Department of Mechanics: Student's corner: Pružnost a pevnost: Speciální cvičení: Difference between revisions

From Wiki @ Department of mechanics
Jump to navigation Jump to search
(Created page with "== Speciální cvičení z předmětu Pružnost a pevnost ==")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
== Speciální cvičení z předmětu Pružnost a pevnost ==
= Cvičení =
 
<!-- some LaTeX macros we want to use: -->
$
  \newcommand{\Re}{\mathrm{Re}\,}
  \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}
$
We consider, for various values of $s$, the $n$-dimensional integral
<math>
\begin{align}
  \label{def:Wns}
  W_n (s)
  &:=
  \int_{[0, 1]^n}
    \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}
\end{align}
</math>
which occurs in the theory of uniform random walk integrals in the plane,
where at each step a unit-step is taken in a random direction.  As such,
the integral \eqref{def:Wns} expresses the $s$-th moment of the distance
to the origin after $n$ steps.
By experimentation and some sketchy arguments we quickly conjectured and
strongly believed that, for $k$ a nonnegative integer
\begin{align}
  \label{eq:W3k}
  W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.
\end{align}
Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers.
The reason for \eqref{eq:W3k} was  long a mystery, but it will be explained
at the end of the paper.
 
= Seminární práce =

Latest revision as of 17:13, 14 December 2012

Cvičení

$

 \newcommand{\Re}{\mathrm{Re}\,}
 \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}

$

We consider, for various values of $s$, the $n$-dimensional integral [math]\displaystyle{ \begin{align} \label{def:Wns} W_n (s) &:= \int_{[0, 1]^n} \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x} \end{align} }[/math] which occurs in the theory of uniform random walk integrals in the plane, where at each step a unit-step is taken in a random direction. As such, the integral \eqref{def:Wns} expresses the $s$-th moment of the distance to the origin after $n$ steps.

By experimentation and some sketchy arguments we quickly conjectured and strongly believed that, for $k$ a nonnegative integer \begin{align}

 \label{eq:W3k}
 W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.

\end{align} Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers. The reason for \eqref{eq:W3k} was long a mystery, but it will be explained at the end of the paper.

Seminární práce