ISUME May 2, 2011

A Risk Based Approach for the Robustness Assessment of Timber Roofs

Simona Miraglia¹, Philipp Dietsch², Daniel Straub³

¹ Università degli Studi di Napoli 'Federico II'

²Chair for timber structures and building construction , TU München

³Engineering Risk Analysis Group, TU München

Collapse of wide span roofs

Siemens Arena Denmark 2003 Munch-Andersen

Exibition Hall Finland 2003 Frühwald et al. Kattoristikko 32 Roof truss 32

Bad Reichenhall arena Germany 2006 Winter et al. Denmark Club Hall, Denmark 2010 Pedersen et al.

Causes of failure

Report TVBK 2007 , Frühwald-Serrano-Toratti-Emilsson-Thelandersson, Lund University

Reference	Planning & design	Con- struction	Use/ main-	Other ^a %	Total %
	70	70	%		
Matousek [1]	37	35	5	23	98
Brand & Glatz [2]	40	40	-	20	100
Yamamoto & Ang [18]	36	43	21	-	100
Grunau [19]	40	29	31 ^b	-	100
Reygaertz [20]	49	22	29 ^b	-	100
Melchers, et al. [21]	55	24	21	-	100
Fraczek [22]	55	53	-	-	108 ^c
Allen [23]	55	49	-	-	104c
Hadipriono [24]	19	27	33	20	99

^a Includes cases where failure can not be associated with only one factor and may be due to several of them

^bBuilding materials, environmental influences, service conditions

^c Multiple errors for single failure case

Causes of failure

Report TVBK 2007 , Frühwald-Serrano-Toratti-Emilsson-Thelandersson, Lund University The errors occurr more Material deficiency Other^a Planning Use/ Conlikely in the design or maintenance & design struction mainphase, followed by the % tenanc construction phase Matousek [1] 37 35 23 98 Brand & Glatz [2] 204040100 Yamamoto & Ang [18] 36 43 100 21 Grunau [19] 29 31 100 40Reygaertz [20] 22 29⁶ 49 100Melchers, et al. [21] 55 24 100 -55 53 108^c Fraczek [22] 55 Allen [23] 49 104c Hadipriono [24] 19 33 2099

^a Includes cases where failure can not be associated with only one factor and may be due to several of them

^bBuilding materials, environmental influences, service conditions

^c Multiple errors for single failure case

Robustness

= insensitivity to local failure and to progressive collapse

.....different measures

Redundancy factor, Robustness index, Reliability-Robustness index, Stiffness-Robustness index etc.

....several code references

- Danish Code of Practice for the Safety of Structures
- EUROCODE
- Joint Committee for Structural Safety

Damage Limit Requirement in EN 1991-1-7:

A failure should not lead to an area failed that exceeds the minimum between

- 15% of the floor area

- 100m²

Reliability & Risk

Reliability / Probability of failure

Probability of exceeding ultimate limit states for the structural system at any stage during its life

$$\Pr(F) = \int_{\Omega_F} f(x) dx = \Pr(g(\underline{X}) \le 0)$$

<u>Risk</u>

Defined as the *"expected adverse consequences"*

$$Risk = \mathbb{E}[A_F] = \int_{0}^{A_{roof}} a f_{A_F}(a) da$$

Case study

Holzbau web Gallery

Timber Primary Beams

Span: L= 20.0 mDistance between the beams: e = 6.0 mWidth: b = 180 mm; Height at Support: $h_a = 600 \text{mm}$ Angle upper Edge: $\delta = 10^{\circ}$ Angle lower edge: $\beta = 6^{\circ}$; Inner Radius: r = 20 mLamella thickness: t = 32 mmHeight in Apex: $h_{ap} = 1163 \text{mm}$

GLULAM TIMBER GL24c

Beam Failure Mechanism

Beam Failure Mechanism

Trigger for progressive collapse

Timber Secondary Structure

30.0m

C24

Secondary Structure Failure Scenario

Stochastic model of the snow load

Strength of timber (Solid, Glulam)

Stochastic model of the strength

Bending Resistance: Isaksson's model

- Short weak zones (knots or clusters) connected by sections of clear wood (series system)
- Strength is a correlated r.v.
- Bending Resistance is Lognormal r.v.

Systematic weaknesses

Causes of weaknesses	Reduction of the resistance
Design errors	20%
Wrong cross section	18-20%
Wrong strength grade	17-20%
Bad execution of holes	20%
Bad execution of finger joints	20%

- Weakened sections occur as Bernoulli process with p=0.30
- Bending strength of the weak-element R_D is Lognormal distributed with 20% lower mean value
- Bending strengths of weak-elements R_D are strongly correlated (ρ=0.95)

Random Variables of the model

	r.v.	Distribution	μ	COV
Snow load on				
the ground [kN/m ²]	Q	Gumbel	0.384	0.40
Occurrence [1/y]	Т	Poisson	1.175	0.92
Shape Factor [\]	C	Gumbel	0.78	0.35
Density [kN/m³]	G	Normal	4.20	0.10
Permanent				
load [kN/m ^{2]}	P	Normal	0.4	0.10
Bending				
strength [MPa]	R_{ii}	Lognormal	36.97	0.25
Bending	-			
strength [MPa]	R_{Dij}	Lognormal	29.57	0.25

Methods of Analysis

MCS (confience interval 95%)	$\Pr(F(50yr) \overline{D})$	——→β value 2.3-2.7
(a) Simply supp.	4.51÷4.76·10 ⁻²	
(b) Continuous	1.75÷1.92·10 ⁻²	
(c) Lap-Jointed	1.39÷1.54·10 ⁻²	

MCS (confience interval 95%)	$\Pr\left(F\left(50yr\right) D\right)$ (p=0.30)	——→β value 1.3-2.3
(a) Simply supp.	9.38÷9.5710 ⁻²	
(b) Continuous	5.21÷5.50·10 ⁻²	
(c) Lap-Jointed	2.94÷3.15·10 ⁻²	

The limit of A_F as robustness requirement

```
F_{A_F|F}(a) = F_{A_F|F,\overline{D}}(a) \cdot Pr(\overline{D}|F) + F_{A_F|F,D}(a) \cdot Pr(D|F)
```


The limit of A_F as robustness requirement

 $F_{A_F|F}(a) = F_{A_F|F,\overline{D}}(a) \cdot Pr(\overline{D}|F) + F_{A_F|F,D}(a) \cdot Pr(D|F)$

Risk

$$Risk = E[A_F] = \int_0^{A_{roof}} a \cdot f_{A_F}(a) \ da$$

MCS	$E[A_F], Pr(D) = 0.01$	$E[A_F], Pr(D) = 0.10$
(a) Simply supp.	1.34·10 ⁻³	1.43·10 ⁻³
(b) Continuous	0.75·10 ⁻³	0.88·10 ⁻³
(c) Lap-Jointed	0.79·10 ⁻³	0.87·10 ⁻³

Results	Reliability Pr(F _{50y})	Robustness Pr(A _F >15% F)	Risk E[A _F]
(a) Simply supp.	4.51÷4.76·10 ⁻²	0.027	1.34·10 ⁻³
(b) Continuous	1.75÷1.92·10 ⁻²	0.035	0.75·10 ⁻³
(c) Lap-Jointed	1.39÷1.54·10 ⁻²	0.032	0.79·10 ⁻³

Conclusions Purlins Assessment

- Statically Determined (Simply supp.) secondary system is more robust
- Statically undetermined (Continuous and Lap-Jointed)
 secondary system have the lowest Pr(F) and Risk

The more robust configuration might be not the optimal one

Conclusions Purlins Assessment

- Statically Determined (Simply supp.) secondary system is more robust

- Statically undetermined (Continuous and Lap-Jointed) secondary system have the lowest Pr(F) and Risk

- Dietsch P., Winter S. (2010). Robustness of Secondary Structures in wide-span Timber Structures. Proceedings WCTE 2010, Riva del Garda, Italy
- Ellingwood B. (1987). Design and Construction error Effects on Structural Reliability. Journal of Structural Engineering, 113(2): 409-422.
- Früwald E., Toratti T., Thelandersson S., Serrano E., Emilsson A.(2007). Design of safe timber structures-How we can learn from structural failures in concrete, steel and timber?, Report TVBK-3053, Lund University, Sweden.
- Miraglia S., Dietsch P., Straub D.(2011). Comparative Risk Assessment of Secondary Structures in Wide-span Timber Structures, ICASP11 accepted conference paper, Zurich, August 2011.