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Overview

1. Parameter dependent problems

2. Associated linear process

3. Factorisations/ Reparametrisations

4. Model reduction and sparse representation

5. Examples and conclusion
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Parameter dependent entities

Assume r(p) to be the parameter dependent

input, the properties, or the output

of some system dependent on a parameter p ∈ P.

Special case: P is a probability space.

Here p can be a number, function, field, or similar,

e.g. a random variable (RV), a stochastic process, a random field.

The parameter space P may be high-dimensional.

How to re-parametrise problem?

How to approximate p→ r(p) to keep computation and memory low?

Computation of r(p) involves approximation.

Allow comparable error to have sparse representation.
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Deterministic model, discretisation, solution

Consider operator equation, physical system modelled by A:

A(u) = f u ∈ U , f ∈ F ,

⇔ ∀v ∈ U : 〈A(u), v〉 = 〈f, v〉,
U — space of states, F — dual space of actions / forcings.

Solution is usually by first discretisation

A(u) = f u ∈ UN ⊂ U , f ∈ FN ⊂ F ,
and then (iterative) numerical solution process

uk+1 = Φ(uk), lim
k→∞

uk = u.

Φ evaluates (pre-conditioned) residua f −A(uk).
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Model with uncertainties

With uncertainties modelled by appropriate probab. space (Ω,P,A):

A[ω](u(ω)) = f(ω) a.s. in ω ∈ Ω,
State u(ω) is U-valued random variable (RV),

solution is in a tensor space W = U ⊗ S.

Variational statement: ∀v ∈ W : E (〈A[·](u(·)), v〉) = E (〈f(·), v〉).

Similarly after semi-discretisation in U :

A[ω](u(ω)) = f(ω) a.s. in ω ∈ Ω,
assume {vj}Nj=1 a basis in UN , then the approx. solution in UN ⊗ S

u(ω) =

N∑
j=1

uj(ω)vj.
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Uncertainty in modelling of concrete

Viaduct de Millau 16× 32 specimen
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Scales in concrete

Concrete mortar
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Heterogeneous on many scales

close-up fracture process zone
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Multi-scale coupling strategy

Strategy key ideas: Sub-domain wrapped in interface layer, interface

layer coarse interpolation, localised Lagrange multipliers: independent

dual compatibility.

Macro-Micro Cube One Micro-Cube with Random Inclusions
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Computation

micro inclusions strain fractured bonds
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Direct integration / sampling solution

Builds on fact that ultimately a quantity of interest E (Ψ(u)) is wanted.

E (Ψ(u)) =

∫
Ω

Ψ(ω, u(ω))P(dω) ≈
Z∑
z=1

wzΨ(ωz, u(ωz))

Pick (e.g. Monte Carlo) {ωz}Zz=1 points, ∀ωz do solution process

uk+1(ωz) = Φ[ωz](uk(ωz)),

giving u(ωz) =
∑
j u

j(ωz)vj =
∑
j u

j
zvj.

Effectively choosing SZ ⊂ S, solution is in WN,Z := UN ⊗ SZ.

(Usually u(ωz) discarded after use in integration.)

Random state represented by solution samples [u(ω0), . . . ,u(ωZ)],

or the tensor uNZ := {ujz}
j=1,...,N
z=1,...,Z .
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Solution by emulation / functional approximation

Emulation — replace expensive simulation by inexpensive approximation

( alias response surfaces, proxy / surrogate models, etc.)

Choose subspace SB ⊂ S with basis {Xβ}Bβ=1,

make ansatz for each uj(ω) ≈
∑
β u

β
jXβ(ω), giving

u(ω) =
∑
j,β

uβjXβ(ω)vj =
∑
j,β

uβjXβ(ω)⊗ vj.

Solution is in tensor product WN,B := UN ⊗ SB ⊂ U ⊗ S =W.

Random state u(ω) represented by tensor uBN := {uβj }
β=1,...,B
j=1,...,N ,

computed by sampling (pre-conditioned) residua f(ω)−A[ω](uk(ω)).
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Model problem with uncertainties

Aquifer
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Geometry

2D model domain G

Simple stationary model of groundwater flow with uncertain data

−∇ · (κ(x, ω)∇u(x, ω)) = f(x, ω) x ∈ G ⊂ Rd & b.c.

Probabilistic modelling of uncertainty.

Parameter ω ∈ Ω (realisations of κ and f) is in a probability space.
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Realisation of κ(x, ω) — β-distributed
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Stochastic PDE and variational form

Solution u(x, ω) is sought in tensor product space

W := U ⊗ S = H̊1(G)⊗ L2(Ω).

Variational formulation: find u ∈ W such that ∀ v ∈ W:

a(v, u) := E
(∫
G
∇v(x, ω) · κ(x, ω) · u(x, ω) dx

)
= E

(∫
G
v(x, ω)f(x, ω) dx

)
=: 〈〈v, f〉〉.

Lax-Milgram lemma → well-posedness.

Galerkin discretisation on WB,N = UN ⊗ SB ⊂ U ⊗ S =W leads to

A u =

(
M∑
m=1

ξmAm ⊗∆(m)

)
u = f .

Céa’s lemma → Galerkin converges.
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Example solution
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Parametric problems

For each p in a parameter set P, let r(p) be a

‘solution’ to some problem in a Hilbert space V (for simplicity).

With r : P → V, denote U = span r(P) = span im r.

What we are after: other representations of r or U = span im r.

To each function r : P → U corresponds a linear map R : U → R̃:

R : U 3 u 7→ 〈r(·)|u〉V ∈ R̃ = imR ⊂ RP.

By construction R is injective. Use this to make R̃ a pre-Hilbert space:

∀φ, ψ ∈ R̃ : 〈φ|ψ〉R := 〈R−1φ|R−1ψ〉U .

R−1 is unitary on completion R.
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RKHS and classification

R is a reproducing kernel Hilbert space —RKHS— with kernel

κ(p1, p2) = 〈r(p1)|r(p2)〉U ∈ RP×P

Reproducing property:

∀φ ∈ R : 〈κ(p, ·)|φ(·)〉R = φ(p).

In other settings (classification, machine learning, SVM),

when different subsets of P have to be classified,

the space U and the map r : P → U is not given,

but can be freely chosen.

It is then called the feature map.

The whole procedure is called the kernel trick.
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‘Correlation’

If there is another inner product 〈·|·〉Q on a subspace Q ⊂ RP,

(e.g. if (P, µ) is a measure space define Q := L2(P, µ)),

a linear map C may be defined in U by

∀u, v ∈ U ; 〈Cu, v〉U ′×U = 〈Ru|Rv〉Q.
C is the ‘correlation’ operator (adjoint in Q = L2(P)):

C := R∗R =

∫
P
r(p)⊗ r(p)µ(dp)

is self-adjoint and positive semi-definite → has spectrum σ(C) ⊆ R+.

Spectral decomposition with projectors Eλ

Cu =

∫ ∞
0

λ dEλu =
∑

λj∈σp(C)⊂R+

λj〈vj|u〉U vj +

∫
R+\σp(C)

λ dEλu.
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Spectral decomposition

Often C has a pure point spectrum (e.g. C compact)

⇒ last integral vanishes, i.e. σ(C) = σp(C):

Cu =
∑
j

λj

mult.λj∑
k

〈vkj |u〉U vkj =
∑

λj∈σp(C)

λj

mult.λj∑
k

(
vkj ⊗ vkj

)
u.

If σ(C) 6= σp(C): generalised eigenvectors vλ and Gelfand triplets

(rigged Hilbert spaces) for the continuous spectrum:∫
R+\σp(C)

λ dEλu =

mult.∑
k

∫
R+

λ
(
vkλ ⊗ vkλ

)
u %k(dλ).

Representation as sum / integral of rank-1 operators.

Numerical approximation will give a sum. Assumed from now on.
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Singular value decomposition

C unitarily equivalent to multiplication operator Mk, with k ≥ 0:

C = VMkV
∗ = (VM

1/2
k )(VM

1/2
k )∗, with M

1/2
k = M√k.

(Mkf(ζ) := k(ζ)f(ζ))

This connects to the singular value decomposition (SVD)

of R = SM
1/2
k V ∗, with a (here) unitary S.

With
√
λm sm := Rvm ∈ R:

(Ru)(p) = 〈r(p)|u〉U =
∑
m

√
λm 〈vm|u〉U sm(p),

R =
∑
m

√
λm (vm ⊗ sm).

Model reduction possible by truncating the sum.
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Model reduction

For partly continuous spectrum we get

r(p) =

mult.∑
k

∫
R+

√
λ 〈vkλ, u〉 skλ(p) %k(dλ)

With approximation or only point spectrum

r(p) =
∑
m

√
λm sm(p)vm, r ∈ U ⊗Q.

This is the Karhunen-Loève-expansion, due to the SVD.

A sum of rank-1 operators / tensors.

Observe that r is linear in the “coordinates” sm, and also ς :=
√
λ.

A representation of r, model reduction possible by truncation of sum.

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing



23

Kernel spectral decomposition

For φ, ψ ∈ L2(P) we have also

〈R∗φ|R∗ψ〉U =

∫∫
P×P

φ(p1)κ(p1, p2)ψ(p2) µ(dp1)µ(dp2).

To compute R∗, define an operator Ĉ = RR∗ on L2(P) by

(Ĉφ)(p1) :=

∫
P
κ(p1, p2)φ(p2)µ(dp2) = 〈κ(p1, ·)|φ〉L2(P).

Eigenvalue problem for Ĉ gives (Mercer’s theorem)

κ(p1, p2) =
∑
m

λm sm(p1)sm(p2),

{sm} is CONS in L2(P), {
√
λm sm} is CONS in R.

R∗φ =
∑
m

√
λm vm〈sm|φ〉L2(P), R−1φ =

∑
m

λ−1/2m vm〈sm|φ〉L2(P).
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Factorisations

R∗ may serve as a representation. This is a factorisation of C.

Let C = B∗B be an arbitrary one. Some possible ones:

C = R∗R = (VM
1/2
k )(VM

1/2
k )∗ = C1/2C1/2 = B∗B.

Each factorisation leads to a representation—all unitarily equivalent.

When C is a matrix, a favourite is Cholesky: C = LL∗).

Assume that C = B∗B and B : U → H, let {ek} be CONS in H.

Unitary Q : `2 3 a = (a1, . . . , an, . . .) 7→
∑
k akek ∈ H.

Let r̃(a) := B∗Qa := R̃∗a, i.e. R̃∗ : `2→ U . Then

R̃∗R̃ = (B∗Q)(Q∗B) = B∗B = C.
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Integral decompositions

More decompositions and representations possible via Ĉ.

Let κ(ω1, ω2) =
∫
Y
g(ω1, y)g(ω2, y) ν(dy).

Set p(y) = R−1(g(·, y)) to give

R∗φ =

∫
Y

p(y)〈g(·, y)|φ〉L2(Ω) ν(dy) =

∫
Y

p(y)(Gφ)(y) ν(dy),

where (Gφ)(y) =
∫
Ω
g(ω, y)φ(ω)µ(dω) is an integral transform.

We can arrange U = span im r = span im p.

Then p(y) gives a representation over Y : for f ∈ L2(Y, ν)

R̂∗f =

∫
Y

p(y)f(y) ν(dy).
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Representations

We have seen several ways to represent the solution space

by a—hopefully—simpler space.

These can all be used for model reduction, choosing a smaller subspace.

• The RKHS together with R−1.

• The spectral decomposition over σ(C) or via VM
1/2
k .

• The Karhunen-Loève expansion based on SVD via R∗.

• Other multiplicative decompositions, such as C = B∗B.

• The kernel decompositions and representation on L2(Y, ν).

Choice depends on what is wanted / needed.
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Examples and interpretations

• If V is a space of centred RVs, r is a random field / stochastic process

indexed by P, kernel κ(p1, p2) is covariance function.

• If in this case P = Rd and moreover κ(p1, p2) = c(p1− p2) (stationary

process / homogeneous field), then diagonalisation V is real Fourier

transform, typically σp(C) = ∅ ⇒ need Gelfand triplets.

• If µ is a probability measure on P = Ω (µ(Ω) = 1), and r is a centred

V-valued RV, then C is the covariance.

• If P = {1, 2, . . . , n} and R = Rn, then κ is the Gram matrix of the

vectors r1, . . . , rn.

• If P = [0, T ] and r(t) is the response of a dynamical system, then R∗

leads to proper orthogonal decomposition (POD).

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing



28

Further factorisation

We have found representations in U ⊗ S, where

S = R, L2(P), L2(σ(C)),
⊕
k

L2(R, µk), `2, L2(Y ), . . .

Combinations may occur, so that S = SI ⊗ SII ⊗ SIII ⊗ . . .
This was only a basic decomposition.

Often the problem allows U =
⊗

k Uk.

Or the parameters allow S =
⊗

j Sj.
In case of random fields / stochastic processes

S = L2(Ω) ∼=
⊗

j L2(Ωj) ∼= L2(RN,Γ) ∼=
⊗∞

k=1L2(R,Γ1) . . .

So U ⊗ S ∼=
(⊗

j Uj
)
⊗ (
⊗

k SI,k)⊗ (
⊗

m SII,m)⊗ . . .
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Discretisation — model reduction

On continuous level discretisation is choice of subspace

WN,B := UN ⊗ SB ⊂ U ⊗ S =:W
and—important for computation—good basis in it.

On discrete level reduced models find sub-manifold WR ⊂ WN,B

with smaller dimensionality dimWR = R� N ×B = dimWN,B.

They can work on SB or UN , or both.

Different approaches to choose reduced model:

• Before the solution process (e.g. modal projection).

• After the solution process (essentially data compression).

• During solution, computing solution and reduction simultaneously.
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Use in time-space sampling I

Example: UQ-computations of time-dependent shallow-water flow.

1:50 Scale model in Milano of Toce river (Italy) (D. Liu)
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Use in time-space sampling II

Topography in model — uncertain elevation.

  

Also uncertain inflow and bed friction—Manning’s coefficient.

TU Braunschweig Institute of Scientific Computing

CC
Scien

tifi omputing



32

Use in time-space sampling III

Computation with QMC-sampling

Water level with 5 % exceedance probability
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Use in emulation

Solution process to obtain co-efficients for stochastic problem

uk+1 = Φ(uk)

may be written as tensorised mapping

uk+1 = uk −Ξ(uk) = uk −

(
M∑
m=1

Y m ⊗Gm

)
(uk).

With u0 =
∑R0
j=1 y0,j ⊗ g0,j, this gives

u1 =

R0∑
j=1

y0,j ⊗ g0,j −
M∑
m=1

Y m(u0)⊗Gm(u0).

Rank of uk+1 grows by M .

Possible for pre-conditioned linear iteration,

and modified-, full-, inexact- and quasi-Newton iteration.
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Truncated low-rank iteration

Sparse representation entails

• reduce uBN := [uβj ] to important information u ≈ uBN ,

• never store all of uBN , but only u,

• operate efficiently on sparse representation u.
If iteration and rank-truncation Tε are alternated, rank stays low.

Here rank-truncation by updated SVD.

ûk+1 =

Rk∑
j=1

yk,j ⊗ gk,j −
M∑
m=1

Y m(uk)⊗Gm(uk),

uk+1 = Tε(ûk+1) with ‖Tε(v)− v‖ ≤ ε.

Truncated iteration converges until stagnation for linearly convergent

process with contraction factor % to stagnation range ε/(1− %).
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Computational complexity for linear case

Residuum is f −A uk = f −
(∑M

m=1 ξmAm ⊗∆(m)
)

uk.

Computation on full uk needs

M ×B A-multiplications + M ×N ∆-multiplications.

Computation on low rank-R tensor product uk needs

M ×R A-multiplications + M ×R ∆-multiplications,

which is much less.

Pre-conditioner P should be used as P =
∑P
p=1Λ

(p) ⊗ P p.

Simplest example: mean value pre-conditioner P = I ⊗ P 0

with P 0 pre-conditioner for E (A).

Similar savings as before, with M replaced by P .
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Truncation accuracy

Accuracy of k-term tensor approximation.
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Iteration accuracy

Convergence of truncated iteration.
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Number of iterations

Iteration count of truncated iteration.
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Dual weighted residuals

Given some functional of interest: ψ(u) ≈ E (Ψ(û))

Error in functional ε = ψ(u)−ψ(uR) ≈ 〈δψ,u− uR〉

For simplicity assume that u solves a linear system: Au = f ,

reduced solution has residual r = f −AuR.

Solve adjoint system A∗y = δψ for sensitivity y:

〈δψ,u〉 = 〈A∗y,u〉 = 〈y,Au〉 = 〈y, f〉,
giving

ε ≈ 〈δψ,u− uR〉 = 〈y,A(u− uR)〉 = 〈y, f −AuR〉 = 〈y, r〉.

ε may be used for adaptive steering of model reduction process.
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Conclusion

• parametric models lead naturally to a number of factorisations

• For efficiency try and use sparse representation throughout: ansatz in

low-rank tensor products, as well as storage of solution and

residuum—and iterator in tensor products.

• Works in sampling and emulation /functional approximation.

• Works also for non-linear problems and solvers, time-dependent

problems.
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