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Abstract

This paper is aimed at optimization of black-box functions. We assume that these
functions are time demanding and therefore our goal is to minimize the number of
evaluations of these functions. As one of the today’s most promising algorithms, the
radial basis function network (RBFN) is presented. Our particular implementation
is based on the methodology presented in [12]. The novelty in our approach is the
use of an evolutionary algorithm GRADE [7]. Also several scenarios of creating new
points in the process of the approximation are presented. In comparison with the orig-
inal approach [12], the number of needed evaluations of a test function is reduced
approximately by a factor of two. To show the ability of the proposed methodology,
the suite of twenty multi-modal functions is used along with one real-world problem
of optimal control of structures undergoing large displacements.

Keywords: approximations, neural networks, radial basis function networks, global
optimization, evolutionary algorithms, genetic algorithms, multi-modal problems.

1 Introduction

The ultimate goal of every optimization research is to develop a method capable of
solving minimization problems for black-box functions. With this term we will under-
stand unconstrained, real and often multi-modal functions without any knowledge of
their derivatives or continuity. This is the case of many engineering problems usually
connected with some form of a finite element analysis, which can cause non-linearity
and discontinuity of a solved problem. We also assume that the optimized function is
time demanding and therefore our goal is to minimize the number of evaluations of
this function.

As one of the today’s most promising algorithms, the radial basis function net-
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Figure 1: A scheme of the proposed algorithm

work (RBFN) is presented. This method comes from the domain ohargéapprox-
imation, usually called Response Surface methods [9],uB&fApproximations [7]
or Surrogate models [8]. Methodology is based on an analagy antificial neural
networks, but differs in several points: the neural neté&atzd only with one layer of
neurons, it has a specific type of a transfer function andrtieihg of this net leads
to the solution of a linear system of equations.

Our particular implementation is based on the specificatmrsented in [12]. Par-
ticularly, the RBFN interpolates a given black-box funatimy the sum of basis func-
tions values and neural weights for each neuron. The valwe ledsis function is
influenced by its “distance” from the neuron’s center to tleetor of variables, for
which we want to know the approximate function value. Therakweights are then
derived from the condition of equality between the valueblatk-box function and
its RBFN approximation.

The novelty in our approach is the use of the evolutionargriigm GRADE [7]
to find the global maximum of the RBFN approximation. Morepgeveral scenarios
of creating new points in the process of the approximatierpaesented.

The rest of the paper is organized as follows: Section 2 decthe two basic
methods creating the core of the proposed procedure, nammelgvolutionary al-
gorithm GRADE and a patrticular implementation of a RBFN @uretwork. An
attention is paid especially to the process of training REfSFwell as to the process
of adding new points. Section 3 tries to show the ability & gnoposed method to
solve a suite of twenty multi-modal functions (already preasd e.g. in [5]) along
with one real-world problem of optimal control of structarendergoing large dis-
placements [7]. The final Section 4 sums up several inteigstimarks.

2 Description of used stochastic methods

The algorithm used herein to solvékack-box function is based on an efficient com-
bination of an artificial neural network, namdliye radial basis function network
(RBFN) [12, 8], and an evolutionary algorithm GRADE [7]. Thasic principle of
this methodology is the interpolation of an objective fuoctby the neural network
and a search for the global optimum using the evolutionaggrghm. The simplified
scheme of the optimization process is shown in Figure 1.

The main advantage of the proposed methodology is a facthbatvolutionary



algorithm GRADE operates directly on an approximation okeapensive black-box

function. This black-box function is evaluated only durthg process of adding new
points to the RBFN neural network. Therefore the task of mgldiew points into the

RBFN is crucial for optimization as will be discussed later.

2.1 Evolutionary algorithm GRADE

Evolutionary algorithms belong to the most popular opteian methods nowadays.
They follow up an analogy of processes that run in natureiwitie evolution of liv-
ing organisms over a period of many millions of years. Untike traditional gradient
optimization methods, evolutionary algorithms operatsoialled population which
is a set of possible solutions, applying the “genetic” opms such as cross-over,
mutation and selection. The principles of evolutionaryoalipm was first proposed
by Holland [4]. Ever since, the evolutionary algorithms @aeached wide applica-
tion domain (e.g. see the books of Goldberg [3] and Michatel1] for extensive
review).

Evolutionary algorithms in the original form operate on ptgtion of so-called
chromosomes. These are binary strings which represenbpmsslutions in a certain
way. In engineering problems we are usually working witH v@aiables. Adaptation
of the evolutionary algorithm idea to this problem was madssjble by Storn [14]
by considering the chromosomes as vectors instead of batangs and using differ-
ential operators which can affect the distance betweenhtt@msomes. In this work
we employ an improved version of this kind of algorithm redéer to as algorithm
GRADE (GRadient-based Atavistic Differential Algorithm).

In the tradition of evolutionary methods, the first step igémerate a starting gen-
eration of chromosomes by choosing the random values ofail sariables. Sub-
sequently we repeat until convergence the cycles contirtime creation of a new
generation of chromosomes, by mutation or cross-over, lmmévaluation and selec-
tion, which reduces the actual number of chromosomes tanthialinumber. For the
sake of clarity, a sketchy scheme of the algorithm GRADEofe:

Scheme of the algorithm GRADE

e The first operation is th®UTATI ON, which creates a new solutionusing the
operation

X:y+k(y—Z),

wherey is a solution from actual population,is a randomly created solution
andk is a real number from given bounds. This operation is usedsare the
diversity within a population.

e The second operation is ti@ROSS- OVER, which creates a new solutionby
computing the difference between two existing solutignand z, multiplied
by coefficientsc ands, and adding the result to the better one of the first two



solutions:
X = maX(y7 Z) =+ CS(y - Z) )

wherec is a real random number andchanges the direction of the descent
(y — z) in favor to a better solution from vectoysandz.

e The next operatiofEVALUATI ON computes the objective function value for
each new solutioh.

e The last and the most important operator in each cycle iSTOERNAMVENT
SELECTI ON, where the worst individual from two randomly selected sohs
is deleted. This operator is repeated until the number eiftsoi is the same as
at the beginning of the cycle.

As a result of the optimization process, the solution withhighest objective func-
tion value is kept. For a more elaborate presentation ofriyegsed procedure see [7].

2.2 Radial Basis Function Networ k

Artificial neural networks (NN$)were developed to simulate the processes in a human
brain but later on it was discovered that they can be effelstirsed for many problems
like pattern recognition, different approximations andgictions, control of systems,
etc. In this work, they will be used “only” as general approation tools.

A neural network is created with several neurons (here @¢qérceptrons) which
are mutually interconnected. In this work we will deal with calledfeed-forward,
layered neural networks, i.e. neurons form sorted layers, eachr lay®nnected with
the previous and the next layer and the signal is processedtlg from the inputs
neurons to the output ones.

C1,b1(x)
cnoN@ {X/./. C2,b2x

X} — ./ \\. Zibi(x)Wi—»F(X)

C n,bn(X)

Figure 2: An approximation using RBFN

INote that we assume maximization in this work.
2Hereafter we will use only the termeural networknstead ofartificial neural networkfor the sake
of simplicity.



2.2.1 Approximation of a black-box function by RBFN

This type of a neural network is designed to simulate a btk function f (x) by
its interpolationF'(x) given by the sum of basis functions multiplied by approjgriat
weights, see Figure 2. In other words,

N

fx) = F(x) =) bi(x)w; (1)

i=1

wherex is a vector of unknowngy;(x) is a basis function of théth neuron,w; is
a weight of the-th neuron andV is the total number of neurons creating the net.

The basis function has the most often used “Gaussian” shaee by
bi(x) = e el (2)

wherec; is a vector of coordinates of the center for thn basis function and is
a norm. Normalization ensures that basis functions wildpiee similar values for
different scales in multidimensional spaces. The seleafdhe normr is not crucial
and therefore the most common form is used:

T WdimN

whered,,,... IS the maximal distance within the domaifim is the number of dimen-
sions andV is the number of neurons.

2.2.2 Training of aneural net

The weights of individual neurons can be obtained by thegseof “training”, see
also Figure 3. Consider a set of training data

(E?E)?i:17"'7p7 (4)

where7; is a black-box function value in th®; point andp is a total number of
records in the training set. For a usual RBFN the trainingsseentical with the basis
functions centers, therefore we can write the training lset as

(¢,5),i=1,...,N. (5)

The weightsw; can be obtained from the equality between function values of
a black-box function and its NN approximation in the funatioasis centers. Par-
ticularly,

flei) = F(c;) (6)
and therefore N
min £ = minZ[(@ — F(c)? + \w?] (7)



where); is used to regularize the system of equations (15) and in@upatations it
is setto); = 10~7. Inserting Equation (1) into (7) we get

N N
min B = min » [(7F — > _ bj(ci)w;)® + Aw]] . 8)
i=1 j=1
To satisfy Equation (7) resp. (8), the following identitywiedo be fulfilled
8E N N
S, 2 > 1@ = bi(e)w;) (bi(e:) + Aiw;] =0 . 9)
v i=1 j=1
Define a matriXA| ,,
[Aly = [Bly +[Aly (10)
where[B], is a basis function matrix
[Bly = [bi,by,...,ba]", (11)
bz‘ = [bl(ci), bQ(Ci), ey bN(cz)] (12)

and a[A] is a diagonal matrix with alh\; non-zero members. Next, we can write
a vector of outputs

W = [wy, Wy, ..., W] (13)

and a vector of black-box function values
y=1[U1%2 -, Un] - (14)
Then, the Equation (9) becomes

Alyw=Y. (15)

Y=([(BHNIW =Y —p W

2
Alw =

Figure 3:Training of a neural net

By solving this system dinear equations we can obtain a vector of weigitsor
the given training set. Hence, from Equation (1), we canlygasmpute approxima-
tion F'(x) ~ f(x) for any vectorx.



2.2.3 Adding new centersinto RBFN

Recall the fact that we want to optimize the given black-baxction. At this point,

the RBFN approximation of the black-box function is creaaed hopefully, the op-
timum of the approximation and the original function will becated nearby. The
above-mentioned evolutionary algorithm GRADE is used td flre optimum of the
approximating function, i.e. the RBFN. It is obvious thapesally in early stages,
the RBFN is not able to interpolate correctly the given fimttand therefore new
centers have to be added to minimize the difference betweeRBFN and the black-
box function. Keeping in mind that the number of black-bordtion calls is to be
minimized, a step of adding new centers becomes very impiorta

To ensure a good approximation over the whole domain as welaximum con-
vergence speed of the proposed methodology, three scemditoeating new centers
are proposed. All of them add three new centers and alwaya@s point the best so-
lution found by the algorithm GRADE from the previous cydeadded. Particularly,
new centers are added as follows:

¢ the maximum found by GRADE and two centers created by a “lyyier method”,

¢ the maximum found by GRADE, one random center and one cegliected by
“variational method”,

¢ the maximum found by GRADE, one random center and one cerdated by
“differential method”.

The hypercube method proposed in [12] usesadimensional hypercubg cre-
ated within the domain. Then, the first center is createdlesiis hypercube and the
second outside. The inner center is added to speed up thergemece, the outer to
improve global interpolation quality. The hypercuBds centered to the last found
maximum and the length of a hypercube side is given by

1
l=1lyg—— 16
ch+17 ( )

wherel is a selected initial length and, is a number of already found optima in this
hypercube during the whole optimization process.

Thevariational method creates one new center by
Chew = Cj +var - (¢; —cj_1) , (17)

wherec; is a maximum found in the actual cycls, ; is a maximum from the previous
cycle andvar is the variance computed from thigrevious cycles.

Thedifferential method adds only one point in the sense of the “numerical” steep-
est descent, i.e.

Chew = € +u(0,1)(c; — cj_1), (18)
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Figure 4: Functiorex1

in the case that the function value®fis greater ther,;_; and
Chew = € +1u(0,1)(cj—1 —cj) (19)

otherwise?

To compare these three methods, the test function calédvas examined, see
Figure 4 or reference [12]. The functiexlis given by

f(x) = flz,y) = 10e~001(z—10)2~0.01(y—15)? sin(z) . (20)

The domainis bounded {0, 15) x (0, 20) and the maximum ig(7.8960, 15.0000) =
9.5585. If the difference between the approximation andéRé&function falls under
10~4, the optimization process is stopped. Each of the three adstvas run one
hundred times and the statistics was stored. The resulsharen in Table 1.

Method used
No. evaluations Hypercube Variational Differential
Minimum 41 29 29
Maximum 207 218 68
Std. dev. 31.89 45.50 15.48
Average 126.46 44.90 42.32

Table 1:Comparison of individual methods

3Note thatu(a, b) denotes a continuous random variable uniformly distridate an interva(a, b).



It is clearly visible that the differential method needs weiege a minimum num-
ber of evaluations. Also the deviation in results for thdeténtial method is the
smallest among all three methods. The progress in compawigb referenced hy-
percube method is noteworthy. Hence all following compatet are done using the
differential version of our RBFN methodology. To conclutiestsection, the detailed
description of individual steps of proposed procedureofed:

1. Create initial neurons,

Compute parameters of basis functidps, andr,

Repeat next steps until stopping criteria are met

Compute black-box function values in new center points
Compute values of basis functioh$c;) and output weights;,

Find a maximum using the evolutionary algorithm GRADE,

N g M w D

Add three new points using the differential method.

3 Solved examples

To show the abilities of the proposed methodology, the sdtvehty multi-modal
functions, firstly compiled in [1] and later used e.g. in [Bjas used. The obtained
results were compared to those presented in the above medt@apers.

The second test example shows the applicability of the RB#N\bfactical tasks.
The optimal control of a structure in the domain of large defations [7] is conducted
and results are compared to alternative optimization nustho

3.1 Theset of twenty multi-modal functions

The used set contains the suite of twenty well-known mutiidal functions known
from optimization area. The complete list of these fundiaan be found in Ap-
pendix A. The proposed algorithm is compared with followawglutionary methods:

e SBGA Standard Binary Genetic Algorithm [1],
o EBGA Extended Binary Genetic Algorithm [1],

e DE Differential Evolution [15], [6],

SADE Simplified Atavistic Genetic Algorithm [6], [5],

GRADE GRadient-based Atavistic Differential Algorithm [7] (faletails, see
also Section 2.1).



The statistics over one hundred runs was computed to taaktkom circumstances.
The optimization process was stopped after 300 cycles [@¢m&00 evaluations) or
if the maximum was found with the given precision. Otheryibe optimization run
was marked as unsuccessful. The statistics from one hunainedollows:

No. successful No. evaluations
Function  Dim. runs Minimum Maximum Average
F1 1 100 12 36 19.44
F3 1 40 12 144 69.15
Branin 2 100 21 111 46.20
Camelback 2 100 9 87 54.21
Goldprice 2 1 321 321 321
PShubertl 2 1 36 36 36
PShubert2 2 2 303 348 325.5
Quatrtic 2 100 18 117 78.48
Shubert 2 20 264 846 481.62
Hartmanl 3 97 15 321 83.20
Shekell 4 0 - - -
Shekel2 4 0 - - -
Shekel3 4 0 - - -
Hartman?2 6 39 162 351 252
Hosc45 10 100 465 852 625.98
Brownl 20 0 - - -
Brown3 20 0 - - -
F5n 20 0 - - -
F10n 20 0 - - -
F15n 20 0 - - -

Table 2: Results for the function set

A comparison among evolutionary algorithms is presentethble 3. In Table 3,
Fc stands for an average number of function calls 8ndfor a number of successful
runs out of one hundred.

From the Table 3 it is obvious that the proposed combinatidREBFN and evo-
lutionary algorithm cannot be aimed at optimization of maibdal functions. On
the other hand, the ability of the proposed algorithm to s@koblems with a smaller
number of local minima is remarkable.

3.2 Optimal control of structuresunder large deformations

The aim of this section is to show the possibilities of thepmsed procedure in solv-
ing practical problems. As an example, the optimal contf@ 6T”’-shaped beam is
solved, see Figure 5. The goal is to find the values of a loafdirgg and a bending
moment such that the final shape is obtained. The objectivetifin is defined as

10
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SBGA EBGA DE SADE GRADE RBFN
Function Dim. Suc Fc Suc Fc Suc Fc Suc Fc Suc Fc Suc Fc
F1 1 100 5566 100 784 100 52 100 72 100 52 100
F3 1 100 5347 100 744 100 98 100 88 100 88 40
Branin 2 81 8125 100 2040 100 506 100 478 100 383 100
Camelback 2 98 1346 100 1316 100 244 100 273 100 200 100
Goldprice 2 59 8125 100 4632 100 350 100 452 100 334 1
PShubertl 2 63 7192 100 8853 83 1342 100 2738 100 5211 1
PShubert2 2 59 7303 100 4116 90 908 100 1033 100 1932 2
Quiartic 2 83 8181 100 3168 97 313 100 425 100 307 100
Shubert 2 93 6976 100 2364 94 10,098 100 585 100 632 20
Hartmanl 3 94 1993 100 1680 100 284 100 464 100 305 97
Shekell 4 1 7495 97 36,388 72 1968 99 61,243 100 51,461 0
Shekel2 4 0 - 98 36,774 91 1851 100 17,078 100 15,380 0
Shekel3 4 0 - 100 36,772 89 1752 99 11,960 100 5548 0
Hartman?2 6 23 19,452 92 53,792 16 4241 67 2297 59 199,502 39
Hosc45 10 0 - 2 126,139 100 1174 100 6438 100 2153 100
Brownl 20 0 - 0 - 100 65,346 95 163,919 100 182,234 0
Brown3 20 5 8410 5 106,859 100 41,760 100 43,426 100 35,480 0
F5n 20 0 - 100 99,945 96 38,045 66 17,785 100 7264 0
F10n 20 0 - 49 113,929 90 71,631 47 110,593 100 90,794 0
F15n 20 0 - 100 102,413 100 44,248 93 28,223 100 23,102 0

19
69
46
54
321
36
326
78
482
83

252
626
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Figure 5: An example of a T-shaped beam

Algorithm  Average number of function calls

SADE 648.8
GRADE 512.4
RBFN 104.2

Table 4. Comparison of evolutionary methods in solving moalicontrol problem

a least square between the final and the desired displaceniémt structural analysis
part takes into account large deformations and theref@®timization problem is
highly non-linear. For more detail on this problem, see ag@]. The results in the
terms of average number of function calls are presentedbie

4 Conclusions

It is evident from Table 3 that once the proposed methodobogsectly approximates
the black-box function (the cases with 100 % successful)rtiresdrastic reduction
of function calls is observed. In the other cases, the pragedannot be advised
for solving highly multi-modal functions without any toabif management of local
optima, see e.g. works [10] or [5]. Nevertheless, as inditdty the results stored
in Table 4, it can be expected that common engineering opditioin tasks (such as
optimal design and/or control of structures) will lead tolgems with only a limited

number of local optima. This increases the potential appllty of the proposed

approach. However, besides the problems with convergseeeral difficulties (such
as numerical stability of the linear system of equationsillg populated matrix to be
stored etc.) during the growth of neural centers were nolledhe near future, this
will be solved by clustering techniques or by orthogonadimamethod, see e.g. [2].
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A List of test functions

e F1:
f(z) = 2(x — 0.75) + sin(57x — 0.47) — 0.125 , (21)
where
0<z<1
e F3:
5
flo) == lisin[(j + Dz + ], (22)
j=1
where
-10<2 <10
e Branin:
f(z,y) =aly —bx* + cx —d)* + h(1 — f)cosz + h, (23)
where

a=1,b=>51/4r*c=5/n,d=6,

h=10,f=1/87,-5<2<10,0<y <15

e Camelback:

4

fla,y) = <4— 2.12% + %) v¥ + oy + (—4 +4y7)y" (24)

where

e Goldprice:
flx,y)= [ 1+ (z+y+ 1?19 — 142 + 32 — 14y + 62y + 3y%)] -
[ 30+ (22 — 3y)*(18 — 32z + 1227 + 48y — 36zy + 27y%)] ,

(25)

where

—2<xr<2,-2<y<2



e PShubert1a2:
flz,y) = {Zicos[(i+1)x+i]}-
{Zicos[(i + 1y + 2]} +

Bl(x — 1.42513)* + (y + 0.80032)?]

where
—10 <z <10,—-10 < y < 10,

pro PShubertls = 0.5
pro PShubert25 = 1.0

e Quartic:
A e N Vo
f@’y)_z_?*E*E’
where
—10<2<10,-10<y <10
e Shubert:
5
fla,y) = {Zz’cos[(z’ + 1)x+z’]} -
=1
5
{Zicos[(i + 1y + z]} ,
i=1
where
~10<z<10,-10<y < 10
e Hartman 1: )
f('rlwrQa .1'3) - Zciei 2?21 aij(miipijy )
=1
where

I

xr = (.CCl, ,.CC?)),pZ = (pih ----7pi3)7ai = (aﬂ, ...70,23)

Qij G Pij

3.0 10.0 30.0 1.0 0.36890 0.1170
0.1 10.0 35.0 1.2 0.46990 0.4387
3.0 10.0 30.0 3.0 0.10910 0.8732
0.1 10.0 35.0 3.2 0.03815 0.5743

INFANNIES

0.2673
0.7470
0.5547
0.8828

15

(26)

(27)

(28)

(29)



e Shekel 1,2 a3:

o 1
flay) == T : (30)
where

pro Shekellm = 5,
pro Shekel2m = 7,
pro Shekel3m = 10

Tr = {$1,$2,$3,$4}T,az‘ = {ailaai27ai37ai4}T

Qij Ci
40 40 40 40 0.1
1.0 10 10 1.0 0.2
80 80 80 80 0.2
6.0 6.0 6.0 6.0 04
30 70 3.0 70 04
20 90 20 90 0.
50 50 3.0 3.0 0.6
80 1.0 80 1.0 0.7
6.0 20 6.0 2.0 0.5
O 70 36 70 36 05

P OO ~NO UL, WNR~

e Hartman 2: A

f(z1, .y m6) = — ZQ‘@_ e , (31)
i=1
where
0<z;<1,j=1,..6

xr = (.Tl, ...,.’,13‘6)7]?2‘ = (pilu 7pP’l6),CLZ = (aih ---aaiG)

Qg5 C;

10.00 3.00 17.00 350 170 8.00 1.0
0.05 10.00 17.00 0.10 8.00 14.00 1.2
3.00 350 170 10.00 17.00 8.00 3.0
17.00 8.00 0.05 10.00 0.01 14.00 3.2

INNANNIES

i

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

A WN R
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Hosc 45:
f@)y=2—-=T]=. (32)

where

Brown 1:

f(z) = [Z(azi —3)| +
2[10_3(1‘2 - 3)2 - (I‘Z - xi—l—l) + 620(xi_mi+l] s (33)

jeJ
where

J=1{1,3,..,19}, -1 <2; <4,1 <i<20,2=(x1,...,290)"

Brown 3: o
fla) =Y [(ad)Eatt 4 (o, ) =] (34)
=1
where
x:{x‘l’ 7x20}7—1<,’]j‘i<471<l<20
F5n:
f(z) = (7/20) - (35)
19
{10 sin®(my1) + Y [y — 1)7 - (1+ 10sin’(my; + 1))] + (y20 — 1)2} :
=1
where

v ={x, ..., w90}, =10 < 2; < 10,5; = 1 4+ 0.25(z; — 1)

F10n:
f(x) = (m/20) - (36)
{10 sin?(may) + Z[(xl — 1) (1 4+ 10sin*(72441))] + (220 — 1)2} ,

i=1

where
Tr = {1’1, ...,.TQ()}T, —10 < Z; < 10
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e F15n:
f(x) = (1/10) -
{sin®(3mzy) + i[(wi — 1?1+ sin®*(37wi41))] +
(1/10) (90 — 1;;[11 + sin®(2mxa0)]} (37)

where
Tr = {1’1, ...,.TQ()}T, —10 < Z; < 10
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