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A Motivation

Fig.1 Courtesy: T. Ebermann et al, Tunel 4/2010



A Motivation
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B Modeling of successive excavation
TheThe convergence convergence confinement method confinement method vsvs quasiquasi--3D FEM3D FEM
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B Modeling of successive excavation
ExtenzometricExtenzometric measurements as a measurements as a source of the model datasource of the model data
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B Modeling of successive excavation

Fig.8



C1 Categorization of failures and concept of risk 
analysis

Most Most typical failurestypical failures::
• Extensive deformations of the tunnel tube

• Exceeding of acceptable progress of the subsidence  trough• Exceeding of acceptable progress of the subsidence  trough

• Cave-in collapse

• Occurrence of a tunnel segment surrounded by a suddenly 
weakened rock

• Occurrence of a resistant overburden the thickness of which 
randomly tends to diminish

Risk Risk assessmentassessment::
The simplest formula         The simplest formula         

(1)                                          

can be generalized as 

(2)

where D(i) is the expected financial loss caused by the Consequence.
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C2 Failure probability of surface structure

The subsidence troughThe subsidence trough descriptiondescription

AA simple simple approximation approximation readsreads
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AA simple simple approximation approximation readsreads

where

TheThe loading effectloading effect
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C2 Failure probability of surface structure

•Let the structure resistance, Rx and/or Ry ,be a maximum curvature the 
structure is able to sustain.

•The failure probability of a segment located at a distance x
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C3 Failure due to random cave-in collapse

The sequence of collapses is mostly described by means of the Poisson model
(Fig. 10). Hence, a random variable distance, U, is exponentially distributed,
i.e.

Fig.10

,

, (11)

where λ is the intensity of the process.
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C3 Failure due to random cave-in collapse

Modification of Eq. (11) based on an expert’s judgment (Fig. 11)

The expert’s surrogate for Eq. (11) may be written as

Fig.11

The expert’s surrogate for Eq. (11) may be written as

(12)

Evidently, the normalization condition must be fulfilled
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C3 Failure due to random cave-in collapse

Two scenarios with regard to the caveTwo scenarios with regard to the cave--in locationin location

(Fig.10)

a) The cave-in position is sufficiently far away from the selected segment        

)( 1≤up ξ

b) The cave-in occurs in the segment’s close vicinity (            )

The unconditional probability of failure in a selected segment ξ
(13)
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C4 Random system with continuously varying 
geotechnical parameters

A lose material randomly separated from the rock overburden (Fig. 12)

For a constant level a, the barrier up-crossing rate,  , is  given by Rice’s 
formula

Fig.12
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C4 Random system with continuously varying 
geotechnical parameters

Introducing the spectral density function            along with corresponding 
relations
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and considering a narrow band process characterized by frequency     we 
arrive at

Evidently,       could also be regarded as the intensity of a Poisson process.

Hence, the first-passage  probability is assessed as
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C4 Random system with continuously varying 
geotechnical parameters

Example  Example  -- A segment of the A segment of the BlankaBlanka tunnel tunnel ((Fig. 3Fig. 3))

Interface between the rock overburden and soft material detected by in situ
measurements is displayed in Fig. 13. A solid line obtained by the linear
regression demonstrates a variable mean function of Gauss’ process.

Fig.13

Fig.3



C4 Random system with continuously varying 
geotechnical parameters

The results of a case study depicted in Fig. 14 show sensibility of the model to 
the wave length L0. The standard deviation of Gauss’ process σ = 0.841m was 
evaluated numerically and the depth of the rock layer was drawn as h –
a = 6m.a = 6m.

Fig.14



D Conclusions

•• ProbabilityProbability--based approaches are an efficient alternative to expert based approaches are an efficient alternative to expert 
methods such as FTA and ETA. They operate either separately to estimate methods such as FTA and ETA. They operate either separately to estimate 
risks in a direct way or as an auxiliary tool forrisks in a direct way or as an auxiliary tool for FFTATA and ETAand ETA..

•• The proposed methodology suggests theoretical instruments The proposed methodology suggests theoretical instruments making it making it •• The proposed methodology suggests theoretical instruments The proposed methodology suggests theoretical instruments making it making it 
possible possible to analyze most serious problems tunnel engineering has to face.to analyze most serious problems tunnel engineering has to face.

•• All the phenomena discussed within the scope of this paper have been All the phenomena discussed within the scope of this paper have been 
recently met during the excavation of the recently met during the excavation of the BlankaBlanka tunnel in Prague.tunnel in Prague.

•• Of course, there are certain drawbacks that could not be overlooked. The Of course, there are certain drawbacks that could not be overlooked. The •• Of course, there are certain drawbacks that could not be overlooked. The Of course, there are certain drawbacks that could not be overlooked. The 
main point is material data which has to be properly predicted both by in situ main point is material data which has to be properly predicted both by in situ 
measurements and laboratory tests. If reliable data is missed, any measurements and laboratory tests. If reliable data is missed, any 
sophisticated theory whatever becomes pointless and cannot responsibly be sophisticated theory whatever becomes pointless and cannot responsibly be 
implemented.implemented.


