

Czech Technical University in Prague Faculty of Civil Engineering Department of Mechanics

Technische Universität Braunschweig Institute of Scientific Computing

Uncertainty Updating in the Description of Coupled Transport Processes in Heterogeneous Materials

Anna Kučerová, Jan Sýkora, Bojana Rosić, Hermann G. Matthies

ISUME 2011

1st International Symposium on Uncertainty Modelling in Engineering

3 May 2011

- Motivation
- Bayesian updating of uncertainty
- Modelling of heterogeneities
- Dimensionality reduction Karhunen-Loève expansion
- Acceleration by polynomial chaos expansion
- Heat and moisture transport by Künzel and Kiessl
- Conclusion and future work

Motivation

- Uncertainty quantification why is that important?
 - Quantitative characterization and reduction of uncertainty in applications
 - Enabling of suitable reparation of buildings and extension of building's lifetime
 - Prevention of building's collapse with catastrophic consequences

- Bayesian inference provides:
 - probabilistic description of structural behaviour (model response)
 - incorporating different sources of information: expert's knowledge, results of measurements...
 - parameters estimation from noisy and limited data or imperfect forward model

[Marzouk & Najm, 2007&2009]

Bayesian updating of uncertainty Let *Y* be a forward model of a real system: $Y(q) + \eta = z$ z are measurable quantities q are model input parameters η are uncertainties including *observation errors* together with *model imperfections* $p(\boldsymbol{q} \mid \boldsymbol{z}) = \kappa \cdot p(\boldsymbol{z} \mid \boldsymbol{q}) p_{a}(\boldsymbol{q})$ Bayes's rule: a priori density function a posteriori density function: likelihood $\pi_m(\boldsymbol{q}) = \int_D p(\boldsymbol{q} \mid \boldsymbol{z}) d \boldsymbol{z} = \boldsymbol{\kappa} \cdot p_m(\boldsymbol{q}) L(\boldsymbol{q})$ function

Assuming uncertainties η to be Gaussian:

$$L(\boldsymbol{q}) = \boldsymbol{\kappa} \cdot \exp\left(-\frac{1}{2}(\boldsymbol{Y}(\boldsymbol{q}) - \boldsymbol{z}_{\text{obs}})^T \mathbf{C}_{\text{obs}}^{-1}(\boldsymbol{Y}(\boldsymbol{q}) - \boldsymbol{z}_{\text{obs}})\right)$$

[Albert Tarantola, 2005, SIAM]

Sampling of a posteriori distribution:

Metropolis - Hastings algoritm

which is a Markov chain Monte Carlo method, i.e., it is random (*Monte Carlo*) and has no memory in the sense that each step depends only on the previous step (*Markov chain*)

- start at \boldsymbol{q}_i
- generation of random walk q_j that samples the prior

pdf

• If $L(q_j) < L(q_i)$, then accept the proposed transition to q_j with the probability $P_{i \rightarrow j} = L(q_j) / L(q_i)$, otherwise stay at q_i

[Mosegaard & Tarantola, 2002, IHEES]

Modelling of heterogeneities

homogenisation theories for materials with well-defined geometry:

Regular masonry

Wound composite tube

 describing uncertain material properties in time and/or space using stochastic processes and fields

Irregular masonry

Cement paste

Asphalt

3 May 2011

Description of random field

Random field $q(\mathbf{x}, \omega)$ usually defined by: $q(\mathbf{x}, \omega)$

- mean μ
- covariance function C(x, x')

3 May 2011

Since the covariance function is symmetric and positive definite , it can be represented by the *spectral decomposition* as

quite complex, solved only for one- or two-dimensional tasks

→ discretization of covariance according to *n* grid points:

- where ς_i , ψ_i are solution of eigenvalue problem $\mathbf{C} \psi_i = \varsigma_i \psi_i$

→ discretized field *q* can be written as *Karhunen-Loève expansion*

$$\boldsymbol{q} = \boldsymbol{\mu} + \sum_{i=1}^{M} \sqrt{\varsigma_i} \boldsymbol{\xi}_i \boldsymbol{\psi}_i$$

[e.g. Ghanem & Spanos, 1991, SFE or Matthies & Keese, 2005, CMAME]

Model by Künzel and Kiessl, [Künzel and Kiessl, 1995]

	$\begin{array}{llllllllllllllllllllllllllllllllllll$										
Н	$[\mathrm{Jm}^{-3}]$	enthalpy of the moist building material									
w	$[\rm kgm^{-3}]$	water content of the building material									
λ	$[\mathrm{Wm^{-1}K^{-1}}]$	thermal conductivity									
D_{arphi}	$[\rm kgm^{-1}s^{-1}]$	liquid conduction coefficient									
δ_p	$[\rm kgm^{-1}s^{-1}Pa^{-1}]$	water vapour permeability									
h_v	$[Jkg^{-1}]$	evaporation enthalpy of the water $\mathbf{K}_{\Theta\Theta}\mathbf{r}_{\Theta} + \mathbf{K}_{\Theta\varphi}\mathbf{r}_{\varphi} + \mathbf{C}_{\Theta\Theta}\frac{\mathrm{d}\mathbf{r}_{\Theta}}{\mathrm{d}t} = \mathbf{q}_{\mathrm{ex}}$									
$p_{\rm sat}$	[Pa]	water vapour saturation pressure $d\mathbf{r}_{\varphi}$									
Θ	$[^{\circ}C]$	temperature $\mathbf{K}_{\varphi\Theta}\mathbf{r}_{\Theta} + (\mathbf{K}_{\varphi\varphi}^{\omega} + \mathbf{K}_{\varphi\varphi}^{\omega})\mathbf{r}_{\varphi} + \mathbf{C}_{\varphi\varphi}\frac{\mathbf{r}}{\mathrm{d}t} = \mathbf{g}_{\mathrm{ex}}$									
φ	[-]	relative humidity									

3 May 2011

Thermal conductivity -

Evaporation enthalpy of water -

Water vapour saturation pressure -

Water vapour permeability -

Liquid conduction coefficient -

Total enthalpy -

$$\lambda = \lambda_0 \left(1 + \frac{b_{\rm tcs} w_f(b-1)\varphi}{\rho_s(b-\varphi)} \right)$$

$$h_v = 2.5008 \cdot 10^6 \left(\frac{273.15}{\theta}\right)^{(0.167 + 3.67 \cdot 10^{-4}\theta)}$$
$$p_{\text{sat}} = 611 \exp\left(\frac{17.08\theta}{234.18 + \theta}\right)$$

$$\delta_p = \frac{1.9446 \cdot 10^{-12}}{\mu} \cdot (\theta + 273.15)^{0.81}$$

$$D_{\varphi} = 3.8 \frac{a^2}{w_f} \cdot 10^{\frac{3w_f(b-1)\varphi}{(b-\varphi)(w_f-1)}} \cdot \frac{b(b-1)}{(b-\varphi)^2}$$

 $H = \rho_s c_s \theta$

Model parameters

w_f	$[\rm kgm^{-3}]$	free water saturation
w_{80}	$[\rm kgm^{-3}]$	water content at 80 % relative humidity
λ_0	$[\mathrm{Wm^{-1}K^{-1}}]$	thermal conductivity of dry building material
b	[—]	thermal conductivity supplement
ρ_s	$[\rm kgm^{-3}]$	bulk density of dry building material
μ	[-]	water vapour diffusion resistance factor
A	$[\rm kgm^{-2}s^{-0.5}]$	water absorption coefficient

3 May 2011

Model parameters

Lognormal distribution

Lognormal random field $q(x,\omega)$

nonlinear transformation of standard Gaussian random field $g(x, \omega)$

 $q(x,\omega) = \exp(\mu_g + \sigma_g g(x,\omega))$

$$\boldsymbol{g} = \sum_{i=1}^{M} \sqrt{\varsigma_i} \boldsymbol{\xi}_i \boldsymbol{\gamma}_i \qquad \sigma_g^2 = \ln \left(1 + \left(\frac{\sigma_q}{\mu_q} \right)^2 \right)$$

$$\mu_g = \ln \mu_q - 0.5\sigma_g^2$$

• Assumption: fully correlated parameters \Rightarrow differ only in second order statistics μ_g, σ_g , the shape **g** is the same

3 May 2011

Exponential covariance kernel

$$C(\boldsymbol{x},\boldsymbol{x}') = \sigma^2 \mathrm{e}^{-\left|\frac{\boldsymbol{x}-\boldsymbol{x}'}{L_x}\right| - \left|\frac{\boldsymbol{y}-\boldsymbol{y}'}{L_y}\right|}$$

Lognormal random field with second order statistics:

parameter	<i>w_f</i> [kgm ⁻³]	w₈₀ [kgm ⁻³]	λ_{θ} [Wm ⁻¹ K ⁻¹]	b [-]	ρ _s [kgm ⁻³]	μ [-]	A [kgm ⁻² s ^{-0.5}]
Mean	75	25	0.3	10	1700	20	0.2
Std	15	5	0.06	2	340	4	0.04

3 May 2011

$$E(\boldsymbol{q}, \hat{\boldsymbol{q}}) = \frac{1}{100} \sum_{j=1}^{100} \frac{1}{120} \sum_{i=1}^{120} \frac{|q_i(\boldsymbol{\xi}_j) - \hat{q}_i^{(M)}(\boldsymbol{\xi}_j)|}{q_i(\boldsymbol{\xi}_j)}$$

3 May 2011

Each material parameter is approximated by KL expansion:

$$\hat{\boldsymbol{q}}_0 = \boldsymbol{\mu} + \sum_{i=1}^M \sqrt{\varsigma_i} \boldsymbol{\xi}_i \boldsymbol{\psi}_i$$

Model response can be approximated by PC expansion: in *i*-th node: $\widetilde{r}_i(\xi) = \sum_{\alpha} \beta_{\alpha,i} H_{\alpha}(\xi(\omega)) = H^*(\xi(\omega)) \cdot \beta_i$

in all nodes:
$$\widetilde{\mathbf{r}}(\boldsymbol{\xi}) = \sum_{\alpha} \boldsymbol{\beta}_{\alpha} H_{\alpha}(\boldsymbol{\xi}(\omega)) = (\mathbf{I} \otimes \boldsymbol{H}^{*}(\boldsymbol{\xi}(\omega))) \cdot \boldsymbol{\beta}$$

where $\boldsymbol{\beta}^{T} = (\dots, \boldsymbol{\beta}_{i}^{T}, \dots)$ are PC coefficients and $H_{\alpha}(\boldsymbol{\xi}(\omega))$ are

multivariate Hermite polynomials:

$$H_{\alpha}(\boldsymbol{\xi}(\boldsymbol{\omega})) = \prod_{j=1}^{\infty} h_{\alpha_j}(\boldsymbol{\xi}_j(\boldsymbol{\omega}))$$

[e.g. Ghanem & Spanos, 1991, SFE or Matthies & Keese, 2005, CMAME]

Enthalpy at *i*-th triangular element becomes:

$$\begin{aligned} \widetilde{H}_{i}(\widetilde{\boldsymbol{\theta}}\left(\boldsymbol{\xi}\right)) &= \widehat{\rho}_{s}\left(\boldsymbol{\xi}\right)c_{s}\left(\boldsymbol{\xi}\right)\frac{1}{3}\sum_{j=1}^{3}\widetilde{\theta}_{i,j}\left(\boldsymbol{\xi}\right) = \\ &= \left(\mu_{\rho_{s}} + \sum_{j=1}^{M}\sqrt{\varsigma_{\rho_{s},j}}\xi_{j}\boldsymbol{\psi}_{j}\right)\left(\mu_{c_{s}} + \sum_{j=1}^{M}\sqrt{\varsigma_{c_{s},j}}\xi_{j}\boldsymbol{\psi}_{j}\right)\left(\frac{1}{3}\sum_{j=1}^{3}\boldsymbol{H}^{*}\boldsymbol{\xi}\cdot\boldsymbol{\beta}_{j}\right) \\ &\text{Balance equation becomes:} \end{aligned}$$

$$\longrightarrow \mathbf{K}(\boldsymbol{\beta},\boldsymbol{\xi}(\boldsymbol{\omega})) \otimes \boldsymbol{H}^{*}(\boldsymbol{\xi}(\boldsymbol{\omega})) \cdot \boldsymbol{\beta} - \boldsymbol{q}_{ext} = \boldsymbol{\theta}$$

and can be solved using Galerkin projection:

$$\int_{\Omega} H(\xi(\omega)) \otimes \mathbf{K}(\boldsymbol{\beta}, \xi(\omega)) \otimes H^{*}(\xi(\omega)) dP(\omega) \cdot \boldsymbol{\beta} - \int_{\Omega} H(\xi(\omega)) dP(\omega) \otimes \boldsymbol{q}_{ext} = \boldsymbol{\theta}$$

Nonlinear system is solved by Newton-Raphson method.

3 May 2011

PCE - accuracy

3 May 2011

Bayesian update

0.3

- Bayesian approach provides a foundation for inference from noisy and limited data
- Karhunen-Loève expansion enables an efficient description of input parameters defined as random field
- Polynomial chaos expansion can be used to approximated the model response and accelerate the Bayesian inference even for highly nonlinear models

Future work:

More reliable description of correlated input random fields