Spatial Reliability Assessment of Deteriorating Concrete Slabs with Inspection Data

– ISUME 2011 –

Johannes Fischer Daniel Straub

Engineering Risk Analysis Group
Technische Universität München

www.era bv.tum.de
johannes.fischer@tum.de

Prague, May 2, 2011
• Joint probability density

\[f_X(x) , \]
\[X = [X_1, X_2, \ldots, X_n]^T \]

• Failure domain

\[\Omega_F = \{ R(x) - S(x) \leq 0 \} \]
\[= \{ g(x) \leq 0 \} \]

• Failure probability

\[\Pr(F) = \int_{\Omega_F} f_X(x) \, dx \]
Failure Probability

- Joint probability density

\[f_X(x) \]

\[X = [X_1, X_2, ..., X_n]^T \]

- Failure domain

\[\Omega_F = \{ R(x) - S(x) \leq 0 \} \]

\[= \{ g(x) \leq 0 \} \]

- Failure probability

\[\Pr(F) = \int_{\Omega_F} f_X(x) \, dx \]
• Joint probability density

\[f_X(x) \]

\[X = [X_1, X_2, \ldots, X_n]^T \]

• Failure domain

\[\Omega_F = \{R(x) - S(x) \leq 0\} \]
\[= \{g(x) \leq 0\} \]

• Failure probability

\[\Pr(F) = \int_{\Omega_F} f_X(x) \, dx \]
How can we get Information?

Information \mathcal{I} from

- Assessment
- Measurement
- Inspection
- Monitoring

\rightarrow Expressed through mathematical functions
Information described by Domains Ω

- Information Z given by
 $$\Omega_Z = \{ h(x) \leq 0 \}$$
 (Inequality Type)

- Information probability
 $$\Pr(Z) = \int_{\Omega_Z} f_X(x) \, dx$$
Information described by Domains Ω

- Information Z given by
 \[\Omega_Z = \{ h(x) \leq 0 \} \]
 \textbf{(Inequality Type)}

- Information probability
 \[\Pr(Z) = \int_{\Omega_Z} f_X(x) \, dx \]
Information described by Domains Ω

- Information Z given by

 $\Omega_Z = \{ h(x) \leq 0 \}$

 (Inequality Type)

- Information probability

 $\Pr(Z) = \int_{\Omega_Z} f_X(x) \, dx$
Updated Failure Probability

A-Posteriori Failure Probability

• Conditional probability

\[\Pr(F|Z) = \frac{\Pr(F \cap Z)}{\Pr(Z)} \]

• Intersection probability

\[\Pr(F \cap Z) = \int_{\Omega_F \cap \Omega_Z} f_X(x) \, dx \]

• Probability update

\[\Pr(F|Z) = \frac{\int_{\Omega_F \cap \Omega_Z} f_X(x) \, dx}{\int_{\Omega_Z} f_X(x) \, dx} \]
Updated Failure Probability

A-Posteriori Failure Probability

- Conditional probability

$$\Pr(F|Z) = \frac{\Pr(F \cap Z)}{\Pr(Z)}$$

- Intersection probability

$$\Pr(F \cap Z) = \int_{\Omega_{F \cap \Omega_Z}} f_x(x) \, dx$$

- Probability update

$$\Pr(F|Z) = \frac{\int_{\Omega_{F \cap \Omega_Z}} f_x(x) \, dx}{\int_{\Omega_Z} f_x(x) \, dx}$$
Updated Failure Probability

A-Posteriori Failure Probability

- Conditional probability

\[\Pr(F|Z) = \frac{\Pr(F \cap Z)}{\Pr(Z)} \]

- Intersection probability

\[\Pr(F \cap Z) = \int_{\Omega_F \cap \Omega_Z} f_{\mathbf{x}}(\mathbf{x}) \, d\mathbf{x} \]

- Probability update

\[\Pr(F|Z) = \frac{\int_{\Omega_F \cap \Omega_Z} f_{\mathbf{x}}(\mathbf{x}) \, d\mathbf{x}}{\int_{\Omega_Z} f_{\mathbf{x}}(\mathbf{x}) \, d\mathbf{x}} \]
Measurement: Equality Information

Mathematical Description

• Measurement of system characteristic $S(X)$

$$h(X, \epsilon_M) = s(X) - s_M + \epsilon_M$$

• Information Z given by

$$\Omega_Z = \{h(X, \epsilon_M) = 0\}$$

(Equality Type)
• Measurement of system characteristic \(S(X) \)

\[
h(X, \epsilon_M) = s(X) - s_M + \epsilon_M
\]

• Information \(Z \) given by

\[
\Omega_Z = \{ h(X, \epsilon_M) = 0 \}
\]

(Equality Type)
Measurement: Equality Information

How to Update?

• Information probability

\[\Pr(Z) = \int_{\Omega_Z} f_X(x) \, dx = 0 \]

• Intersection probability

\[\Pr(F \cap Z) = \int_{\Omega_F \cap \Omega_Z} f_X(x) \, dx = 0 \leq \Pr(Z) \]

• Probability update

\[\Pr(F|Z) = \frac{0}{0} = ? \]
Measurement: Equality Information

How to Update?

- Information probability

\[\Pr(Z) = \int_{\Omega_Z} f_X(x) \, dx = 0 \]

- Intersection probability

\[\Pr(F \cap Z) = \int_{\Omega_F \cap \Omega_Z} f_X(x) \, dx \]

\[= 0 \leq \Pr(Z) \]

- Probability update

\[\Pr(F|Z) = 0 \]

\[= 0 \]
Measurement: Equality Information

- Information probability

\[\Pr(Z) = \int_{\Omega_Z} f_X(x) \, dx = 0 \]

- Intersection probability

\[\Pr(F \cap Z) = \int_{\Omega_F \cap \Omega_Z} f_X(x) \, dx \]

\[= 0 \leq \Pr(Z) \]

- Probability update

\[\Pr(F|Z) = \frac{0}{0} = ? \]
Measurement: Equality Information

- Information probability

\[\Pr(Z) = \int_{\Omega_Z} f_X(x) \, dx = 0 \]

- Intersection probability

\[\Pr(F \cap Z) = \int_{\Omega_F \cap \Omega_Z} f_X(x) \, dx = 0 \leq \Pr(Z) \]

- Probability update

\[\Pr(F|Z) = \frac{0}{0} = ? \]
Measurement: Equality Information

How to Update?

- Information probability

\[\Pr(Z) = \int_{\Omega_Z} f_x(x) \, dx = 0 \]

- Intersection probability

\[\Pr(F \cap Z) = \int_{\Omega_F \cap \Omega_Z} f_x(x) \, dx = 0 \leq \Pr(Z) \]

- Probability update

\[\Pr(F|Z) = \frac{0}{0} = ? \]
Summary on Information

What about the Update?

Résumé

• **Inequality** type information
 → any SR method **suitable** for probability update

• **Equality** type information
 → common SR methods **not suitable** for probability update
Introduction of Likelihood

- Likelihood describes information Z

$$\mathcal{L}(x|Z) = a \cdot \Pr(Z|X = x) \propto \Pr(Z|X = x)$$

- Express likelihood by error ϵ_M

$$\mathcal{L}(x|Z) = f_{\epsilon_M}(s_M - s(x))$$
Introduction of Likelihood

- Likelihood describes information Z

 $$\mathcal{L}(x|Z) = a \cdot \Pr(Z|X = x)$$
 $$\propto \Pr(Z|X = x)$$

- Express likelihood by error ϵ_M

 $$\mathcal{L}(x|Z) = f_{\epsilon_M}(s_M - s(x))$$
Preparations are necessary

- Introduce standard uniform RV U

 $$f_U(u) = 1 \quad \forall \quad u \in [0; 1]$$

- Introduce constant c

 $$0 \leq c \cdot \mathcal{L}(x|Z) \leq 1$$

- Express likelihood

 $$\mathcal{L}(x|Z) = \frac{1}{c} \cdot \Pr(U \leq c\mathcal{L}(x|Z))$$
Preparations are necessary

- Introduce standard uniform RV U
 \[f_U(u) = 1 \quad \forall \quad u \in [0; 1] \]

- Introduce constant c
 \[0 \leq c \cdot \mathcal{L}(x|Z) \leq 1 \]

- Express likelihood
 \[\mathcal{L}(x|Z) = \frac{1}{c} \cdot \Pr(U \leq c\mathcal{L}(x|Z)) \]
Preparations are necessary

- Introduce standard uniform RV U

 \[f_U(u) = 1 \quad \forall \quad u \in [0; 1] \]

- Introduce constant c

 \[0 \leq c \cdot \mathcal{L}(x|Z) \leq 1 \]

- Express likelihood

 \[\mathcal{L}(x|Z) = \frac{1}{c} \cdot \Pr(U \leq c\mathcal{L}(x|Z)) \]
Preparations are necessary

• Introduce standard uniform RV U

\[f_U(u) = 1 \quad \forall \quad u \in [0; 1] \]

• Introduce constant c

\[0 \leq c \cdot \mathcal{L}(x|Z) \leq 1 \]

• Express likelihood

\[\mathcal{L}(x|Z) = \frac{1}{c} \cdot \Pr(U \leq c\mathcal{L}(x|Z)) \]
Preparations have to be made

- Total probability theorem

\[
\Pr(Z) = \int_{\Omega_X} \Pr(Z|X = x) f_X(x) \, dx
\]

\[
= \int_{\Omega_X} \frac{1}{ac} \cdot \Pr(U \leq c\mathcal{L}(x|Z)) f_X(x) \, dx
\]

- Information domain

\[
\Omega_Z = \{ U - c\mathcal{L}(x|Z) \leq 0 \}
\]
Preparations have to be made

• Total probability theorem

\[
\Pr(Z) = \int_{\Omega_X} \Pr(Z|X = x)f_X(x) \, dx \\
= \int_{\Omega_X} \frac{1}{ac} \cdot \Pr(U \leq cL(x|Z))f_X(x) \, dx
\]

• Information domain

\[
\Omega_Z = \{U - cL(x|Z) \leq 0\}
\]
Update can be performed now!

Total probability theorem

\[
Pr(Z) = \frac{1}{ac} \int_{\Omega_X} \Pr(U \leq c\mathcal{L}(x|Z)) f_X(x) \, dx \\
= \frac{1}{ac} \int_{\Omega_Z} f_U(u) f_X(x) \, du \, dx = \frac{1}{ac} \int_{\Omega_Z} f_X(x) \, du \, dx
\]

Intersection probability

\[
Pr(F \cap Z) = \frac{1}{ac} \int_{\Omega_{F \cap \Omega_Z}} f_X(x) \, du \, dx
\]

Conditional probability

\[
Pr(F|Z) = \frac{Pr(F \cap Z)}{Pr(Z)} = \frac{\int_{\Omega_{F \cap \Omega_Z}} f_X(x) \, du \, dx}{\int_{\Omega_Z} f_X(x) \, du \, dx}
\]
Update can be performed now!

- Total probability theorem

\[\Pr(Z) = \frac{1}{ac} \int_{\Omega_x} \Pr(U \leq cL(x|Z)) f_x(x) \, dx \]

\[= \frac{1}{ac} \int_{\Omega_Z} f_U(u) f_x(x) \, du \, dx = \frac{1}{ac} \int_{\Omega_Z} f_x(x) \, du \, dx \]

- Intersection probability

\[\Pr(F \cap Z) = \frac{1}{ac} \int_{\Omega_{F\capZ}} f_x(x) \, du \, dx \]

- Conditional probability

\[\Pr(F|Z) = \frac{\Pr(F \cap Z)}{\Pr(Z)} = \frac{\int_{\Omega_{F\capZ}} f_x(x) \, du \, dx}{\int_{\Omega_Z} f_x(x) \, du \, dx} \]
Update can be performed now!

- Total probability theorem

\[
\Pr(Z) = \frac{1}{ac} \int_{\Omega_X} \Pr(U \leq cL(x|Z)) f_X(x) \, dx
\]

\[
= \frac{1}{ac} \int_{\Omega_Z} f_U(u) f_X(x) \, du \, dx = \frac{1}{ac} \int_{\Omega_Z} f_X(x) \, du \, dx
\]

- Intersection probability

\[
\Pr(F \cap Z) = \frac{1}{ac} \int_{\Omega_{F \cap \Omega_Z}} f_X(x) \, du \, dx
\]

- Conditional probability

\[
\Pr(F|Z) = \frac{\Pr(F \cap Z)}{\Pr(Z)} = \frac{\int_{\Omega_{F \cap \Omega_Z}} f_X(x) \, du \, dx}{\int_{\Omega_Z} f_X(x) \, du \, dx}
\]
Probability Update
Integration of $f_X(x)$ by Importance Sampling

• Importance sampling solution

$$
Pr(F|Z) \approx \frac{\sum_{i=1}^{n_S} I[h_e(x_i, u_i) \leq 0]I[g(x_i) \leq 0] \frac{f_x(x_i)}{\psi(x_i, u_i)}}{\sum_{i=1}^{n_S} I[h_e(x_i, u_i) \leq 0] \frac{f_x(x_i)}{\psi(x_i, u_i)}}
$$

• Optimal sampling density [Straub, 2010]

$$
\psi(x, u) = \psi_1(x) \cdot \psi_2(u|x) = \psi_1(x) \cdot \frac{1}{c \cdot \mathcal{L}(x|Z)}
$$

(Remember: $0 \leq c\mathcal{L}(x|Z) \leq 1$)
Probability Update

Integration of $f_X(x)$ by Importance Sampling

• Importance sampling solution

$$
Pr(F|Z) \approx \frac{\sum_{i=1}^{n_S} I[h_e(x_i, u_i) \leq 0]I[g(x_i) \leq 0] \frac{f_X(x_i)}{\psi(x_i, u_i)}}{\sum_{i=1}^{n_S} I[h_e(x_i, u_i) \leq 0] \frac{f_X(x_i)}{\psi(x_i, u_i)}}
$$

• Optimal sampling density [Straub, 2010]

$$
\psi(x, u) = \psi_1(x) \cdot \psi_2(u|x) = \psi_1(x) \cdot \frac{1}{c \cdot \mathcal{L}(x|Z)}
$$

(Remember: $0 \leq c\mathcal{L}(x|Z) \leq 1$)
Application to Corrosion

Fick’s law of diffusion (1D)

\[
\frac{dC(z,t)}{dt} = D \frac{\partial^2 C(z,t)}{\partial z^2}
\]

Chloride concentration

\[
C(z,t) = C_S \left(1 - \text{erf} \left(\frac{z}{2\sqrt{D \cdot t}} \right) \right)
\]

Failure domain

\[
\Omega_F = \{ C_{\text{crit}} - C(W,t) \leq 0 \}
\]
Application to Corrosion

Diffusion Model

- **Fick’s law of diffusion (1D)**

 \[
 \frac{dC(z,t)}{dt} = D \frac{\partial^2 C(z,t)}{\partial z^2}
 \]

- **Chloride concentration**

 \[
 C(z,t) = C_S \left(1 - \text{erf} \left(\frac{z}{2\sqrt{D \cdot t}} \right) \right)
 \]

- **Failure domain**

 \[
 \Omega_F = \{ C_{\text{crit}} - C(W,t) \leq 0 \}
Application to Corrosion

Diffusion Model

- **Fick’s law of diffusion (1D)**

\[
\frac{dC(z, t)}{dt} = D \frac{\partial^2 C(z, t)}{\partial z^2}
\]

- Chloride concentration

\[
C(z, t) = C_S \left(1 - \text{erf} \left(\frac{z}{2\sqrt{D \cdot t}} \right) \right)
\]

- Failure domain

\[
\Omega_F = \{ C_{\text{crit}} - C(W, t) \leq 0 \} \]
Application to Corrosion

Model Parameters

<table>
<thead>
<tr>
<th>RV</th>
<th>Dimension</th>
<th>Distribution</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>[mm]</td>
<td>LogNormal</td>
<td>$\mu_W = 40.0$ [\sigma_W = 8.0]</td>
</tr>
<tr>
<td>D</td>
<td>[mm2/yr]</td>
<td>LogNormal</td>
<td>$\mu_D = 20.0$ [\sigma_D = 10.0]</td>
</tr>
<tr>
<td>C_S</td>
<td>[m.-% cem.]</td>
<td>Normal</td>
<td>$\mu_{C_S} = 3.1$ [\sigma_{C_S} = 1.23]</td>
</tr>
<tr>
<td>C_{crit}</td>
<td>[m.-% cem.]</td>
<td>Normal</td>
<td>$\mu_{C_{\text{crit}}} = 0.8$ [\sigma_{C_{\text{crit}}} = 0.1]</td>
</tr>
</tbody>
</table>

Table: The Random variables of the corrosion model.
Application to Corrosion

A-Priori Failure Probability

Figure: A-priori corrosion probability of the reinforcement.
• Measurement of cover depth

\[\mathbf{w}_M = [w_1, w_2, \ldots, w_{800}] \]

• Likelihood of measurement

\[\mathcal{L}(w|w_M) = f_{w_M|w}(w_M|w) \]

• Bayesian update

\[f''_W(w) \propto \mathcal{L}(w|w_M)f_W(w) \]
Application to Corrosion

Cover Depth Update

• Measurement of cover depth

\[\mathbf{w}_M = [w_1, w_2, \ldots, w_{800}] \]

• Likelihood of measurement

\[\mathcal{L}(\mathbf{w} | \mathbf{w}_M) = f_{\mathbf{w}_M | \mathbf{w}}(\mathbf{w}_M | \mathbf{w}) \]

• Bayesian update

\[f''_{\mathbf{w}}(\mathbf{w}) \propto \mathcal{L}(\mathbf{w} | \mathbf{w}_M) f_{\mathbf{w}}(\mathbf{w}) \]
Application to Corrosion

Cover Depth Update

- Measurement of cover depth
 \[w_M = [w_1, w_2, \ldots, w_{800}] \]
- Likelihood of measurement
 \[\mathcal{L}(w|w_M) = f_{W_M|w}(w_M|w) \]
- Bayesian update
 \[f''_W(w) \propto \mathcal{L}(w|w_M) f_W(w) \]
Application to Corrosion

Cover Depth Update

- Measurement of cover depth

 \[w_M = [w_1, w_2, \ldots, w_{800}] \]

- Likelihood of measurement

 \[\mathcal{L}(w|w_M) = f_{w_M|w}(w_M|w) \]

- Bayesian update

 \[f''_{w}(w) \propto \mathcal{L}(w|w_M)f_{w}(w) \]
Application to Corrosion

Cover Depth Update

- Measurement of cover depth

\[\mathbf{w}_M = [w_1, w_2, \ldots, w_{800}] \]

- Likelihood of measurement

\[\mathcal{L}(\mathbf{w}|\mathbf{w}_M) = f_{\mathbf{w}_M|\mathbf{w}}(\mathbf{w}_M|\mathbf{w}) \]

- Bayesian update

\[f''_{\mathbf{w}}(\mathbf{w}) \propto \mathcal{L}(\mathbf{w}|\mathbf{w}_M) f_{\mathbf{w}}(\mathbf{w}) \]
Application to Corrosion

Chloride Concentration Update

• Measurement of chloride concentration

\[c_{ZM,j}(X,X,t) = C_{S,j} \cdot \left(1 - \text{erf} \left(\frac{z_M}{\sqrt{4Dt}} \right) \right) \]

• Likelihood (Error \(\epsilon \sim N(0, \sigma_{\epsilon}) \))

\[L_j(x) = \frac{1}{\sigma_{\epsilon} \sqrt{2\pi}} \exp \left(-\frac{1}{2} \left(\frac{c_{ZM}(x,t) - c_{M,j}(z_M,t)}{\sigma_{\epsilon}} \right)^2 \right) \]
Application to Corrosion

Chloride Concentration Update

• Measurement of chloride concentration

\[c_{Z_{M,j}}(X, t) = C_{S,j} \cdot \left(1 - \text{erf} \left(\frac{z_M}{\sqrt{4Dt}} \right) \right) \]

• Likelihood (Error \(\epsilon \sim N(0, \sigma_\epsilon) \))

\[L_j(x) = \frac{1}{\sigma_\epsilon \sqrt{2\pi}} \exp \left(-\frac{1}{2} \left(\frac{c_{Z_{M}}(x, t) - c_{M,j}(z_M, t)}{\sigma_\epsilon} \right)^2 \right) \]
Figure: Corrosion probability \((t = 15 \text{ [yr]})\) conditional on measurement results (cover depth & concentration).
Application to Corrosion

A-Posteriori Failure Probability

Figure: Corrosion probability \((t = 15 \text{ [yr]})\) conditional on measurement results (cover depth & concentration).
To Conclude…

What was learned

• Efficient method available for updating failure probability using equality information
• Several different information can be taken into account
Some Literature

Straub, D.
Structural Reliability Methods.
Lecture Notes, Technische Universität München, Munich, 2011.

Straub, D.
Reliability updating with equality information.

Papaioannou, I. & Straub, D.
Geotechnical reliability updating using stochastic FEM
Thank you for your attention!

www.era bv tum de
johannes fischer@tum de