Parameter identification using the skewed Kalman Filter

Katrin Runtemund, Gerhard Müller Chair for Structural Mechanics, TU München

Problem: damped SDOF system excited by a skewed process

wanted: estimation of the stiffness, damping paramter $a_0 = k/m$ and $a_1 = c/m$

given:

- mathematical model of the system
- the statistical characteristics of the input force
 - ⇒ wind data was downloaded from the internet database: "Database of Wind Characteristics" located at DTU, Denmark, www.winddata.com) from the Oak Creek wind farm site
- the "true" system response w(t) was simulated using the wind data

Technische Universität München

ISUME 2011 - Katrin Runtemund

Overview

- Skewed Kalman Filter
- Extension of the skewed Kalman Filter for parameter identification problems
- Identification results of the application
- Conclusion

Skewed Kalman Filter

Skewed Kalman Filter (sKF)

- introduced by P. Naveau, M. Genton and X. Shen Paper: "A skewed Kalman Filter", *Journal of Multivariate Analysis, 2004*
- based on the closed skew-normal distribution (CSN)
 - ⇒ introduced by G. González-Farías, J.A. Domínguez-Molina, A. K. Gupta (2004)

Figure: M. G. Genton: Skew-Elliptical Distributions and their Applications – A Journal Beyond Normality

ISUME 2011 - Katrin Runtemund

Chair for Structural

Mechanics

Closed skew-normal distribution (CSN)

- family of distributions including the normal one, but with 3 additional parameters
- allows a continuous variation from a normal to a half-normal distribution
- closed under
 - \Rightarrow linear transformation
 - \Rightarrow marginalization
 - \Rightarrow conditioning
 - \Rightarrow summation*

ISUME 2011 – Katrin Runtemund

Closed skew-normal distribution (CSN)

• CSN probability density function of a *n*-dimensional random vector **X**

$$X \sim CSN_{n,m}(\mu, \Sigma, D, \nu, \Delta) \qquad p_{n,m}(\mathbf{x}) = \frac{\phi_n(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma}) \Phi_m(\mathbf{D}(\mathbf{x} - \boldsymbol{\mu}); \boldsymbol{\nu}, \boldsymbol{\Delta})}{\Phi_m(\mathbf{0}; \boldsymbol{\nu}, \boldsymbol{\Delta} + \mathbf{D}\boldsymbol{\Sigma}\mathbf{D}^T)}$$

mean values: $\mu \in \mathbb{R}^n$ and $\nu \in \mathbb{R}^m$ $\phi_n(*; \eta, \Omega) = N(\eta, \Omega)$ covariance matrices: $\Sigma \in \mathbb{R}^{n \times n}$ and $\Delta \in \mathbb{R}^{m \times m}$ $\Phi_n(*; \eta, \Omega)$: cumulative distribution functionarbitrary matrix $D \in \mathbb{R}^{m \times n}$ $C = \Phi_m(0; \nu, \Delta + D\Sigma D^T) = const.$

- D regulates skewness continuous variation from the normal (D = 0) to a half normal PDF
- μ , Σ location and scale parameters
- ν closure under conditioning
- Δ closure under marginalization
- *C* closure under summation

Chair for Structural

Mechanics

Standard Kalman Filter

- The standard KF is based on a linear state space model \Rightarrow linear system equation: $\mathbf{x}_k = \mathbf{T}\mathbf{x}_{k-1} + \mathbf{B}\mathbf{f}_k + \mathbf{S}\mathbf{w}_k \quad \mathbf{w}_k \sim \mathbf{N}(0, \Sigma_w)$ \Rightarrow observation equation: $\mathbf{z}_k = \mathbf{A}\mathbf{x}_k + \mathbf{v}_k \quad \mathbf{v}_k \sim \mathbf{N}(0, \Sigma_v)$
- the state follows a first order hidden Markov process represented as Bayesian Dynamic Network

Implementation of skewness into the state space model

Alternative 1:

• Introducing the skewness in the sytem equation by modeling the input force as **additive CSN noise**:

- problem: the sum of two CSN of dimension (n, m) is of dimension (n, 2m)
- \Rightarrow rapid increase of the dimension of the matrices $\mathbf{D}_k, \mathbf{\Delta}_k$ at each time step

Implementation of skewness into the state space model

Alternative 2:

• splitting up the state in a linear and a skewed part $\mathbf{x}_k = [\mathbf{u}_k^T, \mathbf{s}_k^T]^T$

 $\mathbf{x}_{k} = \mathbf{T}\mathbf{x}_{k-1} + \mathbf{B}\mathbf{f}_{k} + \mathbf{S}\mathbf{w}_{k}$ $\mathbf{z}_{k} = \mathbf{A}\mathbf{x}_{k} + \mathbf{v}_{k}$

$$\mathbf{u}_{k} = \mathbf{T}\mathbf{u}_{k-1} + \mathbf{S}\mathbf{w}_{k}$$
$$\mathbf{z}_{k} = \mathbf{G}\mathbf{x}_{k} = \mathbf{A}\mathbf{u}_{k} + \mathbf{S}\mathbf{s}_{k} + \mathbf{v}_{k}$$
$$\underset{linear}{\mathbf{E}} \mathbf{S}_{k} = \mathbf{S}_{k} + \mathbf{v}_{k}$$

• generation of the skewed process

$$\begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} \sim \mathbf{N} \left(\begin{bmatrix} \mu \\ \nu \end{bmatrix}, \begin{bmatrix} \Sigma & -\Sigma \mathbf{D}^T \\ -\mathbf{D}\Sigma & \Delta + \mathbf{D}\Sigma \mathbf{D}^T \end{bmatrix} \right) \implies \mathbf{X} \mid \mathbf{Y} < \mathbf{D}\mu \sim \mathbf{CSN}(\mu, \Sigma, \mathbf{D}, \nu, \Delta)$$

Implementation of skewness into the state space model

Alternative 2:

• splitting up the state in a linear and a skewed part $\mathbf{x}_k = [\mathbf{u}_k^T, \mathbf{s}_k^T]^T$

 $\mathbf{x}_{k} = \mathbf{T}\mathbf{x}_{k-1} + \mathbf{B}\mathbf{f}_{k} + \mathbf{S}\mathbf{w}_{k}$ $\mathbf{z}_{k} = \mathbf{A}\mathbf{x}_{k} + \mathbf{v}_{k}$ $\mathbf{z}_{k} = \mathbf{G}\mathbf{x}_{k} = \mathbf{A}\mathbf{u}_{k} + \mathbf{S}\mathbf{S}_{k} + \mathbf{v}_{k}$ $\mathbf{z}_{k} = \mathbf{G}\mathbf{x}_{k} = \mathbf{A}\mathbf{u}_{k} + \mathbf{S}\mathbf{S}_{k} + \mathbf{v}_{k}$

• generation of the skewed process step 1: time-update $\mathbf{y}_k = -\mathbf{L}_k \mathbf{y}_{k-1} + \eta_k$ step 2: determine the joint distribution

$$\begin{bmatrix} \mathbf{y}_k \\ \mathbf{y}_{k-1} \end{bmatrix} \sim \mathbf{N} \left(\begin{bmatrix} -\mathbf{L}_k \mu_{k-1} + \mu_{\eta,k} \\ \mu_{k-1} \end{bmatrix}, \begin{bmatrix} \mathbf{L}_k \Sigma_{k-1} \mathbf{L}_k^T + \Sigma_{\eta,k} & -\Sigma_{k-1} \mathbf{L}_k^T \\ -\mathbf{L}_k \Sigma_{k-1} & \Sigma_{k-1} \end{bmatrix} \right)$$

step 3: conditioning $\mathbf{s}_k = \mathbf{y}_k | \mathbf{y}_{k-1} < \mathbf{D}_k \boldsymbol{\mu}_k \sim \mathrm{CSN}(\boldsymbol{\mu}, \boldsymbol{\Sigma}, \mathbf{D}, \boldsymbol{\nu}, \boldsymbol{\Delta})$

Bayesian approach of the skewed Kalman filter

- 1. Initialising the filter using the prior PDF $p(\mathbf{u}_{k-1}, \mathbf{y}_{k-1} | \mathbf{z}_{1:k-1})$
- 2. **Prediction**: time-update conditional on the observations up to time k-1 using the system equations $p(\mathbf{u}_k, \mathbf{y}_k, \mathbf{y}_{k-1} | \mathbf{z}_{1:k-1})$
- 3. Measurement update after observing \mathbf{z}_k : from the prediction error $\mathbf{e}_k = \mathbf{z}_k - \mathbf{A}_k \overline{\mu}_{u,k-1} - \mathbf{B}_k \mathbf{E}[\mathbf{s}_k | \mathbf{z}_{1:k-1}]$ likelihood $p(\mathbf{z}_k, |\mathbf{u}_k, \mathbf{y}_k, \mathbf{y}_{k-1}, \mathbf{z}_{1:k-1})$ is obtained using the observation equation
- 4. Applying the **Bayes' Rule** leads to the posterior PDF

$$p(\mathbf{u}_{k}, \mathbf{y}_{k}, \mathbf{y}_{k-1} | \mathbf{z}_{1:k}) = \frac{p(\mathbf{z}_{k} | \mathbf{u}_{k}, \mathbf{y}_{k}, \mathbf{y}_{k-1}) p(\mathbf{u}_{k}, \mathbf{y}_{k}, \mathbf{y}_{k-1} | \mathbf{z}_{1:k-1})}{p(\mathbf{z}_{k} | \mathbf{z}_{1:k-1})}$$

Bayesian approach to the skewed Kalman filter

$$p(\mathbf{u}_{k}, \mathbf{y}_{k}, \mathbf{y}_{k-1} | \mathbf{z}_{1:k}) = \frac{p(\mathbf{z}_{k} | \mathbf{u}_{k}, \mathbf{y}_{k}, \mathbf{y}_{k-1}) p(\mathbf{u}_{k}, \mathbf{y}_{k}, \mathbf{y}_{k-1} | \mathbf{z}_{1:k-1})}{p(\mathbf{z}_{k} | \mathbf{z}_{1:k-1})}$$

- 5. Marginalization leads to the posterior PDF of the linear part $p(\mathbf{u}_k | \mathbf{z}_{1:k})$
- 6. Marginalization and Conditioning with respect to \mathbf{y}_{k-1} leads to the posterior PDF of the skewed part $p(\mathbf{s}_k | \mathbf{z}_{1:k})$

Advantages of the method:

- computationally efficient: the closure properties of the CSN allow to reduce the filter algorithm to the recursive calculation of the parameters
- At each time step a different skewness can be implemented by changing the matrix L_k of the process $\mathbf{y}_k = -L_k \mathbf{y}_{k-1} + \eta_k$

PREDICTION (TIME UPDATE)	CORRECTION (MEASUREMENT UPDATE)			
Project the state ahead (<i>prior estimate</i>)	Compute the Kalman gain matrix of the linear and skewed part			
$\overline{\boldsymbol{\mu}}_{u,k} = \mathbf{T}_{k} \boldsymbol{\mu}_{u,k-1}$ $\overline{\boldsymbol{\Sigma}}_{uu,k} = \mathbf{T}_{k} \boldsymbol{\Sigma}_{uu,k-1} \mathbf{T}_{k}^{T} + \mathbf{S}_{k} \boldsymbol{\Sigma}_{ww,k-1} \mathbf{S}_{k}^{T}$	$\mathbf{K}_{k} = \overline{\mathbf{\Sigma}}_{uu,k} \mathbf{A}_{k}^{T} (\mathbf{\Sigma}_{vv,k} + \mathbf{A}_{k} \overline{\mathbf{\Sigma}}_{uu,k} \mathbf{A}_{k}^{T} + \mathbf{S}_{k} \operatorname{Var}[\mathbf{s}_{k} \mathbf{z}_{1:k-1}] \mathbf{S}_{k}^{T})^{-1}$ $\mathbf{K}_{s,k} = \mathbf{C}_{k} \mathbf{S}_{k}^{T} (\mathbf{\Sigma}_{vv,k} + \mathbf{A}_{k} \overline{\mathbf{\Sigma}}_{uu,k} \mathbf{A}_{k}^{T} + \mathbf{S}_{k} \operatorname{Var}[\mathbf{s}_{k} \mathbf{z}_{1:k-1}] \mathbf{S}_{k}^{T})^{-1}$			
Skewed part $\overline{\mu}_{y,k} = -\mathbf{L}_k \mu_{y,k-1}$ $\overline{\Sigma}_{yy,k} = \mathbf{L}_k \Sigma_{yy,k-1} \mathbf{L}_k^T + \Sigma_{\eta\eta,k}$ $\overline{\mathbf{D}}_k = \Sigma_{yy,k-1} - \mathbf{L}_k^T \overline{\mathbf{\Sigma}}_{yy,k}^{-1}$ $\overline{\mathbf{v}}_k = \mu_{y,k-1} - \overline{\mathbf{D}}_k \overline{\mathbf{\mu}}_{y,k}$ $\overline{\mathbf{\Delta}}_k = \Sigma_{yy,k-1} - \overline{\mathbf{D}}_k \overline{\mathbf{\Sigma}}_{yy,k} \overline{\mathbf{D}}_k^T$	Update estimate with measurement (<i>posterior estimate</i>) $\mathbf{e}_{k} = (\mathbf{z}_{k} - \mathbf{A}_{k} \overline{\mu}_{u,k} - \mathbf{S}_{k} \mathbf{E}[\mathbf{s}_{k} \mathbf{z}_{1:k-1}])$ Linear part $\overline{\mu}_{y,k} = \overline{\mu}_{u,k} + \mathbf{K}_{k} \mathbf{e}_{k}$ $\Sigma_{uu,k} = \overline{\Sigma}_{uu,k} - \mathbf{K}_{k} \mathbf{A}_{k} \overline{\Sigma}_{uu,k}$ Skewed part $\mu_{y,k} = \overline{\mu}_{y,k} + \mathbf{K}_{s,k} \mathbf{e}_{k}$ $\Sigma_{yy,k} = \overline{\Sigma}_{yy,k} - \mathbf{K}_{s,k} \mathbf{S}_{k} \mathbf{C}_{k}$ $\mathbf{D}_{k} = \Sigma_{yy,k}^{*} \mathbf{L}_{k}^{*T} \Sigma_{yy,k}^{-1}$ $\mathbf{v}_{k} = \mu_{y,k-1} + \mathbf{C}_{k-1} \mathbf{C}_{k}^{-1} \mathbf{K}_{s,k} \mathbf{e}_{k} - \mathbf{D}_{k} \mu_{y,k}$ $\Delta_{k} = \Sigma_{yy,k}^{*} - \mathbf{D}_{k} \Sigma_{yy,k} \mathbf{D}_{k}^{T}$			

ISUME 2011 – Katrin Runtemund

10/19

Chair for Structural

Mechanics

PREDICTION (TIME UPDATE)CORProject the state ahead (<i>prior estimate</i>)Com	RRECTION (MEASUREMENT UPDATE) mpute the Kalman gain matrix of the linear and wed part $= \overline{\Sigma}_{m,k} \mathbf{A}_{1}^{T} \left(\Sigma_{m,k} + \mathbf{A}_{k} \overline{\Sigma}_{m,k} \mathbf{A}_{1}^{T} + \mathbf{S}_{k} \text{Var}[\mathbf{S}_{k} \mathbf{Z}_{k} + 1] \mathbf{S}_{1}^{T} \right)^{-1}$		
Project the state ahead (<i>prior estimate</i>) Com	npute the Kalman gain matrix of the linear and wed part = $\overline{\Sigma}_{m,l} \mathbf{A}^{T}_{l} (\Sigma_{m,l} + \mathbf{A}_{l} \overline{\Sigma}_{m,l} \mathbf{A}^{T}_{l} + \mathbf{S}_{l} \operatorname{Var}[\mathbf{S}_{l} \mathbf{Z}_{l} + 1] \mathbf{S}^{T}_{l})^{-1}$		
Linear part $\overline{\mu}_{u,k} = \mathbf{T}_k \mu_{u,k-1}$ $Sum_{u,k} = \mathbf{T}_k \Sigma_{uu,k-1} \mathbf{T}_k^T + \mathbf{S}_k \Sigma_{ww,k-1} \mathbf{S}_k^T$ Skewed part $\overline{\mu}_{y,k} = -\mathbf{L}_k \mu_{y,k-1}$ $\overline{\Sigma}_{yy,k} = \mathbf{L}_k \Sigma_{yy,k-1} \mathbf{L}_k^T + \Sigma_{\eta\eta,k}$ $\overline{\mathbf{D}}_k = \Sigma_{yy,k-1} \mathbf{L}_k^T \overline{\mathbf{\Sigma}}_{yy,k}^{-1}$ $\overline{\mathbf{v}}_k = \mu_{y,k-1} - \overline{\mathbf{D}}_k \overline{\mathbf{x}}_{yy,k}$ $\overline{\mathbf{\Delta}}_k = \Sigma_{yy,k-1} - \overline{\mathbf{D}}_k \overline{\mathbf{\Sigma}}_{yy,k} \overline{\mathbf{D}}_k^T$ Skewed part $\mu_{y,k}$ $\overline{\mathbf{U}}_{uu,k}$ $\overline{\mathbf{v}}_k = \mu_{y,k-1} - \overline{\mathbf{D}}_k \overline{\mathbf{x}}_{yy,k}$ $\overline{\mathbf{v}}_k = \mathbf{v}_{yy,k-1} - \overline{\mathbf{D}}_k \overline{\mathbf{x}}_{yy,k} \overline{\mathbf{D}}_k^T$ Skewed part $\mu_{y,k}$ $\Sigma_{uu,k}$ $\mathbf{v}_k = \mathbf{v}_{yy,k-1} - \overline{\mathbf{D}}_k \overline{\mathbf{x}}_{yy,k} \overline{\mathbf{D}}_k^T$	Compute the Kalman gain matrix of the linear and skewed part $ \mathbf{K}_{k} = \overline{\Sigma}_{uu,k} \mathbf{A}_{k}^{T} (\Sigma_{vv,k} + \mathbf{A}_{k} \overline{\Sigma}_{uu,k} \mathbf{A}_{k}^{T} + \mathbf{S}_{k} \operatorname{Var}[\mathbf{s}_{k} \mathbf{z}_{1:k-1}] \mathbf{S}_{k}^{T}]^{-1} \\ \mathbf{K}_{s,k} = \mathbf{C}_{k} \mathbf{S}_{k}^{T} (\Sigma_{vv,k} + \mathbf{A}_{k} \overline{\Sigma}_{uu,k} \mathbf{A}_{k}^{T} + \mathbf{S}_{k} \operatorname{Var}[\mathbf{s}_{k} \mathbf{z}_{1:k-1}] \mathbf{S}_{k}^{T}]^{-1} \\ \text{Update estimate with measurement (posterior estimate)} \\ \mathbf{e}_{k} = (\mathbf{z}_{k} - \mathbf{A}_{k} \overline{\mu}_{u,k} - \mathbf{S}_{k} \mathbb{E}[\mathbf{s}_{k} \mathbf{z}_{1:k-1}]]) \\ \text{Linear part} \\ \overline{\mu}_{y,k} = \overline{\mu}_{u,k} + \mathbf{K}_{k} \mathbf{e}_{k} \\ \Sigma_{uu,k} = \overline{\Sigma}_{uu,k} - \mathbf{K}_{k} \mathbf{A}_{k} \overline{\Sigma}_{uu,k} \\ \text{Skewed part} \\ \mu_{y,k} = \overline{\mu}_{y,k} + \mathbf{K}_{s,k} \mathbf{e}_{k} \\ \Sigma_{yy,k} = \overline{\Sigma}_{yy,k} - \mathbf{K}_{s,k} \mathbf{S}_{k} \mathbf{C}_{k} \\ \mathbf{D}_{k} = \Sigma^{*} \cdot \mathbf{I}_{*}^{*T} \Sigma^{-1}, \end{cases} $		
Skewed Kalman Filter Kalman Filter	$= \boldsymbol{\Sigma}_{yy,k}^{*} - \mathbf{D}_{k} \boldsymbol{\Sigma}_{yy,k} \mathbf{D}_{k}^{T}$		

ISUME 2011 – Katrin Runtemund

Extended skewed Kalman Filter (EsKF)

Parameter identification using the Extended Kalman Filter (EKF)

Example: damped single degree of freedom system

Problem: The transfer matrices $\mathbf{T}_{k,k-1}$, $\mathbf{B}_{k,k-1}$, $\mathbf{S}_{k,k-1}$ depend on the unknown parameters:

$$T_{k} = e^{-\delta\Delta t} \begin{bmatrix} \frac{\delta}{\omega_{d}} \sin(\omega_{d}\Delta t) + \cos(\omega_{d}\Delta t) & \frac{1}{\omega_{d}} \sin(\omega_{d}\Delta t) \\ -\frac{\omega_{0}^{2}}{\omega_{d}} \sin(\omega_{d}\Delta t) & \cos(\omega_{d}\Delta t) - \frac{\delta}{\omega_{d}} \sin(\omega_{d}\Delta t) \end{bmatrix} \qquad \begin{bmatrix} a_{0} = \frac{k}{m} = \omega^{2} \\ a_{1} = \frac{c}{m} = 2\delta \end{bmatrix}$$

 $\omega_{\rm d} = \sqrt{\omega^2 - \delta^2}$

Parameter identification using the Extended Kalman Filter (EKF)

step 1: Extending the state by the **parameter vector p**_k to include the model parameters to be identified

$$x_{ext,k} = \begin{bmatrix} \mathbf{x}_k \\ \mathbf{p}_k \end{bmatrix} = \begin{bmatrix} w_k \\ v_k \\ a_{0,k} \\ a_{1,k} \end{bmatrix} \qquad \qquad \text{extended state space model} \\ x_{ext,k} = f(\mathbf{x}_{k-1}, \mathbf{p}_{k-1}, u_{k-1}, \mathbf{w}_{k-1}, \mathbf{w}_{p,k-1}) \\ z_{ext,k} = \mathbf{A}_{ext,k} \mathbf{x}_{ext,k} + \mathbf{v}_k$$

step 2: Approximation of the nonlinear function $f(\cdot)$ by a first order Taylor series near the current state estimate \hat{x}_{k-1}

$$\begin{aligned} x_{ext,k} &\approx f(\hat{x}_{0,k-1}) + \frac{\partial f(x_{0,k-1})}{\partial x_{0i,k-1}} \bigg|_{\hat{x}_{0i,k-1}} (x_{0i,k-1} - \hat{x}_{0i,k-1}) \\ x_{0,k-1} &= \begin{bmatrix} \mathbf{x}_{k-1} \\ \mathbf{p}_{k-1} \\ u_{k-1} \\ \mathbf{w}_{k-1} \\ \mathbf{w}_{k-1} \\ \mathbf{w}_{p,k-1} \end{bmatrix} \approx \begin{bmatrix} \hat{\mathbf{x}}_{k-1} \\ \hat{\mathbf{p}}_{k-1} \\ \hat{\mathbf{u}}_{k-1} \\ \mathbf{0}_{2\times 1} \\ \mathbf{0}_{2\times 1} \end{bmatrix} = \hat{x}_{0,k-1} \end{aligned}$$

Parameter identification using the Extended Kalman Filter (EKF)

step 2: Approximation of the nonlinear function $f(\cdot)$ by a first order Taylor series near the current state estimate \hat{x}_{k-1}

$$\begin{aligned} \mathbf{x}_{ext,k} &\approx f\left(\hat{\mathbf{x}}_{0,k-1}\right) + \mathbf{T}_{ext,k} \underbrace{\begin{bmatrix} \mathbf{x}_{k-1} - \hat{\mathbf{x}}_{k-1} \\ \mathbf{p}_{k-1} - \hat{\mathbf{p}}_{p,k-1} \end{bmatrix}}_{\varepsilon_{ext,\hat{x},k-1}} + \mathbf{B}_{ext,k} \underbrace{\left(\mathbf{u}_{k-1} - \hat{\mathbf{u}}_{k-1}\right)}_{\varepsilon_{ext,u,k-1}} + \mathbf{S}_{ext,k} \underbrace{\begin{bmatrix} \mathbf{w}_{k-1} \\ \mathbf{w}_{p,k-1} \end{bmatrix}}_{\varepsilon_{ext,w,k-1}} \end{aligned}$$

$$\begin{aligned} \mathbf{T}_{ext,k} &= \begin{bmatrix} \mathbf{T}_{k} \begin{pmatrix} \hat{\mathbf{p}}_{k-1} \end{pmatrix} & \underbrace{\mathcal{J}_{f,k} \begin{pmatrix} \hat{\mathbf{p}}_{k-1} \end{pmatrix}}_{\mathbf{I}_{2\times 2}} \end{bmatrix} & \text{with} & \mathcal{J}_{f,k} \begin{pmatrix} \hat{\mathbf{p}}_{k-1} \end{pmatrix} = \frac{\partial f(\mathbf{x}_{0,k-1})}{\partial \mathbf{p}_{k-1}} \Big|_{\hat{\mathbf{x}}_{0i,k-1}} \end{aligned}$$

$$\begin{aligned} \mathbf{J}_{acobian \, Matrix} \\ \mathcal{J}_{f} \begin{pmatrix} \mathbf{p}_{k} \end{pmatrix} = \begin{bmatrix} \frac{\partial w}{\partial a_{0}} & \frac{\partial v}{\partial a_{0}} \\ \frac{\partial w}{\partial a_{1}} & \frac{\partial v}{\partial a_{1}} \end{bmatrix} \\ \mathbf{S}_{ext,k} &= \begin{bmatrix} \mathbf{S}_{k} \begin{pmatrix} \hat{\mathbf{p}}_{k-1} \end{pmatrix} & \mathcal{J}_{f,k} \begin{pmatrix} \mathbf{w}_{p,k-1} \end{pmatrix} \\ \mathbf{0}_{2\times 1} & \mathbf{1}_{2\times 2} \end{bmatrix} & \text{with} & \mathcal{J}_{f,k} \begin{pmatrix} \mathbf{w}_{p,k-1} \end{pmatrix} = \frac{\partial f(\mathbf{x}_{0,k-1})}{\partial \mathbf{w}_{p,k-1}} \Big|_{\hat{\mathbf{x}}_{0i,k-1}} \end{aligned}$$

Parameter identification using the Extended skewed Kalman Filter (EsKF)

• in case of the skewed state space model, the linearization is done around the current state of the linear part

linear part: $\mathbf{u}_{ext,k} = \mathbf{T}_{ext,k-1}\mathbf{u}_{ext,k-1} + \mathbf{S}_{ext,k-1}\mathbf{w}_{ext,k}$ skewed part: $\mathbf{y}_{k} = -\mathbf{L}_{k}\mathbf{y}_{k-1} + \eta_{k} \implies \mathbf{s}_{k} = \mathbf{y}_{k} | \mathbf{y}_{k-1} < \mathbf{D}_{k}\mu_{k}$

$$\mathbf{z}_{k} = \mathbf{G}\mathbf{x}_{k} = \mathbf{A}_{ext}\mathbf{u}_{k} + \mathbf{A}_{ext}\mathbf{S}_{ext,k-1}\mathbf{s}_{k} + \mathbf{v}_{k} \qquad \mathbf{A}_{ext} = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$$

- the linearized extended state space model can now be investigated using the introduced skewed Kalman filter algorithm where
 - \Rightarrow the time-variante transfer matrices \mathbf{T}_k , \mathbf{S}_k are replaced by the extended matrices $\mathbf{T}_{ext,k}$, $\mathbf{S}_{ext,k}$

Identification results

ISUME 2011 – Katrin Runtemund

Approximation of the PDF of the measurement wind data

ISUME 2011 – Katrin Runtemund

15/19

Chair for Structural Mechanics

Identification results

	true	initial	initial error	identified parameters		identification error	
	values	values		EKF	EsKF	EKF	EsKF
$a_0[s^{-2}]$	100	150	50 %	20,40	101,84	79,6 %	2 %
$a_1 [s^{-1}]$	0,2	0,3	50 %	1,18	0,19	490 %	5%

Predicted displacement and generated load

Conclusion

- The method is computational efficient
- The method worked well for the introduced identification problem
- The CSN allows to describe the characteristics of the regarded skewed wind data
- The "form" of the temperal evaluation of the wind data was approximated well, but the amplitude was wrong by a factor 100

Further work

- Find the error....any comments?
- Investigate the sensitivity of the parameter identification results depending on the initial conditions
- Extending the method to a multi-degree of freedom system

Thanks! Any questions or comments?

ISUME 2011 – Katrin Runtemund

PREDICTION (TIME UPDATE)	CORRECTION (MEASUREMENT UPDATE)			
Project the state ahead (<i>prior estimate</i>)	Compute the Kalman gain matrix of the linear and skewed part			
$\overline{\boldsymbol{\mu}}_{u,k} = \mathbf{T}_{k} \boldsymbol{\mu}_{u,k-1}$ $\overline{\boldsymbol{\Sigma}}_{uu,k} = \mathbf{T}_{k} \boldsymbol{\Sigma}_{uu,k-1} \mathbf{T}_{k}^{T} + \mathbf{S}_{k} \boldsymbol{\Sigma}_{ww,k-1} \mathbf{S}_{k}^{T}$	$\mathbf{K}_{k} = \overline{\mathbf{\Sigma}}_{uu,k} \mathbf{A}_{k}^{T} (\mathbf{\Sigma}_{vv,k} + \mathbf{A}_{k} \overline{\mathbf{\Sigma}}_{uu,k} \mathbf{A}_{k}^{T} + \mathbf{S}_{k} \operatorname{Var}[\mathbf{s}_{k} \mathbf{z}_{1:k-1}] \mathbf{S}_{k}^{T})^{-1}$ $\mathbf{K}_{s,k} = \mathbf{C}_{k} \mathbf{S}_{k}^{T} (\mathbf{\Sigma}_{vv,k} + \mathbf{A}_{k} \overline{\mathbf{\Sigma}}_{uu,k} \mathbf{A}_{k}^{T} + \mathbf{S}_{k} \operatorname{Var}[\mathbf{s}_{k} \mathbf{z}_{1:k-1}] \mathbf{S}_{k}^{T})^{-1}$			
Skewed part $\overline{\mu}_{y,k} = -\mathbf{L}_k \mu_{y,k-1}$ $\overline{\Sigma}_{yy,k} = \mathbf{L}_k \Sigma_{yy,k-1} \mathbf{L}_k^T + \Sigma_{\eta\eta,k}$ $\overline{\mathbf{D}}_k = \Sigma_{yy,k-1} - \mathbf{L}_k^T \overline{\mathbf{\Sigma}}_{yy,k}^{-1}$ $\overline{\mathbf{v}}_k = \mu_{y,k-1} - \overline{\mathbf{D}}_k \overline{\mathbf{\mu}}_{y,k}$ $\overline{\mathbf{\Delta}}_k = \Sigma_{yy,k-1} - \overline{\mathbf{D}}_k \overline{\mathbf{\Sigma}}_{yy,k} \overline{\mathbf{D}}_k^T$	Update estimate with measurement (<i>posterior estimate</i>) $\mathbf{e}_{k} = (\mathbf{z}_{k} - \mathbf{A}_{k} \overline{\mu}_{u,k} - \mathbf{S}_{k} \mathbf{E}[\mathbf{s}_{k} \mathbf{z}_{1:k-1}])$ Linear part $\overline{\mu}_{y,k} = \overline{\mu}_{u,k} + \mathbf{K}_{k} \mathbf{e}_{k}$ $\Sigma_{uu,k} = \overline{\Sigma}_{uu,k} - \mathbf{K}_{k} \mathbf{A}_{k} \overline{\Sigma}_{uu,k}$ Skewed part $\mu_{y,k} = \overline{\mu}_{y,k} + \mathbf{K}_{s,k} \mathbf{e}_{k}$ $\Sigma_{yy,k} = \overline{\Sigma}_{yy,k} - \mathbf{K}_{s,k} \mathbf{S}_{k} \mathbf{C}_{k}$ $\mathbf{D}_{k} = \Sigma_{yy,k}^{*} \mathbf{L}_{k}^{*T} \Sigma_{yy,k}^{-1}$ $\mathbf{v}_{k} = \mu_{y,k-1} + \mathbf{C}_{k-1} \mathbf{C}_{k}^{-1} \mathbf{K}_{s,k} \mathbf{e}_{k} - \mathbf{D}_{k} \mu_{y,k}$ $\Delta_{k} = \Sigma_{yy,k}^{*} - \mathbf{D}_{k} \Sigma_{yy,k} \mathbf{D}_{k}^{T}$			

ISUME 2011 – Katrin Runtemund

18/19

