Parametric Problems, Uncertainty Quantification, and Model Reduction

Hermann G. Matthies

J.-B. Colliat, M. Hautefeuille, A. Keese, D. Liu, T. Srisupattarawanit, E. Zander

Institute of Scientific Computing, TU Braunschweig Brunswick, Germany

wire@tu-bs.de
http://www.wire.tu-bs.de

Overview

- 1. Parameter dependent problems
- 2. Associated linear process
- 3. Factorisations/ Reparametrisations
- 4. Model reduction and sparse representation
- 5. Examples and conclusion

Assume r(p) to be the parameter dependent input, the properties, or the output of some system dependent on a parameter $p \in \mathcal{P}$.

Special case: \mathcal{P} is a probability space.

Here p can be a number, function, field, or similar, e.g. a random variable (RV), a stochastic process, a random field.

The parameter space $\mathcal P$ may be high-dimensional. How to re-parametrise problem?

How to approximate $p \rightarrow r(p)$ to keep computation and memory low?

Computation of r(p) involves approximation. Allow comparable error to have sparse representation.

Deterministic model, discretisation, solution

Consider operator equation, physical system modelled by A: $A(u) = f \qquad u \in \mathcal{U}, \ f \in \mathcal{F},$ $\Leftrightarrow \forall v \in \mathcal{U} : \qquad \langle A(u), v \rangle = \langle f, v \rangle,$ \mathcal{U} — space of states, \mathcal{F} — dual space of actions / forcings. Solution is usually by first discretisation $oldsymbol{A}(oldsymbol{u})=oldsymbol{f} \qquad oldsymbol{u}\in\mathcal{U}_N\subset\mathcal{U},\ oldsymbol{f}\in\mathcal{F}_N\subset\mathcal{F},$ and then (iterative) numerical solution process $oldsymbol{u}_{k+1} = oldsymbol{\Phi}(oldsymbol{u}_k), \qquad \lim_{k o\infty}oldsymbol{u}_k = oldsymbol{u}.$

 $\boldsymbol{\Phi}$ evaluates (pre-conditioned) residua $\boldsymbol{f} - \boldsymbol{A}(\boldsymbol{u}_k)$.

Institute of Scientific Computing

Model with uncertainties

With uncertainties modelled by appropriate probab. space $(\Omega, \mathbb{P}, \mathfrak{A})$:

 $A[\omega](u(\omega)) = f(\omega) \qquad \text{a.s. in } \omega \in \Omega,$

State $u(\omega)$ is \mathcal{U} -valued random variable (RV), solution is in a tensor space $\mathcal{W} = \mathcal{U} \otimes \mathcal{S}$.

Variational statement: $\forall v \in \mathcal{W}$: $\mathbb{E}(\langle A[\cdot](u(\cdot)), v \rangle) = \mathbb{E}(\langle f(\cdot), v \rangle).$

Similarly after semi-discretisation in \mathcal{U} :

$$\boldsymbol{A}[\omega](\boldsymbol{u}(\omega)) = \boldsymbol{f}(\omega) \qquad \text{a.s. in } \omega \in \Omega,$$

assume $\{m{v}_j\}_{j=1}^N$ a basis in \mathcal{U}_N , then the approx. solution in $\mathcal{U}_N\otimes\mathcal{S}$

$$\boldsymbol{u}(\omega) = \sum_{j=1}^{N} u^{j}(\omega) \boldsymbol{v}_{j}.$$

Uncertainty in modelling of concrete

Viaduct de Millau

 $16\times 32~{\rm specimen}$

Scales in concrete

Concrete

mortar

Heterogeneous on many scales

close-up

fracture process zone

Multi-scale coupling strategy

Strategy key ideas: Sub-domain wrapped in interface layer, interface layer coarse interpolation, localised Lagrange multipliers: independent dual compatibility.

Macro-Micro Cube

One Micro-Cube with Random Inclusions

Computation

Broken elements 0.000357 0.00324 0.00613 0.00901 0.0119

micro inclusions strain

fractured bonds

Direct integration / sampling solution

Builds on fact that ultimately a quantity of interest $\mathbb{E}(\Psi(u))$ is wanted.

$$\mathbb{E}\left(\Psi(u)\right) = \int_{\Omega} \Psi(\omega, u(\omega)) \mathbb{P}(\mathrm{d}\omega) \approx \sum_{z=1}^{Z} \mathsf{w}_{z} \Psi(\omega_{z}, u(\omega_{z}))$$

Pick (e.g. Monte Carlo) $\{\omega_z\}_{z=1}^Z$ points, $\forall \omega_z$ do solution process

$$\boldsymbol{u}_{k+1}(\omega_z) = \boldsymbol{\Phi}[\omega_z](\boldsymbol{u}_k(\omega_z)),$$

giving $u(\omega_z) = \sum_j u^j(\omega_z) v_j = \sum_j u^j_z v_j$. Effectively choosing $S_Z \subset S$, solution is in $\mathcal{W}_{N,Z} := \mathcal{U}_N \otimes \mathcal{S}_Z$. (Usually $u(\omega_z)$ discarded after use in integration.)

Random state represented by solution samples $[\boldsymbol{u}(\omega_0), \ldots, \boldsymbol{u}(\omega_Z)]$, or the tensor $\mathbf{u}_Z^N := \{ \boldsymbol{u}_z^j \}_{z=1,\ldots,Z}^{j=1,\ldots,N}$.

11

Solution by emulation / functional approximation

Emulation — replace expensive simulation by inexpensive approximation (alias response surfaces, proxy / surrogate models, etc.)

Choose subspace $S_B \subset S$ with basis $\{X_\beta\}_{\beta=1}^B$, make ansatz for each $u_j(\omega) \approx \sum_{\beta} u_j^{\beta} X_{\beta}(\omega)$, giving

$$\boldsymbol{u}(\omega) = \sum_{j,\beta} \boldsymbol{u}_{j}^{\boldsymbol{\beta}} X_{\boldsymbol{\beta}}(\omega) \boldsymbol{v}_{j} = \sum_{j,\beta} \boldsymbol{u}_{j}^{\boldsymbol{\beta}} X_{\boldsymbol{\beta}}(\omega) \otimes \boldsymbol{v}_{j}.$$

Solution is in tensor product $\mathcal{W}_{N,B} := \mathcal{U}_N \otimes \mathcal{S}_B \subset \mathcal{U} \otimes \mathcal{S} = \mathcal{W}$.

Random state $u(\omega)$ represented by tensor $\mathbf{u}_N^B := \{u_j^\beta\}_{j=1,...,N}^{\beta=1,...,B}$, computed by sampling (pre-conditioned) residua $f(\omega) - A[\omega](u_k(\omega))$.

12

Model problem with uncertainties

Simple stationary model of groundwater flow with uncertain data

$$-\nabla \cdot (\kappa(x,\omega) \nabla u(x,\omega)) = f(x,\omega)$$
 $x \in \mathcal{G} \subset \mathbb{R}^d$ & b.c.

Probabilistic modelling of uncertainty.

Parameter $\omega \in \Omega$ (realisations of κ and f) is in a probability space.

Realisation of $\kappa(x,\omega)$ — $\beta\text{-distributed}$

A sample realization

Stochastic PDE and variational form

Solution $u(x, \omega)$ is sought in tensor product space $\mathcal{W} := \mathcal{U} \otimes \mathcal{S} = \mathring{H}^1(\mathcal{G}) \otimes L_2(\Omega).$

Variational formulation: find $u \in \mathcal{W}$ such that $\forall v \in \mathcal{W}$:

$$\begin{aligned} \mathsf{a}(v,u) &:= \mathbb{E}\left(\int_{\mathcal{G}} \nabla v(x,\omega) \cdot \kappa(x,\omega) \cdot u(x,\omega) \,\mathrm{d}x\right) \\ &= \mathbb{E}\left(\int_{\mathcal{G}} v(x,\omega) f(x,\omega) \,\mathrm{d}x\right) =: \langle\!\langle v, f \rangle\!\rangle. \end{aligned}$$

Lax-Milgram lemma \rightarrow well-posedness.

Galerkin discretisation on $\mathcal{W}_{B,N} = \mathcal{U}_N \otimes \mathcal{S}_B \subset \mathcal{U} \otimes \mathcal{S} = \mathcal{W}$ leads to

$$\mathbf{A}\mathbf{u} = \left(\sum_{m=1}^{M} \xi_m \mathbf{A}_m \otimes \mathbf{\Delta}^{(m)}\right) \mathbf{u} = \mathbf{f}.$$

Céa's lemma \rightarrow Galerkin converges.

Example solution

16

Parametric problems

For each p in a parameter set \mathcal{P} , let r(p) be a 'solution' to some problem in a Hilbert space \mathcal{V} (for simplicity).

With
$$r : \mathcal{P} \to \mathcal{V}$$
, denote $\mathcal{U} = \overline{\operatorname{span}} r(\mathcal{P}) = \overline{\operatorname{span}} \operatorname{im} r$.

What we are after: other representations of r or $\mathcal{U} = \overline{\operatorname{span}} \operatorname{im} r$.

To each function $r : \mathcal{P} \to \mathcal{U}$ corresponds a linear map $R : \mathcal{U} \to \tilde{\mathcal{R}}$: $R : \mathcal{U} \ni u \mapsto \langle r(\cdot) | u \rangle_{\mathcal{V}} \in \tilde{\mathcal{R}} = \operatorname{im} R \subset \mathbb{R}^{\mathcal{P}}.$

By construction R is injective. Use this to make $\tilde{\mathcal{R}}$ a pre-Hilbert space: $\forall \phi, \psi \in \tilde{\mathcal{R}} : \langle \phi | \psi \rangle_{\mathcal{R}} := \langle R^{-1} \phi | R^{-1} \psi \rangle_{\mathcal{U}}.$

 R^{-1} is unitary on completion \mathcal{R} .

 \mathcal{R} is a reproducing kernel Hilbert space —RKHS— with kernel $\varkappa(p_1, p_2) = \langle r(p_1) | r(p_2) \rangle_{\mathcal{U}} \in \mathbb{R}^{\mathcal{P} \times \mathcal{P}}$

Reproducing property:

 $\forall \phi \in \mathcal{R} : \langle \varkappa(p, \cdot) | \phi(\cdot) \rangle_{\mathcal{R}} = \phi(p).$

In other settings (classification, machine learning, SVM), when different subsets of \mathcal{P} have to be classified, the space \mathcal{U} and the map $r : \mathcal{P} \to \mathcal{U}$ is not given, but can be freely chosen.

It is then called the feature map. The whole procedure is called the kernel trick.

'Correlation'

If there is another inner product $\langle \cdot | \cdot \rangle_{\mathcal{Q}}$ on a subspace $\mathcal{Q} \subset \mathbb{R}^{\mathcal{P}}$, (e.g. if (\mathcal{P}, μ) is a measure space define $\mathcal{Q} := L_2(\mathcal{P}, \mu)$), a linear map C may be defined in \mathcal{U} by $\forall u, v \in \mathcal{U}; \ \langle Cu, v \rangle_{\mathcal{U}' \times \mathcal{U}} = \langle Ru | Rv \rangle_{\mathcal{Q}}.$ C is the 'correlation' operator (adjoint in $\mathcal{Q} = L_2(\mathcal{P})$): $C := R^*R = \int_{\mathcal{P}} r(p) \otimes r(p) \, \mu(\mathrm{d}p)$

is self-adjoint and positive semi-definite \rightarrow has spectrum $\sigma(C) \subseteq \mathbb{R}_+$.

Spectral decomposition with projectors
$$E_{\lambda}$$

 $Cu = \int_{0}^{\infty} \lambda \, \mathrm{d}E_{\lambda}u = \sum_{\lambda_{j} \in \sigma_{p}(C) \subset \mathbb{R}_{+}} \lambda_{j} \langle v_{j} | u \rangle_{\mathcal{U}} v_{j} + \int_{\mathbb{R}_{+} \setminus \sigma_{p}(C)} \lambda \, \mathrm{d}E_{\lambda}u.$

Institute of Scientific Computing

Spectral decomposition

Often C has a pure point spectrum (e.g. C compact) \Rightarrow last integral vanishes, i.e. $\sigma(C) = \sigma_p(C)$: $\underset{mult.\lambda_j}{\operatorname{mult.\lambda_j}} = \sum_{k=1}^{\operatorname{mult.\lambda_j}} \sum_{k=1}^{\operatorname{mutt.\lambda_j}} \sum_{k=1}^{\operatorname{mutt.\lambda_j}}$

$$Cu = \sum_{j} \lambda_{j} \sum_{k} \langle v_{j}^{k} | u \rangle_{\mathcal{U}} v_{j}^{k} = \sum_{\lambda_{j} \in \sigma_{p}(C)} \lambda_{j} \sum_{k} (v_{j}^{k} \otimes v_{j}^{k}) u.$$

If $\sigma(C) \neq \sigma_p(C)$: generalised eigenvectors v_{λ} and Gelfand triplets (rigged Hilbert spaces) for the continuous spectrum:

$$\int_{\mathbb{R}_+ \setminus \sigma_p(C)} \lambda \, \mathrm{d}E_\lambda u = \sum_k^{\mathsf{mult.}} \int_{\mathbb{R}_+} \lambda \, \left(v_\lambda^k \otimes v_\lambda^k \right) u \, \varrho_k(\mathrm{d}\lambda).$$

Representation as sum / integral of rank-1 operators. Numerical approximation will give a sum. Assumed from now on.

20

Singular value decomposition

C unitarily equivalent to multiplication operator M_k , with $k \ge 0$: $C = VM_kV^* = (VM_k^{1/2})(VM_k^{1/2})^*$, with $M_k^{1/2} = M_{\sqrt{k}}$. $(M_kf(\zeta) := k(\zeta)f(\zeta))$

This connects to the singular value decomposition (SVD) of $R = SM_k^{1/2}V^*$, with a (here) unitary S.

With
$$\sqrt{\lambda_m} s_m := Rv_m \in \mathcal{R}$$
:
 $(Ru)(p) = \langle r(p) | u \rangle_{\mathcal{U}} = \sum_m \sqrt{\lambda_m} \langle v_m | u \rangle_{\mathcal{U}} s_m(p),$

$$R = \sum_{m} \sqrt{\lambda_m} \ (v_m \otimes s_m).$$

Model reduction possible by truncating the sum.

21

Model reduction

For partly continuous spectrum we get

$$r(p) = \sum_{k}^{\text{mult.}} \int_{\mathbb{R}_{+}} \sqrt{\lambda} \langle v_{\lambda}^{k}, u \rangle s_{\lambda}^{k}(p) \varrho_{k}(\mathrm{d}\lambda)$$

With approximation or only point spectrum

$$r(p) = \sum_{m} \sqrt{\lambda_m} s_m(p) v_m, \quad r \in \mathcal{U} \otimes \mathcal{Q}.$$

This is the Karhunen-Loève-expansion, due to the SVD. A sum of rank-1 operators / tensors.

Observe that r is linear in the "coordinates" s_m , and also $\varsigma := \sqrt{\lambda}$.

A representation of r, model reduction possible by truncation of sum.

Kernel spectral decomposition

For
$$\phi, \psi \in L_2(\mathcal{P})$$
 we have also
 $\langle R^* \phi | R^* \psi \rangle_{\mathcal{U}} = \iint_{\mathcal{P} \times \mathcal{P}} \phi(p_1) \varkappa(p_1, p_2) \psi(p_2) \mu(dp_1) \mu(dp_2).$
To compute R^* , define an operator $\hat{C} = RR^*$ on $L_2(\mathcal{P})$ by
 $(\hat{C}\phi)(p_1) := \int_{\mathcal{P}} \varkappa(p_1, p_2) \phi(p_2) \mu(dp_2) = \langle \varkappa(p_1, \cdot) | \phi \rangle_{L_2(\mathcal{P})}.$
Eigenvalue problem for \hat{C} gives (Mercer's theorem)
 $\varkappa(p_1, p_2) = \sum_m \lambda_m s_m(p_1) s_m(p_2),$
 $\{s_m\}$ is CONS in $L_2(\mathcal{P}), \ \{\sqrt{\lambda_m} \ s_m\}$ is CONS in $\mathcal{R}.$
 $R^*\phi = \sum_m \sqrt{\lambda_m} \ v_m \langle s_m | \phi \rangle_{L_2(\mathcal{P})}, \quad R^{-1}\phi = \sum_m \lambda_m^{-1/2} \ v_m \langle s_m | \phi \rangle_{L_2(\mathcal{P})}.$

<u>23</u>

Factorisations

 R^* may serve as a representation. This is a factorisation of C. Let $C = B^*B$ be an arbitrary one. Some possible ones: $C = R^*R = (VM_k^{1/2})(VM_k^{1/2})^* = C^{1/2}C^{1/2} = B^*B.$

Each factorisation leads to a representation—all unitarily equivalent. When C is a matrix, a favourite is Cholesky: $C = LL^*$).

Assume that $C = B^*B$ and $B : \mathcal{U} \to \mathcal{H}$, let $\{e_k\}$ be CONS in \mathcal{H} .

Unitary
$$Q: \ell_2 \ni \boldsymbol{a} = (a_1, \dots, a_n, \dots) \mapsto \sum_k a_k e_k \in \mathcal{H}$$
.
Let $\tilde{r}(\boldsymbol{a}) := B^*Q\boldsymbol{a} := \tilde{R}^*\boldsymbol{a}$, i.e. $\tilde{R}^*: \ell_2 \to \mathcal{U}$. Then
 $\tilde{R}^*\tilde{R} = (B^*Q)(Q^*B) = B^*B = C$.

Integral decompositions

More decompositions and representations possible via \hat{C} .

Let
$$\varkappa(\omega_1, \omega_2) = \int_Y g(\omega_1, y) g(\omega_2, y) \nu(\mathrm{d}y).$$

Set $p(y) = R^{-1}(g(\cdot, y))$ to give
 $R^* \phi = \int_Y p(y) \langle g(\cdot, y) | \phi \rangle_{L_2(\Omega)} \nu(\mathrm{d}y) = \int_Y p(y) (G\phi)(y) \nu(\mathrm{d}y),$
where $(G\phi)(y) = \int_\Omega g(\omega, y) \phi(\omega) \mu(\mathrm{d}\omega)$ is an integral transform.
We can arrange $\mathcal{U} = \overline{\mathrm{span}} \operatorname{in} r = \overline{\mathrm{span}} \operatorname{in} p.$

Then p(y) gives a representation over Y: for $f \in L_2(Y, \nu)$

$$\hat{R}^* f = \int_Y p(y) f(y) \,\nu(\mathrm{d} y).$$

We have seen several ways to represent the solution space by a—hopefully—simpler space.

These can all be used for model reduction, choosing a smaller subspace.

- The RKHS together with R^{-1} .
- The spectral decomposition over $\sigma(C)$ or via $VM_k^{1/2}$.
- The Karhunen-Loève expansion based on SVD via R^* .
- Other multiplicative decompositions, such as $C = B^*B$.
- The kernel decompositions and representation on $L_2(Y, \nu)$.

Choice depends on what is wanted / needed.

Examples and interpretations

- If \mathcal{V} is a space of centred RVs, r is a random field / stochastic process indexed by \mathcal{P} , kernel $\varkappa(p_1, p_2)$ is covariance function.
- If in this case $\mathcal{P} = \mathbb{R}^d$ and moreover $\varkappa(p_1, p_2) = c(p_1 p_2)$ (stationary process / homogeneous field), then diagonalisation V is real Fourier transform, typically $\sigma_p(C) = \emptyset \Rightarrow$ need Gelfand triplets.
- If μ is a probability measure on $\mathcal{P} = \Omega$ ($\mu(\Omega) = 1$), and r is a centred \mathcal{V} -valued RV, then C is the covariance.
- If $\mathcal{P} = \{1, 2, \dots, n\}$ and $\mathcal{R} = \mathbb{R}^n$, then \varkappa is the Gram matrix of the vectors r_1, \dots, r_n .
- If $\mathcal{P} = [0, T]$ and r(t) is the response of a dynamical system, then R^* leads to proper orthogonal decomposition (POD).

Further factorisation

We have found representations in $\mathcal{U} \otimes \mathcal{S}$, where $\mathcal{S} = \mathcal{R}, L_2(\mathcal{P}), L_2(\sigma(C)), \bigoplus_k L_2(\mathbb{R}, \mu_k), \ell_2, L_2(Y), \dots$ Combinations may occur, so that $\mathcal{S} = \mathcal{S}_I \otimes \mathcal{S}_{II} \otimes \mathcal{S}_{III} \otimes \dots$ This was only a basic decomposition. Often the problem allows $\mathcal{U} = \bigotimes_k \mathcal{U}_k$. Or the parameters allow $\mathcal{S} = \bigotimes_j \mathcal{S}_j$. In case of random fields / stochastic processes

$$\mathcal{S} = L_2(\Omega) \cong \bigotimes_j L_2(\Omega_j) \cong L_2(\mathbb{R}^{\mathbb{N}}, \Gamma) \cong \bigotimes_{k=1}^{\infty} L_2(\mathbb{R}, \Gamma_1) \dots$$

So $\mathcal{U} \otimes \mathcal{S} \cong \left(\bigotimes_j \mathcal{U}_j\right) \otimes (\bigotimes_k \mathcal{S}_{I,k}) \otimes (\bigotimes_m \mathcal{S}_{II,m}) \otimes \dots$

Discretisation — model reduction

On continuous level discretisation is choice of subspace $\mathcal{W}_{N,B} := \mathcal{U}_N \otimes \mathcal{S}_B \subset \mathcal{U} \otimes \mathcal{S} =: \mathcal{W}$ and—important for computation—good basis in it.

On discrete level reduced models find sub-manifold $\mathcal{W}_R \subset \mathcal{W}_{N,B}$ with smaller dimensionality $\dim \mathcal{W}_R = R \ll N \times B = \dim \mathcal{W}_{N,B}$. They can work on \mathcal{S}_B or \mathcal{U}_N , or both. Different approaches to choose reduced model:

- Before the solution process (e.g. modal projection).
- After the solution process (essentially data compression).
- During solution, computing solution and reduction simultaneously.

Use in time-space sampling I

Example: UQ-computations of time-dependent shallow-water flow. 1:50 Scale model in Milano of Toce river (Italy) (D. Liu)

30

Use in time-space sampling II

Topography in model — uncertain elevation.

Also uncertain inflow and bed friction—Manning's coefficient.

Institute of Scientific Computing

Use in time-space sampling III

Computation with QMC-sampling Water level with 5 % exceedance probability

Use in emulation

Solution process to obtain co-efficients for stochastic problem

$$\mathbf{u}_{k+1} = \mathbf{\Phi}(\mathbf{u}_k)$$

may be written as tensorised mapping

$$\begin{aligned} \mathbf{u}_{k+1} &= \mathbf{u}_k - \mathbf{\Xi}(\mathbf{u}_k) = \mathbf{u}_k - \left(\sum_{m=1}^M \mathbf{Y}_m \otimes \mathbf{G}^m\right)(\mathbf{u}_k). \\ \text{With } \mathbf{u}_0 &= \sum_{j=1}^{R_0} \mathbf{y}_{0,j} \otimes \mathbf{g}^{0,j}, \text{ this gives} \\ \mathbf{u}_1 &= \sum_{j=1}^{R_0} \mathbf{y}_{0,j} \otimes \mathbf{g}^{0,j} - \sum_{m=1}^M \mathbf{Y}_m(\mathbf{u}_0) \otimes \mathbf{G}^m(\mathbf{u}_0). \\ \text{Rank of } \mathbf{u}_{k+1} \text{ grows by } M. \end{aligned}$$

Possible for pre-conditioned linear iteration, and modified-, full-, inexact- and quasi-Newton iteration. Sparse representation entails

- reduce $\mathbf{u}_N^B := [u_j^\beta]$ to important information $\mathbf{u} \approx \mathbf{u}_N^B$,
- never store all of \mathbf{u}_N^B , but only \mathbf{u} ,
- operate efficiently on sparse representation \mathbf{u} . If iteration and rank-truncation \mathbf{T}_{ϵ} are alternated, rank stays low. Here rank-truncation by updated SVD.

$$egin{aligned} &\hat{\mathbf{u}}_{k+1} = \sum_{j=1}^{R_k} oldsymbol{y}_{k,j} \otimes oldsymbol{g}^{k,j} - \sum_{m=1}^M oldsymbol{Y}_m(\mathbf{u}_k) \otimes oldsymbol{G}^m(\mathbf{u}_k), \ &\mathbf{u}_{k+1} = \mathbf{T}_\epsilon(\hat{\mathbf{u}}_{k+1}) & ext{ with } & \|\mathbf{T}_\epsilon(\mathbf{v}) - \mathbf{v}\| \leq \epsilon. \end{aligned}$$

Truncated iteration converges until stagnation for linearly convergent process with contraction factor ρ to stagnation range $\epsilon/(1-\rho)$.

Computational complexity for linear case

Residuum is
$$\mathbf{f} - \mathbf{A} \mathbf{u}_k = \mathbf{f} - \left(\sum_{m=1}^M \xi_m \, \mathbf{A}_m \otimes \mathbf{\Delta}^{(m)}\right) \, \mathbf{u}_k.$$

Computation on full \mathbf{u}_k needs $M \times \mathbf{B} \mathbf{A}$ -multiplications + $M \times \mathbf{N} \mathbf{\Delta}$ -multiplications.

Computation on low rank-R tensor product \mathbf{u}_k needs $M \times R A$ -multiplications $+ M \times R \Delta$ -multiplications, which is much less.

Pre-conditioner **P** should be used as $\mathbf{P} = \sum_{p=1}^{P} \mathbf{\Lambda}^{(p)} \otimes \mathbf{P}_{p}$. Simplest example: mean value pre-conditioner $\mathbf{P} = \mathbf{I} \otimes \mathbf{P}_{0}$ with \mathbf{P}_{0} pre-conditioner for $\mathbb{E}(\mathbf{A})$.

Similar savings as before, with M replaced by P.

35

Truncation accuracy

Accuracy of k-term tensor approximation.

Iteration accuracy

Convergence of truncated iteration.

Number of iterations

Iteration count of truncated iteration.

Institute of Scientific Computing

Dual weighted residuals

Given some functional of interest: $\psi(\mathbf{u}) \approx \mathbb{E}(\Psi(\hat{u}))$ Error in functional $\epsilon = \psi(\mathbf{u}) - \psi(\mathbf{u}_R) \approx \langle \delta \psi, \mathbf{u} - \mathbf{u}_R \rangle$

For simplicity assume that \mathbf{u} solves a linear system: $\mathbf{A}\mathbf{u} = \mathbf{f}$, reduced solution has residual $\mathbf{r} = \mathbf{f} - \mathbf{A}\mathbf{u}_R$. Solve adjoint system $\mathbf{A}^*\mathbf{y} = \delta \boldsymbol{\psi}$ for sensitivity \mathbf{y} :

$$\langle \delta \boldsymbol{\psi}, \mathbf{u} \rangle = \langle \mathbf{A}^* \mathbf{y}, \mathbf{u} \rangle = \langle \mathbf{y}, \mathbf{A} \mathbf{u} \rangle = \langle \mathbf{y}, \mathbf{f} \rangle,$$

giving

 $\epsilon \approx \langle \delta \psi, \mathbf{u} - \mathbf{u}_R \rangle = \langle \mathbf{y}, \mathbf{A}(\mathbf{u} - \mathbf{u}_R) \rangle = \langle \mathbf{y}, \mathbf{f} - \mathbf{A}\mathbf{u}_R \rangle = \langle \mathbf{y}, \mathbf{r} \rangle.$

 ϵ may be used for adaptive steering of model reduction process.

Conclusion

- parametric models lead naturally to a number of factorisations
- For efficiency try and use sparse representation throughout: ansatz in low-rank tensor products, as well as storage of solution and residuum—and iterator in tensor products.
- Works in sampling and emulation /functional approximation.
- Works also for non-linear problems and solvers, time-dependent problems.

