
Abstract

This paper is aimed at optimization of black-box functions. We assume that these

functions are time demanding and therefore our goal is to minimize the number of

evaluations of these functions. As one of the today’s most promising algorithms, the

radial basis function network (RBFN) is presented. Our particular implementation

is based on the methodology presented in [12]. The novelty in our approach is the

use of an evolutionary algorithm GRADE [7]. Also several scenarios of creating new

points in the process of the approximation are presented. In comparison with the orig-

inal approach [12], the number of needed evaluations of a test function is reduced

approximately by a factor of two. To show the ability of the proposed methodology,

the suite of twenty multi-modal functions is used along with one real-world problem

of optimal control of structures undergoing large displacements.

Keywords: approximations, neural networks, radial basis function networks, global

optimization, evolutionary algorithms, genetic algorithms, multi-modal problems.

1 Introduction

The ultimate goal of every optimization research is to develop a method capable of

solving minimization problems for black-box functions. With this term we will under-

stand unconstrained, real and often multi-modal functions without any knowledge of

their derivatives or continuity. This is the case of many engineering problems usually

connected with some form of a finite element analysis, which can cause non-linearity

and discontinuity of a solved problem. We also assume that the optimized function is

time demanding and therefore our goal is to minimize the number of evaluations of

this function.

As one of the today’s most promising algorithms, the radial basis function net-

1

Paper 0123456789

Black-Box Function Optimization using
Radial Basis Function Networks

A. Kučerová, M. Lepš and J. Skoček
Department of Structural Mechanics, Faculty of Civil Engineering
Czech Technical University in Prague, Czech Republic

Civil-Comp Press, 2005.
Proceedings of the Eighth International Conference
on the Application of Artificial Intelligence
to Civil, Structural and Environmental Engineering,
B.H.V. Topping (Editor),
Civil-Comp Press, Stirling, Scotland.

FUNCTION

APPROXIMATION

RBFN

BLACK − BOX
GRADE

Figure 1: A scheme of the proposed algorithm

work (RBFN) is presented. This method comes from the domain of a general approx-
imation, usually called Response Surface methods [9], Diffuse Approximations [7]
or Surrogate models [8]. Methodology is based on an analogy with artificial neural
networks, but differs in several points: the neural net is created only with one layer of
neurons, it has a specific type of a transfer function and the training of this net leads
to the solution of a linear system of equations.

Our particular implementation is based on the specifications presented in [12]. Par-
ticularly, the RBFN interpolates a given black-box function by the sum of basis func-
tions values and neural weights for each neuron. The value ofa basis function is
influenced by its “distance” from the neuron’s center to the vector of variables, for
which we want to know the approximate function value. The neural weights are then
derived from the condition of equality between the values ofblack-box function and
its RBFN approximation.

The novelty in our approach is the use of the evolutionary algorithm GRADE [7]
to find the global maximum of the RBFN approximation. Moreover, several scenarios
of creating new points in the process of the approximation are presented.

The rest of the paper is organized as follows: Section 2 describes the two basic
methods creating the core of the proposed procedure, namelythe evolutionary al-
gorithm GRADE and a particular implementation of a RBFN neural network. An
attention is paid especially to the process of training RBNFas well as to the process
of adding new points. Section 3 tries to show the ability of the proposed method to
solve a suite of twenty multi-modal functions (already presented e.g. in [5]) along
with one real-world problem of optimal control of structures undergoing large dis-
placements [7]. The final Section 4 sums up several interesting remarks.

2 Description of used stochastic methods

The algorithm used herein to solve ablack-box function is based on an efficient com-
bination of an artificial neural network, namelythe radial basis function network
(RBFN) [12, 8], and an evolutionary algorithm GRADE [7]. Thebasic principle of
this methodology is the interpolation of an objective function by the neural network
and a search for the global optimum using the evolutionary algorithm. The simplified
scheme of the optimization process is shown in Figure 1.

The main advantage of the proposed methodology is a fact thatthe evolutionary

2

algorithm GRADE operates directly on an approximation of anexpensive black-box
function. This black-box function is evaluated only duringthe process of adding new
points to the RBFN neural network. Therefore the task of adding new points into the
RBFN is crucial for optimization as will be discussed later.

2.1 Evolutionary algorithm GRADE

Evolutionary algorithms belong to the most popular optimization methods nowadays.
They follow up an analogy of processes that run in nature within the evolution of liv-
ing organisms over a period of many millions of years. Unlikethe traditional gradient
optimization methods, evolutionary algorithms operate onso called population which
is a set of possible solutions, applying the “genetic” operators, such as cross-over,
mutation and selection. The principles of evolutionary algorithm was first proposed
by Holland [4]. Ever since, the evolutionary algorithms have reached wide applica-
tion domain (e.g. see the books of Goldberg [3] and Michalewicz [11] for extensive
review).

Evolutionary algorithms in the original form operate on population of so-called
chromosomes. These are binary strings which represent possible solutions in a certain
way. In engineering problems we are usually working with real variables. Adaptation
of the evolutionary algorithm idea to this problem was made possible by Storn [14]
by considering the chromosomes as vectors instead of binarystrings and using differ-
ential operators which can affect the distance between the chromosomes. In this work
we employ an improved version of this kind of algorithm referred to as algorithm
GRADE (GRadient-based Atavistic Differential Algorithm).

In the tradition of evolutionary methods, the first step is togenerate a starting gen-
eration of chromosomes by choosing the random values of all state variables. Sub-
sequently we repeat until convergence the cycles containing: the creation of a new
generation of chromosomes, by mutation or cross-over, and the evaluation and selec-
tion, which reduces the actual number of chromosomes to the initial number. For the
sake of clarity, a sketchy scheme of the algorithm GRADE follows:

Scheme of the algorithm GRADE

• The first operation is theMUTATION, which creates a new solutionx using the
operation

x = y + k(y − z) ,

wherey is a solution from actual population,z is a randomly created solution
andk is a real number from given bounds. This operation is used to ensure the
diversity within a population.

• The second operation is theCROSS-OVER, which creates a new solutionx by
computing the difference between two existing solutionsy andz, multiplied
by coefficientsc ands, and adding the result to the better one of the first two

3

solutions:
x = max(y, z) + cs(y − z) ,

wherec is a real random number ands changes the direction of the descent
(y − z) in favor to a better solution from vectorsy andz.

• The next operationEVALUATION computes the objective function value for
each new solution.1

• The last and the most important operator in each cycle is theTOURNAMENT
SELECTION, where the worst individual from two randomly selected solutions
is deleted. This operator is repeated until the number of solution is the same as
at the beginning of the cycle.

As a result of the optimization process, the solution with the highest objective func-
tion value is kept. For a more elaborate presentation of the proposed procedure see [7].

2.2 Radial Basis Function Network

Artificial neural networks (NNs)2 were developed to simulate the processes in a human
brain but later on it was discovered that they can be effectively used for many problems
like pattern recognition, different approximations and predictions, control of systems,
etc. In this work, they will be used “only” as general approximation tools.

A neural network is created with several neurons (here called perceptrons) which
are mutually interconnected. In this work we will deal with so calledfeed-forward,
layered neural networks, i.e. neurons form sorted layers, each layer is connected with
the previous and the next layer and the signal is processed directly from the inputs
neurons to the output ones.

c 2,b 2

c n,b n

c 1,b 1

c N,bN

(x)b i Fw i(x)
N

i=1

{x}

.

{x}

(x)

(x)

(x)

(x)

Figure 2: An approximation using RBFN

1Note that we assume maximization in this work.
2Hereafter we will use only the termneural networkinstead ofartificial neural networkfor the sake

of simplicity.

4

2.2.1 Approximation of a black-box function by RBFN

This type of a neural network is designed to simulate a black-box functionf(x) by
its interpolationF (x) given by the sum of basis functions multiplied by appropriate
weights, see Figure 2. In other words,

f(x) ≈ F (x) =
N

∑

i=1

bi(x)wi , (1)

wherex is a vector of unknowns,bi(x) is a basis function of thei-th neuron,wi is
a weight of thei-th neuron andN is the total number of neurons creating the net.

The basis function has the most often used “Gaussian” shape given by

bi(x) = e−‖x−ci‖
2/r , (2)

whereci is a vector of coordinates of the center for thei-th basis function andr is
a norm. Normalization ensures that basis functions will produce similar values for
different scales in multidimensional spaces. The selection of the normr is not crucial
and therefore the most common form is used:

r =
dmax

dim
√

dimN
, (3)

wheredmax is the maximal distance within the domain,dim is the number of dimen-
sions andN is the number of neurons.

2.2.2 Training of a neural net

The weights of individual neurons can be obtained by the process of “training”, see
also Figure 3. Consider a set of training data

(xi, yi) , i = 1, . . . , p , (4)

whereyi is a black-box function value in thexi point andp is a total number of
records in the training set. For a usual RBFN the training setis identical with the basis
functions centers, therefore we can write the training set also as

(ci, yi) , i = 1, . . . , N . (5)

The weightswi can be obtained from the equality between function values of
a black-box function and its NN approximation in the function basis centers. Par-
ticularly,

f(ci) = F (ci) (6)

and therefore

min E = min

N
∑

i=1

[(yi − F (ci))
2 + λiw

2
i] , (7)

5

whereλi is used to regularize the system of equations (15) and in our computations it
is set toλi = 10−7. Inserting Equation (1) into (7) we get

min E = min
N

∑

i=1

[(yi −
N

∑

j=1

bj(ci)wj)
2 + λiw

2
i] . (8)

To satisfy Equation (7) resp. (8), the following identity have to be fulfilled

∂E

∂wi
= 2

N
∑

i=1

[(yi −
N

∑

j=1

bj(ci)wj)(bi(ci)) + λiwi] = 0 . (9)

Define a matrix[A]N
[A]N = [B]N + [Λ]N , (10)

where[B]N is a basis function matrix

[B]N = [b1,b2, . . . ,bN]T , (11)

bi = [b1(ci), b2(ci), . . . , bN (ci)] (12)

and a[Λ]N is a diagonal matrix with allλi non-zero members. Next, we can write
a vector of outputs

w = [w1, w2, . . . , wN] (13)

and a vector of black-box function values

y = [y1, y2, . . . , yN] . (14)

Then, the Equation (9) becomes

[A]N w = y . (15)

c 1

c 2

c n

c N

y 1

y N

y n

y 2

b (c)
1,...,N1

.

A w = y = (B +)w = y w

b (c)
1,...,NN

b (c)
1,...,Nn

b (c)
1,...,N2

1

Figure 3:Training of a neural net

By solving this system oflinear equations we can obtain a vector of weightsw for
the given training set. Hence, from Equation (1), we can easily compute approxima-
tion F (x) ≈ f(x) for any vectorx.

6

2.2.3 Adding new centers into RBFN

Recall the fact that we want to optimize the given black-box function. At this point,
the RBFN approximation of the black-box function is createdand hopefully, the op-
timum of the approximation and the original function will belocated nearby. The
above-mentioned evolutionary algorithm GRADE is used to find the optimum of the
approximating function, i.e. the RBFN. It is obvious that especially in early stages,
the RBFN is not able to interpolate correctly the given function and therefore new
centers have to be added to minimize the difference between the RBFN and the black-
box function. Keeping in mind that the number of black-box function calls is to be
minimized, a step of adding new centers becomes very important.

To ensure a good approximation over the whole domain as well as maximum con-
vergence speed of the proposed methodology, three scenarios of creating new centers
are proposed. All of them add three new centers and always as anew point the best so-
lution found by the algorithm GRADE from the previous cycle is added. Particularly,
new centers are added as follows:

• the maximum found by GRADE and two centers created by a “hypercube method”,

• the maximum found by GRADE, one random center and one center selected by
“variational method”,

• the maximum found by GRADE, one random center and one center created by
“differential method”.

Thehypercube method proposed in [12] uses an-dimensional hypercubeS cre-
ated within the domain. Then, the first center is created inside this hypercube and the
second outside. The inner center is added to speed up the convergence, the outer to
improve global interpolation quality. The hypercubeS is centered to the last found
maximum and the length of a hypercube side is given by

l = l0
1

Cx + 1
, (16)

wherel0 is a selected initial length andCx is a number of already found optima in this
hypercube during the whole optimization process.

Thevariational method creates one new center by

cnew = cj + var · (cj − cj−1) , (17)

wherecj is a maximum found in the actual cycle,cj−1 is a maximum from the previous
cycle andvar is the variance computed from thej previous cycles.

Thedifferential method adds only one point in the sense of the “numerical” steep-
est descent, i.e.

cnew = cj + u(0, 1)(cj − cj−1) , (18)

7

Figure 4: Functionex1

in the case that the function value ofcj is greater thencj−1 and

cnew = cj + u(0, 1)(cj−1 − cj) (19)

otherwise.3

To compare these three methods, the test function calledex1was examined, see
Figure 4 or reference [12]. The functionex1is given by

f(x) = f(x, y) = 10e−0.01(x−10)2−0.01(y−15)2 sin(x) . (20)

The domain is bounded to〈0, 15〉×〈0, 20〉 and the maximum isf(7.8960, 15.0000) =
9.5585. If the difference between the approximation and theex1function falls under
10−4, the optimization process is stopped. Each of the three methods was run one
hundred times and the statistics was stored. The results areshown in Table 1.

Method used
No. evaluations Hypercube Variational Differential
Minimum 41 29 29
Maximum 207 218 68
Std. dev. 31.89 45.50 15.48
Average 126.46 44.90 42.32

Table 1:Comparison of individual methods

3Note thatu(a, b) denotes a continuous random variable uniformly distributed on an interval(a, b).

8

It is clearly visible that the differential method needs in average a minimum num-
ber of evaluations. Also the deviation in results for the differential method is the
smallest among all three methods. The progress in comparison with referenced hy-
percube method is noteworthy. Hence all following computations are done using the
differential version of our RBFN methodology. To conclude this section, the detailed
description of individual steps of proposed procedure follows:

1. Create initial neurons,

2. Compute parameters of basis functionsdmax andr,

3. Repeat next steps until stopping criteria are met

4. Compute black-box function values in new center points

5. Compute values of basis functionsbi(ci) and output weightswi,

6. Find a maximum using the evolutionary algorithm GRADE,

7. Add three new points using the differential method.

3 Solved examples

To show the abilities of the proposed methodology, the set oftwenty multi-modal
functions, firstly compiled in [1] and later used e.g. in [5],was used. The obtained
results were compared to those presented in the above mentioned papers.

The second test example shows the applicability of the RBFN for practical tasks.
The optimal control of a structure in the domain of large deformations [7] is conducted
and results are compared to alternative optimization methods.

3.1 The set of twenty multi-modal functions

The used set contains the suite of twenty well-known multi-modal functions known
from optimization area. The complete list of these functions can be found in Ap-
pendix A. The proposed algorithm is compared with followingevolutionary methods:

• SBGA Standard Binary Genetic Algorithm [1],

• EBGA Extended Binary Genetic Algorithm [1],

• DE Differential Evolution [15], [6],

• SADE Simplified Atavistic Genetic Algorithm [6], [5],

• GRADE GRadient-based Atavistic Differential Algorithm [7] (fordetails, see
also Section 2.1).

9

The statistics over one hundred runs was computed to tackle random circumstances.
The optimization process was stopped after 300 cycles (equals to 900 evaluations) or
if the maximum was found with the given precision. Otherwise, the optimization run
was marked as unsuccessful. The statistics from one hundredruns follows:

No. successful No. evaluations
Function Dim. runs Minimum Maximum Average
F1 1 100 12 36 19.44
F3 1 40 12 144 69.15
Branin 2 100 21 111 46.20
Camelback 2 100 9 87 54.21
Goldprice 2 1 321 321 321
PShubert1 2 1 36 36 36
PShubert2 2 2 303 348 325.5
Quartic 2 100 18 117 78.48
Shubert 2 20 264 846 481.62
Hartman1 3 97 15 321 83.20
Shekel1 4 0 - - -
Shekel2 4 0 - - -
Shekel3 4 0 - - -
Hartman2 6 39 162 351 252
Hosc45 10 100 465 852 625.98
Brown1 20 0 - - -
Brown3 20 0 - - -
F5n 20 0 - - -
F10n 20 0 - - -
F15n 20 0 - - -

Table 2: Results for the function set

A comparison among evolutionary algorithms is presented inTable 3. In Table 3,
Fc stands for an average number of function calls andSuc for a number of successful
runs out of one hundred.

From the Table 3 it is obvious that the proposed combination of RBFN and evo-
lutionary algorithm cannot be aimed at optimization of multi-modal functions. On
the other hand, the ability of the proposed algorithm to solve problems with a smaller
number of local minima is remarkable.

3.2 Optimal control of structures under large deformations

The aim of this section is to show the possibilities of the proposed procedure in solv-
ing practical problems. As an example, the optimal control of a “T”-shaped beam is
solved, see Figure 5. The goal is to find the values of a loadingforce and a bending
moment such that the final shape is obtained. The objective function is defined as

10

SBGA EBGA DE SADE GRADE RBFN
Function Dim. Suc Fc Suc Fc Suc Fc Suc Fc Suc Fc Suc Fc
F1 1 100 5566 100 784 100 52 100 72 100 52 100 19
F3 1 100 5347 100 744 100 98 100 88 100 88 40 69
Branin 2 81 8125 100 2040 100 506 100 478 100 383 100 46
Camelback 2 98 1346 100 1316 100 244 100 273 100 200 100 54
Goldprice 2 59 8125 100 4632 100 350 100 452 100 334 1 321
PShubert1 2 63 7192 100 8853 83 1342 100 2738 100 5211 1 36
PShubert2 2 59 7303 100 4116 90 908 100 1033 100 1932 2 326
Quartic 2 83 8181 100 3168 97 313 100 425 100 307 100 78
Shubert 2 93 6976 100 2364 94 10,098 100 585 100 632 20 482
Hartman1 3 94 1993 100 1680 100 284 100 464 100 305 97 83
Shekel1 4 1 7495 97 36,388 72 1968 99 61,243 100 51,461 0 -
Shekel2 4 0 - 98 36,774 91 1851 100 17,078 100 15,380 0 -
Shekel3 4 0 - 100 36,772 89 1752 99 11,960 100 5548 0 -
Hartman2 6 23 19,452 92 53,792 16 4241 67 2297 59 199,502 39 252
Hosc45 10 0 - 2 126,139 100 1174 100 6438 100 2153 100 626
Brown1 20 0 - 0 - 100 65,346 95 163,919 100 182,234 0 -
Brown3 20 5 8410 5 106,859 100 41,760 100 43,426 100 35,480 0 -
F5n 20 0 - 100 99,945 96 38,045 66 17,785 100 7264 0 -
F10n 20 0 - 49 113,929 90 71,631 47 110,593 100 90,794 0 -
F15n 20 0 - 100 102,413 100 44,248 93 28,223 100 23,102 0 -

Tab
le

3
:

C
o

m
p

ariso
n

o
fevo

lu
tio

n
ary

alg
o

rith
m

s

1
1

-10 -5 0 5 10 15 20
-5

0

5

10

15

20

Initial shape

Final shape

F
M

EA = 12000

cGA = 5000

EI = 1000

Figure 5: An example of a T-shaped beam

Algorithm Average number of function calls
SADE 648.8

GRADE 512.4
RBFN 104.2

Table 4: Comparison of evolutionary methods in solving optimal control problem

a least square between the final and the desired displacements. The structural analysis
part takes into account large deformations and therefore the optimization problem is
highly non-linear. For more detail on this problem, see again [7]. The results in the
terms of average number of function calls are presented in Table 4.

4 Conclusions

It is evident from Table 3 that once the proposed methodologycorrectly approximates
the black-box function (the cases with 100 % successful runs) the drastic reduction
of function calls is observed. In the other cases, the procedure cannot be advised
for solving highly multi-modal functions without any tool for management of local
optima, see e.g. works [10] or [5]. Nevertheless, as indicated by the results stored
in Table 4, it can be expected that common engineering optimization tasks (such as
optimal design and/or control of structures) will lead to problems with only a limited
number of local optima. This increases the potential applicability of the proposed
approach. However, besides the problems with convergence,several difficulties (such
as numerical stability of the linear system of equations, a fully populated matrix to be
stored etc.) during the growth of neural centers were noted.In the near future, this
will be solved by clustering techniques or by orthogonalization method, see e.g. [2].

12

Acknowledgements The financial support of this work by research project of the
Czech Ministry of Education, MSM 6840770003, and by Grant Agency of the Czech
Republic with grant GACR 103/05/H506 is gratefully acknowledged.

References

[1] J. Andre, P. Siarry, and T. Dognon,An improvement of the standard genetic
algorithm fighting premature convergence in continuous optimization, Advances
in Engineering Software32 (2000), no. 1, 49–60.

[2] John A. Bullinaria,Introduction to neural networks - course material and useful
links, 2005,http://www.cs.bham.ac.uk/∼jxb/inn.html.

[3] D. Goldberg,Genetic Algorithms in Search, Optimization and Machine Learn-
ing, Addison-Wesley, 1989.

[4] J. H. Holland,Adaptation in Natural and Artificial Systems, MIT Press, 1975.
[5] O. Hrstka and A. Kučerová,Improvements of real coded genetic algorithms

based on differential operators preventing the premature convergence, Advances
in Engineering Software35 (2004), no. 3–4, 237–246.

[6] O. Hrstka, A. Kučerová, M. Lepš, and J. Zeman,A competitive comparison of
different types of evolutionary algorithms, Computers & Structures81 (2003),
no. 18–19, 1979–1990.

[7] A. Ibrahimbegović, C. Knopf-Lenoir, A. Kučerová, and P. Villon, Optimal de-
sign and optimal control of elastic structures undergoing finite rotations, In-
ternational Journal for Numerical Methods in Engineering61 (2004), no. 14,
2428–2460.

[8] Marios K. Karakasis and Kyriakos C. Giannakoglou,On the use of surrogate
evaluation models in multi-objective evolutionary algorithms, in Neittaanmäki
et al. [13].

[9] Jongsoo Lee and Prabhat Hajela,Application of classifier systems in improving
response surface based approximations for design optimization, Computers &
Structures79 (2001), 333–344.

[10] Samir W. Mahfoud,Niching methods for genetic algorithms, Ph.D. thesis, Uni-
versity of Illinois at Urbana-Champaign, Urbana, IL, USA, 1995.

[11] Z. Michalewicz,Genetic Algorithms + Data Structures = Evolution Programs,
3rd ed., Springer-Verlag, 1999.

[12] H. Nakayama, K. Inoue, and Y. Yoshimori,Approximate optimization using
computational intelligence and its application to reinforcement of cable-stayed
bridges, in Neittaanmäki et al. [13].

[13] P. Neittaanmäki, T. Rossi, S. Korotov, E. Oñate, P. P´eriaux, and D. Knörzer
(eds.),European congress on computational methods in applied sciences and
engineering (ECCOMAS 2004), Jyväskylä, 2004.

[14] R. Storn, On the usage of differential evolution for function optimization,
NAPHIS 1996, Berkeley, 1996, pp. 519–523.

[15] R. Storn and K. Price,Differential Evolution : A simple and efficient adaptive

13

scheme for global optimization over continuous spaces, Tech. Report TR-95-
012, University of Berkeley, 1995.

A List of test functions

• F1:
f(x) = 2(x − 0.75)2 + sin(5πx − 0.4π) − 0.125 , (21)

where
0 ≤ x ≤ 1

• F3:

f(x) = −
5

∑

j=1

[j sin[(j + 1)x + j]] , (22)

where
−10 ≤ x ≤ 10

• Branin:

f(x, y) = a(y − bx2 + cx − d)2 + h(1 − f) cos x + h , (23)

where
a = 1, b = 5.1/4π2, c = 5/π, d = 6 ,

h = 10, f = 1/8π,−5 ≤ x ≤ 10, 0 ≤ y ≤ 15

• Camelback:

f(x, y) =

(

4 − 2.1x2 +
x4

3

)

x2 + xy + (−4 + 4y2)y2 , (24)

where
−3 ≤ x ≤ 3,−2 ≤ y ≤ 2

• Goldprice:

f(x, y) = [1 + (x + y + 1)2(19 − 14x + 3x2 − 14y + 6xy + 3y2)] ·
[30 + (2x − 3y)2(18 − 32x + 12x2 + 48y − 36xy + 27y2)] ,

(25)

where
−2 ≤ x ≤ 2,−2 ≤ y ≤ 2

14

• PShubert 1 a 2:

f(x, y) =

{

5
∑

i=1

i cos[(i + 1)x + i]

}

·
{

5
∑

i=1

i cos[(i + 1)y + i]

}

+

β[(x − 1.42513)2 + (y + 0.80032)2] , (26)

where
−10 ≤ x ≤ 10,−10 ≤ y ≤ 10,

pro PShubert1:β = 0.5
pro PShubert2:β = 1.0

• Quartic:

f(x, y) =
x4

4
− x2

2
+

x

10
+

y2

2
, (27)

where
−10 ≤ x ≤ 10,−10 ≤ y ≤ 10

• Shubert:

f(x, y) =

{

5
∑

i=1

i cos[(i + 1)x + i]

}

·
{

5
∑

i=1

i cos[(i + 1)y + i]

}

, (28)

where
−10 ≤ x ≤ 10,−10 ≤ y ≤ 10

• Hartman 1:

f(x1, x2, x3) = −
4

∑

i=1

cie
−

∑

3
j=1

aij(xi−pij)
2

, (29)

where
0 ≤ xi ≤ 1, i = 1, ..., 3

x = (x1,, x3), pi = (pi1,, pi3), ai = (ai1, ..., ai3)

i aij ci pij

1 3.0 10.0 30.0 1.0 0.36890 0.1170 0.2673
2 0.1 10.0 35.0 1.2 0.46990 0.4387 0.7470
3 3.0 10.0 30.0 3.0 0.10910 0.8732 0.5547
4 0.1 10.0 35.0 3.2 0.03815 0.5743 0.8828

15

• Shekel 1,2 a 3:

f(x, y) = −
m

∑

i=1

1

(xi − ai)T (xi − ai) + ci

, (30)

where
0 ≤ xj ≤ 10,

pro Shekel1:m = 5,
pro Shekel2:m = 7,
pro Shekel3:m = 10

x = {x1, x2, x3, x4}T , ai = {ai1, ai2, ai3, ai4}T

i aij ci

1 4.0 4.0 4.0 4.0 0.1
2 1.0 1.0 1.0 1.0 0.2
3 8.0 8.0 8.0 8.0 0.2
4 6.0 6.0 6.0 6.0 0.4
5 3.0 7.0 3.0 7.0 0.4
6 2.0 9.0 2.0 9.0 0.6
7 5.0 5.0 3.0 3.0 0.6
8 8.0 1.0 8.0 1.0 0.7
9 6.0 2.0 6.0 2.0 0.5
10 7.0 3.6 7.0 3.6 0.5

• Hartman 2:

f(x1, ..., x6) = −
4

∑

i=1

cie
−

∑

6
j=1

an(xi−pij)
2

, (31)

where
0 ≤ xj ≤ 1, j = 1, ..., 6

x = (x1, ..., x6), pi = (pi1, ..., pP i6), ai = (ai1, ..., ai6)

i aij ci

1 10.00 3.00 17.00 3.50 1.70 8.00 1.0
2 0.05 10.00 17.00 0.10 8.00 14.00 1.2
3 3.00 3.50 1.70 10.00 17.00 8.00 3.0
4 17.00 8.00 0.05 10.00 0.01 14.00 3.2

i aij

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

16

• Hosc 45:

f(x) = 2 − 1

n!

n
∏

i=1

xi , (32)

where
x = (x1, ..., xn), 0 ≤ xi ≤ i, n = 10

• Brown 1:

f(x) =

[

∑

j∈J

(xi − 3)

]2

+

∑

j∈J

[10−3(xi − 3)2 − (xi − xi+1) + e20(xi−xi+1] , (33)

where

J = {1, 3, ..., 19},−1 ≤ xi ≤ 4, 1 ≤ i ≤ 20 , x = (x1, ..., x20)
T

• Brown 3:

f(x) =

19
∑

i=1

[(x2
i)

(x2
i+1

+1 + (x2
i+1)

(x2
i +1)] , (34)

where
x = {x1, ..., x20}T ,−1 ≤ xi ≤ 4, 1 ≤ i ≤ 20

• F5n:

f(x) = (π/20) · (35)
{

10 sin2(πy1) +

19
∑

i=1

[(yi − 1)2 · (1 + 10 sin2(πyi + 1))] + (y20 − 1)2

}

,

where

x = {x1, ..., x20}T ,−10 ≤ xi ≤ 10, yi = 1 + 0.25(xi − 1)

• F10n:

f(x) = (π/20) · (36)
{

10 sin2(πx1) +

19
∑

i=1

[(xi − 1)2 · (1 + 10 sin2(πxi+1))] + (x20 − 1)2

}

,

where
x = {x1, ..., x20}T ,−10 ≤ xi ≤ 10

17

• F15n:

f(x) = (1/10) ·

{sin2(3πx1) +
19

∑

i=1

[(xi − 1)2(1 + sin2(3πxi+1))] +

(1/10)(x20 − 1)2[1 + sin2(2πx20)]} , (37)

where
x = {x1, ..., x20}T ,−10 ≤ xi ≤ 10

18

