi is the vector of body forces.

When analyzing the unidirectional fiber composite systems it is usually sufficient to use

the generalized plane strain conditions. In such a state, the only non-zero components of

strain and stress tensors are ε11, ε12, ε22, ε33 and σ11, σ12, σ22, σ33 respectively. Note that due

to perfect bonding between individual phases components ε33 and σ33 attain constant values.

Employing Hill’s notation [Hill, 1964] the material stiffness tensor assumes the form

L =



(k + m) (k−m) 0 l

(k−m) (k + m) 0 l

0 0 m 0

l l 0 n


, (4.4)

where constants k,m,n and l are connected with material engineering constants by

k = −[1/GT − 4/ET + 4ν2
A/EA]−1 l = 2kνA

n = EA + 4kν2
A = EA + l2/k m = GT.

Then, to determine the effective properties of homogenized media one should relate the

average stress and strain fields in the spirit of Eq. (4.2). Thus, prescribing average strain to

be 〈ε(x)〉 = ε0 or average stress to be 〈σ(x)〉 = σ0, the effective characteristics of composite
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media are provided by:

〈σ(x)〉 = 〈L(x) : ε(x)〉 = L : ε0, (4.5)

〈ε(x)〉 = 〈M(x) : σ(x)〉 = M : σ0, (4.6)

where 〈·〉 stands for spatial average of particular field and L and M are the effective stiffness

and compliance tensors of the heterogenous material.

4.1.1 Hill’s lemma

The principal step when determining the effective properties is provided by Hill’s relation.

He proved that for compatible strain and equilibrated stress fields the following relation

holds [Hill, 1963]:

〈σ(x) : ε(x)〉 = 〈σ(x)〉 : 〈ε(x)〉 . (4.7)

This relation in fact states that the average of “microscopic” internal work is equal to the

macroscopic work done by internal forces.

Then, again prescribing the average strain 〈ε(x)〉 = ε0 or average stress 〈σ(x)〉 = σ0,

the effective properties can be alternatively defined using Eqs. (4.5,4.6) as

ε0 : L : ε0 = 〈ε(x) : L(x) : ε(x)〉 , (4.8)

σ0 : M : σ0 = 〈σ(x) : M(x) : σ(x)〉 . (4.9)

4.1.2 Stress and strain concentration factors

Sometimes, it is convenient to establish the connection between average stresses and strains

for given phases and overall prescribed values of stress or strain by [Hill, 1963]:

εr = Ar : ε0, (4.10)

σr = Br : σ0, (4.11)
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where Ar and Br are stress and strain concentration factors of r-th phase, εr and σr stands

for the average value of stress and strain values in the r-th phase, r = f,m. Noticing that

ε0 = cmεm + cfεf , (4.12)

σ0 = cmσm + cfσf , (4.13)

following relations can be established for individual concentration tensors of a two-phase

media:

cmAm + cfAf = I , (4.14)

cmBm + cfBf = I . (4.15)

Thus, once the concentration factor for one phase is known it is possible to express the

concentration factor for the second phase.

Finally, recognizing that σr = Lrεr and εr = Mrσr, the effective material properties can

be expressed as

L = cmAmLm + cfAfLf , (4.16)

M = cmBmMm + cfBfM f . (4.17)

4.2 Mori-Tanaka method

Let us consider the isolated fiber embedded in the infinite matrix subjected to far-field

load σ0. It follows form work of Eshelby [Eshelby, 1957], that stress field inside the fiber

is constant and can be uniquely determined by values of Lm, Lf and Eshleby’s tensor S.

In the reformulation of Mori-Tanaka method by Benveniste [Benveniste, 1987], the isolated

inclusion is loaded by average stress in matrix. Then, stress inside the fiber is provided by

σf = Wf σm, (4.18)

where Wf is partial concentration factor is given by

Wf = Lf

[
I + SL−1

m (Lf − Lm)
]−1

L−1
m . (4.19)
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The tensor S can be expressed via polarization tensor P as P = SL−1
m , which for cylin-

drical fibers assumes the form [Sejnoha, 1999]:

P22 = P33 =
km + 4mm

8mm(km +mm)
P23 = P32 =

−km
8mm(km +mm)

P44 =
km + 2mm

2mm(km +mm)
P55 = P66 = 1/(2pm), (4.20)

where indexes of P correspond to engineering notation (see eg. [Bittnar and Šejnoha, 1992]).

The total stress concentration factors with help of Eq. (4.13) are obtained by

Bf = Wf (cmI + cfWf )
−1 Bm = (cmI + cfWf )

−1. (4.21)

Therefore, using Eq. (4.17), effective compliance material tensor yields

M = [cmMfWf + cmMm](cmI + cfWf )
−1. (4.22)

Finally, effective stiffness tensor then can be obtained as L = M−1.

4.3 Finite element formulation

When employing the Finite Element Method it is very advantageous to exploit the periodicity

of the media. Since the microstructure of composite media is periodic with period Ω (periodic

unit cell), the stress and strain field as well as material characteristics appearing in Eqs. (4.1–

4.3) are periodic as well. Let us suppose that our unit cell is loaded by prescribed value of

ε0. For foregoing analysis it is convenient to split the field u(x) into periodic part and part

corresponding to overall strain in the form

u(x) = ε0 · x+ u∗(x), (4.23)

where the first term in previous equation corresponds to affine displacement due to prescribed

uniform strain ε0 [Michel et al., 1999] and second term is the Ω-periodic part of u(x). Once

u∗(x) is known, stress and strain field are given by

ε(x) = ε0 + ε∗(x), (4.24)

σ(x) = L(x) : ε(x), (4.25)
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where ε∗(x) represents here the fluctuating part of the strain field, which vanishes upon

volume averaging.

To find the u∗ the principle of minimum potential energy [Bittnar and Šejnoha, 1992] is

usually employed. This yields

2 〈W (ε(x))〉 = 〈ε(u(x)) : L(x) : ε(u(x))〉 = 〈ε(u(x))〉 : 〈L(x) : ε(u(x))〉 ≤

≤ 〈ε(v(x))〉 : 〈L(x) : ε(v(x))〉 , (4.26)

where W (·) represents the potential energy of the system for given strain field, v is any

kinematically admissible displacement field in the form v(x) = ε0 · x + v∗ and v∗(x) again

corresponds to Ω-periodic fluctuating part of displacement field v.

From this point, standard displacement-based Finite Element procedure can be employed

[Bittnar and Šejnoha, 1992]. We start with the discretization of u,

u(x) = ε0x+ N(x)r, (4.27)

where N(x) stands for matrix of basis functions and r is the vector of unknown degrees of

freedom. Then, the strain field is provided by

ε(x) = ε0 + B(x)r. (4.28)

Minimization of Eq. (4.26) with respect to r finally yields the system of equilibrium equations

Kr = f , (4.29)

where

K =
∑
e

Ke where Ke =
1

Ω

∫
Ae

BTLeB dAe

f =
∑
e

f e where f e = − 1

Ω

∫
Ae

BTLeε0 dAe, (4.30)

where K is the stiffness matrix of the system, f is a vector of global nodal forces resulting

from the loading by ε0, e stands for number of elements, Ae is the area of element e and Ω

is the area of periodic unit cell.
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Solution of this system of equation determines the u∗ up to the rigid body motion, which

must be restricted by imposing appropriate boundary conditions. Due to the periodicity of

the microstructure, these supports can be provided by fixing the corners of the unit cell.

The second problem is implementing the periodicity condition on r. A large number of

approaches can be adopted to take this restriction into account (see [Michel et al., 1999] for

details). In this work, this condition was simply fulfilled by assigning same code numbers to

corresponding degrees of freedom related to the nodes on opposite sides of the unit cell.

To obtain the effective stiffness tensor, the periodic unit cell is successively loaded by

strain fields ε0, which have one component equal to 1 and other 0. Performing the preceding

procedure, one may find corresponding value of u∗ and determine 〈σ(x)〉. This value then

corresponds to one row of the elastic stiffness tensor L. By this algorithm, all components

of the effective stiffens tensor can be obtained.

4.4 Numerical results

The aforementioned procedure was applied to equivalent unit cells resulting from optimiza-

tion procedure as well as to the original sample displayed in Fig 2.6. Each of micrographs

was discretized using CST triangle elements, the corresponding FEM meshes displayed in

Fig 4.1 were created by Triangle 1.31 program. Finally, Table 4.1 shows the considered

material properties of the matrix and fiber.

Phase EA ET GT νA

[GPa] [GPa] [GPa]

Fiber 386 7.6 2.6 0.41

Matrix 5.5 5.5 1.96 0.40

Table 4.1: Material properties of T30/Epoxy system

1 This program was obtained from http://www.cs.cmu.edu/~quake/triangle.html.
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(c)

(b) (d)

Figure 4.1: Example of Finite Element meshes: (a) Hexagonal lattice, (b) 2-fibers PUC, (c)

5-fibers PUC, (d) 10-fibers PUC.

First, to prove the applicability of the proposed method, the elastic moduli derived for

the original microstructure, Fig 2.6, are compared with those found for the periodic unit

cells displayed in Fig. 3.7. Selected components of the effective stiffness matrix L are stored

in Table 4.2. Results obtained for the hexagonal arrangements of fibers and found by the

Mori-Tanaka method are provided for additional comparison. Evidently, the effective elastic

properties obtained for the periodic unit cell, unlike those found by the hexagonal lattice

and the Mori-Tanaka method, which correspond to the transversally isotropic medium, are

capable to capture a slight anisotropy associated with the real microstructure. In addition,

the results in Table 4.2 also promote the PUC consisting of 5 fibers only as the smallest one
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Unit cell L11 L22 L33 L44 cf

Original 10.76 10.73 2.215 177.2 0.44

2 fibers PUC 10.78 10.75 2.202 177.2 0.44

5 fibers PUC 10.76 10.73 2.215 177.2 0.44

10 fibers PUC 10.76 10.73 2.215 177.2 0.44

Hexagonal array 10.74 10.74 2.213 177.3 0.44

Mori-Tanaka method 10.74 10.74 2.216 177.3 0.44

Table 4.2: Components of the effective stiffness matrix

we should consider for evaluation of the effective elastic material properties. Recall that the

smallest number of fibers providing the reasonable value of objective function F in Chapter 3

was established to be 10.

To confirm our theoretical expectations, we investigated an influence of the proposed

optimization technique on the effective moduli computed for the 10-fibers PUC derived from

five independent optimization runs. As shown in Fig 3.6, the periodic unit cell substantially

changes during the optimization run; moreover the resulting fiber configurations are not

identical in different optimization runs. Nevertheless, results stored in Table 4.3 show that

Modulus Mean value Standard deviation Variation coefficient

[GPa] [GPa] [%]

L11 10.76 0.013 0.12

L22 10.73 0.013 0.12

L33 2.215 0.003 0.13

Table 4.3: Variation of effective stiffness tensor for five ten-particle PUC resulting from

optimization
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Modulus Mean value Standard deviation Variation coefficient

[GPa] [GPa] [%]

L11 10.73 0.32 2.97

L22 10.71 0.38 3.54

L33 2.210 0.07 3.48

Table 4.4: Variation of effective stiffness tensor for five randomly picked ten-particle PUC

the final moduli are not sensible to the particular fiber configuration (each optimization run

provides a slight different fiber arrangements having, however, the same materials statistics

up to the two-point probability function).

Finally, to support the present approach, the mean value and standard deviation of

effective stiffnesses derived from five independent runs for unit cells defined through a random

cut of the original micrograph Fig. 2.6 was found. Dimensions of such a unit cell were selected

as to comply with dimensions found for the PUC consisting of 10 particles. Results given

in Table 4.4 show that the differences in the moduli are not severe, however the variation

coefficient is by orders of magnitude higher than for unit cells derived from the optimization

procedure.
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CONCLUSIONS AND FUTURE WORK

A simple and intuitive approach based on microstructural statistics was proposed to

determine periodic unit cells. This procedure was applied to the analysis of real composite

material represented here by a bundle of graphite fibers surrounded by an epoxy matrix.

In Chapter 2 two different approaches suitable for the description of a unidirectional

fiber composite microstructure were introduced. For each approach, the detailed discussion

on microstructural characteristics up to the two-point level was presented together with the

methods for their determination. Then, the validity of statistical isotropy and ergodicity

assumptions for the composite material microstructure were confirmed by series of tests.

These results allowed us to use the second order intensity function as a basic statistical

descriptor in subsequent numerical computations.

Chapter 3 was concerned with the generation of the unit cell with the same statistics

(up to two-point level) as possessed by the real microstructure. First, the objective function

describing the similarity of the original material and the material formed by the periodic

unit cell was defined in terms of the second order intensity function. Optimal geometrical

arrangement of fibers within the periodic unit cell was then determined by minimizing the

proposed objective function. The optimization procedure itself was performed in two stages -

the Augmented Simulated Annealing method with problem-suited operators was found to be

the most efficient tool for determination of the optimal fiber configuration, while dimensions

of the unit cell were found by the Golden Section search method. It is worth to note, that

the second order intensity function, although evaluated under the assumption of statistical

isotropy, can capture clustering character of the real microstructure.

The effective properties of the material formed by the periodic unit cell and original
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material were obtained by the Finite Element Method in Chapter 4 and compared with

results provided by the Mori-Tanaka method and unit cell with hexagonal arrangement of

fibers. Results show, that the corresponding periodic unit cells exhibit the slight anisotropy

possessed by the original material. Further, the invariance of effective properties of unit

cells resulting from different optimization runs was verified. However, although the resulting

effective properties are not far from those corresponding to the hexagonal packing of fibers,

an appreciable difference may appear when the contrast between the phases (ratio between

the transverse Young’s of the harder phase to the transverse Young’s modulus of the softer

phase) increases.

As shown in Chapter 4, the replacement of the complex material microstructure of the

real material by the substantially simpler periodic unit cell is very convenient from the

point of view of numerical determination of the material behavior. This approach can be

extremely useful when examining the inelastic response of the composite material such as

plasticity, debonding or damage and may provide useful insight into the effective behavior

of composite materials. Moreover, since the microstructural characteristics are known for

a given composite media, results obtained by numerical procedure can be compared with

rigorous bound and estimates found when considering inelastic behavior of the material.

These topics will be subjects of further investigation.
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theus, 6th edition.



86

[Rektorys, 1995b] Rektorys, K., editor (1995b). Přehled užité matematiky, volume 1. Prome-
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Appendix A

EVALUATION OF M(r) FOR IMPENETRABLE CYLINDERS

The function M(r) appears in the relation for the two-point matrix probability function

of particulate media (see Eq.(2.39)). For the statistically isotropic media, it takes the form

M(r12) =
∫ ∫

h(r34)m(r13)m(r24)dr3dr4. (A.1)

To obtain this function, the two-dimensional Fourier’s transform of individual members

of previous equation must be found. The two-dimensional Fourier’s transform is given by

F̂ (t) =
∫
F (x)e−ix·tdx, (A.2)

and the inverse Fourier’s transform is provided by

F (x) =
1

4π2

∫
F̂ (t)eix·tdt. (A.3)

Let start with the evaluation of ĥ(t), given by

ĥ(t) =
∫
h(x)e−it·xdx. (A.4)

Substitution of (A.4) into polar coordinates leads to

ĥ(t, θ) =
∫ ∞

0

∫ 2π

0
h(r)e−irt(cos θ cosφ+sin θ sinφ)r drdφ =

=
∫ ∞

0

∫ 2π

0
h(r)e−irt(sin(θ−φ))r drdφ =

=
∫ ∞

0
h(r) r

(∫ 2π

0
e−irt sinαdα

)
dr (A.5)

Noticing, that bracketed term can be rewritten as (see eg. [Rektorys, 1995b, p. 663])∫ 2π

0
e−irt sinαdα = 2πJ0(rt), (A.6)
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where J0 is the Bessel’s function of the first kind and 0-th order, we arrive at expression

ĥ(t) = 2π
∫ ∞

0
h(t)J0(rt) r dr . (A.7)

Furthermore, integral (A.7) can be determined using the function K(r) instead of h(r).

Recall how the function g2(r) is derived from K(r) (Eq. (2.32)) and proceed in similar

fashion. Thus,

ĥ(t) = 2π
∫ ∞

0
h(r)rJ0(rt)dr = 2π

∫ ∞
0

1

2πr

dK̃(r)

dr
rJ0(rt)dr =

=
∫ ∞

0

dK̃(r)

dr
J0(rt)dr = t

∫ ∞
0

K̃(r)J1(rt)dr +
[
J0(rt)K̃(r)

]∞
0
, (A.8)

where the function K̃(r) = K(r) − πr2 is a counterpart of the function h(r) and J1 is the

Bessel’s function of the first kind and first order. The last term in Eq. (A.8) vanishes, because

K̃(0) = 0 and for r →∞ J0(rt)→ 0 and K(r)→ const.

The value of m̂(t) is provided by

m̂(t) = 2π
∫ ∞

0
H(R− r)J0(rt) r dr = 2π

∫ R

0
J0(rt) r dr. (A.9)

Note that (see [Rektorys, 1995b, p. 664])

d

dr
(rJ1(r)) = J1(r) + r

dJ1(r)

dr
= J1(r) + (−J1(r) + rJ0(r)) = rJ0(r),

so integral (A.9) yields

m̂(t) =
[
2πr

t
J1(rt)

]R
0

=
2πR

t
J1(Rt) (A.10)

Using similar procedure and employing the relation (A.7), the inverse transform of func-

tion M̂(t) can be obtained as

M(r) =
1

2π

∫ ∞
0

M̂(t)tJ0(rt)dt. (A.11)



Appendix B

PARAMETER SETTINGS FOR OPTIMIZATION

ALGORITHMS

Algorithm Parameters Value Description

POWELL Step init R Initial step length

DHC Step init R Initial step length

Step min 0.001 Minimum step length

BFGS ε 10−2 Step for numerical differentiation

Table B.1: Deterministic algorithms parameters

Parameters Value Description

N pop 64 Size of population

b 2 Shape parameter for non-uniform mutation

C mult 2. Ratio of maximum/average scaled fitness

N mut crs 2 Ratio of mutation/crossover operators

N heu max 10 Maximum number of heuristic crossovers in one cycle

Table B.2: Parameter settings for GA I
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Parameters Value Description

N pop 64 Size of population

b 2. Shape parameter for non-uniform mutation

C mult 1.2 Ratio of maximum/average scaled fitness

N heu max 10 Maximum number of heuristic crossovers in one cycle

N uni mut 8 Number of uniform mutations for one generation

N bnd mut 8 Number of boundary mutations for one generation

N nun mut 8 Number of non-uniform mutations for one generation

N mnu mut 8 Number of multi-non-uniform mutations for one generation

N smp crs 4 Number of simple crossover for one generation

N sar crs 4 Number of simple arithmetic crossover for one generation

N war crs 4 Number of whole arithmetic crossover for one generation

N heu crs 4 Number of heuristic crossovers for one generation

Table B.3: Parameter settings for GA II

Parameters Value Description

N pop 8 Size of population

N pop det 4 Number of individuals used for DHC

N pop max 20 Number of populations before application of DHC

N heu max 10 Maximum number of heuristic crossovers in one cycle

N smp crs 1 Number of simple crossover for one generation

N sar crs 1 Number of simple arithmetic crossover for one generation

N war crs 1 Number of whole arithmetic crossover for one generation

N heu crs 1 Number of heuristic crossovers for one generation

Table B.4: Parameter settings for HGA
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Parameters Value Description

N pop 64 Size of population

b 2. Shape parameter for non-uniform mutation

C mult 1.2 Ratio of maximum/average scaled fitness

N heu max 10 Maximum number of heuristic crossovers in one cycle

N uni mut 3 Number of uniform mutations for one generation

N bnd mut 3 Number of boundary mutations for one generation

N nun mut 3 Number of non-uniform mutations for one generation

N mnu mut 3 Number of multi-non-uniform mutations for one generation

N smp crs 1 Number of simple crossover for one generation

N sar crs 1 Number of simple arithmetic crossover for one generation

N war crs 1 Number of whole arithmetic crossover for one generation

N heu crs 1 Number of heuristic crossover for one generation

Table B.5: Parameter settings for GA III

Parameters Value Description

N pop 200 Size of population

F .6

CR .9 Crossover rate

Table B.6: Parameter settings for DE
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Parameters Value Description

N pop 64 Size of population

q .08 Probability of selecting best individual

b 2. Shape parameter for non-uniform mutation

N heu max 10 Maximum number of heuristic crossovers in one cycle

p uni mut .225 Probability of uniform mutation

p bnd mut .225 Probability of boundary mutation

p nun mut .225 Probability of non-uniform mutation

p mnu mut .225 Probability of multi-non-uniform mutation

p smp crs .025 Probability of simple crossover

p sar crs .025 Probability of simple arithmetic crossover

p war crs .025 Probability of whole arithmetic crossover

p heu crs .025 Probability of heuristic crossover

T max .1 Ratio of T max and average F of starting population

T min ε/10 Minimum temperature

T mult .9 Ration of cooling

N success max 500 Maximum number of accepted individuals

N counter max 5000 Maximum number of iteration for fixed T

Table B.7: Parameter settings for AUSA

Parameters Value Description

W 1500 Length of adaptation window

I 1000 Adaptation interval

M 10 Generations to be considered back

P .9 Proportion of ∆ to pass back

Table B.8: Adaptivity parameters setting
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Parameters Value Description

N pop 64 Size of population

q .08 Probability of selecting best individual

b 2. Shape parameter for non-uniform mutation

N heu max 10 Maximum number of heuristic crossovers in one cycle

p uni mut .3 Probability of uniform mutation

p nun mut .3 Probability of non-uniform mutation

p mnu mut .3 Probability of multi-non-uniform mutation

p s2p crs .1 Probability of two-point crossover

T max .1 Ratio of T max and average F of starting population

T min ε/10 Minimum temperature

T mult .9 Ration of cooling

N success max 500 Maximum number of accepted individuals

N counter max 5000 Maximum number of iteration for fixed T

Table B.9: Parameter settings for AUSA with problem-dependent operators
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