
Parametric Problems, Uncertainty Quantification,
and Model Reduction

Hermann G. Matthies

J.-B. Colliat, M. Hautefeuille, A. Keese, D. Liu, T. Srisupattarawanit, E. Zander

Institute of Scientific Computing, TU Braunschweig

Brunswick, Germany

wire@tu-bs.de

http://www.wire.tu-bs.de

2

Overview

1. Parameter dependent problems

2. Associated linear process

3. Factorisations/ Reparametrisations

4. Model reduction and sparse representation

5. Examples and conclusion

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

3

Parameter dependent entities

Assume r(p) to be the parameter dependent

input, the properties, or the output

of some system dependent on a parameter p ∈ P.

Special case: P is a probability space.

Here p can be a number, function, field, or similar,

e.g. a random variable (RV), a stochastic process, a random field.

The parameter space P may be high-dimensional.

How to re-parametrise problem?

How to approximate p→ r(p) to keep computation and memory low?

Computation of r(p) involves approximation.

Allow comparable error to have sparse representation.

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

4

Deterministic model, discretisation, solution

Consider operator equation, physical system modelled by A:

A(u) = f u ∈ U , f ∈ F ,

⇔ ∀v ∈ U : 〈A(u), v〉 = 〈f, v〉,
U — space of states, F — dual space of actions / forcings.

Solution is usually by first discretisation

A(u) = f u ∈ UN ⊂ U , f ∈ FN ⊂ F ,
and then (iterative) numerical solution process

uk+1 = Φ(uk), lim
k→∞

uk = u.

Φ evaluates (pre-conditioned) residua f −A(uk).

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

5

Model with uncertainties

With uncertainties modelled by appropriate probab. space (Ω,P,A):

A[ω](u(ω)) = f(ω) a.s. in ω ∈ Ω,
State u(ω) is U-valued random variable (RV),

solution is in a tensor space W = U ⊗ S.

Variational statement: ∀v ∈ W : E (〈A[·](u(·)), v〉) = E (〈f(·), v〉).

Similarly after semi-discretisation in U :

A[ω](u(ω)) = f(ω) a.s. in ω ∈ Ω,
assume {vj}Nj=1 a basis in UN , then the approx. solution in UN ⊗ S

u(ω) =

N∑
j=1

uj(ω)vj.

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

6

Uncertainty in modelling of concrete

Viaduct de Millau 16× 32 specimen

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

7

Scales in concrete

Concrete mortar

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

8

Heterogeneous on many scales

close-up fracture process zone

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

9

Multi-scale coupling strategy

Strategy key ideas: Sub-domain wrapped in interface layer, interface

layer coarse interpolation, localised Lagrange multipliers: independent

dual compatibility.

Macro-Micro Cube One Micro-Cube with Random Inclusions

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

10

Computation

micro inclusions strain fractured bonds

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

11

Direct integration / sampling solution

Builds on fact that ultimately a quantity of interest E (Ψ(u)) is wanted.

E (Ψ(u)) =

∫
Ω

Ψ(ω, u(ω))P(dω) ≈
Z∑
z=1

wzΨ(ωz, u(ωz))

Pick (e.g. Monte Carlo) {ωz}Zz=1 points, ∀ωz do solution process

uk+1(ωz) = Φ[ωz](uk(ωz)),

giving u(ωz) =
∑
j u

j(ωz)vj =
∑
j u

j
zvj.

Effectively choosing SZ ⊂ S, solution is in WN,Z := UN ⊗ SZ.

(Usually u(ωz) discarded after use in integration.)

Random state represented by solution samples [u(ω0), . . . ,u(ωZ)],

or the tensor uNZ := {ujz}
j=1,...,N
z=1,...,Z .

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

12

Solution by emulation / functional approximation

Emulation — replace expensive simulation by inexpensive approximation

(alias response surfaces, proxy / surrogate models, etc.)

Choose subspace SB ⊂ S with basis {Xβ}Bβ=1,

make ansatz for each uj(ω) ≈
∑
β u

β
jXβ(ω), giving

u(ω) =
∑
j,β

uβjXβ(ω)vj =
∑
j,β

uβjXβ(ω)⊗ vj.

Solution is in tensor product WN,B := UN ⊗ SB ⊂ U ⊗ S =W.

Random state u(ω) represented by tensor uBN := {uβj }
β=1,...,B
j=1,...,N ,

computed by sampling (pre-conditioned) residua f(ω)−A[ω](uk(ω)).

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

13

Model problem with uncertainties

Aquifer

0

0.5

1

1.5

2

0
0.5

1
1.5

2

Geometry

2D model domain G

Simple stationary model of groundwater flow with uncertain data

−∇ · (κ(x, ω)∇u(x, ω)) = f(x, ω) x ∈ G ⊂ Rd & b.c.

Probabilistic modelling of uncertainty.

Parameter ω ∈ Ω (realisations of κ and f) is in a probability space.

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

14

Realisation of κ(x, ω) — β-distributed

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

15

Stochastic PDE and variational form

Solution u(x, ω) is sought in tensor product space

W := U ⊗ S = H̊1(G)⊗ L2(Ω).

Variational formulation: find u ∈ W such that ∀ v ∈ W:

a(v, u) := E
(∫
G
∇v(x, ω) · κ(x, ω) · u(x, ω) dx

)
= E

(∫
G
v(x, ω)f(x, ω) dx

)
=: 〈〈v, f〉〉.

Lax-Milgram lemma → well-posedness.

Galerkin discretisation on WB,N = UN ⊗ SB ⊂ U ⊗ S =W leads to

A u =

(
M∑
m=1

ξmAm ⊗∆(m)

)
u = f .

Céa’s lemma → Galerkin converges.

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

16

Example solution

0

0.5

1

1.5

2

0

0.5

1

1.5

2

Geometry

flow out

Dirichlet b.c.

flow = 0 Sources

7

8

9

10

11

12

0

1

2

0

1

2

5

10

15

Realization of κ

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

0

1

2

0

1

2

4

6

8

10

Realization of solution

4

5

6

7

8

9

10

0

1

2

0

1

2

0

5

10

Mean of solution

1

2

3

4

5

0

1

2

0

1

2

0

2

4

6

Variance of solution

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

y

x

Pr{u(x) > 8}

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

17

Parametric problems

For each p in a parameter set P, let r(p) be a

‘solution’ to some problem in a Hilbert space V (for simplicity).

With r : P → V, denote U = span r(P) = span im r.

What we are after: other representations of r or U = span im r.

To each function r : P → U corresponds a linear map R : U → R̃:

R : U 3 u 7→ 〈r(·)|u〉V ∈ R̃ = imR ⊂ RP.

By construction R is injective. Use this to make R̃ a pre-Hilbert space:

∀φ, ψ ∈ R̃ : 〈φ|ψ〉R := 〈R−1φ|R−1ψ〉U .

R−1 is unitary on completion R.

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

18

RKHS and classification

R is a reproducing kernel Hilbert space —RKHS— with kernel

κ(p1, p2) = 〈r(p1)|r(p2)〉U ∈ RP×P

Reproducing property:

∀φ ∈ R : 〈κ(p, ·)|φ(·)〉R = φ(p).

In other settings (classification, machine learning, SVM),

when different subsets of P have to be classified,

the space U and the map r : P → U is not given,

but can be freely chosen.

It is then called the feature map.

The whole procedure is called the kernel trick.

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

19

‘Correlation’

If there is another inner product 〈·|·〉Q on a subspace Q ⊂ RP,

(e.g. if (P, µ) is a measure space define Q := L2(P, µ)),

a linear map C may be defined in U by

∀u, v ∈ U ; 〈Cu, v〉U ′×U = 〈Ru|Rv〉Q.
C is the ‘correlation’ operator (adjoint in Q = L2(P)):

C := R∗R =

∫
P
r(p)⊗ r(p)µ(dp)

is self-adjoint and positive semi-definite → has spectrum σ(C) ⊆ R+.

Spectral decomposition with projectors Eλ

Cu =

∫ ∞
0

λ dEλu =
∑

λj∈σp(C)⊂R+

λj〈vj|u〉U vj +

∫
R+\σp(C)

λ dEλu.

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

20

Spectral decomposition

Often C has a pure point spectrum (e.g. C compact)

⇒ last integral vanishes, i.e. σ(C) = σp(C):

Cu =
∑
j

λj

mult.λj∑
k

〈vkj |u〉U vkj =
∑

λj∈σp(C)

λj

mult.λj∑
k

(
vkj ⊗ vkj

)
u.

If σ(C) 6= σp(C): generalised eigenvectors vλ and Gelfand triplets

(rigged Hilbert spaces) for the continuous spectrum:∫
R+\σp(C)

λ dEλu =

mult.∑
k

∫
R+

λ
(
vkλ ⊗ vkλ

)
u %k(dλ).

Representation as sum / integral of rank-1 operators.

Numerical approximation will give a sum. Assumed from now on.

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

21

Singular value decomposition

C unitarily equivalent to multiplication operator Mk, with k ≥ 0:

C = VMkV
∗ = (VM

1/2
k)(VM

1/2
k)∗, with M

1/2
k = M√k.

(Mkf(ζ) := k(ζ)f(ζ))

This connects to the singular value decomposition (SVD)

of R = SM
1/2
k V ∗, with a (here) unitary S.

With
√
λm sm := Rvm ∈ R:

(Ru)(p) = 〈r(p)|u〉U =
∑
m

√
λm 〈vm|u〉U sm(p),

R =
∑
m

√
λm (vm ⊗ sm).

Model reduction possible by truncating the sum.

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

22

Model reduction

For partly continuous spectrum we get

r(p) =

mult.∑
k

∫
R+

√
λ 〈vkλ, u〉 skλ(p) %k(dλ)

With approximation or only point spectrum

r(p) =
∑
m

√
λm sm(p)vm, r ∈ U ⊗Q.

This is the Karhunen-Loève-expansion, due to the SVD.

A sum of rank-1 operators / tensors.

Observe that r is linear in the “coordinates” sm, and also ς :=
√
λ.

A representation of r, model reduction possible by truncation of sum.

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

23

Kernel spectral decomposition

For φ, ψ ∈ L2(P) we have also

〈R∗φ|R∗ψ〉U =

∫∫
P×P

φ(p1)κ(p1, p2)ψ(p2) µ(dp1)µ(dp2).

To compute R∗, define an operator Ĉ = RR∗ on L2(P) by

(Ĉφ)(p1) :=

∫
P
κ(p1, p2)φ(p2)µ(dp2) = 〈κ(p1, ·)|φ〉L2(P).

Eigenvalue problem for Ĉ gives (Mercer’s theorem)

κ(p1, p2) =
∑
m

λm sm(p1)sm(p2),

{sm} is CONS in L2(P), {
√
λm sm} is CONS in R.

R∗φ =
∑
m

√
λm vm〈sm|φ〉L2(P), R−1φ =

∑
m

λ−1/2m vm〈sm|φ〉L2(P).

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

24

Factorisations

R∗ may serve as a representation. This is a factorisation of C.

Let C = B∗B be an arbitrary one. Some possible ones:

C = R∗R = (VM
1/2
k)(VM

1/2
k)∗ = C1/2C1/2 = B∗B.

Each factorisation leads to a representation—all unitarily equivalent.

When C is a matrix, a favourite is Cholesky: C = LL∗).

Assume that C = B∗B and B : U → H, let {ek} be CONS in H.

Unitary Q : `2 3 a = (a1, . . . , an, . . .) 7→
∑
k akek ∈ H.

Let r̃(a) := B∗Qa := R̃∗a, i.e. R̃∗ : `2→ U . Then

R̃∗R̃ = (B∗Q)(Q∗B) = B∗B = C.

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

25

Integral decompositions

More decompositions and representations possible via Ĉ.

Let κ(ω1, ω2) =
∫
Y
g(ω1, y)g(ω2, y) ν(dy).

Set p(y) = R−1(g(·, y)) to give

R∗φ =

∫
Y

p(y)〈g(·, y)|φ〉L2(Ω) ν(dy) =

∫
Y

p(y)(Gφ)(y) ν(dy),

where (Gφ)(y) =
∫
Ω
g(ω, y)φ(ω)µ(dω) is an integral transform.

We can arrange U = span im r = span im p.

Then p(y) gives a representation over Y : for f ∈ L2(Y, ν)

R̂∗f =

∫
Y

p(y)f(y) ν(dy).

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

26

Representations

We have seen several ways to represent the solution space

by a—hopefully—simpler space.

These can all be used for model reduction, choosing a smaller subspace.

• The RKHS together with R−1.

• The spectral decomposition over σ(C) or via VM
1/2
k .

• The Karhunen-Loève expansion based on SVD via R∗.

• Other multiplicative decompositions, such as C = B∗B.

• The kernel decompositions and representation on L2(Y, ν).

Choice depends on what is wanted / needed.

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

27

Examples and interpretations

• If V is a space of centred RVs, r is a random field / stochastic process

indexed by P, kernel κ(p1, p2) is covariance function.

• If in this case P = Rd and moreover κ(p1, p2) = c(p1− p2) (stationary

process / homogeneous field), then diagonalisation V is real Fourier

transform, typically σp(C) = ∅ ⇒ need Gelfand triplets.

• If µ is a probability measure on P = Ω (µ(Ω) = 1), and r is a centred

V-valued RV, then C is the covariance.

• If P = {1, 2, . . . , n} and R = Rn, then κ is the Gram matrix of the

vectors r1, . . . , rn.

• If P = [0, T] and r(t) is the response of a dynamical system, then R∗

leads to proper orthogonal decomposition (POD).

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

28

Further factorisation

We have found representations in U ⊗ S, where

S = R, L2(P), L2(σ(C)),
⊕
k

L2(R, µk), `2, L2(Y), . . .

Combinations may occur, so that S = SI ⊗ SII ⊗ SIII ⊗ . . .
This was only a basic decomposition.

Often the problem allows U =
⊗

k Uk.

Or the parameters allow S =
⊗

j Sj.
In case of random fields / stochastic processes

S = L2(Ω) ∼=
⊗

j L2(Ωj) ∼= L2(RN,Γ) ∼=
⊗∞

k=1L2(R,Γ1) . . .

So U ⊗ S ∼=
(⊗

j Uj
)
⊗ (
⊗

k SI,k)⊗ (
⊗

m SII,m)⊗ . . .

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

29

Discretisation — model reduction

On continuous level discretisation is choice of subspace

WN,B := UN ⊗ SB ⊂ U ⊗ S =:W
and—important for computation—good basis in it.

On discrete level reduced models find sub-manifold WR ⊂ WN,B

with smaller dimensionality dimWR = R� N ×B = dimWN,B.

They can work on SB or UN , or both.

Different approaches to choose reduced model:

• Before the solution process (e.g. modal projection).

• After the solution process (essentially data compression).

• During solution, computing solution and reduction simultaneously.

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

30

Use in time-space sampling I

Example: UQ-computations of time-dependent shallow-water flow.

1:50 Scale model in Milano of Toce river (Italy) (D. Liu)

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

31

Use in time-space sampling II

Topography in model — uncertain elevation.

Also uncertain inflow and bed friction—Manning’s coefficient.

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

32

Use in time-space sampling III

Computation with QMC-sampling

Water level with 5 % exceedance probability

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

33

Use in emulation

Solution process to obtain co-efficients for stochastic problem

uk+1 = Φ(uk)

may be written as tensorised mapping

uk+1 = uk −Ξ(uk) = uk −

(
M∑
m=1

Y m ⊗Gm

)
(uk).

With u0 =
∑R0
j=1 y0,j ⊗ g0,j, this gives

u1 =

R0∑
j=1

y0,j ⊗ g0,j −
M∑
m=1

Y m(u0)⊗Gm(u0).

Rank of uk+1 grows by M .

Possible for pre-conditioned linear iteration,

and modified-, full-, inexact- and quasi-Newton iteration.

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

34

Truncated low-rank iteration

Sparse representation entails

• reduce uBN := [uβj] to important information u ≈ uBN ,

• never store all of uBN , but only u,

• operate efficiently on sparse representation u.
If iteration and rank-truncation Tε are alternated, rank stays low.

Here rank-truncation by updated SVD.

ûk+1 =

Rk∑
j=1

yk,j ⊗ gk,j −
M∑
m=1

Y m(uk)⊗Gm(uk),

uk+1 = Tε(ûk+1) with ‖Tε(v)− v‖ ≤ ε.

Truncated iteration converges until stagnation for linearly convergent

process with contraction factor % to stagnation range ε/(1− %).

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

35

Computational complexity for linear case

Residuum is f −A uk = f −
(∑M

m=1 ξmAm ⊗∆(m)
)

uk.

Computation on full uk needs

M ×B A-multiplications + M ×N ∆-multiplications.

Computation on low rank-R tensor product uk needs

M ×R A-multiplications + M ×R ∆-multiplications,

which is much less.

Pre-conditioner P should be used as P =
∑P
p=1Λ

(p) ⊗ P p.

Simplest example: mean value pre-conditioner P = I ⊗ P 0

with P 0 pre-conditioner for E (A).

Similar savings as before, with M replaced by P .

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

36

Truncation accuracy

Accuracy of k-term tensor approximation.

−14 −12 −10 −8 −6 −4 −2
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

log
10

(ε)

lo
g 10

(E
)

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

37

Iteration accuracy

Convergence of truncated iteration.

−10 0 10 20 30 40 50 60 70
−6

−5

−4

−3

−2

−1

0

iter

||u
ε−

u|
|/|

|u
||

ε=0.01
ε=0.001
ε=0.0001
ε=1e−05
ε=1e−06
ε=1e−07
ε=1e−08
ε=1e−09
ε=1e−10
ε=1e−11
ε=1e−12
ε=1e−13

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

38

Number of iterations

Iteration count of truncated iteration.

−14 −12 −10 −8 −6 −4 −2
0

10

20

30

40

50

60

log
10

(ε)

#i
te

ra
tio

ns

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

39

Dual weighted residuals

Given some functional of interest: ψ(u) ≈ E (Ψ(û))

Error in functional ε = ψ(u)−ψ(uR) ≈ 〈δψ,u− uR〉

For simplicity assume that u solves a linear system: Au = f ,

reduced solution has residual r = f −AuR.

Solve adjoint system A∗y = δψ for sensitivity y:

〈δψ,u〉 = 〈A∗y,u〉 = 〈y,Au〉 = 〈y, f〉,
giving

ε ≈ 〈δψ,u− uR〉 = 〈y,A(u− uR)〉 = 〈y, f −AuR〉 = 〈y, r〉.

ε may be used for adaptive steering of model reduction process.

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

40

Conclusion

• parametric models lead naturally to a number of factorisations

• For efficiency try and use sparse representation throughout: ansatz in

low-rank tensor products, as well as storage of solution and

residuum—and iterator in tensor products.

• Works in sampling and emulation /functional approximation.

• Works also for non-linear problems and solvers, time-dependent

problems.

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing

	Parametric Problems, Uncertainty Quantification, and Model Reduction
	Overview
	Parameter dependent entities
	Deterministic model, discretisation, solution
	Model with uncertainties
	Direct integration / sampling solution
	Solution by emulation / functional approximation
	Model problem with uncertainties
	Realisation of (x,) — -distributed
	Stochastic PDE and variational form
	Example solution
	Parametric problems
	RKHS and classification
	`Correlation'
	Spectral decomposition
	Singular value decomposition
	Model reduction
	Kernel spectral decomposition
	Factorisations
	Integral decompositions
	Representations
	Examples and interpretations
	Further factorisation
	Discretisation — model reduction
	Use in time-space sampling I
	Use in time-space sampling II
	Use in time-space sampling III
	Use in emulation
	Truncated low-rank iteration
	Computational complexity for linear case
	Truncation accuracy
	Iteration accuracy
	Number of iterations
	Dual weighted residuals
	Conclusion

