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A broader context Ultimate goal of modeling

Ultimate goal of modeling: guaranteed prediction
Not only an approximate (numerical) solution, but also

1 error caused by the selection of a particular model from hierarchy
of relevant mathematical models

2 error caused by the numerical method delivering the approximate
solution

3 an assessment of uncertainty in model outputs caused by
uncertain input data
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A broader context Omnipresent uncertainty

Epistemic and aleatory uncertainty in modeling

Epistemic uncertainty

– the lack of knowledge.
In principle, it can (often) be reduced through improving measuring
instruments as well as data collecting and mining.

Aleatory uncertainty

– the inherent variation associated with the modeled system.
Take, for example, the randomness of material parameters, or the
variability of the weather.

Consequently, our mathematical models are burdened with uncertainty
in input data.
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A broader context Omnipresent uncertainty

Examples from engineering

A cantilever beam

modeled by

(cEt3(x)v ′′(x))′′ = f (x) on [a, b], and boundary conditions
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A broader context Omnipresent uncertainty

Examples from engineering

A cantilever beam

modeled by

(cEt3(x)v ′′(x))′′ = f (x) on [a, b], and boundary conditions

where the distributed load f is an uncertain function.
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A broader context Omnipresent uncertainty

Examples from engineering

A cantilever beam

modeled by

(cEt3(x)v ′′(x))′′ = f (x) on [a, b], and boundary conditions

where the Young modulus E is an uncertain scalar parameter (or a
function).
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A broader context Omnipresent uncertainty

Examples from engineering

A cantilever beam

modeled by

(cEt3(x)v ′′(x))′′ = f (x) on [a, b], and boundary conditions

where the boundary condition (spring stiffness) is represented by an
uncertain scalar parameter.
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A broader context Omnipresent uncertainty

Examples from engineering

A cantilever beam

modeled by

(cEt3(x)v ′′(x))′′ = f (x) on [a, b], and boundary conditions

where the beam shape is determined by an uncertain function t
defined on a possibly uncertain interval [a, b].
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A broader context Omnipresent uncertainty

Basic settings

Uad . . . set of admissible parameters
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A broader context Omnipresent uncertainty

Basic settings

Uad . . . set of admissible parameters

Examples

Uad is an interval if a scalar parameter is uncertain.

Uad is a convex subset of R
n if a vector is uncertain.

Uad is a convex set of functions if a function is uncertain.
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A broader context Omnipresent uncertainty

Basic settings

Uad . . . set of admissible parameters

D(a)u = f . . . state problem dependent on a ∈ Uad

Consequently, its solution u ≡ u(a) also depends on a ∈ Uad.
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Basic settings

Uad . . . set of admissible parameters

D(a)u = f . . . state problem dependent on a ∈ Uad

Consequently, its solution u ≡ u(a) also depends on a ∈ Uad.

Examples

A boundary value problem for an ordinary or a partial differential
equation dependent on a.

An initial value problem dependent on a.

A variational inequality dependent on a (then “=” is inappropriate).
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A broader context Omnipresent uncertainty

Basic settings

Uad . . . set of admissible parameters

D(a)u = f . . . state problem dependent on a ∈ Uad

Consequently, its solution u ≡ u(a) also depends on a ∈ Uad.

Φ(a, u(a)) or Ψ(a) ≡ Φ(a, u(a)) . . . quantity of interest,
criterion-functional.
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A broader context Omnipresent uncertainty

Basic settings

Uad . . . set of admissible parameters

D(a)u = f . . . state problem dependent on a ∈ Uad

Consequently, its solution u ≡ u(a) also depends on a ∈ Uad.

Φ(a, u(a)) or Ψ(a) ≡ Φ(a, u(a)) . . . quantity of interest,
criterion-functional.

Examples

Displacement, temperature, local mechanical stress or stress
invariants, concentration of chemicals, etc.
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A broader context Omnipresent uncertainty

Basic settings

Uad . . . set of admissible parameters

D(a)u = f . . . state problem dependent on a ∈ Uad

Consequently, its solution u ≡ u(a) also depends on a ∈ Uad.

Φ(a, u(a)) or Ψ(a) ≡ Φ(a, u(a)) . . . quantity of interest,
criterion-functional.

Assumptions:

D(a)u = f is uniquely solvable for each a ∈ Uad.

Ψ is continuous and bounded on Uad.
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Stochastic approaches Transformation of a stochastic DE to a deterministic DE

From a stochastic DE to a deterministic DE

Let us consider a DE-based boundary value problem (BVP) in D
dimensions whose parameter is a random function.

It is approximated by the truncated Karhunen-Loève expansion (TKLE)
that is determined by N eigenpairs of a compact selfadjoint operator
defined through the covariance function of the random function.

By replacing the random function by its TKLE and considering the
weak formulation of the BVP, we can infer an (D+N)-dimensional
deterministic BVP.

Remark: In practice, the determination of the covariance function of
the random function is difficult due to insufficient experimental data.
Assumptions and estimates are employed.
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Stochastic approaches Transformation of a stochastic DE to a deterministic DE

Solving multidimensional BVPs

Comments:
Approximate solution by the FEM tailored to solving
multidimensional BVPs.

It is said that ≈ 10 – 20 dimensions are manageable.

Error estimates and convergence rates estimates are possible.

Bibliography: Babuška, Nobile, Tempone, Webster, Zouraris; Schwab,
Todor

Remark: DE burdened with white noise (Brownian motion, Wiener
process) – stochastic differential equations and calculus (Itô).
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Stochastic approaches Transformation of a stochastic DE to a deterministic DE

Strength and weakness of stochastic methods

Stochastic methods can deliver extremely important and valuable
assessment of uncertainty.

To perform well, they need input data whose probabilistic
characteristics (probability distribution function, covariance function)
can be and often are difficult to obtain in necessary quality and/or
quantity.
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Non-stochastic methods The worst (case) scenario method (WSM)

The worst (case) scenario method (WSM)

In practice, the maximum of the criterion-functional over Uad is often
important: maximum temperature, mechanical stress, etc.

To determine the “worst” scenario (anti-optimization (Elishakoff)), we
maximize Ψ by searching for

a0 = arg max
a∈Uad

Ψ(a).

If also the “best" scenario

a0 = arg min
a∈Uad

Ψ(a)

is found, then the range of Ψ|Uad
is given by

IΨ = [Ψ(a0),Ψ(a0)].
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Non-stochastic methods The worst (case) scenario method (WSM)

Inverse problems

Observation

If a desirable ouput ugiven is known on a domain Ω and if

Ψ(a) =

∫
Ω
(u(a) − ugiven)

2 dx ,

then the search for the best scenario is, in fact, a parameter
identification problem.
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Non-stochastic methods The worst (case) scenario method (WSM)

Pros and cons of the WSM

Pros

The knowledge of Uad is sufficient, no probabilistic features.

Guaranteed range of Ψ|Uad
.

The WSM can be combined with other methods, see later.

Cons

Based on the search for global extremes.

Probability or possibility is not considered though the occurrence
of the extremal values of Ψ is rare in many practical problems.
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Non-stochastic methods Dempster-Shafer theory

Dempster-Shafer evidence theory

X . . . universal set

PX . . . power set of X

m : PX → [0, 1] . . . basic probability assignment
It must satisfy m(∅) = 0 and

∑
all A ∈ PX

m(A) = 1.

Let m(Ai) > 0 only for a finite number of sets Ai ∈ PX ;
Ai are called focal elements.

0.1

0.05

0.2

0.15
0.2

0.1

0.2
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Non-stochastic methods Dempster-Shafer theory

Definition (Belief and Plausibility)

The belief measure of A ∈ PX : Bel(A) =
∑

all Ai⊆A
m(Ai).

The plausibility measure of A ∈ PX : Pl(A) =
∑

all Ai
⋂

A 6= ∅

m(Ai).

A

0.1

0.05

0.2

0.15
0.2

0.1

0.2

Bel(A) = 0.2 + 0.1 + 0.05 = 0.35

Pl(A) = 0.2 + 0.1 + 0.05

+ 0.15 + 0.2 = 0.7
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Non-stochastic methods Dempster-Shafer theory

Observation

0 ≤ Bel(A) ≤ Pl(A) ≤ 1 A ∈ PX

Interpretations of Pl and Bel (sort of B/W scenarios)

m(Ai) provides a measure of the amount of “likelihood" that is
assigned to Ai .

Pl(A) provides an upper bound on the likelihood of A.
Bel(A) provides a lower bound on the likelihood of A.

Pl(A) is the largest probability for A that is consistent with all available
evidence.
Bel(A) is the smallest probability for A that is consistent . . .

An upper limit (Pl) and a lower limit (Bel) on the strength of evidence at
hand.

Observation: A sort of the best (Pl) and the worst (Bel) scenarios.
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Non-stochastic methods Dempster-Shafer theory

Dempster-Shafer theory and the WSM

Let Ai , where i = 1, . . . , N, be both the focal elements of m and
admissible sets.

Let Ψ(Ai), the range of Ψ|Ai
, be calculated via the worst and best

scenarios.

Ik is a focal element of the probability assignment mΨ defined through
m, Ai , and Ψ(Ai) (extension principle):

mΨ(Ik ) =
∑

{i : Ik=Ψ(Ai )}

m(Ai), k = 1, . . . , M.

Thus mΨ, the basic probability assignment in the range of Ψ is
established, and the relationship between the range of Ψ and various
sets can be assessed through Bel and Pl.
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Non-stochastic methods Dempster-Shafer theory

Example (Uncertain spring stiffness)

A1, . . . , A5, five intervals for the spring stiffness parameter.
Their respective basic probability assignment values are equal to 0.1,
0.4, 0.1, 0.25, and 0.15.

Ψ stands for the beam tip displacement.

Let Ik = Ψ(Ak ), k = 1, 2, . . . , 5. It is calculated that
I1 = [77, 80], mΨ(I1) = 0.1; I2 = [69, 74], mΨ(I2) = 0.4;
I3 = [73, 79], mΨ(I3) = 0.1; I4 = [71, 78], mΨ(I4) = 0.25;
I5 = [76, 83], mΨ(I5) = 0.15.
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Non-stochastic methods Dempster-Shafer theory

Example (Uncertain spring stiffness (cont.))

To analyze the (uncertain) behavior of the quantity of interest, let us
graph

Bel([x , x + d ]) and Pl([x , x + d ]),

where d ∈ {6, 7, 8, 9} is fixed and x ∈ [60, 90].

In other words, the chosen intervals [x , x + d ] will be weighted by the
evidence we have about the behavior of Ψ.

This information can help the analyst to make a decision.
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Non-stochastic methods Dempster-Shafer theory
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Non-stochastic methods Fuzzy set theory
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Non-stochastic methods Fuzzy set theory

Fuzzy set theory (Zadeh)

0

1

U

A fuzzy set U is identified with µU ,
the membership function

µU : X → [0, 1],

where the real value in [0, 1]
represents the degree to which
x ∈ X belongs to the set U. The
higher the value, the stronger the
membership.
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Non-stochastic methods Fuzzy set theory

Fuzzy set theory: α-cut

0

0.5

1

αU

For α ∈ (0, 1], a subset αU
comprising all x ∈ X such that
µU(x) ≥ α is called the α-cut.

It will be convenient to have U ≡ 0U = supp(µU).
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Non-stochastic methods Fuzzy set theory

Fuzzy set theory and the WSM

Let Uad ≡ U and µUad
be given.

Let αUad be the α-cut of Uad, α ∈ [0, 1].

For α, the best and worst scenarios determine

αIΨ = [Ψ(a0,α),Ψ(a0,α)].

These αIΨ are the α-cuts of IΨ ≡ 0IΨ = {Ψ(a)| a ∈ Uad}, the fuzzy
range of Ψ.

Then the membership function µIΨ
can be constructed via

µIΨ
(y) = max{α| y ∈ αIΨ}, y ∈ IΨ,

to asses the fuzziness of Ψ, the quantity of interest.
(A numerical example will be given later.)
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DE-driven problems: uncertain functions The worst scenario method
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DE-driven problems: uncertain functions The worst scenario method

DE-driven problems with uncertain data

We will focus on worst/best scenario problems where D(a)u = f , the
state problem, stems from a differential equation and a is an uncertain
function.
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DE-driven problems: uncertain functions The worst scenario method

Boundary value problems with uncertain data

Motivation: D(a)u = f stands for quasilinear heat conduction

− div(a(u)∇u) = f in Ω ⊂ R
2

Dirichlet, Neumann, Newton (Robin) or mixed BC,

where a is uncertain, a ∈ Uad.

0

a

Uad

A typical Uad comprises bounded, positive (a ≥ c > 0) functions with
uniformly bounded derivative (no wild oscillations).
Uad is compact in the space of continuous functions.
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DE-driven problems: uncertain functions The worst scenario method

Boundary value problems with uncertain data

Quasilinear heat conduction, criterion-functional

− div(a(u)∇u) = f in Ω ⊂ R
2 & BC

Temperature monitored in a fixed subdomain G ⊂ Ω:

Ψ(a) = (meas G)−1
∫

G
u(a) dx .

Worst scenario problem: Find

a0 = arg max
a∈Uad

Ψ(a).
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DE-driven problems: uncertain functions The worst scenario method

Example (Quasilinear heat conduction)

− div(a(u)∇u) = f in Ω ⊂ R
2 & BC, a is a diag. matrix

Ψ(a) = (meas G)−1
∫

G u(a) dx .

G

Γ0
2 Γ0

2

Γ0
2

Γ1
2

Γ1
2 Γ1

2

f1
f2

f3

Γ0
2 insulation (Dirichlet); Γ1

2 Newton (Robin), fi heat sources
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DE-driven problems: uncertain functions The worst scenario method

Approximate WS problem

To approximate u(a) by uh(a), we resort to finite elements, finite
differences, boundary elements, ...

Uad is approximated by UM
ad that is identifiable with a compact subset of

R
M .
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DE-driven problems: uncertain functions The worst scenario method

Approximate WS problem

To approximate u(a) by uh(a), we resort to finite elements, finite
differences, boundary elements, ...

Uad is approximated by UM
ad that is identifiable with a compact subset of

R
M .

Example (Uad approximated by UM
ad)

0  

 

control node

aM controlled by the vertical position of seven nodes
constrained by the bounds and through the Lipschitz constant.
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DE-driven problems: uncertain functions The worst scenario method

Approximate WS problem

To approximate u(a) by uh(a), we resort to finite elements, finite
differences, boundary elements, ...

Uad is approximated by UM
ad that is identifiable with a compact subset of

R
M .

The approximate worst scenario problem: Find

aM0 = arg max
aM∈UM

ad

Φ(aM , uh(a
M)).

The approximate best scenario problem is analogous.
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DE-driven problems: uncertain functions The worst scenario method

Example (Quasilinear heat conduction)

− div(a(u)∇u) = f in Ω ⊂ R
2 & BC, a is a diag. matrix

Ψ(a) = (meas G)−1
∫

G u(a) dx .

G

Γ0
2 Γ0

2

Γ0
2

Γ1
2

Γ1
2 Γ1

2

f1
f2

f3

Γ0
2 insulation (Dirichlet); Γ1

2 Newton (Robin), fi heat sources
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DE-driven problems: uncertain functions The worst scenario method

Example (Quasilinear heat conduction)
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Conductivities in horizontal (left) and vertical (right) directions.
∗ max. problem, Φ(aM0, uh(a

M0)) = 32.1
◦ min. problem, Φ(aM

0 , uh(a
M
0 )) = 30.9
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DE-driven problems: uncertain functions The worst scenario method

Ingredients of the WSM algorithm

UM
ad (p.-w. linear functions, splines)

state problem solver
constrained global optimization

sensitivity analysis: differentiation of Φ(a, u(a)) w.r.t. a, or
Φ(aM , uh(a

M)) w.r.t. aM

(also automatic differentiation)
gradient methods (can be trapped in local optima)
optimality conditions (can lead to local optima)
genetic algorithms (tend to be computationally expensive)

These tools are also used in shape optimization, PDE constrained
optimization, or methods for solving inverse problems.
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DE-driven problems: uncertain functions The WSM and fuzzy sets
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DE-driven problems: uncertain functions The WSM and fuzzy sets

Fuzzy Uad, UM
ad: direct approach to α-cuts

The parameter α directly controls the lower and upper bound of the
cut.

α = 0
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Fuzzy Uad, UM
ad: direct approach to α-cuts

The parameter α directly controls the lower and upper bound of the
cut.

α = 0.3
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DE-driven problems: uncertain functions The WSM and fuzzy sets

Fuzzy Uad, UM
ad: direct approach to α-cuts

The parameter α directly controls the lower and upper bound of the
cut.

α = 0.5
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DE-driven problems: uncertain functions The WSM and fuzzy sets

Fuzzy Uad, UM
ad: direct approach to α-cuts

The parameter α directly controls the lower and upper bound of the
cut.

α = 0.8
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DE-driven problems: uncertain functions The WSM and fuzzy sets

Fuzzy Uad, UM
ad: direct approach to α-cuts

The parameter α directly controls the lower and upper bound of the
cut.

α = 1
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DE-driven problems: uncertain functions The WSM and fuzzy sets

Fuzzy Uad, UM
ad: direct approach to α-cuts

Pros: αUad easy to define; αUM
ad leads to optimization problems with

simple bounds;

Contra: αUad has partly unnatural features:

 

 

g
r

Both g and r belong or do not belong to the same αUad, though g "lives
its life on the outskirts of αUad", but r "lives in the center except for a
short deviation."
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DE-driven problems: uncertain functions The WSM and fuzzy sets

Fuzzy Uad, UM
ad: integral approach to α-cuts

µUad(a) = L−1
∫ L

0 %(x ,a(x)) dx is defined through %(x , y) with values
in [0, 1]:

0

L

0

L
S

m
oo

th
 ρ

Pro: separation of g and r
Con: more demanding optimization, even nonsmooth; however:

41 / 46



DE-driven problems: uncertain functions The WSM and fuzzy sets

Idea: If the control nodes do not cross the lines of nondifferentiability,
the constraint is differentiable.

0

L
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DE-driven problems: uncertain functions The WSM and fuzzy sets

Example (ODE constrained problem with fuzzy input data)

−(a(x)u′(x))′ = f on (0, 1), u(0) = 0 = u(1)

Ψ(a) =
∫ 1

0 (u(x) − sin(2πx))2 dx ,
f such that Ψ(1 + x) = 0.

Uad = {a : |a− q| ≤ 0.5 and |a′ − q′| ≤ 0.8}, where q(x) = 1.5 + x2.

% "triangular"

ODE-based constraint |u(1/2)| ≤ 0.06, its gradient as well as ∇Ψ are
calculated via adjoint equations by standard techniques.

The gradient of µUad exists in all smooth subproblems and can be
calculated from an analytical formula.
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DE-driven problems: uncertain functions The WSM and fuzzy sets

Example (Results (MATLABr, NAGr))
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w/o ODE con.
with ODE con.

Vertical axis: α-levels
Horizontal axis: the range of Ψ
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DE-driven problems: uncertain functions The WSM and fuzzy sets

Concluding remarks

The WSM is useful by itself in analyzing the propagation of
uncertainty through models.

The WSM is used in extending the fuzzy or Dempster-Schafer
theory characteristics of input data to output data (from Uad to the
range of Ψ|Uad

).

The WSM shares many features with optimal shape design, PDE
constrained optimization, and inverse problems.

Various well-tried tools for theoretical analysis are at our disposal.
First steps have been done.

Various well-tried tools for computational analysis are at our
disposal. However, their tailoring for uncertain input data problems
is desirable.
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DE-driven problems: uncertain functions The WSM and fuzzy sets

Thank you for your attention.
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